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A. Introduction. The question of describing the decomposition of the restric-

tion of an irreducible complex representation � of a group G to a subgroup H

of G is fundamental in representation theory. The Frobenius reciprocity law:

HomH(�; �) = HomG(�; Ind (�;G;H)) (see, e.g., [BZ1], Theorem 2.28) asserts

that the restriction �jH of � to H has the irreducible H-module � as a quotient

precisely when the G-module � embeds in the G-module Ind (�;G;H) induced to

G from � on H. Since HomH(�; �) = HomH(� 
 ��; C ), where �� is the H-module

contragredient to �, the question of the multiplicity of � in � can be stated in terms

of linear forms on �
H ��. The study of such forms for real groups, especially when

H is the group of �xed points of an involution on a real group G, has led to the

rapidly expanding subject of harmonic analysis on such symmetric spaces G=H (if

� is trivial; (G�H)=H in general); see, e.g., Flensted-Jensen [FJ], Oshima-Matsuki

[OM], Bien [Bi].

Various facts are known also when G is a p-adic reductive group. As an example

we recall a result of Gelfand-Kazhdan [GK] and Bernstein-Zelevinski [BZ2], which

asserts that the restriction of an irreducible admissible generic (= having a Whit-

taker model) representation � of G = GL(n; F ), where F is a non-archimedean

�eld, to its subgroup H = GL(n� 1; F ) (H ,! G via h 7!

�
h 0

0 1

�
), contains each

irreducible admissible generic representation � of H with multiplicity one. Equiv-

alently, there exists a unique up-to-a-scalar non-zero H-invariant linear form on

� 
 ��. Recently J. Bernstein showed this (unpublished) for all irreducible admissi-

ble � and �, not necessarily generic, namely that (GL(n; F ); GL(n� 1; F )) { and

more generally (GL(n; F ) � GL(n � 1; F ); GL(n � 1; F )) and (O(n; F ) � O(n �

1; F ); O(n� 1; F )) { is a \Gelfand pair" (see [DP] when F is R and � is unitary,

for the pair (GL(n; F ); GL(n� 1; F ))).

When F is a global �eld with a ring A of adeles, � = 
�v an irreducible cus-

pidal (hence generic) representation of G = G(A ), G = GL(n), and � = 
�v an

irreducible cuspidal representation of H = H(A ), H = GL(n� 1), the local result
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implies that there exists at most one (up-to-a-scalar) non-zero form on �
 ��. Such

a form actually exists, since the local forms have the property (a proof is given in

a remark at the end of this Introduction) that for almost all v they are non-zero at

�n 
 ��n�1; here �n is a non-zero Kv-�xed vector in �v, Kv = G(Rv), Rv = ring of

integers in the completion Fv of F at the non-archimedean place v, and ��n�1 is a

non-zero KH
v -�xed vector in ��v, where K

H
v = H(Rv).

But there is a purely global, automorphic, statement, of number theoretic inter-

est, concerning a speci�c shape of this linear form on �
 ��. The question is whether

the global form is a multiple of the automorphically de�ned bilinear form B = B1=2

on � 
 ��, where

Bs(�n; �n�1) =

Z
HnH

�n

��
h 0

0 1

��
�n�1(h)j dethj

s�1=2dh;

�n ranges over � � L2
0
(GnG ) and �n�1 over � � L2

0;!(HnH ). We again take the

algebraic group G to be GL(n), and assume that the central character of � is

unitary and �xed, and that, !, of �, is unitary. Then �� consists of the complex

conjugates �n�1 of the �n�1 in �. The cuspidal representations �; � are realized in

the spaces L2
0
(GnG ), L2

0;!(HnH ) of cusp forms (which transform under the center

via the �xed character in the case of G and via ! in the case of H). The integral

de�ning Bs is clearly convergent since the cusp form �n is rapidly decreasing (and

so is �n�1).

To answer this question, consider the Fourier expansion of the cusp form �n

�n(g) =
X

p2NHnH

Wn(pg)

with respect to the character  (x) =  (
P

1�i<n xi;i+1) of NnN , where N is the

upper triangular unipotent subgroup of G, and  is a non-trivial complex character

of A mod F . Here NH = N \H, and

Wn(g) =

Z
NnN

�n(xg) (x)dx satis�es Wn(xg) =  (x)Wn(g):

Then

Bs(�n; �n) =

Z
NHnH

Wn

��
h 0

0 1

��
�n�1(h)j dethj

s�1=2dh

=

Z
NHnH

Wn

��
h 0

0 1

��Z
NHnNH

�n�1(xh) (x)dxj dethj
s�1=2dh

=

Z
NHnH

Wn

��
h 0

0 1

��
Wn�1(h)j dethj

s�1=2dh:

This last integral is \Eulerian", that is, can be expressed as a product of local

integrals, when Wn and Wn�1 factorize as local products:

Wn((gv)) =
Y
v

Wn;v(gv); Wn�1((hv)) =
Y
v

Wn�1;v(hv):
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In general, Wn and Wn�1 are �nite linear combinations of such local products.

At almost all places the local component is the normalized (value vol (Kv)
�1 or

vol (KH
v )

�1 at the identity) right Kv- (or K
H
v -)invariant Whittaker function W 0

n;v

or W 0

n�1;v.

Using Shintani's explicit form [Sh] of these invariant Whittaker functions, and

the theory of Schur functions [M], a computation { relegated to the remark at the

end of this Introduction { shows that the local integral

Z
NH;vnHv

W 0

n;v

��
h 0

0 1

��
W

0

n�1;v(h)j dethj
s�1=2
v dh

is equal to the local L-function L(s; �v 
 ��v) associated to the unrami�ed com-

ponents �v and ��v of � and �� at v. At the remaining �nite set of places of F

where �; � or  are rami�ed, or (Wn;v;Wn�1;v) are not (W
0

n;v;W
0

n�1;v), the analy-

sis of [JPS], Theorem 2.7, shows that the local integrals are convergent for Re (s)

large, and relates them to a local factor L(s; �v 
 ��v), which is now de�ned to

be the normalized generator of the fractional principal ideal generated by these

local integrals (see [JS2], Theorem 5.1, for the archimedean case). The product

L(s; �
 ��) =
Q
v

L(s; �v
 ��v) has analytic continuation to the entire complex plane

as a holomorphic function in s which satis�es a functional equation relating its

value at s and 1� s, and the automorphic criterion alluded to above is as follows.

The bilinear form on � 
 �� is a multiple of B, namely B is not identically zero

on � 
 ��, precisely when L(s; � 
 ��) does not vanish at s = 1=2.

It is clear from the argument above that when � is not generic, but � is still

cuspidal, then Bs, which is still de�ned by a convergent integral, is zero.

In the analogous situation of the pair G = SO(n) and H = SO(n� 1), B. Gross

and D. Prasad [GP] conjectured in particular that (1) dimC HomHv (�v
 ��v; C ) � 1

for every irreducible admissible Gv-module �v and Hv-module �v, and that (2) for

cuspidal representations � = 
�v of G and � = 
�v of H with HomHv (�v
��v; C ) =

C for all v, the form B on � 
 �� is non zero precisely when L(1
2
; � 
 ��) 6= 0, where

L(s; � 
 ��) is the standard L-function associated to � 
 ��. When n = 3 the pair

with G = SO(3) = PGL(2) had been studied by Waldspurger [W] who in fact

took H to be an elliptic torus of G which splits over a quadratic extension E

of F , and showed that B 6= 0 precisely when (in addition to the local condition

HomHv (�v; �v) = C for all v) L(1=2;�
 �) 6= 0, where � is the base-change of the

cuspidal � to PGL(2; A E ) and � is a character of A �E =E
� = H(A )=H (F ). When

n = 4 the groups SO(4) and SO(3) are related to GL(2)�GL(2) and PGL(2), the

local question was treated by Prasad's thesis [P], and the global (for some F , � and

�) by Harris and Kudla [HK] using techniques of Garrett [G], Piatetski-Shapiro and

Rallis [PR]. The multiplicity of � in � is naturally related in these cases to that of

�0 in �0, where �0, �0 are the corresponding representations of the inner forms of G

and H (when these exist).

Conversations with D. Prasad on the conjecture of [GP] were a source of inspira-

tion to the present work. While visiting Prasad, in email correspondence concern-

ing the archimedean case of the conjecture made in [F2] and studied in [F3] for the

pair G = GL(n; C ) and H = GL(n;R) (more precisely G = Res E=F (GL(n)=F ),
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H = GL(n)=F , E=F = quadratic extension of local or global �elds of character-

istic 6= 2), F. Bien alluded to work which was identi�ed for us by J.G.M. Mars as

that of van Dijk and his collaborators; see [DP] and references there. In [DP] the

H = GL(n�1;R)-invariant distributions on unitary G = SL(n;R)-modules � were

studied.

Theorem 5.1 of [DP] essentially says that the unitary irreducible non-trivial

G-modules � which are H-spherical, namely admit a non-zero H-invariant linear

form, are of the form I(11 � � ;G;P ), normalizedly induced from the representa-

tion (
a b

0 c
) 7! �(c) of the standard parabolic subgroup P = Pn�2;2 of G of type

(n � 2; 2) (thus a 2 GL(n � 2;R), c 2 GL(2;R), det a det c = 1), where � is a

unitary in�nite dimensional representation of PGL(2;R) (or GL(2;R), with a triv-

ial central character). This work was another source of inspiration for our work.

We were especially intrigued by the occurrence in a new context for us of \small"

representations of the type which attracted the attention of Kazhdan, Savin, and

others (see, e.g., [FKS]).

Since packets are singletons, and by virtue of multiplicity one and rigidity theo-

rems in the global case, it is more natural to work with the group G = GL(n), than

with SL(n). An analogue over a non-archimedean �eld F of the theorem [DP] of

van Dijk and Poel is proven in Proposition 0 in the Appendix below. It would do no

harm to extend our perspective a little and consider a character �(h) = �(deth) of

H = GL(n� 1; F ), where � is a character of F�. It asserts that the irreducible ad-

missible unitarizable G = GL(n; F )-modules � which admit a non-zero linear form

which transforms under H via � must be �(det), or of the shape I(��� ;G;P ), nor-

malizedly induced from the parabolic of type (n � 2; 2) where � is viewed here as a

character of GL(n� 2; F ), and � is an irreducible unitarizable in�nite dimensional

representation of the 2 � 2 factor of the Levi subgroup. The proof of Proposition

0 is based on the Gelfand-Kazhdan [GK] and Bernstein-Zelevinski theory [BZ2]

concerning the restriction of a representation of GL(n; F ) to the subgroup Pn of

[BZ2],x3. We show in Proposition 0.1 in the Appendix that these I(�� � ;G;P ) do

have a form which transforms under H via �. Consequently if an irreducible unitary

automorphic in�nite dimensional representation � of G = G(A ) admits a non-zero

form which transforms under H = H(A ) according to �(h) = �(deth), where now

� is a character of A �=F�, then � is of the form I(� � � ; G ;P), normalizedly in-

duced from the parabolic of type (n� 2; 2), where � is the associated character of

GL(n� 2; A ) and � is an automorphic unitary representation of GL(2; A ) with no

one dimensional components.

The restriction of an irreducible representation of GL(n) over a �nite �eld Fq to

the subgroup GL(n� 1; q) was considered by Thoma [Th], and by Zelevinsky [Z2],

Corollary 13.8, p. 148. Their results ("branching rule") in the �nite �eld case are

analogous to those of Proposition 0, in the p-adic case. The case of the compact pair

U(n;R), U(n� 1;R), and that of the analytic �nite-dimensional representations of

GL(n; C ) (and GL(n�1; C )), is also reviewed in the Appendix, following the proof

of Proposition 0, using the "Gelfand-Cetlin" basis technique of [Zh].

Our main interest in this paper is in the purely global, or automorphic, notion of

G -modules with a form transforming under H via �, or more precisely in the bilinear

form B on � 
 ��1. This B would be the linear form on � of the shape B(�) =
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R
HnH

�

��
h 0

0 1

��
�(h)�1dh. It was noted above that this form is identically zero if

� is cuspidal. If � is not cuspidal then it can be realized in the space of automorphic

forms by means of Eisenstein series �(g) = E(g;�; �; �), when � ' I(�; �), where �

is a discrete series representation of a (standard, not necessarily proper) parabolic

subgroup P of G (� is trivial on the unipotent radical N of P), � 2 iA�P where A�P
is some real space, and � lies in the G -module I(�; �) normalizedly induced from

the data �
 eh�;Hi on P.

The problem raised by this realization is that the Eisenstein series is slowly

increasing (in a Siegel domain) and is no longer rapidly decreasing. Consequently

the integral which should have de�ned B(�) does not converge. To overcome this

problem it is natural to apply B to the truncation �TE of the Eisenstein series,

where the truncation operator �T , for T in A+
0
, is the one introduced by Arthur [A2]

to develop the trace formula. Since E is slowly increasing, �TE (for a su�ciently

regular T ) is rapidly decreasing, and the integral which de�nes B(�TE) converges

(absolutely).

We computed B(�TE) in two important cases. The �rst is when P = P
(n�2;2)

and � = �1��2, where �1 is a character of A
�=F�, or of GL(n�2; A )=GL(n�2; F )

via the determinant map, and �2 is a cuspidal GL(2; A )-module. Then � lies in the

one dimensional (over R) space iA�P ' iR, and the result of the computation is (a

linear combination of) the product of a slowly increasing function in �, and t�=�,

where t is the projection of T to a line in the positive chamber. The multiple is zero

unless �1 = �, and then it is the value at (n � 1)=2 of an L-function of �2 
 ��1,

depending on �. In any case the result is supported on the line I(�1�
�=(n�2) �

�2�
��=2) of representations (here �(x) = jxj, x 2 A

� ), and not only at � = 0 as

Proposition 0, Appendix, which is the non-archimedean analogue of [DP], would

suggest.

The second case is when � = �1��2��3 is a character of the minimal parabolic

subgroup P = B of G = PGL(3). The result of a lengthy computation shows that

B(�TE) is a linear combination of terms of the form: Product of a nice function

in �, depending on �, and a factor of the form t`(�)=`(�) or t
`2(�)
1

t
`2(�)
2

=`1(�)`2(�),

where t, ti are components of T and the `; `i are linear forms in the components

of �. Here � lies in the two dimensional (over R) space iA�B(' iR2), and not in

a one-dimensional subspace as could have been predicted by Proposition 0, Ap-

pendix, and [DP]. Some of the forms `i are not homogeneous. But the kernels of

the homogeneous forms `i, ` do de�ne the representations � ' I(�; �) which are

permitted by Proposition 0, Appendix, and [DP], to have H = GL(2; A )-invariant

forms.

To explain this phenomenon note that the representation I(�; �) occurs in a

series of representations. As � varies over the space iA�P , and � through a set

of representatives for the set of orbits � 
 eh�;Hi of discrete series representations

of the various parabolic subgroups (more precisely, their Levi components), all

automorphic representations are obtained. In particular, for any test function f 2

C1c (G(A )), the convolution operator r(f) on the space of automorphic forms is an

integral operator: (r(f)�)(g) =
R
GnG

Kf (g; h)�(h)dh, whose kernel has the spectral
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decomposition

Kf (g; h) =
X
P

n(P )�1
X
�

Z
iA�
P

X
�1;�2

(I(f; �; �)�1;�2)E(g;�2; �; �)E(h;�1; �; �)d�;

see Arthur [A1]; the orthonormal bases �i of I(�; �) have standard �niteness prop-

erties. The matrix coe�cient (I(f; �; �)�1;�2) is rapidly decreasing in � 2 iA�P as

j�j ! 1, being the Mellin transform of a Schwartz function. Hence the integrals

and sums here are absolutely convergent.

Our strategy is then to apply the truncation operator �T to the second variable,

h, in Kf (g; h), multiply by �(h) and integrate over HnH . Changing the order of

integration over h and � we obtain an integral over � 2 iA�P of an integrand which

has the factor B(�TE(h;�1; �; �)). Also we multiply this kernel by a character

 (g) of the compact group NnN , where N is the upper triangular subgroup of G,

and integrate over g 2 NnN. Another factor in the integrand is then the Fourier

coe�cient E (�2; �; �) of E(g;�2; �; �). By virtue of the computation of B(�TE),

the rapid decay of the matrix coe�cient, and the elementary Lemma 10, asserting

that lim
t!1

R
iR
f(�)(t�=�)d� = f(0) if f is a Schwartz function on iR, the limit ofRR

�TKf (x; h) (x)�(h)dx dh as T !1 (T su�ciently regular) can be taken, and

the I(�; �) which contribute to this limit are precisely those which are permitted by

Proposition 0, Appendix, and [DP], to have a non-zero H = H(A ) invariant form.

On the other hand the integral (�)
R
NnN

R
HnH

Kf (x; h)�(h) (x)dhdx converges

absolutely, and so is equal to lim
T!1

RR
�TKf (x; h) (x)�(h)dh dx. Indeed, the ker-

nel Kf (g; h) of r(f) has the simpler \geometric" expansion
P
2G

f(g�1h), and an

elementary computation shows that (�) is integrable, equal to zero unless  has

index at most two, and can be expressed as a sum of a certain new type of orbital

integrals, the orbit being U(A )gH (A ) for some subgroup U of N , when  has index

two. Note that in general, given  and a non-trivial character  of A mod F , there

is � = (�1; : : : ; �n�1) 2 F
n such that  =  �, where  �(x) =  (

P
1�i<n

�ixi;i+1) on

x 2 NnN . The index of  =  � is the number of non-zero entries in �. In dealing

with this \geometric" side, it is more convenient to work with another embedding

of GL(n� 1) as H in G = GL(n); see the Statement of Result, or Geometric Side,

below.

Our Fourier summation formula is the resulting identity of a sum of orbital

integrals on one hand, and a sum of distributions supported on the variety of rep-

resentations of the form I(�1��2; G ;P), where P is the parabolic of type (n� 2; 2),

�2 is an automorphic generic representation of GL(2; A ), and �1 is a character of

A
�=F� and so also of GL(n� 2; A )=GL(n � 2; F ), via the determinant.

It is called \Fourier" since it involves the Fourier coe�cient E (�2; �; �), and the

character  occurs also in the orbital integral. It would be misleading to call our

formula a \trace formula", as we did in an analogous context in [F2], since no traces

feature in the formula. It is a summation formula, comparing a sum of integrals

with a sum (possibly continuous) of distributions parametrized by representations.

Our original question concerns the identi�cation of the representations which occur

in this parametrizing set.
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The proof of the summation formula is complete only in the case of n = 3.

Indeed, the computation of
R
HnH

��1(h)�TE(h;�; �; �)dh is carried out for all par-

abolic subgroups P only in the case of G = GL(3). For n � 4 it is merely shown

that if
R
��1�TE has the expected form, then comparison with the geometric side

implies that only � = I(�; �) with index two (in the obvious sense) occur, and these

are of the form I(�1 � �2; G ;P(n�2;2)) as above, or induced from a character of a

parabolic of type (n1; n2; n3). It would be natural to conjecture that at least two of

the n1, n2, n3 are equal to 1 if � is in the support of the summation formula, but we

did not go beyond computing
R
��1�TE when ni = 1 (i = 1; 2; 3), that is, n = 3.

To obtain the formula in the n � 4 case we used a consequence of the theory of the

Bernstein center (see [BD] or [B]) which permits choosing a component fv of f such

that �v(fv) is zero unless �v is a constituent of an induced Iv(�1�� � ���n�2��2),

where �2 is supercuspidal on GL(2; Fv) and �i are characters of F
�
v .

The case of n = 2 is also studied in full, mainly as an example to shed light on

the general case. This is similar to a case treated by Jacquet [J2] { although his

truncation seems to be slightly di�erent than the one we use (see the computations

of [J1], p. 211, on which [J2], p. 127, is based) { to reprove Waldspurger's beautiful

theorem [W] about a cuspidal PGL(2; A )-module �, that there is a character � of

A
�=F� with �2 = 1 and L(1

2
; � 
 �) 6= 0, if and only if � has square integrable

components or "(1
2
; �) = 1 if not.

In the case of n = 2, a similar summation formula is compared in [J2] with

an analogous formula which is obtained on integrating the kernel k ~f (x; y) of a

convolution operator ~r( ~f) on L2( eGneG ), against a character  (x�1y), on x; y 2 NnN ,
where now N =

��
1 �

0 1

��
. In [J2] the group eG is taken to be the two-fold

covering group of SL(2). For n � 3 the group eG with which our summation

formula should be compared is GL(2). In the case of n = 3 the required identities

of Fourier orbital integrals are proven in [F4] for general and spherical functions

(see Propositions 7 and 16 there). This is the case of a place which splits in the

quadratic extension of [F4]. These identities permit a comparison of our formula

with the summation formula of [F2] on GL(2; A ) obtained there on integrating the

kernelKf (x; y) multiplied by  (x
�1y), on x; y 2 N(F )nN(A ). Once executed, such

a comparison would show that the support of our Fourier summation formula for

GL(3) consists of all I(���), where � is a cuspidal representation of GL(2; A ) or one

induced from a unitary character of the upper triangular subgroup of GL(2; A ). It

will be interesting to carry out the transfer of orbital integrals for such a comparison

also for n > 3, but we have not done this. As the present paper is already su�ciently

long, and the comparison of our formula with that for GL(2; A ) is similar to the

comparisons of [F2] and [F4], this will not be done here.

It is interesting to note the occurrence of the factor of the form L(�2
 �
�1; (n�

1)=2) in the term in the summation formula which is parametrized by � = I(�1 


�2; G ;P(n�2;2)) where �2 is a cuspidal GL(2; A )-module and �1 a character (neces-

sarily �), and n � 2 (n = 2 included). Trying to approximate between the case

of a form B on � 
 ��1, � a character of HnH , which underlies our summation

formula, and that of B on � 
 ��, where � and � are cuspidal on G and H as

mentioned at the beginning of this Introduction, one may wish to deal with the
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question in the general context of � 
 ��, where � is an automorphic G -module,

and � is a discrete-series (irreducible) representation of H . Moeglin and Wald-

spurger [MW1] have shown that each such � is the unique subrepresentation of the

G -module I(�m�
(k�1)=2

� �m�
(k�3)=2

� � � � � �m�
�(k�1)=2) which is normalizedly

induced from the indicated representation of the (Levi factor of the) parabolic sub-

group of type (m; : : : ;m), where mk = n� 1, �m is a cuspidal GL(m; A )-module,

and �(x) = jxj (x 2 A
� ).

It is tempting to ask whether it is true that if � 
 �� admits a non-zero form

which is automorphic (such as B, or in the sense of occurring in the support of

a suitable global summation formula as here), then (at least the least degenerate,

or unitarizable) � is of the form I(�1 � �m+1), induced from the parabolic of type

(n � m � 1;m + 1), where �1 is a character and �m+1 is a generic automorphic

GL(m+1; A )-module, and the standard L-function L(s; �m+1
 ��m) does not vanish

at k=2. The extreme cases where m = n � 1, k = 1, and m = 1, k = n � 1, are

those elaborated on in this Introduction. The second condition is non-trivial only

when k = 1, since by Jacquet-Shalika [JS1], [JS2], and Shahidi [Sh1], the L-function

L(s; �m+1 
 ��m) does not vanish on Re (s) � 1. We have no further evidence to

answer the question a�rmatively or otherwise. But it is important to understand

that the occurrence of the factor L(�2
�
�1; (n�1)=2) in our formula suggests that

the condition that L(s; � � �) does not vanish at s = 1=2 occurs only when � is

cuspidal, as in the example discussed above for GL(n)�GL(n�1), in Waldspurger

[W] for SO(3)� SO(2), and in Harris-Kudla [HK] for SO(4)� SO(3). In the case

U(3)�U(2) of [F4] this L-function condition does not appear since � is taken there

to be a character, namely a non-cuspidal discrete series representation of U(2; A ).

Our techniques are likely to be applicable with other pairs, such as SO(n),

SO(n�1), and U(n); U(n�1), but only when � is a character. This is indeed done

in [F4] in the case of U(3); U(2), where global and local applications concerning

representations of U(3) with a U(2)-invariant linear form, are deduced. It would

be interesting to apply these techniques in the other situations too.

Local L-functions. The Whittaker function computation alluded to above is a

minor variation on that given in [F1], p. 305. In the notations of [F1] we consider

the integral

	(s;Wn;Wr) =

Z
NnG

Wn

��
g 0

0 1

��
Wr(g)j det gj

sdg

where Wr =W 0

r is the normalized unrami�ed  -Whittaker function of the unrami-

�ed G = GL(r; F )-module � with Hecke parameters y1; : : : ; yr, andWn =W 0

n is the

normalized unrami�ed  -Whittaker function of the unrami�ed GL(n; F )-module �

with Hecke parameters x1; : : : ; xn; n > r. We take  which is trivial on the ring R of

integers in the non-archimedean �eld F , but not on ��1R, where � is a uniformizer.

The normalized unrami�ed Whittaker function has been computed by Shintani

[Sh]. His result is recorded in the Lemma of [F1], p. 305. Using this Lemma, in

the notations of [F1], our integral takes the formX
�

Wn(�
(�;0))Wr(�

�)j��js��1r (��);
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where the sum ranges over � = (�1; : : : ; �r) 2 Z
r, �1 � �2 � � � � � �r � 0, we put

(�; 0) for (�1; : : : ; �r; 0; : : : ; 0) 2 Z
n, and emphasize the dependence of the modular

function � of [F1], p. 305, on GL(m), by the index m(= r or n). Again by the

Shintani Lemma this sum isX
�

s(�;0)(x)�
1=2
n (�(�;0))s�(y)�

1=2
r (��)j��js��1r (��):

But

�n(�
(�;0)) = �r(�

�)j��jn�r:

Hence the sum isX
�

s(�;0)(x; 0)s(�;0)(q
�s�(n�r)=2(y; 0)) =

Y
i;j

(1� xiyjq
�s�(n�r)=2)�1

by virtue of homogeneity properties of the Schur function s� ((3.1), p. 24 of Mac-

donald [M]), of the homomorphism �m;n of [M], p. 24, between (3.2) and (3.3), and

the identity (4.3) of [M], p. 33, which was used already in [F1], p. 305. The last

product is equal to the local L-function

L(s+
n� r

2
; � 
 �)

attached to �
 �, at s+ (n� r)=2. This is the required result as mentioned above

when r = n� 1 and s is replaced by s� 1=2.

B. Statement of Result. To simplify the notations we work with G = PGL(n).

The summation formula is an equality of two sums of distributions on G(A ), A =

ring of adeles of a global �eld F of characteristic 6= 2, namely complex valued linear

functions in f 2 C1c (G(A )). These distributions depend on a (unitary, complex

valued) character � (to simplify the notations we take � of order dividing n) of the

idele class group A
�=F�, and on an additive character  6= 1 of A mod F into C � .

The \geometric" side of the summation formula { see Proposition 1 { isX
b2F�

	(gb; f ; �; ) + �3;n	(g0; f ; �; ) + �2;n[	(g
+

0
; f ; �; )+ 	(g�

0
; f ; �; )]:

Here �i;n is 1 if i = n, and 0 if i 6= n. For b 2 F� we put gb = diag (1; : : : ; 1; b) 2

G(F ). Also

g0 =

0
@ 1 0 �1

1 0 1

0 1 0

1
A ; g+

0
=

�
1 �1

1 1

�
; g�

0
=

�
1 1

1 �1

�
:

To introduce 	, note that the centralizer

H =

8<
:h =

0
@ a p b
tq z �tq

b �p a

1
A 2 G; hx0h

�1 = x0 =

0
@ 1 0 1

0 0 0

1 0 1

1
A
9=
;
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of the n�n matrix x0 (which has four non-zero entries, at the corners; also, p; q are

row vectors of length n�2, and z is an (n�2)� (n�2) matrix) in G, is isomorphic

to GL(n � 1) when n � 2. Denote by � : H ! GL(n � 1), this isomorphism.

In the case of n = 2 it is given by �

��
a b

b a

��
= diag ((a + b)=(a � b); 1). Put

�(h) = �(det �(h))(= �(deth) since �n = 1); it is a character of H(A )=H (F ) in

C
� . Also denote by U the group of n� n matrices of the form u =

0
@ 1 p b

0 I tq

0 0 1

1
A,

where I is the identity (n � 2) � (n � 2) matrix, and put  (u) =  (p1 + qn�2)

where p = (p1; : : : ; pn�2), q = (q1; : : : ; qn�2). Then  is a non-trivial character of

U(A )=U (F ) in C
� . Denoting by du and dh Haar measures on U(A ) and H(A ), the

\geometric" distributions are

	(g; f ; �; ) =

Z
U(A)\gH (A)g�1nU(A)

Z
H(A)

f(u�1gh)�(h) (u)dh du:

The spectral side of the summation formula is more di�cult to express, and to ob-

tain. In any case we now writeH for the subgroup

��
h 0

0 1

�
2 G; h 2 GL(n� 1)

�
of G = PGL(n), and write the spectral side in three di�erent cases, when n = 2,

when n � 3 for a special f , and for n = 3 with a (more) general f .

In the case of G = PGL(2) the spectral side is the sum of the following terms.

The main term { see (2)1 below { is

X
�

X
�

W (�(f)�)L�(1=2; � 
 ��1):

The �rst sum ranges over all cuspidal irreducible G(A )-modules �, and the second

over an orthonormal basis f�g of smooth functions in the automorphic realization

of � � L2
0
(G(F )nG(A )). Here

W (�) =

Z
N(F )nN(A)

�(u) (x)du; N =

�
u =

�
1 x

0 1

��
;

is the  -Whittaker functional on the space of automorphic forms, and

L�(t; � 
 ��1) =

Z
F�nA�

�

��
a 0

0 1

��
jajt�1=2�(a)�1d�a

=

Z
A�

W (�

��
a 0

0 1

��
�)jajt�1=2�(a)�1d�a

is the L-function of � 
 ��1 which is associated with �, at t.

The other terms are

1

2

X
�

X
�

Z
iR

E (I(f; �; �)�; �; �)L�(
1

2
��; �=�)L

�
(
1

2
��; (��)�1)L

�
(1�2�; ��2)�1d�
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and
�

2

X
�

X
�

�
E (I(f; �;

1

2
)�; �;

1

2
)[�(��)�(1) + �(��)�(w)]

� E (I(f; �;�1=2)�; �;�1=2)[�(��)(M(w;��1;�1=2)�)(1)

+�(�=�)(M(w; ��1;�1=2)�)(w)]
	
:

The sums over � are taken over a set of representatives of unitary characters � of

A
�=F�, up to multiplication by �i�, � 2 R, �(x) = jxj, x 2 A

�=F�. Then �

ranges over an orthonormal basis { consisting of smooth functions { in the space

of the normalizedly induced PGL(2; A )-module I(�; �) (thus �

��
a b

0 c

�
g

�
=

�(a=c)ja=cj�+1=2�(g)). We put w =

�
0 �1

1 0

�
, and M(w; �; �) : I(�; �) !

I(��1;��) is the standard intertwining operator. Also �(�=�i) (i = 1;�1) is 0

if � 6= �i and 1 if � = �i, on A
0 = fx 2 A

� ; jxj = 1g. If � = �i on A
0 we may { and

do { choose the representative � to satisfy � = �i on A
� .

In applications, the continuous sum over I(�; �), � 2 iR, is of little or no impor-

tance, and so are the contributions associated with I(�;�1=2) (since no cuspidal

representation has a component of the form I(�v;�1=2)).

Next we describe the spectral side in the general n � 3 case, for a test func-

tion f 2 C1c (G(A )) of the form f = fufu, such that the component fu at some

non-archimedean place u of F has the following property. Fix a supercuspidal

PGL(2; Fu)-module �2u, and write I(�2u; �), � = (�1; : : : ; �n�2; �n) for the Gn-

module normalizedly induced from the representation ��1u �� � ���
�n�2
u ��2u
�

�n
u of

the (Levi subgroup of the) parabolic subgroup of type (1; 1; : : : ; 1; 2). Here �u(x) =

jxju and �1 + � � � + �n�2 + 2�n = 0. Then:

fu has the property that �u(fu) is 0 unless �u is a constituent of I(�2u; �) for

some �.

The theory of the Bernstein center has the Corollary, recorded as Proposition

12 below, that there exist plenty of non-zero functions fu 2 C1c (Gu) with this

property. We need such fu to dispose of continuous sums of representations which

contribute to the summation formula, whose computation is beyond the scope of

this paper. Also we emphasize that our computation in the n > 3 case is only

sketched, and as such it is incomplete.

Then the spectral side is

1

2

X
�2

X
�

E (I(f; �; 0)�; �; 0)

h
L
(M(s2;��2;0)�)K;��1

(�2 
 ��1; (n� 1)=2) + L
�
K;��1

(��2 
 �; (n� 1)=2)
i
:

Here �2 ranges over all cuspidal representations of GL(2; A ) (with the supercuspidal

component �2u at u) whose central character is �
2�n; � is the representation �� �2

of GL(n � 2; A ) � GL(2; A ), extended trivially to P (A ), P being the parabolic of

type (n � 2; 2); � ranges over an orthonormal smooth basis for the G(A )-module

I(�; 0) normalizedly induced from � on P (A ). The L-functions are associated to
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the indicated functions { for whose de�nition see Propositions 9 and 11 { in the

spaces of the cuspidal GL(2; A )-modules �2 
 ��1 and ��2 
 �. They are evaluated

at (n� 1)=2, in the domain of absolute convergence when n � 4, and on the edge

of the critical strip when n = 3.

The upshot of this is that (up to the minor local assumption at u) the support

of the summation formula consists of the G(A )-modules I(�) normalizedly induced

from the standard parabolic with Levi factor GL(n � 2; A ) � GL(2; A ), and the

representation � = � 
 �2 on it, where �2 is an automorphic GL(2; A )-module with

central character �2�n.

When n = 3, thus G = PGL(3), our computation of the spectral side in the

summation formula is complete, for a function f = fufu where fu is no longer

required to have the property with respect to the supercuspidal �2u. The function

fu is nevertheless restricted to be spherical and have the following property. Denote

by Iu(�1; �2; �3) the Gu-module normalizedly induced from the character (bij) 7!Q
1�i�3

jbij
�i
u of the upper triangular subgroup. Here �i 2 C with jxj�1+�2+�3u = 1 for

all x 2 F�u . Then fu is taken as follows.

fu satis�es tr�u(fu) = 0 if �u = Iu(�1; �2; �3) and (1)�i � �j = �1 for some

i 6= j, or (2) �1 = �2 = �3.

The requirement (1) will not a�ect any possible applicability of the summation

formula, since no representation of G(A ) of the form I(� � �2), where �2 is a

cuspidal GL(2; A )-module with the central character ��1, has a component which is

the unrami�ed constituent of the induced representation of the form Iu(�1; �2; �3),

with �i � �j = �1 for some i 6= j. The requirement (2) will not a�ect applicability

either, since if I(�� �2) has the component Iv(�v; �v; �v) for almost all places v of

F , where �v is a character of F
�
v of order 3 (or 1), then �3 = 1, and �2v ' Iv(1)
�v

for almost all v. But there is no cuspidal representation �2
�
2 of PGL(2; A ) whose

component is the same as that of the principal series representation I(11) at almost

all places (I(11) is the PGL(2; A )-module normalizedly induced from the trivial

representation of

��
� �

0 �

��
). Thus the requirement here on the component fu is

put to simplify the computations, and is not important. An analogous requirement

in the case of PGL(2) would annihilate the terms associated with I(�;�1=2), which

{ as noted in the discussion of the case of PGL(2) above { are not important.

For f = fufu with such a component fu, the spectral side is the sum of the terms

parametrized by I(� � �2), cuspidal �2 on GL(2; A ), as described above for n � 3,

and terms parametrized by a line of representations, of the form I(�1�
i���2�

�i��

�3), i� 2 iR. As explained at the end of this paper, these new terms are integrals

over iR, with integrand containing E (I(f; �; �)�; �; �), and the expressions labeled

((3)i; j); i = 4; 5; j = 1; 2; 3; 4; and ((3)6:j), 1 � j � 5.

The term corresponding to ((3)4:1) take the form

1

4

X
�

�(�=�3)

Z
iR

X
�

E (I(f; �; �)�; �; �)"(�1=2; �1=�3)

� LM�(1� �1=2; �3=�1)LM�(1 + �1=2; �3=�2)LM�(1 + �1; �1=�2)
�1d�1:

Here � = (�1=2;��1=2; 0), and � = �1 � �2 � �3 is a character of (A �=F�)3
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with �1�2�3 = 1, namely I(�; �) = I(�1�
�1=2 � �2�

��2=2 � �3), � ranges over an

orthonormal smooth basis for (the trivialized vector bundle) I(�; �), M is some

intertwining operator and LM�(�i=�j) is an L-function, attached to the character

�i=�j.

The other (twelve) terms have a similar shape. It will be too long to write out

all these terms, although this can be easily derived from our computations. This

description, and convergence properties of the integrals and sums, lend themselves

to separation arguments used to derive applications from such summation formulae

(see, e.g., [FK], Theorem 2).

The main conclusion from our computations is however the following:

Theorem. The support of the summation formula is concentrated only on those

automorphic (unitary) PGL(3; A )-modules of the form I(� � �2), normalizedly in-

duced from a maximal parabolic subgroup, where �2 is an automorphic (unitary)

generic GL(2; A )-module (with central character ��1).

C. Geometric Side. Put G = PGL(n), n � 2, and consider L = L2(G(F )nG(A )),

where F is a global �eld (char F 6= 2) and A denotes its ring of adeles. Then G(A )

acts on L by (r(g)�)(h) = �(hg), g; h 2 G(A ), � 2 L. For any f in the space

C1c (G(A )) of smooth compactly supported complex valued functions on G(A ), the

convolution operator r(f) is de�ned by (r(f)�)(g) =
R
G(A)

f(h)�(gh)dh, where dh

is a �xed Haar measure on G(A ). Clearly (r(f)�)(g) =
R
G(F )nG(A)

Kf (g; h)�(h)dh,

where Kf (g; h) =
P

2G(F )

f(g�1h).

De�ne x0 =

0
@ 1 0 1

0 0 0

1 0 1

1
A to be an n � n matrix whose entries are 0 except at

(1; 1); (1; n); (n; 1); (n; n)where the entry is 1. The centralizerH = fg 2 G; gx0g
�1 =

x0g of x0 in G consists of matrices of the form

0
@ a p b
tq z �tq

b �p a

1
A, where a; b are

scalars; p; q are row vectors of length n� 2, tq indicates the transpose of q; and z

an (n�2)� (n�2) matrix. This H is isomorphic to GL(n� 1), since w = I�x0 is

conjugate in G to diag (1; : : : ; 1;�1) 2 G. Note that when n = 2 this w is conjugate

to diag (�1; 1) by

�
1 1

1 �1

�
, and the isomorphism is

�
a b

b a

�
7! (a+ b)=(a� b).

Denote by U the group of n � n matrices of the form u =

0
@ 1 p z

0 I tq

0 0 1

1
A where

here I is the identity (n� 2)� (n� 2) matrix. A complex valued character  6= 1

of A =F de�nes a character  6= 1 of U(A )=U (F ) by  (u) =  (p1 + qn�2), where

p = (p1; : : : ; pn�2) and q = (q1; : : : ; qn�2). Denote by � a unitary character of

the idele class group A
�=F� and put �(h) = �(det �(h)) for h 2 H(A ); det means

\determinant", and � the isomorphism fromH toGL(n�1). Note that �(det �(h)) =

�(deth) since �n = 1. We shall integrate the product of Kf (u; h); �(h) and  (u)

over u 2 U(F )nU(A ) and h 2 H(F )nH(A ), and obtain
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1. Proposition. We haveZ
U(F )nU(A)

Z
H(F )nH(A)

Kf (u; h)�(h) (u)dudh

=
X
b2F�

	(gb; f ; �; )+ �3;n	(g0; f ; �; ) + �2;n[	(g
+

0
; f ; �; ) + 	(g�

0
; f ; �; )]:

Here

	(g; f ; �; ) =

Z
U(A)=U (A)\gH (A)g�1

Z
H(A)

f(ugh)�(h) (u)�1du dh;

and gb = diag (1; : : : ; 1; b) 2 G(F ); if b 6= 0, and

g0 =

0
@ 1 0 �1

1 0 1

0 1 0

1
A if n = 3; g+

0
=

�
1 �1

1 1

�
and g�

0
=

�
1 1

1 �1

�
if n = 2:

Note that U \ gHg�1 = fIg for g = gb(b 6= 0) or g�
0
, but it is f

0
@ 1 0 z

0 1 0

0 0 1

1
Ag if

g = g0(n = 3).

This is the geometric half of our summation formula. It is to be compared below

with the integral over U(F )nU(A ) �H(F )nH(A ) of the product by  (u) and �(h)

of the spectral expression for the kernel Kf (u; h) of the convolution operator r(f)

on L.

To prove the proposition it su�ces to show that if 	(g; f ; �;  ) 6= 0 for g in G(F )

then g lies in U(F )gbH(F ) for some b in F , and this follows from the local analogue,

asserting that if 	(g; fv; �; v) 6= 0 for g in Gv then g lies in UvgbHv for some b in

Fv. Here v denotes any place of F and Fv is the associated completion of F ; we

put Gv = G(Fv), Hv = H(Fv), Uv = U(Fv);  v(u) =  
v
(p1 + qn�2) is a character

of Uv de�ned using a character  
v
6= 1 of Fv; and fv lies in the space C1c (Gv) of

smooth compactly supported complex valued functions on Gv. The local integral

is de�ned in analogy with the global integral:

	(g; fv; �v;  v) =

Z
Uv=Uv\gHvg�1

Z
Hv

fv(ugh)�v(h) v(u)
�1du dh:

Note that 	(g; f; �;  ) =
Q
v

	(gv; fv; �;  v) if g = (gv), � = 
�v,  = 
 v, f = 
fv,

dh = 
dhv and du = 
duv.

2. Lemma. If 	(g; fv; �v; v) 6= 0 then g 2 UvgbHv for some b 2 Fv.

Proof. To simplify the notations the index v is omitted in the course of the proof,

and so is the reference to  ; �. The integral 	(g; f) satis�es 	(gh; f) = ��1(h)	(g; f)(h 2

H), hence its support depends only on the image of g in G=H. The homo-

geneous space G=H is isomorphic to the space X of n � n matrices (over F )
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of rank 1 and trace 2 via the map g 7! gx0g
�1. Note that x0 = t"", where

" = (1; 0; : : : ; 0; 1). The integral 	(g; f) is then viewed as a function �(x) on X

which satis�es �(uxu�1) =  (u)�(x). The image of the double coset UgbH; b 6= 0,

in X is the set of the matrices

(ugb
t")("g�1b u�1) = t(1 + zb; bq; b)(1;�p; ptq � z + b�1) if u =

0
@ 1 p z

0 I tq

0 0 1

1
A ;

namely the matrices in X whose (n; 1) entry is b 6= 0. To prove the lemma it

su�ces to show that for any matrix x in X whose (n; 1) entry xn;1 is 0 there exists

u 2 U with uxu�1 = x and  (u) 6= 1. Indeed, if g 2 G has the image x, namely

gx0g
�1 = x, there would exist h 2 H (with deth = 1) such that ugh = g. Then

	(ugh; f) =  (u)	(g; f) is necessarily zero.

A matrix x in X whose last non-zero row is the `th, and its �rst non-zero

column is the fth, is of the form x = tvw, where v = (v1; : : : ; v`; 0; : : : ; 0), v` 6= 0,

and w = (0; : : : ; 0; wf ; : : : ; wn), wf 6= 0. If ` � 3 and f > 1 then uxu�1 = x,

where u has q = 0, and top row (1; yv`; 0; : : : ; 0;�yv2; 0; : : : ), with the entry �yv2
at the `-th place. If f � n � 2 and ` < n then uxu�1 = x, where u has p = 0

and its last column is t(0; : : : ; 0;�ywn�1; 0; : : : ; 0; ywf ; 1), with the entry �ywn�1
at the fth place. If ` � 2 and f � n � 1, then n = 2 or n = 3, since trx = 2.

If n = 3 then ` = 2 = f , and U acts by conjugation transitively on the orbit of

g0x0g
�1
0

=

0
@ 0 0 0

0 2 0

0 0 0

1
A, with stabilizer U \ g0Hg

�1
0

as stated in the proposition.

If n = 2 then U acts simply transitively on the orbit of g+
0
x0(g

+

0
)�1 =

�
0 0

0 2

�
and

on the orbit of g�
0
x0(g

�
0
)�1 =

�
2 0

0 0

�
. This completes the proof of the lemma

and Proposition 1.

Remark. Choosing the character  to be of the form  (u) =  (p1 + q1), a similar

Lemma is obtained but with a term indexed by a suitable g0 is present for all n > 2.

Denote by U 0 the group of unipotent upper triangular matrices in G whose

top row is (1; 0; : : : ; 0) and last column is t(0; : : : ; 0; 1). Then U 0 consists of the

identity matrix only, unless n � 4 as we now assume. For any y 2 Gv, denote by
yfv the function yfv(g) = fv(yg). Clearly 	(g; yfv; �v; v) is independent of y if

y 2 U 0v, since this integral is non-zero only if g 2 UvgbHv for some b 2 F�v . Any

character of U 0(F )nU 0(A ) is of the form  0�(u
0) =  (

P
2�i�n�2

�iui;i+1), for some

� = (�2; : : : ; �n�2) 2 F
(n�3). The unipotent upper triangular subgroup N

0
of G is

equal to UU 0 = U 0U . Put  �(uu
0) =  (u) 0�(u

0); it is a character of N
0
(F )nN

0
(A ),

and we have that Z
U 0(F )nN0(A)�

Z
H(A)

f(ngh)�(h) �(n)
�1dn dh

is 0 unless � = (0; : : : ; 0), in which case 	(g; f ; �; ) is obtained. Consequently
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3. Corollary. The integralZ
N0(F )nN0(A)

Z
H(F )nH(A)

Kf (n; h)�(h) �(n)dndh

=

Z
U 0(F )nU 0(A)

 0�(u
0)

2
64 Z
U(F )nU(A)

Z
H(F )nH(A)

K
(u
0
f)(u; h)�(h) (u)dudh

3
75du0

is 0 unless � = (0; : : : ; 0), in which case it is equal to

X
b2F�

	(gb; f ; �;  ) + �3;n	(g0; f ; �;  ) + �2;n[	(g
+

0
; f ; �;  )+ 	(g�

0
; f ; �; )]:

The sum over b 2 F� is �nite.

Only the last assertion remains to be proven. Thus consider f(uh), with

u 2 U(A )=U (F ), h 2 H(F )nH(A ), and  2 G(F ). If this f(uh) makes a non-

zero contribution to Kf (u; h) then x0
�1 lies in the discrete subset X(F ) of the

set X(A ), and also is in a compact which depends on the support of f and on

the compact U(A )=U (F ). Hence the image of  2 G(F ) in G(F )=H(F ) lies in a

�nite set fiH(F )g of cosets (and h 2 H(A ) ranges over the compact (
S
i

(�1i �

U(A )=U (F ) � supp f)) \H(A ) in H(A )), as required.

D. The Case of PGL(2). Let us consider separately, and briey, the well-known

spectral expression for the kernel Kf (g; h) in the case where G = PGL(2). This

is recorded here to motivate the discussion for n � 3 below. We shall trun-

cate this spectral expression with respect to the second variable h, integrate over

g =

�
1 x

0 1

�
in N(F )nN(A ), N =

��
1 �

0 1

��
, after multiplying by  (g) =  (x),

where  6= 1 is a character of A mod F , and integrate over h =

�
a 0

0 1

�
in

A(F )nA(A ), A being the diagonal group in PGL(2), after multiplying by �(a), � be-

ing a character of order 1 or 2 of A �=F� in C
� . The Eisenstein series E(g;�; �; �),

the truncation operator �T , and the spectral expression for the kernel are de�ned

below in the case of a general n. Hence the standard de�nitions will not be recalled

here separately in the case of n = 2. We obtain (the �rst �gure 2 in ((2)i) below

refers to n = 2, as we now deal with PGL(2))

X
�

X
�2�

W (�(f)�)L�(
1

2
; � 
 ��1)((2)1)

+
1

2

X
�

Z
iR

X
�

E (I(f; �; �)�; �; �)

Z
F�nA�

�TE

��
a 0

0 1

�
;�; �; �

�
�(a)d�a d�:((2)2)

Here the �rst sum ranges over all cuspidal irreducible representations � of PGL(2; A ),

and � ranges over an orthonormal basis { consisting of smooth functions { for the
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space of � � L2
0
(G(F )nG(A )). The Whittaker functional is de�ned by

W (�(f)�) =

Z
N(F )nN(A)

(�(f)�)(u) (u)du;

and

L�(t; � 
 ��1) =

Z
F�nA�

�

��
a 0

0 1

��
jajt�1=2�(a)�1d�a

is the L-function of �
��1 at t which is associated with �. Since � is a cusp form, its

Fourier expansion with respect toN(F )nN(A ) is �(g) =
P

�2F�W 

�
�

��
� 0

0 1

��
�

�
,

and so

L�(t; � 
 ��1) =

Z
A�

W 

�
�

��
a 0

0 1

��
�

�
jajt�1=2�(a)�1d�a:

At each non-archimedean place v where �v is unrami�ed and W (�(g)�) is right

Kv = PGL(2; Rv) invariant, the local factor at v of this global integral is easily

computed (as in the Remark { which is based on [F1], p. 305 { following the Intro-

duction above) to be the local L-factor Lv(t; �v 
 ��1v ) attached to �v 
 ��1v1 . The

in�nite product converges for a su�ciently large t, and it has analytic continuation

to the entire complex plane. The local factors have no zeroes, and no poles on

Re (t) � 1

2
.

Note that the discrete spectrum of L2(G(F )nG(A )) consists in addition to the

cuspidal � also of the one dimensional representations � : g 7! �(det g), where �

is a character of A �=F� of order two (or one). But (�(f)�)(u) is independent of

u 2 N(F )nN(A ) for � 2 �(= f� : G(F )nG(A ) ! C ; �(g) = �(g)�(1)g), and so

W (�(f)�) = 0 for such �. Hence such � = � do not contribute to our summation

formula.

The sum over � ranges over a set of representatives for the set of connected

components of unitary characters x 7! �(x) of A �=F�, a connected component

consisting of ��i�, �(x) = jxj, � 2 R. In the connected component of � = � we

take � = � to be the representative. For � 2 I(�; �), thus �

��
a �

0 b

�
g; �

�
=

�(a=b)ja=bj�+1=2�(g; �), we have

E (�; �; �) =

Z
N(F )nN(A)

E(u;�; �; �) (u)du:

The sum over � in ((2)2) ranges over an orthonormal basis for I(�; �) consisting

of K -�nite functions �; this basis is independent of � as � is determined by its

restriction to K .

The T is a su�ciently large positive number, and �TE(h;�; �; �) is described

below for a general n in Proposition 14, for � 2 C with Re (�) > 1=2, to be:

�TE(h;�; �; �) =
X

2B(F )nG(F )

�(H(h) < T )H(h)�+1=2�(h)

�

X
2B(F )nG(F )

�(H(h) > T )H(h)1=2��(M(w; �; �)�)(h); w =

�
0 �1

1 0

�
:
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Note that �(g) = �(g;�1=2). The characteristic function of the domain speci�ed

by the condition X is denoted by �(X). For g = (gv) 2 PGL(2; A ) we put H(g) =P
vHv(gv), with Hv(gv) = javjv if gv 2 N(Fv)(

av 0

0 1
)Kv. In the higher rank case

below an additive form of H will be used.

We shall integrate �TE(h; �)�(a) on h =

�
a 0

0 1

�
over a 2 A

�=F�. It is useful

to note the simple

(2)3. Lemma. We have BnG = I [ w [ w

�
1 1

0 1

�
A.

This follows at once from the Bruhat decomposition G = B [ BwN .

Note that

H

�
w

�
1 1

0 1

��
a 0

0 1

��
((2)4)

= H

��
0 �1

a 1

��
= H

��
a=(1; a) 0

0 (1; a)

��
= jaj=k(1; a)k2:

Further, javjv=k(1; av)k
2 is javjv if javjv � 1 and javj

�1
v if javjv � 1 (in the non-

archimedean case; in the archimedean case it is javj=(1 + javj
2)), in any case it is

� 1, and in particular ((2)4) < T if T > 1, as we assume.

(2)5. Lemma. The integral
R
F�=A�

��1(a)�TE

��
a 0

0 1

�
; �

�
d�a is the sum of

5 terms (or 6, where the 6th is zero):Z
jaj<T

(�=�)(a)jaj�+1=2�(I)d�a((2)5:1)

= �(�=�)�(I)T�+1=2=(�+ 1=2); a 2 A
�=F�;

where, for a character � of A �=F�, �(�) is 1 if � is 1 on A
0 = fa 2 A

� ; jaj = 1g,

and �(�) = 0 otherwise,Z
ja�1j<T

(��)(a)�1ja�1j�+1=2�(w)d�a((2)5:2)

= �(��)�(w)T�+1=2=(�+ 1=2); a 2 A
�=F�;Z

A�

(jaj=k(1; a)k2)�+1=2�(ka)�(a=(1; a)
2)�(a)�1d�a;((2)5:3)

where ka 2 K depends on a and is easily computable from: w

�
1 1

0 1

��
a 0

0 1

�
=

nadaka, with na in N(A ), da = diag (a=(1; a); (1; a)),

�

Z
jaj>T

�(�)(a)�1jaj1=2��(M(w; �; �)�)(I)d�a((2)5:4)

= ��(��)(M(w; �; �)�)(I)T 1=2��=(
1

2
� �);

�

Z
ja�1j>T

(�=�)(a)ja�1j1=2��(M(w; �; �)�)(w)d�a((2)5:5)

= ��(�=�)(M(w; �; �)�)(w)T 1=2��=(
1

2
� �):
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The third term ranges over the a 2 A
� with jaj=k(1; a)k2 < T , namely over A � ,

while the sixth ranges over the a 2 A
� with jaj=k(1; a)k2 > T , namely over the

empty set, hence it is 0 and we did not write it out. To compute the term ((2)5.3)

note that for almost all v the function � is invariant under Kv = PGL(2; Rv), the

characters �v and �v are unrami�ed, and the corresponding local factor isZ
javjv<1

(�v=�v)(av)javj
�+1=2
v d�av+

Z
javjv>1

(�v�v)(av)
�1
javj

�(�+1=2)
v d�av+

Z
javjv=1

d�av:

Denote by �v a local uniformizer of Fv, and write �v=�v for (�v=�v)(�v), and �v�v
for (�v�v)(�v) in the following computation. Recall that j�vj = q�1v , where qv is

the cardinality of the residue �eld Rv=(�v) of Rv. Then the integral is equal to:

1X
1

(�v=�v)
nq�n(�+1=2)v +

1X
1

(�v�v)
�nq�n(�+1=2)v + 1

=
(�v=�v)q

��1=2
v

1� (�v=�v)q
���1=2
v

+
(�v�v)q

���1=2
v

1� �v�vq
���1=2
v

+ 1

= (1� �2vq
�1�2�
v )=(1� (�v=�v)q

���1=2
v )(1� �v�vq

���1=2
v )

= Lv(�+ 1=2; �v=�v)Lv(�+ 1=2; �v�v)=Lv(1 + 2�; �2v):

Analogous computation can be carried out at the rami�ed places too, and a

multiple { by a function holomorphic in � 2 iR of polynomial growth in � 2 iR as

j�j ! 1 { of the same product of local L-factors, as de�ned e.g. in [JSP] in the

non-archimedean, and in [JS2] in the archimedean cases, is obtained. We denote

these local L-factors, which depend on �v, by L�v . Note that Lv = L�v when �v is

the normalized (by �0

v(1) = 1) Kv-invariant function �0

v in I(�v; �). The product

over all v of the L�v is denoted by L�. We then obtain

(2)6. Lemma. The term ((2)5.3) of the Lemma (2)5 is equal to

L�(�+ 1=2; �=�)L�(�+ 1=2; ��)=L�(1 + 2�; �2):

This product of L-functions is holomorphic on � 2 iR, since L(1 + 2�; �2) has

no zeroes on Re (�) � 0 (see, e.g. [JS1]), and is of polynomial growth in � 2 iR

as j�j ! 1. Of course, L�(� + 1=2; �) is holomorphic on � 2 iR for any unitary

character � of A �=F�.

Next we have to substitute the �ve terms of Lemma (2)5 in ((2)2), integrate

over � 2 iR, and take the limit as T !1 (in this order!). For any choice of a test

function f , the sums over � and � in ((2)2) are �nite. We �x then � and �, and treat

each of the 5 terms of Lemma (2)5 separately. Before we do that, note that for each

�;�1 2 I(�; �), the matrix coe�cient c(�) = c(f; �; �; �;�1) = (I(f; �; �)�;�1),

being the Mellin transform of a Schwartz function f , is rapidly decreasing (as

j�j ! 1) in any vertical strip a � Re (�) � b, and so is the �nite sum

E (I(f; �; �)�; �; �) =
X
�1

(I(f; �; �)�;�1)E (�1; �; �):
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We shall use this observation with the vertical strip �1

2
� " � Re (�) � 1

2
+ ", for

some small " > 0.

Note also that it is not the integral of Lemma (2)5 which appears in (2)2, but

rather its complex conjugate. For � 2 iR, note that � is ��. We then replace

T�+1=2=(� + 1=2) by T��+1=2=(�� + 1=2) in ((2)5.1), ((2)5.2), and vice versa in

((2)5.4), ((2)5.5).

Substituting ((2)5.1) in place of
R
��1�TE in ((2)2), we may change the line of

integration from � 2 iR to �+ 1

2
+ ", � 2 iR. By Cauchy's theorem the residue at

� = 1

2
will be picked up. The corresponding contribution to ((2)5.1) is

�(�=�)�(1)�E (I(f; �;
1

2
)�; �;

1

2
)((2)6:1)

+
1

2
�(�=�)�(1)

Z
iR

E (I(f; �; �+
1

2
+ ")�; �; �+

1

2
+ ")(T���"=(��� "))d�:

As T !1 the integral over iR here is absolutely convergent to zero.

The case of ((2)5.2), when placed in ((2)2), is treated in the same way, the limit

as T !1 is equal to

�(��)�(w)�E (I(f; �; 1=2)�; �; 1=2):((2)6:2)

Next we substitute the expression obtained in Lemma (2)6 for ((2)5.3) instead

of
R
��1�TE in ((2)2). We obtain, noting that � = ��1, � = ��1, and � = �� for

� 2 iR,

1

2

Z
iR

E (I(f; �; �)�; �; �)L�(��+ 1=2; �=�)((2)6:3)

� L
�
(��+ 1=2; (��)�1)L

�
(1� 2�; ��2)�1d�:

The integrand is integrable on iR being (the product of a slowly increasing and) a

rapidly decreasing function in �, as j�j ! 1. It is independent of T .

The discussion of the terms ((2)5.4) and ((2)5.5) is similar to that of ((2)5.1)

and ((2)5.2), except that the line of integration will be moved from � 2 iR to

� � 1=2 � ", � 2 iR. Before carrying this out we need to specify the dependence

of (M(w; ��1;��)�) on �. The operator M(w; ��1;��) is not unitary in general,

but it can be expressed (see [Sh2], p. 272) in the form

M(w; ��1;��) = m(��1;��)
v R(�
�1
v ;��);

where R(��1v ;��) : I(��1v ;��)! I(�v; �) is a unitary operator for all �v; �, which

maps �0

v 2 I(��1v ;��) to �0

v 2 I(�v; �) whenever �v is unrami�ed (and v nonar-

chimedean), and (R(��1v ;��)�v)(g) is holomorphic and slowly increasing in � in

any vertical band a � Re (�) � b, for any �v 2 I(�
�1
v ;��) and g 2 Gv. Moreover,

the scalar valued function

m(��1;��) = L(��; ��2)=L(1� �; ��2)"(��; ��2) = L(1 + �; �2)=L(1� �; ��2)

is holomorphic on �1 < Re (�) � 0 (L(1��; ��2) in the denominator has no zeros

in Re (�) � 0, see, e.g., [JS1]) except possibly for a simple pole on Re (�) = 0 if �2
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factorizes through �(x) = jxj. In this last case we may choose � in its connected

component to have �2 = 1. Then L(1 + �) in the numerator would have a pole at

� = 0 in the number �eld case, and at any � 2 iZ= log q in the function �eld case.

But L(1 � �) would also have a pole there, canceling the pole of the numerator,

and m(�; �) would take the value �1 at � = 0. In conclusion, M(��1;��) is

holomorphic in �3=4 � Re� � 0 and of slow increase as j�j ! 1.

With this knowledge we replace
R
��1�TE in ((2)2) by the right side of ((2)5.4),

move the line of integration from � 2 iR to �� 1=2� ", � 2 R, pick the residue at

� = �1=2, and obtain

� �(��)�E (I(f; �;�1=2)�; �;�1=2)(M(w; ��1;�1=2)�)(I)((2)6:4)

�
1

2
�(��)

Z
iR

E (I(f; �; �� "� 1=2)�; �; �� "� 1=2)

� (M(w; ��1; �+ "+ 1=2)�)(w)[T��"=(�� ")]d�:

The integrand is holomorphic and rapidly decreasing in � as j�j ! 1. The integral

is absolutely convergent to zero as T !1.

The case of ((2)5.5) is similarly treated, to yield, as T !1, the limit

��(�=�)�E (I(f; �;�1=2)�; �;�1=2)(M(w; ��1;�1=2)�)(w):((2)6:5)

The spectral side in our summation formula is then the sum of ((2)1) and the

sum over � and � of ((2)6:1) + � � �+ ((2)6:5).

E. On the General Case. We now resume the discussion of the case of a general

n � 2. Thus we note that there is another expression for the kernel Kf (g; h),

which we now recall from Arthur [A1], p. 935. It is based on Langlands' theory

[L] of Eisenstein series (and Morris [M] in the function �eld case); see the recent

clearer exposition of Moeglin-Waldspurger [MW2]. Thus let P denote a standard

F -parabolic subgroup of G, one which contains the upper triangular subgroup P
0
,

let N be its unipotent radical, andM its Levi subgroup which contains the diagonal

subgroup A. Let
Q
(M(A )) be the set of equivalence classes of irreducible unitary

discrete series representations of M(A ). Put X(M) = Hom(M;GL(1)), AP =

Hom(X(M);R) for the Lie algebra of M , and A�P = X(M)
 R for its dual space.

For m = (mv) in M(A ) de�ne the vector HM (m) in AP by

ehHM (m);�i = j�(m)j =
Y
v

j�v(mv)jv; � 2 X(M):

Extend HM to a function on G(A ) = N(A )M (A )K by HM (nmk) = HM (m),

where K =
Q
v

Kv and Kv is the standard maximal compact subgroup in Gv. If

M(A )1 is the kernel of HM onM(A ), and AM is the center ofM , then HM is an iso-

morphism from

AM (A ) \ M(A )1nAM (A ) ' M(A )1nM(A ) to AP . For any � 2 A�
C
= A�P 
R C

consider the character g 7! eh�;HM (g)i on G(A ), and denote its tensor product with

� 2 �(M(A )) by ��. If � 2 iA
�
P then �� is unitary, and the group iA

�
P acts freely on
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�(M(A )), making �(M(A )) a di�erential manifold whose connected components

are the orbits of iA�P .

For � 2 �(M(A )) denote by HP (�) the Hilbert space completion of the space

H0

P (�) of smooth functions � : N(A )M (F )nG(A ) ! C which are K -�nite, have the

property that Z
K

Z
M(F )nM(A)1

j�(mk)j2dmdk

is �nite, and that for every g 2 G(A ) the function m 7! �(mg) on M(A ) is a

matrix coe�cient of �. Let �P be the vector in A�P such that the modular function

�P (p) = j det(Ad(p)j eN)j on P (A ) is equal to e2h�P ;HM (p)i; here eN is the Lie algebra

of N . For � 2 HP (�) and � 2 A�
C
put �(g; �) = �(g)eh�P+�;HM (g)i(g 2 G(A )),

and denote by I(�; �) the right representation, (I(h; �; �)�)(g; �) = �(gh; �), of

(h 2)G(A ). The G(A )-module I(�; �) is unitary for � 2 iA�P .

Denote by �P the set of simple roots of AM in P . These are elements of X(M) �

A
�
P . The set �0 = �P0 is a base for a root system, and there is a coroot �_ in AP0 for

every root � 2 �P . If P 1
� P

2
are parabolic subgroups, then the groupMP2

\P
1
is

a parabolic subgroup ofMP2
with unipotent radicalNP2

P1
= NP1

\MP2
. The set �P2

P1

of simple roots of AM1
inMP2

\P
1
is a subset of �P1 which spans a subspace (A

P2
P1
)�

of A�P1 . We have A�P1 = (AP2P1)
��A�P2

. De�ne A+P = fH 2 AP ; h�;Hi > 0; � 2 �P g,

and (A�P )
+ = f� 2 A�P ; h�; �

_
i > 0; � 2 �P g. Then �P 2 (A�P )

+.

Identify AP2 with the subspace fH 2 AP1 ; h�;Hi = 0; � 2 �P2
P1
g, and denote

by AP2P1 the subspace of AP1 which is annihilated by A�P2 . Then AP1 = A
P2
P1
� AP2 .

Denote by b�P2
P1

= fe!�;� 2 �P2
P1
g the basis for (AP2P1)

� dual to the basis f�_;� 2

�P2
P1
g of AP2P1 . Note that any root � 2 �P2

P1
is the restriction to (AP2P1)

� of a unique

root � 2 �P2
P0
; �_ is de�ned to be the projection to AP2P1 of the vector �_ in AP2P0 .

Let �̂P2P1 be the characteristic function on A0 of the H 2 A0 with he!;Hi > 0 for alle! 2 �̂P2
P1
. Put �̂P = �̂GP . Note that �̂G = 1.

If Q is also a standard F -parabolic subgroup, denote by W (AP ;AQ) the set of

elements s in the Weyl group W with sAP = AQ. Denote by ws a representative

in G(F ) for the element s of W . For � 2 �(M(A )) and � 2 H0

P (�), and � 2 A
�
P;C

with real part Re� 2 �P + (A�P )
+, de�ne the Eisenstein series

E(g;�; �; �) =
X

2P (F )nG(F )

�(g; �)

and intertwining operator

(M(s; �; �)�)(g; s�) =

Z
N
Q
(A)\wsNP

(A)w�1
s nN

Q
(A)

�(w�1s ug; �)du:

The functions E(g;�; �; �) and M(s; �; �)� can be continued as meromorphic

functions in � to A�
C
. If � 2 iA�P then E(g;�; �; �) is smooth and slowly increasing

in g, andM(s; �; �) is a unitary operator fromHP (��) toHQ(s�s�). Denote by n(P )

the number of chambers of A, namely the connected components of the complement

to the union of the hyperplanes orthogonal to the roots in �P .
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The representation theoretic expression for the kernel Kf (g; h) is

X
P

n(P )�1
X
�

Z
iA�
P

X
�

E(g; I(f; �; �)�; �; �)E(h;�; �; �)d�:(3:1)

Here � ranges over a set of representatives for the connected components (iA�P -

orbits) of �(M(A )), and � over an orthonormal basis (chosen to have the �niteness

properties of [A1], p. 926, `. {12) for the space HP (�); I(f; �; �) is the convolution

operator. By [A1], Lemma 4.4, p. 929, the sums over � and � and the integral over

iA�P are absolutely convergent. Note that (I(f; �; �)�;�0) is a rapidly decreasing

function in j�j ! 1, where (�; �) indicates the inner product on HP (�).

Our summation formula is obtained on integrating Kf (n; h)�(h) �(n) over n in

N
0
(F )nN

0
(A ) and h inH(F )nH(A ), using the spectral decomposition of the kernel,

and comparing with the result of Corollary 3. Put

�N (g) =

Z
N(F )nN(A)

�(ng)dn

for a continuous function � on G(F )nG(A ). Following [A2], p. 89, for a suitably

regular point T in A+
0
introduce

�T�(g) =
X
P

(�1)dim(A)
X

2P (F )nG(F )

�̂P (H(g)� T )�N (g);

here P ranges over the standard F -parabolic subgroups in G.

Denote by �TKf (g; h) the image of the function h 7! Kf (g; h) under the operator

�T . Since h 7! Kf (g; h) is slowly increasing, it follows from [A2], Lemma 1.4, that

�TKf (g; h) is rapidly decreasing as a function of h 2 G(F )nG(A ). Since Kf (g; h)

is integrable over h 2 H(F )nH(A ) and �TKf (g; h) ! Kf (g; h) as T ! 1, and

N
0
(F )nN

0
(A ) is compact, we conclude that

lim
T!1

Z
N0(F )nN0(A)

Z
H(F )nH(A)

�TKf (u; h)�(h) (u)dudh(3:2)

=

Z
N0(F )nN0(A)

Z
H(F )nH(A)

Kf (u; h)�(h) (u)dudh:

The function E(g;�; �; �) is slowly increasing in g 2 G(F )nG(A ), hence �TE(g;�; �; �)

is rapidly decreasing, and the expression

X
P

n(P )�1
X
�

Z
iA�
P

X
�

E(g; I(f; �; �)�; �; �)�; �; �)�TE(h;�; �; �)d�

is convergent and equal to �TKf (g; h). The integral over (g; h) 2 N0
(F )nN

0
(A ) �

H(F )nH(A ) of its product with �(h) (g) is equal to

X
P

n(P )�1
X
�

Z
iA�
P

X
�

E (I(f; �; �)�; �; �)

Z
H(F )nH(A)

�TE(h;�; �; �)�(h)dh d�;(3:3)
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where

E (�; �; �) =

Z
N0(F )nN0(A)

E(u;�; �; �) (u)du:

We shall sketch a proof of the following. Suppose that n � 3 (the case of n = 3

being trivial, we shall concentrate on n � 4 in the sketch of the proof below).

4. Proposition. The only possibly non-zero contributions to (3.3) are parametrized

by:

(a) P of type (n1; n2; n3) and unitary, one-dimensional � = �1 � �2 � �3 with

�n1
1
�n2
2
�n3
3

= 1;

(b) P of type (n� 2; 2) and � = �1 � �2 where �1 is unitary one-dimensional and

�2 is a cuspidal GL(2; A )-module whose central character !�2 is equal to �
2�n
1

;

(c) P = G, n = 3 and � is a cuspidal PGL(3; A )-module, or n = 4 and � is the

discrete-series representation of PGL(4; A ) which is equivalent to the unique

subrepresentation of I((�1��1)�
�1=2
P1

), where P
1
is the parabolic of type (2; 2)

and �1 is a cuspidal representation of GL(2; A ).

Sketch of Proof. (This is only a sketch since although a few cases of the assertion

made in the following sentence are explicitly computed below, the assertion is not

proven below in full generality. The assertion is the following).

As a function in T the integral
R
H(F )nH(A)

�TE(h;�; �; �)��1(h)dh converges to

a linear combination of exponentials in linear forms in � and T divided by such

linear forms, in �. Examples are computed explicitly below, see, e.g., Propositions

9 and 11 for a general n, and the complete discussion in the cases of n = 2 and

n = 3. In particular the limit over T cannot be taken inside the integral over iA�P .

Instead, the elementary Lemma 10 below implies that the limit of (3.3) as T goes

to in�nity is equal to

X
P

n(P )�1
X
�

Z
i(A�

P
)0

X
�

E (I(f; �; �)�; �; �)F (�; �; �; �)d�(4:1)

where (A�P )
0 are the hyperplanes de�ned by the linear forms in � in the denominator,

and F (�; �; �; �) are the residues of the
R
H(F )nH(A)

�TE(h;�; �; �)��1(h)dh on these

hyperplanes. By virtue of a standard argument of \generalized linear independence

of characters (see, e.g., [FK], Theorem 2), using the absolute convergence of the

integrals, the ample supply of the f , unitarity estimates and the Stone-Weierstrass

theorem, Corollary 3 would imply, when n � 4, that the coe�cient E �(�; �; �)

is 0 for every character  �, � 2 Fn�2, unless � = (0; : : : ; 0), for every pair (�; �)

which occurs non-trivially in (3.3), and every � 2 H0

P (�).

If (�; V ) is an irreducible representation ofG(A ) and  a character ofN
0
(F )nN

0
(A ),

in analogy with [BZ] introduce the A
0
(A )-modules of coinvariants (� ; V ) by

V = V=h�(u)v �  (u)v; v 2 V; u 2 N
0
(A )i. Any such character  is of the

form  �(u) =  (
P

1�i<n

�iui;i+1) for some � = (�1; : : : ; �n�1) 2 Fn�1; here u =

(uij) 2 N0
(A ). The largest number of non-zero components of � such that V � 6= 0
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is an invariant of the representation �, which we call here the index of �. A G(A )-

module with (maximal) index n� 1 is called generic, or non-degenerate, and it is

said to have a Whittaker model. A discrete-series G(A )-module whose index is 0 is

one-dimensional.

Moeglin and Waldspurger [MW1] have shown that if � is an irreducible discrete

series G(A )-module then there are positive integers m and k with n = mk and a

cuspidal GL(m; A )-module �, such that � is the unique submodule of the G(A )-

module I((�� � � �� �)�
�1=2
P ) which is normalizedly induced from the G(A )-module

indicated, where P =MN is the standard parabolic of type (m; : : : ;m), and �P is

its modular function. The index of this � is j = (m � 1)k. If M
1
=

Q
1�i�r

GL(ni)

is the Levi subgroup of a standard parabolic, and the GL(ni; A )-module �i has

index ji, then the induced G(A )-module I((�1 � � � � � �r)e
h�;HP1 i) has the index

(
P

1�i�r

ji) + r � 1, for any � 2 A�P1;C .

The Eisenstein series E(u;�; �; �) which occurs in (3.3) is an element in the space

of the G(A )-module � = I(�
 eh�;HP i), whose index is 2. On the other hand, if P

is of type (n1; : : : ; nr), and � is a discrete seriesM(A )-module, then ni = miki, and

the index of � is r�1+
P

1�i�r

(mi�1)ki. Since the ki, mi and r are positive integers,

we conclude that either r = 3 and mi = 1(1 � i � 3), or r = 2 and m1 = 1, m2 = 2

and k2 = 1, or r = 1, in which case m1 = 3 and k1 = 1 or m1 = k1 = 2

This completes our sketch of the proof of the proposition.

Remark. Note that in case (b) �2 may not be taken to be one-dimensional, as

then the index of � = I(�
 eh�;Hi) be one. In case (c), when n = 3 the � cannot

be one-dimensional (the index would then be zero). When n = 4 the � cannot be

cuspidal (index 3) or one-dimensional (index 0), nor can �1 be one-dimensional, as

then the index of � would be 1.

We shall need below several decompositions.

5. Proposition. Denote by P x a parabolic subgroup of type x of G, by I the identity

(n� 2)� (n� 2) matrix, and by r(i; j) the matrix whose entries are 0 except for a

single 1 on each row and column, which represents the reection (i; j). Then

G = P
(n�1;1)H [ P

(n�1;1)r(n� 1; n)H [ P
(n�1;1)

0
@ I 0 0

0 1 0

0 1 1

1
AH;

where H =

��
� 0

0 1

�
; � 2 GL(n� 1)

�
� G. Moreover,

G = P
(n�2;2)H [ P

(n�2;2)r(n� 2; n)H [ P
(n�2;2)

0
@ 0 0 1

0 I 0

1 0 1

1
AH

= P
(2;n�2)H [ P

(2;n�2)r(1; n)H [ P
(2;n�2)

0
@ 1 0 0

0 I 0

1 0 1

1
AH:
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Proof. The map g 7! (0; : : : ; 0; 1)g is an isomorphism from P
(n�1;1)nG to the pro-

jective n-space Pn, which decomposes as the disjoint union of three orbits, namely

(0; : : : ; 0; 1)H, (0; : : : ; 0; 1; 0)H, and (0; : : : ; 0; 1; 1)H. The �rst decomposition fol-

lows.

Denote by U ` the group of matrices (uij) in G with uii = 1 (1 � i � n), and

uij = 0 if i 6= j unless i = ` and i � j < n. Also put U 0` for the group of (uij) in

G with uii = 1 (1 � i � n) and uij = 0 if i 6= j unless (i; j) = (`; n). The Bruhat

decomposition, with P
1
= P

(n�1;1) and P (1;1) = P
(n�2;1;1), asserts

P
1
=

[
1�i<n

P
(1;1)r(i; n� 1)U i:

Hence

G = P
(1;1)H

[ [
1�i�n�2

P
(1;1)r(n�1; n)r(i; n)U

0
iH
[ [

1�i<n

P
(1;1)r(i; n�1)

0
@ I 0 0

0 1 0

0 1 1

1
AH:

Then

G = P
(n�2;2)H

[ [
1�i�n�2

P
(n�2;2)r(i; n)U

0
iH
[ [

1�i�n�2

P(n�2;2)r(i; n�1)

0
@ I 0 0

0 1 0

0 1 1

1
AH:

Note that

P
(n�2;2)r(i; n)U

0
iH = P

(n�2;2)r(i; n)H
[
P
(n�2;2)r(1; n)

0
@1 0 1

0 I 0

0 0 1

1
AH

for any i(1 � i � n� 2). The last double cosets in the two last displayed lines are

equal, since

0
@ 0 0 1

0 1 0

1 0 1

1
A
0
@ 1 1 0

0 1 0

0 0 1

1
A
0
@ 1 0 0

0 1 0

�1 0 1

1
A lies in the bottom right 3� 3

corner of P
(n�2;2). Taking i = n� 2 the second decomposition follows.

To obtain the last decomposition apply to the previous one the automorphism

�(g) = J tg�1J , where J = (aij), ai;n+1�i = 1 and aij = 0 if i + j 6= n + 1. Then

�P
(n�2;2) = P

(2;n�2), and �H = r(1; n)Hr(1; n). Since G = Gr(1; n), the last

decomposition follows, as required.

Remark. Let I 0 be the identity (n� 3)� (n� 3) matrix and put

� =

0
B@
I 0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 1

1
CA :

Then P
(n�2;2)

0
@ 0 0 1

0 I 0

1 0 1

1
AH = P

(n�2;2)�H .

Put H� = r(1; n)Hr(1; n). In the following PHx denotes a standard parabolic

subgroup of H of type x. By A we indicate an (n � 3) � (n � 3) matrix, and B,

C will be row vectors of length n � 3; a; c; d are scalars. Proposition 5 has the

following
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Corollary. We have the disjoint coset decompositions

P
(n�2;2)nG = P

H

(n�2;1)
nH

[
r(n� 2; n) � P

H

(n�3;2)
nH(5:1)

[
� �

8><
>:
0
B@
A tB tC 0

0 1 c 0

0 0 a 0

0 0 0 1

1
CA
9>=
>; nH

and

P
(2;n�2)nG = P

H

(2;n�3)
nH

[
P
H�

(1;n�2)
nH�

� r(1; n)(5:2)

[0
@ 1 0 0

0 I 0

1 0 1

1
A �

8><
>:
0
B@
1 0 C 0

c d B 0

0 0 A 0

0 0 0 1

1
CA
9>=
>; nH:

Remark. Proposition 5 implies that the structure of HnG=H is independent of

n � 3. It would be interesting to pursue a comparison theory between Gn(A )-

modules with a Hn(A )-invariant form and G
3
(A )-modules with a H

3
(A )-invariant

form (for n > 3) on developing and then comparing the (non-Fourier) summation

formulae associated with such double cosets.

6. Proposition. If n � 3, no discrete-series representation occurs in (3.3).

Proof. We need to show that the terms described by Proposition 4(c) do not occur

in (3.3). We give a complete proof in the case of n = 3, and a sketch in the case of

n = 4. Suppose �rst that n = 3 and � is a cuspidal PGL(3; A )-module. If � 2 �

then �T� = �, since �N = 0 for all P 6= G by de�nition of cuspidality.

The Fourier expansion of the cusp form � is

�(g) =
X

p2N
H
(F )nH(F )

W
�; (pg);

where

W
�; (g) =

Z
N0(F )nN0(A)

�(ug) (u)�1du;

and NH =

8<
:
0
@ 1 x 0

0 1 0

0 0 1

1
A
9=
; � H =

8<
:
0
@ � � 0

� � 0

0 0 1

1
A
9=
;. The integral of �� over

H(F )nH(A ) is equal then toZ
N
H
(F )nH(A)

W
�; (h)�(h)dh =

Z
N
H
(A)nH (A)

Z
N
H
(F )nN

H
(A)

W
�; (nh)�(h)dndh:

The inner integral here is 0 since  is non-trivial onNH(F )nNH(A ) andW�; (nh) =

 (n)W
�; (h).
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Now the terms associated with the cuspidal � in the spectral expression for the

kernel have P = G, n(P ) = 1, A�P = f0g, and these terms are

X
�

X
�2�

(�(f)�)(u)�T�(h) =
X
�

X
�2�

(�(f)�)(u)�(h):

The integral of the product of this with  (u)�(h) over N
0
(F )nN

0
(A )�H (F )nH(A )

vanishes since
R
H(F )nH(A)

�(h)�(h)dh = 0 for all � 2 �, as required.

Of course this proof generalizes to show that when n � 3 no cuspidal represen-

tation (� =)� of G(A ) would contribute a non-zero term to (3.3).

In order to deal with the remaining case of Proposition 4(c) suppose that n = 4

and � is the discrete series PGL(4; A )-module which is equivalent to the unique

irreducible subrepresentation of I((�1� �1)�
�1=2
P(2;2)

),where �1 is a cuspidal GL(2; A )-

module, and P
(2;2) is the standard parabolic of type (2; 2). Note that the space

of this � is spanned by residues of some Eisenstein series, which are automorphic

functions; the spectral expression for the kernel does not use the realization of �

as a subrepresentation of I((�1 � �1)�
�1=2
P(2;2)

). The coe�cient �N of � 2 � is 0 if

N is the unipotent radical of a parabolic subgroup of type (1; 3) or (3; 1), since

the GL(2; A )-module �1 is cuspidal. Indeed, the integral over N(F )nN(A ), of the

Eisenstein series whose residue is �, vanishes, since wNw�1 \M
(2;2) is non-trivial

for every element w of the Weyl group. Hence

�T�(g) = �(g)�
X

�2P (2;2)(F )nG(F )

�̂P(2;2)(H(�g)� T )�N(2;2)
(�g);

note that the dimension of the center of the Levi subgroup M
(2;2) of P (2;2) is 1.

We need to show that
R
H(F )nH(A)

�T�(h)��1(h)dh is zero, where H ' GL(3)

embeds in G = PGL(4) as H =

��
g 0

0 1

�
; g 2 GL(3)

�
. To compute this integral

we need to rewrite �T�(g). Since �N(3;1)
is zero if N

(3;1) is the unipotent radical

of the parabolic of type (3; 1), the Fourier expansion of � along N
(3;1) is

�(g) =
X

p2P
H
(F )nH(F )

�N(3;1); 
(pg);

where

�N(3;1); 
(g) =

Z
N(3;1)(F )nN(3;1)(A)

�(ug) (x)�1du; u =

0
B@
1 0 0 z

0 1 0 y

0 0 1 x

0 0 0 1

1
CA ;

and PH =

8><
>:
0
B@
� � � 0

� � � 0

0 0 1 0

0 0 0 1

1
CA
9>=
>; � H =

8><
>:
0
B@
� � � 0

� � � 0

� � � 0

0 0 0 1

1
CA
9>=
>;.
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To continue we need a special case of the Corollary to Proposition 5, namely the

decomposition

P
(2;2)nG = P

(2;1)nH[r(2; 4)�P (1;2)nH[��B
0
HnH; where B0

H =

8><
>:
0
B@
u v w 0

0 d c 0

0 0 a 0

0 0 0 d

1
CA
9>=
>; :

Here � is as de�ned above (5.1); P
(2;1) and P (1;2) are the parabolic subgroups of

H of types (2; 1), (1; 2); r(2; 4) is an elementary matrix in G(F ) representing the

reection (2; 4). The sum over � in P
(2;1)(F )nH(F ) is expressed compatibly with

the sum representing �(g), as follows.

The Fourier expansion of �N(2;2)
along N

(3;1) \M (2;2) is

�N(2;2)
(g) =

X
t2F�

�N(2;2);(N(3;1); )
(a(t)g); a(t) = diag (1; 1; t; 1):

Hence

�(g)�
X

�2P (2;1)(F )nH(F )

�̂P(2;2)(H(�g)� T )�N(2;2)
(�g)

=
X

p2P
H
(F )nH(F )

[�N(3;1); 
(pg)� �̂P(2;2)(H(pg)� T )(�N(2;2)

)(N(3;1); )
(pg)]:

The integral of the product of this by ��1(g) over g 2 H(F )nH(A ) is equal to

Z
M(2;1)(F )nM(2;1)(A)

(1��̂P(2;2)(H(m)�T ))

Z
(�N(2;2)

)(N(3;1); )
(mk)��1(mk)�(m)�1dmdk;

since PH(A ) = M
(2;1)(A )(N (2;2) \ H)(A ) and H(A ) = PH(A )(K \ H(A )). This

integral factorizes through N
(1;3)(F )nN (1;3)(A ), namely through �N(1;3)

, which is

zero as observed above. Hence the integral over H(F )nH(A ) is zero.

The second coset, r(2; 4) � P
(1;2)nH, in P

(2;2)nG, parametrizes the terms in the

sum in �T�(g), which � multiplied by ��1(g) and integrated over H(F )nH(A ) �

yield

�

Z
P (1;2)(F )nH(A)

�̂P(2;2)(H(r(2; 4)h)� T )�N(2;2)
(r(2; 4)h)��1(h)dh:

Note that r(2; 4)

0
B@
� � � 0

0 � � 0

0 � � 0

0 0 0 1

1
CA r(2; 4) =

0
B@
� 0 � �

0 1 0 0

0 0 � �

0 0 � �

1
CA, and the product of

this with N
(2;2) contains N (3;1). Hence this last integral factorizes through �N(3;1)

,

which is zero.
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The last coset, �B0
HnH, in P

(2;2)nG, after multiplication by �
�1(g) and integra-

tion over H(F )nH(A ), yields

�

Z
B0
H
(F )nH(A)

�̂P(2;2)(H(�h)� T )�N(2;2)
(�h)��1(h)dh:

Since �

0
B@
1 v 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CA��1 =

0
B@
1 �v 0 v

0 1 0 0

0 0 1 0

0 0 0 1

1
CA, and the product of this with

N
(2;2) contains N (1;3), the integral factorizes through �N(1;3)

, and this is zero.

It follows that the integral of (�T�)(h)��1(h) over h in H(F )nH(A ) is zero.

This completes the (sketch of) proof of Proposition 5. Of course to complete the

proof it has to be shown that each of the three terms associated with the three

cosets is integrable, not only factorizes through an integral which vanishes.

Denote by P
1
the parabolic subgroup of type (n � 2; 2), by �2 a cuspidal rep-

resentation of GL(2; A ) with central character !�2 , by �1 a unitary character of

A
�=F� with �2�n

1
= !�2 and also the character �1(g) = �1(det g) of GL(n� 2; A ).

Let � = �1 � �2 be the P
1
(A )-module de�ned by �1 and �2 on the Levi fac-

tor, and extended trivially across the unipotent radical. For any � 2 C put

�� = �1 
 ��=(n�2) � �2 
 ���=2, where �(x) = jxj, x 2 A
� . Denote by �� the

vector in the one dimensional space A�
1
= A�P1

with �� = �
 eh��;Hi.

As in [A1], p. 917, for any F -parabolic subgroup P
2
let W (A1;A2), A2 = AP2 ,

denote the set of (distinct) isomorphisms from A1 to A2 obtained by restricting to

A1 elements of the Weyl group W . Note that when n 6= 4, the set W (A1;A2) is

empty unless P
2
= P

1
or P

(2;n�2), in which case it consists of s = identity or of

s = s2, where s2 =

�
0 I2

In�2 0

�
, respectively. If n = 4, W (A1;A2) is empty unless

P
2
= P

1
, and then it consists of s = 1 and s = s2.

As in [A2], p. 113, for any F -parabolic subgroup P de�ne W (A1;P ) to be the

union over all A2 of the s 2 W (A1;A2) such that sA1 = A2 contains A = AP , and

s�1� > 0 for all � 2 �P
2
. Then W (A1;P ) is empty unless P = G, when it consists

of the identity, or P = P
1
, when it consists of the identity if n 6= 4 and of the

identity and s2 if n = 4, or P = P
(2;n�2), n 6= 4, when it consists of s2.

We shall use the following analogue of the formula (4.1) of [A2], p. 113.

7. Proposition. We haveZ
N(F )nN(A)

E(ng;�; �; ��)dn =
X

s2W (A1;P )

EP (g;M(s; ��)�; s�; s��);

where

EP (g;�; �; �) =
X

�2P1(F )nP (F )

�(g; �) (cf. [A1], p. 927).

Proof. The equality is a tautology for P = G, so we assume that P 6= G. This iden-

tity is asserted in (4.1), [A2], p. 113, when � is a cuspidal representation (of the Levi
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factor of an F -parabolic). But the � in the proposition is not cuspidal. The trivial

representation 11 of GL(n� 2; A ) is obtained as the residue at
�
n�3
2
; n�5

2
; : : : ; 3�n

2

�
of the Eisenstein series on GL(n�2; A ) induced from the upper triangular subgroup

and the parameter � 0 = (�1; : : : ; �n�2),
P

1�i<n�1

�i = 0, in C
n�2 . The Eisenstein

series in the proposition is also obtained as a residue. Denote by P
3
the F -parabolic

of type (1; : : : ; 1; 2). The space A3 is (n � 1)-dimensional, represented by � + ��,

� = (�1; : : : ; �n�2; 0; 0) with �1+� � �+�n�2 = 0, and �� =
�

�
n�2

; : : : ; �
n�2

;��
2
;��

2

�
.

Denote by �3 = �1�� � ���1��2 the representation ofM3
(A ), where �1�� � ���1 is a

character of (A �)n�2. For �3 2 �3, consider the Eisenstein series E(g;�3; �3; �+��)

on (g 2)G(A ). The series E(g;�; �; ��) is obtained as the highest residue (of degree

n� 3), for some �3 (which is in fact the restriction of � to M
3
(A )), namely

E(g;�; �; ��) = lim
�i��i�1!1

1�i<n�2

0
@ Y

1�i<n�2

(�i � �i�1)

1
AE(g;�3; �3; � + ��):

Since �3 is cuspidal, (4.1) of [A2], p. 113, applies:Z
N(F )nN(A)

E(ng;�3; �3; � + ��)dn =
X

s2W (A3;P )

EP (g;M(s; �+ ��)�3; s�3; s(�+ ��)):

Any of the Eisenstein series on the right can have a pole of (the maximal) order

n � 3 only when P (6= G) is of type (n � 2; 2) or (2; n � 2), and such a pole is

attained only at �0 =
�
n�3
2
; n�5

2
; : : : ; 3�n

2
; 0; 0

�
, precisely when s�0 = �0 or s�0 =�

0; 0; n�3
2
; n�5

2
; : : : ; 3�n

2

�
, namely when s is the identity or s2 =

�
0 I2

In�2 0

�
, re-

spectively. Multiplying byQ
1�i<n�2

(�i � �i�1) and taking the n � 3 limits as �i � �i�1 ! 1, we obtain 0

unless P (6= G) is P
1
or P

(2;n�2), in which cases we obtain

EP (n�2;2)
(g;�; �; ��) or EP (2;n�2)

(g;M(s2; ��)�; s2�; s2��);

respectively, if n 6= 4, and their sum if n = 4. This is the expression asserted in the

proposition.

In [A2], the identity (4.1) is used in the proof [A2], Lemma 4.1, on p. 115, `.

2. The proof of that Lemma then applies without a change in our situation too, to

yield

8. Proposition. For a su�ciently large � (i.e., Re (�) � 1), the truncated Eisen-

stein series �TE(g;�; �; ��) is equal to

X
P2

X
2P 2(F )nG(F )

X
s2W (A1;A2)

"2(s��)�2(s��; H0(g)� T )

ehs��+�2;H0(g)i(M(s; ��)�)(g);
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with the sum over  converging absolutely.

Recall that "2(�), for � 2 A
�
0
, is de�ned in [A1], p. 940, to be 1 if the set of

� 2 �2 with h�; �_i � 0 is even, and �1 otherwise. The function �2(�; H) on

(�; H) 2 A�
0
�A0 takes the values 0 and 1. It is equal to 1 precisely when for every

� 2 �2, we have h�; �
_i � 0 and he!�; Hi > 0, or h�; �_i > 0 and he!�; Hi � 0.

As noted in Proposition 7, P
2
ranges over the set fP

1
= P

(n�2;2); P 2
= P

(2;n�2)g,

and s = 1 or s2. It is clear that "1(��) = 1 and "2(s2��) = �1. When s = 1, the

characteristic function �1(��; H0(g)�T ) can be expressed as �(�P 1
(g)1=2 < t1), the

characteristic function of the g such that �P 1
(g)1=2 < t1, where t1(> 0) depends

linearly on T 2 A
+

0
and t1 !1 as T !1. When s = s2 the characteristic function

�2(s2��; H0(g)�T ) can be written as �(�P 2
(g)1=2 � t2), the characteristic function

of the g such that �P 2
(g)1=2 � t2, where t2(> 0) depends linearly on T and t2 !1

as T ! 1. Further, the exponential eh��+�1;H0(g)i is equal to �P 1
(g)

1
2
(�+1), while

ehs2��+�2;H0(g)i is equal to �P2
(g)

1
2
(1��). In summary, the identity of Proposition 8

can be rewritten as follows:

Corollary. The truncated Eisenstein series �TE(h;�; �; ��) is equal to the dif-

ference between X
2P1(F )nG(F )

�(�1(h)
1=2 < t1)�1(h)

(1+�)=2�(h)(8:1)

and X
2P 2(F )nG(F )

�(�2(h)
1=2

� t2)�2(h)
(1��)=2(M(s2; �; �)�)(h):(8:2)

We use this Corollary to prove, with � = �1 � �2, the following

9. Proposition. The integral of the product of (8.1) and ��1(h) over h in H(F )nH(A )

is equal to �(�1=�)L�K;�(�2 
 ��1; (n� 1)=2)t�
1
=�.

As usual, if � is a character of A �=F� we put �(�) = 1 if � is 1 on every a 2 A
�

with jaj = 1, and �(�) = 0 if not. The L-function is the one associated in [JPS]

to the cusp form �K;� (A) =
R
K
H �

��
I 0

0 A

�
k

�
��1(k)dk, A 2 GL(2; A ), in �2,

twisted by ��1.

Proof. We use the Corollary to Proposition 5 to express the integral of (8.1) as a

sum of three integrals, corresponding to the three cosets in (5.1). Corresponding

to the second coset in (5.1), we obtain the integralZ
P
H

(n�3;2)
(F )nH(A)

�(�1(rh)
1=2 < t1)�1(rh)

(1+�)=2�(rh)��1(h)dh;(8:1:2)

where r = r(n� 2; n). By the Iwasawa decomposition H(A ) = P
H

(n�3;2)(A )K
H we

write h = mnk, and note that rmr�1 ranges over L(F )nL(A ), where L is the Levi
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subgroup of type (n� 3; 1; 2) of G. Note that GL(2; F )nGL(2; A ) can be expressed

in the form N(F )nN(A ) � S for some Siegel domain S, where N denotes here the

upper triangular unipotent subgroup of GL(2). But �g(a) = �

��
I 0

0 a

�
g

�
is

a cusp form on GL(2; A ), for any g in G(A ). Consequently the integral factorizes

through an integral over u 2 N(F )nN(A ) of the cusp form �g, and this inner

integral is zero, as is (8.1.2).

Corresponding to the third coset in (5.1) we obtain the integralZ
�(�1(�h))

1=2�1(�h)
(1+�)=2�(�h)��1(h)dh;(8:1:3)

where � =

0
B@
I 0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 1

1
CA. It ranges over

8><
>:
0
B@
A tB tC 0

0 d c 0

0 0 a 0

0 0 0 d

1
CA
9>=
>; (F )nH(A ).

Since 0
@ 0 0 1

0 1 0

1 0 1

1
A
0
@ 1 c 0

0 1 0

0 0 1

1
A
0
@�1 0 1

0 1 0

1 0 0

1
A =

0
@ 1 0 0

0 1 0

0 c 1

1
A ;

using the Iwasawa decomposition H(A ) = P
H

(n�3;1;1)(A )K
H it is clear that the inte-

gral (8.1.3) factorizes through the integral over tN(F )ntN(A ), where tN is the lower

triangular unipotent subgroup of GL(2), of the cusp form �g(a) = �

��
I 0

0 a

�
g

�
on GL(2; A ). This inner integral is zero, and so is { consequently { (8.1.3).

Corresponding to the �rst coset on the right side of (8.1) we obtainZ
P (n�2;1)(F )nH(A)

�(�1(h)
1=2 < t1)�1(h)

(1+�)=2�(h)��1(h)dh:(8:1:1)

By the Iwasawa decomposition H(A ) = N
(n�2;1)(A )M (n�2;1)(A )K

H we may write

h = nmk, and m = diag (a; b; c), where a is in GL(n � 2), and b; c in GL(1).

Note that �1(h) = j det(a)2=(bc)n�2j, and the modular function � with respect

to N
(n�2;1), which occurs in the integration formula dh = ��1(m)dn dmdk, is

�(h) = j det(a)=bn�2j. Note also that �(nmk) = �1(det a)�

0
@
0
@ I 0 0

0 b 0

0 0 c

1
A k

1
A =

�1(det a)�k

��
b 0

0 c

��
, where �k(A) = �

��
I 0

0 A

�
k

�
is a cusp form in �2 (A in

GL(2; A )). Denote by �K;� (A) the integral over k 2 K
H of �

��
I 0

0 A

�
k

�
��1(k).

It is again a cusp form in �2, on GL(2; A ).

Consequently (8.1.1) is equal to the product by the volume 1 = jSL(n�2; F )nSL(n�

2; A )j, of the integralZ
ja2=(bc)n�2j(1+�)=2ja=bn�2j�1�K;�

��
b 0

0 c

��
��1(c1�nb det a)�1(det a)d

�ad�bd�c:
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Here a; b; c range over the quotient of (A �=F�)3 by the equivalence relation (zn�2; z; z) �

(1; 1; 1). Since �2 has the central character !�2 = �2�n
1

, we have �K;�

��
b 0

0 c

��
=

�1(c
2�n)�K;�

��
b=c 0

0 1

��
. The integral ranges over the domain ja2=(bc)n�2j1=2 <

t1. Write u = b=c and v = a=bn�2. Then the range of integration is jvj juj(n�2)=2 =

ja=bn�2jjb=cj(n�2)=2 < t1. The integral takes the form

Z
jvj juj(n�2)=2<t1

juj(n�2)=2(juj(n�2)=2jvj)��K;�

��
u 0

0 1

��
�1(vu

n�2)�(vun�1)�1d�vd�u

(note that u; v range over A �=F�).

Integrating out v, and noting that Re (�) > 0, we obtain

�(�1=�)
t�
1

�

Z
A�=F�

�K;�

��
u 0

0 1

��
juj(n�2)=2��1(u)d�u:

Since �K;� is a cusp form, it is rapidly decreasing, and the last integral converges.

It is a \Tate integral" for the L-function of �2. Namely for any �2 2 �2, the integral

Z
A�=F�

�2

��
u 0

0 1

��
jujs�

1
2 ��1(u)d�u = L�2

(�2 
 ��1; s)

coincides { up to a �nite number of factors { with the Euler product which de�nes

the L-function of �2 
 ��1; for further details we refer to [JPS]. The Proposition

follows.

Before we proceed to integrate (8.2) over H(F )nH(A ), note that the result of

Proposition 9, and 11 below, will be used in conjunction with

10. Lemma. Let f be a Schwartz (smooth, rapidly decreasing as j�j ! 1) func-

tion on iR, and signify by
R
iR

the principal value integral lim
"!0

(
1="R
"

+
�"R

�1="

). Then

lim
t!1

R
iR

f(�)��1 exp(��t)d� = �f(0).

To complement Proposition 9, we have

11. Proposition. The integral over g in H(F )nH(A ) of the product of ��1(g) and

(8.2) is equal to

�(�1=�)L(M(s2;�2;�)�)K;�(�2 
 �n�1; (n� 1)=2)t��
2
=�:

Proof. The coset decomposition (5.2) will be used, and as in the discussion of (8.1)

using (5.1), we express the integral of (8.2) as a sum of three integrals, corresponding

to the three cosets on the right of (5.2), beginning with the second coset. Since
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r(1; n)H(A )r(1; n) = H�(A ), the integral over H(F )nH(A ) of the summands in

(8.2) parametrized by the second coset in (8.2) is equal to

Z
P
H

(2;n�3)
(F )nH(A)

�(�2(h)
1=2

� t2)�2(h)
(1��)=2(M(s2; �2; �)�)(h)�

�1(h)dh:

We shall abbreviate here and below and write M� for M(s2; �2; �)�; note that

(M�)g(A) = (M�)

��
A 0

0 I

�
g

�
is a cusp form in �2 on A 2 GL(2; A ) for every

g 2 G(A ). The Iwasawa decomposition H(A ) = P
H

(2;n�3)
(A )K H can be used to

show that the integral factorizes through h = mnk, with m = m1m2, and m1 =�
A 0

0 I

�
, with A in GL(2; F )nGL(2; A ). Writing A as A1A2, with A1 ranging over

N(F )nN(A ), N being the upper triangular unipotent subgroup of GL(2), and A2

over a suitable Siegel domain, since (��1�2)(h) is independent of A1 we conclude

that the integral factorizes through
R
(M�)g(A1A2)dA1, A1 2 N(F )nN(A ), and

this is zero since (M�)g is a cusp form.

The integral over H(F )nH(A ) of the terms in (8.2) parametrized by the third

coset in (5.2) is equal to

Z
�(�2(rh)

1=2
� t2)�2(rh)

(1��)=2(M�)(rh)��1(h)dh

where

r =

0
@ 1 0 0

0 I 0

1 0 1

1
A ;

and h ranges over

8><
>:
0
B@
a 0 C 0

c d B 0

0 0 A 0

0 0 0 a

1
CA
9>=
>; (F )nH(A ). Applying again the Iwasawa

decomposition, and noting that r commutes with x =

0
@ 1 0 0

c 1 0

0 0 I

1
A, and that

��1�2(xrh) = (��1�2)(rh), it follows that the integral factorizes through the in-

tegral Z
(M�)rh

��
1 0

c 1

��
dc; c 2 A mod F;

which is zero since (M�)rh is a cusp form in �2.

There remains the �rst coset in (5.2). The integral over H(F )nH(A ), of the

terms in (8.2) parametrized by this �rst coset, is equal to

Z
P
H�

(1;n�2)
(F )nH�(A)

�(�2(hr)
1=2

� t2)�2(hr)
(1��)=2(M�)(hr)��1(h)dh:
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Here r = r(1; n), and we used the fact that rHr = H�. The Iwasawa decomposition

H�(A ) = NH�

(1;n�2)(A )M
H�

(1;n�2)(A )K
H�

can be used to write h as nmk, and we use

the change of variables formula dh = �(m)�1dndmdk, with �(m) = jbn�2= det(c)j

if m =

0
@ a 0 0

0 b 0

0 0 c

1
A; a; b in A

� , c in GL(n� 2; A ). Note that

(M�)(nmk) = �1(det c)(M�)

0
@
0
@ a 0 0

0 b 0

0 0 I

1
A k

1
A ;

and the function A 7! (M�)

��
A 0

0 c

�
g

�
= �1(det c)(M�)

��
A 0

0 I

�
g

�
for any

c 2 GL(n� 2; A ) and g 2 G(A ), is a cusp form in A 2 GL(2; A ) in the space of the

cuspidal representation �2 of GL(2; A ). Put

(M�)K;� (A) =

Z
KH

�
(M�)

��
A 0

0 I

�
k

�
��1(k)dk:

Since �2(hr) = j(ab)n�2= det(c)2j, our integral takes the formZ
j(ab)n�2= det(c)2j(1��)=2jbn�2= det(c)j�1(M�)K;�

��
a 0

0 b

��
� �1(det c)�(a

n�1=b det c)d�ad�bd�c:

It ranges over the

0
@ a 0 0

0 b 0

0 0 c

1
A inM

(1;1;n�2)(F )nM(1;1;n�2)(A ), with j(ab)
n�2= det(c)2j1=2 �

t2. Integrating over c in SL(n� 2; F )nSL(n� 2; A ) we earn a volume factor which

is equal to 1, and we may assume that c lies in A
�=F�, as do a; b, and (a; b; c) are

taken modulo the equivalence relation (z; z; zn�2) � (1; 1; 1). Write u = a=b and

v = bn�2=c. Then the integral ranges over jvjjuj(n�2)=2 � t2, and it takes the formZ
jvj juj(n�2)=2�t2

juj(n�2)=2(juj(n�2)=2jvj)��(M�)K;�

��
u 0

0 1

��
�1(v)

�1�(un�1v)d�ud�v:

Integrating out v we obtain

�(�=�1)
t��
2

�

Z
(M�)K;�

��
u 0

0 1

��
�(u)n�1juj(n�2)=2d�u

= �(�1=�)�
�1t��

2
L(M�)K;�

�
�2 
 �n�1;

n� 1

2

�
;

where L(M�)K;�

�
�2 
 �n�1; n�1

2

�
is the value at (n� 1)=2 of the L-function of �2


�n�1 associated with the cusp form �n�1(M�)K;� in �2
 �
n�1. This completes the

proof of our proposition.
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Bernstein's center. It remains to compute the contribution to the spectral side of

the summation formula of the terms parametrized by the data of Proposition 4(a).

It might be true that for a general n � 3 the only terms described by Proposition

4(a) which contribute to the summation formula are associated with a parabolic

subgroup of type (n1; n2; n3) where at least two of the n1, n2, n3 are equal to

1, but we do not pursue this question here. In fact we shall discuss below the

contributions of the terms of Proposition 4(a) only in the special case where n = 3

(and n1 = n2 = n3 = 1). Before embarking on this computation for n = 3 we shall

complete a special form of the summation formula for a general n � 3, which does

not involve the terms of Proposition 4(a). This special case, for a general n � 3,

depends on a choice of the test function f .

Let v be a non-archimedean place of F . A cuspidal pair in Gv is a pair (Mv; �v)

consisting of a (standard) Levi subgroup Mv and a supercuspidal (irreducible)Mv-

module �v. The pairs (Mv; �v); (M
0
v; �v) are equivalent if there is g in Gv with

M 0
v = g�1Mvg and �v equivalent to m 7! �0v(g

�1mg). An equivalence class is

called an in�nitesimal character (of Gv). For every irreducible Gv-module �v there

exists a cuspidal pair (Mv; �v) such that �v is a constituent of the composition series

of the Gv-module I(�v;Gv; Pv) normalizedly (= \unitarily") induced from the Pv-

module extended from �v on Mv by 1 on the unipotent radical of the (standard)

parabolic Pv = MvNv de�ned by Mv. The in�nitesimal character �(�v) of �v is

de�ned to be the in�nitesimal character of (Mv; �v); it is uniquely determined (see

[BZ]).

The set �(Gv) of in�nitesimal characters has the structure of a complex algebraic

variety. Indeed, the group X(Mv) of unrami�ed characters � : Mv ! C
� of Mv

acts on the set IrrMv of irreducible Mv-modules by � : �v ! ��v. For any

cuspidal pair (Mv; �v), the image of the map X(Mv) ! �(Gv), � 7! (Mv; ��v), is

called a connected component of �(Gv). This component has the natural structure

of an a�ne complex algebraic variety as a quotient of X(Mv) (' C
�d for some

d = d(Mv) � 0), by a �nite group. The �(Gv) is a complex algebraic variety equal

to the disjoint union of in�nitely many connected components �.

As a consequence of the theory of the Bernstein center (see [BD] for a preliminary

draft, and the forthcoming work [B]), one has the following

12. Proposition. Let � be a connected component in �(Gv). Then for any

fv 2 C1c (Gv) there exists fv;� 2 C1c (Gv) such that for any �v 2 IrrGv we have

�v(fv;�) = 0 if �(�v) 62 �, and �v(fv;�) = �v(fv) if �(�v) 2 �.

We use this Proposition 12 as follows. Fix a non-archimedean place u of F , a

unitary character �0
1u of F�u and a supercuspidal (irreducible) representation �0

2u

of GL(2; Fu) with central character !0
2n = (�0

1u)
2�n. Denote by Mu the standard

Levi subgroup of type (1; : : : ; 1; 2), and by �0u the supercuspidal representation

�0
1u � � � � � �0

1n � �0
2n of Mu. Denote by �0

u the connected component of the

in�nitesimal character of �0u.

We shall derive the summation formula for a function f which is a (�nite linear

combination of) product(s) over all places v of F of the form 
fv, where fv 2

C1c (Gv) for all v, fv = f0v is the quotient by vol (Kv) of the characteristic function

of Kv in Gv for almost all v, and fu has the property that fu = fu;�0
u
. For any

such f we have that �(f) = 0 for every representation � of G(A ) of the form
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I(�;G(A ); P (A )), normalizedly induced from a pair (P ; �) described in Proposition

4(a).

For such f , the summation formula is obtained from (3.3),where the sums over

P and � range over the connected components of pairs (P ; �) (up to conjugation)

as listed in Proposition 4(b). The factor
R
��1�TE in (3.3) is equal { by virtue of

the Propositions 9 and 11 { to the di�erence

�(�1=�)[L�K;�(�2
 �
�1; (n� 1)=2)t�

1
=��L(M(s2;�2;�)�)K;�(�

_
2

 �; (n� 1)=2)t��

2
=�];

since �n�1 = �n�1
1

= !�1
2
� if �1 = �, and �_

2
, the contragredient of �2, is equivalent

to �2 
 !2, where !2 is the central character of �2. More precisely we need the

complex conjugate of this. Of course on � 2 iR we have � = ��. The factor is

then

�(�1=�)[L(M(s2;�
_
2 ;��)�)K;��1

(�2
�
�1; (n�1)=2)t�

2
=��L

�
K;��1

(�_
2

�; (n�1)=2)t��

1
=�]:

For the given smooth function f , the sum over � in (3.3) is �nite, and the function

E (I(f; �; �)�; �; �) is holomorphic and rapidly decreasing in � 2 iA�P (' iR) as

j�j ! 1.

By virtue of Lemma 10 we may take the limit as t1 ! 1 (and so t2 ! 1) to

obtain the required result, namely that when T !1 the limit of (3.3) is

X
(P;�)

n(P )�1
X
�

E (I(f; �; 0)�; �; 0)�(�1=�)

[L
(M(s2;�

_
2 ;0)�)K;��1

(�2 
 ��1; (n� 1)=2) + L
�
K;��1

(�_
2

 �; (n� 1)=2)]:

F. The case of PGL(3). It remains to compute the contributions to the summation

formula from the terms parametrized by the data described by Proposition 4(a). We

shall do this only in the case where n = 3, and then P = B is the upper triangular

subgroup of G = PGL(3), and � = �1��2��3 is a character of B(A )=B(F ), which

is trivial on N(A )=N (F ), N being the unipotent radical of B.

Assume then that n = 3, and put P
1
= P

(2;1). To integrate the automor-

phic function �TE(g;�; �; �) over g 2 H(F )nH(A ), we note that we may { as

we will { integrate instead over H0(F )nH0(A ), where H0 = r(2; 3)Hr(2; 3) =8<
:
0
@ � 0 �

0 � 0

� 0 �

1
A
9=
;. Indeed, �TE(r0gr;�) = �TE(g;�r) with �r(g) = �(gr) if

r0 2 G(F ), since �TE is automorphic, and we may replace the orthonormal basis

f�g by f�rg. We need a coset decomposition analogous to that of Proposition 5,

with H0 replacing H, and with respect to B. Put

"1 =

0
@ 1 0 0

1 1 0

0 0 1

1
A ; "2 =

0
@ 1 0 0

0 1 0

0 1 1

1
A ; "3 =

0
@ 1 0 0

0 1 0

1 0 1

1
A :
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13. Proposition. If G = GL(3) and P
1
= P

(2;1), then we have the disjoint union

G = P
1
H0

[ P
1
r(23)H0

[ P
1
"2r(23)H

0

= BH0
[ Br(12)H0

[Br(23)H0
[B"1r(12)H

0
[ B"2r(23)H

0
[ B"3r(23)H

0:

Consequently, if B0 = B \H =

8<
:
0
@ � 0 �

0 � 0

0 0 �

1
A
9=
;, then we have the disjoint coset

decomposition

BnG = B0
nH0

[ r(12) �B0
nH0

[ r(23)�B0
nH0

["1r(12) �

8<
:
0
@ a 0 z

0 a 0

0 0 b

1
A
9=
; nH0

[ "2r(23) �

8<
:
0
@ a 0 z

0 b 0

0 0 b

1
A
9=
; nH0

[ "3r(23) �

8<
:
0
@ a 0 0

0 a 0

0 0 b

1
A
9=
; nH0:

De�nition. Below we refer to the six cosets in the last line as \the �rst coset", ...,

\the sixth coset".

Proof. The homogeneous space P
1
nG is isomorphic to the projective 3-space via

the isomorphism g 7! (0; 0; 1)g. The orbit (0; 0; 1)H0 consists of the vectors (a; b; c)

with b = 0, that of r(23)H0 consists of (a; b; c) with a = c = 0, and the orbit

(0; 0; 1)

0
@1 0 0

0 1 0

0 1 1

1
A r(23)H0 consists of (a; b; c) with b 6= 0, and a 6= 0 or c 6= 0.

Whence the �rst decomposition.

To deduce from it the second decomposition, recall the Bruhat decomposition

P
1
= B [Br(1; 2)N

1
= B [ Br(1; 2) [ B"1r(12)A;

where A is the diagonal subgroup and N
1
=

8<
:
0
@ 1 � 0

0 1 0

0 0 1

1
A
9=
; = fa�1"1a; a 2 Ag.

Then

P
1
H0 = BH0

[Br(12)H0
[B"1r(12)H

0:

Moreover

P
1
r(23)H0 = Br(23)H0; since r(23)r(12)r(23) 2 H0 and B"1r(12)r(23)H

0 = Br(23)H0:

Finally

P
1
"2r(23)H

0 = B"2r(23)H
0
[B"3r(23)H

0;

since

B"1r(12)"2r(23)H
0 = B"3"1r(12)r(23)H

0 = B"3r(23)H
0 (r(23)"1r(23) 2 H

0):
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To obtain the coset decomposition it su�ces to note that

BnBrH0 = r � (r�1Br \H0
nH0):

The proposition follows.

Remark. (1) Since

0
@�1 0 1

0 b 0

0 0 1

1
A "3r(23) = "3r(12)

0
@0 0 b

0 1 0

1 0 0

1
A, we have that

B"3r(23)H
0 = B"3r(12)H

0. (2) It is easy to see that B"1r(12)H
0 = B"1H

0,

and that B"2r(23)H
0 = B"2H

0.

Since the character � = �1 � �2 � �3 is a cuspidal representation of the diagonal

subgroup A(A ) = B(A )=N (A ), Lemma 4.1 of [A2], p. 114, applies. It asserts, in

our case, the following.

14. Proposition. The truncated Eisenstein series �TE(h;�; �; �), where � 2

A�
0;C has real part Re (�) in �0 + (A�

0
)+, and T is su�ciently large in the positive

Weyl chamber A0, is equal toX
s2W

X
2B(F )nG(F )

"0(s�)�0(s�;H0(h)� T )ehs�+�0; H0(h)i(M(s; �; �)�)(h):(14:1)

We may identify the two dimensional spaces A0 and A�
0
with the space of the

vectors (x1; x2; x3) in R
3 with x1+x2+x3 = 0. The simple roots are �1 = (1;�1; 0)

and �2 = (0; 1;�1), and a dual basis is given by �1 =
�
2

3
; �1

3
; �1

3

�
, �2 =

�
1

3
; 1
3
; �2

3

�
(h�i; �ji = �ij). If a = diag (a1; a2; a3) then �1(a) = ja1=a2j = eh�1;H(a)i and

�2(a) = ja2=a3j = eh�2;H(a)i, thus H(a) = ln ja1=a2j�1 + ln ja2=a3j�3. Hence if

a = diag (x1; x2=x1; x
�1
2
), then H(a) = ln jx1j�1 + ln jx2j�2. We shall also write

� = ��1 + �2�2, and note that � 2 (A�
0
)+ if �1 > 0 and �2 > 0. Recall that

"0(�) is de�ned for � 2 A�
0
in [A1], p. 940, to be 1 if h�; �_i � 0 for an even

number of � 2 �0 = f�1; �2g, and its is �1 otherwise. The function �0(�; H) on

(�; h) 2 A�
0
� A0 is de�ned there to be equal to 1 if h�; �_i i � 0 and h�i; Hi > 0,

or h�; �_i i > 0 and h�i; Hi � 0, for both i = 1; 2; it is 0 otherwise.

First Coset. We are to consider the integral over H0(F )nH0(A ) of the prod-

uct by ��1(h) (= ��1((ad � bc)=e2) if h =

0
@ a 0 b

0 e 0

c 0 d

1
A 2 H0(A )) of the ex-

pression displayed in Proposition 14. Using the coset decomposition of Propo-

sition 13, we consider �rst the coset B0(F )nH0(F ). Applying the Iwasawa de-

composition H0(A ) = N0(A )A0(A )K 0 , and noting the change of variables for-

mula dh = ��1(a)dndadk, where �(a) = eh�0;H(a)i(= ja1=a3j if a = (a1; a2; a3),

�0 = �1 + �2 = �1 + �2), our integral takes the form

X
s2W

"0(s�)

Z
A(F )nA(A)

�0(s�;H(a)� T )ehs�;H(a)i(M(s; �; �)�)K0 ;�(a)�
�1(a)da;(14:2)

where �( diag (a; b; c)) = �(ac=b2). Write T = ln t1 � �1 + ln t2 � �2. Note that

(M(s; �; �)�)K0 ;�(a) =
R
K0
(M(s; �; �)�)(ak)��1(k)dk is zero unless s� = �(s�(a) =
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�(s(a))) on A(A ) \ K
0 . We may choose � in its connected component with s� = �

on A(A ) if s� = � on A(A ) \ K
0 . Then (M(s; �; �)�)K0 ;�(a)�

�1(a) is independent

of a 2 A(A ), and is equal to its value at a = 1. Also we write �(�=�) = 1 if � = �

on A(A ) \ K
0 , and �(�=�) = 0 otherwise.

The following table lists the various functions in the integral.

s s� "0(s�) �0(s�;H(a)� T ) ehs�;H(a)i

id �1�1 + �2�2 1 jx1j < t1; jx2j < t2 jx1j
�1 jx2j

�2

r(12) ��1�1 + (�1 + �2)�2 �1 t1 < jx1j; jx2j < t2 jx1j
��1 jx2j

�1+�2

r(23) (�1 + �2)�1 � �2�2 �1 jx1j < t1; t2 < jx2j jx1j
�1+�2 jx2j

��2

r(23)r(12) �2�1 � (�1 + �2)�2 �1 jx1j < t1 ; t2 < jx2j jx1j
�2 jx2j

��1��2

r(12)r(23) �(�1 + �2)�1 + �1�2 �1 t1 < jx1j; jx2j < t2 jx1j
��1��2 jx2j

�1

r(13) ��2�1 � �1�2 1 t1 < jx1j; t2 < jx2j jx1j
��2 jx2j

��1

We shall label below by ((3)i) the various terms in the integral
R
��1�TE to be

substituted in (3.3), in our present case of PGL(3), where n = 3, and the character

� of the minimal parabolic subgroup.

Since Z
jxj>t

jxj��d�x =

Z
jxj<t�1

jxj�d�x =
t��

�
;

Z
jxj<t

jxj�d�x =
t�

�
;

our integral is equal to

t�1
1
t�2
2

�1�2
�K0 (1)�(�=�)((3)1)

+
t��1
1

�1

t�1+�2
2

�1 + �2
(M(r(12); �; �)�)K0 ;�(1)�(�=

r(12)�)

+
t�1+�2
1

�1 + �2

t��2
2

�2
(M(r(23); �; �)�)K0 ;�(1)�(�=

r(23)�)

+
t�2
1

�2

t��1��2
2

�1 + �2
(M(r(23)r(12); �; �)�)K0;�(1)�(�=

r(23)r(12)�)

+
t��1��2
1

�1 + �2

t�1
2

�1
(M(r(12)r(23); �; �)�)K0;�(1)�(�=

r(12)r(23)�)

+
t��2
1

�2

t��1
2

�1
(M(r(13); �; �)�)K0 ;�(1)�(�=

r(13)�):

Second Coset. Next we consider the coset r(12) � B0(F )nH0(F ), and again in-

tegrate over H0(F )nH0(A ) the corresponding partial sum of (14.1), multiplied by

��1(h). Applying the Iwasawa decomposition H0(A ) = N0(A )A(A )K 0 , noting

that r(12)N0(A )r(12) consists of upper triangular unipotent matrices, and that

dh = e�h�0;H0(a)idn da dk, and making the change a 7! r(12)ar(12) of variables on

A(A ), we obtain the integralX
s2W

"0(s�)

Z
A(F )nA(A)

�0(s�;H(a)� T )ehs�;H(a)i(14:3)

� (M(s; �; �)�)K0 ;�(r(12))�(
r(12)�=s�)eh�0�r(12)�0;H(a)ida:
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The argument used in the case of (13.2) implies that (M(s; �; �)�)K0 ;�(ar(12))�
�1(r(12)ar(12))

is zero unless s� = r(12)� on A(A ) \ K
0 , but then we may choose � in its connected

component to satisfy s� = r(12)� on A(A ), and our function is independent of a. If

H(a) = ln jx1j�1+ln jx2j�2, since �0� r(12)�0 = (1; 0;�1)� (0; 1;�1) = (1;�1; 0),

the new factor in the integrand of (14.3) (as compared with that of (14.2)) is

jx1j
2=jx2j.

The corresponding table for (14.3) is the same as for (14.2), except that the 6

entries in the last column are multiplied by jx1j
2=jx2j. Consequently (14.3) is equal

to (put r = r(12), s = r(23), for brevity)

t�1+2
1

�1 + 2

t�2�1
2

�2 � 1
�K0 ;�(r(12))�(�=

r�)((3)2)

�
t2��1
1

2� �1

t�1+�2�1
2

�1 + �2 � 1
(M(r(12); �; �)�)K0 ;�(r(12))�(

r�=r�)

+
t2+�1+�2
1

2 + �1 + �2

t��2�1
2

�2 + 1
(M(r(23); �; �)�)K0 ;�(r(12))�(

s�=r�)

+
t2+�2
1

2 + �2

t��1��2�1
2

�1 + �2 + 1
(M(r(23)r(12); �; �)�)K0;�(r(12))�(

sr�=r�)

�
t2��1��2
1

2� �1 � �2

t�1�1
2

�1 � 1
(M(r(12)r(23); �; �)�)K0;�(r(12))�(

rs�=r�)

�
t2��2
1

2� �2

t��1�1
2

�1 + 1
(M(r(13); �; �)�)K0 ;�(r(12))�(

srs�=r�):

Third Coset. The subsum parametrized by r(23) � B0(F )nH0(F ) in (14.1), or

rather its integral over H0(F )nH0(A ), can be treated analogously. Applying again

the Iwasawa decomposition and making the change a 7! r(23)ar(23) of variables

on A(A ), an integral analogous to (14.2) and (14.3) is obtained, namely r(12) has

to be replaced by r(23) in (14.3). Note that �0� r(23)�0 = (1; 0;�1)� (1;�1; 0) =

(0; 1;�1), and eh�0�r(23)�0;H(a)i = jx2
2
=x1j. Hence the last column in the table for

(14.2) has to be multiplied by jx2
2
=x1j to obtain the analogous table, for the coset

r(23) � B0(F )nH0(F ). Integrating we obtain (put r = r(23); s = r(12), in the
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following expression)

t�1�1
1

�1 � 1

t�2+2
2

�2 + 2
�K0 ;�(r(23))�(�=

r�)((3)3)

+
t��1�1
1

�1 + 1

t�1+�2+2
2

�1 + �2 + 2
� (M(r(12); �; �)�)K0 ;�(r(23))�(

s�=r�)

�
t�1+�2�1
1

�1 + �2 � 1

t2��2
2

2� �2
(M(r(23); �; �)�)K0 ;�(r(23))�(

r�=r�)

�
t�2�1
1

�2 � 1

t2��1��2
2

2� �1 � �2
(M(r(23)r(12); �; �)�)K0;�(r(23))�(

rs�=r�)

+
t��1��2�1
1

�1 + �2 + 1

t2+�1
2

2 + �1
(M(r(12)r(23); �; �)�)K0;�(r(23))�(

sr�=r�)

�
t��2�1
1

�2 + 1

t2��1
2

2� �1
(M(r(13); �; �)�)K0 ;�(r(23))�(

srs�=r�):

Fourth Coset. The next coset of B(F )nG(F ) to be considered is

"1r(12)�

8<
:
0
@ a 0 z

0 a 0

0 0 b

1
A
9=
; (F )nH0(F ). The integral over H0(F )nH0(A ) of the prod-

uct by ��1(h) of the subsum parametrized by this coset in (14.1) is the sum over

s 2 W of the integral over u = b=s 2 A
� and w = c=b =2 A

�=F�, of the product

with "0(s�) of

�0(s�;H(h)� T )(M�)(h)ehs�+�0;H(h)i�(b2=ac)jc=ajd�(a=b)d�(c=b);

where

(M�)(g) =

Z
K0

(M(s; �; �)�)(gr(12)k)��1(k)dk;

h =

0
@ 1 0 0

1 1 0

0 0 1

1
A
0
@ b 0 0

0 a 0

0 0 c

1
A =

0
@ 1 0 0

1 1=u 0

0 0 w

1
A :

As usual, the Iwasawa decomposition was used, and it was noted that "1 commutes

with r(12)N0r(12) =

0
@ 1 0 0

0 1 �

0 0 1

1
A. Note that (M�)(h) is zero unless s�3(w) =

s�( diag (1; 1; w)) is equal to �(w) = �( diag (1; 1; w)) on all w 2 A
� with jwj = 1.

We may choose � in its connected component, when �(s�3=�) = 1, such that s�3 = �

on A
� . With this choice, (M�)(h)��1(w) is independent of w. The integrand can

therefore be expressed in the form

�(s�3=�)�0(s�;H�T )(M�)

0
@
0
@ 1 0 0

1 1=u 0

0 0 1

1
A
1
A ehs�+�0;Hijuwj�(u)d�ud�w; H = H(h):
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Note that if g = (gv) 2 G(A ) where gv = nvavkv 2 G(Fv), the H(g) =P
vHv(gv), where Hv(gv) is de�ned to be Hv(av), and `nj�(av)j = h�;Hv(av)i for

any � 2 X(A) = Hom(A;GL(1)). For x = (xv), y = (yv) in A
� , put jxj = �vjxvjv,

and k(x; y)k =
Q
v

k(xv; yv)kv, where k(xv; yv)kv is max(jxvjv; jyvjv) in the non-

archimedean case and (jxvj
2

v + jyvj
2

v)
1=2 in the archimedean case. Also we write

(x; y) for an element in A
� with j(x; y)j = k(x; y)k. Then

H

0
@
0
@ 1 0 0

1 u�1 0

0 0 w

1
A
1
A = H( diag ((u(1; u�1))�1; (1; u�1); w))

= �
1

3
ln(jwu2j k(1; u�1)k3)�1 �

1

3
ln(juw2

j)�2

= �
1

3
ln jwj(�1 + 2�2)�

1

3
ln juj(2�1 + �2)� ln k(1; u�1)k�1

= � ln jwj � �2 � ln juj � �1 � ln k(1; u�1)k � �1:

IV(1). We shall consider each of the summands indexed by s 2 W . When s = 1,

the characteristic function �0(�;H � T ) is non-zero when

1

3
ln jwj+

2

3
ln juj+ln k(1; u�1)k � � ln t1; or ln jwj � A = �3 ln t1�2 ln juj�3 ln k(1; u

�1)k;

and

2

3
ln jwj+

1

3
ln juj � � ln t2; or ln jwj � B = �

3

2
ln t2 �

1

2
ln juj:

Note that

� ln juv(1; u
�1
v )2jv =

�
� ln juvjv � 0; if juvjv � 1,

ln juvjv � 0; if juvjv � 1;

is always non-positive, and consequently so is

� ln juj � 2 ln k(1; u�1)k = �

X
v

ln juv(1; u
�1
v )2jv;

which is therefore less then ln(t2
1
=t2) if we choose t1 and t2 with t2 < t2

1
(later we

also require that t1 < t2
2
). It follows that B > A, namely the integral ranges, when

s = 1, over the u 2 A
� and w 2 A

�=F� with jwj�1 � t
3=2
2
juj1=2.

On the domain of integration, the integrand is the product of

juwj exp(h�+ �0; Hi) = juwj expf�(1 + �1) ln(jwu
2
j k(1; u�1)k3)=3� (1 + �2) ln ju

2wj=3g

= (k(1; u�1)k3ju2wj)�(1+�1)=3juw2
j
�(1+�2)=3juwj

= k(1; u�1)k�(1+�1)juj(�2�1+�2)=3jwj�(�1+2�2)=3

and (M�)

0
@
0
@ 1 0 0

1 1=u 0

0 0 1

1
A
1
A �(u)�(s�3=�).
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Integrating with respect to w 2 A
�=F� on jwj�1 � juj1=2t

3=2
2

, we obtain

k(1; u�1)k�(1+�1)juj�(2�1+�2)=3(juj1=2t
3=2
2

)(�1+2�2)=3=(
1

3
�1 +

2

3
�2)

= k(1; u�1)k�(1+�1)juj��1=2t
�2+�1=2
2

=
1

3
(2�2 + �1):

We need to integrate this over u = (uv) in A
� . Note that �v is unrami�ed and

that (M�)(g) is right-GL(3; Rv) and left-A(Fv) invariant, for almost all v. When

s�3 = � we have that �(u)(M�)

0
@
0
@ 1 0 0

1 1=u 0

0 0 1

1
A
1
A, as a function in uv 2 F�v ,

is a multiple of s��v (uv) =
s�v( diag (1; 1=uv; 1))�v(uv) =

s�v( diag (1; 1=uv; uv)) if

juvjv � 1, and of s�+v (uv) =
s�v( diag (1=uv; 1; 1))�v(uv) =

s�v( diag (1=uv; 1; uv)) if

juvjv � 1, for almost all v. Note that in the non-archimedean case we have

j(1; u�1v )j�(1+�1=2)v juvj
��1=2
v =

(
juvj

1+�1=2
v if juvjv � 1;

juvj
��1=2
v if juvjv � 1.

Hence the integral of the local factor over F�v against d�uv is equal { in the non-

archimedean case { to

Z
jujv�1

(M�)v

0
@
0
@ 1 0 0

1 1=u 0

0 0 1

1
A
1
A juj1+�1=2v �v(u)d

�u

+

Z
jujv>1

(M�)v

0
@
0
@ 1 0 0

1 1=u 0

0 0 1

1
A
1
A juj��1=2v �v(u)d

�u:

At almost all v we put x = s��v (�v) and y =
s�+v (�v), where �v is a uniformizing

parameter in Fv. We obtain

1X
0

q�n(1+�1=2)v xn +

1X
1

q�n�1=2v y�n = (1� q�1��1=2v x)�1 + (1� q��1=2v =y)�1 � 1

= (1� xy�1q�1��1v )=(1� q��1=2v =y)(1� xq�1��1=2v )

= Lv(�1=2; (
s�+v )

�1)Lv(1 + �1=2;
s��v )=L(1 + �1;

s��v =
s�+v ):

At the remaining �nite number of places we obtain a multiple of this multiple of L-

factors by a polynomial in q
�1=2
v , or a holomorphic function in �1 in the archimedean

case. Denote the product over v by

LM�(�1=2; (
s�+)�1)LM�(1 + �1=2;

s��)=LM�(1 + �1;
s��=s�+)((3)4:1)

= "(�1=2;(
s�+)�1)LM�(1� �1=2;

s�+)LM�(1 + �1=2;
s��)=LM�(1 + �1;

s��=s�+):

This quotient has a simple pole on the line �1 2 iR if s�� (or s�+) factorizes through

�(x) = jxj; it is holomorphic, of polynomial growth as �1 2 iR, j�1j ! 1. When
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the pole exists we may choose � in its connected component to satisfy s�� = 1 (or
s�+ = 1). In this case the pole occurs at �1 = 0 (in the number �eld case, and at

�1 2 iZ= log q in the function �eld case). The result of our computation is of course

the product of ((3)4.1) with t
�2+�1=2
2

=((2�2 + �1)=3).

IV(5). The next summand is that of s = r(12), when s� = ��1�1 + (�1 + �2)�2.

The characteristic function �0(s�;H � T ) is 0 unless ln jwj � A and ln jwj � B.

But B > A hence the integrand is always zero.

IV(6). Similarly, when s = r(12)r(23), so s� = �(�1 + �2)�1 + �1�2, the char-

acteristic function vanishes unless ln jwj � A < B � ln jwj, and the integrand is

always zero.

The remaining three cases of s are analogously treated. To simplify the notations

we consider only the case where � = 1 and � = 1. The key ingredients of the

computations would then be seen, and the general case can be treated as in the

case of s = 1 above, with additional notational e�ort only.

IV(2). When s = r(23), then s� = (�1 + �2)�1 � �2�2, and the characteristic

function is zero unless ln jwj � A and ln jwj � B, namely the integral ranges over

the u;w with

juj1=2t
3=2
2

� jwj�1 � t3
1
juj2k(1; u�1)k3:

Since

ehs�+�0;Hi = k(1; u�1)k�(1+�1+�2)jwu2j�(1+�1+�2)=3juw2
j
�(1��2)=3;

the integral over w 2 A
�=F� in the designed domain of the product of this with

juwj is

k(1; u�1)k�(1+�1+�2)juj�(2�1+�2)=3

� [(t3
1
juj2k(1; u�1)k3)(�1��2)=3 � (juj1=2t

3=2
2

)(�1��2)=3]=((�1 � �2)=3):

The integral of this over u in A
� with respect to d�u is

[t�1��2
1

"(�2)LM�(1� �2)LM�(1 + �2)=LM�(1 + 2�2)((3)4:2)

� t
(�1��2)=2
2

"((�1 + �2)=2)LM�(1� (�1 + �2)=2)

� LM�(1 + (�1 + �2)=2)=LM�(1 + �1 + �2)]=((�1 � �2)=3);

the computation is carried out as in the case where s = 1.

IV(3). When s = r(23)r(12) and s� = �2�1 � (�1 + �2)�2, the characteristic

function speci�es the same domain of jwj as in the previous case of s = r(23), and

ehs�+�0;Hi = jwu2j�(1+�2)=3k(1; u�1)k�(1+�2)juw2
j
(�1+�2�1)=3

= k(1; u�1)k�(1+�2)juj(�1��2)=3jwj(2�1+�2)=3juwj�1:

Multiplying this by juwj, and integrating over w 2 A
�=F� in the domain speci�ed

by the non-vanishing of the characteristic function, we obtain

k(1; u�1)k�(1+�2)juj(�1��2)=3[(t
1=2
2
juj1=6)�2�1��2�(t1juj

2=3
k(1; u�1)k)�2�1��2 ]=((2�1+�2)=3):
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The integral of this over u 2 A
� against d�u is equal to

[t
�(�1+�2=2)
2

"(�2=2)LM�(1� �2=2)LM�(1 + �2=2)=LM�(1 + �2)((3)4:3)

� t�2�1��2
1

"(�1 + �2)LM�(1� �1 � �2)

� LM�(1 + �1 + �2)=LM�(1 + 2�1 + 2�2)]=((2�1 + �2)=3):

IV(4). When s = r(13) and s� = ��2�1 � �1�2, the characteristic function

�0(s�;H � T ) vanishes unless ln jwj � A and ln jwj � B; but A < B, hence the

support is speci�ed by

jwj � t�3
1
juj�2k(1; u�1)k�3:

Also
ehs�+�0;Hi = k(1; u�1)k�(1��2)jwu2j�(1��2)=3juw2

j
�(1��1)=3

= k(1; u�1)k�(1��2)juj(�1+2�2)=3jwj(2�1+�2)=3juwj�1:

The integral over w 2 A
�=F� (on the speci�ed domain) of the product of this with

juwj is equal to

k(1; u�1)k�(1��2)juj(�1+2�2)=3(t�3
1
juj�2k(1; u�1)k�3)(2�1+�2)=3=((2�1 + �2)=3):

The integral of this on u 2 A
� , by d�u, is

t�2�1��2
1

((2�1 + �2)=3)
�1"(�1)LM�(1� �1)LM�(1 + �1)=LM�(1 + 2�1):((3)4:4)

Fifth Coset. The coset "2r(23) �

8<
:
0
@ a 0 z

0 b 0

0 0 b

1
A
9=
; (F )nH0(F ) is treated analo-

gously. Carrying out the computation we would obtain terms ((3)5.i), 1 � i � 4,

analogous to ((3)4.i).

Sixth Coset. The remaining subsum of (14.1) to be considered ranges over the

coset "3r(23)�

8<
:
0
@ a 0 0

0 a 0

0 0 b

1
A
9=
; (F )nH0(F ) inB(F )nG(F ). The integral overH0(F )nH0(A )

can be expressed { on using the Iwasawa decomposition H0(A ) = N0(A )A(A )K 0 {

as the sum over s 2W of the product with "0(s�) of the integral of

�0(s�;H � T )ehs�+�0;Hija=cj�1(M�)(h)��1(ac=b2)dz d�ud�v;

where

H = H(h); h =

0
@ 1 0 0

0 1 0

1 z 1

1
A
0
@ a 0 0

0 c 0

0 0 b

1
A =

0
@u 0 0

0 v 0

u z 1

1
A ;

(M�)(g) =

Z
K0

(M(s; �; �)�)(gr(23)k)��1(k)dk;

over

z 2 A ; u = a=b 2 A
� ; v = c=b 2 A

�=F�:
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For u = (uv) 2 A , z = (zv) 2 A , we let j(1; zv; uv)jv be max(1; jzvjv; juvjv)

if v is non-archimedean, and (1 + jzvj
2

v + juvj
2

v)
1=2 otherwise, put k(1; z; u)k forQ

v

k(1; jzvjv; juvjv)k, and put (1; zv; uv) for an element of Fv with absolute value

j(1; zv; uv)jv, and (1; z; u) for ((1; zv; uv)) 2 A
� . Then0

@u 0 0

0 v 0

u z 1

1
A 2 N(A ) diag (u=(1; u); v(1; u)=(1; z; u); (1; z; u))K ;

where K = �vKv, and Kv is the standard maximal compact subgroup of Gv.

Changing variables z 7! z=v, noting that G is a projective group, H becomes

H

0
@
0
@u 0 0

0 v 0

u z 1

1
A
1
A = (

1

3
ln ju2=vj � ln k(1; u)k)�1 + (

1

3
ln juvj � ln k(1; z; u)k)�2:

VI(1). We shall consider separately each of the six terms indexed by s 2W , with

s = 1 treated now. As � = �1�1 + �2�2 with �i > 0, the characteristic function

�0(�;H � T ) is supported on the set determined by hH � T; �ii < 0 (i = 1; 2),

namely on the u; v; z with

ju2=vj1=3=k(1; u)k < t1; juvj1=3=k(1; u; z)k < t2;

or equivalently

t�3
1
juj2=k(1; u)k3 � jvj � t3

2
juj�1k(1; u; z)k3:

The integrand is the product by

��1(uv)(M�)

0
@
0
@u 0 0

0 v 0

u z 1

1
A
1
A(�)

= ��1(uv)s�( diag (u=(1; u); v(1; u)=(1; z; u); (1; z; u)))(M�)(k(u; z));

where k(u; z) 2 K is independent of v, of (recall that c=a = v=u, and that the

change z 7! z=v added a factor jvj�1)

ehs�+�0;Hijuj�1 = (ju2=vj=k(1; u)k3)(1+�1)=3(juvj=k(1; z; u)k3)(1+�2)=3juj�1

= (ju2=vj=k(1; u)k3)�1=3(juvj=k(1; z; u)k3)�2=3k(1; z; u)k�1k(1; u)k�1

= jvj(�2��1)=3juj(2�1+�2)=3k(1; z; u)k�1��2k(1; u)k�1��1:

The integral of this product over v in A
0=F�, A 0 = fa 2 A

� ; jaj = 1g, is a multiple

of �(s�2=�), where
s�2(v) =

s�( diag (1; v; 1)). If s�2 = � on A
0 we may choose � in

its connected component to have s�2 = � on A
� . Then (�) is independent of v.

Integrating against d�v over v in A
�=F� we obtain

juj(2�1+�2)=3k(1; u)k�1��1k(1; z; u)k�1��2

� [(t2juj
�1=3

k(1; u; z)k)�2��1 � (t�1
1
juj2=3=k(1; u)k)�2��1 ]=((�2 � �1)=3):
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This is

[t�2��1
2

juj�1(k(1; u)k k(1; z; u)k)�1��1�t�1��2
1

juj�2(k(1; u)k k(1; z; u)k)�1��2]=((�2��1)=3):

Each term in this di�erence, multiplied by �(s�2=�)(M�)

0
@
0
@u 0 0

0 1 0

u z 1

1
A
1
A �(u)�1,

has to be integrated over z in A (against dz) and over u in A
� , against d�u. These

global integrals are products of local integrals. We shall now compute these local

integrals for almost all v, where (M�)v is Kv-invariant (and �v is unrami�ed and

v is non-archimedean). We �rst integrate the �rst summand against dz, to obtainZ
juj�1v (k(1; u)kvk(1; z; u)kv)

�1��1s�( diag (u=(1; u); (1; u)=u(1; z; u); (1; z; u)))dz

= s�( diag (u=(1; u); 1=u; (1; u)))

Z
jzjv�k(1;u)kv

juj�1v k(1u)k
�2�2�1
v dz

+ s�( diag (u=(1; u); (1; u)=u; 1))

Z
jzjv>k(1;u)kv

juj�1v k(1; u)k
�1��1
v jzj�1��1v �(z)dz

= s�( diag (u=(1; u); 1=u; (1; u)))juj�1v k(1; u)k
�1�2�1
v (1� q�1��1v =�(�v))=(1� q��1v =�(�v))

where �(z) = s�( diag (1; 1=z; z)), sinceZ
jzjv�jaj

dz = jaj

and Z
jzjv>qrv

jzjtv�(z)dz = (1� q�1v )

1X
n=r+1

(�(�v)q
(t�1)
v )�n

= (1� q�1v )(�(�v)q
t�1
v )�(r+1)=(1� q�(t�1)v �(�v)

�1):

Put �1(u) =
s�( diag (u; 1=u; 1)) and x = �1(�v), and y = �(�v). The integration

over u 2 F�v of the product by �1(u) if jujv � 1 and by �(u) of jujv > 1, of

juj�1v k(1; u)k
�1�2�1
v d�u, has been carried out above as part of the discussion of

other cosets in B(F )nG(F ). Thus integrating over u we obtain

(Lv(�1=2; �
�1)Lv(1 + �1=2; �1)=Lv(1 + �1; �1=�))(Lv(�1; �

�1)=Lv(1 + �1; �
�1)):

The computation of the remaining �nite number of rami�ed factors is similarly

yielding such factors, which depend however on (M�)v

0
@
0
@u 0 0

0 u 0

u z 1

1
A
1
A. The

product over all v of these factor is equal to

LM�(�1=2; �
�1)LM�(1 + �1=2; �1)LM�(�1; �

�1)

LM�(1 + �1; �1=�)LM�(1 + �1; ��1)
((3)6:1)

=
"(�1=2; �

�1)"(�1; �
�1)LM�(1� �1=2; �

�1)LM�(1� �1; �
�1)LM�(1 + �1=2; �1)

LM�(1 + �1; ��1)LM�(1 + �1; �1=�)
:
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This product of L-functions is holomorphic on �1 2 iR, unless � or �1 factorizes

through u 7! juj. In this case we may chose � in its connected component to have

� = 1 or �1 = 1. Then the product of the L-function has a simple pole at �1 = 0

(�1 2 iZ= log q in the function �eld case), and has a polynomial growth in �1 as

j�1j ! 1. The integration of the term subtracted in the di�erence is identical,

except that �1 and �2 have to be interchanged.

Since the presence of the characters � and � considerably complicates the nota-

tions, and the general case of any � and � has just been treated in the case of s = 1,

to simplify the notations in the remaining cases of s 6= 1 we restrict our attention

only to the case of � = 1 = �. Clearly the general case similarly follows.

VI(2). Next we consider s = r(12) in W . Then s� = ��1�1 + (�1 + �2)�2, the

characteristic function �0(s�;H � T ) is 1 when

jvj � t�3
1
juj2=k(1; u)k3 (and jvj � t3

2
juj�1k(1; u; z)k3;

but this last inequality is implied by the �rst inequality), and

ehs�+�0;Hijuj�1 = (ju2=vj=k(1; u)k3)(1��1)=3(kuvj=k(1; z; u)k3)(1+�1+�2)=3juj�1

= juj(�2��1)=3jvj(2�1+�2)=3k(1; u)k�1�1k(1; z; u)k�1��1��2 :

The integral of the product of this by d�v over v 2 A
�=F� in the speci�ed domain

is

juj�1+�2k(1; u)k�1��1��2k(1; u; z)k�1��1��2t
�(2�1+�2)
1

=((2�1 + �2)=3):

The integral of this over z 2 A and u 2 A
� is the same as in the previous case

where s = 1, with �1 (there) replaced by �1 + �2 (here). We then obtain

"((�1 + �2)=2)"(�1 + �2)LM�(1� (�1 + �2)=2)LM�(1� �1 � �2)((3)6:2)

� LM�(1 + (�1 + �2)=2)LM�(1 + �1 + �2)
�2t�2�1��2

1
=((2�1 + �2)=3):

VI(3). When s = r(23), then s� = (�1+�2)�1��2�2, we have �0(s�;H�T ) 6= 0

when

jvj � t3
2
juj�1k(1; u; z)k3(> t�3

1
juj2=k(1; u)k3);

and

ehs�+�0;Hijuj�1 = (ju2=vj=k(1; u)k3)(1+�1+�2)=3(juvj=k(1; z; u)k3)(1��2)=3juj�1

= juj(2�1+�2)=3jvj�(�1+2�2)=3k(1; u)k�1��1��2k(1; z; u)k�1��2:

Integrating against d�v on A
�=F�, obtained is t��1�2�2

2
=((�1 + 2�2)=3) times

juj�1+�2k(1; u)k�1��1��2k(1; z; u)k�1��1��2 :

This factor, and its integral over z 2 A and u 2 A
� , is identical to the corresponding

factor and its integral in the previous case when s = r(12). The result of this

computation will take the label ((3)6.3).
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VI(4). When s = r(23)r(12), s� = �2�1 � (�1 + �2)�2, and �0(s�;H � T ) 6= 0 on

jvj � t3
2
juj�1k(1; u; z)k3. The integrand contains the term

ehs�+�0;Hijuj�1 = (ju2=vj=k(1; u)k3)(1+�1)=3(juvj=k(1; u; z)k3)(1��1��2)=3juj�1

= juj(�2��1)=3jvj�(�1+2�2)=3k(1; u)k�1��2k(1; u; z)k�1+�1+�2 :

The integral of this (times d�v) over v 2 A
�=F� is t

�(�1+2�2)
2

=((�1+2�2)=3) times

juj�2k(1; u)k�1��2k(1; u; z)k�1��2:

This expression (and its integral over z 2 A , u 2 A
�) has already appeared in the

subtracted term in the di�erence associated with s = 1. In any case, the result of

this computation would be labeled ((3)6.4).

VI(5). When s = r(12)r(23), we have s� = �(�1+�2)�1+�1�2, and �0(s�;H�T )

is 1 when jvj � t�3
1
juj2=k(1; u)k3. In the integrand we �nd

ehs�+�0;Hijuj�1 = (ju2=vj=k(1; u)k3)(1��1��2)=3(juvj=k(1; u; z)k3)(1+�1)=3juj�1

= jvj(2�1+�2)=3juj�(�1+2�2)=3k(1; u)k�1+�1+�2k(1; u; z)k�1��1 :

The integral over v 2 A
�=F� of the product of this with d�v is t�2�1��2

1
=((2�1 +

�2)=3) times

juj�1k(1; u)k�1��1k(1; u; z)k�1��1:

This expression is equal to that appearing in the �rst term in the di�erence asso-

ciated to s = 1. The label in this case would be ((3)6.5).

VI(6). Finally, when s = r(13), s� = ��2�1 � �1�2, and �0(s�;H � T ) 6= 0 only

when

t3
2
juj�1k(1; z; u)k3 � jvj � t�3

1
juj2=k(1; u)k3:

But this domain is empty.

This completes our evaluation of the integral over H0(F )nH0(A ) of the product

by ��1(h) of the truncated Eisenstein series �TE(h;�; �; �) of (14.1), when G =

PGL(3) and � is a character of the diagonal subgroup. Namely the result is the sum

of (3(1)), ((3)2), ((3)3), ((3)4.i) and ((3)5.(i)) (1 � i � 4) and ((3)6.j) (1 � j � 5).

G. Conclusion for PGL(3). To obtain the terms of our summation formula in

the continuous series, namely those which are parametrized in (3.3) by the minimal

parabolic subgroup P = B and a character � of B(A )=B(F ) (note that n(B) = 1=6

in (3.3)), we need to replace
R
�TE � � in (3.3) by the complex conjugate of the

sum of ((3)i), 1 � i � 3, ((3)i.j), i = 4; 5, 1 � j � 4, and ((3)6.i), 1 � i � 5.

Then we need to carry out the integration over � in the two dimensional (over

R) space iA�B , namely over �1 and �2 in R. Finally we shall take the limit as

T ! 1 in the positive Weyl chamber, namely as t1 ! 1 and t2 ! 1. Note

that for � in iA�B the complex conjugate � is ��. Then the function
R
��TE is

analytic in � on iA�B , and each of the expressions ((3)i.j) has analytic continuation

in � to A�B;C . As functions in �, the ((3)i.j) are slowly increasing in every band
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ai � Re (�i) � bi, �i = h�; �ii; i = 1; 2, while the other factor, E (I(f; �; �)�; �; �),

in (3.3), is rapidly decreasing there. For any f , the sums over � and � are �nite.

With these comments out of the way, we now point out the main features of the

computations of the various terms.

I. In the case of (3(1)), as in the case of GL(2) we note (see [Sh2], p. 272) that

the intertwining operators M(s; �; �) are a product of (i) a scalar valued function,

m(s; �; �), which is a quotient of products of L-functions in the components of �,

and is holomorphic on �1; �2 2 iR, and of (ii) a normalized intertwining operator

R(s; �; �) = 
vR(s; �v; �), with properties as listed in the case of GL(2). In partic-

ular Lemma 10 applies to each of the six terms listed in ((3)1), and the limit of the

integral over � 2 iA�B as T !1 would be the value of the integrand at �1 = �2 = 0

(after the factor of type T�=� is removed). Namely, the limit as T ! 1 of (3.3)

with ((3)1) replacing
R
��1�TE, is the sum over �;� of:

E (I(f; �; 0); �; 0)
X
s2W

i(s)(M(s; �; 0)�)K0 ;�(1)�(�=
s�)

with i(s) = 1 if s = 1 or s = r(13), and i(s) = �1 otherwise.

It will be useful to recall the functional equation ([A1], (iii), p. 927)

M(s1s2; �; �)=M(s1; s2�; s2�)M(s2; �; �)

for any s1; s2 2W . The same functional equation holds for the normalized operator

R(s; �; �), and the scalar valued function m(s; �; �). Thus it su�ces to recall the

de�nition of m(s; �; �) (from [Sh2], p. 272), when s is a simple reection, and it is

m(si; �; �) = L(h�; �ii; �i=�i+1)=(L(1 + h�; �ii; �i=�i+1)"(h�; �ii; �i=�i+1))

where s1 = r(12), s2 = r(23), � = �1 � �2 � �3 and i = 1; 2, and by the functional

equation L(t; �) = "(t; �)L(1� t; ��1) it is

m(si; �; �) = L(1� �i; �i+1=�i)=L(1 + �i; �i=�i+1); �i = h�; �ii:

The value of this factor at �i = 0 is 1 if �i=�i+1 is non-trivial, and �1 if it is.

Recall that we choose � in its connected component to have that �i=�i+1 is 1 if it

factorizes through the absolute value x 7! jxj.

II. Next we consider the contribution corresponding to ((3)2). In order to leave

((3)2) as it is, we consider instead the complex conjugate of (3.3). Thus E (I(f; �; �)�; �; �)

in (3.3) will be replaced by E (I(f; �
�1;��)�; ��1;��); this is an analytic function

in � 2 iA�B (note that � = �� there), which has analytic continuation in � on A�B;C .

The analytic continuation of E (: : : ; �) is in fact holomorphic in �. Indeed, the

residue of the Eisenstein series at a value of � where it has a pole, lies in a space of a

representation without a Whittaker model, hence the Fourier coe�cient E (: : : ; �)

has no pole there. Moreover, as a function in � this E is rapidly decreasing as

j�j ! 1 in any vertical strip ai � Re (�i) � bi (i = 1; 2).

We shall substitute each of the six terms of ((3)2) in (the complex conjugate of

) (3.3) in place of
R
(��1�TE)(h)dh. In each of the six cases we shall move the line
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of integration �j 2 iR to a parallel line. In doing this, we need to watch out for

poles of the integrand; these will contribute to the integral, by Cauchy's formula.

II(1). In the case of s = 1 we move �1 2 iR to "�2 + �1, �1 2 iR, small " > 0.

As the integrand is holomorphic between these two lines, no residue would turn

up. The monomial t�1+2
1

t�2�1
2

would then become t�1+"
1

t�2�1
2

. When t1 !1 and

t2 !1 (in the domain t
1=2
1

< t2 < t2
1
) the absolute value t"

1
=t2 has the limit 0, and

so the corresponding contribution to the limit of (3.3) as T !1 is 0.

II(2). In the case of s = r(12) in ((3)2) inserted in (3.3), note that the only singu-

larity of the integrand may be obtained from the normalizing factor

m(r(12); �; �) = L(1� �1; �2=�1)=L(1 + �1; �1=�2);

which depends only on �1, and is holomorphic on �1 2 iR. Moving the line of

integration in �2 from iR to "� 4+ iR, the monomial t2��1
1

t�1+�2�1
2

would become

t2��1
1

t�1+�2+"�5
2

. The limit as T ! 1 in the speci�ed domain of T 's is zero, and

again no non-zero contribution to the limit of (3.3) as T !1 is obtained.

II(3). In the case of s = r(23), analogous change of �1 from iR to �2 + iR, would

yield the same conclusion. This change is permitted since m(r(23); �; �) depends

only on �2.

II(4). In the next case of s = r(23)r(12), the normalizing factor is

m(r(23)r(12); �; �)

= m(r(23); �2 � �1 � �3; ((�2 � �1)=3; (2�1 + �2)=3;�(�1 + 2�2)=3))m(r(12); �; �)

=
L(�1 + �2; �1=�3)

L(1 + �1 + �2; �1=�3)"(�1 + �2; �1=�3)
�

L(�1; �1=�2)

L(1 + �1; �1=�2)"(�1; �1=�2)
:

The "-factors have neither zeroes nor poles. Changing variables �2 ! �2 � �1 the

main part (i.e. up to a holomorphic, slowly increasing in vertical strips, function

in �) of the integrand is the product of the Fourier coe�cient

E (I(f; �
�1;��0)�; ��1;��0);((4)1)

where

�0 = �1�1 + (�2 � �1)�2 = �1(�1 � �2) + �2�2;

with

L(�1; �1=�2)

L(1 + �1; �1=�2)
�

L(�2; �1=�3)

L(1 + �2; �1=�3)
�
t2+�2��1
1

2 + �2 � �1
�
t�1��2
2

1 + �2
:((4)2)

We shall move the line of integration of �1 from iR to 2 + iR. The resulting

expression is holomorphic and of rapid decay in �1 as j�1j ! 1, and in �2, and

the absolute value of t�2��1
1

t�1��2
2

, namely t�1
2
, goes to 0 as T ! 1. The only

pole encountered as �1 moves form iR to 2 + iR is of L(�1; �1=�2), when �1=�2
(factorizes through the absolute value and so) is 1 (by our normalization). This
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pole would occur at �1 = 1 (note that the pole at �1 = 0 is canceled by that of

L(1+�1; �1=�2) in the denominator. We could take the residue at �1 = h�0; �1i = 1,

but this would make our formula longer then necessary for any possible practical

applications. Instead, we shall introduce a zero at �1 = 1, and explain why it would

not restrict the applicability of the summation formula.

To introduce a zero at �1 = 1, �x a place u of F , and let f = fufu be a prod-

uct of a function fu on G(A u), A u is the ring of adeles without a component at

u, and a function fu on Gu. We take fu to be spherical, namely Ku-invariant.

Then the trace tr�u(fu) is zero for any irreducible Gu-module �u, unless �u is

unrami�ed, namely has a non-zero Ku-�xed vector. In the latter case �u is the

unique unrami�ed subquotient of a Gu-module of the form Iu(�), normalizedly in-

duced from the unrami�ed character an 7! �(a) = ehH(a);�i of the upper triangular

subgroup Bu = AuNu of Gu. Moreover, tr�u(fu) = tr Iu(fu; �) is denoted by

f_u (�), and named the Satake transform of fu, at �(2 A
�
B;C ). Now I(f; ��1;��0) =

I(f
u
; (�u)�1;��0)I(fu; �

�1
u ;��0), and I(fu; �

�1
u ;��0) acts as 0 unless �u is unrami-

�ed, in which case it is the product by the scalar tr I(fu; �
�1
u ;��0) of the projection

on the unique Ku-�xed vector in I(��1u ;��0).

Our assumption on fu will be that f_u (�) = 0 at � with �1 = h�; �1i equals (1

or) �1).

Now if L(�1; �1=�2) of ((4)2) has a pole, then �1 = �2 (by our normalization),

and I(��1u ;��0) = I(��0 + �u�2) for some �u which depends on �u, and

tr I(fu; �
�1
u ;��0) = f

_

n(��
0 + �u�2)

is zero when h��0 + �u�2; �1i = ��1 equals �1. Hence ((4)1), which is equal to

f
_

u (��
0 + �(�u)�2)E (I(f

u
; (�u)�1;��0); ��1;��0);

vanishes at �1 = 1, and cancels the pole, necessarily simple, of L(�1; �1=�2). The

fourth term of ((3)2) will consequently make no non-zero contribution to the sum-

mation formula, under our assumption that f_u (�) = 0 at � with �1 = h�; �1i = �1.

Remark. This assumption on fu (and f) does not restrict the applicability of the

summation formula. Indeed, the representations � of G(A ) which occur in the

space L2(G(F )nG(A )) are unitary, and so are their components. Almost all local

components �v of � = 
�v are unrami�ed, and we choose u (for a given �) such that

�u is unrami�ed. Then �u = Iu(�), and it is unitary only for � with jRe h�; �ij < 1

(all roots �). Then our assumptions on fu implies that tr Iu(fu; �) vanishes only

at �u = Iu(�) which do not occur in the automorphic (unitary) spectrum, and so

no information could be obtained about such �u from the summation formula even

if the assumption was not made. In any case, no information is lost.

We shall have to deal with various other terms, in analogous fashion, and will

need the vanishing assumption at h�; �i = 1 for all roots �.

Vanishing Assumption. The component of f at u is a spherical function fu whose

Satake transform f_u is zero at any � = �1�1 + �2�2 with h�; �i = 1 for some root

� of A in G (in other words, at � with �1; �2 or �1 + �2 equals 1 or �1).
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II(5). The next, �fth, summand, in ((3)2), and its contribution to (3.3), is simi-

larly treated. The normalizing factor m(r(12); r(23)�; r(23)�)m(r(23); �; �) is the

quotient of

(L(�1 + �2; �1=�3)=L(1 + �1 + �2; �1=�3))(L(�2; �2=�3)=L(1 + �2; �2=�3))

by the holomorphic never-zero "-factors. Changing variables �1 ! �1 � �2, the

product of these L-function with the monomial in T in ((3)2) becomes

L(�1; �1=�3)

L(1 + �1; �1=�3)
�

L(�2; �2=�3)

L(1 + �2; �2=�3)
�
t2��1
1

2� �1
�
t�1��2�1
2

�1 � �2 � 1
:

Moving the line of integration in �2 from iR to 4 + �2, �2 2 iR, we obtain the

monomial with absolute value t2
1
t�5
2
, whose limit is 0 as T ! 1 in t1 < t2

2
. The

integrand may have a pole in 0 � Re (�2) � 4 only when �2=�3 (factorizes through

the absolute value and so by our normalization) is equal to 1, at �2 = 1. But

this pole is canceled by the zero of f_u (�) at � with h�; �2i = �1. No non-zero

contribution is then made to the summation formula.

II(6). The last term in ((3)2), parametrized by s = r(13), is the most di�cult to

handle. The normalizing constant m(r(13); �; �) is the quotient of

L(�1; �1=�2)

L(1 + �1; �1=�2)

L(�1 + �2; �1=�3)

L(1 + �1 + �2; �1=�3)

L(�2; �2=�3)

L(1 + �2; �2=�3)

by a product of "-factors. This has to be multiplied by

(t2��2
1

=(2� �2))(t
�1��1
2

=(1 + �1)):

It su�ces to move the line of integration in �2 from iR to 2�"+�2, �2 2 R, as then

the monomial in T has absolute value t"
1
t�1
2
, and its limit as T !1 in the speci�ed

domain would be 0. The possible poles of the integrand on 0 � Re (�2) � 2� " are

obtained from L(�2; �2=�3) when �2=�3 = 1, at �2 = 1, but this pole is compensated

by a zero of f_u (�) at �2 = h�; �2i = �1, or from L(�1+�2; �1=�3) when �1=�3 = 1 at

�1+�2 = 1, but this pole is canceled by the zero of f_u (�) at �1+�2 = h�; �i = �1,

where � is the root �1 + �2.

To summarize, the six terms of ((3)2), when substituted in (3.3), would give an

expression whose limit as T ! 1 is 0. Then there is no non-zero contribution to

the summation formula from the second coset.

III. The analysis of ((3)3) and the limit as T ! 1 of its contribution to (3.3) is

carried out analogously to that of ((3)2). In fact ((3)3) is obtained from ((3)2) on

interchanging (t1; �1; r(12)) with (t2; �2; r(23)).

To study the contribution of the remaining three cosets of BnG to the summation

formula we make the next

Vanishing Assumption II (VA II). The component fu of f at some place u is a

spherical function whose Satake transform f_u is zero at �(= �1�1+ �2�2) = 0 (i.e.

when �1 = �2 = 0).
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The place u here may be di�erent then that used in the �rst Vanishing Assump-

tion. Using a function f with such a component implies that tr�(f) = 0 for �

whose component at u is unrami�ed and of the form �u
 Iu(1), where Iu(1) is the

unrami�ed irreducible Gu-module normalizedly induced from the trivial represen-

tation of Bu, and �u is any unrami�ed character of F�u or order 3. Since we can

choose u at will, the � a�ected are those whose components are almost all of the

form �u = �u 
 Iu(1). The � which occur discretely in our summation formula

are those of the form I(�� �2), where �2 is a cuspidal G(2; A )-module with central

character ��1. If I(�� �2) has the component �u 
 Iu(1) for almost all places u of

F , then �3 = 1, and the component of �2 
 �2 coincides with that of the induced

PGL(2; A )-module I(11) (from the trivial representation of

��
� �

0 �

��
) at almost

all places of F . But no such cuspidal �2 exists, hence the VA II does not restrict

the applicability of the summation formula.

The VA II is used to cancel singularities in the integrand of (3.3) introduced by

the L-function of the various ((3)i.j); i = 4; 5; 6. We deal with each term separately,

and cancel its singularity. However it is possible that adding up this terms their

singularities would cancel each other, and then the integral over � 2 iA�B would be

taken with no need to introduce zeroes using f . But we have not pursued this line

of investigation.

IV(1). Replacing
R
��TE in (3.3) by the complex conjugate of the product of

((3)4.1) and (3=2)t
�2+�1=2
2

=(�2 + �1=2), we �rst change variables �2 7! �2 � �1=2,

then apply Lemma 10 to take the limit as t2 !1 of the integral over �2 2 iR. The

result is the value of the integrand at �2 = 0, or if we do not change variables in

�2, the value of the integrand at �2 = ��1=2 is obtained. The remaining integrand

is a function in �1, and its part described in ((3)4.1) will have a pole at �1 = 0 if at

least two of the components �1; �2; �3 of � are equal. However, the VA II guarantees

that the other factor in the integrand of (3.3), namely E (I(f; �; �)�; �; �), would

vanish on �2 = ��1=2 at �1 = 0. Hence the integrand is holomorphic and rapidly

decreasing as j�1j ! 1, and the corresponding contribution to the summation

formula takes the form

1

4

X
�

Z
iR

X
�

E (I(f; �; �)�; �; �)((3)4:1)(�; �; �1)d�1

(((3)4.1) depends on �; � and �1), where � = �1�1+�2�2 = �1(�1�
1

2
�2) =

1

2
�1�1.

In other words, the integral is supported on the line of representations of the form

I(�; �) = I(�1�
�1=2 � �2v

��1=2 � �3).

IV(2). In this case ((3)4.2), or rather its complex conjugate, is put in (3.3) instead

of
R
��TE. Lemma 10, applied separately to each term in the di�erence of ((3)4.2),

permits taking the limit as T !1 of the integral over �1 � �2 2 iR. The limit is

the value of the integrand at �1 = �2, and VA II implies that E (I(f; �; �)�; �; �) is

0 at �1 = �2 = 0, where the products of the L-functions of ((3)4.2) may have their

poles. The integral thus obtained as T !1 is supported on the I(�; �) = I(�1�
�1�

�2 � �3�
��1), as � = �1�1 + �2�2 = �1(�1 + �2) = �1(�1 + �2) = �1(1; 0;�1).
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IV(3). In this case analogous discussion shows that the limit as T ! 1 of the

corresponding part of (3.3) is supported on the I(�; �) with �2 = �2�1, thus � =

�1(�1 � 2�2) = ��1�2 and I(�; �) = I(�1 � �2�
��1 � �3�

�1).

IV(4). Here the support of the integrand of (3.3) as T ! 1 is as in the previous

case of IV(3).

V. This case is entirely analogous to IV, the same results are obtained, except that

�1 and �2 may be interchanged.

VI. Entirely analogous discussion can be carried out in the case of the �ve non zero

terms of the sixth coset. The limit of the contribution to (3.3) as T !1 from the

term (1) is supported on �1 = �2, in case (2) the support is on �2 = �2�1, in case

(3) on �1 = �2�2, in case (4) on �1 = �2�2, and in case (5) on �2 = �2�1.

This completes our derivation of the summation formula for the symmetric space

PGL(3)=GL(2).
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