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ON ANALYTIC MODELS
OF DEGENERATING ABELIAN VARIETIES

BY

YUVAL FLICKER (*)
[Institute for advanced study, Princeton]

RESUME. — Nous definissons un objet arithmetique, Ie corps de stabilite, associe
a certains ensembles de fonctions abeliennes sur un tore /?-adique multiplicatif, et nous
demontrons que ce corps de stabilite est une extension transcendante du corps des nombres
rationnels.

ABSTRACT. — We associate an arithmetic object, the stability field, to a set of abelian
functions on a multiplicative ̂ -adic torus, and prove that the stability field is a transcen-
dental extension of the rational numbers.

0. Introduction

Let A: be a complete algebraically closed extension of the field Qp of
/?-adic numbers, and denote by (k^ the product of J(> 1) copies of the
multiplicative group kx of non-zero elements of k. Suppose L is a lattice
in (kx)d. The geometric structure of the 7?-adic torus (kx)d/L has been
studied by many authors, especially GERRITZEN [8], MORIKAWA [10]
and MUMFORD [11]. Indeed, in analogy with the classical theory of
uniformization of abelian varieties by complex tori, it has been shown
that when the Riemann's period relations are satisfied, there is a biholo-
morphic mapping 9 = (9i, . . . , 9^), from the torus (k^Y/L to an abelian
variety A of dimension d in a projective rf'-space ( d ' ^ d). We shall
follow [11] in naming A a "degenerating" abelian variety. Put
f^ = Q^/QQ (1 < i ^ d'). On applying a suitable normalization on 0
(which we shall discuss at the end of this section), there exist subfields K
of k, for which the differential operators D^ = z^S/Oz^l ^ i ^ d ) map
the algebra -^[/i, - - ' ^ f d ^ \ mio itself; here z^, ...,^ are independent
variables on kd, and Q/Qz,, denotes the partial derivative by z^ The minima-
field K with this property will here be called the stability field of the normal
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284 Y. FLICKER

lized representation 8 of A. Now, once the geometric nature of the repre-
sentation 0 is known one may study it from an arithmetic point of view,
and consider its stability field in the above sense. This is our object here.
We shall establish the following Theorem.

THEOREM. — Let K be the stability field of the normalized representation 9
of a degenerating abelian variety A. Then the field K is a transcendental
extension of the field Q of rational numbers.

BERTRAND [2] was the first to obtain a result of this kind; he dealt with
the case of a variety A of dimension d = 1, that is, an elliptic curve. In
this case, the associated functions (normalized as in [2]) are the Jacobi-
Tate elliptic function Pq (z) and the function DPq (z), which is obtained
by applying the operator D == zdjdz to Pq (z); here q denotes the generator
of L whose valuation is less than 1. These functions satisfy the elliptic
equation

(DP,)2 == 4P^(1112)E^(q)P,+(11216)E,(q),

where E^(q) (i = 2,3) are the values at q of the normalized Eisenstein
series

E2i(q) = l+(-iy'(4^)^i^_i(n)^;

here 5, is the ith Bernoulli number and ^i-i (n) denotes the sum of the
(2i-l)th powers of the divisors of the integer n. The stability field of
the elliptic curve is generated over Q by the values £4 (q) and EQ (q).
Hence BERTRAND's work [2] implies that at least one of £4 (q) and E^ (q)
is transcendental, for any non-zero q in the domain of convergence of
£4 and -fig.

The proof of our Theorem is based on arguments from the theory of
transcendental numbers (see SCHNEIDER [12], chapter II, and LANG [9],
chapter III). We shall derive a contradiction from the supposition that
the stability field of the above representation is algebraic, by estimating
a certain value of some well-chosen auxiliary function. Our work depends
fundamentally on the interesting phenomenon, that the "orders" of the
degenerating abelian functions f\ are arbitrarily small (see Proposition 2).
More precisely we shall use a transcendende criterion (see Proposition 1)
which unlike BOMBIERI'S Theorem [5], will contradict the existence of
only one algebraic point. There the one-dimensional multiplicative Schwarz
lemma (Lemma 3; see [2], Lemma 2) will suffice for our needs. This
contrasts with the methods employed in [4], [6] and [7], which involve a
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DEGENERATING ABELIAN VARIETIES 285

multi-dimensional additive Schwarz Lemma; also here we are dealing with
global rather than local functions.

Finally we note that the same arguments which we employ in the non-
archimedean case can furnish also a complex analogue for the Theorem.
This will be discussed briefly in the last section.

We have now to specify the normalization of the representation 9.
Signify by | | the normalized valuation on the field k. The lattice L is
a free subgroup of (k^Y of maximal rank d, and we denote its generators
by gi, ..., gd. Let q (g, g7) be a bimultiplicative function on L, and put
q^ = <y(g, , gy) (1 < i,j ^ d). Riemann's period relations are that the
dxd matrix (—log |^ | ) is symmetric and positive definite. As we
mentioned above when these relations are satisfied for some form q,
there is a biholomorphic mapping 0 = (9o, . . . , 9^) from the torus
(k^YjL to a degenerating abelian variety A of dimension d in a projective
J'-space ( d ' ^ d). The components 9, (0 ^ i ̂  d ' ) of 6 are holomorphic
theta-functions and the quotients /; = 9,/9o generate the field of mero-
morphic functions on (k^ with periods in L. This field of functions
is of transcendence degree d over k. On applying a linear (projective)
transformation to the functions 6, we assume that/;(l) = 0 (1 ^ i ^ d ' ) ;
here 1 signifies the ^/-vector (1, ..., 1). This is our first normalization.
The second normalization is the following. On applying a transformation
to the fi's, by virtue of Noether's normalization Theorem we may assume
that /i, ..., fd are algebraically independent functions, and that
fd+i^ • • • ? / < r are integral over the algebra k [/i, ...,/J. It is now
easy to verify that the differential operators Zf5/5z; (1 ^ i ̂  d) map the
algebra k [/i, .. .,/<r] into itself (see also [3]). Under this normalization,
we define the stability field, as above and note that it is finitely generated
over the rationals Q. We are now ready to begin the proof of the
Theorem.

1. Proof of the Theorem

We shall demonstrate the Theorem using the following generalization
of the Schneider-Lang transcendence criterion. Let K be a number field
in k, and suppose that/o, /i, ..., f^ (d' > d) are finitely many meromorphic
functions in the vector variable z = (z^, . . . , Zj) on (k^, whose orders
(see below) are arbitrarily small. As above, out D^ = z 8/8z^ (1 ^ i ^ rf).
Then we prove the following proposition.
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286 Y. FLICKER

PROPOSITION 1. - If the algebra K[_f^ ...,/,,] is mapped into itself
by all D,, and it is of transcendence degree at least d+1 over K, then there
is no point ofO^Y at which allf, (z) obtain simultaneously algebraic values,

Let A be a positive number. A meromorphic function on (I^Y is said
to be of order at most h if it can be expressed as a quotient of two analytic
function /i and f^ on (fe^, which satisfy the relation

logl /^ l^cmaxdzp. lz l -^ (f = 1, 2),
for all z in (k^; here we put

[z|=max([zj, ...,|zJ),

and c is a positive constant depending only on/i,/^ and h.
We shall establish Proposition 1 in section 3. Our proof of the

Theorem consists of showing that Proposition 1 is applicable in the cir-
cumstances described by the Theorem. The main property which we
shall need to verify is the following Proposition.

PROPOSITION 2. - In the notations of the Theorem, each function
fi (1 ^ i ̂  d ' ) has arbitrarily small order,

The proof of this Proposition will be given in section 2.
We shall now deduce the Theorem from the Propositions. Suppose,

contrary to the assertion of the Theorem that the stability field of the
representation 9 of A is an algebraic number field K. In order to derive
a contradiction which will establish the Theorem, we consider the algebra
^[/o»/i» . • . ? 4r]» where/o (z) = z,, and j is a fixed integer between 1
and d. By the definition of the stability field, we deduce that this algebra
is mapped into itself by the differential operators Z),; note that
Di zj = ^ij zj ? where 8,y denotes the Kronecker delta function. Further,
by virtue of Proposition 2, each of the functions/, (1 ^ i ^ d ' ) is of arbi-
trarily small order; obviously the function /o has the same property.
Furthermore, we recall that since the dimension of the abelian variety A
is equal to d and/i, .. .,/^ generate the field of meromorphic functions
on A over K, the transcendence degree of the ring ^[/i, .. .,/d.] over K
is equal to d. But each of the functions /»(1 ^ ;' ^ d1) is periodic on
(k^Y, while the function fo is not periodic and non-constant. It follows
that the algebra A:[/o, ...,/,.] is of transcendence degree rf+1 over K.
Finally, since all of the components of the origin (/i (1), ...,/rCO)
of A lie in the number field K, and also/o (1) == 1, we obtain a contradiction
to Proposition 1, by virtue of the first normalization. This is a contradic-
tion to the assumption that K is algebraic which establishes the Theorem.

TOME 107 - 1979 — N° 3



DEGENERATING ABELIAN VARIETIES 287

2. Proof of Proposition 2

The subsequent discussion is based on the description and results
concerning the representation 9 which are given in [8], especially sections 1
and 4, and in [10].

Let z = (zi, . . . , z^) denote again a variable vector on (k^, and suppose
that L is a free subgroup of maximal rank in (k^, generated by gi, . . . , gj.
Let H be the group of characters 2 on (k^ such that z(z) = z " ^ . . .z^
for some integers n^, . . . , n^. Such a character induces a homomorphism
from L to k", mapping the element g=(^ i , . . . , ^ ) of L to
^ (g, 3) = ̂ 1.. .^d in k". We shall write g.S for ^ (g, z) z.

We shall now assume that the holomorphic torus (kx)d/L is an abelian
variety. According to GERRITEN'S results ([8], § 3 and 4; see also [10])^
this implies the existence of a homomorphism ? from L to ,̂ such that
c! (g? ^ (§')) = <1 (f (g)» g') for any g, g' in L, and such that the symmetric
bilinear from

(g^-^logl^g,^))!

is positive definite (the Riemann relations).
Under these conditions (and since k is algebraically closed), there exists

a symmetric bilinear form p, defined over k, satisfying

P^^=q^t^)\

and a homomorphism m from L to kx, such that, if WQ, ..., w^ denotes
a complete set of representatives of the finite groupe Hit (L), then the
rf'+l functions

(1) 9, = w, ̂ g „ ̂  m (g) p (g, g) ^r (g, w,) t (g) (0 < i ̂  d'\

which satisfy the transformation formula

(2) 9.(z) = m(g)p(g, g)^(g)(z)6,(g.z),

define a holomorphic projective embedding of (kx)d|L. In other words^
the field of meromorphic functions on (k^/L (which, by definition of an
abelian variety is of transcendence degree d) is generated over k by the
functions { 6;/9o } (1 ^ f ^ d ' ) . Since the normalizations of the repre-
sentation 6 which we applied in the introduction were obtained by trans-
formations which will not affect the estimations below, we may assume
that 8 is the normalized representation, and that the degenerating abelian
functions /, (z) are simply the quotients 9^ (z)/6o (z).
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It remains to estimate the orders of the functions /(. Since the /; are
given as the quotients of the holomorphic functions 9;, it suffices to deal
with the latter functions only. For brevity, we put 9 = 9» (0 ^ i ^ rf'),
and proceed to show that the order of 9 is arbitrarily small. Clearly

(3) -log|m(g)p(g,g)f(g)(z)|
is equal to

Q (n) - (L n* ̂ g Im fei) I + Lv nj fij ̂ g I ̂  I).
where

g^?1..^ ?(g,)(z)=z^...z^,
and

Q (n) = Lj ( - ̂ g I P (§»» Sj) I ) ̂  n./-
By virtue of the period relations Q (n) is a positive definite quadratic form.

It follows that for any g 1=- 1 and for any z with CQ < | z | < c^, we
have that (3) is bounded by

C2max{n,?}<C3log(max(|g| , |g|~1)2)
<C4log(max(|g.z|, |g.z|~1)2).

Here CQ, ..., Cg denote positive constants which depend only on 9.
Since 9 (z) satisfies the functional equation (2), and is bounded on the

set max (| z |, | z |~1) <S ^5, we further deduce that
log|9(g.z)|=log(|9(z)|(m(g)^(g,g)f(g)(z))-1)

<C6log(max(jg.z|, |g.z|^1)2).

Let R denote the maximum of the numbers [ gi | and | gi |~1 (1 ^ i < d).
Since every point on (k^ can be expressed in the form g.z, where g belongs
to L and z in (k^ satisfies max ( [ z [, [ z |~1) ^ jR, we finally deduce that
for any h > 0 and for any z in (k^ with a = max (| z |, [ z [~1) > c-j,
we have

log^z^CgOoga)^^,
as required.

3. Proof of Proposition 1

In the notations of section 1, we shall assume that, contrary to the
assertion of the Proposition, there exists a vector u = (u^, . . . , M j ) in
(k^ such that all of the /»(u) are algebraic, and will eventually derive a
contradiction.
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For the construction of the auxiliary function in Lemma 1, below, we
assume that all of the values /, (u) belong to K (taking a finite extension
of K if necessary). Since the transcendence degree of K[f^ ...,/^]
over K is at least rf+1 we assume (upon reordering indeces if necessary)
that the functions/o, . . . , /d are algebraically independent over K. We
introduce the differential operator Dk=D\l...Dk/ for any ^/-tuple k
of non-negative integers fc;. Any such differential operator maps the
algebra K [/o, ...,/,r] into itself by hypothesis. Finally, we recall
that the size of a non-zero algebraic number a is defined to be the maximum
between || a \\ and den a, where || a \\ denotes the maximum of the archi-
medean absolute values of the conjugates of a, and den a is the least natural
number such that (a den a) is an algebraic integer.

Now let S be an integer so large that the estimates below are valid,
and put

M^C^logS)17^^].

By the letters c^ . . . , ^5 below we mean positive numbers which can be
effectively calculated in terms of u, f,, d and K\ in particular, they will
be independent of S (and M). Assuming that S > c^ we prove the follow-
ing Lemma.

LEMMA 1. - There exist K-integers a ( ] ) , which are indexed by
(d+l)-tuples j of non-negative integers j\ with 0 ^ j\ ̂  M, not all 0, with
sizes whose logarithms are < c^ S, such that for any d-tuple k with
[ k | = k^ + . . . +^ < S. we have (D^ F) (u) = 0, where

^(z)=E^(j)/o(zyo.../,(zyd.
Proof. - The conditions of the Lemma give a system of at most 3d

equations in (M+l)^'1'1 ^ 5^ log S unknowns a(j). The coefficients
in the system are readily seen to be elements of K whose sizes are bounded
by S^.

The proof is now complete by virtue of Siegel's Lemma, on noting that
the relevant exponent is < !4 (log 5')~1.

We note that the function ^(z) does not vanish identically, since the
functions/o, . . . , /d are algebraically independent; we deduce that there
exists a d-iuple k such that (D^ F) (u) -^ 0. On denoting by s the minimal
integer for which there exists a fif-tuple t of non-negative integers ^ with
1 1 1 = s and with (D* F) (u) + 0, we deduce from Lemma 1 that s ̂  S.
By hypothesis each of the functions/o, .. .,/j is meromorphic with arbi-
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290 Y. FLICKER

trarily small order, hence there exist functions 9o, ..., 9^, with Q, (u) ^ 0,
such that 9, and 9,/, are analytic functions with orders at most h, where h
is any positive number. Then we can introduce the analytic function

GW=(Qo(z)...Q,(z))MF(z)
on C^/. We shall obtain the desired final contradiction upon comparing
an upper and a lower bound for the valuation of the number

^=(il)~l(DtG)(n),

where t! = ^!.. .^! By the minimality of s, we deduce that

P = (tO^COoCu).. ̂ (u^^FHu),

and hence that p is non-zero. A lower bound for [ p | can easily be obtained,
as follows:

LEMMA 2. — We have log | P | > - c^ s log s.

Proof. - Since s ^ .5', estimations as in the proof of Lemma 1, together
with the result of Lemma 1, show that the logarithm of the size of the
algebraic number ^ = (t!)-1 (^ F) (u) in K is < ^ s log s. But ?' ^ 0,
hence we can deduce from the product formula on K that

log |P'| >~C75lOg5.

Since 9; (u) are non-zero constants, and s > M, the Lemma follows for any
S> !3.

It remains for us to find a complementary upper bound for log | p |.
This is a little more difficult, and we need to apply some arguments from
7?-adic analysis. Thus for any R > 1, we denote by k^ the set of x in kx

with
max(|x|, |x|~1)^^.

For any analytic function/(^) = ̂  _„ ̂  ̂  on k^ and for any number r
in the valuation group of ,̂ with R~1 ^ r ^ R, we define |/[, to be the
maximum of the terms | a^ \ r" , over all of the integers n. We note that

max,,|^|/(x)|=|/|,,

since x is taken in the algebraically closed field k, and we deduce from the
maximum modulus principle that

|/(^max(j/|.,|/|^),
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for any u in k y . We shall need the following improvement upon the
last inequality, which is a multiplicative variant of the Schwarz Lemma
principle.

LEMMA 3. — Let r and R be elements of the valuation group of kx,
with 1 < r < R. Suppose that fis an analytic function on k^ which admits
m ^ 0 zeros in ky, counted with their multiplicities. Then for any u in ky
we have

\f(u)\^(r|R)(l-l')'l"2ma.x(\f^,\f\^),

where b == log r/log R.

Proof. - This is Lemma 2 of [2].
We shall emphasize here again that the transcendence criterion of

Proposition 1, which applies for functions in several variables, is established
here using merely a Schwarz Lemma in a single variable. The key Lemma
is the next, where we use the fact that only a single point u is considered.

We can now establish the desired upper bound.

LEMMA 4. — For any h < Cq, and for any s > c^o, we have

log |P I <-Ciih~1 slogs.

Proof. — Since 1 1 1 = s there is some component t^ of t with ^ ^ s / d ;
for this i we put t = ^ and u =•• u^, and we denote by t' and x the vectors
obtained from t and u by replacing t by 0 and u by x, respectively. We
shall restrict our attention to the function H{x) = E(x) in the single
variable x, where we define

£(z)==(t'!)-l(Dt/G)(z).
We note that

ft=(t\rl(DtH)<iu),

where D = xdjdx'^ from the minimality of t we deduce that

(D'H)^) = ( x ' d ' l d x ' H ) ^ ) .
It follows that

|p I = lo!)-1^)^)! ̂  i^iorwx^)^)!.
Hence signifying by r the maximum between J M J + I and IMJ"^! ,
we can apply Cauchy's inequality in a disc of radius r~2 about u, to obtain

\^\^\u\tr2tmsix{\H(x)\;\x\=r or r - 1 } .
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Since | u \ ^ r and t ^ s, we deduce from Lemma 3 that

IPl^r^r/^-^^maxd^l^lJf^.}.

But we have t ^ s / d ; hence it follows that

log|P| ^3slogr--(l-&)2(s/2rf)log^
+max(log|^,log|J^-0.

Now, choosing 1? = [^l/(d+l)/l], we see that the last term above is
< c^^Qog^)1^4'^. The proof is now complete, noting that r < c^
and that b log R = log r.

Finally it is clear that Lemmas 2 and 4 imply that

slogs > c^h~1 slogs.

It follows that A > Ci5 and we obtain a contradiction to the supposition
that each of the functions/o, .. .,/^ is of an arbitrarily small order. This
is the required contradiction which establishes the Proposition, and, as
explained in s9ction 1, also the main Theorem.

It will be noted that the same arguments can furnisch also a complex
analogue for the Theorem. Indeed to establish a complex analogue for
Proposition 1, we merely have to replace Lemma 3 here by the Hadamard-
Schwarz Lemma (see [I], Proposition 2). The proof of Proposition 2
here applies also when the valuation is archimedean and as we showed,
the Theorem is a formal consequence of the two propositions for a suitably
normalized set of generators of the field of meromorphic functions on A.
The stability field will now be a subfield of the complex numbers C.

I thank here D. BERTRAND for reading an early draft of this work and
making several helpful suggestions.
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