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Abstract. The purpose of this article is a brief review of the progress made

on the question of stability of root numbers under twists by highly ramified

characters. In particular, we discuss the problem for the cases of exterior and
symmetric square factors, attached to irreducible admissible representations

of GL(n, F ) and briefly sketch how they can be shown to be equal to their
arithmetic counterparts, i.e., Artin factors. The analysis involved here is dif-

ferent from techniques used earlier and relies on the theory of germs of Bessel

functions.

Introduction

One of the ingenious ideas of Piatetski–Shapiro in the study of analytic root
numbers (or ε–factors) has been the use of the theory of Bessel functions to establish
their stability under highly ramified twists, as was done in a joint work with the
first author in the case of SO(2n+ 1) [7]. This stability was designed to overcome
the lack of a local Langlands correspondence (LLC) for SO(2n+ 1) when applying
converse theorems to prove functoriality from SO(2n + 1) to GL(2n) using the
integral representations of Novodvorsky, Ginzburg, and Soudry [27, 14, 36]. As
events unfolded, the functorial transfer from the generic spectrum of classical groups
to GL(N) finally took place by combining converse theorems [7, 8] with the analytic
properties of L–functions obtained from the Langlands–Shahidi method [25, 33,
34]. In doing this, the necessary stability results needed to be deduced for each
case within the context of the Langlands-Shahidi method [1, 6, 10, 11, 23].

The purpose of this note is to review the problem of stability of root numbers
and discuss the progress which has been made since its use in establishing func-
toriality as well as a new potential application. The problem of the equality of
the arithmetic factors of Artin with the analytic factors defined by representations
of local groups through the local Langlands correspondence [16, 17, 35] has now
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been reduced, in a number of previously unavailable cases, to a proof of the sta-
bility of these local factors for supercuspidal representations [12]. This approach
to the equality of such arithmetic and analytic factors seems to be valid in some
generality [12, 35]. We refer to Section 3 for a discussion of this in the cases of
ε–factors attached to the exterior and the symmetric square L–functions for GL(n).
Stability is very useful whenever one is to use global functional equations to deduce
information about local factors, including their comparisons, as we shall see below.

1. What is Stability?

We refer to [35] for a related article on stability and reciprocity.
Let F be a non–archimedean local field and let G be a connected reductive

group over F . We will need to assume G has non–trivial F–rational characters,
i.e., X(G)F 6= {1}. Choose and fix a non-trivial δ ∈ X(G)F , δ 6= 1. The space
X(G)F of rational characters is often one dimensional, as in the case of GL(n),
but when it is not there is often a natural choice for δ given the problem under
consideration. Then δ(G(F )) ⊂ F× is open. Let χ be a highly ramified character
of F×. Then χ · δ is what we call a highly ramified character of G(F ). We will
suppress any dependence on δ.

Let LG be the L–group of G. Fix a non–trivial character ψF of F . Let r
be a complex analytic representation of LG on a finite dimensional complex vector
space V . Assume we have a good theory of L–functions for r, i.e., a pair of complex
functions L(s, π, r) and ε(s, π, r, ψF ) for every irreducible admissible representation
π of G(F ), satisfying a number of local and global properties [13, 24, 26].

Let π1 and π2 be two irreducible admissible representations of G(F ). Let ωπi

denote the central character of πi, i = 1, 2. Stability asserts:

Stability of local factors. Assume ωπ1
= ωπ2

= ω. Then for every suf-
ficiently highly ramified character χ of G(F ), with the ramification level depending
on π1 and π2, one has

(1.1) L(s, π1 ⊗ χ, r) = L(s, π2 ⊗ χ, r) = 1

and

(1.2) ε(s, π1 ⊗ χ, r, ψF ) = ε(s, π2 ⊗ χ, r, ψF ).

Set

(1.3) γ(s, π, r, ψF ) = ε(s, π, r, ψF )L(1− s, π, r̃)/L(s, π, r).

Then stability requires

(1.4) γ(s, π1 ⊗ χ, r, ψF ) = γ(s, π2 ⊗ χ, r, ψF ).

This is of course to match Deligne’s “arithmetic” stability results for the Artin
factors [13]. For this reason we will call our stability “analytic” stability whenever
there is a cause for confusion.

Initial cases of analytic stability in any generality were proved for Rankin prod-
uct L–functions for GL(n)×GL(m) by Jacquet and Shalika using theory of conduc-
tors [21]. The first case of analytic stability outside the case of GL(n)×GL(m) was
proved by Cogdell and Piatetski–Shapiro for the case G = SO(2n + 1) as part of
their program to establish functorial transfer from generic forms on SO(2n+ 1,A)
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to GL(2n,A), where A is the ring of adeles of a number field [7]. The work in [7] re-
lied on the integral representation established for L(s, π, St) in [27, 14, 36], where
π is a generic cusp form on SO(2n+ 1,A). Here St stands for the 2n–dimensional
standard representation of Sp(2n,C) = LSO(2n + 1). Analytic stability for the
standard L-functions of classical groups were established, via the doubling inte-
grals of Piatetski-Shapiro and Rallis, by Rallis and Soudry [28] and Brenner [2].

The eventual proof of functoriality for the generic spectrum of the classical
groups using converse theorems [8, 9], as envisioned by Cogdell and Piatetski–
Shapiro, employed the theory of L–functions developed through the Langlands–
Shahidi method [31, 34]. To accomplish this we needed analytic stability in the
context of the Langlands-Shahidi method. The groundwork for this in general
was laid out in [33] and then implemented for each family of classical groups, at
first on a case-by-case basis and then in the generality needed for functorialiy in
[10, 11]. This is explained in more detail in what follows. We refer to [32, 35]
for some definitive results concerning (1.1) and to the article [4] in this volume for
the relevant literature on functoriality in the cases of classical or GSpin groups to
GL(n).

A proof of analytic stability along the lines of [33] for GL(n) × GL(n) was
the subject matter of the third author’s Ph.D. thesis [37]. The case of (GL(n) ×
GL(m), GL(n + m)), which gives the Rankin product L–functions for GL(n) ×
GL(m) studied by Jacquet and Shalika, is not a case of a self–associate parabolic
subgroup (in the sense of Section 1.2 of [34] and Section 2 below) when n 6= m and
the formula in [33] does not directly apply. However, analytic stability for Rankin-
Selberg convolutions when n 6= m, which is probably the hardest of the non–self–
associate cases occurring in the Langlands-Shahidi method, now seems to fit in the
realm of the approach in [33] when the corresponding integral representation of the
inverse of local coefficient is properly interpreted. This is work in progress of the
second two authors.

Beside its central and important applications in establishing functoriality al-
ready alluded to, there are other applications which also require the use of stability.
As we mentioned earlier, present proofs of equality of root numbers from the arith-
metic side (Artin factors) to the analytic ones are based on local–global arguments
for which stability is indispensable (cf. Section 3 here). In the next section we will
discuss steps taken in establishing stability in the generality of the factors defined
by the Langlands–Shahidi method.

2. Towards a general stability

We will now briefly explain the progress made on stability in the context of the
analytic factors defined by the Langlands–Shahidi method. We start with a quick
review of the definition of these factors.

Let G be a connected reductive quasisplit algebraic group over a p–adic field
F . Let B be a Borel subgroup of G defined over F and write B = TU , where T
is a maximal torus of B and U its unipotent radical. Let A0 be the maximal split
subtorus of T . Fix a standard parabolic subgroup P of G with Levi decomposition
P = MN , with M the Levi component and N the unipotent radical, such that
T ⊂M and N ⊂ U . This Levi decomposition is unique as we fix M ⊃ T . To define
the local factors we may assume P to be maximal. Let α be the unique simple root
of A0 in the Lie algebra of U whose root subgroup lies in N .



4 J.W. COGDELL, F. SHAHIDI, AND T.-L. TSAI

Let A ⊂ A0 be the split component of M , i.e., the maximal split torus in the
connected component of the center of M . Let a = Hom(X(M)F ,R) be the real Lie
algebra of A and a∗C = X(M)F ⊗Z C its complex dual. Let ρ be a half the sum of
the roots in N . Let s ∈ C and set

(2.1) α̃ = 〈ρ, α〉−1ρ.

Then sα̃ ∈ a∗C. Let (π, Vπ) be an irreducible admissible representation of M(F ). If

HM : M(F ) −→ a

is defined by

exp〈χ,HM (m)〉 = |χ(m)|
for all χ ∈ X(M)F , then

m 7→ exp〈ν,HM (m)〉
gives a character of M(F ) for every ν ∈ a∗C. We let

I(ν, π) = Ind
G(F )
M(F )N(F )(π ⊗ exp〈ν,HM (·)〉)⊗ 1

be the unitarily induced representation of G(F ). We finally let I(s, π) : = I(sα̃, π).
We will use V (ν, π) and V (s, π) to denote the spaces of I(ν, π) and I(s, π), respec-
tively, if confusion arises. We refer to [34] for details.

If P ′ is another standard maximal parabolic of G, write P ′ in its Levi decom-
position P ′ = M ′N ′ with Levi component M ′ and unipotent radical N ′ such that
T ⊂ M ′ and N ′ ⊂ U . Assume there exists a w̃ ∈ W (G,A0), the Weyl group
of A0 in G, such that M ′ = w̃(M). Let w be a representative for w̃ and set
Nw = (wN−w−1) ∩ U , where N− is the opposite of N . Define the intertwining
operator A(ν, π, w) by

(2.2) A(ν, π, w)f(g) =

∫
Nw(F )

f(w−1n′g)dn′,

for f ∈ V (ν, π). Then

(2.3) A(ν, π, w)f ∈ V (w(ν), w(π)).

To avoid technicalities, let us assume ν = sα̃, s ∈ C; then it can be shown that (2.2)
converges absolutely for Re(s) >> 0 and in fact for Re(s) > 0 if π is tempered. We
refer to Chapter 4 of [34] for details.

If we combine our character ψF of F with a F–splitting of G, we then get a
non–degenerate character of U(F ) and by restriction one of UM (F ), UM = U ∩M ,
both of which we will denote by ψ. The representation π being ψ–generic means
that there exists a non–zero Whittaker functional λ in the dual space V ′π such that

(2.4) λ(π(u)v) = ψ(u)λ(v)

for u ∈ UM (F ) and v ∈ Vπ. We now assume π is ψ-generic. We can then define a
ψ-Whittaker functional on the space V (ν, π) by

(2.5) λψ(ν, π)(f) =

∫
N ′(F )

λ(f(w−1n′))ψ(n′)dn′.

This is the so called canonical (induced) Whittaker functional on V (ν, π). The
definition of the local coefficients Cψ(ν, π) is through the functional equation

(2.6) Cψ(ν, π)λψ(w(ν), w(π)) ·A(ν, π, w) = λψ(ν, π),
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which holds by Rodier’s theorem (cf. Chapter 3 of [34]). Finally, we set ν = sα̃
and define

(2.7) Cψ(s, π) : = Cψ(sα̃, π).

Now, let LG and LM be the L–groups of G and M , respectively. In our setting
LM is a Levi subgroup of LG and one can define a unipotent subgroup LN of LG
so that LMLN is a parabolic subgroup of LG with unipotent radical LN (cf. [31]).
Let Ln : = Lie(LN) and let r be the adjoint action of LM on Ln. The irreducible
constituents ri, i = 1, . . . ,m, of r will be the restrictions of r to the subspaces

(2.8) Vi = {Xα∨ ∈ Ln | 〈α̃, α〉 = i}.
One of the results proved in [31] is the existence of analytic L- and ε-factors for

each triple (G,M, ri). Their definition is inductive and follows the process explained
in [31], using the main identity for γ-factors

(2.9) γ(s, π, ri, ψF ) = ε(s, π, ri, ψ)L(1− s, π, r̃i)/L(s, π, ri)

and the relationship between the γ-factors and local coefficients, stated as part of
Theorem 3.5 in [31], namely

(2.10) Cψ(s, π) = λG(ψF , w0)−1
m∏
i=1

γ(is, π, r̃i, ψF ).

Here w0 is the long element of W (G,A0) modulo that of W (M,A0), i.e., w0 =
w`,G · w−1`,M , where the representatives are chosen as in Remark 8.2.1 of [34] and

the constant λG(ψF , w0)−1 is a product of Langlands λ–functions [24, 26, 30, 31]
(Hilbert symbols). These local factors satisfy all the desired properties, which
include consistency with the global functional equation whenever π occurs as a
local factor of a irreducible cuspidal automorphic representation of M(A). By an
inductive argument, to prove stability for each γ(s, π, ri, ψF ) it is enough to prove
it for local coefficients. Stability in our context then becomes:

Stability for local coefficients. Given a pair of irreducible admissible
ψ–generic representations π1 and π2 of M(F ) with the same central characters,

(2.11) Cψ(s, π1 ⊗ χ) = Cψ(s, π2 ⊗ χ)

whenever χ is a highly ramified character of M(F ) with ramification level depending
on π1 and π2.

As experience has shown, at least in a number of important cases, this can be
proved by expressing Cψ(s, π) as a Mellin transform of a partial Bessel function on
M(F ). This was attained by establishing an integral representation for Cψ(s, π)−1

in [33], Theorem 6.2. The formula given there, and in Theorem 2.1 below, is under
the assumption that P is self–associate, i.e., that N = w0Nw

−1
0 = N−, where N−

is the unipotent subgroup opposed to N .
We first recall the partial Bessel function involved. Let ωπ be the central

character of π and define w0(ωπ)(z) = ωπ(w−10 zw0). Given s ∈ C, set πs = π ⊗
q〈sα̃,HM (·)〉 and define

(2.12) ωπs(z) = ωπ(z)q〈sα̃,HM (z)〉.

We refer to equation (2.1) for the definition of α̃. Fix a sufficiently large open
compact subgroup N0 ⊂ N and let ϕ denote its characteristic function.
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For an open dense subset of n ∈ N(F ), we have a decomposition

(2.13) w−10 n = mn′n,

with m ∈M(F ), n′ ∈ N(F ), and n ∈ N(F ). This sets up a densely defined map

n 7→ (m,n)

from N(F ) into M(F )×N(F ). While n 7→ n is a bijection for all n and n satisfying
(2.13), n 7→ m may not be one; see [33].

For v ∈ Vπs let Wv(m) = λ(πs(m)v) be a Whittaker function in the Whittaker
model of πs, defined with respect to the ψ-Whittaker functional in (2.4). We choose
v such that Wv(e) = 1. Given z ∈ ZM (F ), the center of M(F ), we define the partial
Bessel function

(2.14) jv,ϕ(m,n, z) : =

∫
UM,n(F )\UM (F )

Wv(mu
−1)ϕ(zunu−1z−1)ψ(u)du,

where UM,n is the stabilizer of n in UM .
As before, let α be the unique simple root of T in U whose root-subgroup lies

in N . We may assume H1(F,ZG) = 1, which we can attain by enlarging G without
changing its derived group; this will not affect our results. Lemma 5.2 of [33]
then implies existence of a map α∨ from F× into Z0

M = ZG(F )\ZM (F ) such that
α′(α∨(t)) = t, t ∈ F×, for any root α′ of T that restricts to α. Let xα = xα(n̄) ∈ F
denote the α–coordinate of w−10 nw0 ∈ N(F ) by means of our fixed splitting.

Given y ∈ F×, set

(2.15) jv,ϕ(m,n, y) : = jv,ϕ(m,n, a∨(y−1 · xα)),

whenever xα(n̄) 6= 0. We also let Z0
MUM (F ) act on N(F ) by conjugation and write

Z0
MUM (F )\N(F ) for the corresponding quotient space.

Theorem 2.1. Suppose ωπ(w0ω
−1
π ) is ramified. Fix y0 ∈ F such that ordF (y0) =

−d − f , where d and f are the conductors of ψF and ω−1π · (w0ωπ), respectively.
Then up to the abelian Tate γ–factor attached to ωπ · (w0ω

−1
π ) and ψF ,

(2.16) Cψ(s, π)−1 ∼
∫
jṽ,ϕ(m,n, y0)ω−1πs

(xα)(w0ωπs)(xα)q〈sα̃+ρ,HM (m)〉dṅ.

Here the integration is over Z0
MUM (F )\N(F ), xα is embedded in ZM (F ) through

a∨ and v = ṽ ⊗ q〈sα̃,HM (·)〉, i.e., ṽ is the vector in Vπ that corresponds to v in Vπs
.

This result is Theorem 6.2 of [33]. It is Equation (2.16) which has been the main
tool in proving stability in the context of the Langlands-Shahidi method. What
one has to do is to prove an asymptotic expansion for the partial Bessel function
jṽ,ϕ. In the cases of classical or GSpin groups, one basically needs to deal with
M = GL(1) × G1, where G1 is one of these groups, occurring as a maximal Levi
subgroup inside a larger group G of the same type. The philosophy of expressing
γ–functions as a Mellin transform of a partial Bessel function goes back to Cogdell
and Piatetski–Shapiro [7] who proved such a formula as well as the asymptotic
expansion for the corresponding partial Bessel functions when G1 = SO(2n + 1).
Using Equation (2.16), the corresponding stability for other cases arising in the
proofs of functoriality was proved in [1, 6, 10, 11, 23].
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3. Stability and equality of factors in the case γ(s, π,Λ2, ψF )

Let ρ be an n–dimensional continuous Frobenius semisimple representation of
the Weil–Deligne group W ′F and let π(ρ) be the irreducible admissible representa-
tion of GL(n, F ) attached to ρ through the local Langlands correspondence (LLC)
[16, 17]. The LLC should be robust when it comes to forming L-, ε-, and γ-factors
associated to finite dimensional representations of GL(n,C); it should respect var-
ious parallel operations on the arithmetic and analytic sides. As examples we have
the exterior and symmetric square operations. If ρ ∈ Repn(W ′F ), then Λ2 · ρ and

Sym2 · ρ are again Galois representations of dimension n(n∓ 1)/2 and as such have
associated L- and ε-factors as defined in [13]:

L(s,Λ2 · ρ), ε(s,Λ2 · ρ, ψF ) and L(s,Sym2 · ρ), ε(s,Sym2 · ρ, ψF ).

On the analytic side, we have the corresponding operations for π(ρ) as defined in
[31], namely

L(s, π(ρ),Λ2), ε(s, π(ρ),Λ2, ψF ) and L(s, π(ρ),Sym2), ε(s, π(ρ),Sym2, ψF ).

In [12] we present an approach to the following equality of arithmetic and analytic
local factors.

Equality of local factors. With ρ and π(ρ) as above, we have

ε(s,Λ2 ·ρ, ψF ) = ε(s, π(ρ),Λ2, ψF ) and ε(s,Sym2 ·ρ, ψF ) = ε(s, π(ρ),Sym2, ψF ).

On both the arithmetic and analytic sides, we have the associated γ-factors
defined through (2.9) and its arithmetic analogue. In fact, in [12], using a ro-
bust deformation argument, which should apply more generally whenever LLC is
available, we give an argument for the equality

(3.1) γ(s,Λ2 · ρ, ψF ) = γ(s, π(ρ),Λ2, ψF ).

The proof of this is reduced to a proof of stability for the case of irreducible ρ and
thus only when π = π(ρ) is supercuspidal [16, 17]. A similar equality can then be
deduced for the symmetric square

γ(s,Sym2 · ρ, ψF ) = γ(s, π(ρ),Sym2, ψF ).

Here we use the factorizations

(3.2) γ(s, ρ⊗ ρ, ψF ) = γ(s,Λ2 · ρ, ψF )γ(s,Sym2 · ρ, ψF )

and

(3.3) γ(s, π × π, ψF ) = γ(s, π(ρ),Λ2, ψF )γ(s, π(ρ),Sym2, ψF ).

The left hand sides are equal by LLC, from which the equality for the symmetric
square factors is deduced from (3.1). From the equality of the γ-factors, we can
deduce the equality of the L-and ε-factors. The equality of the L-factors was
previously established by Henniart [18].

In the case of the exterior square, the defining pair (M,G) giving γ(s, π,Λ2, ψF )
can be taken to be (GL(n)×GL(1), GSp(2n)) and this is in fact the self–associate
pair chosen in [12]. The corresponding local coefficient then has γ(s, π(ρ),Λ2, ψF )
as one of its factors, the other being γ(s, π, St, ψF ) whose stability is well–known, ei-
ther directly [21], or through LLC [13]. (We remark that the pair (GL(n), SO(2n)),



8 J.W. COGDELL, F. SHAHIDI, AND T.-L. TSAI

which also gives γ(s, π,Λ2, ψF ), is not self–associate whenever n is odd which was
the reason to choose the pair (GL(n)×GL(1), GSp(2n)) instead.) The proof given
in [12] can be reduced to a proof of stability for supercuspidal representations:

Stability for supercuspidals. Let π1 and π2 be two irreducible supercusp-
idal representations of GL(n, F ) sharing the same central characters. Then for all
suitably highly ramified characters χ

(3.4) γ(s, π1 ⊗ χ,Λ2, ψF ) = γ(s, π2 ⊗ χ,Λ2, ψF ).

Assuming this for the moment, the reduction roughly follows the following
steps:

Following ideas of Harris [15] and Henniart [18] one needs to prove (3.1) for a
basis of the Grothendieck ring of all the finite dimensional representations of WF ,
e.g., monomial representations via Brauer’s theorem. This can be done using local–
global arguments by comparing global functional equations [13, 24, 26, 31, 34]
for global objects in which ρ and π = π(ρ) are local restrictions.

To implement this argument one needs the stable version of equation (3.1).
More precisely, one needs

Proposition 3.1 (Stable equality). Let n ∈ N be a positive integer. Let ρ be
an n–dimensional irreducible complex representation of WF . Then for each highly
ramified character χ of F×.

(3.5) γ(s,Λ2(ρ⊗ χ), ψF ) = γ(s, π(ρ)⊗ χ,Λ2, ψF )

The proposition is proved by induction on n, using multiplicativity [13, 24,
26, 31, 34] for both arithmetic and analytic factors, and a robust deformation
argument which can be applied to many other situations. One first uses a local–
global argument to prove:

Proposition 3.2 (Base point equality). Fix ω0 ∈ F̂×. There exists a pair
(ρ0, π0), π0 = π(ρ0), where ρ0 is an irreducible continuous n–dimensional repre-
sentation of WF , such that det ρ0 = ω0 and (3.5) is valid for every character χ of
F×.

By arithmetic stability [13] we have

(3.6) γ(s,Λ2(ρ0 ⊗ χ), ψF ) = γ(s,Λ2(ρ⊗ χ), ψF )

for every irreducible n–dimensional representation ρ as soon as χ is sufficiently
highly ramified. By stability for supercuspidals, which we are assuming,

(3.7) γ(s, π(ρ0)⊗ χ,Λ2, ψF ) = γ(s, π(ρ)⊗ χ,Λ2, ψF )

as soon as χ is sufficiently highly ramified. But now (3.5) for the single pair
(ρ0, π(ρ0)), which is established in Proposition 3.2, implies the equality of left hand
sides of (3.6) and (3.7) for this pair. Then the two stability results in (3.6) and
(3.7) give Proposition 3.1. Once one has this stable equality, one proves (3.1) for
monomial representations using the globalization of Harris [15] and Henniart [18],
and the concomitant global functional equations, plus multiplicativity of the local
factors and now the stable equality to isolate a single monomial local component.
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We now discuss our ideas for a proof of analytic stability for supercuspidals.
The techniques for proving this are very different from the steps discussed above.
Here we have to use the analysis available from the Langlands–Shahidi method
[33]. We will use the same integral (2.16) as we used in the cases of GL(1) × G
needed for functoriality, but the analysis is more subtle as we discuss below. While
in the cases of GL(1)×G that occurred in the cases of functoriality there were only
two relevant Bruhat cells which support Bessel functions, the case at hand requires
us to deal with all such cells. The work in [7, 10, 11] required a complicated
corrective argument, moving from one cell to the other, even those which did not
support Bessel functions, back and forth. What makes things work in our current
approach is a germ expansion for full Bessel functions which was established in [22]
and gives a conceptual approach to the asymptotics of the Bessel functions. (See
the appendix [19] to [12] for an updated formulation.)

The representation π being supercuspidal allows one to write the partial Bessel
function jṽ,ϕ(m,n, y0), used in the integral representation (2.16) given in Theorem
2.1, as an orbital integral for the matrix coefficient of our supercuspidal represen-
tation. More precisely, there is a matrix coefficient f of π, a function of compact
support modulo the center, which defines the corresponding Whittaker function in
(2.14) via an integral

Wṽ(g) =

∫
UM (F )

f(ug)ψ−1(u) du

and one then replace Wṽ in (2.14) by this expression in terms of f . This only gives
a partial orbital integral (Bessel function) for f in the sense of [22, 19] due to the
appearance of the cutoff function ϕ in (2.14). In particular, the germ expansions
of [22, 19] do not directly apply.

In our first approaches to supercuspidal stability, we attempted to play the
compact support of f modulo the center against the (seemingly weaker) compact
support of the cutoff function ϕ in order to be able to remove the cutoff function
from the integral. Then we would have expressed our resulting full Bessel function
as an orbital integral in the sense of [22, 19] and applied their germ expansion to
obtain the asymptotics of the Bessel function as we approach other relevant Bruhat
cells that could support Bessel functions. From this point on, the argument finished
more or less as in the traditional proofs [7, 5, 6]. However, the analytic behavior
of the cutoff function as we approach other relevant Bruhat cells turned out to be
more subtle than we first thought and we have not been able to remove the cutoff
function.

To incorporate the behavior of the cutoff function on the other relevant cells,
we propose the following approach. We introduce a family of Bessel functions, one
attached to each Bruhat cell. Given a Bruhat cell Y , we will first use f and the cut–
off function ϕ to define a smooth function of compact support fϕ,Y on the closure

Y of Y . Using Lemma 6.1.1 of [3], we then extend fϕ,Y to a smooth function

f̃ϕ,Y of compact support modulo center on all of GL(n, F ). For each f̃ϕ,Y , we

then define the full Bessel function jf̃ϕ,Y
(m) as usual. (Although f̃ϕ,Y has ϕ built

in its definition, what we will consider is the full integration of the corresponding
Whittaker function on the maximal unipotent subgroup. It is for this reason that
we will call jf̃ϕ,Y

a “full” Bessel function.)
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The next step is truncation. Write

GL(n, F ) =
∐
i

Yi

in its disjoint Bruhat decomposition. We use the standard strict partial order
between indices i given by i > j if and only if Yj lies in the boundary of Yi. We
now fix a set of open neighborhoods Vi of the Bruhat cells Yi, Vi ⊃ Yi. We will
choose {Vi} in such a way that Vi ∩ Vj = ∅ unless i > j or j > i. Moreover, we
may assume each Vi is invariant under left and right multiplications by UM . To
wit, one can take the union of all x.V ′i .y as x and y range over UM , where V ′i is a
neighborhood of Yi. Each Yi can be reached by letting suitable minors of elements
in Vi, or equivalently V ′i , go to zero, thanks to the invariance of these minors under
two sided UM -multiplications. We then set

Ui = Vi −
⋃
j<i

Vi ∩ Vj = Vi −
⋃
j<i

Vj .

The sets Ui are all UM invariant on both sides as well as disjoint. The disjoint
collection {UM\Ui/UM} will now basically give our domains of integration of the
corresponding Bessel functions jf̃ϕ,Yi

.

To prove stability, Theorem 2.1 tells us that we have to subtract the formula
(2.16) for two supercuspidal representations π1 and π2 with equal central characters
ωπ1 = ωπ2 . We will need to consider the integral of the difference of the Bessel
functions jf̃ϕ,Yi

for a pair of matrix coefficients of π1 and π2, respectively, whenever

we are in a neighborhood of the cell Yi. These Bessel functions jf̃ϕ,Yi
are now

full orbital integrals in the sense of Jacquet and Ye [22, 19] to which their germ
expansion applies. Taking the difference of Bessel functions for π1 and π2 cancels the
non–smooth contributions, which come only from the trivial cell part of the germ
expansions for the Bessel functions and depend only on the central characters. The
result is then sums of integrals of products of germ functions, which are smooth
and independent of π1 and π2, times certain smooth functions of compact support
which do depend on π1 and π2, on a pair of complementary tori (cf. [12, 22, 19]).
Since our Bessel functions, or more appropriately their germ expansions, are in fact
twisted by highly ramified characters in (2.16), the integral of each difference of
Bessel functions jf̃ϕ,Yi

will now vanish under these highly ramified twists. Passing

to the limit by letting each neighborhood Vi reach their cell Yi, we should then get
(3.4), i.e., the stability for supercuspidals in this case. We are still working through
the details of this approach.

One consequence of equality (3.1) would be the stability in general in this
case, i.e., when π1 and π2 are any pair of irreducible admissible representations of
GL(n, F ) with ωπ1

= ωπ2
.

General analytic stability. Let π1 and π2 be any pair of irreducible ad-
missible representations of GL(n, F ) with ωπ1

= ωπ2
. Then stability holds, i.e.,

γ(s, π1 ⊗ χ,Λ2, ψF ) = γ(s, π2 ⊗ χ,Λ2, ψF )

for every suitably ramified character χ.

This would follow from (3.1) and stability of Artin factors proved in [13].
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4. Concluding Remarks

The technique developed in [12] following the formula (2.16), together with
germ expansions of [22, 19], has opened the door to the possibility of a general
approach to the problem of stability in the generality of factors defined by the
Langlands–Shahidi method, at least for supercuspidal representations. The local–
global arguments of [12], which were briefly discussed in Section 3 here, may lead to
the equality of arithmetic and analytic factors from which general analytic stability
would follow.
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