UNRAMIFIED WHITTAKER FUNCTIONS ON THE METAPLECTIC GROUP

YUVAL Z. FLICKER

(Communicated by Bhama Srinivasan)

ABSTRACT. Kazhdan (unpublished), Shintani [Sh] and Casselman and Shalika [CS] computed explicitly the unramified Whittaker function of a quasisplit p-adic group. This is the main local ingredient used in the Rankin-Selberg-Shimura method, which yielded interesting results in the study of Euler products such as $L(s, \pi \otimes \pi')$ by Jacquet and Shalika [JS] (here π, π' are cuspidal $GL(n, A_F)$ -modules), and $L(s, \pi, r)$ by [F] (here π is a cuspidal $GL(n, A_E)$ -module, E is a quadratic extension of the global field F, and F is the twisted tensor representation of the dual group of $\operatorname{Res}_{E/F} GL(n)$). Our purpose here is to generalize Shintani's computation [Sh] from the context of GL(n) to that of the metaplectic r-fold covering group \tilde{G} of GL(n) (see [F', FK]).

Notations. Let F be a nonarchimedean local field with a ring R of integers and a uniformizer u of the maximal ideal of R. Denote by q the cardinality of the residue field R/(u) of F. Let r,n be positive integers. Put G = GL(n,F), K = GL(n,R). Let μ_r be the cyclic group of order r. Denote by \tilde{G} the r-fold central topological covering group of G (see $[\mathbf{FK}]$). Then there is an exact sequence $1 \to \mu_r \stackrel{i}{\to} \tilde{G} \stackrel{p}{\to} G \to 1$, with a preferred section $s \colon G \to \tilde{G}$ of p. We identify μ_r with its image via i. We also fix an embedding of μ_r in the field \mathbf{C} of complex numbers. Suppose that r is a unit in R (its valuation is one). Then K embeds (see $[\mathbf{FK}]$) as a subgroup of \tilde{G} ; we identify K with its image. Fix a Haar measure on G by the requirement that the volume of K is one.

Let $L_c(\tilde{G}//K)$ denote the commutative convolution algebra (see $[\mathbf{FK}]$) of complex-valued compactly-supported K-biinvariant anti-genuine functions on \tilde{G} . A function $f: \tilde{G} \to \mathbf{C}$ is called anti-genuine if $f(\varsigma g) = \varsigma^{-1} f(g)$ for all ς in μ_r and g in \tilde{G} . In writing ςg we used the embedding of μ_r in \tilde{G} ; in writing $\varsigma^{-1} f(g)$ we used the embedding of μ_r in \mathbf{C}^{\times} . Let π be an irreducible representation of \tilde{G} which is unramified (has a nonzero K-fixed vector) and genuine $(\pi(\varsigma g) = \varsigma \pi(g); \ \varsigma \text{ in } \mu_r, g$ in \tilde{G}). By the theory of the Satake transform (see $[\mathbf{FK}]$) it determines an algebra homomorphism, denoted again by π , of $L_c(\tilde{G}//K)$ into \mathbf{C} .

For any *n*-tuple $m = (m_1, \ldots, m_n)$ of integers, denote by u^m the diagonal matrix whose *i*th diagonal entry is u^{m_i} $(1 \le i \le n)$. Denote by N the group of upper triangular unipotent matrices in G. The section s injects N and u^{rZ} as subgroups of \tilde{G} (see [**FK**]). We identify N and u^{rZ} with their images in \tilde{G} . Write m(i) for

©1987 American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page

Received by the editors September 16, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11F85; Secondary 11F27, 11F37, 11F70.

Partially supported by an NSF grant.

 $m=(1,\ldots,1,0,\ldots,0)$ where 1 appears in the first i places. Let f_i $(1 \leq i \leq n)$ be the member of $L_c(\tilde{G}//K)$ which is supported on $\mu_r K u^{rm(i)} K$ and attains the value 1 at $u^{rm(i)}$. Then $L_c(\tilde{G}//K)$ is isomorphic to the polynomial ring generated by f_1,\ldots,f_n .

Choose n complex numbers t_1, \ldots, t_n so that the ith elementary symmetric function $\operatorname{Sym}_i((t_j)) = \sum_{j_1 \leq \cdots \leq j_i} t_{j_1} \cdots t_{j_i}$ in the t_j 's is equal to $q^{ir(i-1)/2}\pi(f_i)$ $(1 \leq i \leq n)$. Let t be the diagonal matrix whose ith diagonal entry is t_i $(1 \leq i \leq n)$. It lies in $GL(n, \mathbb{C})$ since $\det t = q^{nr(n-1)/2}\pi(f_n) \neq 0$.

Let c(t) be the complex-valued function on \mathbb{Z}^n which attains the value zero at $m = (m_1, \ldots, m_n)$ unless $m_1 \geq \cdots \geq m_n$, where

$$c(t;m) = \det(t_i^{m_j + n - j}; 1 \le i, j \le n) / \det(t_i^{n - j}; 1 \le i, j \le n).$$

Here the numerator is called a Schur function (see [M, p. 24]), and it is divisible in $\mathbf{Z}[t_1,\ldots,t_n]$ by the denominator, which is the Vandermonde determinant $\prod(t_i-t_j)$ $(1 \leq i < j \leq n)$. Note that for m with $m_1 \geq \cdots \geq m_n$, c(t;m) is the value at t of the character of the irreducible representation of $GL(n, \mathbb{C})$ with highest weight m. We have $c(t;m(i)) = \operatorname{Sym}_i((t_j))$, and this is equal to $q^{ir(i-1)/2}\pi(f_i)$ by the definition of t.

Choose a character ψ of the additive group of F which is trivial on R but not on $u^{-1}R$. Denote by ψ also the character of N given by $\psi(x) = \prod_{i=1}^{n-1} \psi(x_{i,i+1})$, where $x_{i,i+1}$ is the (i,i+1) entry of x. Given π and ψ , the function W on \tilde{G} is called an *unramified Whittaker function* associated with π and ψ if it satisfies

(1)
$$W(\varsigma xgk) = \varsigma \psi(x)W(g) \quad (x \text{ in } N, \varsigma \text{ in } \mu_{\tau}, g \text{ in } \tilde{G}, k \text{ in } K),$$
 and

(2)
$$\pi(f)W(g) = \int_G W(gh)f(h) dh \quad (f \text{ in } L_c(\tilde{G}//K), g \text{ in } \tilde{G}).$$

The integral is taken over $G \simeq \tilde{G}/\mu_r$; the integrand is invariant under μ_r . Let D be the set of m with $m_1 \geq \cdots \geq m_n \geq 0$ and $r + m_i < m_{i+1}$ $(1 \leq i < n)$. For each d in D put $a(d;m) = W(s(u^d)u^{rm})$. Recall that we identify u^{rZ} with its image in \tilde{G} via the section s. Since $G = \bigcup Nu^m K$ (disjoint union over m in Z^n), to determine W on \tilde{G} it suffices (by (1)) to evaluate a(d;m) for all d in D and m in Z^n . Since the conductor of ψ is R, if follows from (1) that a(d;m) is zero unless $m_1 \geq m_2 \geq \cdots \geq m_n$.

THEOREM. For each d in D we have $a(d;m) = a(d;0)q^{r\sum_{i=1}^{n}(i-n)m_{i}}c(t;m)$ for all m in \mathbb{Z}^{n} .

Let I(i) be the set of all n-tuples $e = (e_1, \ldots, e_n)$ with entries e_i equal to zero or one such that $e_1 + \cdots + e_n = i$. Put $N_R = N \cap K$ and $N_R(e) = N_R \cap u^e K u^{-e}$. Note that the cardinality $[N_R/N_r(re)]$ of $N_R/N_R(re)$ is q^{rw} , where

$$w = \sum_{j>k} \max(e_j - e_k, 0) = in - i(i-1)/2 - \sum_{j=1}^n je_j.$$

Denote by $f[xu^{re}K]$ the right K-invariant anti-genuine complex-valued function on \tilde{G} which is supported on $\mu_r xu^{re}K$ (e in I(i), x in $N_R/N_R(re)$), and attains the value one at xu^{re} .

We first assume the validity of the following lemma.

LEMMA. For each $1 \le i \le n$ we have $f_i = \sum_{e \in I(i)} \sum_{x \in N_R/N_R(re)} f[xu^{re}K]$.

The Lemma implies that for $m=(m_1,\ldots,m_n)$ in \mathbf{Z}^n with $m_1\geq\cdots\geq m_n$ we have

$$\pi(f_i)a(d;m) = \int_G W(s(u^d)u^{rm}g)f_i(g) dg$$

$$= \sum_e [N_R/N_R(re)]a(d;m+e) \qquad (e \text{ in } I(i))$$

$$= q^{irn-ir(i-1)/2} \sum_e q^{-r\sum_{j=1}^n je_j} a(d;m+e).$$

Put

$$b(d; m) = q^{r \sum_{j=1}^{n} (n-j)m_j} a(d; m).$$

If $m_1 \geq \cdots \geq m_n$, then we have

$$q^{ir(i-1)/2}\pi(f_i)b(d;m) = \sum_e b(d;m+e)$$
 $(1 \le i \le n).$

Otherwise b(d; m) = 0. Namely b(d; m) satisfies the equation

$$c(t; m(i))b(d; m) = \sum_{e} b(d; m+e)$$
 if $m_1 \ge \cdots \ge m_n$.

On the other hand, the function c(t; j) satisfies the equation

$$c(t; m(i))c(t; m) = \sum_{e} c(t; m+e)$$
 if $m_1 \ge \cdots \ge m_n$.

Hence both c(t; m) and b(d; m) (for each d in D) are functions of m in \mathbb{Z}^n which satisfy the same system of difference equations which has a unique solution up to a constant multiple. Since c(t; 0) = 1 the theorem follows.

It remains to prove the Lemma.

PROOF OF LEMMA. Let W be the Weyl group of permutation matrices in K, realized as a group of matrices with entries zero and one only. Let I be the Iwahori subgroup of K which consists of all matrices in K whose under diagonal entries are all in uR. Put \overline{N} for the group of lower triangular unipotent matrices, N_I for $\overline{N} \cap I$, and A_R for the diagonal subgroup of K. We have the decompositions $I = N_R A_R \overline{N}_I = \overline{N}_I A_R N_R$ and $K = \bigcup N_R \overline{N}_I w N_R A_R$ (disjoint union over w in W). Put e(i) for $m = (0, \ldots, 0, 1, \ldots, 1)$, where 1 appears in the last i entries. Since $u^{-re(i)} N_R u^{re(i)}$ lies in K, we have

$$Ku^{rm(i)}K = Ku^{re(i)}K \subset \bigcup_{w \in W} N_R A_R \overline{N}_I w u^{re(i)} w^{-1}K.$$

Put y for the element $wu^{re(i)}w^{-1}$ of \tilde{G} . For $1 \leq j < k \leq n$, and a matrix $\binom{a}{c}\binom{b}{d}$, write $\binom{a}{c}\binom{b}{d}_{jk}$ for the matrix (x_{uv}) in GL(n) whose entries along the diagonal are one except that $x_{jj} = a$, $x_{kk} = d$, and its nondiagonal entries are zero except that $x_{jk} = b$ and $x_{kj} = c$.

Suppose that $\bar{n} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}_{jk}$ is a matrix in \overline{N}_I , and $y^{-1}\bar{n}y$ does not lie in K. Write $|\cdot|$ for the valuation on F normalized by $|u| = q^{-1}$. Then $q^{-r} < |x| < 1$, the

jth diagonal entry of p(y) is one and the kth is u^r , and

$$y^{-1}\bar{n}y = \begin{pmatrix} 1 & 0 \\ u^{-r}x & 1 \end{pmatrix}_{jk}.$$

We have

$$\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}_{jk} = \begin{pmatrix} 1 & x^{-1} \\ 0 & 1 \end{pmatrix}_{jk} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{jk} \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}_{jk} \begin{pmatrix} 1 & x^{-1} \\ 0 & 1 \end{pmatrix}_{jk}.$$

Given the matrix $s(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}_{jk})$ in \tilde{G} , we have in \tilde{G} (see [FK, (2.1)]) the relation

$$s\left(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}_{jk}\right) s\left(\begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}_{jk}\right) s\left(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}_{jk}\right)^{-1}$$
$$= s\left(\begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}_{jk}\right) \left(\frac{b}{a,x}\right).$$

Here (\cdot, \cdot) denotes the nondegenerate bimultiplicative rth Hilbert symbol

$$F^{\times}/F^{\times r} \times F^{\times}/F^{\times r} \to \mu_r$$
.

Taking b = 1 and a unit a, namely $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}_{jk}$ in K, we conclude that the anti-genuine K-biinvariant function f_i attains the value zero at $\bar{n}y$, since

$$f_{i}(\bar{n}y) = f_{i}\left(y \ s\left(\begin{pmatrix} 1 & x^{-1}u^{r} \\ 0 & 1 \end{pmatrix}_{jk}\right) s\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{jk}\right)$$

$$\times s\left(\begin{pmatrix} xu^{-r} & 0 \\ 0 & x^{-1}u^{r} \end{pmatrix}_{jk}\right) s\left(\begin{pmatrix} 1 & x^{-1}u^{r} \\ 0 & 1 \end{pmatrix}_{jk}\right)\right)$$

$$= f_{i}\left(s\left(\begin{pmatrix} xu^{-r} & 0 \\ 0 & x^{-1}u^{r} \end{pmatrix}_{jk}\right) y\right)$$

$$= f_{i}\left(s\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}_{jk}\right) s\left(\begin{pmatrix} xu^{-r} & 0 \\ 0 & x^{-1}u^{r} \end{pmatrix}_{jk}\right) y\right)$$

$$= (a, x)f_{i}\left(s\left(\begin{pmatrix} xu^{-r} & 0 \\ 0 & x^{-1}u^{r} \end{pmatrix}_{jk}\right) y s\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}_{jk}\right)\right)$$

$$= (a, x)f_{i}\left(s\left(\begin{pmatrix} xu^{-r} & 0 \\ 0 & x^{-1}u^{r} \end{pmatrix}_{jk}\right) y\right)$$

$$= (a, x)f_{i}(\bar{n}y).$$

Since the Hilbert symbol (\cdot, \cdot) is nondegenerate we can find a unit a with $(a, x) \neq 1$; indeed, (a, b) = 1 for any pair a, b of units, hence there exists some unit a with $(a, u) = \varsigma$, where ς is a primitive rth root of unity. It follows that f_i is supported on the subset

$$\mu_r \bigcup_{w \in W} N_R w u^{re(i)} w^{-1} K \quad \text{of } \tilde{G}.$$

Since this set is contained in $\mu_r K u^{m(i)} K$, the Lemma follows.

REMARK. If π has a Whittaker model, namely we have $\pi(g)W(h) = W(hg)$ for all h, g in \tilde{G} , then $a(d; m) = \pi(s(u^d)u^{rm})a(0; 0)$, and in particular $a(d; 0) = \pi(s(u^d))a(0; 0)$ for all d in D. In this case there exists a unique (up to a scalar multiple) unramified Whittaker function associated with π, ψ .

REFERENCES

- [CS] W. Casselman and J. Shalika, The unramified principal series of p-adic groups. II: The Whittaker function, Compositio Math. 41 (1980), 207-231.
- [F] Y. Flicker, Twisted tensor and Euler products, Bull. Soc. Math. France (1987/8).
- [F'] _____, Automorphic forms on covering groups of GL(2), Invent. Math. 57 (1980), 119-182.
- [FK] Y. Flicker and D. Kazhdan, Metaplectic correspondence, Publ. Math. Inst. Hautes Études Sci. 64 (1987), 53-110.
- [JS] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), 499-558.
- [M] I. MacDonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979.
- [Sh] T. Shintani, On an explicit formula for class-1 "Whittaker functions" on GL_n over p-adic fields, Proc. Japan Acad. 52 (1976), 180-182.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, SCIENCE CENTER, ONE OXFORD STREET, CAMBRIDGE, MASSACHUSETTS 02138