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TH E AD JOIN T REPRESEN TATION L FU N CTION
FOR G L(n)

YUVAL Z. FLICKER

Ideas underlying the proof of the "simple" trace formula are used
to show the following. Let F be a global field, and A its ring of
adeles. Let ! be a cuspidal representation of GL( «, A) which has
a supercuspidal component, and ! a unitary character of Ax / F x .
Let So be a complex number such that for every separable extension
E of F of degree n, the L function L(s, " o N o r m ^ ) over E
vanishes at s =  s0 to the order m >  0 . Then the product L function
L(s, " <g> ! x ") vanishes at s =  So to the order m . This result is
a reflection of the fact that the tensor product of a finite dimensional
representation with its contragredient contains a copy of the trivial
representation.

Let F be a global field, A its ring of adeles and Ax its group
of ideles. Denote by G the group scheme GL(n) over F, and put
G = G(F), G  =  G(A), and Z ~ Fx , Z ~ Ax for the correspond 
ing centers. Fix a unitary character e of Z / Z , and signify by ! a
cuspidal representation of G whose central character is ". For al 
most all F places v the component !v of ! at # is unramified and
is determined by a semi simple conjugacy class t(!v) in G = G(C)
with eigenvalues (zj(!#); 1 < i < n). G iven a finite dimensional
representation r of G , and a finite set V of F places containing
the archimedean places and those where !v is ramified, one has the
L function

Lv(s, ", r) =  H det(I q sr(t("v)))  1

which converges absolutely in some right half plane Re(s) > > 1. Here
q# is the cardinality of the residue field of the ring R# of integers in
the completion F# of F at v.

In this paper we consider the representation r of G on the (n2— 1) 
dimensional space M of n xn complex matrices with trace zero, by
the adjoint action r(g)m = Ad(g)m = gmg~ $ (m e M, g e G).
More generally we can introduce the representation Adj of G x C x

by Adj((g, z)) =  zr(g), and hence for any character % of Z/ Z the
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L function

Lv(s, !, !, Adj) =  f ] det ( /   q"st{#$)r{t{!v))) \

Here V contains all places $ where !v or the component #$ of #
is ramified, and t(#v) =  co$(!$) !_$ is a generator of the maximal
ideal in Rv.

In fact the full L function is defined as a product over all $ of local
L functions. These are introduced in the /? adic case as (a quotient
of) the "greatest common denominator" of a family of integrals whose
definition is recalled from [JPS] after Proposition 3 below. The local
L functions in the archimedean case are introduced below as a quo 
tient of the L factors studied in [JS1]. We denote by L(s, !, . . . )
the full L function.

More precisely, we have

Lv(s, !, #, Adj) =  Lv(s, ! <g> # x !)/ Lv(s, !) ,

where Lv(s9 !\  x !i) denotes the partial L function attached to the
cuspidal G L(/ t;, A) modules " z (/  =  1,2) and the tensor prod 
uct of the standard representation of Gi =  GL(rt\ , C) and G% =
GL(«2 > C ) . This provides a natural definition for the complete func 
tion L(s9 " , ! , Adj) globally, and also locally. This definition per 
mits using the results of [JPS] and [JS1] mentioned above. In partic 
ular, for any cuspidal G module " , the L function L(s9 " , ! , Adj)
has analytic continuation to the entire complex s plane.

To simplify the notations we shall assume, when # & 1, that #
does not factorize through z » > v{z) =  \ z\  this last case can easily
be reduced to the case of # =  1. Indeed, L(s, !, # ®  vs', Adj) =
L(s + sf, !, #, Adj). Our main result is the following.

1. TH EOREM . Suppose that the cuspidal G rnodule ! has a supercus 
pidal component, and # is a character of Z/ Z of finite order for which
the assumption (Ass E, ') below is satisfied for all separable field ex 
tensions E of F of degree n. Then the L function L(s9 " , ! , Adj)
is entire, unless #(\  and !®# ~ " . In this last case the L function
is holomorphic outside s =  0 and s = 1. There it has simple poles.

To state (Ass E, #) note that given any separable field exten 
sion E of degree n of F there is a finite galois extension K of
F, containing E, such that # corresponds by class field theory to a
character, denoted again by #, of the galois group /  =  Gdl(K/ F).
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D enote by H = Gdl(K/ E) the subgroup of /  corresponding to E,
and by !\E the restriction of ! to H. It corresponds to a charac 
ter, denoted again by !\E > of the idele class group A^/ Ex of E.
When E/ F is galois, and NE/ F *S t h e norm map from E to F, then
!|2? =  ! o JYE//" . Our assumption is the following.

(Ass; E, !) 7%e quotient L(s9 !\E)/ L(s, !) of the Artin {or
Hecke, by class field theory) L functions attached to the characters !\E
of Gvi(K/ E) =  H and ! of Gd"{K/ F) =  / , is entire, except at s =  0
and s = 1 when ! # 1 and !\E = 1.

If E/ F is an abelian extension, (Ass E, $) follows by the product
decomposition L(s, !\E) =  "# L(s, !#) , where % runs through the
set of characters of Gal(E/ F). More generally, (Ass E, $) is known
when E/ F is galois, and when the galois group of the galois closure
of E over F is solvable, for ! = 1 (see, e.g., [CF], p. 225, and the
survey article [W]). For a general E we have

L(s, !\E) = L(s, Indjy(!|E)) =  L(s, !)L(s, p),

where the representation Ind^(!|£ ") of /  =  Gd"(K/ F) induced from
the character !\E of H, contains the character ! with multiplicity
one (by Frobenius reciprocity); p is the quotient by ! of Ind^(!|2s) .
Artin's conjecture for /  now implies that L(s, p) is entire, unless
!\E =  1 and ! # 1, in which case L(s, />) is holomorphic except at
s = 0, 1, where it has a simple pole. When [E : F] = n, ! =  1 and
AT is a galois closure of E/ F, then /  =  Gd"{K/ F) is a quotient of
the symmetric group Sn . Artin's conjecture is known to hold for S^
and £ 4, hence (Ass; E9 I) holds for all E of degree 3 or 4 over
F, and Theorem 1 holds unconditionally (when ! =  1) for GL(3)
and G L(4), as well as for G L(2).

The conclusion of Theorem 1 can be rephrased as asserting that
L(s, !) divides L{s, & ®  ! x &) when &®!'&or!=\ , namely
the quotient is entire, and that the quotient is holomorphic outside s =
0, 1, if &®!~& and ! # 1 of course we assume (Ass E, !) for
all separable extensions E of F of degree n. N ote that the product
L function L(s, &\  x &() has been shown in [JS], [JS1], [JPS] and
(differently) in [MW] to be entire unless %2 — n\ . In this last case the
L function is holomorphic outside 5 =  0, 1, and has a simple pole at
s =  0 and s=\ . This pole is matched by the simple pole of L(s, !)
when ! =  1. Hence L(s, &, 1, Adj) is also entire.

Another way to state the conclusion of Theorem 1 is that / /  L(s, !)
vanishes at s =  SQ to the order m > 0, then so does L(s, & ®  ! x &),
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provided that (Ass E, !) is satisfied for all separable extensions E of
F of degree n. N ote that L(s, ") does not vanish on |Res   \ \  > \  .

Yet another restatement of the Theorem: Let # be a cuspidal G 
module with a supercuspidal component, and " a unitary character
of Z / Z . Let SQ be a complex number such that for every separable
extension E of F of degree n, the L function L(s, "\E) vanishes at
s =  so to the order m > 0. Then L(s, # ®  " x !) vanishes at s =  so
to the order m. This is the statement which is proven below. N ote
that the assumption that " is of finite order was put above only for
convenience. Embedding A£ as a torus in G , the character "\E can
be defined also by ("\E)(x) = "(detx) O # X G A ^ C G . In general
" would be a character of a Weil group, and not a finite galois group.

When n =  2 the three dimensional representation Adj of G L(2, C)
is the symmetric square Sym2 representation, and the holomorphy of
the L function L(s, " $ Sym 2!) (s ^ 0, 1 if#^"c^#."$l) is
proven in [G J] using the Rankin Selberg technique of Shimura [Sh],
and in [F l] using a trace formula. Another proof was suggested by
Zagier [Z] in the context of SL(2, R) and generalized by Jacquet 
Zagier [JZ] to the context of # on G L(2, A). This last technique is
the one extended to the context of cuspidal # with a supercuspidal
component and arbitrary n > 2, in the present paper.

The path followed in [Z] and [JZ] is to compute the integral

/  K$(x, x)E(x, % , ", s)dx

on x in ZG \ G , where E(x, % , " , s) is an Eisenstein series, and
K${x ,y) the kernel representing the cuspidal spectrum in the trace
formula. The computation shows that the integral is a sum of mul 
tiples of L(s9 "\E) (with [E : F] = 2 in the case of [Z] and [JZ]),
and on the other hand of (a sum of multiples of) L(s, # ®  " x ft),
from which the conclusion is readily deduced. However, [Z] and [JZ]
computed all terms in the integral, and reported about the complexity
of the formulae. To generalize their computations to GL(n), n > 3,
considerable effort would be required.

To bypass these difficulties in this paper we use the ideas employed
in [FK] and [F2] to establish various lifting theorems by means of a
simple trace formula. In particular we use a special class of test func 
tions $, with one component supported on the elliptic regular set, and
another component is chosen to be supercuspidal. The first choice re 
duces the conjugacy classes contributing to K$(x, y) to elliptic ones
only, while the second guarantees the vanishing of the non cuspidal
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terms in the spectral kernel. The first choice does not restrict the
applicability of our formulae. Thus our Theorem 1 is offered as an 
other example of the power and usefulness of the ideas underlying the
simple trace formula.

For a "twisted tensor" analogue of this paper see [F4].
We shall work with the space L(G) of smooth complex valued func 

tions ! on G\G which satisfy (1) !(zg) = e(z)!(g) (z e Z , g e G ) ,
(2) ! is absolutely square integrable on Z G \ G . The group G acts
on L(G) by right translation: (r(g)!)(h) = !(hg). The action is uni 
tary since " is. The function ! e L(G) is called cuspidal if for each
proper parabolic subgroup P of G  over F with unipotent radical
N  we have / !(ng)dn = 0 (n e N\N) for all g eG. Let r0 be
the restriction of r to the space LQ(G) of cusp forms in L(G). The
space LQ(G) decomposes as a direct sum with finite multiplicities of
invariant irreducible unitary G modules called cuspidal G  modules.

Let ! be a complex valued function on G with !(g) =  "(z)!(zg)
( z!Z ) , compactly supported modulo Z, smooth as a function on the
archimedean part G(JFOO) of G, and bi-invariant by an open compact
subgroup of G(Af) here Ay is the ring of adeles without archimedean
components, and i ^ is the product of Fv over the archimedean
places. Fix Haar measures dgv on G#/ Z# (Gv = G(F#),Z# its
center) for all # such that the product of the volumes \KV/ ZV n Kv\
converges; Kv is a maximal compact subgroup of Gv , chosen to be
K# =  G(R#) at the finite places. Then dg =  ®dgv is a measure
on G / Z . The convolution operator r(!) =  JG/ z<p{g)r(g)dg is an
integral operator on L(G) with the kernel K!(x, y) =  $!{x~ %yy)
(& G  G/ Z). In this paper we work only with discrete functions ! .

D EF IN ITION . The function ! is called discrete if for every x ! G
and & e G we have !(x~1&x) = 0 unless & is elliptic regular.

Recall that & is called regular if its centralizer Zy(G) is a torus, and
elliptic if it is semi simple and Z&(G)/ Z&(G)Z has finite volume. The
centralizer Z&(G) of an elliptic regular & e G is the multiplicative
group of a field extension £ of F of degree n . For a general elliptic
&, we have that Z&(G) is G L(m, F 7) with n = m[Ff: F].

The proof of Theorem 1 is based on integrating the kernel K!(x, y)
on x =  y against an Eisenstein series, as in [Z] and [JZ].

Identify G L(«   1) with a subgroup of G L (!) via g " +  ( g °). Let
[/  be the unipotent radical of the upper triangular parabolic subgroup
of type (n   1, 1). Put Q = GL{n — l) t / . G iven a local field F,
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let S(Fn) be the space of smooth and rapidly decreasing (if F is
archimedean), or locally constant compactly supported (if F is non 
archimedean) complex valued functions on Fn . D enote by !° the
characteristic function of Rn in Fn if F is non archimedean. For
a global field F let S(An) be the linear span of the functions ! =
(g)!", !v e S(F£) for all ", !v is !° for almost all v. Put
# =  (0, . . . , 0, 1) (G A") . The integral of

(1.1) f(g,s) = $(detg)\detg\ s I !(aeg)\a\ ns $n (a) dx a
JAX

converges absolutely, uniformly in compact subsets of Res > £ . The
absolute value is normalized as usual, and $ is a character of Ax/ Fx .

It follows form Lemmas (11.5), (11.6) of [G oJ] that the Eisenstein
series

E(g, !, #, s) =  %f(&g,s) (y G  ZQ\G)

converges absolutely in Res > 1. In [JS], (4.2), p. 545, and [JS2],
(3.5), p. 7, it is shown (with a slight modification caused by the pres 
ence of $ here) that E(g, ! , $, s) extends to a meromorphic func 
tion on Res > 0, in fact to the entire complex s plane with a func 
tional equation E(g, ! , # , s) =  E((g~ ', ! , $~ ', 1  s) here 'g is
the transpose of g and ! is the Fourier transform of ! . Moreover,
E(g9 ! , # , s) is slowly increasing in g G  G !\ G , and it is holomor 
phic except for a possible simple pole at s =  1 and 0. N ote that f(g)
and E{g, s) are Z invariant.

2. PROPOSITION . For any character $ of Ax/ Fx, Schwartz func 
tion ! in S(An), and discrete function <p on G, for each exten 
sion E of degree n of F there is an entire holomorphic function
A(!, (, # , E, s) in s such that

(2.1) /  K((xyx)E{x,!, #, s)dx
JZG\G

on Res > 1. The sum over E ranges over a finite set depending on
(the support of)(.

Proof. Since the function ( is discrete the sum in K((x, x) =
%((x~)yx) ranges only over the elliptic regular elements & in G/ Z .
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It can be expressed as

(2.2) K!(x,x) = " W{T)]~# " ! <P(X I$ Iy$x).
T γeτ/ z δeG/τ

H ere T  ranges over a set of representatives for the conjugacy classes in
G of elliptic tori (T  is isomorphic over F to the multiplicative group
of a field extension E of degree n of F T  is uniquely determined
by such E, and each such E is so obtained). The cardinality of the
Weyl group (normalizer/ centralizer) W{T) of T  in G is denoted by
[W{T)]. It is easy to check that for any elliptic T  we have G =  TQ,
and T  " Q =  {1}. Hence the sum over $ can be taken to range over
# .

The left side of (2.1) is equal, in the domain of absolute convergence
of the series which defines the Eisenstein series, to

/
JZG\ G

K9(x, x) Y" f(y% > * ) d x = /  K<P(X > *) / ( * ,s)dx,
γeZQ\ G JzQ\ G

since x H > K!(x,x) is left G  invariant. Substituting (2.2) this is
equal to

1 Σ ί
T γeT/ Z JZ\

note that x \  > f(x, s) is left Q invariant.
To justify the change of summation and integration note that given

!, the sums over T  and & are finite. Indeed, the coefficients of the
characteristic polynomial of & are rational, and lie in a compact set
depending on the support of ! (and a discrete subset of a compact
is finite). This explains also the finiteness assertion at the end of the
proposition.

Substituting now the expression (1.1) for f(x, s) we obtain a sum
over T  and & of

/  !(x~ '&x)f(x, s)dx = /  !(x~ '&x)((detx)\detx\ s)(*x)dx
Jz\ G JG

= \  <P(x~lyx) )(etx)((dettx)\dettx\ sdtdx.
JT\ G JΊ

Here T =  T(A) ~ A£ , where T  is the centralizer of 7 in G , and
T(F) = T. The inner integral, over T , is a "Tate integral" for
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L(s, (!\E) it is a multiple of L(s, "\E) by a function which is holo 
morphic in s in C and smooth in x, depending on ! , " and E.
The integral over x ranges over a compact in T\ G , since # is com 
pactly supported modulo Z . The proposition follows.

We now turn to the spectral expression for the kernel K#(x,y).

D EF IN ITION . The function # on G is called cuspidal if for every
x, y in G  and every proper F  parabolic subgroup P_ of G, we have
JN#(xny)dn =  0, where N =  jV(A) is the unipotent radical of P =

When # is cuspidal, the convolution operator r(#) factorizes
through the projection on LQ(G) . Then r(#) is an integral opera 
tor whose kernel has the form

K#(x,y) = $%«#{x,y), where K*(x9y) = ${r{#)#&){x)#\ y).

The sum over & ranges over all cuspidal G modules in LQ(G) . The
#& range over an orthonormal basis consisting of K =  #$ ^  fin ite
vectors in &. The #& are rapidly decreasing functions and the sum
over #& is finite for each ' (uniformly in x and y) since # is In 
finite. The sum over & converges in L2, and hence also in a space of
rapidly decreasing functions. Hence K#(x, y) is rapidly decreasing
in x and y, and the product of K#(x, x) with the slowly increasing
functions E(x,(y",s), is integrable over Z<7\ G. The resulting
integral, which is equal to (2.1), can also be expressed then in the
form

% % /  (r(#)#&)(x)#&(x)E(x, (,",s)dx.
! "!

To prove Theorem 1 we now assume that L(s, ") is zero at s =  SQ .
It is well known then that |Reso   \ \  < 5 > hence SQ ( 0, 1. If SQ
is a zero of order m of L(s, "), then by (Ass E, ") the function
L(s, "\E) vanishes at s0 to the order m. Making this assumption for
every separable field extension E of degree n of F we conclude that
(2.1) vanishes at s =  so to the order m, and that for all j (0 < j < m)
we have

( 2 3 ) ; $$jZG G(&(<P)(&)(x)#&(x)E{j)(x, ! , ", so)dx = 0.

At our disposal we have all cuspidal discrete functions ' on G ,
and our aim is to show the vanishing of some summands in the last
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double sum over n and !". In fact, fix a " for which Theorem 1
will now be proven. Let V be a finite set of F primes, containing
the archimedean primes and those where " or # ramify. Consider
! =  (g^ !v (product over all F places v ) where each !$ is a smooth
compactly supported modulo Zv function on Gv which transforms
under Zv via e~ %. For almost all $ the function !$ is the unit
element !& in the Hecke algebra H v of !^ biinvariant (compactly
supported modulo Zv transforming under Z$ via ""1 ) functions on
Gv . For all v g V the component !v is taken to be spherical, namely
in Mv.

Each of the operators nv{!v) for v g V factorizes through the
projection on the subspace "v

v of K$ fixed vectors in "v. This
subspace is zero unless "$ is unramified, in which case "v

 v is one 
dimensional. On this ^ fixed vector, the operator "v(!$) acts as the
scalar !^{t{"$)), where !^  denotes the Satake transform of !v . Put
!v('("v)) for the product over $ & V of !X{t{"$))9 and "y(!v) =

Kv(<Pv) Then (2.3) j takes the form

(2.4),

where

(2.5) 7 a(", !y, j ,(, #, s)

("v(!v)!*)(x)!"(x)E{j)(x,(,

The sum over " ranges over the cuspidal G modules # =  0 "$ with
# f ^ {0} for all v g K; # $ ' F denotes the space of % ^ F ^ "
fixed vectors in ". The sum over !" ranges over those elements in
the orthonormal basis of " which appears in (2.3) j , which, for any
v g V, as functions in x e G$ , are !^ invariant and eigenfunctions
of "$(!v), )v e Uv, with eigenvalues t("$). In particular !"{x) =
(Uxv) Ylvtv ('M, for such !& (v£V).

A standard argument (see, e.g., Theorem 2 in [FK] in a more elab 
orate situation), based on the absolute convergence of the sum over
" in (2.4) j , standard estimates on the Hecke parameter t("v) of the
unitary unramified "v (v g V), and the Stone Weierstrass theorem,
implies the following.

3. PROPOSITION . Let " be a cuspidal G module which has a su 
percuspidal component. Let # be a character of TLjZ. Suppose that
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L(s, co\E) vanishes at s = SQ to the order m for every separable ex 
tension E of F of degree n. Then for any ! and a function !y such
that ! is cuspidal and discrete with any choice of <g)!v (v g V), we
have that a(", !y, j ; , ! , #, so) is zero.

We shall now recall the relation between the summands in (2.5) j
and the L function L(s, "<g># x " ) . Let $ be an additive non trivial
character of A modulo F (into the unit circle in C ) , and denote by
$% its component at v . An irreducible admissible G%  module "% is
called generic if H o m ^ ( ^ , $%) & {0} . By [GK], or Corollary 5.17 of
[BZ], such "v embeds in the Gv module I n d ( ^ v ; Gv, Nv) induced
from the character n = (ny) > •  $(n) = K$ i< kn n M "+ i ) of the
unipotent upper triangular subgroup N% of Gv . Moreover, this em 
bedding is unique, equivalently the dimension of H o m ^ {n% , $%) is at
most one. The embedding is given by nv 3 ' H * W', where W'(g) =
(("(g))) {g ! G) and ( & 0 is a fixed element in H o m ^ % ^ , $%).
Since nv is admissible, each of the functions W' is smooth (under
right action by G%). If "v is generic, denote by W("%) its realiza 
tion in I n d ( ^ ) W("%) is called the Whittaker model of "v . It is
well known that any component of a cuspidal G module is generic.

G iven ", consider Wy & 0 in W("v) for all i;, such that Wy is the
normalized unramified vector Wv° (it is ^  in varian t and Wv°(l) =
1) for all v £ V. The function !'(x) =  $ p G ^ \ & ^ ' ( / ' X ) ' where
^ ( x ) =  *% Wy(xv), is a cuspidal function in the space of " c LQ(G) .
Substituting the series definition of E(x ,&,#,s) = +ZQ\G f(y,>  s)
in

/  !"(x)!'(x)E(x, &,#,s)dx {!" e"c L0(G))
JZG\G

one obtains

!"(x)!'(x)f(x ,s)dx= f !n{x)W\x)f{x, 5) rfx.
ZQ\G JZN\G

Since W'{nx) =  ^(fl)W(.x), and fN^!"(nx)$(n)dn = W!»(x)
is the Whittaker function associated to the cusp form !", the integral
is equal to

W!,,{x)W\x)f{x,s)dx

W-,,{,)W
f{x)&{.x)#(/t\ x)\/z\x\ sdx.

N\G
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If !" is also of the form !"(x) = "PeN\Q W"{px), where W"{x) =
Yl# W"(xv) is factorizable, then W!» =  W" and the integral factorizes
as a product over all # of the local integrals

(3.1) /  Wi\x)$ (x)%#(ex)&#(drtx)\detx\ s
#dx9

J \
provided that %(x) =  l\ v %v{xv).

When Wl =  W® =  W"9 and ! v is the characteristic function
"£ of R" (and v & V), the integral (3.1) is easily seen (on using
Schur function computations; see [F3], p. 305) to be equal to
L(s 9 n# ®  &v x nv). For a non archimedean v E V the L factor
is defined in [JPS], Theorem 2.7, as a "g.c.d" of the integrals (3.1) for
all WXv , W2# G  $%(& v) and %v . In the archimedean case the L f actor
is defined in [JS1], Theorem 5.1. It is shown in [JPS] and [JS1] that
the L f actor lies in the span of the integrals (3.1). The product of
the L factors, as well as the various manipulations above, converges
absolutely for s in some right half plane.

4. LEMMA. The functions Wfj G  W{'v) {and so !' e &) can be
chosen to have the property that !! factorizes as 0 ^ !r

v .

Proof. Since W^  is '^ invariant for v & V, so is !!, and we have

where !® is the ^  in varian t function on G# which takes the value
1 at 1 and is the eigenfunction of the operators '#(!#), !v eMv ,
with the eigenvalue t('#).

The space ' c LQ(G) is spanned by factorizable functions, namely
!' is a finite sum over j (1 < j < J) of products ® v !

f
JV of functions

!'j# on Gv (which are smooth, compactly supported modulo Zv,
transform under Zv via e#), with !f

j# =  !® for all v & V. Each
of the functions !\ # {v G  V) is (right) invariant under a congruence
subgroup Ky of the standard compact subgroup Kv of G v . Namely
!\ v is a non zero vector in the finite dimensional space 'v

('v of Af 
fixed vectors in 'v. The Hecke algebra H('^) of ^ biinvarian t
compactly supported modulo Z# functions on Gv which transform
under Z# via ("1 generate the algebra of endomorphisms of the finite
dimensional space 'v

('v. Consider p v G H ( ^ ) such that 'v(!#) acts
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as an orthogonal projection on !\ " . Then {®veVnv{!v))!
t lies in

#, is of the form 0 ^ !'l" , and is defined by the Whittaker functions
y, as required.

Proof of Theorem 1. For ! as in the theorem, and So as in (2.3) j ,
we shall choose Wy e W(#v) with factorizable !f(x) =  0 V !'"(x") =
$PeN\Q W{px) and proceed to show the vanishing of the correspond 
ing summand in (2.5) j . Recall that by the assumption of Theorem
1 there is an F place v2 such that nVj is supercuspidal. Let ^i be
another F place in V, say where ! and % are unramified. Put
V" = V   {"2} and V for V"   {vx} .

Consider the matrix coefficient !v (x) =  (#v2(x~ &)'v >  '" ) of the
supercuspidal GVi  module #Vi. N ote that !f

" is a Q °  function on
Gy2 modulo Zy2, and ( , •) denotes the natural inner product. The
function !'v is smooth and compactly supported on GVi modulo ZVi,
and it is a supercusp form (/  !'v (xny) dn = 0, n e NVi — unipotent
radical of any parabolic subgroup of GVi). It is well known that a
function ! = 0 !" whose component at v2 is a supercusp form is
cuspidal. By the Schur orthogonality relations, the convolution oper 
ator #Vi{!

f
v ) acts as an orthogonal projection on the subspace gener 

ated by !y . Working with ! =  0 !v whose component at v2 is !v

we then have that ! is cuspidal and that the sum in (2.5) j ranges
only over the ! (=  !#) whose component at v2 is !v (up to a scalar
multiple).

As in the proof of Lemma 4, for each " e V we may choose !"

in H ( i^ ) such that nv(!") acts as an orthogonal projection to the
subspace of #'" spanned by !'v. Choosing the components !" of !
at v e V to be of the form !% * !'" , with any !", the sum in (2.5) j
for our # extends only over those ! in the orthonormal basis of the
chosen # c LQ(G) whose component at v ' v\  is !'" . But ! is left
G invariant, being a cusp form, and G =  ( ? " ^ G" Hence the only
! which contributes to the sum in (2.5) ; is !f, whatever !" is.

We still need to choose !v such that ! =  0 !" be discrete. It
suffices to choose !V( to be supported on the regular elliptic set in
GV[. Moreover, since !'" is right invariant under a compact open
subgroup K'" of KV( c GV(, we can choose the support of !V( to be
contained in ZVK'V . Then nV&(!V&) acts as a scalar on !f, and we
normalize !V( so that this scalar be one.

In conclusion, for any choice of Wy e W(#v) for all v , with Wy =
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® for ! g V, and any choice of "v (v e V), we have that

JZG\G

= ! /  {nv{"v)Wl){x)Wl
!{x)#v{$x)%!{&t\ x)\&tXx\ s

vdx
veVJN!\Gv

L(s, '! ®%v x *„ )

vanishes at so to the order ra. Here nV(("V()Wy =  W^  . In fact we
may choose f̂ J to be W® e W('!)9 and "^ to be "$ . Since '!
and %V( are unramified, the corresponding integral is then equal to
the L factor, so v\  can be deleted from the set V.

To complete the proof of Theorem 1, note that the L function
L{s, '! ® %v x 'v) lies in the span of the integrals (3.1). Hence the
assumption for every separable extension E of F of degree n that
L(s, %\E) vanishes at s = SQ to the order ra, implies the vanishing
of ! i ^ , ^ ® ^ x ^ ) to the order ra. This completes the proof
of Theorem 1.
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