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Abstract. The Saito-Kurokawa lifting of automorphic representations from PGL(2) to
the projective symplectic group of similitudes PGSp(4) of genus 2 is studied using the
Fourier summation formula (an instance of the “relative trace formula”), thus character-
ising the image as the representations with a nonzero period for the special orthogonal
group SO(4,E/F ) associated to a quadratic extension E of the global base field F , and a
nonzero Fourier coefficient for a generic character of the unipotent radical of the Siegel par-
abolic subgroup. The image is nongeneric and almost everywhere nontempered, violating
a naive generalization of the Ramanujan conjecture. Technical advances here concern the
development of the summation formula and matching of relative orbital integrals.

1. Introduction. This paper concerns the determination of cusp forms on an adèle group
G(A) whose period − namely integral − over a closed subspace (“cycle”) arising from a
subgroup C(A), is nonzero. Such forms contribute to the cohomology of the symmetric
space G/C, and play a role in lifting automorphic forms to G(A) from another group
H(A). Most advances in these studies so far have been made by means of the theory
of the Weil representation [We]; see Waldspurger [Wa1/2], Howe and Piatetski-Shapiro
[HPS], [PS], Kudla-Rallis [KR], Oda [O]. This technique has the advantage − in addition
to early maturity − of constructing cusp forms on G(A) directly from such forms on H(A).
Miraculously, the cusp forms on G(A) so obtained happen to have nonzero C(A)-periods.

Our approach is based on a more naive and direct method, focusing more on the rep-
resentation and its properties rather than on its particular realization. Thus we integrate
both the spectral and the geometric expressions for the kernel Kf (x, y) of the convolution
operator on the space of cusp form on G(A), over the cycle associated with C(A). If both
variables x and y are integrated over the cycle, one obtains a bi-period summation formula,
involving the periods of the automorphic forms over the cycles (in Jacquet [J1], and later in
[FH], this is named a “relative trace” formula, although there are no traces in that formula).
The case where G(A) is H(A) ×H(A) and C(A) is H(A) embedded diagonally, coincides
with that of the usual trace formula on H(A); this case is also referred to as the “group
case”.
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If the second variable is integrated over a unipotent radical of a parabolic subgroup
against an additive character, the Fourier summation formula − involving Fourier coeffi-
cients of the automorphic forms − is obtained (see Jacquet [J2], where the formula is again
named “relative trace” formula, and [F1/2/4]). Only the cusp forms on G(A) with nonzero
C(A)-periods survive on the spectral side. The geometric side is compared with the geo-
metric side of an analogous summation formula on H(A), for matching test functions on
G(A) and H(A). The resulting identity of spectral sides can be used to establish lifting
from H(A) to G(A). In summary, both the bi-period and the Fourier summation formulae
are special instances of the “relative trace” formula.

The study of the Fourier summation formula, and the characterization of the relevant
orbital integrals, lead to deep chapters in global, and local, harmonic analysis, especially
of symmetric spaces; cf., e.g., [OM], [BS]. The analytic problems thus raised might even be
considered to be of greater importance than the motivating final applications in represen-
tation theory. Conversely, these applications justify some of the work which has been done
on symmetric spaces. One expects to derive identities of (bi-period or) Whittaker-Period
distributions intrinsically related to the (local) representation in question. These distri-
butions are analogous to Harish-Chandra’s characters, which play a key role in studies of
automorphic forms by means of the Selberg trace formula. To fully harvest the (bi-period,
or) Whittaker-Period summation formulae, one would need an analogue of the orthogonality
relations of characters, due to Harish-Chandra and Kazhdan [K], for these local distribu-
tions. The summation formula has been slow to evolve possibly since its application is based
on panoply of techniques, substantially different from each other. Yet it could be a source
of inspiration in various branches of contemporary harmonic analysis.

This paper focuses on an example, of automorphic forms on G = GSp(4) and the cycle
C = Z ·SO(4, E/F ) associated to a quadratic separable extension E of the global base field
F . Here Z, Z(A) denote the centers of G, G(A). More precisely, G is the algebraic group

of g ∈ GL(4) with gJ tg = λJ, λ = λ(g) ∈ GL(1), J =
(

0 w

−w 0

)
, w =

(
0 1

1 0

)
, and we put

G = G(F ); A is the ring of adèles of F . We fix θ ∈ F× which is not a square in F , put

θθθ =
(

0 1

θ 0

)
and Θθ =

(
θθθ 0

0 θθθ

)
, and let Cθ be the centralizer of Θθ in G. Put Cθ = Cθ(F ).

Also consider the unipotent radical N = {n =
(
I X

0 I

)
;X =

( x y
z x

)
} of the Siegel parabolic

subgroup P of type (2,2) of G, a complex valued nontrivial character ψψψ of the additive

group A/F , and the character ψθ(n) = ψψψ( tr TX) = ψψψ(z − θy), T =
(

0 1

−θ 0

)
.

Our main global achievement in this work is to advance the theory of the Fourier sum-
mation formula, namely develop such a formula by expanding geometrically and spectrally
the integral of the kernel Kf (n, h) of the standard convolution operator r(f) (for a test

function f) on the space of automorphic forms. In fact we multiply Kf (n, h) by ψθ(n), and
integrate over n ∈ N\N(A) and h ∈ Z(A)Cθ\Cθ(A). The Fourier summation formula is
recorded in Proposition 10. On the spectral side we truncate with respect to the group G,
and show that this truncation does not affect the geometric side. Remarkable cancelations
occur, making possible the derivation of the formula. On the geometric side we obtain a
new type of orbital integrals of the form

∫
Nv

∫
Cθ,v

fv(nγh)ψθ(n)dndh.
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Our summation formula for GSp(4) takes the following form. Suppose that f = f1 ∗ f∗2 ,
where f∗2 (g) = f2(g−1), and f1, f2 are K-finite elements of C∞c (G(A)) which are spherical
(Kv-biinvariant) outside V (a finite set of places containing the archimedean ones). Here
K =

∏
vKv, and Kv = GSp(4, Rv), Rv being the ring of integers in Fv. Define fθ = ⊗fθv by

fθv (gΘθg
−1J) =

∫
Cθv/Zv

fv(gh)dh. With u = λ−1(1− yz− θ−1x2), define the local integrals

by

Ψ(λ, fθv ) = |θ|−2
v |λ|−3

v

∫
F 3
v

fθv

(( 0 u y x
−u 0 −x θz
−y x 0 −θλ
−x −θz θλ 0

))
ψψψv(−λ−1(y + z))dxdydz(2.2)

and

Ψi(fθv ) =

∫
Fv

fθv

(
i

(
0 u 1 0

−u 0 0 θ
−1 0 0 0
0 −θ 0 0

))
ψψψv(u)du.(2.3)

Put Ψ(λ, fθ) =
∏
v Ψ(λ, fθv ), Ψi(fθ) =

∏
v Ψi(fθv ). Then the (finite) sum (“the geometric

side”) ∑
λ∈F×

Ψ(λ, fθ) +
∑
i=±

Ψi(fθ)

is equal to the sum (“spectral side”) of∑
π

m(π)
∑
Φ

Wψθ (π(f)Φ)P (Φ),(8.1)

where

Wψθ (Φ) =

∫
N\N(A)

Φ(n)ψθ(n)dn, P (Φ) = Pθ(Φ) =

∫
Z(A)Cθ\Cθ(A)

Φ(h)dh,

and π in (8.1) ranges over the equivalence classes of discrete spectrum representations of
G(A), and

1

8

∑
ω

∫
iR

[∑
Φ

Eθ

(
I

(
f, (1, ω),

(
1

2
, ζ − 1

2

))
Φ, (1, ω),

(
1

2
, ζ − 1

2

))
· LV

(
ω−1,

1

2
− ζ
)
· LV

(
γ0, (1, ω),

(
1

2
, ζ − 1

2

)
,Φ

)]
dζ.(10.1)

The last sum ranges over the unitary characters ω of A×/F×UR×+. The Eisenstein series

is associated with the character h = (a, b, λ/b, λ/a) 7→ |a2/λ|1/2|ab/λ|ζ− 1
2ω(ab/λ) of the

diagonal subgroup. The functions LV and LV are defined and studied in section 8. Here
γ0 represents the reflection (23). The sum (10.1), in which the brackets [·] are replaced by
the absolute value | · |, is convergent.
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The geometric side of the summation formula for GSp(4) is compared with the geometric
side (recorded in Proposition 4) of the summation formula for GSp(2) = GL(2). The latter
is the equality of this geometric side (of Proposition 4) with the spectral side, recorded in
Proposition 7. Our applications are derived from the resulting equality of spectral sides,
for matching test functions.

Our main local achievement is in characterizing the functions of (2.2) thus obtained, by
studying their asymptotic behavior as λ ranges over Fv, especially near zero; see Proposition
3. This study involves integration over a certain quadric in the affine 5-space. We are led
to Fourier analysis with respect to quadratic forms, involving Weil’s factor γψ. Underlying
our computations is the stationary phase method, where we use the Morse Lemma. We
discover that the asymptotic behavior of these Fourier orbital integrals is compatible with
that of analogous Fourier orbital integrals obtained in the analysis of the Fourier summa-

tion formula for N\PGL(2)/A, A =
{(
∗ 0

0 1

)}
, N =

{(
1 ∗
0 1

)}
; see Proposition 5 (due to

Jacquet [J2]). We relate these Fourier orbital integrals on PGSp(4) and PGL(2), proving
the existence of matching, in Corollary 5.1, comparing the summation formula for PGSp(4)
(Proposition 10) with that of PGL(2) (Proposition 7, [F1], [J2]) in Propositions 10.3, 11.

In Proposition 8 we record the statement that naturally related spherical functions on
PGSp(4) and PGL(2) have matching Fourier orbital integrals. The case of the unit elements
in the Hecke algebras is proven in Proposition 6. The general case was proposed as a
conjecture in an early draft of this work. It has then been proved in Zinoviev’s OSU thesis,
and published in [Z], using the case of the unit elements. It would be interesting to find
an alternative proof of this “fundamental lemma”, possibly based on a “symmetric space”
analogue of the regular functions technique of [F6], which might reduce the spherical case
to that of smooth test functions, or to that of the unit element in the Hecke algebra, which
are analyzed here.

As an application of our summation formula and study of orbital integrals we recover
a result of Piatetski-Shapiro [PS1], which in fact motivated our study. Let ρv be an ad-
missible representation of PGL(2, Fv), and ζ a complex number. Write I(ρv, ζ) for the
Gv = PGSp(4, Fv)-module on the space of φ : Gv → ρv which satisfy

φ
((

A ∗
0 λw tA−1w

)
g
)

= |λ−1 det A|ζ+ 3
2 ρv(A)(φ(g)) (A ∈ PGL(2, Fv), g ∈ Gv, λ ∈ F×v ).

Write J(ρv,
1
2 ) for the Langlands’ quotient (see [BW]) of I(ρv,

1
2 ) (it is unramified if so is ρv,

and nontempered if ρv is unitarizable). Proposition 12 asserts that if ρ is a cuspidal repre-
sentation of PGL(2,A) with L( 1

2 , ρ⊗χθ ) 6= 0 (χ
θ

is the quadratic character of A×/F× associ-

ated with the quadratic extension E = F (
√
θ) of F ) and L( 1

2 , ρ) = 0, then there exists a cus-

pidal representation π of PGSp(4,A) with πv ' J(ρv,
1
2 ) for almost all v. This π is Cθ(A)-

cyclic, namely the period Pθ(Φ) =
∫
Z(A)Cθ\Cθ(A)

Φ(h)dh over the cycle Z(A)Cθ\Cθ(A) is

nonzero for some Φ ∈ π, and is θ-generic, namely Wψθ (Φ) =
∫
N\N(A)

Φ(n)ψθ(n)dn is

nonzero for some (possibly other) Φ ∈ π. More precise local results could be obtained from
our global theory had we had orthogonality relations for our Whittaker-Period distributions,
analogous to those of Kazhdan [K] in the case of characters. By a cuspidal representation
we mean an irreducible one.
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Conversely, Proposition 13 asserts that given a Cθ(A)-cyclic θ-generic discrete spectrum
representation π of PGSp(4,A), either there exists a cuspidal PGL(2,A)-module ρ with
L( 1

2 , ρ⊗χθ ) 6= 0 and πv ' J(ρv,
1
2 ) for almost all v, or πv ' J(χθ,v ◦ det , 1

2 ) for almost all v
(here χ

θ
◦ det is a one-dimensional, residual, discrete spectrum representation of PGL(2,A)

defined by the quadratic character χ
θ
). A brief discussion of the description of packets of

such representations of PGSp(4,A) is given in the beginning of section 13.
In section 14 we explain why there are no cusp forms on G(A) with periods by the

split cycle SO(4) = C0 = ZG

((
ε 0

0 −ε

))
, ε =

(
1 0

0 −1

)
. For this reason we consider only

SO(4, E/F )-periods. In an Appendix we employ another form of the Fourier summation
formula to study invariance of Fourier coefficients of cusp forms under the action of a certain
stabilizer subgroup, recovering part of [PS2].

Under the isomorphism of PGSp(4) with SO(3, 2), the image of C0 is the split group
SO(2, 2), and that of Cθ is SO(3, 1;E/F ), the special orthogonal group associated with
the sum of the hyperbolic form xy and the norm form z2 − θt2. Our techniques apply
also with G = PGSp(2, D) ' SO(4, 1), where D is a quaternion algebra, and Cθ is again
SO(3, 1;E/F ), if the field E embeds in D. It would be interesting to study this situation,
and its relation to the present work. Further, here we consider cyclic cusp forms with
nonzero Fourier coefficients with respect to a generic character of the unipotent radical of
the Siegel parabolic subgroup. There are no generic (with respect to a maximal unipotent
subgroup) cyclic cusp forms on GSp(4). It would be interesting to consider also cyclic cusp
forms generic with respect to the Heisenberg unipotent subgroup. Naturally it would be
interesting to consider cusp forms on SO(n) cyclic with respect to SO(n− 1), for a suitable
choice of inner forms of these groups. The present work is a first step in this direction.

This paper is based on a preprint with the same title with J. G. M. Mars from the
early 90’s. I am grateful to him for teaching me lots of mathematics. Thanks are due to
the referee for very careful reading. Support from the Humboldt Stiftung and MPIM-Bonn,
and also the Fulbright Foundation, the Hebrew University and SFB at Universität Bielefeld,
during the preparation of this work, is very much appreciated.

2. Definitions and notations. In this section we set the notations and recall the defini-
tions we need (for a general connected reductive quasisplit group G over F ). We start with
general definitions following the clear exposition of [A4], and then specialize to our case. So
let B be a minimal parabolic subgroup of G over F . Fix a Levi subgroup MB of B. It is a
torus over F as G is quasisplit. By a parabolic subgroup P of G over F we shall mean one
which is standard, namely containing B. Let MP be its unique Levi subgroup containing
MB , and NP its unipotent radical.

Let AP be the maximal split torus in the center of MP . The group of rational characters
of AP is X∗(AP ) = Hom(AP ,GL(1)). Let X∗(AP ) = Hom(GL(1), AP ) be the group of
rational cocharacters of AP . The map X∗(G)→ X∗(AG) is injective and has finite cokernel.
For G = GL(n) this homomorphism is x 7→ nx, Z(A)→ Z(A). We then obtain a canonical
linear isomorphism

a∗P = X∗(MP )⊗ R ' X∗(AP )⊗ R.

Let now P1 ⊂ P2 be (standard) parabolics. We have embeddings AP2 ⊂ AP1 ⊂ MP1 ⊂
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MP2 . The restriction homomorphism X∗(MP2) → X∗(MP1) is injective. It yields a linear
injection a∗P2

↪→ a∗P1
and a dual linear surjection aP1 � aP2 , where aP = X∗(AP ) ⊗

R ' Hom(X∗(AP ),R). Denote the kernel of aP1 � aP2 by aP2

P1
⊂ aP1 . The restriction

homomorphism X∗(AP1
) → X∗(AP2

) is surjective. It extends to a surjection X∗(AP1
) ⊗

R � X∗(AP2
) ⊗ R. We obtain a linear surjection a∗P1

� a∗P2
, and a dual linear injection

aP2
↪→ aP1

, hence split exact sequences of real vector spaces

0→ a∗P2
� a∗P1

� a∗P1
/a∗P2

→ 0

and
0→ aP2

P1
↪→ aP1

� aP2
→ 0.

Thus we have aP1
= aP2

⊕ aP2

P1
and a∗P1

= a∗P2
⊕ (aP2

P1
)∗.

Given a parabolic P , let nP be the Lie Algebra of NP . For α ∈ X∗(AP ) put

nα = {Xα ∈ nP ; Ad(a)Xα = α(a)Xα, a ∈ AP }.

The set of α with nonzero nα is denoted by ΦP and is called the set of roots of AP in
P . It is a finite set of nonzero elements of X∗(AP ) which parametrizes the decomposition
nP = ⊕α∈ΦP nα of nP into eigenspaces under the adjoint action Ad : AP → GL(nP ) of AP .
Identify ΦP with a subset of a∗P under the canonical maps ΦP ⊂ X(AP ) ⊂ X(AP )⊗R ' a∗P .
If H ∈ aG ⊂ aP then α(H) = 0 for every α ∈ ΦP , so ΦP lies in the subspace (aGP )∗ of a∗P .

The pair (V = (aG0 )∗, R = Φ0 ∪ (−Φ0)), where (aG0 )∗ is (aGP0
)∗ and Φ0 is ΦP0

, P0 = B,
is a root system for which Φ0 is a system of positive roots. Write W for the Weyl group of
(V,R). It is the group generated by the reflections about the elements in Φ0. It is a finite
Coxeter group, hence has a length function `, and it acts on the vector spaces V = (aG0 )∗,
a∗0 = a∗P0

, and a0 = aP0
. Write ∆0 ⊂ Φ0 for a basis: any β ∈ Φ0 can be written uniquely

as
∑
α∈∆0

nαα with integers nα ≥ 0. The set ∆0 consists of the simple roots attached to

Φ0, and ∆0 is a basis of the real vector space V = (aG0 )∗. The set ∆∨0 = {α∨; α ∈ ∆0} of
simple coroots (defined by 〈α, β∨〉 = 2δ(α, β)) is a basis of the dual vector space aG0 = aGP0

.

Write ∆̂0 = {$α; α ∈ ∆0} for the basis of (aG0 )∗ dual to ∆∨0 ; its members are called the

simple weights. Write ∆̂∨0 = {$∨α ; α ∈ ∆0} for the basis of aG0 dual to ∆0; its members are
called the simple coweights.

Standard parabolic subgroups are parametrized by subsets of ∆0: there is an order
reversing bijection P ↔ ∆P

0 between standard parabolic subgroups P of G and subsets ∆P
0

of ∆0, such that
aP = {H ∈ a0; α(H) = 0, α ∈ ∆P

0 }.

For any P , ∆P
0 is a basis of the space aPP0

= aP0 . Let ∆P be the set of linear forms on aP
obtained by restriction of elements in the complement ∆0 −∆P

0 of ∆P
0 in ∆0. The set ∆P

is isomorphic to ∆0 − ∆P
0 , and any root in ΦP can be written uniquely as a nonnegative

integral linear combinations of elements ∆P . The set ∆P is a basis of (aGP )∗. A second basis

of (aGP )∗ is the subset ∆̂P = {$α;α ∈ ∆0−∆P
0 } of ∆̂0. Write ∆∨P = {α∨; α ∈ ∆P } for the
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basis of aGP dual to ∆̂P , and ∆̂∨P = {$∨; α ∈ ∆P } for the basis of aGP dual to ∆P . This
notation is not standard if P 6= P0. In this case, a general element α ∈ ∆P is not part of a
root system (as defined in [S]), so that α∨ is not a coroot. Rather, if α is the restriction to
aP of the simple root β ∈ ∆0 −∆P

0 , α∨ is the projection onto aP of the coroot β∨.

We have two bases ∆P and ∆̂P of (aGP )∗, and corresponding dual bases ∆̂∨P and ∆∨P of
aGP , for any P . More generally, suppose that P1 ⊂ P2 are two standard parabolic subgroups.

Then we have two bases ∆P2

P1
and ∆̂P2

P1
of (aP2

P1
)∗, and corresponding dual bases (∆̂P2

P1
)∨ and

(∆P2

P1
)∨ of aP2

P1
. The construction proceeds in the obvious way from the bases we have already

defined. For example, ∆P2

P1
is the set of linear forms on the subspace aP2

P1
of aP1 obtained by

restricting elements in ∆P2
0 −∆P1

0 , while ∆̂P2

P1
is the set of linear forms on aP2

P1
obtained by

restricting elements in ∆̂P1− ∆̂P2 . We note that P1∩MP2 is a standard parabolic subgroup
of the reductive group MP2 , relative to the fixed minimal parabolic subgroup P0 ∩MP2 . It
follows from the definitions that

aP1∩MP2
= aP1

, a
MP2

P1∩MP2
= aP2

P1
, ∆P1∩MP2

= ∆P2

P1
, ∆̂P1∩MP2

= ∆̂P2

P1
.

We now return to the group. There exists (see [MW], I.1.4) a maximal compact subgroup
K of G(A), fixed throughout this paper, satisfying: (1) G(A) = B(A)K; (2) P (A) ∩ K =
(MP (A) ∩K)(NP (A) ∩K); (3) K ∩M(A) is a maximal compact subgroup of M(A) for all
Levi subgroups M ⊂ G.

If P1 ⊂ P2 are parabolic subgroups, let τ2
1 = τP2

P1
and τ̂2

1 = τ̂P2

P1
be the characteristic

functions on a0 of {H ∈ a0; 〈α,H〉 > 0, α ∈ ∆2
1} and {H ∈ a0; 〈$,H〉 > 0, $ ∈ ∆̂2

1}.
For each parabolic subgroup P in G there is a Harish-Chandra map HP : G(A) → aP

defined by:
(1) |χ|(m) = e〈χ,HP (m)〉 for all m ∈MP (A) and χ ∈ X∗(MP );
(2) HP (nmk) = HP (m), n ∈ NP (A), m ∈MP (A), k ∈ K.

For a group G, denote by G(A)1 the kernel of the Harish-Chandra map HG.

For any subgroup U of G(A), put U1 for U ∩G(A)1.

For a parabolic subgroup with Levi decomposition P = MN , denote by ρP the unique
element in a∗P satisfying e2〈ρP ,HP (m)〉 = |AdN (m)|. Here AdN (m) is the adjoint action of
m on the Lie algebra of N .

Let F∞ denote F ⊗Q R. There is an isomorphism (F×∞)r ' AP (F∞) (see [MW], I.1.11).
Let A+

P for P 6= G and A+
G be the intersections of the image of (R×+)r in AP (F∞) with

G(A)1 and Z(A), respectively. The Harish-Chandra map HP induces an isomorphism of
A+
P onto aP and we have the decomposition MP (A) = A+

G × A
+
P × (MP (A) ∩G(A)1). For

X ∈ aP , write eX for the unique element in A+
P such that HP (eX) = X. For λ ∈ a∗P , write

eλ for the character p 7→ e〈λ,HP (p)〉 of P (A).

For a suitable normalization of the Haar measures, we have (see [MW], I.1.13)∫
G(A)1

f(x)dx =

∫
NP (A)

∫
A+
P

∫
MP (A)∩G(A)1

∫
K
f(namk)e−2〈ρP ,HP (a)〉dndadmdk.
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The Weyl group of MB in G is W = NG(MB)/MB , where NG(MB) is the normalizer of
MB in G. For a Levi subgroup M in G, let WM = NM (MB)/MB be the Weyl group of
M . For two parabolic subgroups P and Q with Levi factors MP and MQ respectively, let
W (P,Q) be the set of elements w ∈ W of minimal length in their class wWMP

, such that

wMPw
−1 = MQ. The minimal length condition is equivalent to the condition w∆P

G = ∆Q
G.

Let z be the center of the universal enveloping algebra of the complexified Lie algebra of
G∞ =

∏
v G(Fv). The product is over the archimedean places v of F . A function φ(g) on

G(A) is called z-finite if there is an ideal I in the algebra z of finite codimension such that
I · φ = 0.

Let K be a maximal compact subgroup of G(A) as above. The function φ is called
K-finite if the span of the functions g 7→ φ(gk) (∀k ∈ K) is finite dimensional.

The function φ(g) is called smooth if for any g = g∞gf , with g∞ ∈ G∞ and gf ∈ G(Af ),
there exist a neighborhood V∞ of g∞ in G∞ and a neighborhood Vf of gf in G(Af ), and a
C∞-function φ∞ : V∞ → C, such that φ(g∞gf ) = φ∞(g∞) for all g∞ ∈ V∞ and gf ∈ Vf .

In the function field case φ is called smooth if it is locally constant.
Fix an embedding i1 : G ↪→ GL(n), and i : G ↪→ SL(2n), i(g) = (i1(g), i1(g)−1). For

g ∈ G(A), write i(g) = (gkl)k,l=1,...,2n. Set

||g|| =
∏
v

max {|gkl|v; k, l = 1, . . . , 2n}

where the product is over all places v of F . Then a function φ is called of moderate growth
if there are C,C ′ ∈ R>0 such that for all g ∈ G(A) we have |φ(g)| ≤ C||g||C′ . The definition
of moderate growth does not depend on the choice of the embedding i. As in [MW], I.2.17
we say that a function φ : G(F )\G(A)→ C is called an automorphic form if (1) φ is smooth
and of moderate growth, (2) φ is right K-finite, (3) φ is z-finite.

The space of automorphic forms is denoted by A(G). For a parabolic subgroup P = NM
the space of automorphic forms of level P , denoted by AP (G), is the space of smooth right
K-finite functions

φ(P ) : N(A)M(F )\G(A)→ C

such that for every k ∈ K the function m 7→ φ(P )(mk) is an automorphic form of M(A). For
φ(P ) ∈ AP (G) and a parabolic subgroup Q ⊂ P with unipotent radical NQ, the constant
term is defined by:

φ
(P )
Q (g) =

∫
NQ(F )\NQ(A)

φ(P )(ng)dn.

When P = G we will omit the superscript and write φQ instead of φ
(G)
Q . Note that

the definition of the constant term applies also for any locally integrable function on
N(A)M(F )\G(A), not only for automorphic forms. A function will be called cuspidal
if its constant term is zero for all proper parabolic subgroups. A representation of G(A)
will be called cuspidal if it is irreducible and its representation space consists of cuspidal
functions. For a cuspidal representation σ of M(A) denote by AP (G)σ the subspace of
AP (G) consisting of functions φ which are AP -invariant and such that for every k ∈ K the
function m 7→ φ(P )(mk) belongs to the space of σ.
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Let F be a number field. From now on, to emphasize, we denote algebraic groups by bold
face characters: G, P, B, N, . . . , and their groups of rational points by G, P , B, N , . . . .

Let then G = GSp(4) = {g ∈ GL(4); gJ tg = λJ, λ = λ(g) ∈ GL(1)}, where J =
(

0 w

−w 0

)
and w =

(
0 1

1 0

)
, be the group of symplectic similitudes of a 4-dimensional space over F , a

local or global field of characteristic other than two. Here tg denotes the transpose of g.
The form J has the advantage that the upper triangular subgroup B of G is a minimal
parabolic. The maximal parabolics which contain B are the Siegel parabolic P = P1 =

MN, N =
{(

I X

0 I

)
;X =

( x y
z x

)}
,M =

{(
A 0

0 λwtA−1w

)
=
(
A 0

0 λεAε

)}
, where ε =

(
1 0

0 −1

)
;

and Q = P2 = MQNQ, MQ =

{(
a 0 0

0 A 0

0 0 λ/a

)
; det A = λ

}
, with unipotent radical NQ ={( 1 x y z

0 1 0 y

0 0 1 −x
0 0 0 1

)}
which is an Heisenberg group with center ZQ =

{( 1 0 0 z

0 1 0 0

0 0 1 0

0 0 0 1

)}
.

Here is the root diagram for PGSp(4). The angle between any adjacent rays in the graph
is π/4:

α2 = 2ε2 $2 = α1 + α2 = ε1 + ε2 $1 = α2 + 2α1 = 2ε1iiSSSSSSSSSSSSSSSSS

OO 44hhhhhhhhhhhhhhhhhhhhhh //

WWWWW
WWWWW

WWWWW
WWWWW

WWWWW
W

jjjj
jjjj

jjjj
jjjj

jjjj
j α1 = ε1 − ε2

Here ε1 = (1, 0), ε2 = (0, 1). The simple roots are α1 = ε1 − ε2, spanning a∗2 = a1
0, and

α2 = 2ε2, spanning a∗1 = a2
0. The simple weights can be identified with $1 = α2+2α1 = 2ε1,

spanning a2 = (a1
0)∗, and $2 = α1 + α2 = ε1 + ε2, spanning a1 = (a2

0)∗. We have
H0(ãnk) = H0(ã). If ã = diag (a, b, λ/b, λ/a), then

H = H(ã) = H0(ã) = ln
∣∣∣a
b

∣∣∣ ·$1 + ln

∣∣∣∣b2λ
∣∣∣∣ ·$2 = ln

∣∣∣∣a2

λ

∣∣∣∣ · α1 + ln

∣∣∣∣abλ
∣∣∣∣ · α2.

We have HP (d(A, λ)) = 3
2 ln |( det A)/λ| · $2 ∈ aP , as AdN (d(A, λ)) = (( det A)/λ))3.

Also ρP ∈ a∗P is ε2 = 1
2α2. Its projection to aP is 1

2$2. That is, 〈 12α2, $2〉 = 〈 12$2, $2〉.
The centralizer C = C0 = ZG(Θ) of Θ =

(
ε 0

0 −ε

)
in G is

{(
a 0 0 b

0 α β 0

0 γ δ 0

c 0 0 d

)
; det

(
a b

c d

)
= det

(
α β

γ δ

)
6= 0

}
.

Given θ ∈ F× put θθθ =
(

0 1

θ 0

)
and Θθ =

(
θθθ 0

0 θθθ

)
. The centralizer Cθ = ZG(Θθ) of Θθ in G

consists of the matrices h =
(
a b

c d

)
, a =

( a1 a2
θa2 a1

)
, · · · , d =

(
d1 d2
θd2 d1

)
, such that

(
a b

c d

)
,a =
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a1 + a2

√
θ, · · · ,d = d1 + d2

√
θ, has determinant λ(h) in GL(1). If θ ∈ F×2 is a square

then Θθ is conjugate to
√
θΘ, and Cθ is conjugate to C. If θ ∈ F − F 2 is not a square

then Cθ is isomorphic via the map just defined to {g ∈ GL(2)/E; det g ∈ GL(1)/F}, where

E = F (
√
θ) is the quadratic extension of F generated by the square root

√
θ of θ. There is

a natural injection G/Cθ → X(θ), g 7→ x = 1
λgΘθJ

tg = gΘθg
−1J , where

X(θ) = {x ∈ G;λ(x) = θ, (xJ)2 = θ} = {x ∈ G;λ(x) = θ, tx = −x}.

In particular, G/C→ X(1), g 7→ x = 1
λgΘJ tg, is an injection.

Fix a nontrivial additive character ψ′ of A/F . Let ε be diag (1,−1). Define the character
ψ of N(A)/N by ψ(n) = ψ′

(
tr (εθθθX)

)
.

Denote by A the diagonal subgroup, and by NB the unipotent upper triangular subgroup
(thus B = ANB). Let W = Norm(A)/A be the Weyl group of A in G, where Norm(A) is
the normalizer of A in G. Identify W with a set of representatives s in G with ts = s−1

if s is of order two in W . Double cosets decompositions as below are well known (see, e.g.,
[Sp]).

Proposition 1. (a) Each x in X(θ) has the form x = nsatn with n ∈ NB , a ∈ A, s ∈ W
with (s2 = 1 in W and) sa = −as−1.

(b) The group G is the disjoint union

PC ∪Pγ1C = BC ∪Bγ1C ∪Bγ2C ∪Bγ3C,

where

γ1 =
(

1
2 I I

− 1
2 I I

)
, I =

(
1 0

0 1

)
, γ′ =

(
1 −1

1 1

)
, γ2 =

(
w 0

0 w

)
, γ3 =

(
γ′ 0

0 1
2 εγ
′ε

)
.

(c) If θ is not a square in F , then the group G is the disjoint union BCθ ∪ Bγ0Cθ, and

G is the disjoint union PCθ ∪Pγ0Cθ, γ0 = diag
(

1,
(

0 1

−1 0

)
, 1
)
.

(d) G acts on X(θ) by g : x 7→ 1
λ(g)gx

tg = gxJ−1g−1J . The variety X(θ) consists of the

points ±
√
θJ which are fixed by G, and the orbit{( 0 a b1 b

−a 0 −b b2
−b1 b 0 d

−b −b2 −d 0

)
; b1b2 + b2 − ad = θ

}
of ΘθJ.

The stabilizer of ΘθJ is ZG(Θθ) = Cθ, and of ΘJ is ZG(Θ) = C.

Proof. (a) Each x in G can be expressed in the form x = n1sa
tn2(a ∈ A, s ∈W,ni ∈ NB).

For x in X(θ) we have sa = −ats (hence s2 = 1 in W ). We may assume that n2 = 1, and
write n1 = n+

1 n
−
1 . Here n+

1 lies in the group N+
s which is generated by the root subgroups

Nα of NB associated to the positive roots α such that sα is positive; n−1 lies in the group
N−s which is generated by the Nα with α > 0 and sα < 0. Then n+

1 n
−
1 sa = x = −tx =

satn−1
tn+

1 , and so n+
1 = 1 and n1 ∈ N−s . The relation n1sa = satn1 can be written as
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tn1 = a−1s−1n1sa, or on applying transpose and inverse, as n−1
1 = as−1tn−1

1 sa−1. Put
σ(n) = as−1tn−1sa−1. This is an automorphism of N−s of order two. Since N−s is a
unipotent group, the first cohomology set H1(〈σ〉,N−s ) of the group 〈σ〉 generated by σ,
with coefficients in N−s , is trivial. This H1 is the quotient of the set {n ∈ N−s ;σ(n)n = 1} by
the equivalence relation n ≡ n0nσ(n0)−1. In particular, our n1 ∈ N−s satisfies n1σ(n1) = 1,
hence it is in the equivalence class of 1, namely there is n ∈ N−s with n1 = nσ(n)−1. Hence

x = n1sa = nσ(n)−1sa = nas−1tnsa−1sa = nsatn,

as required.
(b) The Weyl group W of G consists of 8 elements, represented by the reflections

1, (14)(23), (12)(34), (13)(24), (14), (23), (2431), (3421). The last two are not of order 2,
while for s = 1 there are no a ∈ A with sas = −a. The transposition (23) is represented

in G by s = diag
(

1,
(

0 1

−1 0

)
, 1
)

, but there is no a ∈ A with sas = −a. An analogous

statement holds for (14).
Concerning the remaining 3 Weyl group elements, we have the following. Choose the

representative s4 =
(

0 I

−I 0

)
for (13)(24). If x = s4a, a ∈ A, then x = −tx implies that a =

diag (b, b). Since −Jx =
(
w 0

0 w

)
a has square I we have that b = diag (c, 1/c), c ∈ GL(1).

If d = diag (c, 1, 1, 1/c) then ds4
td = s4a. Hence the part {ns4a

tn;n ∈ NB , a ∈ A} of X is
equal to the B-orbit λ−1bs4

tb, which is the image of Bγ3C under G/C→ X, g 7→ λ−1gΘJ tg.
As s2 = J represents (14)(23), if x = Ja and (Jx)2 = I, then the diagonal entries of

a ∈ A are ±1. Since x = −tx implies that Ja = aJ , we have that a = ±I or ±Θ. Clearly
there exists no g ∈ G such that λ−1gΘJ tg = gΘg−1J is equal to x = Ja if a = ±I. But
when g = I (resp. g = γ2), then x = JΘ(resp. x = −JΘ) is obtained. We conclude that
the part {nJatn;n ∈ NB , a ∈ A} of X is the union of the B-orbits ±λ−1bJΘtb, namely the
image of the union of the cosets BC and Bγ2C under the map G/C→ X.

Note that γ1JΘtγ1 = s3Θ represents (12)(34), where s3 =
(
w 0

0 w

)
. If x = s3Θa then

x = −tx and (Jx)2 = I imply that a = diag (b, b, 1/b, 1/b) , and d = diag (b, 1, 1, 1/b)(b ∈
GL(1)) satisfies dJΘtd = x. Hence the part {ns3Θatn;n ∈ NB , a ∈ A} of X is the B-orbit
λ−1bs3Θtb, which is the image of Bγ1C under G/C→ X.

The decomposition G = PC ∪ Pγ1C follows at once from the decomposition B\G/C.
Note that we have proved also (d) in the case of θ = 1. The isolated points were obtained
when s2 = J was discussed; they are x = ±J , not in the orbit of ΘJ .

(c) It suffices to consider θ ∈ F − F 2. The proof follows closely that of (b). The
relation sa = −as−1 implies that s 6= 1, (14), (23), and the relation (xJ)2 = θ implies that
s 6= (14)(23). Two elements of W of order 2 are left.

Choose the representative w′0 = diag
((

0 1

−1 0

)
,
(

0 −1

1 0

))
for (12)(34) ∈ W . It satisfies

tw′0w
′
0 = 1. It is more convenient though to work with w0 = diag

((
0 1

−1 0

)
,
(

0 −θ
θ 0

))
. Since

w′0
−1 = −w′0, we have that x = x0a = aw0. Then a ∈ A has the form a = diag (b, b, c, c).

From (Jw0a)2 = θ it follows that bc = 1. But dw0d = w0a = x if d = diag (b, 1, 1, 1/b).
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Since γ0ΘJ tγ0 = w0, the part {naw0a
tn;n ∈ NB , a ∈ A} of X(θ) is the B-orbit λ−1bw0

tb,
which is the image of Bγ0Cθ under G/Cθ → X(θ).

Similarly we choose ΘθJ to represent (13)(24) ∈ W (it is the product of diag (1, θ, 1, θ)
and a representative s ∈ W with ts = s−1 = −s). If x = ΘθJa then the relation “sa =
−as−1” implies that a = diag (b, c, b, c). Further, bc = 1 from (xJ)2 = θ. But then
dΘθJd = ΘθJa if d = diag (b, 1, 1, 1/b). Hence the part {naΘθJa

tn; a ∈ A,n ∈ NB} of
X(θ) is the image of BCθ under G/Cθ → X(θ). Then (c) follows, and so does (d). �

3. Geometric side. Let F be a global field (of characteristic 6= 2) , θ ∈ F − F 2, E =

F (
√
θ),A = AF and AE the rings of adèles of F and E. Put G = G(F ), Cθ = Cθ(F ), and in

general Y = Y(F ) for any F -variety Y. Denote by L2(Z(A)G\G(A)) the space of complex
valued functions on G(A) which are left invariant under G and Z(A) = Z(A), where Z is the
center of G, and are absolutely square integrable on Z(A)G\G(A). Let f = ⊗fv be a test
function on G(A). Thus fv ∈ C∞c (Gv/Zv), Gv = G(Fv) = GSp(4, Fv), for all v, where C∞c
means smooth (locally constant if v is finite) and compactly supported. Moreover, for almost
all v the component fv is the unit element f0

v in the convolution algebra of Kv = G(Rv)-
biinvariant functions in C∞c (Gv/Zv) (Rv is the ring of integers in the nonarchimedean field
Fv). Thus f0

v is the quotient of the characteristic function of ZvKv in Gv by the volume
|KvZv/Zv| with respect to the implicitly chosen Haar measure on Gv/Zv. The convolution
operator (r(f)φ)(h) =

∫
Z(A)\G(A)

f(g)φ(hg)dg on L2(Z(A)G\G(A)) is an integral operator

(=
∫
Z(A)G\G(A)

Kf (h, g)φ(g)dg) with kernel Kf (g, h) =
∑
γ∈Z\G f(g−1γh).

Our Fourier summation formula is based on integrating this kernel on h in Z(A)Cθ\Cθ(A)
and g in N\N(A), against a character of N\N(A), constructed as follows. Let ψψψ be a fixed

nontrivial character of A/F . The unipotent group N(A) consists of n =
(
I X

0 I

)
, X =

( x y
z x

)
.

Any character of N(A)/N has the form ψT (n) = ψψψ( tr TX), where wtTw = T is a 2 × 2
matrix with entries in F . The Levi subgroup M(A), consisting of m = diag (U, λwtU−1w),
acts on ψT by

ψT (mnm−1) = ψψψ(λ−1 tr TUXwtUw) = ψψψ(λ−1 det U · tr εU−1εTUX).

Hence multiplying U , and consequently m, on the left by a suitable matrix, we may replace
εT by a conjugate. Note that

wt(εg−1εTg)w = εg−1εTg (g ∈ GL(2)).

Moreover, the connected component Stab0
M(ψT ) of the identity in the stabilizer StabM(ψT )

of ψT in M is isomorphic to the centralizer Z(εT ) of εT in GL(2) via m ↔ U, λ = det U .
The centralizer Z(εT )(A) is a torus in GL(2,A) when εT is nonsingular. Put ψθ for ψT

when εT =
(

0 1

θ 0

)
, θ ∈ F× , and ψ0 = ψT when T = I.

The absolute convergence of this integral is immediate. Let ||g|| denote the usual norm
function on the group G(A) ([HCM], p. 6). Then

∑
γ∈G(F )

|f(g−1γh)| ≤ c||g||N (for some

c = c(f) > 0, N = N(f) > 0) for all g, h. Integrating the last sum over h in the space
Z(A)Cθ\Cθ(A), which has finite volume, and over g in the compact U(F )\U(A), where
||g|| is bounded, we obtain a finite number.

We even have the following result (where we put C for Cθ).
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Lemma 1.1. If f is compactly supported on Z(A)\G(A), then the function Kf is compactly
supported on N\N(A)× CZ(A)\C(A).

Proof. If G is a connected linear algebraic group over F , and C is a reductive closed
subgroup over F , then G/C is an affine variety V over F ([Bo], Proposition 7.7). Then V =
V(F ) is discrete and closed in V(A). The natural map G(A)/C(A)→ V(A) is continuous,
and it maps G/C ⊂ G(A)/C(A) to V ⊂ V(A). Hence G/C is closed in G(A)/C(A), namely
GC(A) is closed in G(A) and so C(A)/C is closed in G(A)/G. Moreover, for G over F as
above, for any closed F -subgroup H of G, H(A)/H is closed in G(A)/G ([G], (2.1)). Now for
our function f , since N\N(A) is compact, Kf (u, h) =

∑
Z\G f(u−1γh) has compact support

on N\N(A) × GZ(A)\G(A), hence also on its closed subset N\N(A) × CZ(A)\C(A), by
either of these results.

A computational proof is as follows. The kernel Kf (u−1, h) =
∑
γ∈G/Z f(uγh) is equal

to ΣµΣηΣνf(uνµηh)(µ ∈ N\G/C, η ∈ C/Z, ν ∈ N/N ∩µCµ−1). By Proposition 1(c), a set
of representatives for the µ is given by the elements

(1) diag
((

α β

0 1

)
,
(
α −β
0 1

))
, α ∈ F×, β ∈ F ; and (2) diag (1, 1, λ, λ)γ0, λ ∈ F×.

If u lies in a fixed compact subset of N(A), and f(uνµηh) 6= 0, then νµηh lies in a compact
subset of G(A)/Z(A). Hence Ad(νµ)Θ = Ad(νµηh)Θ stays in a compact of G(A), and

consequently in a finite set. Put ν =
(
I X

0 I

)
. Then for µ of the form (1), we have

νµΘµ−1ν−1 =

(
AθθθA−1 −AθθθA−1X −XεAθθθA−1ε

0 −εAθθθA−1ε

)
, A =

(
α β

0 1

)
, θθθ =

(
0 1

θ 0

)
.

Since AθθθA−1 lies in a finite set, so do α and β. For µ of the form (2) we have

νµΘµ−1ν−1 =

(
−θλXε θλXεX − λ−1ε
−θλε θλεX

)
.

Hence λ lies in a finite set. Consequently only finitely many µ occur, and for each µ we
have a summation over ν in a finite subset of N/N ∩µCµ−1 = Ad(N)µΘµ−1. Finally, since
νµηh lies in a compact of G(A)/Z(A), we conclude that h stays in a compact set modulo
CZ(A). �

The geometric side of the Fourier summation formula is described as follows.

Proposition 2. For any f = ⊗fv on G(A) define fθ = ⊗fθv on X(θ)(A) by

fθv (gΘθg
−1J) =

∫
Cθv/Zv

fv(gh)dh.

Then ∫
N\N(A)

∫
Z(A)Cθ\Cθ(A)

∑
γ∈Z\G

f(n−1γh)ψθ(n)dndh
(
n =

(
I X

0 I

)
, X =

( x y
z x

))
(2.1)
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is absolutely convergent and equal to the (finite) sum
∑

λ∈F×
Ψ(λ, fθ) +

∑
i=±

Ψi(fθ), where

Ψ(λ, fθ) =
∏
v Ψ(λ, fθv ), Ψi(fθ) =

∏
v Ψi(fθv ). Here, if u = λ−1(1− yz − θ−1x2), we put

Ψ(λ, fθv ) = |θ|−2
v |λ|−3

v

∫
F 3
v

fθv

(( 0 u y x
−u 0 −x θz
−y x 0 −θλ
−x −θz θλ 0

))
ψψψv(−λ−1(y + z))dxdydz(2.2)

and

Ψi(fθv ) =

∫
Fv

fθv

(
i

(
0 u 1 0

−u 0 0 θ
−1 0 0 0
0 −θ 0 0

))
ψψψv(u)du.(2.3)

Similarly, introduce f̃ = ⊗f̃v on X(1)(A) by f̃v(gΘg−1J) =
∫
Cv/Zv

fv(gh)dh. Then∫
N\N(A)

∫
Z(A)C\C(A)

∑
γ∈Z\G

f(n−1γh)ψ0(n)dndh(2.4)

is absolutely convergent and equal to the (finite) sum
∑

λ∈F×
Ψ(λ, f̃) +

∑
i=±

Ψi(f̃), where

Ψ(λ, f̃) =
∏
v Ψ(λ, f̃v),Ψ

i(f̃) =
∏
v Ψi(f̃v). Here, with u = −λ−1(1− yz − x2), we put

Ψ(λ, f̃v) = |λ|−3
v

∫
F 3
v

f̃v

(( 0 u y x
−u 0 −x z
−y x 0 λ
−x −z −λ 0

))
ψψψv(2x/λ)dxdydz(2.5)

and

Ψi(f̃v) =

∫
Fv

f̃

(
i

(
0 u 0 1

−u 0 −1 0
0 1 0 0

−1 0 0 0

))
ψψψv(u)du.(2.6)

Proof. The integral (2.1) is a sum of two parts, according to Proposition 1(c). The main
part is ∫

N\N(A)

∫
Z(A)Cθ\Cθ(A)

∑
γ∈Bγ0Cθ

f(nγh)ψθ(n)dndh

=
∑
λ∈F×

∫
Cθ(A)/Z(A)

f
(
n
(
I 0

0 λ

)
γ0h
)
ψψψ(z − θy)dndh,

since Bγ0Cθ = NΛγ0Cθ,ΛΛΛ =
{(

I 0

0 λ

)
;λ ∈ GL(1)

}
. By matrix multiplication and the

definition of fθv we have that the local factor∫
Nv

∫
Cθ,v/Zv

fv

(
n
(
I 0

0 λ

)
γ0h
)
ψψψv(z − θy)dndh
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is equal to Ψ(λ, fθv ), as defined in (2.2). The finiteness of the sum over λ is easily proven
on considering the map g 7→ gΘθg

−1J , and using the fact that f is compactly supported.
The second part is∫

N\N(A)

∫
Z(A)Cθ\Cθ(A)

∑
ν∈N,m∈M∩B/Λ
η∈N∩Cθ\Cθ

f(nνmηh)ψθ(n)dhdn

=

∫
N(A)

∫
N∩Cθ\Cθ(A)

∑
a∈F×;b∈F

f
(
n
(
A 0

0 εAε

)
h
)
ψθ(n)dndh

(
A =

(
a b

0 1

))
.

Write h in the form
(
I t

0 I

)
h, where now h ∈ N(A) ∩ Cθ(A)\Cθ(A) and t =

(
x y

θy x

)
(x, y

range over A/F ). Since(
A 0

0 εAε

)(
I t

0 I

)(
A−1 0

0 εA−1ε

)
=
(
I AtεA−1ε

0 I

)
,

and
tr [εA−1εTAt] = a−1θy − θay − a−1b2θ2y − 2θbx,

integrating over x in A/F we obtain 0 unless b = 0, in which case the volume |A/F | = 1
is obtained. Integrating over y in A/F again we get 0, unless a = ±1, in which case the
volume |A/F | = 1 is obtained. Our integral is then the sum over i = ± of∫

N(A)/N(A)∩Cθ(A)

fθ(inΘθn
−1J)ψθ(n)dn.

The local factors of this integral are equal to those of (2.3).
The integral (2.4) is similarly handled. By Proposition 1(b) it is expressed as a sum of

two parts. Since Pγ1C = NΛγ1C, the main part takes the form∫
N(A)/N

∫
Z(A)C\C(A)

∑
ν∈N,λ∈F×

η∈C

f
(
nν
(
I 0

0 λ

)
γ1ηh

)
ψψψ( tr X)dndh

=
∑
λ∈F×

∫
N(A)

∫
C(A)/Z(A)

f
(
n
(
I 0

0 λ

)
γ1h
)
ψψψ( tr X)dndh.

Note that

γ1Cγ
−1
1 ∩ P =

{(
A 0

0 εAε

)}
, since γ1

(
a 0 b

0 A′ 0

c 0 d

)
γ−1

1 =
(
A 0

0 εAε

)
, A =

(
a b

c d

)
, A′ = wAw.

Using the definition of f̃v we then obtain the sum over λ ∈ F× of Ψ(λ, f̃) =
∏
v Ψ(λ, f̃v),

where Ψ(λ, f̃v) is defined by (2.5).
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The second part of (2.4) is∫
N(A)/N

∫
Z(A)C\C(A)

∑
ν∈N/N∩C

ξ∈H/A,η∈C/Z

f(nνd(ξ)ηh)ψψψ( tr X)dndh

=

∫
N(A)/N∩C

∫
C(A)/Z(A)

∑
ξ∈H/A

f(nd(ξ)h)ψψψ( tr X)dndh,

where H = GL(2, F ), A = diagonal subgroup in H, and d(ξ) = diag (ξ, wtξ−1w). Since

d(ξ)
(
I Y

0 I

)
d(ξ)−1 =

(
I ξY wtξw

0 I

)
, Y =

(
0 y

z 0

)
, tr ξY wtξw = 2αγy + 2βδz if ξ =

(
α β

γ δ

)
,

changing h 7→
(
I Y

0 I

)
h, and integrating over y, z in A/F , we obtain 0 unless ξ is I or w,

modulo the diagonal subgroup A. Using now the definition of f̃ , we obtain the sum over
i = ± of Ψi(f̃) =

∏
v Ψi(f̃v), where Ψi(f̃v) is defined by (2.6). �

4. Asymptotes. To compare the geometric side (2.1) (or (2.4)) of the Fourier summation
formula with an analogous expression for a different group, we need to characterize the
Fourier orbital integrals (2.2) and (2.3) (or (2.5) and (2.6)) of which the formula consists.
To express this characterization, let F be a local field, ψ : F → C× a nontrivial character,
dx the auto dual Haar measure on F, ϕ̂(x) =

∫
F
ϕ(y)ψ(xy)dy the Fourier transform of

ϕ ∈ C∞c (F ), and γψ(a)(a ∈ F×) the Weil function, defined by∫
F

ϕ(x)ψ

(
1

2
ax2

)
dx = γψ(a)|a|−1/2

∫
F

ϕ̂(x)ψ

(
− 1

2
a−1x2

)
dx.

Then γ(a) = γψ(1)γψ(−a) is a function from F×/F×2 to the group of the complex fourth
roots of unity, satisfying γ(a)γ(b) = γ(ab)(a, b) (see [We]), where (a, b) is the Hilbert symbol
(= 1 if ax2 − by2, = −1 if not). Put G = GSp(4, F ); | · | is the normalized absolute value
on F . We shall later use the results of this section with ψ replaced by ψ.

The complex valued functions Ψ1,Ψ2 on F are called equivalent, and we write Ψ1 ≡ Ψ2,
if Ψ1(λ) = Ψ2(λ) for λ in some neighborhood of 0 (F non archimedean), and if Ψ1,Ψ2 have
equal derivatives of all orders at λ = 0 (F archimedean).

Proposition 3. (a) For every function f ∈ C∞c (G/Z) and θ ∈ F×, the function Ψ(λ, fθ)
of (2.2) is compactly supported in λ on F , smooth (locally constant if F is nonarchimedean)
on F×, and

Ψ(λ, fθ) ≡ γψ(−1)γψ(θ)|2λ|−1|θ|−3/2

· {(θ, 2λ)ψ(−2/λ)Ψ+(λ, fθ) + (θ,−2λ)ψ(2/λ)Ψ−(λ, fθ)},

where Ψi(λ, fθ) are smooth functions in a neighborhood of λ = 0 whose values at λ = 0 are
the Ψi(fθ) which are defined by (2.3), i = ±.
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Conversely, if Ψ(λ) is a complex valued compactly supported function in λ on F , smooth
on F×, and

Ψ(λ) ≡ γψ(−1)γψ(θ)|2λ|−1|θ|−3/2{(θ, 2λ)ψ(−2/λ)Ψ+(λ) + (θ,−2λ)ψ(2/λ)Ψ−(λ)},

for some smooth complex valued functions Ψ+(λ),Ψ−(λ), then there exists f ∈ C∞c (G/Z)
with Ψ(λ, fθ) = Ψ(λ) for all λ ∈ F×, and Ψi(λ, fθ) ≡ Ψi(λ)(i = ±).

(b) For every function f ∈ C∞c (G/Z) the function Ψ(λ, f̃) of (2.5) is compactly supported
in λ on F , smooth on F×, and

Ψ(λ, f̃) ≡ |2λ|−1ψ(2/λ)Ψ+(λ, f̃) + |2λ|−1ψ(−2/λ)Ψ−(λ, f̃),

where Ψi(λ, f̃) are smooth near λ = 0 and whose values at λ = 0 are the Ψi(f̃) which are
defined by (2.6), i = ±.

Conversely, if Ψ(λ) is a complex valued compactly supported function in λ on F , smooth
on F×, and

Ψ(λ) ≡ |2λ|−1ψ(2/λ)Ψ+(λ) + |2λ|−1ψ(−2/λ)Ψ−(λ),

for some smooth complex valued functions Ψ+(λ),Ψ−(λ), then there exists f ∈ C∞c (G/Z)

with Ψ(λ, f̃) = Ψ(λ) for all λ ∈ F×, and Ψi(λ, f̃) ≡ Ψi(λ)(i = ±).

Proof. (a) Consider the case of θ ∈ F−F 2. The function fθ is smooth with compact support
on the quadric b1b2 + b2− ad = θ (in F 5) part of X(θ) (see Proposition 1(d)). This quadric
is the union of the open subsets {b1 6= 0} and {d 6= 0}, since θ is not a square in F . If fθ is
supported on {d 6= 0}, the integral Ψ(λ, fθ) of (2.2) is zero for λ in some neighborhood of
zero. Assume then that fθ is supported on {b1 6= 0}. This set is parametrized by b1, b, a, d.
The substitution z 7→ u = λ−1(1− yz − θ−1x2), dz = |λ/y|du, gives

Ψ(λ, fθ) = |θλ|−2

∫ ∫ ∫
ϕ(u, x, y, λ)ψ(−λ−1(y + y−1) + u/y + (θλy)−1x2)dudxd×y,

where

ϕ(u, x, y, λ) = fθ

(( 0 u y x

−u 0 −x (θ−x2−θλu)/y

∗ ∗ 0 −θλ
∗ ∗ θλ 0

))
is a smooth compactly supported function on the subset {y 6= 0} of F 4. To simplify
the notations, assume that ϕ(u, x, y, λ) is a product ϕ1(u)ϕ2(x)ϕ3(y)ϕ4(λ), where ϕi ∈
C∞c (F )(i = 1, 2, 4) and ϕ3 ∈ C∞c (F×). We then get that Ψ(λ, fθ) is

= |θλ|−2ϕ4(λ)

∫
F×

ϕ̂1(y−1)ϕ3(y)

{∫
F

ϕ2(x)ψ((θλy)−1x2)dx

}
ψ(−λ−1(y + y−1))d×y

= |θλ|−2ϕ4(λ)

∫
F×

ϕ̂1(y−1)ϕ3(y)γψ(2θλy)|θλy/2|1/2

·
{∫

F

ϕ̂2(x)ψ

(
− 1

4
θλyx2

)
dx

}
ψ(−λ−1(y + y−1))d×y.
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Assume now that F is nonarchimedean. For λ near 0, Ψ(λ, fθ) equals

|2|−1/2|θλ|−3/2ϕ2(0)ϕ4(0)

∫
F×

ϕ̂1(y−1)ϕ3(y)|y|1/2γψ(2θλy)ψ(−λ−1(y + y−1))d×y.

We shall prove below the following

Lemma 3.1. For any ϕ in C∞c (F×), the value of
∫
F×

ϕ(y)ψ(λ−1(y + y−1))d×y at λ near
zero is

γψ(2λ)|λ/2|1/2ψ(2/λ)ϕ(1) + γψ(−2λ)|λ/2|1/2ψ(−2/λ)ϕ(−1).

Hence for λ near zero we obtain

Ψ(λ, fθ) = |2|−1|θ|−3/2|λ|−1ϕ2(0)ϕ4(0)

· {γψ(−2λ)ψ(−2/λ)ϕ̂1(1)ϕ3(1)γψ(2θλ) + γψ(2λ)ψ(2/λ)ϕ̂1(−1)ϕ3(−1)γψ(−2θλ)}.

Since γψ(−2λ)γψ(2θλ) = γψ(−1)γψ(θ)(2λ, θ), we obtain

= γψ(−1)γψ(θ)|2|−1|θ|−3/2|λ|−1ϕ2(0)ϕ4(0){ϕ̂1(1)ϕ3(1)(θ, 2λ)ψ(−2/λ)

+ ϕ̂1(−1)ϕ3(−1)(θ,−2λ)ψ(2/λ)}

= γψ(−1)γψ(θ)|2|−1|θ|−3/2|λ|−1{(θ, 2λ)ψ(−2/λ)

∫
F

ϕ(u, 0, 1, 0)ψ(u)du

+ (θ,−2λ)ψ(2/λ)

∫
F

ϕ(−u, 0,−1, 0)ψ(u)du}.

This is the asserted asymptotic behavior.
Assume next that F = R, the field of real numbers. Put ϕ5(y) = ϕ̂1(y−1)ϕ3(y)|y|1/2,

and ϕ∗2(t) =
∫
R ϕ̂2(x)ψ( 1

2 tx
2)dx. Then

Ψ(λ, fθ) = 2−1/2|θλ|−3/2ϕ4(λ)

{
γψ(2θλ)

∫
R×+

ϕ5(y)ϕ∗2

(
− 1

2
θλy

)
ψ(−λ−1(y + y−1))d×y

+ γψ(−2θλ)

∫
R×+

ϕ5(−y)ϕ∗2

(
1

2
θλy

)
ψ(−λ−1(y + y−1))d×y

}
.

For h ∈ C∞c (R×+) we have∫
R×+

h(y)ψ

(
y + y−1

2λ

)
d×y = 2ψ(λ−1)

∫
R×+

h(x2)ψ

(
(x− x−1)2

2λ

)
d×x

(y = x2). On changing x− x−1 = 2u, x = u+
√
u2 + 1, this becomes

= 2ψ(λ−1)

∫
R
h

((
u+

√
u2 + 1

)2)
ψ(2u2/λ)

du√
u2 + 1
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= γψ(λ)|λ|1/2ψ(λ−1)

∫
R
ĝ(u)ψ

(
− λ

8
u2

)
du,

where g(u) = h((u+
√
u2 + 1)2)/

√
u2 + 1. To use this formula in our context, put gi(λ)

=

∫
R
ψ

(
i
λ

16
v2

)
dv

∫
R
(u2+1)−1/2ϕ5

(
i

(
u+
√
u2 + 1

)2)
ϕ∗2

(
− i

2
θλ(u+

√
u2 + 1)2

)
ψ(uv)du

for i = ±. Note that gi are smooth functions on R (although ϕ∗2 is not a Schwartz function),
and that gi(0) = ϕ2(0)ϕ5(i1). Then Ψ(λ, fθ)

= γψ(−1)γψ(θ)2−1|θ|−3/2|λ|−1ϕ4(λ){(2λ, θ)ψ(−2/λ)g+(λ) + (−2λ, θ)ψ(2/λ)g−(λ)},

and the asymptotic behavior asserted in (a) of the proposition follows.
The case of θ ∈ F×2 is similar to that of (b), which is done next.

(b) Consider the integral Ψ(λ, f̃) of (2.5). The function f̃ is smooth and compactly sup-
ported on the quadric X = {b1b2 + b2 − ad = 1 in F 5} described by Proposition 1(d). This
X is the union of four open subsets: Vi = {b+ i

2 (b1− b2) 6= 0} (i = ±), Vb1 = {b1 6= 0}, Vd =

{d 6= 0}. If f̃ is supported on {d 6= 0} then Ψ(λ, f̃) is zero for λ in some neighborhood of

zero. If f̃ is supported on {b1 6= 0}, writing z = (1 + λu − x2)/y we see that Ψ(λ, f̃) is

rapidly decreasing as λ → 0. Assume then that f̃ is supported on V+. Change variables:
x 7→ 1

2 (y+ z), y 7→ x+ 1
2 (y− z), z 7→ x− 1

2 (y− z), and note that x2 + yz, hence u, are not
changed. Then we get

Ψ(λ, f̃) = |λ|−3

∫∫∫
F 3

f̃

 0 u x+ 1
2 (y−z) 1

2 (y+z)

−u 0 − 1
2 (y+z) x− 1

2 (y−z)
∗ ∗ 0 λ

∗ ∗ −λ 0

ψ(λ−1(y + z))dxdydz,

Ψ(−λ, f̃) = |λ|−2

∫∫
F 2

∫
F×

ϕ(u, x, y, λ)ψ(−λ−1(y + y−1))ψ(u/y)ψ(λ−1y−1x2)dudxd×y,

where

ϕ(u, x, y, λ) = f̃

(( 0 u ∗ ∗
−u 0 ∗ ∗
∗ ∗ 0 −λ
∗ ∗ λ 0

))

is smooth with compact support on the subset {y 6= 0} of F 4. We obtained precisely
the same integral as in the nonsplit case (a), where θ ∈ F − F 2, but with θ = 1. The
computation there applies with θ = 1 too. The leading term in the asymptotic expansion
of Ψ(λ, f̃) is then

|2λ|−1{ψ(2/λ)

∫
F

ϕ(u, 0, 1, 0)ψ(u)du+ ψ(−2/λ)

∫
F

ϕ(−u, 0,−1, 0)ψ(u)du}

= |2λ|−1ψ(2/λ)Ψ+(λ, f̃) + |2λ|−1ψ(−2/λ)Ψ−(λ, f̃).
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The treatment of f̃ which is supported on V− is similarly carried out. A general f̃ can be
expressed as f+ + f− + fb1 + fd, with f∗ supported on the open set V∗. The case where F
is the field of complex numbers is similarly handled.

For the opposite direction(s), given Ψ(λ) choose f1 with Ψi(λ, fθ1 ) of (2.3) (or Ψi(λ, f̃1)

of (2.6)) equivalent to Ψi(λ). Then Ψ(λ) − Ψ(λ, fθ1 ) (or Ψ(λ) − Ψ(λ, f̃1)) is smooth and

compactly supported on F×, and it is easy to find f2 with Ψ(λ, fθ2 ) (or Ψ(λ, f̃2)) equal to
this function on F× . Then f = f1 + f2 is the required function. �

It remains to prove Lemma 3.1. It follows on taking a = b = ±2/λ in the following
Lemma. Thus let F be a nonarchimedean local field, R its ring of integers, πππ a generator
of its maximal ideal (πππ), and v the valuation on F×, normalized by v(πππ) = 1.

Lemma 3.2. Given a nontrivial character ψ of F , and N ≥ 2v(2) + 1, there is a constant
A such that for any a, b ∈ F× with v(b) ≤ A we have that

∫
1+(πππN )

ψ( 1
2 (at+bt−1))dt is equal

to ψ(ac)|a|−1/2γψ(ac) if b/a = c2, c ≡ 1 mod (πππN ), and to zero otherwise.

Proof. It suffices to prove this for ψ such that R⊥ = {x ∈ F ;ψ(xy) = 1 for all y ∈ R} is R.
In this case one may take A = −2N − v(2). The integral of our lemma is equal to

∑
t∈1+(πππN )/1+(πππn)

∫
1+(πππn)

ψ

(
1

2

(
atu+ bt−1u−1

))
du, n =

[
1

2
(1 + v(2)− v(b))

]
.

If t ∈ 1 + (πππN ) is such that the integral over 1 + (πππn) is nonzero, then on writing u =
1 +πππnx, |x| ≤ 1, we see that v(at− bt−1) + n− v(2) ≥ 0. Hence v(b−1at2 − 1) ≥ N + v(2),
namely b−1a ≡ 1 mod (2πππN ), and so a−1b = c2 with c ≡ 1 mod (πππN ). If a−1b = c2 and
c ≡ 1 mod (πππN ), then∫

1+(πππn)

ψ

(
1

2

(
at+ bt−1

))
dt =

∫
1+(πππN )

ψ

(
1

2
ac(t+ t−1)

)
dt.

If now λ ∈ F× has v(λ) ≥ 2N + v(2), then∫
1+(πππN )

ψ

(
t+ t−1

2λ

)
dt = |2|ψ(λ−1)

∫
1+( 1

2πππ
N )

ψ

(
(x− x−1)2

2λ

)
dx (t = x2)

= |2|ψ(λ−1)

∫
( 1
2πππ

N )

ψ(2y2/λ)dy = ψ(λ−1)|λ|1/2γψ(λ),

where x− x−1 = 2y, namely x = y +
√

1 + y2. The lemma follows, as does Lemma 3.1. �

5. Matching. The geometric side of the Fourier summation formula on G = GSp(4) is
analogous − and will be compared to − a Fourier summation formula on H = GSp(2) =
GL(2). Let F be a global field, and f ′ = ⊗f ′v a test function on H(A). Thus f ′v ∈
C∞c (Hv/Zv) for all v, and for almost all v this f ′v is the unit element f ′v

0 in the con-
volution algebra of K ′ = Hv(Rv)-biinvariant function on Hv/Zv. Here Z denotes (also)
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the center of H. The convolution operator (r(f ′)φ)(x) =
∫
H(A)/Z(A)

f ′(y)φ(xy)dy on

L2(Z(A)H\H(A)) is an integral operator (=
∫
Z(A)H\H(A)

Kf ′(x, y)φ(y)dy) with the kernel

Kf ′(x, y) =
∑
f ′(x−1γy) (γ ∈ Z\H). The geometric side of the Fourier summation for-

mula for H(A) is obtained on integrating this kernel against ψ(x) on x over N ′\N(A)
′
,N′ ={

x =
(

1 ∗
0 1

)}
, ψ(x) = ψψψ(∗) if ∗ ∈ A/F , and ψψψ is our fixed nontrivial character of A/F , and

against χ(a) over y =
(
a 0

0 1

)
, a ∈ A×/F×, where χ is a character of A×/F× whose square

is 1. Put ψ = ψψψ, and w =
(

0 −1

1 0

)
.

Proposition 4. For any f ′ = ⊗f ′v on H(A) and a character χ of A×/F× with χ2 = 1, the
integral ∫

A/F

∫
A×/F×

∑
γ∈Z\H

f ′
((

1 x

0 1

)
γ
(
a 0

0 1

))
ψψψ(x)χ(a)dxd×a

is equal to the sum of
∑

λ∈F×
Ψχ(λ, f ′),Ψ+

χ (f ′) and Ψ−χ (f ′), where Ψχ(f ′) =
∏
v Ψχ(f ′v) and

Ψχv (λ, f ′v) =

∫
Fv

∫
F×v

f ′v

((
1 x

0 1

)
w
(

1 λ

0 1

)(
a 0

0 1

))
ψψψv(x)χv(a)dxd×a,

Ψ−χv (f ′v) =

∫
Fv

∫
F×v

f ′v

((
1 x

0 1

)(
a 0

0 1

))
ψψψv(x)χv(a)dxd×a, Ψ+

χv (f ′v) = Ψχv (0, f ′v).

This follows at once from the Bruhat decomposition H = B′ ∪N′wB′. From(
1 x

0 1

)(
0 1

1 0

)(
1 λ

0 1

)(
1 0

0 −1

)(
1 −λ
0 1

)(
0 1

1 0

)(
1 −x
0 1

)(
0 −1

1 0

)
=
(

2x(1+λ) 1+2xλ

1+2xλ 2λ

)
it transpires that the sum over λ ranges over a finite set, depending on the support of f ′,
that x ranges (in Ψχv (f ′v)) over a compact set in Fv, and that a ranges there over a compact
set in F×v , again depending on the support of f ′.

As in the case of G, we shall characterize next the Fourier orbital integrals Ψχv (λ, f ′v),
as in Jacquet [J2], Proposition 4.2, p. 129. Let F be a local field, and χ : F× → {±1} a
character with χ2 = 1.

Proposition 5. (a) For every function f ′ ∈ C∞c (H/Z) there are smooth compactly sup-
ported functions Ψ+

χ (λ, f ′) and Ψ−χ (λ, f ′) on F with Ψi
χ(0, f ′) = Ψi

χ(f ′)(i = ±) such that

Ψχ(λ, f ′) = Ψ+
χ (λ, f ′) + ψ(λ−1)Ψ−χ (λ, f ′) for all λ in F×.

(b) For any smooth compactly supported functions Ψ+(λ) and Ψ−(λ) on F there is a function
f ′ = f ′χ ∈ C∞c (H/Z) with Ψχ(λ, f ′) = Ψ+(λ) + ψ(λ−1)Ψ−(λ) on F .

Proof. Write Ψ for Ψχ in the course of the proof. Expressing H as the union of the two open

sets NwNA and NNA(N = wNw−1), N =

{(
1 ∗
0 1

)}
, A =

{(
∗ 0

0 ∗

)}
, we may assume

that f ′ is supported on one of these sets. If f is supported on NwNA, then Ψ(λ, f ′) is
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smooth and compactly supported on F , and Ψ(0, f ′) = Ψ+(f ′). Any smooth compactly
supported function on F is of the form Ψ(λ, f ′) for some f ′ ∈ C∞c (H/Z) supported on
NwNA.

Suppose that f ′ is supported on NNA. Put

T (u, v) =

∫
f ′
((

1 0

v 1

)(
1 u

0 1

)(
a 0

0 1

))
χ(a)d×a.

It is smooth and compactly supported on F × F , and any smooth compactly supported
function on F ×F is of the form T (u, v) for some f ′ supported on NNA. Since f ′ is trivial
on the center and χ2 = 1, we have that

Ψ(λ, f ′) =

∫
T (x(xλ− 1), x−1)ψ(x)dx, Ψ−(f ′) =

∫
T (x, 0)ψ(x)dx.

If T (x(xλ − 1), x−1) 6= 0 then |x(xλ − 1)| ≤ c1, |x|−1 ≤ c2 for some positive constants
depending on f ′ (or T ). Then c−1

2 ≤ |x| ≤ (1 + c1c2)|λ|−1 and |λ| ≤ (1 + c1c2)c2. Hence
Ψ(λ, f ′) is smooth on F× and compactly supported on F . If T vanishes unless v lies in
a compact of F×, then Ψ(λ, f ′) is smooth at 0, and Ψ−(f ′) = 0. Hence we may assume
that T is supported on {(u, v); |u| ≤ c1, |v| ≤ c2}, for some fixed c1, and a sufficiently small
c2 > 0, say with c1c2 < 1. In particular Ψ+(f ′)(= Ψ(0, f ′)) is 0.

Changing x to z = x− λ−1 we obtain

Ψ(λ, f ′) = ψ(λ−1)

∫
T (z(λz + 1), λ/(1 + λz))ψ(z)dz.

If the integrand is not zero then c−1
2 |λ| ≤ |1 + λz| ≤ c1|z|−1, hence |λz| ≤ c1c2 < 1, and

|1 + λz| ≥ 1 − c1c2 > 0, and finally |z| ≤ c1|1 + λz|−1 ≤ c1(1 − c1c2)−1. The integrand is
then a compactly supported function of z in F . If λ is near zero, so is λz, and 1 + λz lies
in a neighborhood of 1. The value of the integral over z at λ = 0 is clearly Ψ−(f ′), hence
(a) follows.

For (b), given smooth compactly supported functions Ψi(λ) on F (i = ±), there is f ′2
supported on NNA with Ψ−(f ′2) = Ψ−(0), and there is f ′1 supported on NwNA with
Ψ(λ, f ′1) equals to

Ψ+(λ) + ψ(λ−1)Ψ−(λ)−Ψ(λ, f ′2),(∗)

since the last expression is smooth and compactly supported on F . The required function
is f ′ = f ′1 + f ′2.

In fact, when F is archimedean we need to show that f ′2 can be chosen such that all
derivatives of Ψ−(λ, f ′2) and Ψ−(λ) are equal at λ = 0, since then (∗) is smooth on F
and f ′1 can be found. For this purpose let T1, T2 be smooth functions on F supported on
|u| ≤ c1, |v| ≤ c2, with c1c2 < 1, and with

∫
T1(z)ψ(z)dz = 1. Then the integrand in∫

T1(z(1 + λz))T2(λ/(1 + λz))ψ(z)dz
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is supported on |z| ≤ c1/(1 − c1c2), and the value of the integral at λ = 0 is T2(0). The
value of the derivatives of the integral can be computed in terms of the derivatives of T2

at λ = 0, hence f ′2 can be chosen so that Ψ−(λ, f ′2) and all of its derivatives would take at
λ = 0 any prescribed values, as asserted. �

Note that Ψχ(λ, f ′) depends on a choice of a quadratic character χ. In matching general
test functions, any χ can be taken in the following definition. But the matching of spherical
functions (cf. [J2], Proposition 5.1, p. 132) forces the choice of χ = χ

θ
.

Fix θ in F×, choose χ = χ
θ
, and fix ψ 6= 1. The functions f ∈ C∞c (G/Z) and f ′ ∈

C∞c (H/Z) are called matching if for all λ ∈ F× we have

Ψ(λ, fθ) = γψ(−1)γψ(θ)|2λ|−1|θ|−3/2(θ, 2λ)ψ(−2/λ)Ψχ(λ/4, f ′).

Corollary 5.1. For every f ∈ C∞c (G/Z) there exists f ′ ∈ C∞c (H/Z), and for every f ′ there
exists an f , such that f and f ′ are matching. If f and f ′ are matching, then Ψi(fθ) =
(θ, i)Ψi

χ(f ′)(i = ±).

Proof. This follows at once from Propositions 3 and 5. �

Proposition 6. Suppose that F is a p-adic field, p > 2, θ is a unit, χ is unramified and
χ2 = 1, and ψ is 1 on R but not on πππ−1R. Then the unit elements f0 and f ′0 are matching.

Proof. If f = f0 then fθ (see Proposition 2) is the characteristic function of the set of points
in X(θ) (see Proposition 1(d)) with integral coordinates on the quartic b1b2 + b2 − ad = θ.
Using (2.3) it is clear that Ψ±(fθ) = 1. From (2.2) it follows that Ψ(λ, fθ) is 0 if λ 6∈ R, it
is 1 if λ ∈ R×. Suppose that |λ| < 1. As in the beginning of the proof of Proposition 3(a),
we have

Ψ(λ, fθ) = |λ|−2

∫∫∫
ψ(−λ−1(y + y−1) + uy−1 + x2(θλy)−1)dxd×ydu.

The integration ranges over (x, y, u) in R3, with θ − x2 − θλu in yR. But the integral of
ψ(uy−1)du over R ∩ [λ−1(1− θ−1x2) + λ−1yR] is 1 if y ∈ R× and 0 if y ∈ R−R×. Hence

Ψ(λ, fθ) = |λ|−2

∫
R

∫
R×

ψ(−λ−1(y + y−1) + x2(θλy)−1)dxd×y.

Using the definition of γψ, recorded before Proposition 3, this is

= |λ|−3/2

∫
R×

ψ(−λ−1(y + y−1))γψ(2θλy)d×y.

If |λ| < q−1 = |πππ|, this can be written as (y = tu)

|λ|−3/2
∑

t∈R×/(1+πππR)

γψ(2θλt)

∫
1+πππR

ψ(−λ−1(tu+ t−1u−1))du.
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Lemma 3.2, with N = 1 and A = −2, asserts that
∫

1+πππR
ψ(−λ−1(tu + t−1u−1))du is 0

unless t ≡ ±1 mod πππR, and it is |λ|1/2ψ(−2tλ−1)γψ(−2λt) if t = ±1. Hence

Ψ(λ, fθ) = |λ|−1
∑
t=±1

γψ(2θλt)γψ(−2λt)ψ(−2t/λ) = |λ|−1(θ, λ)(ψ(2/λ) + ψ(−2/λ)),

since γψ(2θλt)γψ(−2λt) = γψ(−1)γψ(θ)(θ, 2λt) = (θ, λ) : γψ is 1 on units, and (u, v) = 1
for units u, v.

If |λ| = |πππ|, since γψ(2θλy) = γψ(2λ)(θ, λ)(λ, y), we have that Ψ(λ, fθ) is equal to

|λ|−3/2(θ, λ)γψ(2λ)

∫
R×

(λ, y)ψ(−(y + y−1)/λ)d×y

=|λ|−1/2(θ, λ)γψ(2λ)
∑

y∈R×/(1+πππR)

(λ, y)ψ(−(y + y−1)/λ).

Lemma 6.1. Let k be a finite field of odd characteristic. Let τ be a nontrivial character of
k. Put ε(x) = 1 if x is a square in k×, ε(x) = −1 if x is not a square, ε(0) = 0. Then∑

y∈k×
ε(y)τ(y + y−1) = (τ(2) + τ(−2))

∑
x∈k

τ(x2).

Apply this to k = R/πππR, τ(x) = ψ(−λ−1x). Then
∑
y∈R×/(1+πππR)(λ, y)ψ(−(y+ y−1)/λ)

is equal to

(ψ(2/λ) + ψ(−2/λ))
∑

x∈R/πππR

ψ(−λ−1x2) = (ψ(2/λ) + ψ(−2/λ))γψ(−2λ)|λ|−1/2.

Hence
Ψ(λ, fθ) = |λ|−1(θ, λ)(ψ(2/λ) + ψ(−2/λ)).

Proof of Lemma. For z ∈ k, the quadratic equation y+ y−1 = z has (1) two solutions, both
squares in k×, if both z+ 2 and z− 2 are nonzero squares; (2) two solutions, none of which
is a square, if neither z + 2 nor z − 2 is a square; (3) the solution y = 1 if z = 2; (4) the
solution y = −1 if z = −2; and (5) no solutions if precisely one of z + 2, z − 2, is a square.
Then ∑

y∈k×
ε(y)τ(y + y−1) =

∑
z∈k

(ε(z − 2) + ε(z + 2))τ(z)

=
∑
z∈k

(ε(z − 2) + 1)τ(z) +
∑
z∈k

(ε(z + 2) + 1)τ(z)

=
∑
z∈k

τ(x2 + 2) +
∑
z∈k

τ(x2 − 2) = (τ(2) + τ(−2))
∑
x∈k

τ(x2).

The lemma follows. �
If f ′ is f ′0 on H, and χ is unramified, we have Ψ±χ (f ′0) = 1, and Ψχ(f ′0) is 0 if λ 6∈ R,

1 if λ ∈ R×, 1 + ψ(λ−1) if 0 < |λ| < 1. The proposition follows. �
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6. Corresponding. The Fourier summation formula for H(A) = GL(2,A) is an identity
of sums of distributions. The geometric side is described by Proposition 4. The spectral
side will be recorded next, following [F1], Section D. The notations are those of [F1], to be
recalled below.

Proposition 7. For any f ′ = ⊗f ′v on H(A) and a character χ of A×/F× with χ2 = 1, the
integral of Proposition 4 is equal to the sum of

∑
ρ

∑
Φ′∈ρ

Wψ(ρ(f ′)Φ′)LΦ′

(
1

2
, ρ⊗ χ

)
(7.1)

and

4π
∑
Φ′

Eψ

(
I

(
f ′, χ,

1

2

)
Φ′, χ,

1

2

)
Φ
′
(1)(7.2)

and

1

2

∑
ω

∑
Φ′

∫
iR
Eψ(I(f ′, ω, ζ)Φ′, ω, ζ) · LΦ

′
,χ

(
ω−1,

1

2
− ζ
)
dζ,(7.3)

where
LΦ,χ(ω, ζ) = LΦ(ζ, ωχ)2LΦ(2ζ, ω2)−1.

Here ρ ranges over all cuspidal irreducible representations of PGL(2,A); Φ′ ranges over an
orthonormal basis of smooth vectors for the space of ρ in L2

0(Z(A)H\H(A)). The Whittaker
functional is defined by Wψ(Φ′) =

∫
N\N(A)

Φ′(u)ψ(u)du, and

LΦ′(ζ, ρ⊗ ω) =

∫
F×\A×

Φ′
((

a 0

0 1

))
|a|ζ−1/2ω(a)d×a

=

∫
A×

Wψ(ρ
((

a 0

0 1

))
Φ′)|a|ζ− 1

2ω(a)d×a

is the L-function of ρ⊗ω at ζ associated with Φ. The ω range over a set of representatives for
the set of connected components of the complex manifold of unitary characters x 7→ ω(x)
of A×/F×, a connected component consisting of ωνiζ , ν(x) = |x|, ζ ∈ R(= field of real
numbers). The normalizedly induced H(A)-module I(ω, ζ) consists of smooth Φ′ with

Φ′
(( a ∗

0 b

)
g, ζ
)

= ω(a/b)|a/b|ζ+1/2Φ′(g, ζ),

and

Eψ(Φ′, ω, ζ) =

∫
N\N(A)

E(u,Φ′, ω, ζ)ψ(u)du, E(h,Φ′, ω, ζ) =
∑

δ∈B\G

Φ′(δh, ζ).
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The sums in (7.2), (7.3) range over an orthonormal basis for I(ω, ζ), independently of ζ.
All sums and integrals are absolutely convergent.

�

Our next aim is then to develop an analogous Fourier summation formula for the group
G = GSp(4). We shall do that on multiplying the spectral expression Kf (u, h) for the

kernel by ψθ(u) and integrating over u in N\N(A) and h in CθZ(A)\Cθ(A).
It will be useful to fix conventions for induction. These should be the same as those

used in the theory of Eisenstein series, which are used to describe the contribution to the
kernel from its spectral decomposition, as recalled in the next few sections (in particular,
in section 9). Thus let F be a local field, ρ an admissible representation of GL(2, F )
with a trivial central character, ω a character of F×, and ζ2 a complex number. Then
the G = G(F )-module normalizedly induced from the data ρ, ζ2, ω on P = P(F ) will be
denoted by IP (ρ, ζ2, ω). It consists of all smooth functions φ : G→ ρ which satisfy

φ
((

A ∗
0 λwtA−1w

)
g
)

= ||A|/λ|ζ2+ 3
2ω(|A|/λ)ρ(A)(φ(g))

(A ∈ GL(2, F ), |A| = det A, g ∈ G,λ ∈ F×).
If ρ = I(ζ1,−ζ1) ⊗ χ, χ a character of F× with χ2 = 1, ζ1 a complex number, is

the GL(2, F )-module consisting of the smooth φ : PGL(2, F ) → C with φ
(( a ∗

0 b

)
g
)

=

χ(ab)|a/b|ζ1+1/2φ(g), then IP (ρ, ζ2, ω) is IB(ζ1, ζ2 − ζ1, χ, ω/χ). Here IB(ζ1, ζ2, χ, ω) is the
G-module induced from the Borel subgroup B, consisting of the smooth functions φ : G→ C
which satisfy

φ

(( a ∗
b

λ/b

0 λ/a

)
g

)
=

∣∣∣∣a4b2

λ3

∣∣∣∣1/2 ∣∣∣∣a2

λ

∣∣∣∣ζ1 ∣∣∣∣abλ
∣∣∣∣ζ2 χ(a2

λ

)
ω

(
ab

λ

)
φ(g) (a, b, λ ∈ F×).

If ρ is a GL(2, F )-module with central character ωρ, and ζ3 a complex number, the
induced IQ(ρ, ζ3) consists of φ : G→ ρ,

φ

(( a ∗ ∗
0 A ∗
0 0 λ/a

)
g

)
= |a2/λ|1+ζ3ω−1

ρ (a)(ρ(A)φ)(g) (A ∈ GL(2, F ), λ = |A|, a ∈ F×).

If ρ = I(ζ4,−ζ4) ⊗ χ, then ωρ = χ2, and IQ(ρ, ζ3) = IB(ζ3 − ζ4, 2ζ4, χ−1, 1). Analogous
notations will be used also in the global case .

It will be useful to compute the trace tr π(f) of π = I(ζ1, ζ2). For this purpose take
φ ∈ I(ζ1, ζ2), and f ∈ C∞c (Z\G), and note that

(π(f)φ)(h) =

∫
Z\G

f(g)φ(hg)dg =

∫
N

∫
Z\A

∫
K

f(h−1nãk)δB(ã)−1/2

∣∣∣∣a2

λ

∣∣∣∣ζ1 ∣∣∣∣abλ
∣∣∣∣ζ2 φ(k)dndãdk

=

∫∫∫
∆(ã)f(h−1n−1ãnk)

∣∣∣∣a2

λ

∣∣∣∣ζ1∣∣∣∣abλ
∣∣∣∣ζ2φ(k)dndãdk,
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where
ã = diag (a, b, λ/b, λ/a), δB(ã) = |a4b2/λ3|,

and

∆(ã) = δB(ã)−1/2| det ( ad (ã)− 1)LieN | =
|(a− b)(ab− λ)(a2 − λ)(b2 − λ)|

|a4b4λ3|1/2
.

Put

Ff (ã) = ∆(ã)Φf (ã), Φf (ã) =

∫
N

∫
K

f(k−1n−1ãnk)dkdn.

Then

tr I(ζ1, ζ2; f) =

∫
Z\A

Ff (ã)

∣∣∣∣a2

λ

∣∣∣∣ζ1 ∣∣∣∣abλ
∣∣∣∣ζ2 dã.

When f is K-biinvariant, Ff (ã) depends only on the valuations of a, b, λ in the nonar-
chimedean case. As usual πππ denotes a generator of the maximal ideal in the ring of integers
R of F, q the cardinality of the residue field R/(πππ), and the absolute value is normalized by
|πππ| = q−1. Put

Ff (n,m) = Ff ( diag (1,πππn,πππm,πππm+n)).

Then
tr I(ζ1, ζ2; f) =

∑
n

∑
m

q(m+n)ζ1qmζ2Ff (n,m).

If f ′ ∈ C∞c (Z\H), H = GL(2, F ), and Ff ′(ã) = ∆H(ã)Φf ′(ã), ã =
(
a 0

0 b

)
,

∆H(ã) = |(a− b)2/ab|1/2 and Φf ′(ã) =

∫
K′

∫
N ′
f ′(k−1n−1ãnk)dndk,

we put Ff ′(n) = Ff ′( diag (πππ−n, 1)) if f ′ is K ′-biinvariant. A similar computation shows
that

tr IH(ζ1,−ζ1; f ′) =

∫
Z′\A′

Ff ′(ã)
∣∣∣a
b

∣∣∣ζ1 dã =
∑
n

Ff ′(n)qnζ1 ,

the last equality holds for a K ′-biinvariant function f ′.

Definition 7.1. The K-biinvariant function f on Z\G, and the K ′-biinvariant function
f ′ on Z\H, are corresponding, if tr IH(ζ1,−ζ1; f ′) = tr I(ζ1,

1
2 − ζ1; f) for every complex

number ζ1. In particular, the unit elements f0 and f ′0 are corresponding.

If f ′ and f are corresponding, then∑
n

qnζ1Ff ′(n) =
∑
n

∑
m

q(m+n)ζ1qm(1/2−ζ1)Ff (n,m)

for all ζ1, hence

Ff ′(n) =
∑
m

qm/2Ff (n,m).
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Proposition 8. Corresponding f ′ and f are matching.

This important statement was presented as a conjecture in an early draft of our paper.
It was then proved by Zinoviev [Z], using Proposition 6, which establishes this statement
in the case of f ′0 and f0. It will be interesting to find a simple and conceptual proof
of our assertion, as one has in the case of base-change and ordinary orbital integrals. A
suitable “symmetric space” analogue of the regular functions technique introduced in [F6]
in the group case may yield a reduction of the spherical case (Proposition 8) to the germ
expansion for a general test function, which is analyzed in Propositions 3 and 5, or to the
case of the unit element (Proposition 6).

Remark. Since IP (ρ, ζ2) = IB(ζ1, ζ2 − ζ1) for ρ = IH(ζ1,−ζ1), and tr ρ is invariant under
the replacement ζ1 7→ −ζ1, and since IQ(ρ, ζ3) = IB(ζ3 − ζ4, 2ζ4) for ρ = I(ζ4,−ζ4),
and tr ρ is invariant under ζ4 7→ −ζ4, we conclude that tr IB(ζ1, ζ2) is invariant under
(ζ1, ζ2) 7→ (−ζ1, ζ2 + 2ζ1), as well as under (ζ1, ζ2) 7→ (ζ1 + ζ2,−ζ2). Of course these
relations are induced by the action of the two reflections in the Weyl group, α1 which is
associated with the parabolic P , and α2 which is associated with Q.

7. Spectral analysis. The spectral expansion of the kernel Kf (g, h)(g, h ∈ Z(A)\G(A))
of the convolution operator r(f) on L2(Z(A)G\G(A)) is a sum of contributions associated
to G,P,Q, and B. The contribution associated to G is analogous to that described in the
case of H = GL(2) above. Its cuspidal part is the bounded function

KG(g, h) =
∑
π

m(π)
∑
Φ

(π(f)Φ)(g)Φ(h).

The first sum ranges over a set of representatives for the set of equivalence classes of the
cuspidal representations in L2(Z(A)G\G(A)). The multiplicity of π in the cuspidal spec-
trum of L2(Z(A)G\G(A)) is a finite integer, denoted by m(π). The inner sum ranges over
an orthonormal basis for the space of π, consisting of smooth bounded functions Φ. In
the case of H, the multiplicity one theorem asserts that m(ρ) are all equal to 1. There
we let ρ range over the discrete spectrum representations, and Wψ(Φ′) 6= 0 implied that ρ
is generic, hence cuspidal (not one dimensional). In the case of G, it has been shown in
[F8] (note that GSp(4) of this paper is denoted by GSp(2) in [F8]) that the m(π) are 1
for G = PGSp(4). Since ψθ is not a generic character of NB , Wψθ does not kill the non

cuspidal discrete spectrum representations. Multiplying by ψθ(g) and integrating over g in
N\N(A) and h in Z(A)Cθ\Cθ(A), θ ∈ F , we obtain∑

π

m(π)
∑
Φ

Wψθ (π(f)Φ)P (Φ),(8.1)

where

Wψθ (Φ) =

∫
N\N(A)

Φ(n)ψθ(n)dn, P (Φ) = Pθ(Φ) =

∫
Z(A)Cθ\Cθ(A)

Φ(h)dh.
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Note that the integral expression for P (Φ) converges also when Φ ∈ π, π a non cuspidal
discrete spectrum (square integrable) representation. Indeed, by Schwartz inequality, for a
closed subset C of G with finite volume and with characteristic function 1C in G, we have
that (

∫
C
|f |)2 = (

∫
G
|f | · 1C)2 ≤

∫
G
|f |2 ·

∫
G

12
C ≤ vol (C) ·

∫
G
|f |2 is finite. However, for

such π, P (Φ) is redefined after the proof of Proposition 9 below (as the limit limP (ΛTΦ))
to fit our proofs.

But we need to consider the non cuspidal spectrum as well. To deal with convergence
questions, we briefly recall some consequences of Arthur’s work [A1/2], mostly in his (stan-
dard) notations. This is best done in the context of a general reductive group G over F . Let

G(A)
1

denote the subgroup of the g in G(A) with |χ(g)| = 1 for every rational character χ of
G ([A1], p. 917). Put K =

∏
vKv, product over all places v in F , of hyperspecial maximal

compact subgroups Kv of G(Fv). Let f ∈ C∞c (G(A)) be a K-finite (the space spanned by
its left and right K-translates is finite dimensional) smooth compactly supported function
on G(A). Denote by ΛT2 truncation ([A2], p. 89) with respect to the second variable, and
by χ any class of cuspidal pairs ([A1], p. 924). Denote by U a closed F -subgroup of G such
that U\U(A) is compact, and by ψ a character of U\U(A) with |ψ| = 1. Let C be a closed
reductive F -subgroup of G, such that Z(A)C\C(A) has finite volume, where Z is the center

of G, and such that for any Siegel domain S ([HCM], [PR]) in G(A)
1
, SC = S ∩C(A) is a

Siegel domain in C(A). We put C = C(F ).

Proposition 9. Let ω be a compact set in G(A)
1
. Then for any sufficiently regular ([A2],

p. 89) T in A+
0 we have Kf (u, h) = ΛT2 Kf (u, h) and Kf,χ(u, h) = ΛT2 Kf,χ(u, h) ([A1], p.

935), for all u ∈ ω, h ∈ G(A). For any Siegel domain S in G(A)
1

and N > 0, there is
c > 0 such that

∑
χ |Kf,χ(u, h)| ≤ c||h||−N for all u ∈ ω and h ∈ S. Consequently∫

Z(A)C\C(A)

∫
U\U(A)

Kf (u, h)ψθ(u)dudh =
∑
χ

∫∫
Kf,χ(u, h)ψθ(u)dudh.

Each side is finite even if Kψ is replaced by its absolute value. The Eisenstein series being
defined in [A1], p. 926, put Eψ(Φ, π) =

∫
U\U(A)

E(u,Φ, π)ψθ(u)du. Then

∑
P

n(AP )−1

∫
ΠG(M)

∣∣∣∣∣∣∣
∑

Φ∈BP (π)χ

Eψ(IP (π, f)Φ, π)

∫
Z(A)C\C(A)

ΛTE(h,Φ, π)dh

∣∣∣∣∣∣∣ dπ
is finite. The expression obtained on erasing the absolute values is equal to∫

Z(A)C\C(A)

∫
U\U(A)

Kf,χ(u, h)ψθ(u)dudh.

Proof. The truncation operator ΛT is defined in [A2], p. 89, to be (we put |A/Z| for
dim(A/Z))

ΛTφ(h) =
∑
P

(−1)|A/Z|
∑

δ∈P\G

τ̂P (H(δh)− T )

∫
N\N(A)

φ(nδh)dn.
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Then

ΛT2 Kf (u, h) =
∑
P

(−1)|A/Z|
∑

δ∈P\G

τ̂P (H(δh)− T )

∫
N\N(A)

Kf (u, nδh)dn.

Put KP,f (u, h) =
∑
µ∈M

∫
N(A)

f(u−1µnh)dn, as in [A1], p. 923. Then∫
N\N(A)

Kf (u, nh)dn =
∑

γ∈P\G

KP,f (γu, h).

By [A2], p. 101, sentence including (2.4), if KP,f (γu, δh) 6= 0, then there exists T0 ∈ A0,
depending only on the compact support supp(f) of f , such that τ̂P (H(γu)−H(δh)−T0) =
1. By [A1], (5.2), p. 936, there is c > 0 such that $(H(γu)) ≤ c(1 + `n||u||) for all

u ∈ G(A)
1
, γ ∈ G, $ ∈ ∆̂0. Our u lies in the compact ω, hence there is some c > 0

with $(H(γu)) ≤ c (u ∈ ω, γ ∈ G), for all $ ∈ ∆̂P . Hence $(H(δh)) < c − $(T0),
and τ̂P (H(δh) − T ) is zero for a sufficiently regular T . Then the term indexed by P 6= G
vanishes, and ΛTKf = Kf . But the sentence including (2.4) on p. 101 of [A2] is valid also
for KP,f,χ, for all χ. Hence ΛTKf,χ = Kf,χ.

The kernel Kf,χ is defined in [A1], p. 935, to be

Kf,χ(u, h) =
∑
P

n(AP )−1

∫
ΠG(M)

∑
Φ∈BP (π)χ

E(u, IP (π, f)Φ, π)E(h,Φ, π)dπ.

By [A1], Lemma 4.4, there is N > 0 and a seminorm || · ||0 on C∞c (G(A)) such that

∑
χ

∑
P

n(AP )−1

∫
ΠG(M)

∣∣∣∣∣∣
∑

Φ∈BP (π)χ

E(u, IP (π, f)Φ, π)E(h,Φ, π)

∣∣∣∣∣∣ dπ ≤ ||f ||0 · ||u||N · ||h||N .
In particular

∑
χ |Kf,χ(u, h)| ≤ ||f ||0 · ||u||N · ||h||N . By [A1], Corollary 5.2 (see also [A2],

mid page 89), we can truncate Kf (u, h) =
∑
χKf,χ(u, h) term by term: ΛT2 Kf (u, h)

=
∑
χ ΛT2 Kf,χ(u, h). Moreover, by [A1], Lemma 4.4, and [A2], Lemma 1.4, there exists

some N ′ > 0 such that for any N > 0 there is c > 0 such that for all u ∈ G(A)
1

and h in a
Siegel domain S, we have

∑
χ

∑
P

n(AP )−1

∫
ΠG(M)

∣∣∣∣∣∣
∑

Φ∈BP (π)χ

E(u, IP (π, f)Φ, π)ΛTE(h,Φ, π)

∣∣∣∣∣∣ dπ ≤ c||u||N ′ ||h||−N .
Hence ∑

χ

|Kf,χ(u, h)| =
∑
χ

|ΛT2 Kf,χ(u, h)| ≤ c||h||−N
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for u ∈ ω and h ∈ S, and the proposition follows. �

In particular, the contribution associated to P = G is (8.1), but the first sum ranges
over all discrete spectrum representations of G(A), not only the cuspidal ones. For a K-
finite function f and a fixed π, the sum over Φ is finite (depending on K, but not f).
Since the Hecke algebra of K-biinvariant functions generate the algebra of endomorphisms
of πK, the absolute convergence of the sentence before last in Proposition 9, and the explicit
computations below of all terms in that expression for P 6= G, imply the convergence of
limP (ΛTΦ), where Φ ∈ π, π being a non cuspidal discrete spectrum representation, as
T →∞. We define P (Φ) to be this limit. We say that such π is cyclic if P (Φ) 6= 0 for some
Φ ∈ π.

By [A1], (3.1), p. 928, the Eisenstein series E(x,Φ, ζ), and each of its derivatives in x,
is bounded by c(ζ)||x||N (x ∈ G(A)), where c(ζ) is a locally bounded function on the set of
ζ ∈ A∗C(A) where E(x,Φ, ζ) is regular. Let us review the well known fact that on iA∗, where

E(x,Φ, ζ) is regular, it has polynomial growth in ζ. For this purpose, embed R×>0 in A× via
x 7→ (x, . . . , x, 1, . . . ) (x in the archimedean components, 1 in the finite components). Put
(as in [A1], p. 925) Π = Homcts(A×/F×R×>0, S

1), where S1 is the unit circle in the complex

plane, and Π0 = Homcts(A×/F×R×>0U, S
1), where U =

∏
v Uv, and Uv is the maximal

compact subgroup of F×v . If vj (1 ≤ j ≤ r) are the archimedean places of F , for µ ∈ Π0 we
have µ(zvj ) = |zvj |

µj
vj , µj ∈ iR, with

∑
j µj [Fvj : R] = 0. These µj (µ ∈ Π0) form a discrete

subgroup of rank r − 1 in this hyperplane. Denote by C0(µ) a function on Π0 of the form
C0(µ) = c

∏
j(1 − µ2

j )
cj with c > 0, cj > 0. In fact it depends only on the restriction of µ

to F×UF×∞, where F×∞ =
∏
j F
×
j .

Choose a set of representatives µ̃ for Π/Π0, and a function Cµ̃ on Π0 of the above type
for each µ̃. Denote by C(µ) the function on Π defined by C(µ) = Cµ̃(µ/µ̃) if µ = µ̃ on U ;
then C(µ) depends only on the restriction of µ to F×UF×∞. Denote by c(µ) a non negative
valued function on Π which depends only on the restriction of µ to U . Using the existence
of zero free regions of L-functions about Re (ζ) = 1, we have:

Lemma 9.1. There are functions C1(µ), C2(µ), c1(µ), c2(µ) as above, such that for com-
plex ζ with | Re ζ| ≤ C1(µ)−1(1 + ( Im ζ)2)−c1(µ) we have that |L(ζ, µ)/L(1 + ζ, µ)| is
bounded by C2(µ)(1 + ( Im ζ)2)c2(µ) (a bound of the same type holds for any derivative of
the quotient, by Cauchy’s integral formula).

Proof. For a complex number s = σ + it, put Lf (s, µ) =
∏
v<∞ L(s, µv). This Lf (s, µ)

converges absolutely on σ ≥ 1 + δ, δ > 0, by [La], p. 158. It has analytic continuation to
the entire complex plane, and it has no zeroes on σ = 1. For any vertical strip of finite
width there are C(µ) and c(µ) such that for all µ, and s with σ in the strip, |Lf (s, µ)| is

bounded by C(µ)(1 + ss)c(µ). In fact, by [La], p. 334, for any t0 > 0 there is m > 0 such
that s(s− 1)Lf (s, µ) is O(|t|m) in the vertical strip −1 < σ < 2, |t| > t0. Then |Lf (s, µ)| <
C−1

1 |t|m in this strip, and by Cauchy’s integral formula we also have |L′f (s, µ)| < C−1
1 |t|m

there. Take ε0 > 0 such that |Lf (s, µ)| > C2 in |t| ≤ 1, |σ − 1| ≤ ε0. Here Ci are positive
constants. As in [La], p. 313, one has |Lf (σ, 1)3Lf (σ+ it, µ)4Lf (σ+ 2it, µ2)| ≥ 1 on σ > 1.

Hence |Lf (s, µ)| ≥ |Lf (σ, 1)|−3/4|Lf (σ + 2it, µ2)|−1/4 > C3|σ − 1|3/4|t|−m/4 on σ > 1,
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|t| ≥ 1. Put C4 = (C1C3/3)4, and m′ = 6m. Given ζ with 1 − C4|t|−m
′
< Re ζ ≤ 1, put

s = 1 + C4|t|−m
′

+ it. Then |Lf (s, µ) − Lf (σ, µ)| = |
∫ Re s

Re ζ
L′f (u + it, µ)du| is bounded by

C−1
1 |t|m( Re s− Re ζ) ≤ 2(C4/C1)|t|m−m′ . By the triangle inequality,

|Lf (ζ, µ)| ≥ |Lf (s, µ)| − |Lf (s, µ)− Lf (ζ, µ)| ≥ C3C
3/4
4 |t|−(3m′+m)/4 − 2(C4/C1)|t|m−m

′

on | Im ζ| ≥ 1. Since |Lf (ζ, µ)| > C2 in | Im ζ| ≤ 1, | Re ζ−1| ≤ ε0, we are done (replacing
Ci by Ci(µ) and m by c(µ), and using Stirling’s formula to bound the ratio of the gamma
factors at infinity). �

Note that for characters µ of finite order, much better estimates are known: Im ζ can
be replaced by `n Im ζ in our estimates. But we need here only our crude estimates.

Lemma 9.2. Let π be a unitary G(A)-module on a Hilbert space H. Let H0 be the subspace
of K-finite vectors. Suppose that each K-type has finite multiplicity. Let L1, L2 be linear
forms on H0. Let f be K-finite in C∞c (G(A)), and {φ} an orthonormal basis of H0. Then

the sum
∑
{φ} L1(π(f)φ)L2(φ) is independent of the choice of the orthonormal basis {φ}. In

particular, if f = f1 ∗ f∗2 , f∗2 (g) = f2(g−1), f1 and f2 are K-finite elements of C∞c (G(A)),

then
∑
{φ} L1(π(f1)φ)L2(π(f2)φ) =

∑
{φ} L1(π(f)φ)L2(φ). �

From now on G is our GSp(4). Suppose that f = f1 ∗ f∗2 , where f∗2 (g) = f2(g−1), and
f1, f2 are K-finite elements of C∞c (G(A)). We will consider − for a sufficiently regular T
− the integral

∫ ∫
ΛTKcψ, which − by the elementary Lemma 9.2 − is equal to∑

P1

n(AP1)−1
∑
ρ

∫
iA∗P1

∑
Φ

Eθ(I(f1)Φ, ρ, ζ)(9.2)

·
∫
Z(A)Cθ\Cθ(A)

ΛTE(h, I(f2)Φ, ρ, ζ)dhdζ,

where I(f) = I(f, ρ, ζ) and Eθ(Φ, ρ, ζ) =
∫
N\N(A)

E(u,Φ, ρ, ζ)ψθ(u)du. The sum over the

P1 ranges over the standard parabolic subgroups: G, the Siegel parabolic P, the parabolic
Q with the Heisenberg unipotent radical, and the minimal parabolic B. The ρ range over
a set of representatives for the equivalence classes of discrete spectrum representations of
M1(A)1, where M1 is the standard Levi factor of P1. Put Kθ =

∏
vKθ,v, where Kθ,v is

the standard maximal compact subgroup in Cθ(Fv).

Lemma 9.3. There exists a hyperspecial maximal compact subgroup K =
∏
vKv in G(A)

which is adapted to Cθ(A) and to MP (A), in the sense that Kθ,v = Kv ∩Cθ,v for all v, and
diag (A, λεAε) lies in Kv precisely when A lies in the standard maximal compact subgroup
of GL(2, Fv), and |λ|v = 1, for all v.

Proof. Recall from section 2 that Cθ is the centralizer in G of Θθ = γ
√
θΘγ−1, where

γ = d
((

1 1√
θ −
√
θ

))
, d(A) = diag (A, εAε). If θ is a square in Fv, then

Cθ,v = γ(GL(2, Fv)×GL(2, Fv))γ
−1.
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If v is nonarchimedean, take Kv to be the intersection of GSp(Fv) and the stabilizer of the

lattice with basis e1 ±
√
θe2, e3 ±

√
θe4. When Fv = R, take Kv to be the intersection of

GSp(R) and the orthogonal group of the quadratic form with matrix diag (θ, 1, θ, 1). When
Fv = C, take Kv to be the intersection of GSp(C) and the unitary group of the hermit-
ian form with matrix diag (|θ|, 1, |θ|, 1). Then Kv ∩ Cθ,v is γ(GL(2, Rv) × GL(2, Rv))γ

−1

(Rv is the ring of integers in Fv), γ(O(2) × O(2))γ−1, or γ(U(2) × U(2))γ−1. Moreover,
diag (A, λεAε) lies in Kv precisely when |λ|v = 1 and A lies in the stabilizer of the lattice

with basis e1±
√
θe2, the orthogonal group of diag (θ, 1), or the unitary group of diag (|θ|, 1),

respectively.
If θ is not a square in Fv, then Cθ,v = GL(2, Ev)

′, where Ev = Fv(
√
θ). When v is

nonarchimedean, choose α, β in Fv such that 1 and α + β
√
θ make a basis of the ring

R′v of integers in Ev, over Rv. For almost all v we may and do choose α = 0, β = 1.
Take Kv to be the intersection of GSp(Fv) and the stabilizer of the lattice Λ with basis e1,
αe1 + βθe2, e3, αe3 + βθe4. Then Kv ∩Cθ,v = GL(2, R′v)

′. Moreover, diag (A, λεAε) lies in
Kv precisely when |λ|v = 1 and A lies in the stabilizer of the lattice with basis e1, αe1+βθe2.

Indeed, if h =
(
a b

c d

)
, a =

( a1 a2
θa2 a1

)
, . . . , d =

(
d1 d2
θd2 d1

)
, and mi =

(
ai bi
ci di

)
, i = 1, 2, then

det h = ( det m1 + θ det m2)2 − u2θ, where u = a1d2 + a2d1 − b1c2 − b2c1 is 0 precisely

when h ∈ Cθ,v. Then each of the conditions hΛ = Λ and
(

a b

c d

)
∈ GL(2, R′v), where

a = a1 + a2

√
θ, · · · ,d = d1 + d2

√
θ, is equivalent to m1 + (α/β)m2 ∈ M2(Rv), β

−1m2 ∈
M2(Rv), det (m1) + θ det (m2) ∈ R×v . Finally, if Fv = R, take Kv to be the intersection
of GSp(R) and the orthogonal group of the quadratic form with matrix diag (|θ|, 1, |θ|, 1).
Then Kv ∩ Cθ,v is GL(2,C) ∩ U(2). Moreover, diag (A, λεAε) lies in Kv precisely when
|λ|v = 1 and A lies in the orthogonal group of diag (|θ|, 1). Note that when Ev/Fv is
ramified, the image of GL(2, R′v)

′ in GL(2, Ev)
′/F×v is not a maximal compact subgroup (it

has index 2 in such a subgroup), but it can still be used. �

As in [A1], p. 925, let H0(ρ) be the space of functions Φ on Z(A)N(A)M\G(A) which
are right K-finite such that m 7→ Φ(mg) is a matrix coefficient of ρ for all g in G(A), and Φ
is square integrable on K×M1\M1(A)1. Denote by I(ρ, ζ) the G(A)-module normalizedly

induced from the P1(A)-module ρζ = µ ⊗ δζP1
. The Eisenstein series, for ζ ∈ A∗P1,C with

real part Re ζ ∈ ρP1
+ (A∗P1

)+, is defined by the absolutely convergent series

E(g,Φ, ρ, ζ) =
∑

γ∈P1\G

Φ(γg, ζ), Φ(g, ζ) = Φ(g)δP1
(g)ζ+

1
2 .

It has analytic continuation which is holomorphic on iA∗P1
.

Let M(w, ζ)Φ be the image of Φ under the action of the intertwining operator M(w, ζ) =
M(w, ρ, ζ), associated with the Weyl group element w ([A1], p. 926). As Φ(g, ρ, ζ) lies in
the induced I(ρ, ζ), the function (M(w, ζ)Φ)(g,wρ, wζ) lies in the induced I(wρ, wζ). The
operator M(w, ζ) has no singularity on the imaginary axis.

A K-type κ is a finite set of equivalence classes of irreducible K-modules. The norm of the
intertwining operator M(ρ, ζ) on the κ-component of I(ρ, ζ) is denoted by ||M(ρ, ζ)||κ. In
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the next Proposition we take P1 to be B = AU, the upper triangular subgroup, where A is
the diagonal subgroup and U is the unipotent upper triangular subgroup. The κ-component
of I(ρ, ζ) is zero unless the restriction of ρ to U lies in a finite set depending on κ.

Proposition 9.4. (1) Fix a K-type κ. There are functions Cj(ρ), cj(ρ), such that for

any complex ζ in the set Ω defined by | Re ζ| ≤ C1(ρ)−1(1 + ( Im ζ)2)−c1(ρ), we have that
||M(ρ, ζ)||κ is bounded by C2(ρ)(1 + ( Im ζ)2)c2(ρ). A bound of the same type holds for any
derivative of the intertwining operator.
(2) Given κ, there are Cj(ρ), cj(ρ), such that for any ζ in Ω, and for any Φ in the κ-
component of I(ρ, ζ), the integral

∫
G\G(A)

|ΛTE(g,Φ, ρ, ζ)|2dg is bounded by the product of

||Φ||, C2(ρ)(1 + ( Im ζ)2)c2(ρ), and exp (c3(ρ)||T ||).
(3) For any K-finite f ∈ C∞c (G(A)) there are Cj(ρ), cj(ρ), such that for any ζ in Ω,

x ∈ G(A)
1
, we have that |E(g, I(ρ, ζ; f)Φ, ρ, ζ)| is bounded by the product of ||Φ||, C2(ρ)(1+

( Im ζ)2)c2(ρ), and ||g||c3(ρ). The same holds for any derivative in ζ of this function.

Proof. The intertwining operator M is the product of a normalized intertwining operator,
which is easily majorized, a factor of absolute value one, and a product of quotients of
L-functions of the type which appears in Lemma 9.1. (1) follows. (2) follows from this, via
the scalar product formula of [A2], Lemma 4.2, p. 119 (see also [A5]).

For (3), note that in general, given a compact ω1 in G(A)
1
, we have ΛTΦ(g) = Φ(g) for

any g ∈ ω1 and any function Φ, provided that T is sufficiently regular with respect to ω1.
Indeed, [A1], (5.2), p. 936, asserts that there is a constant c > 0 such that for any $ ∈ ∆̂,

γ ∈ G, and g ∈ G(A)
1
, we have $(H(γg)) ≤ c(1 + `n||g||). It suffices to take T with

$(T ) ≥ c(1 + `n||g||) for all $ ∈ ∆̂ and g ∈ ω1. In fact we take T1 with $(T1) ≥ c for all

$ ∈ ∆̂, and T = T1 · max {1 + `n||g||; g ∈ ω1 · supp (f)}. Then ΛTΦ(g) = Φ(g) for all g in
the compact ω1 · supp (f), and ||T || ≤ c1 max {1 + `n||g||; g ∈ ω1} for some c1 = c1(f) > 0.
For these f , ω1, and T , we have for all g ∈ ω1,

E(g, I(ρ, ζ; f)Φ, ρ, ζ) =

∫
G(A)

E(gh,Φ, ρ, ζ)f(h)dh

=

∫
G(A)

ΛTE(gh,Φ, ρ, ζ)f(h)dh =

∫
G\G(A)

ΛTE(h,Φ, ρ, ζ)Kf (g, h)dh,

where Kf (g, h) =
∑
γ∈G f(g−1γh). But |Kf (g, h)| ≤ c2||g||N , and (2) gives an L2-bound

for ΛTE. Hence the expression to be estimated is bounded by the product of ||Φ||, C(ρ)(1+
( Im ζ)2)c1(ρ), and max (||g||c3(ρ)). The maxima are taken over x in the compact ω1. Finally,

taking ω to be a compact neighborhood of the identity, we observe that for any x ∈ G(A)
1
,

max (||g||) is bounded on ω1 = xω by a multiple of max (||x||), and (3) follows. �

8. Summation formula. Let V be a finite set of F -places, containing the archimedean
places and those which ramify in E. A superscript V will mean: “without V -component”,

e.g.: A×,V , A×,VE , AV , χV (for a character χ on A×), UV = {t ∈ A×,V ; |tv|v = 1 for all v 6∈
V }. We write EV for the product of Ev over v ∈ V , and FV =

∏
v∈V Fv. Put d(A) =
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diag (A, εAε), and

LV (s, ρ, ζ,Φ) =

∫
E×V /F

×
V

dA

∫
Kθ
e〈ρ0+sζ,H0(d(A)k)〉(M(s, ρ, ζ)Φ)(d(A)k)dk.

Here M(s, ρ, ζ) is the standard intertwining operator associated with s ∈W .
The Fourier summation formula for G(A) = GSp(4,A) is the following.

Proposition 10. Suppose that f = f1 ∗f∗2 , where f∗2 (g) = f2(g−1), and f1, f2 are K-finite
elements of C∞c (G(A)) which are spherical (Kv-biinvariant) outside V . Then the integral
of (2.1) is equal to the sum (8.1) + (10.1), except that now the sum over π in (8.1) ranges
over the equivalence classes of discrete spectrum representations of G(A). Here

1

8

∑
ω

∫
iR

[∑
Φ

Eθ

(
I

(
f, (1, ω),

(
1

2
, ζ − 1

2

))
Φ, (1, ω),

(
1

2
, ζ − 1

2

))
· LV

(
ω−1,

1

2
− ζ
)
· LV

(
γ0, (1, ω),

(
1

2
, ζ − 1

2

)
,Φ

)]
dζ.(10.1)

The sum ranges over the unitary characters ω of A×/F×UR×+. The Eisenstein series is

associated with the character h = (a, b, λ/b, λ/a) 7→ |a2/λ|1/2|ab/λ|ζ− 1
2ω(ab/λ) of the diag-

onal subgroup. Here γ0 represents the reflection (23). The sum (10.1), in which the brackets
[·] are replaced by the absolute value | · |, is convergent.

The proof of this Proposition occupies the next three sections.
The function LV (χ, ζ) is defined and studied in the next Proposition. Its definition

involves the measure dA which appears also in the definition of LV above. The mea-

sure dA is on the group A×,VE /A×,V = S(AV ) (and on E×V /F
×
V ), where S is the torus

RE/F GL(1)/GL(1). We write RE/F for the functor of restriction of scalars from E to F .

This measure is described as follows. The differential form (a2da1 − a1da2)/(a2
1 − θa2

2) on
RE/F GL(1) is the inverse image of an invariant differential form ω on S. Also S has conver-

gence factors cv = (1− q−1
v )−1 when v is split nonarchimedean place, and cv = (1 + q−1

v )−1

when v is unramified nonsplit nonarchimedean place, and cv = 1 otherwise. From the form
ω and the convergence factors (cv) we get a Tamagawa measure dA = |ω|A on S(A).

If A =
( a1 a2
a2θ a1

)
∈ GL(2,AV ), we write A =

(
t1 ∗
0 t2

)
k, with k = k(A) in the standard

maximal compact subgroup of GL(2,AV ), and we put a∗ = t1/t2. This is an element of
A×,V , uniquely determined up to multiplication by an element of UV . If χV is a character

of A×,V /F×UV , then A 7→ χV (a∗) defines a function on A×,VE /A×,V . We shall need below
to compute the integral

∫
A×,VE /A×,V χ

V (a∗)dA, which is equal to
∏
v cv

∫
Sv
χv(a

∗
v)dAv. In

the local computations one can take x = a1/a2 as a coordinate. The integration is then
over Fv, and dAv = dx/|x2 − θ|v.

Denote by χ
θ

the quadratic character of F×\A× associated with the quadratic extension
E/F . Its unramified components satisfy χθ,v(πππv) = 1 if v is split in E, = −1 if v stays
prime in E. The global L-function L(χ, ζ) is the product of local factors. At the places
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where χ is unramified, Lv(χv, ζ) = (1 − χv(πππv)q−ζv )−1. We write L(ζ) for L(χ, ζ) when
χ = 1. Note that A× = R×+ × A1, A1 is the group of idèles of volume 1, and R×+ embeds in
A× as the group of idèles with equal positive archimedean parts, and 1 at the finite places.

Proposition 10.1. Let χ be a unitary character of A×/F×UR×+, and put χζ(x) = χ(x)|x|ζ .
Then the integral

LV (χζ) = LV (χ, ζ) =

∫
A×,VE /A×,V

χV (a∗)|a∗|ζdA

converges absolutely for Re (ζ) > 1, and has meromorphic continuation to Re (ζ) > 0,
which is holomorphic on Re (ζ) ≥ 1/2, except at ζ = 1 when χ is 1 or χ

θ
. Moreover,

LV (χ, 1
2 + ζ) is slowly increasing on ζ ∈ iR. Almost all factors in the product expansion of

LV (χ, ζ) coincide with those of LV (χ, ζ)LV (χ
θ
χ, ζ)/LV (χ2, 2ζ).

Proof. Locally we have that |a∗|v is |a2
1 − θa2

2|/max(|a1|, |θa2|)2 (v nonarchimedean),

|a2
1 − θa2

2|/(a2
1 + θ2a2

2) (v real), (a2
1 − θa2

2)(a2
1 − θa2

2)/(a1a1 + θθa2a2)2 (v complex).

Put χ′(t) = χ(t)|t|ζ . At almost all places v, if θ is not a square in Fv, χ
′
v(a
∗
v) is identically

1, and then cv
∫
Sv
dAv = 1 = L(χv, ζv)L(χθ,vχv, ζv)/L(χ2

v, 2ζv). Here Sv = E×v /F
×
v . If θ

is a square in Fv, suppose that |θ|v = 1. Then χ′v(a
∗
v) = 1 except when |a1/a2 ± θ1/2| < 1.

Then∫
Sv

χ′v(a
∗
v)dAv =

∫
|x|>1

dx

|x2|
+

∫
|x|≤1,|x±θ1/2|=1

dx

+

∫
|x−θ1/2|<1

|x− θ1/2|ζ−1χ(x− θ1/2)dx+

∫
|x+θ1/2|<1

|x+ θ1/2|ζ−1χ(x+ θ1/2)dx

= q−1 + (1− 2q−1) + 2

∫
|x|<1

|x|ζ−1χ(x)dx

= (1− q−1)(1− q−ζχ(πππ))−1(1 + q−ζχ(πππ)) = c−1
v L(χv, ζ)2/L(χ2

v, 2ζ)

if Re (ζ) > 0. It is easy to see for all v that cv
∫
Sv
χv(a

∗
v)|av|ζdAv is a holomorphic function

of ζ on Re (ζ) > 0, hence the proposition follows. �

9. Minimal parabolic. Next we examine the contribution to the summation formula
from the term of (9.2) associated with a character (of the Levi subgroup) of the minimal
parabolic subgroup P1 = B. Again we are led to consider ΛTE(h, ρ, ζ) and its integral over
Z(A)Cθ\Cθ(A). The truncated Eisenstein series is computed in [A2], Lemma 4.1:

ΛTE(h,Φ, ρ, ζ)(1∗)

=
∑
s∈W

ε0(sζ)
∑

γ∈B\G

Φ0(sζ,H0(γh)− T )e〈sζ+ρ0,H0(γh)〉(M(s, ρ, ζ)Φ)(γh).

The character ρ = (χ, ω) of the diagonal subgroup is determined by the unitary characters
χ, ω of A×/F×R×+, via ρ( diag (a, b, λ/b, λ/a)) = χ(a2/λ)ω(ab/λ). Let δ(χ|U) be 1 if the
restriction χ|U of χ to U is 1, and 0 if χ|U 6= 1. Let δ(χ) be 1 if χ is 1, and 0 if χ 6= 1.
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Proposition 10.2. Suppose that Φ is of the form I(ρ, ζ, f2)Φ′, where f2 ∈ C∞c (G(A)) is a
K-finite function which is spherical outside V . Then Φ is (right) K-finite and KV -invariant.
Then the integral of (1∗) over Z(A)Cθ\Cθ(A) is the sum of

δ(χω)δ(χ|U)
t
ζ1+ζ2− 1

2
2

ζ1 + ζ2 − 1
2

LV
(
ω−1,

1

2
+ ζ1

)
LV (s1, ρ, ζ,Φ),

δ(χ)δ(χω|U)
t
ζ1− 1

2
2

ζ1 − 1
2

LV
(
ω,

1

2
+ ζ1 + ζ2

)
LV (sα2 , ρ, ζ,Φ),

−δ(χω)δ(χ|U)
t
−ζ1−ζ2− 1

2
2

ζ1 + ζ2 + 1
2

LV
(
ω−1,

1

2
+ ζ1

)
LV (sα2sα1sα2 , ρ, ζ,Φ),

−δ(χ)δ(χω|U)
t
−ζ1− 1

2
2

ζ1 + 1
2

LV
(
ω,

1

2
+ ζ1 + ζ2

)
LV (sα2sα1 , ρ, ζ,Φ).

Remark. We may define L(s, ρ, ζ,Φ) by the same formula which defines LV , but with∫
E×V /F

×
V

replaced by
∫
A×E/A×

. Then L = LV LV , where LV is as displayed in the Propo-

sition (=LV (ω−1, 1
2 + ζ1) for s = s1, etc.), independent of Φ.

Proof. This takes most of this section. By Proposition 1(c) we have G = BCθ ∪ γ0B
γ0Cθ,

where Bγ0 = γ−1
0 Bγ0. To integrate (1∗) over Z(A)Cθ\Cθ(A) we shall use the formula∫

Z(A)Cθ\Cθ(A)

∑
γ∈B\G

Φ′(γh)dh(2∗)

=

∫
Z(A)·B∩Cθ\Cθ(A)

Φ′(h)dh+

∫
Z(A)·Bγ0∩Cθ\Cθ(A)

Φ′(γ0h)dh.

To perform this integration, recall the root diagram for Sp(4) from section 2, and the
notations there, used in (1∗). The weights can be identified with $1 = α2 + 2α1 = 2ε1 and
$2 = α1 + α2 = ε1 + ε2. We have H0(ãnk) = H0(ã), and if ã = diag (a, b, λ/b, λ/a), then

H = H(ã) = H0(ã) = ln
∣∣∣a
b

∣∣∣ ·$1 + ln

∣∣∣∣b2λ
∣∣∣∣ ·$2 = ln

∣∣∣∣a2

λ

∣∣∣∣ · α1 + ln

∣∣∣∣abλ
∣∣∣∣ · α2.

The vector ζ has the form ζ = ζ1 · $1 + ζ2 · $2, both ζ1 and ζ2 are assumed to have
large real parts for our computations. The following is a list of the 8 elements in the
Weyl group W (they will be denoted below by s1 = 1, · · · , s8, according to the following
tabulation), of sζ, ε0(sζ), φ0(sζ,H − T ), and e〈sζ,H〉. Note that ρ0 is half the sum of the
positive roots, and e〈ρ0,H〉 = |a4b2/λ3|1/2. The dihedral group W = D4 is generated by
reflections sα1

and sα2
corresponding to the simple roots α1 and α2 (sαi(αi) = −αi). Being

a subgroup of the symmetric group S4 on 4 letter, these elements can be represented by
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permutations: sα2 = (23), sα1 = (12)(34), sα2sα1sα2 = (13)(24), etc. The longest element
of W is w0 = sα1sα2sα1sα2 = (14)(23), a 180◦ rotation, while sα1sα2 = (3124) is an
anti-clockwise rotation of 90◦. Further, T = ln t1 · α1 + ln t2 · α2, ti large positive numbers.

s sζ (ζi > 0) ε0(sζ) φ0(sζ,H − T ) e〈sζ,H〉

1 ζ1$1 + ζ2$2 + |a
2

λ | < t1, |abλ | < t2 |a
2

λ |
ζ1 |abλ |

ζ2

w0 = (14)(23) −ζ1$1 − ζ2$2 + > > | · |−ζ1 | · |−ζ2
sα1

= (12)(34) −ζ1$1 + (2ζ1 + ζ2)$2 − > < | · |−ζ1 | · |2ζ1+ζ2

sα2
sα1

sα2
ζ1$1 − (2ζ1 + ζ2)$2 − < > | · |ζ1 | · |−2ζ1−ζ2

sα1
sα2

sα1
= (14) −(ζ1 + ζ2)$1 + ζ2$2 − > < | · |−ζ1−ζ2 | · |ζ2

sα2
= (23) (ζ1 + ζ2)$1 − ζ2$2 − < > | · |ζ1+ζ2 | · |−ζ2

sα1sα2 = (3124) −(ζ1 + ζ2)$1 + (2ζ1 + ζ2)$2 − > < | · |−ζ1−ζ2 | · |2ζ1+ζ2

sα2sα1 = (2134) (ζ1 + ζ2)$1 − (2ζ1 + ζ2)$2 − < > | · |ζ1+ζ2 | · |−2ζ1−ζ2

Let us return now to the last integral in (2∗). The intersection B∩Cθ consist of
(
a1 b

0 d1

)
,

a1, d1 are scalars in F× and b =
(
b1 b2
θb2 b1

)
, b1, b2 ∈ F . Also Bγ0 ∩Cθ is the group of

(
a1 b

0 d1

)
in B ∩ Cθ with b2 = 0. Hence we have B ∩ Cθ = (Bγ0 ∩ Cθ)N2. Here N2 is the group of(
I b

0 I

)
with b =

(
0 b2
θb2 0

)
. Hence the last integral in (2∗) is equal to∫

Z(A)·B∩Cθ\Cθ(A)

dh

∫
N2(A)

Φ′(γ0nh)dn.

Lemma 10.3. (1) If n =
(
I b

0 I

)
and h =

(
I 0

0 λ

)(
A 0

0 εAε

)
k, with b =

(
b1 b2
b2θ b1

)
, bi ∈

A/F ;λ ∈ F×\A×; A =
( a1 a2
a2θ a1

)
∈ GL(2,A); k ∈ Kθ, and a∗ is defined from A as in

Proposition 10.1, then

H0(γ0nh) = sα2
H0(h) +H0(γ0n

′), where n′ =
(
I b′

0 I

)
, b′ =

(
0 λa∗b2

θλa∗b2 0

)
.

(2) We have e〈ρ0,γ0H0(h)〉 = e〈ρ0,H0(h)〉|λa∗|.
(3) The function φ0(sζ,H0(γ0nh)− T ) is independent of n. For a sufficiently large t2 it is
identically zero if s = s2, s4, s6, s8.
(4) If

Φ′(h) = φ0(sζ,H0(h)− T )e〈sζ+ρ0,H0(h)〉(M(s, ρ, ζ)Φ)(h),

then ∫
N2(A)

Φ′(γ0nh)dn = φ0(sζ,H0(γ0h)− T )e〈sα2
sζ+ρ0,H0(h)〉(M(sα2s, ρ, ζ)Φ)(h).

Proof. (1) Write h′ ≡ h′′ for N(A)h′K = N(A)h′′K. Then h ≡ h0, h0 = diag (a∗, 1, λa∗, λ),
and γ0nh ≡ γ0nh0 ≡ γ0h0n

′ = γ0h0γ
−1
0 · γ0n

′. Note that H0(γ0h) = sα2H0(h); (1) follows.
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(2) This follows from sα2ρ0 = ρ0 − α2, and e〈−α2,H0(h)〉 = |λa∗|.
(3) If γ0nh ≡ h′0, with h′0 = (a′0, b

′
0, λ
′
0/b
′
0, λ
′
0/a
′
0), then φ0(sζ,H0(γ0nh) − T ) is 0 or 1

depending on whether |a′02/λ′0| is bigger or smaller than t1, and whether |a′0b′0/λ′0| is bigger
or smaller than t2. Since h′0 = γ0h0γ

−1
0 · γ0n

′ (by the proof of (1)), the factor |a′02/λ′0| =
|a∗/λ| is independent of n. Moreover, |λ′0| = |λa∗|. Hence the factor |a′0b′0/λ′0| is equal to∣∣∣∣ λa∗2

(θa∗b2, 1)
/λa∗

∣∣∣∣ = |a∗/(a∗θb2, 1)|.

If x = (xv), y = (yv) in A×, we put (x, y) = ((xv, yv)) ∈ A×, where (xv, yv) is an element of
F×v whose absolute value is (x2

v + y2
v)1/2 if v is real, (xvxv + yvyv)

1/2 if v is complex, and
max(|xv|v, |yv|v) if v is finite. But |a∗| is bounded. Hence so is |a′0b′0/λ′0|. If t2 is sufficiently
large, the condition |a′0b′0/λ′0| < t2 is always satisfied, but |a′0b′0/λ′0| > t2 is never satisfied;
(3) follows.
(4) This follows from (3), (1), the definition of the intertwining operator, and the functional
equation for these operators:∫

N(A)2

e〈sζ+ρ0,H0(γ0nh)〉(M(s, ρ, ζ)Φ)(γ0nh)dn

= (M(sα2
, sρ, sζ)M(s, ρ, ζ)Φ)(h) = (M(sα2

s, ρ, ζ)Φ)(h). �

We conclude that the integral over Z(A)Cθ\Cθ(A) of (1∗) is equal to the integral over
Z(A) ·B ∩ Cθ\Cθ(A) of the sum over s ∈W of the product of

ε0(sζ)φ0(sζ,H0(h)− T ) + ε0(s6sζ)φ0(s6sζ,H0(γ0h)− T )(3∗)s

with
e〈sζ+ρ0,H0(h)〉(M(s, ρ, ζ)Φ)(h).

If h = diag (a∗, 1, λa∗, λ), then γ0hγ
−1
0 = diag (a∗, λa∗, 1, λ). Note that |a(h)2/λ(h)| =

|a∗/λ|, |a(h)b(h)/λ(h)| = |1/λ|, and the corresponding quantities for γ0hγ
−1
0 are |a∗/λ| and

|a∗|. As noted in Lemma 10.3(3), the function φ0(s6sζ,H0(γ0h)−T ) is 0 for s = s1, s3, s5, s7,
and by the table above, it is the characteristic function of |a∗/λ| > t1 for s = s2, s4, s8, and
of |a∗/λ| < t1 for s = s6. This function appears in (3∗)s multiplied by ε0(s6sζ), which is 1
for s = s6 and −1 otherwise.

To compute φ0(sζ,H0(h)− T ), let us restrict attention to t1, t2 with t1 > ct2, where c is
a constant such that |a∗| ≤ c. Then |a∗/λ| > t1 implies |1/λ| > t2, and |1/λ| < t2 implies
|a∗/λ| < t1. Hence φ0(sζ,H0(h)− T ) is 0 for s = s3, s5, s7. It is the characteristic function
of |1/λ| < t2 for s = s1, of |a∗/λ| > t1 for s = s2, and of |a∗/λ| < t1, |1/λ| > t2, when
s = s4, s6, s8. Since ε0(sζ) is 1 for s = s1, s2, and −1 otherwise, we conclude that (3∗)s is
zero for s = s2, s3, s5, s7, it is the characteristic function of |1/λ| < t2 for s = s1, s6, and
minus the characteristic function of |1/λ| > t2 for s = s4, s8.

The factor e〈ρ0,H0(h)〉 is |a∗/λ|1/2|1/λ|. The factors e〈sζ,H0(h)〉 are computed using the
table to be |a∗/λ|ζ1 |1/λ|ζ2 if s = s1, |a∗/λ|ζ1+ζ2 |1/λ|−ζ2 if s = s6, |a∗/λ|ζ1 |1/λ|−2ζ1−ζ2
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if s = s4, and |a∗/λ|ζ1+ζ2 |1/λ|−2ζ1−ζ2 if s = s8. To perform the integration we use the
Iwasawa decomposition

h =
(
I b

0 I

)(
I 0

0 λ

)(
A 0

0 εAε

)
k, dh = |λ|2dbd×λdAdk.

The four integrals are∫
|λ|>1/t2

|λ|−ζ1−ζ2+ 1
2 (χω)−1(λ)d×λ ·

∫∫
|a∗|ζ1+ 1

2χ(a∗)dA · (M(s1, ρ, ζ)Φ)(d(A)k)dk,

∫
|λ|>1/t2

|λ|−ζ1+ 1
2χ−1(λ)d×λ ·

∫
|a∗|ζ1+ζ2+ 1

2 (χω)(a∗)dA · (M(s6, ρ, ζ)Φ)(d(A)k)dk,

−
∫
|λ|<1/t2

|λ|ζ1+ζ2+ 1
2 (χω)(λ)d×λ ·

∫
|a∗|ζ1+ 1

2χ(a∗)dA · (M(s4, ρ, ζ)Φ)(d(A)k)dk,

and

−
∫
|λ|<1/t2

|λ|ζ1+ 1
2χ(λ)d×λ ·

∫
|a∗|ζ1+ζ2+ 1

2 (χω)(a∗)dA · (M(s8, ρ, ζ)Φ)(d(A)k)dk.

By Proposition 10.1 these are equal to the four integrals of Proposition 10.2, whose proof
is now complete. �

To examine the contribution of the term associated with P1 = B to our summation
formula, we replace the last integral in (9.2) by the complex conjugates of the four terms
computed in Proposition 10.2. Note that Proposition 10.2 is proven under the assumption
that Re (ζi) are large, but by analytic continuation its result holds also when Re (ζi) = 0.
Now consider each of the four sums majorizing the sums obtained on inserting the four
functions derived in Proposition 10.2 into (9.2), e.g.:

A(ρ, ζ) =
∑
ρ

∑
Φ

|Eθ(I(f1)Φ, ρ, ζ)LV
(
ω−1,

1

2
+ ζ1

)
LV (s1, ρ, ζ,Φ)|.

We claim that the function A(ρ, ζ) is a Schwartz function on the imaginary plane iA∗B . In-
deed, by Proposition 9.3(3), for a given f1 with a fixed K-type, |Eθ(I(f1)Φ, ρ, ζ)| is bounded
by some C(ρ)(1 + ||ζ||)c(ρ). By Proposition 10.1, this bound holds also for LV . The sum
over Φ is finite, it ranges only over vectors with the given K-type. Moreover,∣∣∣∣ ∫

Kθ
(M(s, ρ, ζ)I(ρ, ζ; f2)Φ)(k)dk

∣∣∣∣ ≤ ||I(ρ, ζ; f2)||,

where the last norm is the operator norm on the finite dimensional space of vectors with a
given K-type. This norm is bounded by the norm of some matrix of the form(∫

A(A)U(A)

f2(k−1
i aukj)du · ρ(a)δ(a)ζda

)
, (ki ∈ K).
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It follows that the function A(ρ, ζ) is a Schwartz function as claimed, hence its inte-
gral on the imaginary plane iA∗B is finite. By the last assertion of Proposition 9, that∫∫

Kf,χ(u, h)ψθ(u)dudh is not affected by ΛT , we may take the limit as T goes to infinity.

The limit as t2 → ∞ of the product of t
−1/2
2 and a function which is uniformly bounded

in t2, is zero. Hence the terms associated to P1 = B in (9.2) do not contribute to our
summation formula.

10. One dimensional. Next we consider the possible contribution from the non cuspi-
dal discrete spectrum, namely one-dimensional, representations on the maximal parabolics
P(A) and Q(A).

Consider first such a representation on P(A). As noted in section 6, IP (ρ, ζ2, ω) =
IB(ζ1, ζ2 − ζ1, χ, ω/χ) if ρ = I(ζ1,−ζ1) ⊗ χ. Thus the contribution to (9.2) is obtained on
replacing the first integral in (9.2) by one over ζ ∈ iR, and the last integral in (9.2) by the
complex conjugate of the limit as ε→ 0 of the product of ε and the sum of the four terms
computed in Proposition 10.2, in which (ζ1, ζ2) is replaced by (1

2 + ε, ζ − 1
2 − ε). With this

replacement, these four terms, multiplied by ε, are the following.
The term indexed by s = 1 (at (ζ1, ζ2) = ( 1

2 + ε, ζ − 1
2 − ε), multiplied by ε, and taking

ε→ 0) is

δ(χω)δ(χ|U)
t
ζ− 1

2
2

ζ − 1
2

· lim
ε→0

εLV (χ, 1 + ε) · LV (s1, ρ, ζ,Φ).

The limit at ε = 0 exists since LV (χ, 1 + ε) has at most a simple pole at ε = 0. As t2 →∞,

the factor t
−1/2
2 dominates and no contribution to (9.2) is made.

The term indexed by s = s4 is

−δ(χω)δ(χ|U)
t
−ζ− 1

2
2

ζ + 1
2

· lim
ε→0

εLV (χ, 1 + ε) · LV (s4, ρ, ζ,Φ);

it makes no contribution to (9.2) either, as t
−1/2
2 → 0 when t2 →∞. The same conclusion

holds for the term indexed by s = s8, where the term is

−δ(χ)δ(χω|U)
t−1−ε
2

1 + ε
LV
(
ω,

1

2
+ ζ

)
· LV (s8, ρ, ζ,Φ),

and its product by ε has the limit 0 as ε→ 0.
However, the term indexed by s = s6 = sα2 = (23) is zero, unless ω is a character of

A×/F×UR×+, in which case it takes the form

δ(χ)δ(χω|U)ε−1tε2LV
(
ω,

1

2
+ ζ

)
· LV

(
s6, (1, ω),

(
1

2
+ ε, ζ − 1

2
− ε
)
,Φ

)
.

The limit as ε→ 0 of the product of this with ε, is

LV
(
ω,

1

2
+ ζ

)
· LV

(
s6, (1, ω),

(
1

2
, ζ − 1

2

)
,Φ

)
.
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The complex conjugate of this, inserted in (9.2) instead of the last integral in (9.2), makes
the contribution (10.1) to our summation formula.

Next we consider the possible contributions to the summation formula associated to the
one dimensional representations of the parabolic subgroup Q(A). As noted in section 6, we
have that IQ(ρ, ζ3) = IB(ζ3 − ζ4, 2ζ4, χ−1, 1), if ρ = I(ζ4,−ζ4) ⊗ χ. The one dimensional
representations of GL(2,A) are obtained as the quotient of ρ as ζ4 → 1

2 . Thus we need to

consider the four terms of Proposition 10.2, in which (ζ1, ζ2) is replaced by (ζ− 1
2−ε, 1+2ε),

multiply by ε, take the limit as ε → 0, substitute the complex conjugate of the result for
the second integral in (9.2), replace the first integral in (9.2) by one over ζ in iR, and take
the limit as t2 → ∞. We will see that this limit is 0 in all cases, hence no contribution is
made to our summation formula.

The computations are as follows. The term indexed by s = 1, multiplied by ε, is

tζ+ε2

ζ + ε
· ε · LV (χ, ζ − ε) · LV (s1, ρ, ζ,Φ).

At any ζ 6= 0, the limit as ε→ 0 is zero. Similarly, the term indexed by s = s8 is

− t
−ζ+ε
2

ζ − ε
· ε · LV (ω, 1 + ζ − ε) · LV (s8, ρ, ζ,Φ),

and its limit as ε→ 0 is zero for any ζ 6= 0. The term indexed by s = s4 is

− t−1−ζ−ε
2

1 + ζ + ε
· ε · LV (χ, ζ − ε) · LV (s4, ρ, ζ,Φ),

and that indexed by s = s6 is

− t−1+ζ−ε
2

1− ζ + ε
· ε · LV (ω, 1 + ζ + ε) · LV (s6, ρ, ζ,Φ).

Both have the limit 0 as ε→ 0, when ζ 6= 0. �

11. Maximal parabolics. Consider next the case of the Siegel parabolic P where ρ is
a cuspidal representation of the Levi subgroup M(A) of P(A), whose restriction to Z(A)
is trivial. The function Φ : Z(A)N(A)M\G(A) → C is smooth, has the property that∫
K
∫
Z(A)M\M(A)

|Φ(mk)|2dmdk is finite, and that for every g ∈ G(A), the function m 7→
Φ(mg) on M(A) is a cusp form in the space of ρ. Put Φ2 = I(f2, ρ, ζ)Φ. Then in our case

ΛTE(h,Φ2, ρ, ζ) =
∑

γ∈P\G

Φ2(γh)δP (γh)
1
2 + ζ

3χ(δP (γh) < t3)(4∗)

−
∑

γ∈P\G

(MΦ2)(γh)δP (γh)
1
2−

ζ
3χ(δP (γh) > t3).
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Here T = t3 is a large positive number, ζ is a complex number with a large real part, δP (g)
is the modular function defined by δP (g) = | det (Ad(p)|LieN)| if g = pk(p ∈ P(A), k ∈
K; δP ( diag (A, λwtA−1w)) = ||A|/λ|3), χ(X) is the characteristic function defined by the
condition X, and MΦ2 is the image of Φ2 under the action of the standard intertwining
operator. The exponent of δP is taken to be ζ/3 to be consistent with our parametrization
of induced representations.

To integrate ΛTE over Z(A)Cθ\Cθ(A), recall from Proposition 1(c) that G = PCθ ∪
Pγ0Cθ, hence that∫

Z(A)Cθ\Cθ(A)

∑
γ∈P\G

Φ′(γh)dh =

∫
Z(A)·P∩Cθ\Cθ(A)

Φ′(h)dh(5∗)

+

∫
Z(A)·P0\P(A)0

dp

∫
P(A)0\γ0Cθ(A)γ−1

0

Φ′(phγ0)dh,

where P0 = P ∩ γ0Cθγ
−1
0 .

To compute the first integral on the right of (5∗), note that Cθ(A) = GL(2,AE)′, the
prime indicating that the determinant lies in A×, and use the Iwasawa decomposition h =

na
(
I 0

0 λ

)
k, dh = |λ2|dndad×λdk if a ∈ T(A) = {d(A) = diag (A, εAε);A =

( a1 a2
a2θ a1

)
∈

A×E}. Put ΦKθ
2 (x) =

∫
Kθ Φ2(xk)dk. If Φ′(x) = Φ2(x)δP (x)

1
2 + ζ

3χ(δP (x) < t3), then the

integral of Φ′ on Z(A) · P ∩ Cθ\Cθ(A) is equal to the product of |AE/E|(= 1, this factor

is obtained from the integral over N ∩Cθ\N(A)∩Cθ(A)), L(ΦKθ
2 ) =

∫
Z(A)T\T(A)

ΦKθ
2 (a)da,

and ∫
|λ−1|≤t

|λ|− 3
2−ζ |λ−2|−1d×λ =

∫
|λ|<t

|λ|ζ− 1
2 d×λ =

tζ−
1
2

ζ − 1
2

.

The integral of the last factor converges since Re (ζ) > 1
2 . The factor L(ΦKθ

2 ) is the

integral of a cusp form, ΦKθ
2 , in ρ, a cuspidal representation of the group d(PGL(2,A)) '

PGL(2,A), over the homogeneous space Z(A)T\T(A). According to a well-known result
of Waldspurger [Wa1/2], see also Jacquet [J1] for a proof similar to the one of this paper,
such an integral is equal to a product of the values at ζ = 1

2 of the L-functions L(ρ, ζ) and

L(ρ ⊗ χθ, ζ) (both depending on the cusp form Φ Kθ
2 ) attached to the cuspidal modules ρ

and ρ⊗χθ, where χθ 6= 1 is the quadratic character of F×\A× associated with the quadratic
extension E/F .

By analytic continuation, the computation of the part of (5∗) under discussion holds for
all complex ζ, in particular for ζ in iA∗P = iR. These are the ζ which appear in (9.2). In
fact it is the complex conjugate of (4∗) which appears in (9.2), thus we need to replace ζ
by −ζ in our formula. The corresponding part of (9.2) then takes the form

t−
1
2n(AP )−1

∑
ρ

∫
iR

t−ζ

−ζ − 1
2

∑
Φ

[Eθ(I(f1, ρ, ζ)Φ, ρ, ζ)L(ΦKθ
2 )]dζ.
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The function
∑
ρ

∑
Φ |[· · · ]| can be shown to have rapid decay in ζ ∈ iR, following the

arguments of section 9, using the K-finiteness properties of f1 and f2, standard (polynomial)
growth estimates on L-functions (same proof, based on the Phragmen-Lindelöf theorem, as
that underlying Lemma 9.1), and a suitable analogue of Proposition 9.3(c). The limit as

t→∞ of the product of t−
1
2 and a constant is clearly 0.

The second term on the right side of (4∗) contributes to the first integral on the right of

(5∗) a similar expression, but now Φ′(x) = −(MΦ2)(x)δP (x)
1
2−

ζ
3χ(δP (x) > t3). The same

Iwasawa decomposition shows that the integral of this Φ′ over Z(A) ·P ∩Cθ\Cθ(A) is again
the product L((MΦ2)Kθ ) of values at ζ = 1

2 of L(ρ, ζ) and L(ρ ⊗ χθ, ζ) (both L-functions
depend on MΦ2), and of

∫
|λ−1|>t

|λ−3| 12−
ζ
3 |λ−2|−1d×λ =

∫
|λ|<t−1

|λ| 12 +ζd×λ =
t−

1
2−ζ

1
2 + ζ

( Re ζ ≥ 0).

Substituting this into (9.2) and noting that ζ ∈ iR, since t−1/2 → 0 as t→∞, no contribu-
tion is made to the summation formula.

To study the possible contribution to the summation formula from any of the two terms

on the right of (4∗) to the last integral in (5∗), note that γ0Cθγ
−1
0 =

{(
A Bε

θεB εAε

)}
, and its

intersection with P is P0 = {diag (A, εAε);A ∈ GL(2)}. Since

p 7→
∫
P0(A)\γ0Cθ(A)γ−1

0

Φ′(phγ0)dh

is a cusp form on P0(A) ' GL(2,A), its integral over Z(A)P0\P0(A) is 0. Indeed, any cusp
form on GL(2,A) is orthogonal to the constant functions.

In conclusion, the cuspidal representations ρ of the Siegel parabolic P(A) make no con-
tribution to the summation formula. The contribution from the other discrete spectrum
representations ρ of P(A), namely the one dimensional ones, has been discussed in the
previous section.

The contribution to (9.2) from a cuspidal ρ on P1 = Q involves an integral over
Z(A)Cθ\Cθ(A) of an expression such as (4∗), in which P is replaced by Q. Since γ0 lies in
Q, we have G = BCθ ∪ Bγ0Cθ = QCθ, and Q\G = Q ∩ Cθ\Cθ. The intersection Q ∩ Cθ
consist of

(
a1 b

0 d1

)
, a1, d1 are scalars in F× and b =

(
b1 b2
θb2 b1

)
, b1, b2 ∈ F . In particular the

combined sum-integral over Q\G×Z(A)Cθ\Cθ(A) = Z(A) ·Q∩Cθ\Cθ(A) of the cusp form
Φ on M(A)Q factorizes. One of the integrals in the factorization will range over N2\N2(A),

where N2 =
{(

I b

0 I

)
; b =

(
0 b2
θb2 0

)}
. Since the form Φ is left invariant under NQ(A), and

the image of N2 in MQ = Q/NQ is the nontrivial standard unipotent radical in MQ, it
follows that the integral over n ∈ N2\N2(A) of Φ(nh) is 0. Indeed, m 7→ Φ(mh) is a cusp
form on M(A)Q for every h in Cθ(A). Consequently there is no contribution to the sum-
mation formula from cuspidal ρ on the parabolic Q(A). The one-dimensional ρ on Q(A) do
not contribute to the summation formula either, as noted in the previous section.
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12. Comparison. Fix a nontrivial additive character ψψψ of A/F , and an element θ in
F − F 2. Comparing the geometric sides of the Fourier summation formulae on G(A) =
GSp(4,A) (Proposition 2) and H(A) = GL(2,A) (Proposition 4), and using the summation
formulae of Propositions 7 and 10 (comparison of geometric and spectral sides) we obtain
the following.

Proposition 10.4. Fix θ ∈ F − F 2. For any matching test functions f = ⊗fv on G(A)
and f ′ = ⊗f ′v on H(A), we have that (7.1) + (7.2) = (8.1), where χ = χ

θ
in (7.1), (7.2).

Proof. For such matching functions f and f ′ we have that the discrete sum (7.1) + (7.2)
− (8.1) is equal to the continuous sum (10.1)− (7.3). Both sides here can be expressed in
terms of the Satake transform of some spherical component fv of f . A well-known argument
(see, e.g., [FK]) using standard unitarity estimates, the absolute convergence of the sums
and products in our summation formulae, and the Stone-Weierstrass theorem, implies that
both the discrete sum and the continuous integral are equal to 0. �

Note that the parameters of the representations which occur in the continuous sums (7.3)
and (10.1) match, for our matching functions, using the final Remark in section 6.

It should be emphasized that Corollary 5.1 establishes, for each fv in C∞c (Gv/Zv), the
existence of a matching f ′v in C∞c (Hv/Zv), and conversely, for each f ′v the existence of a
matching fv. The proof of Proposition 10.4 uses in a crucial way Proposition 8, which
asserts that corresponding spherical functions are matching. In particular, almost all of
the components fv of f are the unit element f0

v in the Hecke algebra Hv of spherical
(Kv-biinvariant) functions in C∞c (Gv/Zv), and almost all of f ′v are the unit element f ′v

0

in the Hecke algebra H′v in C∞c (Hv/Zv). These are corresponding, hence matching − by
Proposition 6 − hence the assumption of Proposition 10.4, that f and f ′ are matching,
makes sense.

The proof of Proposition 10.4 in fact applies to yield a stronger result, which will be
useful for applications. The result is the following.

Proposition 11. Fix θ ∈ F−F 2. Fix a finite set V of F -places, including the archimedean
places and those which ramify in E/F . At each v 6∈ V fix an unramified Hv-module ρv =
IH(ζ1v,−ζ1v). Put πv = I(ζ1v,

1
2 − ζ1v; this is an unramified Gv-module. Then for any

matching test functions f ′v on Hv/Zv and fv on Gv/Zv, we have∑
ρ

∑
Φ′∈ρK′(V )

Wψ(ρ(f ′V )Φ′)LΦ
′

(
1

2
, ρ⊗ χ

θ

)
+ 4π

∑
Φ′

Eψ

(
I

(
f ′V , χθ ,

1

2

)
Φ′, χ

θ
,

1

2

)
Φ
′
(1)

=
∑
π

m(π)
∑

Φ∈πK(V )

Wψθ (π(fV )Φ)Pθ(Φ).

Here K(V ) =
∏
v 6∈V Kv, K′(V ) =

∏
v 6∈V K

′
v, and

fV = (⊗v∈V fv)⊗ (⊗v 6∈V f0
v ) and f ′V = (⊗v∈V f ′v)⊗ (⊗v 6∈V f ′v0).

The sum over ρ extends over the cuspidal representations of PGL(2,A) which have a
nonzero vector fixed by K′(V ), such that ρv is the unramified constituent of IH(ζ1v,−ζ1v)
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for all v 6∈ V . The sum over Φ′ ranges over an orthonormal basis of smooth vectors in
the space ρK

′(V ) of K′(V )-fixed vectors in ρ. The second sum over Φ′ is empty unless
IH(χ

θv
, 1

2 ) ' IH(ζ1v,−ζ1v) for all v 6∈ V , in which case the first sum, over ρ, is empty.

Then Φ′ ranges over IH(χ
θ
, 1

2 )K
′(V ).

The sum over π extends over all discrete spectrum automorphic representations of G(A)
such that πv is the unramified constituent of I(ζ1v,

1
2 − ζ1v) for all v 6∈ V . The Φ range over

an orthonormal basis of smooth vectors in the space πK(V ) of K(V )-fixed vectors in π.

Proof. Again, this proceeds along well known lines, using the fact that if fv is spherical then
πv(fv) acts as multiplication by the scalar tr πv(fv) on the (unique up to a scalar multiple
when πv is irreducible) Kv-fixed vector in πv, and as 0 on the orthogonal complement of
this vector. Of course the trace tr πv(fv) is 0 unless πv is unramified, and it is an invariant
finite Laurent series in qζ1v and qζ2v when πv = I(ζ1, ζ2). Note that at least one of the two
sums on the side of H(A) is empty, since no cuspidal H(A)-module is equivalent at almost
all places to a one-dimensional representation. �.

The main representation theoretic application of this identity is the following. Recall
that by a cuspidal representation we mean an irreducible one.

Proposition 12. Let ρ be a cuspidal representation of PGL(2,A) with L( 1
2 , ρ) = 0 and

L( 1
2 , ρ ⊗ χ

θ
) 6= 0 for some θ in F − F 2. Then there exists a cuspidal representation π

of PGSp(4,A) which is Cθ(A)-cyclic (thus Pθ(Φ) =
∫
Z(A)Cθ\Cθ(A)

Φ(h)dh is nonzero for

some Φ in π), and πv is the unramified constituent of the induced I(ρv,
1
2 ) for almost all v.

Moreover, for any quadratic character χ = χ
θ
6= 1 of F×\A× there exists a Cθ(A)-cyclic

discrete-spectrum representation π of PGSp(4,A) with πv being the unramified constituent
of I( 1

2 , 0;χv, χv) for almost all v.

Proof. Fix a set V of F -places containing the archimedean ones and those which ramify in
E = F (

√
θ), such that ρu is unramified for all u /∈ V . For any matching test functions f ′v

on Hv/Zv and fv on Gv/Zv, the identity of Proposition 11 holds. Namely it holds where
the fixed unramified Hv-modules at all v 6∈ V are the components ρv of our ρ. In this case ρ
of our proposition parametrizes the only term in the left side of the equality of Proposition
11.

Note that tr IH(ζ1,−ζ1; f ′v) is equal to tr I(ζ1,
1
2 − ζ1; fv). Since L( 1

2 , ρ ⊗ χθ ) 6= 0 and
L(ζ, ρ ⊗ χ

θ
) lies in the span of the L-functions LΦ′(ζ, ρ ⊗ χθ ), there is some Φ′1 ∈ ρ with

LΦ′1
( 1

2 , ρ⊗ χθ ) 6= 0.

Since ρ is cuspidal it is generic. Hence there is a vector Φ′2 ∈ ρK
′(V ), such that the value

Wψ(Φ′2) of the Whittaker function of Φ′2 at the identity is nonzero. Note that the matching
Corollary 6 permits us to use an arbitrary test function f ′V . Since the operators ρ(f ′V ) span

the endomorphisms algebra of ρK
′(V ), we may choose f ′V to have the property that ρ(f ′V )

acts as 0 on each vector in ρ which is orthogonal to Φ′1, but it maps Φ′1 to Φ′2. With this
choice of f ′V the left side of the identity of Proposition 11 reduces to single term, which is

Wψ(Φ′2)LΦ
′
1

(
1

2
, ρ⊗ χ

θ

)
.
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This is nonzero, as is the left side, and also the right side of the identity. Hence there
exists a discrete spectrum automorphic representation π of PGSp(4,A), with Pθ(Φ1) 6= 0
and Wψθ (Φ2) 6= 0 for some Φ1,Φ2 in π.

This π has the property that tr πv(fv) = tr I(ρv,
1
2 ; fv) for all v 6∈ V , namely πv is

the unramified irreducible constituent of I(ρv,
1
2 ). This constituent is the Langlands quo-

tient J(ρv,
1
2 ) of I(ρv,

1
2 ). Langlands’ theory of Eisenstein series implies that the quotient

J(ρ, 1
2 ) = ⊗J(ρv,

1
2 ) of I(ρ, 1

2 ) is automorphic, and defines a residual discrete spectrum rep-

resentation, precisely when L(ρ, 1
2 ) 6= 0. Our choice of ρ with L(ρ, 1

2 ) = 0 guarantees that
there is no non cuspidal discrete spectrum automorphic representation whose components
are J(ρv,

1
2 ) for almost all v. Hence the π which we obtained is cuspidal, as required.

The last claim of the proposition, concerning π whose components are almost all the
Langlands quotient J( 1

2 , 0;χv, χv) from the Borel subgroup, can be proven similarly, but it
is of little interest; see the following remark. �

13. Converse. We start with a description of some GSp(4)-packets. A comparison of
the trace formula of GL(4) twisted by the outer automorphism g 7→ tg−1, with the stable
trace formula of GSp(4), carried out in [F8] in analogy with the theory of base change from
U(3, E/F ) to GL(3, E) of [F3], provides a detailed description of the packets of automorphic
and admissible representations of GSp(4). Here we shall briefly recall the description of the
packets of interest for us, from [A3], p. 32 and [F8].

If ρ is a cuspidal representation of PGL(2,A) there is a global packet of 2r global automor-
phic representations of PGSp(4,A) whose components are the Langlands quotient J(ρv,

1
2 )

of the induced I(ρv,
1
2 ) = IP (ρv,

1
2 ) at almost all places v of F . Here r is the number of

discrete series components of ρ. Exactly half of these are discrete spectrum automorphic
representations, when r ≥ 1. When r = 0 the single representation is discrete spectrum,
necessarily residual, precisely when L(ρ, 1

2 ) 6= 0.

One of these 2r−1 representations (r ≥ 1) is residual, namely non cuspidal, precisely
when L(ρ, 1

2 ) 6= 0. It is the quotient J(ρ, 1
2 ) = ⊗vJ(ρv,

1
2 ). Its space is generated by the

residues of the Eisenstein series E(h,Φ, ρ, ζ) at ζ = 1
2 .

When ρv is square-integrable, the induced I(ρv,
1
2 ) is reducible, of length two (see [Sh],

Proposition 6.1, p. 287, for a proof in the case where ρv is cuspidal). The constituent other
than J(ρv,

1
2 ) is non cuspidal but square-integrable, denoted here by π(ρv)

+. The packet of
π(ρv)

+ will contain a second member, a cuspidal π(ρv)
−.

The cuspidal automorphic representations in the packet of J(ρ, 1
2 ) are of the form π =

⊗πv, where πv = π(ρv)
− for an even number of places v where ρv is square-integrable and

π 6= J(ρ, 1
2 ) if L(ρ, 1

2 ) 6= 0, in which case π = J(ρ, 1
2 ) is discrete spectrum, residual but not

cuspidal. Namely there are 2r−1 cuspidal representations in the packet when L(ρ, 1
2 ) = 0,

and 2r−1 − 1 when L(ρ, 1
2 ) 6= 0, provided r ≥ 1, and 0 when r = 0.

When ρ is a (nontrivial) quadratic character of F×\A×, the automorphic induced rep-
resentation IP (ρ ◦ det , 1

2 ) = IB( 1
2 , 0; ρ, ρ) of PGSp(4,A) has a quotient J( 1

2 , 0; ρ, ρ) =

⊗vJ( 1
2 , 0; ρv, ρv). Here J( 1

2 , 0; ρv, ρv) is the Langlands quotient of the induced IP (ρv ◦
det , 1

2 ) = IB( 1
2 , 0; ρv, ρv). This global quotient is irreducible and residual discrete spec-

trum.
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The induced I( 1
2 , 0; ρv, ρv), ρv 6= 1, is reducible of length two (by [KR]), and in addition

to the nontempered constituent J( 1
2 , 0; ρv, ρv) there is a square integrable but not cuspidal

constituent π(ρv)
+. The packet of π(ρv)

+ contains also a cuspidal member π(ρv)
−.

The automorphic members in the global packet of J( 1
2 , 0; ρ, ρ) are obtained by replacing

the component J( 1
2 , 0; ρv, ρv), ρv 6= 1, by the cuspidal π(ρv)

−, at an even number of places.

They are all cuspidal, except the residual J( 1
2 , 0; ρ, ρ). These representations were studied

by Howe and Piatetski-Shapiro [HPS] by means of the Theta lifting. These examples are
similar to those found in [F3] in the case of U(3): these are cuspidal representations with a
finite number of cuspidal components and all other components are nontempered.

The examples related to J(ρ, 1
2 ), where ρ is cuspidal, and the packet contains only a

finite number of elements, were studied in [PS1]. They are different from the examples of
[F3] on U(3), but similar to packets of the two-fold covering group of SL(2,A), described
by Waldspurger [Wa1].

Our Proposition 12 establishes the existence of a cuspidal element in the packet of
J(ρ, 1

2 ), ρ cuspidal, using its properties of being cyclic (Pθ 6= 0) and having a nonzero
Fourier coefficient Wψθ . To prove that this packet contains a cuspidal element we used the
fact that there is no residual representation when L(ρ, 1

2 ) = 0 and ρ is cuspidal. But we
have not proven the existence of a cuspidal member in the packet when ρ is cuspidal and
L(ρ, 1

2 ) 6= 0, nor when ρ 6= 1 is a quadratic character (When ρ = 1 there are no discrete

spectrum representation in the packet of J(ρ, 1
2 )). These more refined results may follow

on developing a suitable analogue of Kazhdan’s orthogonality relations for characters (see
[K]) for the Whittaker-Period distributions introduced in the next paragraph.

We shall also consider a converse to Proposition 12. For this purpose note that a re-
cent theorem of Waldspurger [Wa3], extending to (SO(n),SO(n− 1)) a result of Aizenbud,
Gourevitch, Rallis and Schiffmann [AGRS], which in turn uses ideas of Bernstein, shows
that on any irreducible admissible representation πv of Gv = PGSp(4, Fv) = SO(5, Fv) there
exists at most one − up to a scalar multiple − Cθ,v = SO(4, Fv)-invariant nonzero linear
form Pπv . Here Fv is a local nonarchimedean field of characteristic zero. The analogue for
the archimedean fields R and C was proven by Binyong Sun and Chen-Bo Zhu [SZ], and
in positive characteristic the work of A. Aizenbud, N. Avni, D. Gourevitch [AAG] deals
with the case of (GL(n),GL(n− 1)). Our case of (SO(n),SO(n− 1)) is not yet done. Our
claims in Proposition 13 below uses the multiplicity one theorem in positive characteristic
(to define the distribution WP ), so we assume its validity.

Fix such a form. Let us also fix a linear form Wπv,ψθ on such a πv which transforms

under the action of Nv =
{
u =

(
I X

0 I

)}
according to multiplication by the character ψθ(u).

If Pπ̃v denotes the invariant form on the contragredient π̃v of πv, then it lies in the dual π̃∗v
of π̃v, and for each fv ∈ C∞c (Gv/Zv) the vector πv(fv)Pπ̃v lies in the smooth part ˜̃πv ' πv
of π̃∗v . Associated to πv and ψv we then obtain a linear form

WPπv,ψθ : fv 7→ 〈Wπv,ψθ , πv(fv)Pπ̃v 〉 =
∑
ξ

Wπv,ψv (πv(fv)ξ)Pπ̃v (ξ∨)

on C∞c (Gv/Zv) with the property that WPπv,ψθ (
nfhv ) = ψθ(n)WPπv,ψθ (fv) for nfhv (g) =
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fv(n
−1gh), n ∈ Nv, h ∈ Cθ,v, g ∈ Gv. The sum over ξ on the right ranges over an orthonor-

mal basis for πv, and ξ∨ is the dual basis for π̃v. Also, Wπv,ψθ lies in the dual π∗v of πv,
hence its value at πv(fv)Pπ̃v is well-defined.

The Whittaker-Period distributions WPπv,ψθ are analogous to Harish-Chandra’s char-
acters. They have interesting properties, but we shall use only the simple fact − see
Proposition 0.1 of [F7] (the distribution (WψP )π(f) is obtained on taking C1 = N, ζ1 =
ψ,C2 = C, ζ2 = 1, P1 = Wψ and P2 = P there) − that WPπv is independent of the choice
of the basis ξ, and that if π1v, · · · , πkv are inequivalent irreducible representations, then
WPπ1v,ψθ , · · · ,WPπkv,ψθ are linearly independent distributions on C∞c (Gv/Zv).

Proposition 13. Let F be a global field, and fix θ ∈ F − F 2. Let π be a discrete spectrum
representation of PGSp(4,A) with Pθ(Φ1) 6= 0 and Wψθ (Φ2) 6= 0 for some Φ1,Φ2 in π.
Then either there exists a cuspidal representation ρ of GL(2,A) with L( 1

2 , ρ⊗ χθ ) 6= 0 and

πv ' J(ρv,
1
2 ) for almost all v, or πv ' J( 1

2 , 0;χ
θ,v
, χ

θ,v
) for almost all v.

Proof. Choose a sufficiently large finite set V containing all the F -places where π or E
ramify, and at each v ∈ V fix a congruence subgroup K ′v ⊂ Kv such that πv contains
a nonzero K ′v-fixed vector. When F is a function field we shall work only with fv in
C∞c (K ′v\Gv/ZvK ′v), v ∈ V . The right side of the identity of Proposition 11 can be written
in the form ∑

π

m(π)
∏
v∈V

WPπv,ψθ (fv).

The sum is finite, since we fixed the ramification at all places, and F is a function field. The
linear independence of the forms WPπv,ψθ implies that there are fv ∈ C∞c (Gv//ZvKv)(v ∈
V ) for which the sum over π reduces to a single nonzero contribution, that which is
parametrized by π. Here we used Corollary 6, which permits us to use any test func-
tions fv. In particular, the right side, associated with G, is nonzero. Hence so is the left
side, establishing the existence of ρ, or J( 1

2 , 0;χ
θ
, χ

θ
), associated with π, as asserted.

When F is a number field, we can use generalized linear independence of characters, using
the fact that spherical functions are matching. The displayed expression above ranges only
over the π with an a-priori fixed unramified component at each place outside V . The sum
is finite by the rigidity theorem of [F8], which follows from the comparison of [F8] of trace
formulae on GSp(4) and GL(4). We continue as in the first part of this proof. �

14. Split cycles. We have studied above cusp forms on G(A) = PGSp(4,A) cyclic with
respect to the subgroup Cθ(A), θ ∈ F − F 2, defined in section 2. There is no analogous
theory with C(A) = C0(A) replacing Cθ(A), since there are no cusp forms on G(A) with
nonzero C(A)-cycles. This is the content of [PS1], Corollary 6.2, proven by means of the
Theta correspondence. We shall outline next a spectral proof, using a Fourier summation
formula, in the spirit of this paper, of that fact. As usual, fix a character ψψψ 6= 1 of A/F
into the multiplicative groups of the complex numbers, and introduce a character ψB of

NB(A) =

{
n =

( 1 x ∗ ∗
0 1 y ∗
0 0 1 −x
0 0 0 1

)}
by ψB(n) = ψψψ(x + y). The Whittaker function of a cusp

form Φ on G(A) is defined by WΦ(g) =
∫
NB\NB(A)

Φ(ng)ψ(n)dn. A cuspidal G(A)-module
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π is called generic if WΦ 6= 0 for some Φ in π. Put zΦ(g) =
∫
ZQ\Z(A)Q

Φ(zg)dz, where − as

in section 2 − ZQ is the center of the unipotent radical NQ of the parabolic subgroup Q of
G = GSp(4). Denote by R the standard maximal unipotent subgroup of the standard Levi
subgroup MQ of Q. As in [PS1], Lemma 6.2, we have the following.

Proposition 14. For any cusp form Φ on G(A), we have that zΦ(g) =
∑

γ∈R\MQ

WΦ(γg).

Proof. The quotient Z\Q/ZQ is naturally isomorphic to the subgroup D =

{( ∗ ∗ ∗
∗ ∗ ∗
0 0 1

)}
of GL(3), and zΦ(δg) = zΦ(g) for all δ ∈ D. Since Φ is cuspidal,

∫
Y \Y zΦ(yd)dy = 0 for

all d ∈ D(A), where Y is any of the unipotent subgroups Y1 =

{(
1 0 ∗
0 1 ∗
0 0 1

)}
of Y2 ={(

1 ∗ ∗
0 1 0

0 0 1

)}
of D. The stabilizer of the character ψ1(y) = ψψψ(y2), y =

(
1 0 y1
0 1 y2
0 0 1

)
, of Y1 is

D(A)1,D1 =

{( ∗ ∗ ∗
0 1 ∗
0 0 1

)}
. Hence the Fourier expansion of zΦ along Y1 is

zΦ(d) =
∑

δ∈D1\D

zΦ,1(δd), zΦ,1(d) =

∫
Y1\Y1

zΦ(yd)ψ1(y)dy.

Taking the Fourier expansion of zΦ,1 along the subgroup Y1 =

{(
1 ∗ 0

0 1 0

0 0 1

)}
, and noting that

the constant term is zero (since Φ is cuspidal), we obtain zΦ(d) =
∑
δ∈N\DWΦ(δd), where

N is the unipotent upper triangular subgroup of D ' Q/ZQ, as required. �

This Proposition implies that, if Φ is a cusp form on G(A) with
∫

Z(A)C\C(A)

Φ(h)dh 6= 0,

namely its restriction to C(A) is not orthogonal to the constant functions and hence it is
not cuspidal (on C(A)), then zΦ 6= 0 (otherwise the restriction of Φ to C(A) would be
cuspidal), and WΦ 6= 0 namely Φ lies in a generic π. We are led then to consider the sum
in the following.

Proposition 15. Let f be a cuspidal test function on G(A) (e.g., it has a cuspidal component).
Let {Φ} denote an orthonormal basis of the space of cusp forms on G(A). Then∑

Φ∈{Φ}

∫
NB\NB(A)

∫
Z(A)C\C(A)

(π(f)Φ)(n)Φ(h)ψB(n)dndh = 0.

Proof. The sum of the proposition is the spectral side of a Fourier summation formula. It
suffices to compute its geometric side,∫

N(A)B/NB

∫
Z(A)C\C(A)

∑
γ∈Z\G

f(nγh)ψB(n)dndh.



CUSP FORMS ON GSp(4) WITH SO(4)-PERIODS 51

Proposition 1(b) asserts that G = NC ∪NAγ1C ∪Nγ2C ∪NAγ3C. To show that our sum
vanishes it suffices to note that ψB is nontrivial on γiC(A)γ−1

i ∩N(A)B , (i = 1, 2, 3, 4), γ4 =

I. This is clear for γ4 = I. When i = 2 take

( 1 y
1 0

0 1
0 1

)
in C. When i = 3 take

( 1 y
1 y

0 1
0 1

)
(in C). When i = 1 take

(
1 4x

1 0

x 1
0 1

)
(in C). The proposition follows. �

To show that there are no cusp forms on G(A) with nonzero C(A)-cycles it remains to
(extend Proposition 15 to a general test function f and) isolate any single cusp form Φ
which occurs in the sum. When F is a function field, this separation is performed in a
similar context in the Appendix below.

15. Appendix. Invariance of Fourier coefficients of cyclic automorphic forms.
Let G be a reductive group scheme over a global field F , and P = MN a parabolic

F -subgroup with Levi subgroup M and unipotent radical N. Put G = G(F ), P = P(F ),
N = N(F ), . . . for the groups of F -rational points, and G(A), P(A), N(A), . . . for the
group of points over the ring A of F -adèles. Let ψ : N\N(A) → C× be a character, and
let φ be an automorphic form on G(A) which transforms trivially under Z(A), where Z is
the center of G (thus φ ∈ L2(GZ(A)\G(A))). The (ψ-) Fourier coefficient of φ (along the
compact homogeneous space N\N(A)) is defined to be Wψ(φ) =

∫
N\N(A)

φ(n)ψ(n)dn. The

Levi subgroup M(A) acts on N(A) by conjugation. The stabilizer of ψ is

StabM(A)(ψ) = {m ∈M(A);ψ(mnm−1) = ψ(n) all n ∈ N(A)}.

It is a subgroup of M(A), and its subgroup of rational points is denoted by StabM (ψ). The
“generalized Whittaker” functional Wψ(φ) is clearly StabM (ψ)-invariant, Wψ(r(m)φ) =
Wψ(φ), where (r(g)φ)(h) = φ(hg), since φ is an automorphic form. In general Wψ(φ)
is not StabM(A)(ψ)-invariant. The purpose of this Appendix is to show that under some
natural geometric conditions (on the group), cyclic cusp forms do have the property that
Wψ is invariant under the group of adèle points of the connected component of the identity
Stab◦M(ψ) in StabM(ψ).

Denote by L0(GZ(A)\G(A)) the space of cusp forms, namely φ in L2(GZ(A)\G(A))
such that

∫
N ′\N(A)′

φ(n′g)dn′ = 0 for all g ∈ G(A) and any proper F -parabolic subgroup

P′ = M′N′ of G. A cuspidal G(A)-module is an irreducible constituent of the representation
of G(A) by right translation on L0 = L0(GZ(A)\G(A)). Cusp forms are rapidly decreasing
on a Siegel domain. Let C be an F -subgroup of G. Assuming that the cycle Z(A)C\C(A)
is of finite volume, the period integral PC(φ) =

∫
Z(A)C\C(A)

φ(h)dh converges. A cuspidal

representation π ⊂ L0 is called cyclic if it contains a form φ with a nonzero period PC(φ)
over the cycle Z(A)C\C(A). Any form φ in such π has a nonzero period PC′(φ) 6= 0, where
C′(A) is conjugate to C(A) over G(A).

Theorem A. Denote by {δ} a set of representatives in G for the double coset space
N\G/C, and by {δ}′ its subset of δ such that ψ is 1 on N(A) ∩ δC(A)δ−1. Suppose that
Stab◦M(A)(ψ) is contained in δC(A)δ−1 for all δ ∈ {δ}′. If π is a cyclic cuspidal G(A)-

module with a cuspidal component, then Wψ(φ) is Stab◦M(A)(ψ)-invariant for all φ in π.
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Remarks. When G = GL(k), M = the diagonal subgroup, N = the unipotent upper
triangular subgroup, and ψ(n) = ψψψ(

∑
1≤i<k ni,i+1), where ψψψ : A/F → C× is a nontrivial

additive character, and n = (nij), then the stabilizer of ψ in M(A) is Z(A), and no new
information is provided by the Theorem on the generic Fourier coefficient Wψ(φ).

The Theorem applies (nontrivially) when the character ψ is a degenerate character, when
viewed as a character of the unipotent radical of the minimal parabolic subgroup. We shall
discuss below an example where the Theorem applies nontrivially. This example, concerning
GSp(4), has also been treated by Piatetski-Shapiro [PS2] by means of the theta-lifting. Our
approach relies on an application of a Fourier summation formula. Although much more
recent, this approach has the advantage of being conceptually simpler. A disadvantage
of this technique is that it deals with the entire automorphic spectrum. The presence
of contributions from the continuous spectrum, expressed in terms of Eisenstein series,
leads to technical difficulties. To avoid encountering these in this Appendix, we work with
cuspidal representations with a cuspidal component. These technical difficulties can be
handled as in [F1], where G = PGL(k), C = GL(k − 1), and ψ is the degenerate character
ψ(n) = ψψψ(n1,2 + n2,k) of the unipotent upper triangular subgroup. Yet in the case of [F1]
there are no cuspidal G(A)-modules cyclic over C\C(A), while in the PGSp(4) example
discussed below there are such cuspidal representations, and we content ourselves here with
the form the Theorem takes, without launching into deep analysis. Another simplifying
assumption which we make is to take F to be a function field, to avoid dealing with the
archimedean places.

Proof. This is based on an application of the Fourier summation formula for a test function
f = ⊗fv, product over all places v of the global field F , where fv ∈ C∞c (Zv\Gv) for all v,
and fv is the unit element f0

v of the convolution algebra of spherical, namely Kv-biinvariant,
compactly supported functions on Zv\Gv, for almost all v. Our notations are standard: Fv
is the completion of F at the place v, we put Gv = G(Fv), Zv = Z(Fv), . . . , and Kv

is a hyperspecial maximal compact open subgroup of Gv. Implicit is a choice of a Haar
measure dgv on Gv/Zv such that the product

∏
v
|Kv|, |Kv| = vol (Kv), converges, thus of

a global Haar measure dg = ⊗dgv. The subscript “c” means compactly supported, and the
superscript “∞” indicates smooth, namely locally constant in the nonarchimedean case.

The convolution operator (r(f)φ)(g) =
∫
Z(A)\G f(h)φ(gh)dh on L2(GZ(A)\G(A)) is eas-

ily seen to be an integral operator (r(f)φ)(g) =
∫
Z(A)G\G(A)

Kf (g, h)φ(h)dh with kernel

Kf (g, h) =
∑
γ∈Z\G f(g−1γh). On the other hand, if some component – say fv1 – of f , is

a supercusp form (we shall assume this from now on), then the operator r(f) factorizes
through the natural projection from L2(GZ(A)\G(A)) onto L0(GZ(A)\G(A)) (see [F4]).
The restriction r0(f) of r(f) to L0 has the kernel K0

f (g, h) =
∑
π

∑
φ(π(f)φ)(g)φ(h). Here π

ranges over a set of representatives for the equivalence classes of the irreducible constituents
of L0, while φ ranges over an orthonormal basis {φ} of smooth vectors in the π-isotypic
component of L0. It is well-known that the multiplicity of π in L0 is finite.

Now for our f , which has a cuspidal component, we have Kf (n, h) = K0
f (n, h). We

multiply both sides by ψ(n) and integrate over n in N\N(A) and h in C\C(A), to obtain
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the Fourier summation formula. It is∑
π

∑
φ

Wψ(π(f)φ)P (φ) =

∫
N(A)/N

∫
C\C(A)

∑
γ∈Z\G

f(nγh)ψ(n)dndh

=

∫
N(A)/N

∫
C\C(A)

∑
δ

∑
ζ∈C

∑
ν∈N/N∩δCδ−1

f(nνδζh)ψ(n)dndh,

where δ ranges over a set of representatives in G for the double coset space N\G/C, thus
G =

⋃
δ NδC (disjoint union). This is

=
∑
δ

∫
C(A)

∫
N(A)/N∩δCδ−1

f(nδh)ψ(n)dndh

=
∑
δ

′ |N(A) ∩ δC(A)δ−1/N ∩ δCδ−1|
∫

C(A)

∫
N(A)/N(A)∩δC(A)δ−1

f(nδh)ψ(n)dndh.

The last sum ranges over the subset of the δ for which ψ is 1 on N(A) ∩ δC(A)δ−1. The
last expression is named the “geometric side” of the Fourier summation formula, while the
initial expression is the “spectral side”, for our test function f .

We shall compare the summation formula for f with that for sf(g) = f(s−1g), for any s
in Stab0

M(A)(ψ). Note that

π(sf)φ(u) =

∫
sf(g)φ(ug) =

∫
f(s−1g)φ(ug)

=

∫
f(g)φ(usg) = (π(f)φ)(us) = π(s)(π(f)φ)(u).

If {φα} denotes an orthonormal basis of the π-isotypic component of L0, then φ =∑
α(φ, φα)φα, where (φ, φ′) =

∫
Z(A)G\G(A)

φ(g)φ
′
(g)dg is a nondegenerate sesqui-linear form

on L0. Then

π(sf)φ = π(s)π(f)φ =
∑
α

(π(s)π(f)φ, φα)φα

=
∑
α

(π(f)φ, π(s−1)φα)φα =
∑
α

(φ, π(f∗)π(s−1)φα)φα,

where f∗(g) = f(g−1). Consequently∑
φ

Wψ(π(sf)φ)P (φ) =
∑
φ

∑
α

Wψ(φα)(φ, π(f∗)π(s−1)φα)P (φ)

=
∑
α

Wψ(φα)P

(∑
φ

(π(f∗)π(s−1)φα, φ)φ

)
=
∑
α

Wψ(φα)P (π(f∗)π(s−1)φα) =
∑
φ

Wψ(π(s)φ)P (π(f∗)φ),
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where to obtain the last expression we choose the orthonormal basis {φα} to be {π(s)φ}.
In summary, ∑

π

∑
φ

Wψ(π(s)φ)P (π(f∗)φ) =
∑
π

∑
φ

Wψ(π(sf)φ)P (φ)

=
∑
δ

′ vol (δ)

∫
C(A)

∫
N(A)/N(A)∩δCδ−1

f(s−1nδh)ψ(n)dndh,

where vol (δ) = |N(A) ∩ δC(A)δ−1/N ∩ δCδ−1|, by the Fourier summation formula for sf ,

=
∑
δ

′ vol (δ) ·
∫

C(A)

∫
N(A)/N(A)∩δC(A)δ−1

f(ns−1δh)ψ(n)dndh,

since s ∈ StabM(A)(ψ),

=
∑
δ

′ vol (δ) ·
∫

C(A)

∫
N(A)/N(A)∩δC(A)δ−1

f(nδh)ψ(n)dndh,

since s ∈ δC(A)δ−1 by the assumption of the theorem,

=
∑
π

∑
φ

Wψ(φ)P (π(f∗)φ),

by the Fourier summation formula for f (and the line following the definition of f∗).
The theorem concerns a form φ1 in a fixed cuspidal G(A)-module π1, whose component at

the finite place v1 is cuspidal. There is a finite set V of F -places, containing the archimedean
places and v1, such that not only π1v is unramified for all v outside V , but also φ1 is Kv-
invariant for all such v. The part fV = ⊗v 6∈V fv of f outside V can be chosen such that fv
is the unit element f0

v for almost all v, and fv is any Kv-spherical function at the remaining
finite set of places. For any cusp form φ, say in the cuspidal G(A)-module π, the operator
πv(fv) acts on φ by multiplication by the character tr πv(fv) if φ is Kv-invariant and as
0 otherwise. A standard argument of “generalized linear independence of characters” (see,
e.g., [FK]), based on the absolute convergence of the spectral side of the Fourier summation
formula, standard unitarity estimates on the Hecke eigenvalues of the unramified πv, and
the Stone-Weierstrass theorem, permit deducing the following identity for all fV = ⊗v∈V fv
such that fv1 is a cuspidal function.∑

π

∑
φ

Wψ(π(s)φ)P (π(f)φ) =
∑
π

∑
φ

Wψ(φ)P (π(f)φ),(1)

where π ranges over the cuspidal G(A)-modules with πv ' π1v for all v 6∈ V , and φ ranges
over an orthonormal basis for the space πK(V ) of K(V ) =

∏
v 6∈V Kv-invariant vectors in the

π-isotypic part of L0.
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We shall now view the cuspidal representation π as an abstract representation of G(A),
and fix an isomorphism of π with ⊗πv. Any K(V )-fixed smooth form φ in the space
of the cuspidal π = ⊗πv corresponds to a linear combination of finitely many vectors
ξV ⊗ (⊗v∈V ξiv), 1 ≤ i ≤ k, where ξV is the (unique up to scalar multiple) K(V )-fixed
nonzero vector in πV = ⊗v 6∈V πv, and ξiv ∈ πv. We claim that each of these products
corresponds to a cusp form. Since πv is admissible there is some sufficiently small good
([B]) compact open subgroup (e.g. a congruence subgroup) K1v of Gv such that ξiv(1 ≤
i ≤ k) are πv(K1v)-invariant. The algebra {πv(fv); fv ∈ Cc(K1v\Gv/K1v)} is the algebra of
endomorphisms of the finite dimensional (since πv is admissible) module πKvv . In particular
there exists a K1v-biinvariant fv such that πv(fv) acts as an orthogonal projection on the
space generated by ξ1v. For a suitable choice of such fv(v ∈ V ) we have that πV (fV )φ
corresponds to a factorizable vector ξV ⊗ (⊗v∈V ξ1v). Consequently, in order to prove that
Wψ(π(s)φ1) = Wψ(φ1), we may assume that the cusp form φ1 corresponds to a factorizable
vector. Moreover, multiplying by a scalar we may assume that the orthonormal basis {φ}
of π1 is chosen to include our form φ1, which corresponds to a factorizable vector.

We are assuming that π1 is cyclic, namely that there exists a form φ2, which can be
taken to be in the orthonormal basis {φ} of π1, such that P (φ2) 6= 0. Thus φ2 = φ1 or
(φ1, φ2) = 0. The argument of the previous paragraph implies that φ2 can also be assumed
to correspond to a factorizable vector. Thus φ2 corresponds to ξV ⊗ (⊗v∈V ξ2v). At the
place v1 we take fv1(g) = d(π1v1)(π1v1(g)ξ1v, ξ2v). The complex number d(π1v1) is the
formal degree of π1v1 . This is a matrix coefficient of the cuspidal Gv-module π1v1 . It lies in
C∞c (Zv1\Gv1). By the Schur orthonormality relations it has the property that πv1(fv1) acts
as 0 unless πv1 = π1v1 , and then π1v1(fv1) acts as 0 on any vector perpendicular to ξ1v1 ,
while π1v1(fv1)ξ1v1 = ξ2v1 . We conclude that the identity (1) holds where π ranges over the
cuspidal G(A)-modules with πv ' π1v for all v 6∈ V and for v = v1, and φ ranges over an
orthonormal basis of the space πK(V ) of the form ξV ⊗ ξ1v1 ⊗ ξV1

, where V1 = V −{v1} and
ξV1
∈ πV1

= ⊗v∈V1
πv.

Note that the distribution f 7→
∑
φWψ(φ)P (π(f)φ), where φ ranges over an orthonormal

basis consisting of smooth vectors in the space of the irreducible cuspidal π, is independent
of the choice of the basis {φ}. Consequently, in (1), the double sums can be expressed as
the product by the multiplicity of π1 in L0(Z(A)G\G(A)) (same finite number on both
sides), of a sum over an orthonormal basis {φ} of the K(V1)-fixed smooth vectors in π1.
Moreover, we may assume that the basis {φ} consists of factorizable vectors. In fact, fix a
compact open subgroup K1v(v ∈ V1) such that φ1, φ2 are π1v(K1v)-invariant for all v ∈ V1.
For any irreducible πv choose an orthonormal basis {ξv}, containing the Kv-fixed vector ξ0

v

if v 6∈ V , the vector ξv1 at v = v1, and a basis of the space πK1v
v of K1v-fixed vectors for

v ∈ V1. Then {φ} = {⊗vξv} (ξv = ξ0
v for all v 6∈ V ) makes an orthonormal smooth basis of

πK(V ).

If our global field is a function field, at each place v ∈ V1 we let fv range only over the
space of K1v-biinvariant functions. This we do in order to use Harish-Chandra’s result that
there exist only finitely many cuspidal representations with fixed infinitesimal characters at
the archimedean places, and fixed ramification at all finite places. For such f the sum over
π in (1) is then finite. If the base field is a number field we use spherical test functions and
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generalized linear independence of characters to obtain from [F8] the finiteness of the sum
(1).

Applying Bernstein’s decomposition theorem ([B], see also [F4], p. 165), we may even
choose the fv(v ∈ V1) so that the components πv of the π which occur in (1) have infinites-
imal character in the same connected component as that of π1v(v ∈ V1); the terminology is
that of [B] (and [F4]).

For each finite v ∈ V1, the set of infinitesimal characters of the πv which occur in (1) is
finite. Moreover, {πv(fv); fv ∈ C∞c (ZvK1v\Gv/K1v)} is the algebra of endomorphisms of
the space πK1v

v of K1v-fixed vectors in π1v. Consequently, if ξ1v is the component at v of
φi (i = 1, 2), there is fv in C∞c (ZvK1v\Gv/K1v) such that πv(fv) = 0 for each πv 6' π1v

which occurs in our sum, and such that π1v(fv) acts as 0 on each vector orthogonal to
ξ1v, while π1v(fv)ξ1v = ξ2v. Both sums over π and φ reduce then to a single contribution,
parametrized by π1 and φ1, namely to

Wψ(φ1)P (π1(f)φ1) = Wψ(π(s)φ1)P (π1(f)φ1).

Since P (π1(f)φ1) = P (φ2) 6= 0, as φ2 is a cyclic vector, we conclude that Wψ(π(s)φ1) =

Wψ(φ1) for all s ∈ Stab0
M(A)(ψ), in fact for any smooth cusp form φ1, as required. �

Geometric conditions of Theorem A. Let us verify that Theorem A applies with the
group G = GSp(4) of section 2. We need to determine a set of representatives {δ} for
N\G/C such that ψT is 1 on N(A) ∩ δC(A)δ−1. By Proposition 1(b) such δ can be of the
form m or mγ1,m ∈M .

Singular case. Consider first δ = m ∈M . Then N(A)∩ δC(A)δ−1 consists of δnδ−1, n =(
I X

0 I

)
∈ C(A), thus X =

(
0 y

z 0

)
. Replacing εT by a conjugate if necessary we may assume,

as in section 3, that εT =
(

0 1

θ 0

)
, θ ∈ F − F 2, or that εT =

(
u 0

0 v

)
, u, v ∈ F×, u − v 6= 0.

Since

wtUw
(

0 1

−θ 0

)
UX =

(
d b

c a

)(
c d

−θa −θb

)(
0 y

z 0

)
=
(
cd−abθ d2−θb2

c2−θa2 cd−θab

)(
0 y

z 0

) (
U =

(
a b

c d

))
has trace (c2− θa2)y+ (d2− θb2)z, we have ψT (N(A)∩ δC(A)δ−1) = 1 only if c2 = θa2 and
d2 = θb2, contradicting the assumption that θ ∈ F is not a square.

When T =
(
u 0

0 −v

)
we need the coefficients of z and y in

tr
[(

d b

c a

)(
ua ub

−vc −vd

)(
0 y

z 0

)]
= tr

[(
uad−vbc (u−v)bd

(u−v)ac ubc−vad

)(
0 y

z 0

)]
= z(u− v)bd+ y(u− v)ac

to vanish. Since u 6= v, we have bd = 0 = ac, and so U =
(
a 0

0 d

)
or U =

(
0 b

c 0

)
. Since

Stab0
M(A)(ψT ) consists of g = diag (α, β, α, β) (with λ = αβ), we have δ−1 Stab0

M(A)(ψT )δ ⊂
C(A), which is the geometric requirement of the Theorem.



CUSP FORMS ON GSp(4) WITH SO(4)-PERIODS 57

Regular case. Next we consider the δ of the form mγ,m ∈ M . As noted in Proposition

1, the image γJΘtγ of γ under the map G/C → X is
(
−ω 0

0 ω

)
. The geometric requirement

of the Theorem, that Stab0
M(A)(ψ) lies in δC(A)δ−1, follows from

1

λ
mγJΘtγtm =

1

λ

(
U 0

0 λwtU−1w

)(
−ω 0

0 ω

)(
tU 0

0 λwU−1w

)
=
(
u
λω
−1 0

0 λ
uω

)
,

where u = det U , since for any T , Stab0
M(A)(ψ) consists of m = diag (U, λwtU−1w) with

λ = u.
We shall consider next a similar example, where again G = GSp(4), and Cτ is the

centralizer of Θτ =
(
τττ 0

0 τττ

)
, τττ =

(
0 1

τ 0

)
, in G, where τ ∈ F − F 2.

To verify the geometric condition of the theorem, once again, we need to produce a set of
representatives {δ} for N\G/Cτ such that ψT is 1 on N(A) ∩ δCτ (A)δ−1. By Proposition
1(c), such δ can be of the form m or mγ0,m = m(U) = diag (U, λwtU−1w) ∈M .

Singular case. Suppose first that δ = m ∈ M . Then N(A) ∩ δCτ (A)δ−1 consists of

δnδ−1, n =
(
I X

0 I

)
∈ Cτ (A), thus X =

(
x y

τy x

)
. As above we may assume that εT =(

0 1

θ 0

)
, θ ∈ F −F 2, or that εT =

(
u 0

0 v

)
, u 6= v ∈ F×; moreover, we take θ = τ if θ ∈ τF×2.

Since

(
for U =

(
a b

c d

))

tr

[
wtUw

(
0 1

−θ 0

)
UX

]
= 2(cd− abθ)x+ [(c2 − θa2) + τ(d2 − θb2)]y,

ψT (N(A)∩δCτ (A)δ−1) can be 1 (for all x, y) only if θ/τ ⊂ F×2, in which case we take θ = τ ,
and then a = ±d and c = ±τb, namely δ = m(U) or m(εU), where m(U) ∈ Stab0

M(A)(ψT ),

and so δ−1 Stab0
M(A)(ψT )δ ⊂ Cτ (A), which is the geometric requirement of the Theorem.

When εT =
(
u 0

0 v

)
we have tr

(
wtUw

(
u 0

0 v

)
UX

)
= (u− v)[x(ad+ bc) + y(ac+ bdτ)],

and it is clear that ψT (N(A) ∩ δCτ (A)δ−1) = 1 implies that c2 = τd2, a contradiction.

Regular case. It remains to consider the δ of the formmγ0,m = m(U) ∈M . As λ(γ0) = 1,

the image γ0ΘτJ
tγ0 of γ0 in G/Cτ → Xτ is

(
ω 0

0 −τω

)
, and once again, since for every T the

group Stab0
M(A)(ψT ) consists of m = diag (U, λwtU−1w) with λ = det U , it is contained in

δCτ (A)δ−1.

Remark. As mentioned above, any irreducible admissible SO(n, Fv)-module πv has at most
one − up to a scalar − SO(n − 1, Fv)-invariant linear form on its space (in characteristic
zero). In our case n = 5 and Gv = PGSp(4, Fv) ' SO(5, Fv), and Cv = SO(4, Fv). Denote
by Pv such an invariant form on πv, if it exists. Moreover, if πv is unramified we normalize
Pv to take the value 1 at the chosen Kv-invariant vector ξ0

v .
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According to a theorem of Novodvorski and Piatetski-Shapiro [NPS], an irreducible Gv-
module πv has at most one − up to a scalar − linear form Wψv which transforms via

Wψv (πv(sn)w) = ψv(n)Wψv (w) for all n ∈ Nv, s ∈ Stab0
Mv

(ψv), and w ∈ πv.
If π = ⊗πv is a cyclic cuspidal G(A)-module, let {ξv} denote an orthonormal basis of πv

including the chosen Kv-fixed vector ξ0
v if πv is unramified, and consider the distribution

fv 7→ (WψvP v)πv (fv) =
∑
ξv

Wψv (ξv)Pv(ψv(f∗v )ξv).

It is independent of the choice of the basis {ξv}, and for a set of inequivalent πv, these

distributions are linearly independent. If (WψP )π(f) =
∑
φWψ(φ)P (π(f∗)φ) then there is

a constant c(π) such that for all f = ⊗fv we have a factorization

(WψP )π(f) = c(π)
∏
v

(WψvP v)πv (fv).
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