RELATIVE TRACE FORMULA AND SIMPLE ALGEBRAS

YUVAL Z. FLICKER

ABSTRACT. A Deligne-Kazhdan variant of the relative trace formula of Jacquet-Lai is given, thus generalizing the study of distinguished representations from the context of the quaternion algebra to that of any simple algebra.

1. Let F be a global field, E a separable quadratic extension, $\mathbf{A} = \mathbf{A}_F$ and \mathbf{A}_E the associated rings of adeles, and G a reductive F-group. Let L(G) be the space of square-integrable functions φ on $G(E) \setminus G(\mathbf{A}_E)$ such that for any proper parabolic subgroup P of G with unipotent radical N we have $\int \varphi(nx) dn = 0$ (n in $N(E) \setminus N(\mathbf{A}_E)$) for any x in $G(\mathbf{A}_E)$. An irreducible constituent of the representation r of $G(\mathbf{A}_E)$ on L(G) by right translations is called a *cuspidal* $G(\mathbf{A}_E)$ -module. A cuspidal $G(\mathbf{A}_E)$ -module π is called *distinguished* if there is an integrable function φ in the space of π such that the integral $B(\varphi) = \int \varphi(x) dx$, on the closed subset $G(F) \setminus G(\mathbf{A})$ of $G(E) \setminus G(\mathbf{A}_E)$, is nonzero.

Let M be a simple algebra of dimension n^2 central over F, where $n \ge 2$. Then there is a division algebra D of rank d dividing n central over F so that M is the matrix algebra M(m, D) of m by m matrices over D, where n = dm. Let G be the quotient of the multiplicative group of M by its center. Let S be the set of places vof F where D is ramified. Assume that each v in S splits in E. Let G' be the quotient of GL(n) by its center. For each place v of F we write F_v for the completion of F at v, and $E_v = E \otimes_F F_v$. For each v outside S we have $G_v \simeq G'_v$, where $G_v = G(F_v)$, $G'_v = G'(F_v)$. Fix two places u and u' of F with u' in S. Denote by u and u' also a fixed place of E above u and u'. Let π be a cuspidal $G(\mathbf{A}_E)$ -module which corresponds (by the Deligne-Kazhdan correspondence (see $[\mathbf{F}]$)) to a cuspidal $G'(\mathbf{A}_E)$ -module π' , whose component π'_u at u is supercuspidal, and at u' it is discrete-series. Thus $\pi_v \simeq \pi'_v$ via $\overline{G_v} \simeq \overline{G'_v}$ for any place v outside S. We put $\overline{G_v} = G(E_v)$, $\overline{G'_v} = G'_v(E_v)$.

THEOREM. π is distinguished if and only if π' is distinguished.

The case of n = 2, where π'_u is assumed to be only discrete-series, is due to Jacquet and Lai [JL]. For general *n* the condition at *u* can be removed on applying furthur computations of the trace formula; but this will not be discussed here. The integrals $B(\varphi)$ were first studied by Shimura and Asai [A]. Applications of distinguished representations to the theory of Euler products are given in [F'].

Received by the editors June 1, 1985 and, in revised form, May 1, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11F70.

^{©1987} American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page

Y. Z. FLICKER

2. For every place v of F put $G_v = G(F_v)$, and let R_v be the ring of integer in E_v . For v outside S put $K'_v = G(R_v)$ and $K_v = K'_v \cap G_v$, and let f_v^0 be the quotient by the volume $|K_v|$ of the characteristic function of K'_v . Fix a differential form of highest weight defined over F, hence a product measure $dx = \otimes dx_v$ on G(A), so that the product of the volumes $|K_v|$ converges. Let $f = \otimes f_v$ be a function on $G(A_E)$ such that for every place v the component f_v is a complex valued compactly supported function on $\overline{G_v} = G(E_v)$, which is locally constant if v is finite, or smooth if v is archimedean, with $f_v = f_v^0$ for almost all v. Since G' is an inner form of G we obtain a matching measure on G'(A), also denoted by dx. We choose a function $f' = \otimes f'_v$ on $G'(A_E)$, with the above properties, so that (1) at any v outside S we take $f'_v = f_v$ via $\overline{G'_v} \simeq \overline{G_v}$, (2) at any v in S which splits into v', v'' in E, the convolutions $h'_v = f'^{**}_{v'} * f'_{v''}$ and $h_v = f'^{**}_v * f'_{v''}$ have matching orbital integrals. Here $f'_v(g) = f_v(g^{-1})$,

$$(f_{v'}^* * f_{v''})(g) = \int f_{v'}^* (gx^{-1}) f_{v''}(x) dx,$$

and our requirement is that for any regular x in $G_v \simeq G_{v'} \simeq G_{v''}$, and x' in G'_v , which have the same sets of eigenvalues, we have

$$\int h'_v(g^{-1}x'g) dg = \int h_v(g^{-1}xg) dg.$$

The integrals are over $Z'_v(x) \setminus G'_v$ and $Z_v(x) \setminus G_v$, where $Z_v(x)$ is the centralizer of x in G_v , and the isomorphic tori $Z_v(x)$ and $Z'_v(x)$ are given matching measures.

Further, at some finite place u of E we require f'_u , and f_u , to be supercuspidal. Namely, for any E_u -parabolic subgroup of G'_u with unipotent radical N_u , and any x, y in G'_u , the integral $\int f'_u(xny) dn$ is 0. Hence the operator $r'(f') = \int f'(x)r'(x) dx$ (x in $G'(E) \setminus G'(\mathbf{A}_E)$) on L(G') is an integral operator with kernel $K'(x, y) = \sum_{\gamma} f'(x^{-1}\gamma y)$ (γ in G'(E)).

An element γ of G'(E) is called regular if it has distinct eigenvalues, and elliptic if it lies in a compact torus of $G'(\mathbf{A}_E)$. Thus γ is elliptic regular if it lies in no proper *E*-parabolic subgroup of G'(E). We say that γ in G'(E) is *relatively regular* (resp. *elliptic*) if $\sigma(\gamma)\gamma^{-1}$ is regular (resp. elliptic) in G'(E). We denote by σ the nontrivial element of Gal(E/F). Note that the centralizer of a regular $\sigma(\gamma)\gamma^{-1}$ is defined over *F*. From now on we deal only with relatively regular elements γ in G'(E).

LEMMA. Let A be either a torus or a parabolic subgroup of G' defined over F. Then γ lies in A(E)G'(F) if and only if $\sigma(\gamma)\gamma^{-1}$ lies in A(E).

PROOF. Suppose A is parabolic over F. Then the first cohomology group $H^{1}(\text{Gal}(E/F), A(E))$ is trivial. If $p = \sigma(\gamma)\gamma^{-1}$ lies in A(E), we have $p\sigma(p) = 1$. The cocycle $a_{\sigma} = p$ then splits, namely there is u in A(E) with $p = \sigma(u)u^{-1}$. Hence $g = \sigma(u^{-1}\gamma) = u^{-1}\gamma$ lies in G'(F), and $\gamma = ug$ is in A(E)G'(F).

Suppose p is elliptic regular. Let θ be an element of E - F with θ^2 in F. Then $E = F(\theta) = F(\theta + c)$ for all c in F. Put $\gamma = \gamma_1 + \theta \gamma_2$, for γ_i in G'(F). Consider the polynomial $P(c) = \det(\gamma_1 + c\gamma_2)$. If P(c) = 0 for all c in F then P is identically zero, and $P(\theta) = 0$, contrary to the assumption that det $\gamma \neq 0$. Hence

422

there is c in F so that $\gamma'_1 = \gamma_1 + c\gamma_2$ is invertible. Put $\theta' = \theta - c$. Then $\gamma = \gamma'_1 + \theta'\gamma_2$. Define $\delta = \gamma\gamma'_1^{-1}$, and $\delta' = \gamma_2\gamma'_1^{-1}$. Then $\delta = 1 + \theta'\delta'$. If δ' is nonelliptic in G'(F), then it lies in a parabolic subgroup of G'(F), hence δ lies in a parabolic of G'(E) defined over F, and so does $p = \sigma(\delta)\delta^{-1}$, contrary to our assumption. Hence δ' lies in an elliptic torus T(F) of G'(F), δ lies in T(E), and so does p. But δ commutes with the regular p, whose centralizer in G'(E) is T(E). The Lemma follows.

We say that γ and γ' in G'(E) are *relatively conjugate* if there are x, y in G'(F) with $\gamma' = x\gamma y$; equivalently (by the Lemma), if $\sigma(\gamma)\gamma^{-1}$ and $\sigma(\gamma')\gamma'^{-1}$ are conjugate by an element of G'(F). Indeed, by the Lemma we can assume that both γ and γ' lies in A(E).

Let $\{T\}$ be a set of representatives for the conjugacy classes of elliptic tori in G'(F). Put $\bigcup_T T(E)/\sim$ for the quotient of the relatively regular subset of $\bigcup_T T(E)$ by the equivalence relation: t in T(E) is equivalent to t' in T'(E) if T = T', and there is w in the normalizer of T(F) in G(F), and t'' in T(F), with $t^w = t't''$.

COROLLARY. (1) γ in G'(E) is relatively elliptic if and only if it lies in G'(F)T(E)G'(F), where T is an elliptic torus of G' defined over F.

(2) $\bigcup_T T(E)/\sim$ is a set of representatives for the relative conjugacy classes of the relatively elliptic regular elements in G'(E).

Assume that f' is such that $f'(x\gamma y)$ is 0 for any x, y in G'(A) and γ in G'(E), unless γ is relatively elliptic regular. Assume that f satisfies the analogous condition. For example, we can make the analogous local assumption on the components f''_u and $f'_{u'}$ at a place u' of S.

3. PROPOSITION. We have $\int \int K(x, y) dx dy = \int \int K'(x', y') dx dy$; x, y range over $G(F) \setminus G(\mathbf{A})$; x', y' are over $G'(F) \setminus G'(\mathbf{A})$.

PROOF. The map which associates to g in $GL(n, A_E)$ the coefficients $\{a_i; a_n = \det g\}$ in the characteristic polynomial of g yields an isomorphism from the variety of semisimple conjugacy classes in $G(A_E)$ to the quotient of $A_E^{n-1} \times A_E^{\times}$ by A_E^{\times} , where $\{a_i\} \approx \{a_i z^i\}$ (z in A_E^{\times}). Suppose $f(x^{-1}\gamma x) \neq 0$ (γ in G(E); x, y in G(A)). Then the image of $x^{-1}\sigma(\gamma)\gamma^{-1}x$ lies in a compact subset of $A_E^{n-1} \times A_E^{\times}/A_E^{\times}$, and also in the discrete subset $E^{n-1} \times E^{\times}/E^{\times}$, hence in a finite set. Consequently, only finitely many relative conjugacy classes (of relatively elliptic regular) γ contribute to the sum $\sum f(x^{-1}\gamma x)$ over γ in G(E), which defines K(x, y).

Replacing f by its absolute value, we see that the integrals below are absolutely convergent; hence the rearrangements below are justified. Then

$$\begin{split} K(x, y) &= \sum_{T} \sum_{\gamma \in T(E)}' \sum_{\alpha \in G(F)/T(F)} \sum_{\beta \in N(T) \setminus G(F)} f(x^{-1} \alpha \gamma \beta y) \\ &= \sum_{T} w(T)^{-1} \sum_{\gamma \in T(E)/T(F)}' \sum_{\alpha \in G(F)} \sum_{\beta \in T(F) \setminus G(F)} f(x^{-1} \alpha \gamma \beta y), \end{split}$$

where N(T) is the normalizer of T(F) in G(F), w(T) is the cardinality of its Weyl group, and the prime over Σ indicates summation over relatively regular elements

only. Integrating over x, y in $G(F) \setminus G(A)$, we obtain

$$\iint K(x, y) \, dx \, dy = \sum_{T} \frac{|T(\mathbf{A})/T(F)|}{w(T)} \sum_{\gamma \in T(E)/T(F)} \int \int f(x\gamma y) \, dx \, dy$$

On the right x ranges over $G(\mathbf{A})$, and y over $T(\mathbf{A}) \setminus G(\mathbf{A})$. $|T(\mathbf{A})/T(F)|$ is the volume of the compact group $T(\mathbf{A})/T(F)$.

Each of the integrals is a product of local integrals. If v is a place of F which does not split in E and $G_v = G(F_v)$, $T_v = T(F_v)$, we obtain

$$\iint f_v(x\gamma y)\,dx\,dy \qquad (x\,\,\mathrm{in}\,\,G_v,\,\,y\,\,\mathrm{in}\,\,T_v\setminus G_v).$$

This converges. Indeed, if the integrand is nonzero, then $x\gamma y$ lies in a compact, hence $y^{-1}\sigma(\gamma^{-1})\gamma y$ is in a compact, hence y is in a compact modulo $T(E_v)$ (since $\sigma(\gamma^{-1})\gamma$ is regular), hence y is in a compact modulo T_v . But for such y the function $x \mapsto f_v(x\gamma y)$ is compactly supported, and our integral converges.

At almost all nonsplit v we have that $f_v = f_v^0$ is the quotient by $|K_v|$ of the characteristic function of K'_v , E_v/F_v is unramified and γ is in K'_v . If $f_v(x\gamma y) \neq 0$ then $x\gamma y$ is in K'_v , and so is $y^{-1}\sigma(\gamma^{-1})\gamma y$. But $\sigma(\gamma^{-1})\gamma$ is regular in K'_v . Hence y lies in $T(E_v)K'_v \cap G_v$; since E_v/F_v is unramified, the intersection is T_vK_v . Hence we can take y in K_v and conclude that x is in K_v . Hence the integral is equal to the volume $|K_v|/|K_v \cap T_v|$ for almost all v which do not split E/F.

If v is a place of F which splits into v' and v'' in E, then $\gamma = (\gamma', \gamma'')$ in $G(E_v) = G_v \times G_v$, and our local integral is

$$\iint f_{v'}(x\gamma'y)f_{v''}(x\gamma''y)\,dx\,dy \qquad (x \text{ in } G_v, y \text{ in } T_v \setminus G_v).$$

That is

$$\iint f_{v'}(x)f_{v''}(xy^{-1}\gamma'^{-1}\gamma''y)\,dx\,dy=\int h_v(y^{-1}\delta y)\,dy,$$

where $h_v = f_{v'} * f_{v''}$, and $\delta = \gamma'^{-1} \gamma'' = \gamma^{-1} \sigma(\gamma)$ (we embed G_v diagonally in $G(E_v)$). This is the orbital integral of h_v at (the regular element) δ , hence it converges.

For almost all such v, $f_{v'}$ and $f_{v''}$ are the characteristic functions of K_v divided by $|K_v|$, and γ', γ'' lie in K_v . If the integrand is nonzero, then $x\gamma'y$, $x\gamma''y$ are in K_v . Hence $y^{-1}\delta y$ is in K_v , and y is in T_vK_v . Taking y in K_v , it follows that x is in K_v , and the integral is equal to $|K_v|/|T_v \cap K_v|$ once again.

These computations hold for any reductive group G, in particular for our G and G', and the equality of the proposition follows since we have the same sums, volume factors, and integrals on both sides. Indeed, at v outside S we take $f_v = f'_v$, and at v in S we take f_v and f'_v so that h_v and h'_v have matching (regular) orbital integrals, and this is precisely what is needed for the comparison of the local integrals.

4. Proof of theorem. Suppose π is distinguished. We claim that so is π' . The opposite direction is similar. Now if v is a place of F which splits into v' and v'' in E, then the restriction of B to the space of π is a nonzero $G(\mathbf{A})$ -invariant form,

424

which can be restricted to a nonzero $G_{v'} \times G_{v''}$ -invariant linear form on the space of $\pi_{v'} \times \pi_{v''}$; hence $\pi_{v''}$ is the contragredient of $\pi_{v'}$, and we write π_{v} for $\pi_{v'}$ so that $\pi_{v''} = \check{\pi}_{v}$.

Let S' be a sufficiently large set of places of F containing S and the archimedean places, so that the space of π contains a nonzero vector invariant under the action of $K^{S'} = \prod_v K'_v$ (v outside S'). For v outside S' we take a K'_v -bi-invariant f_v . Then $\pi^{S'}(f^{S'})$ factors through a projection from the space V of π to the space $V(\pi)$ of $K^{s'}$ -fixed vectors in V, and it acts on $V(\pi)$ as a scalar. The space $V(\pi)$ is $G_{S'}$ -invariant, where $G_{S'} = \prod_v G_v$ (v in S'), and the associated representation of $G_{S'}$ is denoted by $\pi_{S'}$. Hence for φ in $V(\pi)$ we have

$$\pi(f)\varphi = \pi^{S'}(f^{S'}) \cdot \pi_{S'}(f_{S'})\varphi.$$

These comments apply to any cuspidal $G(\mathbf{A}_E)$ -module ρ with a supercuspidal component at u, so that we can write

$$K(x, y) = \sum_{\rho} \rho^{S'}(f^{S'}) \cdot K_{\rho}(x, y),$$

where K_{ρ} is the kernel of $\rho_{S'}(f_{S'})$, and the sum is over all cuspidal $G(\mathbf{A}_E)$ -modules which contain a nonzero $K^{S'}$ -invariant vector, whose component at u is supercuspidal. We have

$$\iint K(x, y) \, dx \, dy = \sum_{\rho} \rho^{S'}(f^{S'}) a_{\rho}, \qquad a_{\rho} = \iint K_{\rho}(x, y) \, dx \, dy.$$

Note that $\pi_{S'} = \bigotimes \pi_v$ (v in S') is $\pi_S \bigotimes \pi_{S''}$, and $V(\pi) = V(S) \bigotimes V(S'')$, where S'' is the complement of S in S', and $\pi_S = \bigotimes \pi_v$, $V(S) = \bigotimes V_v$ (v in S); a similar definition holds for S''.

We may assume that there is a unitary vector t in the space V(S''), such that the restriction of B to $t \otimes V(S'')$ is nonzero. Choose $f_{S''}$ so that $\pi_{S''}(f_{S''})$ is the orthogonal projection on t. If $\{v_k\}$ is a basis of V(S), then

$$\iint K_{\pi}(x, y) \, dx \, dy = \sum_{k} B(t \otimes \pi_{S}(f_{S})v_{k}) \overline{B}(t \otimes v_{k}).$$

Indeed,

$$K_{\pi}(x, y) = \sum_{k} \pi_{S}(f_{S}) v_{k}(x) \bar{v}_{k}(y)$$

Note that if u lies in S" then we may assume that the component of $f_{S"}$ at u is supercuspidal, since (1) if g_u is supercuspidal then $f_u * g_u * f_u$ is supercuspidal, (2) if $\pi_u(f_u)$ is a projection on the space spanned by the unitary vector t, and $g_u(x) = (t, \pi_u(x)t)$, then $\pi_u(f_u * g_u * f_u) = \pi_u(f_u)\pi_u(g_u)\pi_u(f_u)$ is also a projection on the space spanned by t, multiplied by a nonzero scalar.

The space V(S) is the tensor product of the spaces $V_{v'} \otimes V_{v''}$ over the v in S, where v', v'' are the places of E above v. The restriction of B to $t \otimes V(S)$ is the tensor product of nonzero $G_v \times G_v$ -invariant linear forms C_v on $V_{v'} \otimes V_{v''}$, up to a constant. For each v in S choose bases $\{a_i\}$ and $\{b_j\}$ of $V_{v'}$ and $V_{v''}$ which are dual to each other with respect to C_v . The sum over k is equal (up to a constant) to

$$\sum_{ij} C_v \Big[\pi_{v'}(f_{v'}) a_i \otimes \pi_{v''}(f_{v''}) b_j \Big] \overline{C}_v \Big[a_i \otimes b_j \Big].$$

As $C_v(a_i \otimes b_j) = \delta_{ij}$ we obtain

$$\sum_{i} C_{v} \left[\pi_{v}(f_{v'}) a_{i} \otimes \check{\pi}_{v}(f_{v''}) b_{i} \right] = \sum_{i} C_{v} \left[\pi_{v}(f_{v''}) \pi_{v}(f_{v'}) a_{i} \otimes b_{i} \right]$$
$$= \sum_{i} C_{v} \left[\pi_{v}(f_{v''} * f_{v'}) a_{i} \otimes b_{i} \right] = \operatorname{tr} \pi_{v}(f_{v''} * f_{v'}).$$

If we replace $f_{v''}$ by $f_{v''} + f_{v''}$ we may assume that $f_{v''} = f_{v''}$ and that $h_v = f_{v''} * f_{v'}$. It is clear that there is h_v which is zero on the singular set, in fact supported on the elliptic regular set if π_v is discrete-series, so that tr $\pi_v(h_v) \neq 0$. We choose such a function at u'.

Similar analysis applies in the case of G'. In particular,

$$\iint K'(x, y) \, dx \, dy = \sum_{\rho'} \rho'^{S'}(f'^{S'}) a_{\rho'}, \qquad a_{\rho'} = \iint K'_{\rho'}(x, y) \, dx \, dy,$$

is equal to $\int \int K(x, y) dx dy$ by the Proposition, for a function f' related to f as there. Applying linear independence of characters of the Hecke algebra of $G^{S'} \simeq G'^{S'}$, we conclude that $\pi^{S'}(f^{S'}) = \pi'^{S'}(f'^{S'})$ for our corresponding π , π' , and that $a_{\pi'} = a_{\pi}$ is nonzero. But $K'_{\pi'}$ is a sum of terms of the form $\varphi(x)\overline{\varphi}'(y)$, where φ, φ' lie in the space of π' . Hence the restriction of B' to the space of π' is nonzero, and π' is distinguished, as required.

References

[A] T. Asai, On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann. 226 (1977), 81–94.

[F] Y. Flicker, *Representations of simple algebras*, mimeographed notes, based on a course at Harvard University, fall 1985.

[F'] _____, Twisted tensors and Euler products, preprint, Harvard Univ., 1985.

[JL] H. Jacquet and K. Lai, A relative trace formula, Compositio Math. 54 (1985), 243-310.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544 (Current address)

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

426