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METAPLECTIC CORRESPONDENCE
by YUVAL Z. FLICKER and DAVID A. KAZHDAN

Shimura attached modular forms of even weight k — i to cusp forms of weight k / 2 ,
initiating the study of the metaplectic correspondence. Gelbart, Piatetski-Shapiro and
Waldspurger extended his techniques, and the converse theta-series approach of Shintani,
to the context of automorphic representations of the two-fold covering group ofGL(2).
[F] used the trace formula to establish the correspondence for the automorphic repre-
sentations of the metaplectic n-fold covering ofGL(r) when r == 2, for all n ̂  2. This
gave a complete description of the representations of the metaplectic group locally and
globally in terms of those of GL(2, A). The purpose of the present work is to develop
the last approach for any integer r ^ 2 in the local and global cases, continuing a pro-
gram started in [KP], [KP'].

Let r, n be positive integers; F a number field containing the group ̂  of n-th roots
of unity; F,, a completion of F at a place v, A the ring of adeles of F; G == GL(r);
G,, an Tz-fold covering group of G,, = G(FJ (by ^); G(A) a non-trivial central topo-
logical extension of G(A) by ^, which splits over the group G(F) of F-rational points
on G (see [Mo], [Mi], and (2)). We fix a character S of the center of G(A) (and G,,)
whose restriction to ^ has order n, and deal only with the genuine representations %
(or %„) of the metaplectic group, those with central character 5. If the restriction of S
to (!„ has order n' dividing n, then % can be viewed as a representation of an yz'-fold covering
group of G(A) (or GJ.

We shall first describe our local results. Let p denote the residual characteristic
of F,,. Our aim is to develop a local theory relating admissible genuine G^modules %„
with certain admissible G,,-modules n^. In the case where p does not divide n, we study
in (16), (17) the correspondence for representations which occur in the composition
series of representations induced from unramified characters of a Borel subgroup. We
show, generalizing a well-known result for G,,, that this category of representations
consists of the G^-modules with a vector fixed under the action of an Iwahori subgroup I*
(I* is a subgroup ofG,, isomorphic (as in (2)) to an Iwahori subgroup I of GJ. More-
over, it is naturally isomorphic to the category of finite dimensional complex represen-
tations of the Hecke algebra H of G,, with respect to I*. Thus H is the convolution
algebra of complex-valued P-biinvariant functions on Gy which transform under the
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center by S~1, and are compactly supported modulo the center. The isomorphism is
given by V -> V1*, V1* being the space of P-fixed vectors in V. Thus our aim is to
define an isomorphism/row, the category ofH-modules to that ofH-modules. In fact we construct
an explicit isomorphism of the algebras H and H. We also verify that the properties of being
square-in tegrable (= discrete-series) or tempered are preserved under this isomor-
phism of modules. The proof is based on exhibiting a presentation of H by means of
generators and relations, generalizing the one given by Iwahori-Matsumoto [IM] in
the case of H(w == i). It will be interesting to extend this geometric description of
the correspondence to the categories of all algebraic representations. We define the
notion of local correspondence for general admissible representations by means of cha-
racter relations; see below.

To study the correspondence in the context of the categories of admissible repre-
sentations locally, and to develop a global theory of correspondence, we use the trace
formula. All our local results, and most of our global results, rely only on the simple
trace formula, which is proven in (18). Before we describe the results which depend
on the trace formula, note that they are proven only in the case when (n, N) = i. Here
N is the least common multiple of all composite (non-prime) positive integers r' ̂  r.
Our proofs reduce the general case (any n, r) to a statement (see Assertion 12) concer-
ning algebraic groups only. It relates orbital integrals of unit elements in the Hecke
algebras with respect to a maximal compact subgroup in G,, and H,,, when {n,p) == i
(see below, (12) and [K]), where H,, = GL(r', EJ, £„ is an extension of F,, with
r '[E,:FJ=r.

We say that a genuine admissible G,,-module %„ corresponds, or lifts, to an admissible
G,,-module ^, if they satisfy a character identity, see (26.1), relating the value of the
character ^(^) of%^ at a good element x* (see (4)), with a certain sum of values of 3c(^)
at the (< yz-th roots " x in G,, of x*. The image of the correspondence consists of TT,, whose
central character co is determined by S and the relation u(z) = S^^1)). In particular
the restriction ofco to the subgroup ̂  of F^ is trivial. To describe the image of the corres-
pondence we say that an irreducible Hy is metic (for met(eplect)ic) if it is equivalent
to a G^-module unitarily induced from an M == 11̂  M^-module II ̂  or, v81, where
M^ == GL(r^), the ^ are real, and the a^ are square-integrable M^-modules whose central
character is trivial on ?.„ for all i. Our main local theorem asserts that the correspondence
relation defines a bijectionfrom the set of genuine tempered G^-modules %„ to the set of metic tempered
Gy-modules T^. It commutes with induction, bijects square-integrables with square-integrables,
irreducibles with irreducibles. If \n\y == i it maps unramified^ to unramified TC,,, and coincides
with the correspondence of (16), (17). In fact, for global purposes we introduce in (27.2)
the notion of relevant representations, and Theorem (27.3) asserts that the correspondence
bijects genuine relevant ̂  with metic relevant n^. The relevant representations are induced
from square-integrables which are twisted "only a little" ([^1^ ^s). Tempered
%„ are relevant. Each component of a cuspidal (automorphic) G (A)-module which
lifts (see below) to a cuspidal G (A)-module is relevant.
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METAPLECTIC CORRESPONDENCE 55

The first step in the proof is the square-integrable case. This is applied in the proof
of Proposition (27) which asserts that a Gy-module unitarily induced from a tempered irreducible
(in particular square-integrable) representation of a Levi subgroup is irreducible. This in turn
is used to show in Theorem (27.2) that a relevant G ̂ -module is irreducible.

It is clear from the character relation that if%y lifts to a supercuspidal T^ then ^
is supercuspidal; but a supercuspidal %„ may lift to a non-supercuspidal T^,. This occurs
already in the well-known case of r == 2 and even n, when %„ is a Well representation
and ̂  is an odd special representation (see, e.g., [F]). The character relation yields
a formula for the number ofWhittaker vectors of%,,;see (22) and [KP], p. 99.

The definition ofmetic local 7^ which is not necessarily relevant is given in (27.2).
The case of the non-tempered unitary G^-module n^ which is dual, in the sense of [Z],
to a metic (generalized) Steinberg representation T^,, is particularly interesting. For
example, n^ can be a one-dimensional representation, a case studied by [KP]. In (29)
we show that for such a representation T:y there exists a matching unitary %„ so that TT
and %„ satisfy the character identity (26. i), possibly up to a sign. Since the character
of^ occurs in (26. i) as a weighted sum, the weights being roots of unity, we may have
that a non-tempered n^ is matched with a discrete-series, and even supercuspidal %„.
This phenomenon occurs already in the case of r == 2 (see, e.g., [F]). Such %„ can be
viewed as a generalization of the Well representation.

To describe our global results we say that the genuine representation % = 09%v
of G(A) lifts to the automorphic representation n == ®TC,, of G(A) if%,, corresponds
to n^ for all places v. Our global results are described in (28). A characteristic special
case which uses only the simple trace formula of (18) asserts the following. Suppose
that % is a cuspidal genuine G (A) -module whose components %„, ̂  at two places u, u' are super-
cuspidal, and^^ lifts to a supercuspidal G ̂ -module T^. Then there exists a unique metic cuspidal
G (A)-module n such that % lifts to TC. Moreover, iffi' is a cuspidal genuine G {A)-module whose
components at u, u' are also %„, ?r^, and ̂  is equivalent to ^for almost all y, then %' is equal
to %. The last statement combines the rigidity (strong multiplicity one) theorem for G(A),
with multiplicity one theorem, for such representations of G(A). The components of a
cuspidal TT are relevant (by [BZ], [B]). It follows from Theorem (28) that all compo-
nents of a cuspidal % as above are also relevant.

In (29) we deal with those automorphic % which correspond (== lift) to discrete-
series non-cuspidal TC, of a certain type (these can be conjectured to be all the discrete-
series non-cuspidal TT;). This includes the case of the one-dimensional TC, studied in [KP].
The phenomenon which occurs here is that there are cuspidal % with supercuspidal components,
which (lift to these TT. Consequently the %) have non-tempered local components which are
not relevant for almost all places. This is the global analogue of the local statement noted
above that supercuspidal %^ match sometimes with non-tempered T^. Such examples
occur already in the case of r = 2; see [F].

To apply the trace formula we show that corresponding spherical functions fy
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^ ^
andj^, on Gy and G,, (see (n)) are matching, namely have matching orbital integrals
(see (8)). The case of the unit element of the Hecke algebra is given in (12). It is
due to [KP'], and relies on the results of [K]. However the methods of [K] apply
only in the case specified in Theorem (12). This is the reason why our results are proven
completely only when (n, N) == i, as explained in Corollary (12). From this we
deduce the case of general spherical functions in (19) using a new technique which is
based on the usage of the <( regular functions " introduced in (15). These are not spherical
functions. They are essentially functions in the Hecke algebra with respect to an
Iwahori subgroup, which isolate the representations with a vector fixed by the action
of an Iwahori subgroup, and whose support can be conveniently controlled. Here
we use our work on the Iwahori algebra, in particular Proposition (17). But it is clear
from the proof of (19) that we could work with a congruence subgroup instead of an
Iwahori subgroup. Since our technique does not require detailed knowledge of repre-
sentation theory, it may be applicable in the study of transfer of orbital integrals of sphe-
rical functions for arbitrary groups; this was the main motivation for us to develop
our technique; see ["F] for the rank one case of the Symmetric Square lifting.

/^/
We also use the transfer of a supercusp form fy to a matching function fy on G,,,

which is carried out in (13), again using [K] (hence we need (%, N) = i), and the
theory ofHarish-Ghandra [H] and [K'], relating orbital integrals, characters and Fourier
transforms of nilpotent measures, locally.

Finally we note the analogy between the metaplectic correspondence and the
base-change lifting. While the second is a reflection of the norm map of field extensions,
the first reflects extraction of n-th roots.

The work is presented in three parts. Chapter I consists of §§1-13, Chapter II
of §§14-20, and Chapter III of §§21-29.

Thanks are due to J. Bernstein, S. J. Patterson and the referee in connection with
this work.
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I. — ORBITAL INTEGRALS

i. Notations. — Let r ^ 2, n ̂  i be integers, and F a local or global field of
characteristic o which contains the group ̂  of n-th roots of i. If n ^ 3 and F is global
then F is totally imaginary. If F is global and v is a place of F, we write F^ for the
completion ofF in the valuation | |y, normalized as usual so that the product formula
holds. Ifv is non-archimedean, we put p for the residual characteristic of F^; R = R^
for the ring of integers; n for a uniformizer; q for the cardinality of the field R/wR.
Then | | = | |,, satisfies \n\~1 = y. We denote by Z, R, C the rings of integral,
real and complex numbers.

Put G = GL(r, F), denote by A the diagonal subgroup and by N the group of
unipotent upper triangular matrices. The Weyl group W = W(G, A) of A in G is
identified with the group of matrices in G with a single non-zero entry i in each row
and column. The roots of A in G are denoted by pairs a = (y) (i ^ i 4= j ̂  r) and
a(a) == aja^ for a == (^, . . ., a,) in A. The root a == (y) is positive if z< j . If
^ is the matrix with entry i at the place a and o elsewhere, then we denote by N^ the
group of matrices n = I + xe^ {x in F). Note that ana-1 == I + a (a) xe^. The
group W acts on A by d" == w~1 aw, and on the set of roots d> == (&(A, G) by
{wo) (a) == a^). Then ^ == we^ w~1.

The n-th Hilbert symbol ( , ) is a continuous bilinear map from F" x F" onto p.̂
with (<z, b) (b, a) = (a, - a) == {a, b) (- bfa, a + b) == i, which satisfies (fl, 6) = i
for all b in Fx if and only if a lies in F^.

By a two-cocycle on a locally compact group H we mean a map ? from H^ x H^
onto ^ with

j3(^', ̂ ") (3(^, ^') = (B(^, ^' x " ) p(^', ^'/) and p(^, x) = |B(̂ , ,) = i

for all x, x ' , x" in H; e denotes the unit ofH. It is said to be non-trivial if there is no map
s from H to ^ so that p(^, x ' ) == s{x) s^^xx') for all x, x ' in H. An w-fold covering
group H of H is a central extension

i ^*^ P
i -^->H^H->i.

i is an injection of ̂  into the center offt; we identify ^ with z(^J. The map s is a
section; in other words, p o s == IH, so that the multiplication in H is given by the
two-cocycle (B; thus s(x) s ( x ' ) = s(xxr) ^{x, x ' ) .

57
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Recall that a torus T is called elliptic if T/Z is compact. An element t is called
^//^ if it lies in an elliptic torus, and regular if it has distinct eigenvalues. Iftis regular
elliptic its centralizer G( in G is an elliptic torus T.

2. Covering groups. — A covering A of A is given by the two-cocycle
<r(ff, fl') = n^.(^., op. Note that

(a. i) s{a) s{b) s(a)-1 == s{b) (dot a, det A)/!!̂ ., ̂ .).

Extend a to Y = AW == WA by a{w, w ' ) = i, a(a, w) = i, and
d(w, a) = (det w, det a) II^^(- i, ̂ .)/(^ ^),

where 0(w) == {a > o; WOL < o}. Then
a(aw, a' w') == 0(0, fl'^1) (r(w, a')

defines a cocycle on Y and a corresponding covering ^.
The map r : G ->Y, r{nyn'} =y, is well-defined by the Bruhat decomposition

G=NWAN. Put X=={(^,J); ^inG.jrinY, r(^) =^(J)}. Consider the group L,(X)
of automorphisms of X generated by \(n) (n in N), X(^) (am A) and X(^) (t is a simple
reflection in W, namely there exists a unique a> o with t<x< o), where

W^jO == (%J), W(gj) = (^(^)^yj),
and ^)(5,J) ={tg^[r(tg)r(g)-l]y).

1,(X) acts transitively on X, and so does the group R(X) of automorphisms ofX gene-
rated by r{n), r{3'), y{t) where

(^30 ̂ W - {gnj). te,30 r(a-) == (gp^^a-),
and (gj) r{t) = (gtjs[r(gt)-1 r(g)]-1).

Since {gx) ̂  = ^(^*) {g in L(X), ̂  in R(X), x in X) (see Milnor [Mi], §12),
both L(X) and R(X) act simply transitively on X and R(X) is isomorphic to L(X). The
fiber of the map X -̂  G, (^,J) -^g is ̂ . Hence L(X) is an extension of G by ^.
The covering Y is a subgroup of L(X) which preserves {(^(30, J); J in Y}. We put
5 === L(X). With respect to the section s : G -> G defined by s(nyn') == X(w) s(y) X(%')
(n, n' in N;j^ in Y, s{jy) in Y C G), the covering group G is described by a cocycle a
extending the cocycle on Y defined above, and which satisfies
(2. a) a{ng, g' n') = a(g, g') {n, n' in N).

Other covering groups G^ (o ̂  m < n) are defined by the cocycles
^ g ' ) = <^.?') (det ̂ , det ̂ )w

Let B =^AN be the upper triangular minimal parabolic subgroup of G, B^ the
subgroup of G^ covering B, and Z^ the pullback through p : G^ -> G of
^m =JA:I; ̂ ~14-2rwl in F^} ̂  F^^, where rf = (%, r - i + 2rm). It follows from (2.1)
that Z^ is the center ofSL, hence of G...j^ -i.t3 mv/ v/^Al.l.l/A ^A — w ? •l-ldl̂ -̂' UJL v-1'-,*

^



METAPLECTIC CORRESPONDENCE 59

I fFis non-archimedean and its ring of integers is denoted by R, then there exists
(see Moore [Mo], pp. 54-56) an open compact subgroup K in GL(r, R) which splits <r^
Note that (det A, det k ' ) == i for A, k' in a sufficiently small K. Thus

<TjMO = K(^)/K(A) K(A')

for some function K : K -> ̂ . As i = a{k, n) = K(^)/K(A) ic(w), the restriction of K
to K n N is a homomorphism, hence trivial. If \n\ == i we can choose K == GL(r, R)»
Consider the homomorphism K* : K -> 6^, k->s{k)K{k). It is not unique. But
ifK^ is another such map then K*/^ is locally constant. Hence the topology on G defines;
a unique topology on &„,, which makes K* a local homeomorphism. Then 6^ is a
locally compact totally disconnected Hausdorff topological group, and p : 5^ -> G
is a local homeomorphism.

We say that G^ splits over a subgroup H of G if there is a homomorphism
h: H -> G^ whose composition with p : 6^ -> G is the identity map on H. Whenever
(A, H) are fixed, we identify H with A(H). The map s : N -> 6^ splits 6^ over N-
The map K* : K -> G^ splits G^ over K. We now extend K to a map from G to (JL,^

If F is global and A is its ring of adeles, we define a global two-cocycle T^ on
G(A)=GL(r,A) by T^, x ' ) = II,, T ,̂ ^'), where ^ == (^), ^ '= K) are
in G(A). Here T ,̂ x ' } == T^(^, <) is the cocycle (T^(^, ^) K,(^) K,(^)/K,(^ ^)
which is cohomologous to ^(^9 ̂ ) and obtains the value i on Ky x K,,. The pro-
duct ranges over all places v of F and it makes sense since T^(A*, x ' ) == i for almost
all u. The product formula II,,(a, b)^ == i (a, b in F^ implies that (T^A-, A:') == n<y^(^, x ' )
is i for ^, x ' in G(F), hence that the map x ->s{x)fK{x) is a homomorphism from G(F)
to 6(A), where K(;c) = IIK,,(^). Note that K^) = i for almost all v by [KP]^
Prop. 0.1.3. Hence G(A) splits over G(F), a fact which permits the development
of a theory of automorphic representations on 6 (A).

3. Commutators. — Let x be a regular (distinct eigenvalues) element of G.
The centralizer Gg of x in G is a torus T, and for any g in T we write \x, g] for ^ g ' ^ " 1 ^ 1 ,
where y, ̂  are elements of G^ which project to x, g. Note that [x, g] depends only
on x and g, but not on the lifts ?, g ' of A*, ,§f.

Proposition. — [x, g] = i for all g in T if and only if x lies in Z^ T".

Proof. — The torus T is a direct sum (D F^ of the multiplicative groups of field exten-
sions F, of F, with Sj[F^.: F] = r. Writing x == (^.), g = ( .̂) accordingly, we have

[x,g] = (det^det^)14-2^^,,^)^.

([F], p. 128, for r = 2; [KP], Prop. 0.1.5, all r). Here ( , )p. is the n-ih Hilbert
symbol on F,. Now [x, g] = i for all g in T if and only if for all j, and all g. in F^ ^
we have

i = (det^N^F^)^2^,^?,^ (det^^2^,,^)^..
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Hence .̂ lies in (det xY^F^. Since detx == n^Np./p^ we have that (det ^+2m)r-i
is in F^. It follows that x is of the form^z withy in T and z = (det A:)14-^ in Z

\ / wi *

4. Definition of A:*. — We need to relate conjugacy classes on G and 6. If n
is odd we put ^ == ̂ n. Then ^ = ̂ n) if x is diagonal. The map x -> ̂  pre-
serves conjugacy classes ([F], Lemma 0.3.1). If n is even we put ^ == .ŝ  M(A:) for x
in the subset Go of A: in G such that x, + x^ 4= o for any pair x,, ̂ . of eigenvalues of x.
Here M is a class function which has the property that x' = s^) for any diagonal A:
in Go(F). Theorem 2. i of [KP'J proves the existence of a continuous such function u
on Go with

t
u(x^ ..., x^ = n u^) n (det ̂ , det x^

if ^ = (A-i, . . ., Xt) lies in a standard Levi subgroup of type (r^, ..., r^) and u ' is the
analogous function on GLo(r,, F), and

<
^1, . . ., ̂  = ̂ n (A,., (- I)- P,(- ^,)/2^,F,(- I, RW)2.F

if^. is elliptic in GLo(^., F), generating an extension F,. of F. Here ( , )^ signifies
the 2nd Hilbert symbol of E, and x^ is regarded as an element of F .̂. The polynomial
^x{y) = det(j/I — x) is the characteristic polynomial of x, R{x) == 11,̂ .(^ + x ' ) ,
where x[, ..., x', are the r eigenvalues of A: in Go. Further, for z in F" we have

u(zx) == u{x){z, (- lY^-^detx^1)^

Hence we have (zxY == j(^) A;*. The case of r = 2 is in [F], Lemma 1 . 2 . 3 .

5. Order. — The Jordan decomposition asserts that for any A: in G there is a
unique pair of a semi-simple element s and a unipotent element u in G so that x == su = us.
Up to conjugacy in G(F)—where F is an algebraic closure of F—we have

^ {^\, . . . ,^I^) ,

where ̂  . . ., A:( are the distinct eigenvalues of x with multiplicities r^, ..., ^ and u is
of the form (^, . . . , ^ ) where ^ is an upper triangular unipotent r, X r, matrix.
Such unipotent u, consist of Jordan blocks of sizes j,, j\, ..., which we arrange so that

Joe ^ Joc+i ^ °- Note that u, lies in the closure of the conjugacy class of u\ if and only if
^SLiJa ^ S^i^ for all (3 (= i, 2, .. .). We say that x^ x ' if s, s ' are conjugate
and the u, are injhe closure of the conjugacy class of the ^ for all i. Similarly we define
s{x) ̂  s ( x ' ) in G if x ^ x ' in G.

6. Orbital integrals. — Suppose F is local. Fix unitary characters u:Z ->CX

and S : Z -> Cx with u{z) == S^(^)) so that the restriction of S to ^ is injective.
Throughout f and / denote smooth (this means locally constant in the non-archimedean
case) complex-valued functions on G and G, which satisfy f{zx) == ^(z)-1^) {z in Z)

GO
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^/ /v/ /^
and f^Tc) ==• SC?)"1/^) (? in Z), and whose support is compact modulo the center.
Let G^ be the centralizer of^m G. It depends only on x == p ( V ) . Let Z^ be the split
component in the center of G^p. Similarly we have G;p, Z^. For example Z^ = Z
if x is regular elliptic, for then GJZ is compact. Let dg, dt, dz, d"g, dt, dz denote Haar
measures on G/Z, GJZ, ZJZ, G/Z, GJZ, ZJZ. For x in G, ^in G with p ( x ) = x, such
that ^y=yrx whenever xp^J) == p { J ) x, the measures are related by dgfdt == dgfdt
via the isomorphism G/Ga; ^ G/G^. For x in G, and ^in 6, we put

^f) - f f{g~1 ̂  dl ^^f) = f f{g-1 ̂  ̂JG^\G dt •/z^\G a-2:

^7) = L ./(r1^)^ ^>"(yj) - L ./^-l%)^
^^AG ^ ^Z^\G ^^

'̂ /
The convergence of these integrals for all x has been shown in [R], Note that 0(?,y) == o
whenever there is g in G with g ~ l ' x ' g = i^Q Tc and ^ + i. Also let T){x) be the dis-
criminant of the characteristic polynomial of x in G, namely D{x) == Tl^^ — Xj)2,
where ̂ , x^, .. . are the distinct eigenvalues of ^. Put A(;c) = |D(A:) [^/[det A:]^"1^.
Hence

1/2A W = n.(xt - ̂ )2
| t< i ^^ |

if^ has distinct eigenvalues x^ .. .5 A:y. Put

F ( x J ) == AM (D(^/), F(yj) = A(^(y)) $(y,7).

Then 0(/) :^ ->^)(^/) and F(/) are functions on the space X(G) of conjugacy
^ ^ ^

classes in G, and 0(jQ and F(jf) are functions on X(G), the space of conjugacy classes
in G. Similarly we define F" using O".

We shall deal only with functions f with the property S(-s') 'F{x,f) = F{x\f)
for any x, x ' in G with zx* == x ' * for some z in Z.

7. Change of variables. — From now on we denote by P a parabolic sub-
group of G, with unipotent radical N and Levi subgroup M containing A. Denote
by 8p the modulus homomorphism on P, thus d(ab) == 8p(fl) db {a, b in P) for any
right Haar measure db on P. There is a bijection between the sets of parabolic Sub-
groups ? == MN of 5 and P == MN of G, given by j&(P) = P, and ?(M) = M.
In (2) we identified N and ^(N). For % in M which projects to m ==?{%) in M, put

yte = S^m)112 f f ^{k-^nk) dndk.
J K J N

It depends on N, but its orbital integral at a regular element depends only on M. Also put

OG/M^) == |det(l -Ad(w))|L,eG/LieMl

== [det(i -Ad(m))|^eN4-LieNl = |det(i - Ad(m))|ueNl2 W;
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here N is the unipotent radical of the parabolic subgroup P == MN opposite to P;
Lie H is the Lie algebra of a Lie group H. Note that D^(m-1 xm) == D^W for
m, x in M, and that the Jacobian of N -> N, n -> m^ 1 n~1 m^ n, is

|det(i - Ad(wo))|LieNl (^o == ^-1 xm).

We use the Iwasawa decomposition 6 = MNK; N embeds in 6 as J(N). In particular
m~ly~lmfn==s{m~ln~~lmn) for any %, % in N, M which project to n, m. We put

T^) = J(k~lxk) dk (k in K), and note that T\G ^ T\G, and dg/dt == dg/dt. For

any x in a torus T contained in M we have

L^'^-LU^1'"'""""^^^
=f Ofr,-,..,)**-JT\M JN A
=J^ De/MW-172 8p(m-1 ^)1/2^7K(OT-1 ^m) rfn ̂

=D^)-l/2J^7N(^-l-)^.

Define AM(A:) to be 11 A^) if M = M^ X Mg X ... and correspondingly
x == (A-i, A-2, . ..). Here A^ is the A-factor of M.. Put

F^A) = ^W^Um^xm) ̂ .

We deduce

Proposition. — For any x in M regular in G we have 'F (x , f) = F^A:, ̂ ).

Proo/'. — The assertion follows from the relation A(^) Dg/^^)"172 = A^(^).
The analogous statement for f and G is the special case n == i.

8. Germ expansion. — Recall that X(G) denotes the space ofconjugacy classes
on G. A germ in the stalk at x in X(G) (resp. X(G)) of the sheaf of complex valued
functions on X(G) (resp. X(G)) is denoted here by ^ (resp. (rj. For convenience we
say that Tc in G isgoodif g ' ~ l ' x " g = = yforany^in G with g~1 xg == x {x = ^(5?), g == p C g ) ) -
Namely ^(GJ == G^. The following result—which is a consequence of the uniqueness
of the Haar measure—is due to Shalika, Harish-Chandra [H], Vigneras [V] and [KP'].

/"<^
For the definition of F(j^, /) and F(j^, f) see (6).

Theorem. — At each goody in X(G) there is a germ 3y, with the following property. For^ ^ ^
anyf, the germ ofF{f) at a semi-simple x in X(G) is given by

SFO^)^.
y^x
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Conversely, suppose H is a function on X(G) which transforms under the center by S~
and which is supported on the projection by G -> X(G) of the product of Z and a compact set
in G. If for each goody in X(G) there is a complex number h{y) so that the germ offiat each

semi-simple x in X(G) is of the form Sy^A(^) 3y, then there exists an f so that H == F(/).
Moreover H = h.

Remarks.

(1) Here x is semi-simple; it need not be good. The germ expansion can be
non-zero on the closure of the set of good elements. See the example below.

(2) Ifx is good and x ̂ y thenj/ is good too, by Corollary 9 below.
(3) The analogous statement for the group G and the function f is contained in

the above statement as the case of n = i. In this context note that each x in G is good.
Hence we have a germ dy at allj^ in X(G).

(4) Ify is regular then we have dy == i. Ifj/ is good and regular then we have
/^/

S - = i. Namely F(/) and F(/) are smooth on the regular and good regular sets.

Definition. — The functions/ and/ are matching if F(^,/) == F^*,/) for all x
in G so that x* is regular. A function / for which there exists a matching / is called
good.

Example. — Consider the case r == 2, n = 2 and XQ == (. ), where 6 is a non-

square in 1FX. Hence XQ lies in an elliptic torus T ofG. The function F(/) is regular

at XQ. At y in T near x^ = s ( ( A ) ) we ^ave

F(y,7) =F(^7)^(y) +F(^7)^(y) =F(y,,/)^(y),
-where S i = = ^ ^ .^, since F(^, /) == o. Note that

F^.n-ier^y)
1 ^ 1 i f ?k/ /x o\-1 /6 i\ / i o \ \ , . , ^ .

-I" V Ho t) '(o eK i))!"^

-^•W. ^•«li•t)))^•
It can be shown in several ways, one of which is [F], (1.3), that S^ is constant, so that
F(3?,/) is locally constant at x^. This is compatible with the statement that there exist

<^/
matching /,/.

In the case ofG, it follows from [Ho], Lemma 5, [H], Theorem 5, and Theorem D
of [K/], that the germs are locally constant on the elliptic set. Hence
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Proposition. — Suppose c{x) is a conjugacy invariant function on G which is supported on
the elliptic set, and its restriction to the elliptic set is locally constant. Then there exists an/with
<S>-{xJ)==c(x).

9. Good elements. — In view of Theorem 8 it will be illuminating to determine
the good set ofG. First we recall Proposition i . i of [KP'] which generalizes Lemma 3.
Suppose x is a semi-simple element of G. The centralizer G^ of x is IlGL^, F^) with
2r^ = r, f^ == [F^: F]. If y ^ x then y == xu = ux with unipotent u in G^ hence
u == (^). Also we write x = (^). Each u^ is conjugate to a product of Jordan blocks
of sizes r , i , r ,2 , . . . with S .̂ = r,. Let d, == d,{y) = g.c.d^{r^} be the greatest
common divisor of r^, r^, . . .

Lemma. — s{y) is good if and only if x, lies in (det x)^^ F^ n/(dnn) for all i.

An element y == xu {x semi-simple, u unipotent) of G is called regular (in the sense
of Steinberg [St]) if there is no y ' > y\ namely the unipotent part u ofy is as <( large "
as possible. In the next proposition, we say thatj^ is good if s[y) is good.

Proposition. — If x is elliptic regular then y ^ x"' is good if and only ify is regular.

Proof. — If A: is elliptic regular it generates a field extension E of F of degree r.
Suppose that xn generates the subfield E' of E over F. Since nf(n^ r) is prime to r, we
have x^^ in E'\ Let r' be the minimal divisor of (r, n) so that 6 == x^ lies in E^.
Namely [E : E'] = r' and the centralizer of x1' in G is GL(r', E7) (and so is the centra-
lizer of X91'). The d == rf(^), y ^ A^, of the Lemma satisfies r f< r ' . But the Lemma
implies that y ^ xn is good if and only if xn == 6 '̂ lies in E'^^. Namely n\{d, n)
divides n\r' or r' divides (</, n). Since d ^ r' we have d == r', and y is regular.

Suppose x is semi-simple, M a minimal standard Levi subgroup containing a
conjugate of A:, and replace A: by a conjugate to assume that x lies in M. Thus x is elliptic
in M and we denote by x ' a regular (in the sense of [St] as above) element in M with
x ' ^ x".

Corollary. — y' ^ xn is good if and only if y' ^ x'.

Remark. — Similarly we have that if x is good and x ^ y thenjy is also good; and
if^is good and lies in the closure O(j^) of the conjugacy class 0(3^) ofj'in G, then it
does not lie in O(^) for any ^ =)= i in ^.

10. At the identity. — Denote by p a diagonal matrix in G with eigenvalues
in [L^. We assume that the centralizer Gp of p in G is the standard Levi subgroup
M(p) == M^ x Mg x ... X M^, M, = GL(rJ, r, == r,(p) ^ o, 2, r, == r, of a stan-
dard parabolic subgroup P(p) with unipotent radical N(p), and the eigenvalue of p in
M, is ^l for a fixed generator ^ of ?.„. For a large integer j, let Uj be the set of A: in K

64



METAPLECTIC CORRESPONDENCE 65

(see (2)) so that the valuation of the entries of x — i are bounded by q~3. Thus U
is a compact open subgroup of G. A Haar measure on G/Z was fixed in (6). Denote
by |UJ the volume of ZUj/Z. Let <p(p,j) be the function with the properties of/
specified in (6) which is supported on ZpUj, and takes the value i/[ U. | on pU . Let U*
be the group of A**, where x lies in U^. Let 9^ be the function with the properties specified
in (6) which is supported on ZUJ, and takes the value i/|UJ| on U*. Here |U*| is
the volume ofZUJ/Z with respect to the measure of (6).

Throughout %, TC denote admissible representations of G, G of finite length with
/>^ <• rw ^, ^, ^^

central characters £, <o (see (6)). Put %(/) = \f{x) % (x) dx (x in G/Z). It is an
/%/

operator of finite rank. Its trace is denoted by tr%(y). The operator %(<p^) is a pro-
jection from the space of% to the subspace of UJ-invariant vectors. The latter space is
finite dimensional and tr%(9? is its dimension. We now construct a matching 9..

Proposition. —For any large integer j put r(p) == (r2 — 2^r?)/2 and 9^ = 2p ^r(p) <p(p,j).
Then F(x, 9̂ .) = F(^*? 9? for all x with regular x*.

Proof. — The equalities below are valid up to constant multiples independent
ofj. If F(x, 9(p,j)) 4= o we may assume that x lies in pU^ and even in pM(p), namely
that x == pM with u in M(p) n U^. Consider the integral

F(P^ 9(P^')) - AM(P)(P^) J^^ J^^ J^ 9(P,J) (^P^-' nk-1).

We may assume that mum~1 lies in U^ (and n in K). The integration over k has to be
taken only over the subgroup U. of matrices k in K whose entries below M(p) are bounded
by q~3 in valuation. We obtain

AM(P)(«) r '̂ S^J^J^J) (^»-1 ^-1) = -r '̂ F(«, y(i,j)).
Since ^{i,j) {u) == ^^(u*) for M in Up we have F(M, 9(1?^)) == F(^ 9^).

n. Satake transform. — Assume that (*) is unramified. Let (JL = (p.^, . . . , ^)
be an unramified character of A whose restriction to Z is (o. It determines an r-tuple
pt(n) = (^(71)5 . . . ) of complex numbers, or an element of the subset A' of A(C) r^ C^
of elements with determinant co(7t). Let I (pi) denote the representation of G unitarily
induced from the character (A of the upper triangular minimal parabolic subgroup B.
Let H be the convolution algebra of K-biinvariant compactly supported modulo Z
functions / on G transforming under Z by co~1. Here K = G(R), R being
the ring of integers of F. If/ is spherical (lies in H), and a is regular in A, then
F(a,/)(= 8^(a) \K\^f{an) dn) depends on a in A/A(R) ^ V. Thus if a == ̂
(mod A(R)) for X in V, we put F(X,/) for F(a,/) and X(pi(TC)) for ^(a}. The algebra H
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is isomorphic to the algebra C^A^ of finite Laurent series on A' invariant under the
action of the Weyl group W = W(G, A) by the Satake isomorphism f ->f^. Here

f^W) = trl(^)(/) =J^^) F(^/) da

^R^-1 S F(X,/)X(^)).
X6Z7Z

The first equality is our definition. The second equality follows by computing the cha-
racter of the induced representation. We take the volume |RX | of the multiplicative
group R^ of R to be i.

Now suppose that {n, q) = i. An unramified character ^ of A" Z whose restric-
tion to Z is S determines an r-tuple ^(r^) == ^(sfn'1)), . . .) of complex numbers.
Here A" = p'1^); A" is the group of a" with a in A. Extend ̂  to a character of a
maximal abelian subgroup AQ of A, and set ^ = i on N. We denote by I(^) the
representation of G unitarily induced from ^ on BQ == X()N. As \n\ == i, K lifts to

r^/ ^f

a subgroup K* = K^K) of G. Hence we can define H to be the convolution algebra
ofK*-biinvariant compactly supported modulo Z functions/on 5 which transform under Z
by S~1. H is isomorphic to C^A'^ by the Satake isomorphism f ->f^y where

/^(O) = trI(IV) = f^ tW F(^7) 'da

== JA/Z ̂  ̂ an^ da == :SF(^^) ^^W)-

The sum ranges over X eZ^'/Z. The second equality is based on a character compu-
tation carried out in [F], p. 141, where t (erroneously omitted there) is the index in S
of a maximal abelian subgroup. We choose the measures da, da to be so related that the
third equality holds. We delay the discussion of measures to (24) below.

The relation ^{a) = ̂ (s^)) defines an embedding of the variety of the charac-
ters ^ into the variety of characters (JL, the image being the subspace of characters p.
which are the nth powers of characters on A. The map ^ -> (JL defines a map I(^) -^ I((Ji)

/^/
of induced representations. We define a dual map H -> H, f ->f*, by

, /^(WO)) ̂ O^")).
The identity

S,F(^/+)X(?(^(lTn)))=S,F(X,/)X(^))

implies F(^X,/') = F(X,/) for all X, or F(aV) = F(fl,/) for alia in A with regular ̂
in A.

In particular, ify° is the unit element ofH, whose support is KZ and which takes
^> f>^

the value |K| on K, then the corresponding function f* is the unit element f° ofH.
The function/0 is supported on K* Z and its value on K* is | K |~1.
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12. Unit element. — The results of this section are due to [KP7], § 5. They
are reproduced here for completeness.

/%/
The identity F(^,/°) = 'F(x,f°) can be proven in some cases using the results

of [K], which we now recall. An element k of K is called ^semi-simple if k^ == I for
some b ^ i in Z with (A, q) = i. Here q is the cardinality of the field R/wR. It
is called K.-unipotent if k^ -> I as & —- oo. In [K], Lemma 2, p. 226, an analogue
of the Jordan decomposition—which we call the ^.-decomposition—is proven. It asserts
that each k in K can be written uniquely in the form k = su, where s is K-semi-simple
and u is K-unipotent, and s commutes with u.

Let F' be the unramified extension of degree m ofF and s a character ofFX whose
kernel is Np^F'^. Given r ' ^ i let/'0 be the characteristic function of GL(r', Rp,)
in GL(r', F') divided by the volume factor |PGL(r', Rp')!. Let f§. be the characte-
ristic function of GL(r' m, R) in GL(r' m, F), divided by | PGL(r' m, R) |. We embed
GL(r',F') in GL(r' m, F) so that GL(r', Rp') lies in GL(r'm,R).

Assertion (F',F,r'). — For any regular elliptic K-unipotent k in K/ = GL(r', Rp.)
we have

^W^F'WL^P^^"1^^

-^wU.p)8^^)^-1^^
Theorem. — Assertion (F', F, r') is valid if r' == i or F' = F.

Proof. — This is Theorem i' of [K], p. 229. It is trivial if F' = F.
We would like to prove for each k in K with regular f^ in G that

(*) A(y)J^7°Qr1^) dg == A(^/°Qr1^) dg.

Here we put PG = G/S == G/S, where S is the split component of the centralizer T
of k, and S = p~l(S). We choose the same measure dg on both sides. It suffices to
prove this with G == GL(r", F) for any r" ̂  r and elliptic regular k in K = G(R).
Then S == Z.

Note that since s = limk^ as n -> oo, we have that g~lkg == k implies g~1 sg = s.
Namely the centralizer G^ of A is contained in Gg, hence in Ggn.

Now suppose that k is elliptic regular, and put G^ = T. Since s commutes with k
it lies in T, hence it is elliptic and semi-simple. The centralizer Ggn ofsn is then reductive

< '
and equals II GL(^., F^), where fy = [F^: F] and S^ ^ = r. This contains the

j == i
elliptic torus T, hence t = i and G,n = GL(r', F') with rf f = r. In particular
6 = ̂  lies in F', and we can introduce the extension F" == F^G^) of F' of degree m.
It is clear that m divides n and r', so we write r" m = r'.
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Proposition. — Ifk" is elliptic regular, then Assertion (F", F', r") implies (*).

Corollary. — If N is the least common multiple of all composite r* < r and (n, N) == i,

then F(V°) = F( ,̂/°) for all k in K with regular k\

Proof of Corollary. — By the Proposition we need Assertion (F", F', r") to hold for
all m == [F" : F'] and r" with mr" ^ r. If m + i =(= r" then mr" divides N, hence
(r" w, %) == i. As m divides n it is i and we deduce that m == i or r" == i; but then
Assertion (F", F', r") follows from the Theorem.

Proof of Proposition. — As the K-decomposition of ^n is ^n ^n, the integral on the
left of (*) can be taken only over PG' K, where G' == G,n(F) = GL(r', F'), by [K],
Lemma 3.3, p. 226. The integral on the right ranges over PG" K, where

G"=G,(F)=GL(r",F"),

for the same reason.
Note that ^ == s{kY u^-1 = K*(^) K^) u^-1, since u(k) == i if n is

even and m is odd. By [KP'j, Proposition 0.1.5, we have for g in GL(r', F') that
g-1 K^) g = K )̂ i((det s^ dot ̂ ^/(O, dot' 5)?,),

where det' is the determinant map of GL(r', F'). Since det^ is an nth power in Fx

we put s{g) == i((6, det'^)^1) to obtain
g^Wg^K^^g).

Since u is K-unipotent and (w, ^) == i we have that g~1 €' g lies in K' == GL(r', Rp.)
if and only if g~1 ug lies in K'. Hence it remains to show that

u^r^w s ^)-A(A) s i,
^GPG' yePG"y-^eK' r^eK"

where K" = GL(r", Rp.). But since
A(^) == A(6^) == A'(^) = A'(^)

is the A-factor with respect to G', and A(A) = A(J^) = A"(M) is the A-factor with respect
to G", the identity follows from Assumption (F", F', r").

13. Supercusp forms. — Suppose % is an admissible irreducible representation
of 6. Harish-Ghandra [H] proved that there exists a locally integrable conjugation
invariant function on 6, denoted here by /„ or ^(%) and called the character of %. It is
smooth on the regular set, transforms under Z by S, and satisfies tr%(/) === j^{x)f{x) dx
{x in 6/Z). A matrix-coefficient of % is a function 7 on 6 of the form ^(x) == (%(^) v, »'),
where v is in V, v ' is in the dual space, ( , ) is the inner product and y, v ' =(= o. A

^ r ^/
supercuspform is a function/with the properties specified in (6), such that \^f(xny) dn = o

•?N
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for all proper parabolic subgroups P of G, and all x, y in &. An irreducible represen-
tation % is called supercuspidal if one (hence all) of its matrix coefficients is a supercusp
form. If</(?c) denotes the formal degree [HD] of a supercuspidal representation % and

<^ /^/
{v, y') == i, then the matrix coefficient f{x) == rf(%) (%(A:) y, y') satisfies (i) O(A:,/) == o
if A* is regular non-elliptic element of 5 (Selberg's principle; [H'J, Theorem 29) ;

/^/
(ii) <t>"(^,/) = /(%) (A*) if^ is regular elliptic. Also, the irreducible % is called square-
integrable or discrete series if its (not necessarily compactly supported) matrix coefficients
(one, hence all) are absolutely square-integrable on 5/Z. Such representations can be
realized in the space L^G) of functions on G which transform under Z by the character S,
and are absolutely square-integrable modulo Z.

In the remainder of this section we prove
/^

Theorem. — If (N, n) == i {see Corollary 12) and f is a matrix coefficient of a super-
cuspidal representation %, then there exists a matching f {see (8)).

In fact we show that Assertion (F", F', r") of (12) implies the theorem for arbi-
trary (N, n). As this Assertion is proven only in the cases treated in Theorem 12, we
put the restriction (N, n) == i as in Corollary 12.

Remark. — (i) By virtue of [K'], Theorems G, D and K, the proof given below
/'w

shows that for every pseudo-coefficient f (resp. /) of a square-integrable % (resp. TC),
/^/

there exists a matching/ (resp./). (ii) Using Theorem 27.3 and the theorem of [BDK]
y^/

we can further conclude that for each/there exists a matching/. This fact is discussed
/>/

in Corollary 27.3. The space of/with matching/is easily characterized; this is not
needed here, but see Proposition 27.3.

The proof relies on the results of [K], and the following

Proposition. — a) Let e be a semi-simple element ofG and Gg ==J&(GJ, where Gg is the
centralizer ofs in G. For the character ^ of a representation % there exist complex numbers c(S, %)
so that

^(eexpY)=S^,?c)^(Y)

for any regular Y near zero in the Lie algebra Lie G,. Here S runs over all nilpotent G^-orbits
in Lie Gg, v^ is the G^-invariant measure on Lie Gg corresponding to E; and ̂  is the Fourier trans-
form of Vp on Lie Gg.

b) Conversely^ for each ^ there exist representations TCg of Gg and complex numbers c^ TTg)
so that for any elliptic regular Y in Lie Gg sufficiently close to zero we have

^(Y)=2^^,7r.)^(expY).

Proof. — a) is [H], Theorem 5. b) follows from [K'], Theorem 2 .1 (b), Propo-
sition 3.1 (a), and Theorem 4.1.

69



70 Y U V A L Z. F L I C H E R A N D D A V I D A. K A Z H D A N

Corollary. — Given %, and a semi-simple e in G, there exist representations TTg of Gg, aW
complex numbers ^(%, TTJ, jo ^A^ /or ̂  elliptic regular g in a small neighborhood of i in Gg,
w^ have

X^) == ̂  ̂ %' ̂ ) X^C?)-

Proo/' o/' theorem. — Note that j&(Gg) === Gg is contained in Gp(g). Suppose that
p ( z ) is elliptic, with determinant in 'F x n . Its centralizer G ^ in G is of the form GL(r', F'),
where [F': F] ==/' and r ' f = r. Since (see the proof of Proposition 12) the commu-
tator [x, e] ofs and x in s(G^) is equal to s'(^) == (det' x,p{s))y,, where det' x is the
determinant from Gp^ to F', we deduce that Gg is the kernel of e' on Gp^. Since ^(s)
lies in F', its nth root defines an extension F" = F^^s)^) ofF' of degree m dividing n.
In particular the character s' is of order m, and Gp^/Gg is isomorphic to F^/Np^p' F'^
via the determinant map. Note that for x in Gp^ we have

(*) X^e^"1) = s'W X?r(^^~1) = e'W X%(^)-

Here we use the fact that characters are invariant under conjugation. We identify [L^
with a subgroup ofZ (resp. Cx) by means oft (resp. S).

The group Gp^ acts on the irreducible representation TCg of Gg by conjugation,
thus 7^(.v) = TCgO^.?"1)* ^ G(7Te) is the maximal subgroup of Gp^ which fixes TTg,
and e" is a non-trivial character of Gp^l^^s) (^ ls some power of £'), then linear
independence of characters on Gg implies that the span of the characters / of^ {x in
Gp(e)/G(TCg)) is equal to the span of

X, == S^^^ £"M1 ̂  (i ^ ^ ̂  order e").

Hence the Corollary implies that there is a neighborhood V of i in Gg so that ^(sg)
is equal to a finite linear combination of the expressions Xi(^) on the set of elliptic regular^
in V. Hence (•) implies by linear independence of characters on Gg that ^{sg) is a
combination ofX,(5)'s with e ' { x Y = e { x ) , on the set of elliptic regular g in V.

So we have to study the sum

X=Ss'W^ (^inG^/GJ

for a given irreducible representation TTg of Gg with G(7rg) = Gg. It satisfies the rela-
tion (*). Hence, if X(^) 4= o, then g lies in the subgroup H == GL(r", F") of Gp^.
According to [K], Lemma i, p. 216, the sum X(^) is equal to ^(g X £') (the character
of T^{f) o A^ in the notation of [K]), where n is the representation of Gy^ induced
from TTg on Gg. Using Assertion (F", F', r") of (12), and the separation argument
of (19) below, the proof of [K], § 4, implies that up to a scalar there exists a representation pg
of H, so that X(^) is of the form

(**) ^)^2<,^(<rQ?)).
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Here A' is the A-factor of G^) = GL(r', F'); A" is the A-factor of H. The sum ranges
over the Galois group Gal(F"/F') ^ F^/NF'^ ^ G^)/G,. ^) is £'(A(^) ^o)n(n-l)/2

([K], p. 211,1. 9); it is equal to u [x)n ~1 (notation of (4)) if x is elliptic with x* == egu {x) n~l.
We can now complete the proof of the theorem. We are given a matrix coeffi-

cient f of a supercuspidal representation %. According to the comments preceding the
r^ f>j

statement of the theorem, 'F{x,f) == o unless x is elliptic, and ^"(^V) = ̂ {x) for
elliptic regular good x. In view of (3) we need to consider only ^(A:*), and by virtue
of (8) we need to concentrate only at those x* which are close to a singular element.
Namely we are interested in x* of the form zgu[xY~1 with regular elliptic g near i in 6g.
This is the situation considered above. Note that g is elliptic, and the character of pg is
locally constant on the elliptic set. In fact, for elliptic g near i as here the value of% (ag)
is constant. Since for our g we have A(£^) = A'(^f) and A"(^) == A'^e""1^) == A(^) up
to a scalar, it follows that c{x) == AO"(^,/)/A(^) is a function on G which satisfies
the requirements of Proposition 8. Hence the matching function f exists, as required.
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n. — REGULAR FUNCTIONS

14. Jacquet modules. — Let P == MN be a parabolic subgroup of G with
unipotent radical N and Levi subgroup M. Suppose % is an admissible representation
of finite length of G on a Hilbert space V. Let V^ be the span of %(%) v — v (n in N,
v in V). The space V^ is stabilized by M since M normalizes N. Let %N denote the repre-
sentation of M on V/VN. Recall (7) that Sp is the modulus character of P. We call
%^ == Sp^2?^ ^le Jacquet module of % with respect to N. Jacquet modules have been
studied by Jacquet, Harish-Ghandra, Casselman, Bernstein and Zeievinsky [BZ]. Some
of their results are the following. %^ is admissible of finite length. The functor % -^%^
is exact. Let I^i?) denote the representation Ind^S172 ̂ ) induced to G from S172^® i
on P = MN; it does not depend on N. Then Homg(%, Ifi(?)) == Hoing^^?)
for all admissible representations p' of M and % of G. Hence ^ 4= o implies that %
is a constituent of Ifi^)' Further, the representation ?: is supercuspidal if and only
if ?CN ls zero ^or a^ proper parabolic subgroups P of G.

Let <S> = 0(A, G) be the set of roots of A in G, and A the subset of simple roots.
For a subset 6 of A, put AQ == n ker a (a in 6). Put A" for the set of x in A with
] a(^) ] < i for all a in A. Let T be a (maximal) torus with maximal split subtorus 'A,
and maximal anisotropic subtorus S. Thus T is isogenous to 'A X S. Namely,
there is a positive integer m such that for each t in T we have /m == as {a in 'A, s in S).
There exists y in G with a' == yay~1 in A". Let Q. be the set of a in A with | a(fl') | = i,
and define P( == M^N^ to bej^"1?^^, where P^ is the upper triangular parabolic
subgroup whose Levi subgroup is the centralizer of AQ .

Theorem (Casselman [C]). — Let t be a regular element in G with P< == P. Then
X(%)W = X(%N)W. Since A(^) == A^) Sp^)-172, we have (A^(%))(^) = ̂ ^))W
for such t.

^ ^.If% is ramified (does not have a K == K^K) fixed vector) andy is spherical, then
%(y) = o. Indeed, for any v in the space of% the vector

%(/) v = Jfig} W ^S = Sfik-'g) W v^g = ̂ k) %(/) .

is fixed by K. Here dg is a Haar measure on G/Z.
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Denote by 5, the elliptic set ofG, by [W(T)j the cardinality of the Weyl group W(T)
of a (maximal) torus T in G, and by dt a Haar measure on T/Z. Put

('4.') <X,,A =^,~^g)fig) d'& = SCWCr)]-1^^ (t) ¥ { t J ) d t .

The sum ranges over the conjugacy classes of elliptic tori T in G.

15. Regular functions. — As in (11) we now assume that {n, q) == i and <o
is unramified. Let \ ( i ^ i ^ r ) be integers with \ == o and ^,^^4-r The

/^/ /^ ^i ^^
function f of (6) is called ^-regular if F{x,f) is zero for all x in G unless there is g in G
and z in Z such that/^^"1 xg) is equal to ^n n^ with ^ in A(R) in the notations of (i i),

/^/
in which case we require that F^TC^)*,/) be equal to one. Since the support S of

^/ ^
F(.y,y) is open and closed, we assume, as we may, that the support off lies in S. Note

^ • . ^that by definition of X and f, the group M( associated in (14) with t in G such that

F(V) + o, is A.
r^

For X-regular f the Weyl integration formula (14.1) implies that

tr%(7)=J^)^)^

is equal to

^r1^^)^^^)^
which, by definition of f and Theorem 14, is equal to

(^)~1 f X^N) (^n "^) F^ TC^,/) da.v / JA(R)/Z(R)/A N/ v / v 3l/ /

The restriction of the character /(%N) °f ̂ e S-module %N to A" is a sum of characters
(homomorphisms) of X". Our integral vanishes unless )c(^N) contains a character ^,
such that there exists an unramified character { j i o f A with ^(fl") = (Ji(fl) [a in A). In
this case, assuming that % is irreducible, we note that by Frobenius reciprocity (14) all
exponents in j{^^) are of the form w^., where w lies in the Weyl group W(A), and
(wjl) (a) ==/y{w~law). As in (n) we write X((^)(^r)) for (^^(TT^). We conclude
the following

/"»>/ <"ŝ

Proposition. — Suppose % z'j irreducible, f is ^-regular. Then tr%(y) vanishes unless TT
/t^ m ̂  composition series of the induced, unramified representation I^jX) introduced in (n), W
in ^Aij case there is a subset W(%) of W(A) depending on % and ̂  ^cA ^Afl^

(15 .1 ) tr%(/) = (r!)-1^^^) (Ti)) (^mW(%)).

75
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In the special case n === i we obtain X-regular functions^ on G and conclude that
tr rc(f) vanishes for irreducible n unless TT^ is unramified, in which case we denote by (A
an exponent of TT^ and obtain

(15.2) tr^/)^^)-1^^^^^) (^inW(7r))

for some subset W(7r) of W(A) depending on TC and (JL.
Thus regular functions have several useful properties. They are supported on

/^/
the regular set. I f t r%(/ ) is non-zero then (i) it is easily computable by the above
explicit formula, (2) % is a constituent of the unramified induced I^?). (2) implies
that% has a vector fixed by the action of an Iwahori subgroup, once Proposition 17 below
is proven. As these properties are fundamental for our study of spherical functions
in (19) we now pause and study in detail the G-modules with a vector fixed by the action
of an Iwahori subgroup.

16. Iwahori algebra. — Let F be non-archimedean with \n\ == i. As in (2)
we identify the maximal compact subgroup K = GL(r, R) of G == GL(r, F) with a
subgroup K* of G by means of the injection K* : K -> & of (2). Let A be the diagonal
subgroup of G and X ==^-'1(A). Let (JL, ^ be characters of A, X whose restrictions
to Z, Z are <o, S (see (6)), related (as in (n)) by ^{a) == ̂ .{s^)) (a in A), such that ^
is trivial on the maximal compact subgroup A n K of A. As in (i i) we let I(pi), I(^)
be the representations of G, 6 unitarily induced from the characters pi, ^ of B == AN,
Bo = XQ N; N is the unipotent upper triangular subgroup. In this section we prove

Theorem. — There is a natural bijection, preserving in particular Jacquet modules with
respect to N, between the irreducible constituents ofI([L) and ofl{^i).

This gives a special case of the metaplectic correspondence, where the proof is
independent of the trace formula. In particular we do not need to impose here the
restriction (N, n) == i (see Corollary 12).

The proof is based on the study of H-modules, where H is the Hecke algebra with
respect to an Iwahori subgroup I, and the analogous situation for the metaplectic group.
Let I be the group of matrices in K whose entry below the diagonal has valuation less
than one. Then I n B = = K n B , A n I = = A n K . Let I* be the image of I
under the isomorphism K* from K to K". We introduce the convolution algebra
H == Cg[P\G/P]^ of complex valued r-biinvariant functions on G which transform
under Z by 5~1 and are compactly supported modulo Z. In the case n == i the notation
specializes to H = Cg[I\G/I]^. The study of H-modules is based on some properties
of the algebra H, which follow from the presentation of H by means of generators and
relations, due to Iwahori-Matsumoto [IM], Proposition 3.8. This we recall in
Lemma 16.2. In Lemma 16.3 we establish an analogous description for the algebra H.
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This implies that the study of H-modules generalizes to the metaplectic case; see Pro-
positions 17, i7. i . Lemmas 16.2, 16.3 imply the following Proposition 16.1, and
Theorem 16 is a consequence of Propositions 16.1, 17, 17.1. So we claim

Proposition (16.1). — The algebras H and H are isomorphic.

As the central character co is unramified, we assume that ci) == i. So we need to
study the Iwahori algebra of the projective group. To simplify the notation, we now
denote G/Z by G, A/Z by A, I/I n Z by I. With this convention, we now describe
(in Lemma 16.2) the Iwahori algebra H == G,[I\G/I] by means of generators and rela-
tions, as in [IM], Proposition 3.8. We use the Bruhat decomposition G = IYI ([IM],
Theorem 2.16), where Y = WA is the normalizer of A in G (as in (2)). The affinc
Weyl group W' = Y/Y n I is the semi-direct product of the Weyl group W = Y/A,
and the free group P = A/A n I ^ V~1, where W acts on P by permutations. We
identify W' with the group of matrices which have in each row7 and column a single
non-zero entry, which is an integral power of the uniformizer w. Theorem 2.16 of [IM]
asserts that G is the disjoint union of Ijyl [y in W'). Hence each member of the convo-
lution algebra H is a linear combination over C of the functions 'T {y in W) which
are supported on Ij^I, and attain the value i/| I ] there; a Haar measure was fixed in (6).
It is clear that 'Ty does not depend on the choice of a representative ofjy in G.

Let ^ be the transposition (i, i + i) in W, for i ^ i< r. Denote by SQ (= Sy)
the matrix in W' whose entries are o outside the anti-diagonal, and whose non-zero
entries are n~~1 on the top row, TC on the bottom row, and i otherwise. Then s^ == i
(o< i< r). Also denote by T the member (a,j) of W' whose non-zero entries are
^i+i = i (i ^ i < r) and a^ = TC. Then ^ = i, and T^i == s, T (o ^ i < r).
Note that W' is generated by T and ^ (i ^ i < r). Let S' be the set {j, (o ̂  i < r)},
and W" the subgroup ofW' generated by S'. Then (W", S') is a Coxeter group ([BN];
IV, §i). Hence it has a length function f, which assigns w in W" the minimal integer m
so that w = t^ ... t^ (^ in S'). In particular /'(i) = o, and ((w) = i if and only
if w •== s^. The length function t extends to W' by £(^w) = £(w) {w in W"), as for each w'
in W' there are unique i, w in W", with w' = r1 w.

We now return to the functions 'T^, and put T^ = q-1^2 'T^,. In particular
T .̂ = q-1'2 'T^., and we put T, = T .̂ (o ^ i< r). Put T for T^ == 'T^, and i
for the unit in the algebra H, namely the function supported on I whose value there is i /| 11.

Lemma (16.2) ([IM], Prop. 3.8). — The convolution algebra H is an algebra with iden-
tity i, with the presentation by means of generators T, T, (i ^ i< r), and relations
(i) ^ = 1 ,
(ii) TT^=T,T(i0^r~2),
(iii) T? = i + pT, (i ^ i < r), where p = q112 - ̂ -1/2,
(iv) T^T,=T,T^ if (̂ .)3 = i (or i = j ± i when ^3),
(v) T, T̂ . = T̂ . T, if {s, s^ =i (or i 4= j ± i when r ̂  4).
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In particular, To = TI\ r-1 == T-1 T,_i T satisfies (iii) since T^ does, and also (iv),
(v). In fact, [IM] include To among the generators. Our presentation ofH simplifies
theirs. Equivalently, H has the presentation by means of the generators T ,̂ {w in W'),
and the relations (iii) and: (vi) T, T,, = T^ if l(ww') = £{w} + ̂ (0. Relation (vi)
implies that Iw W I = Iww' I, and (iii) that Is Is I == I u Is I (disjoint union,
s in S'). Note that these relations stand for convolution of functions.

The Hecke algebra H of the covering group G of G == GL(r), with respect to
the subgroup I', has a similar presentation. For Jin Y == p-1^) (notations of (2)),
denote by ch(PJP) an element offi which is supported on ZPJP. Put y = p { J ) = wx
{w in W, x in P). It is clear from the definition (2) ofG that if this function is non-zero,
then x lies in p ( Z ) P", where ^ ^ nL\ Indeed, if e' lies in I* n A, then e' w == we"
for some s" in P n A. Further, if x == (^, . . ., x,) and j + k, take e' = (e^, . . ., e,)
with e, = i if i + j\ k; and e, = s, ^ ̂  = i; e is a unit in F\ Then by (2. i) the
commutator of A: and e' is (e, ̂ ). Since the unit s is arbitrary, x^x^ must be an
nth power for each pair (j, k) if the (genuine) function ch(PJP) does not vanish, as
asserted.

Thus we replace G by G/^(ZJ (notation of (2)), put ^ = K'(^) (i < i< r), and
writer for x^_^ ... 3^; ^ is the element s^) of A, where n^ = .(i, ...,1,71).
Let \V'J)e the group generated by ^ (i ^ i < r) and ?. There is a natural isomorphism ^
from W to W, given by ^) = ^ (i ^ z < r ) and +(?) = T. Indeed, V satisfies
y == i, and ?^+i = ̂ ¥ (i ^ i^ r — 2), by the definition of a in (2), and these are
the only relations which ¥ satisfies. In particular, the length function I is defined on \V'
by f(w) =/^(w)) (^ in W). We use below the fact that for a'm A with a =p{^),
we have a~1 K*{n) S == K^a~~1 no) if both n and a~1 na lie in I n N. Indeed, since
K | K n N ^= i (see (2)), this follows from a(%, a) == i and 0(0, a-1 na) = i (see (2)).

Put T^ (w in \V') for the member of S which is supported on P wY Z/^(ZJ,
and takes the val^e i/|I| at w. Put T^ = q-^2 'T^, T, for T^, where w ==^,
and ? for T^ = 'Tc^. It is clear from the above comments that if the Ty, exist, then
the algebra H is generated by the T ,̂ {w in W).

We use below the Iwahori decomposition I == (I n N~) (I n A) (I n N) of [IM],
Theorem 2.5, and write accordingly i == n~ an; here N~~ is the lower triangular uni-
potent subgroup ^N of G.

To show that the T^ exist it suffices to show that x^1 ix^ (all product below are in G)
lies in K* for all i in I ^ I* for which p{x^lix^ lies in K, namely that if ix^ wi' == ̂  w
(^ m P-n^ ^ tf in I) then ^ == i. By (2.1) and (2.2) we may assume that i lies in N~.
Let u denote the anti-diagonal reflection in W. Then u~1 iu lies in K* n N = s(K n N).
Put x == u~lx^u. It lies in A. Hence x~1 u~1 iux lies in K n N by (2. i) and (2.2).
Hence x^lix^ = ux~1 u~1 iuxu~1 lies in K", as required.

^ Lemma (16.3). — The convolution algebra Q has a presentation by means of the generators Y,
^ (! <.l < r) and the relations (16.2) (i)-(v), with ? replacing T and T, replacing T,.
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Proof. — The relations (in), (iv), (v) follow at once from the case n = i and the
isomorphism K ^ K*. To prove the lemma, it suffices to show that (a) for any w
in W and s =^ ( i ^ i< r) with l[sw) = i +^(%), we have T^ = T,T^, and
(b) ?T^ = T^ for any w in W.

To prove (a) we need to show that sl* w C P swi*. It is clear that sn~ as~1 lies
in I. On the other hand, n in N can be written as a product n == n^i + xe^). Here ^
is a matrix (n^ in N with n^ ,+i == o, and ^ is the matrix (^) with a.^ = o if
(j, ^) =t= (i, i + i), and ^4.1 = i. If n lies in N n I then ^ lies in N n I and
sn^s~1 lies in I; also in this case \x\ ̂  i. So it remains to show that w~l{I + xe^) w
lies in I*. For that, write the image ^(w) ofw under the isomorphism ^ in the form wp,
with w in W and p in P. Then w~l{l + xe,) w = i + xe^, where e^ = (a^) with
^ = o if {u, v) =1= (j,^), and a^ = i. Since f{swp) = i +^{wp), (16.2) (vi) implies
that J&""1 W^i + xe,) wp = i + TC" ̂  with a ^ o if j < ^, and a > o if '̂ > k.
Put p'=wpw~1. Then ^'"^i + ̂ ) ̂ / = i + n^ xe,; this is an equality in G
by (2.2), and i + "aw xe, lies in s(N n K) == (N n K)' (since K | N n K = i,
see (2)). Hence SS'^i + xe^) % == i + TC^ xe^ (equality in 6) lies in P, as required.

It remains to show (b). Again we use the decomposition i = nan~, and note
that Vnaf~1 lies in I*. Moreover, n~ can be written as %" n\ with n\ n" in N", so that
72" = (^) ^^ ^/ci := ° ^or A > i, and %' = (^) with n^ == o for j> k > i.
It is clear that W'?"1 lies in P.

We now study W?"1. For that it is useful to note that i + xe.^ and i +jye^

{j,k> i ;A:,jyinF) commute. We denote by ( ,) the matrix {a^) in G whose

non-zero entries are Oy == i (j =t= i, r), a^ == a, a^ == rf, a^ = 6, fl^ = c. We denote

by wj the matrix obtained from %' on replacing ^4.11 by o. Then ( | commutes
' ^ \° Vj+i

with ^'. Put p = -T .̂ If |̂ | > i, we have (in G, not only in G)
(») ¥(i+^^^)?-i=i+(^)^

^ / I 0\ / 0 I\ /^ 0 \ / I 0\

W i/i\-i o ^ \ o xlp^\plx i;/

It is clear from the first equality here thatW?""1 lies in P if \n'^p\ ̂  i for all j'> i.
So suppose there is j> i so that x = ̂  satisfies \x\ > \p\, namely x = T^y, where y
is a unit, and o < a < %. Note that I* W %P depends only on a, but not on y. In
this case W w, hence Viw, lies in the P-double coset

T-. T* /° ^ /TC1"0' 0 \ / I 0 \ ^ , ^ _ ,
D = P I I ) a l l ! / I ̂  ̂ 1 •\i o/,\o ^~lJ,\plx i ] , ^

Since the member ( ) =?- l( ) ^ of P (e is a unit) commutes with n'.,
\° Vj+i \0 l / 3 3

( } and ( . 1 lie in P, and we can choose s so that the commutator of ( , 1o i/j \Plx i/, 9 \ o xip^
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and I j is not i in G, the function ch(D) vanishes. Hence the convolution

(r^"1) T^(j^) is o unless x lies in I*VwI*. Its values at x = Vw is i /[ 11, as the above
argument can be modified to show that the function ̂  is supported on YP (we showed
that it is supported on I*?); hence the integral ranges over y in P w ^ I*. From this
it follows that ?T^ == T^, which is the required assertion (b). The relation (b)
implies (16.2) (i), and (a), (b) imply (16.2) (ii) as well as (vi), and the lemma follows.

f^i
Proposition 16. i now follows at once, since the map ^ : W —> W induces an iso-

morphism from H to H.

Corollary. — For each w in W, the element T ,̂ in H is invertible.

Proof. — Let w = ^ . . . t^ be a reduced expression for w in terms of the gene-
rators ?, ^ (i < i< r) of W. Then Ty, === T( . . . T( , and each T( is invertible.

As usual, (%, V) denotes an admissible representation of G of finite length and
central character £. Indicate by V1* the H-module of P-fixed vectors in V, and by
(V^)1*'^ the space of P n A-fixed vectors in the Jacquet module V^ of V. It is a
Cc[P n A\A/P n AJ^-module, or an ^-module. We use

17. Proposition. — The canonical projection from V1* to (V^)1*^ is a linear isomorphism.
Hence (%, V) is an irreducible admissible representation ofG with V1* 4= o if and only if (%, V)
is a subquotient of an unramified induced representation I('iX).

Proof. — The first claim is Lemma 4.7 of [Bo]. The second follows from Fro-
benius reciprocity (see (14)). In the case n == i we use the notations (TC,V), V1,
(V^)10^ The work of [Bo] is formulated in this context only, but the proofs apply
in the case of general n too, in view of Lemma 16.3. Indeed, beyond the Iwahori
decomposition, [Bo], (4.7) uses only the fact that the T ,̂ are invertible ([Bo], (3.6)).

Further, we use the following result of Bernstein, Borel ([Bo], Theorem 4.10),
Matsumoto.

Proposition (17. i). — The map V -> V1* is a bijection from the (isomorphism classes of)
irreducible admissible representations (%, V) with V1* 4= o, to the set of irreducible (finite dimen-
sional) complex representations of the Hecke algebra H of G with respect to I*.

The theorem follows at once from the Propositions. More precisely, the bijection
of the Theorem is described by

(TT, V) ̂  (TC | V1, V1) ̂  (% | V1*, V1') <-> (%, \Q,

where the middle arrow is defihed by Proposition 16. i, and the others by Propositions 17
and 17.1.
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Lemma. — Let A^ denote the subset of a in \V' such that p{a) lies in A and has the form
(a^, a^ . . . ) with \a^\ ^ \a^\ ^ ... Then the action of T^ (<z in X_^) commutes with the
map V1* -> (V^^ o/(i7).

Proo/. — We have to show for each v in X^ with image v that the image of T^.v
is %N(fl) y. Recall that T^ is the convolution operator \I\~l^(Tf af) (up to a
scalar S"172^) which appears also in ^{a)). Since a lies in X+, the Iwahori decompo-
sition I = (N n I) (A n I) (N- n I) implies that I* aV == s(N n I) aP. As v lies
in \^, the operator [II"'1^?) acts trivially on v. Hence

T, v == %(^(N n I)) %(^) y = %(a) y 4- [%(j(N n I)) %(<z) y - V{a) v]

maps to ^N^) ^5 as asserted.

Remark. — ( i) In the case n == i we denote A+ by A^.. (2) Since each w in
W nA can be expressed in the form a~1 a' with a, fl' in A+, it is possible to define
a W' nA-module structure on V1* by putting T ,̂' ^T^T^. The Lemma shows
that the map v —^ v of (17) commutes with the \V' n A-structure. The Hecke algebra fi
has a presentation, due to Bernstein (see Lusztig [L], (4.4)), by means of the genera-
tors T^ {w in W n A) and T;, {w in W == W n K*), and suitable relations. Using
this presentation together with the Lemma, it can be seen that induction commutes
with the functor \^ -> \̂ 1*. Namely if? is an M-module (M is a Levi subgroup of G),
then the H-module US^5) == Homg^^,?1^5) induced from the Hfi-module
y^05 is the H-module I^f.

Corollary (17.2). — The map of the Theorem bijects square-integrable representations ofG
and G.

The same statement is valid for tempered representations.

Proof. — This follows from Harish-Ghandra's criterion ([S], Theorem 4.4.4;
see (21) below) for square-integrability. Indeed, for each irreducible factor (character) ^
in the composition series of the finite dimensional A^-module (^N^*^? there exists
an irreducible factor ^ in the composition series of (V^^, and vice versa, so that
xW == ^M^)) {a in A). The characters / and ^ are the central exponents (see (21))
ofpr and % with respect to N. The criterion asserts that n is square-integrable if and only
if for each such ^ we have | /(a) [ < i for all a = (^, . . ., a^) in A with | a,\ ̂  | a,+i |
(i ^ i< r) and \a^\ < |flJ, and [%(a) | == i for the a with \a,\ == \a^\. The ana-
logous statement holds for %, hence the corollary.

The same criterion asserts that n is tempered if and only if the above requirement
is satisfied with the weak inequality | -^{a) \ < i replacing the strict [ -^{a) \ < i of the
square-integrable case. Hence the statement concerning the tempered representations.
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Corollary (17.3). — A representation of G unitarily induced from a tempered one with an
Iwahori fixed vector is irreducible. Namely any tempered, representation of G which has a vector
fixed by the Iwahori subgroup I is equal to a representation unitarily induced from a discrete series.

Proof. — A representation (%,V)ofGis tempered if and only if it is a direct summand
of a representation 1(3') unitarily induced from a discrete series representation 3' of a
Levi subgroup L (see [BW]). Then ifV1* is non-zero, it is a submodule of I(?)1*. The
representation ? corresponds by Corollary 17.2 to a discrete series o. The H-module I (<r)1

is irreducible since the conclusion of our corollary holds in the case ofG (n = i) by [BZ],
It suffices to show that the Q ^ H-module l^S)^ is equivalent to I(cr)1; for then US')1

is irreducible, ^I+ = K^Y*. and as ^J* generates ^ we have ^ == I(?) as required.
Thus it remains to note that

fjfy\ U*nA ^ V/7yw\ \I*nA ^ ^ff^w\ \InA ^ fjf^\ \I^A
(•H^N} ^ ^{{G )^) ^ ^{{a )N) ^ ^W^) 3

where the sums range over the Weyl group of L in G. The isomorphisms commute
with the action of A^. ^ A+ by Lemma 17.1. But the G-module I (a) is uniquely deter-
mined by the A-module I(cr)N, since I (a) is irreducible. Hence the H-module cor-
responding to the H-module US')1* is I (or)1, as required.

A representation % is called elliptic if its character is not identically zero on the elliptic
regular set. A representation % with an Infixed vector is called Steinberg if it corresponds
by the Theorem to a Steinberg subquotient o^) of I((Ji); it is denoted by a(^i). We
denote by 7r(pi) the one-dimensional constituent of I (pi), and by n{^) the corresponding
representation of G. We deduce

Corollary (17.4). — Suppose % is tempered, elliptic and has an Iwahori fixed vector. Then
it is a(^i).

Recall that the modulus function 8 takes the value Ft | a(fl) | at a in A$ the product
ranges over the (positive) roots a of A in N. Let P = LU be an upper triangular
parabolic subgroup. The Levi subgroup L is a product of L^ = GL(r^). Note that
when I (pi) contains ^(pi), then I (p.) == p i®I ( i ) , where [L is regarded as a character
Qf y x ^ TO simplify notation we now assume that pi == i, and denote o(pi) by (T, 7c(pi)
by TC, etc. We denote the Steinberg representation of 1̂  by o,, and its modulus function
by 8^. Since the Jacquet module is transitive (rc^ = (^i^Nni,)? we have

ou^s-^ru1/2^.
Employing analogous notation (see also Remark (26) below) we also have

S^S-1/2!!.^,,

and (V^11 ^ (V^)2^ ̂  V1* ^ V1 s (V,^"1 ^ (Vp)1^1

is one-dimensional. We shall now show
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Corollary (17.5). — If L 4= A then Sy does not have a K* n L'fixed vector.

Proof. — In view of the above it suffices to show that S" does not have a K*-fixed
vector, namely the H-module ?1* does not have a vector fixed under the action of
all T, (i ^ z ^ r). This is clear in the case n = i. If (TT, V) is the one-dimensional
constituent in the composition series of the induced I((Ji) which contains o, then I (pi)
has a single K-fixed vector, and it spans V. Hence a has no K-fixed vector. Also I(^)
has a unique K*-fixed vector, and it lies in the subspace V1* of the representation (%, V)
matching (TT, V), since V1* ^ V1 has a K* ^ K-fixed vector. Hence 5' has no K*-fixed
vector, as required.

An alternative proof is given on noting that the special representation a corresponds
to the one-dimensional representation of H which assigns — i to each generator T^
(i < t < r; [Bo], Prop. 3.4)3 and therefore has no K-fixed vector.

18. Trace formula. — Let F be a global field, and suppose /== (g)/,, /== 0/
is a smooth function on G(A), G(A), compactly supported modulo Z(A), Z(A), where
/. ==/.°5 7v ==./? for almost all v, and/,/transform by a character co-1, S-lofZ(A)/Z(F),
Z(A)/Z(F) on the center (see (6) and (n)). Here A denotes the ring of adeles of F.
The following is a case ([F"]) of the (< simple " trace formula. Let r be the right repre-
sentation ofG(A) in the space L^G) of smooth functions on G(F)\6(A) which transform
under 2 (A) by S (see (6)) and are square-integrable on Z(A) G(F)\6(A). By a dis-
crete series % we mean an irreducible constituent of r which appears in the discrete part
of the spectral decomposition ofL^G).

< »̂' î /
Theorem. — Suppose that at two finite places v = u, u' the component fy of f satisfies

^X' C ,̂ f>»f

F{x,f^) == o for all regular non-elliptic x in G(FJ, and at a place u" the component/^, vanishes
/^

on the x in G(F) so that xr is singular. If, moreover,/^ is a supercusp form, then

(18.1) Ss tr%(7) = S, | G,(A)/G,(F) Z(A)| F{x,f).

On the left the sum is over the discrete series % of G(A). On the right the sum ranges over the
/^

conjugacy closes of good elliptic regular x in G(F) modulo Z(F). Hence we can replace F(x,f)
/%/

by 'F(x*,f) in (18. i) if we replace the sum on the right by a sum over the classes of elliptic x in G(F)
modulo Z(F) with regular x*. Both sums are absolutely convergent. The sum on the right is
finite.

< /̂ /-»/
Proof. — Since the component of/at u is supercuspidal, the operator r(f) annihi-

lates the non-cuspidal spectrum. Hence it is of trace class, and tr r{f) is given by the
/•K/

sum on the left of (18.1). On the other hand, r{f) is an integral operator with
kernel ^}\hxg-1) (sum over x in G(F)/Z.(F); g, h in G(A)/G(F) Z(A)) and the trace is
obtained by integrating the kernel over the diagonal g = h.

81
n



82 Y U V A L Z. F L I C K E R A N D D A V I D A. K A Z H D A N

We first claim that the sum ̂ ^f[gxg~1) ranges over finitely many conjugacy classes
of x. Indeed, let X be the space of semi-simple conjugacy classes in G(A)/Z(A).
Mapping^ in G(A) to the set [a^ . . ., Oy) of coefficients in its characteristic polynomial,
X is isomorphic to the quotient of Ar~l X Ax by A^ where

(fli, . . ., a,) ^ (^ z, a^z2, . . ., a, ̂ ).

If f(g~1 xg) =t= o, then the projection of ?{x) in X lies in a compact subset, depending
only on the support ofy. On the other hand, the image of the rational p{x) lies in a
discrete subset F^1 x FX/FX of X, as required.

Now suppose y is a representative of one of the finitely many rational conjugacy
classes with f{gyg~1) 4= o for some g in G(A). Then f is regular by the condition
at u". In particular^ is regular and its conjugacy class in G(F^) is closed. Suppose
thatj/ is not elliptic over F. Then it is not elliptic over F^., and our assumption at u'

r>J ^ ^

implies that the orbital integral ^ { y , / ^ ) of fu' at x ls °- Since the group G(F^) acts
transitively on the orbit ofy there is a unique (up to scalar) Haar measure on this orbit.
Consequently there exists a unique invariant distribution on the space of locally-constant
compactly-supported complex-valued functions on the orbit of j/, and its kernel is
spanned by the functions h — h9 (h as above, g in 6(F^), h^u) == h{g~lug)). Since

/%/
<&(^) : A -^0(jy, A) is a non-zero invariant distribution on the orbit of jy, and^. is in
its kernel, we conclude that there are finitely many A^, g^ such that if h' = S,(A^ — A^1'),
then f^, = h' on the orbit ofy. Since the orbit ofy is closed in G(F^) we can extend h
to locally-constant compactly-supported functions on G(F^) which vanish outside a small

/Ok/ /̂

neighborhood of the orbit ofj/. We now replace in f the component^, by its difference
with h'. We have not changed the value of the left side of (18. i), since tr% is an inva-
riant distribution. We have not changed the value otf(gxg~1) on any rational orbit x
other thanj/, since h' is supported on a small neighborhood of the orbit ofjy in G(F^).
However f{gyg~1) is zero for all g, so that the orbit ofy can be omitted from (*) ^jf{gxg~ 1).
Repeating this argument to the finitely many rational regular non-elliptic orbits of x
in the sum we conclude that we may assume that only elliptic regular x appear in (*),
without changing the value of the integral of (•) over G(A)/G(F) Z(A). But now that
the x are all elliptic regular we may change the order of integration and summation in
the usual way, and arrive at the right side of (18. i).

~ ^^ r^>

Corollary. — Suppose F is a global field. Fix f == Wfy such that its components (13)

at the finite places v = u, u' satisfy 'F(x,f^) == o for all regular non-elliptic x in G(FJ, and

J^., vanishes on the singular set. Let f == (S) fy be a matching function on G(A). Suppose that
/^/

each off andf has a supercuspidal component. Then

Str%(/)==Str7T(/).
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Both sums are absolutely convergent^ and range over the discrete series representations of G(A)
or G(A) which have elliptic components at u, u'.

/^ /^/
Remark. — We take finite u, u\ u". In (19) we take supercuspforms /, f^, and/..

supported on the regular elliptic set. From (20) on, we take regular /-,/- as m {15)>
and supercusp forms /,/'. This suits all our needs up to (27).

19. Theorem. — Suppose/^ in H^ andf^ in H^ are related by the map /, ->/,* of (i i).
Then F(̂ ,/;) = F(^,/J for all x in G(FJ with regular x\

Proof. — Choose a global field F whose completion at a place w is our local field.
It can be chosen to be totally imaginary, to simplify the work at infinity. But we can
deal also with the real places (see below). We choose three distinct non-archimedean
places u, u ' , u", supercusp forms /,, /on G(F^), G(FJ, matching functions/., f^
on G(F^), G(FJ, and matching functions/^, /^ supported on the elliptic regular
sets of G(F^), G(F^). Given ̂  in G(FJ (v = w, u, u\ u") and a small neighborhood U^
of\ in G(FJ such that ^(A:,/) is constant on U^ for v == u, u ' , u", there exists y in G(F)
withjy in U,, for all v = w, u, u\ u". Hence we need to prove the assertion forj/ in G(F)^
regular and elliptic, with 0(j^/J + o for v = u, u\ u". Then we take func-
tions/,/matching as in Corollary 18, whose components at u, M', M" are as above, with
O^/^00) 4= o, where /w)oc = 0/, (product over all finite places v other than w)^

f^
and such that the components/,, /, at w are regular matching functions as defined
in (15), or the unit elements/^0,/? in the respective Hecke algebras (this is permitted

_ _ /^/
by (12)). We then have the identity S tr n (/) = S tr % (/) of Corollary 18. Although
we do not use the following comment, note that after Theorem 26 is proven it is possible
to take u' = u.

Next we matcli orbital integrals in the case where F is archimedean. This we
do using the Paley-Wiener theorem [CD]. Given / on G, we define a function
F(7r) = tr %(/) on the space ofG-modules n induced from a ® (JL, where a is a discrete-
series M-module and p. is a character of M, and M is a (< cuspidal9? Levi subgroup.
If F is complex, M must be the diagonal subgroup, which is the only Levi subgroup
carrying discrete-series, and then CT = i. If F is real, M is a product of GL(2)'s and
GL(i)'s, and it is known [F] how to lift M-modules to M-modules in this case. Hence
it is clear how to lift such n to %, which appear in the definition of our function F. The
function F so defined satisfies the conditions of the Theorem of [CD], hence there is a
function/on G as in (6), with tr TT;(/) = F(TC) for the above TT. A simple application

/"^/
of the Weyl integration formula, as in Proposition 27.1 below, shows that/and/are
matching, since tr ?c(/) = tr%(/) for our TT.
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Now we return to our previous notation; thus F is a global field. Since f^, is a
supercusp form, the n in our sum have a supercuspidal component at u ' , hence they are
cuspidal, have Whittaker vectors, and all their local components are non-degenerate.
At oo, such G(FoJ-modules are < c large ", or have maximal Gelfand-Kirillov dimension
([Vo], p. 98); by [Vo], Theorem 6.2 (/) they are of the form TC^ == I((T ® pi) described
above, which are known, as noted above, to lift to G(F^)-modules %^. Hence we
write our identity 2 t rTE; (y )===St r ' ? r (y ) in the form

Str7^00(/oo)tr%,(7J=Str%oo(7w)tr%,(7J.

On the left, the sum is over the cuspidal n == -rc00 ® TT^ , and %^ is the lift of n^; TT^ is
the component of 71; at oo, 7r°° is the component ofn outside oo. We are now in a position

to apply linear independence of characters on G(F^), asy^ ls arbitrary.
We conclude that given irreducible representations TT^, %^ of G(F^), G(F^)

with tr7c^(/^) = tr%oo(/oj for all matching f^ ,/„, it follows from the linear inde-
pendence of characters that

Str^/00) ^Str^C/^).

The sums are over all representations %°° = ®%,, (v + oo), w00 == ® n^ (v 4= oo) such
that % == ?c00 ®%^, TC^Tr 0 0 ®^ appear in the identity of Corollary 18.3. This
can be expressed in the form

(i9-i) S^(%J tr%j7j == S^^(7rJ tr^(/J.

Here c{nj is the sum of tr ^^(V'00) over all G(AW)00)-modules 7^°° such
that TTy, ® TT^ 00 occurs in the previous sum over n^. The sums are over the components
(necessarily with an Iwahori fixed vector) %^,, TC^ of the %°°, 7t00. Applying (15.1)
and (15.2) we obtain

^^J ̂ ^(^ ̂ ((^(^w)) ("w)) = ̂  ̂ ^w) ^sinWW U(^w)) ("J)-

Recall that ^(%y,), ^(^M;) are diagonal complex matrices, W(%^,) and W(7T^) are subsets
of the Weyl group W(A), and X is any character of CY determined by X == (X^, ..., \),
\^> ^14-1 and \ == o.

A theorem of Harish-Chandra [BJ] asserts that there are only finitely many auto-
morphic representations of 6 (A) with a given infinitesimal character, or component %oo,
and a given K/ == ^(K^-type, where K' denotes a sufficiently small compact open
subgroup of G(A^) (A^. denotes the ring of finite adeles). Hence for a fixed choice

/•</
of^ and ^ {v 4= w) the sums over %00, re00, hence those over %^,, TT^,, are finite.

Since the sums over %^, rCy, are finite, we can apply linear independence of cha-
racters, and using the fact that the set of characters X is sufficiently large we conclude
the following. Given an irreducible TC^ which has an Iwahori fixed vector, the equa-
lity (19.1) remains true if we sum only over the %^, TCy, with trn^(f^) = tr ^{fw)
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and tr^(j^) = tr7^(^). Namely the sums of (19.1) are now taken over a subset
of the set of irreducible subquotients of I(^,) and I(^), the induced representations
determined by T^. However, precisely one irreducible subquotient of I(pJ, and
H^w)? is unramified, and we are permitted to apply (19.1) with^, f^ equal to the unit
element f^, f^ of the respective Hecke algebra. We conclude that c{^) == c{n^)
for any unramified T^, ̂  related by the relation pi Jo) = ̂ (0) discussed in (i^.
We conclude that (19.1) remains true when we replace ̂ , f^ by any spherical func-
tions/w^^ in U,, U, related by /^, ->/;. This is then true for the sums over %°°, 7r°°,
and the sums over %, TT. Hence we have

^WF^V)-^^)?^/).

Both sums range over the conjugacy classes of x in G(F) modulo Z(F) with elliptic
regular x* and c(x) denotes a volume factor. The two sums are finite, as explained in
the proof of Theorem 18. We can choose the components/„, f^ of/,/at oo to satisfy
^J^/oo) =t= ° ^d F(j,/oo) =t= o. Moreover, since the sums are finite, we can reduce
the support of/^,/^ so thatj/ is the only term in each of the two sums. We conclude
that F(^,/) = F(y,/), and since F^,/") = F(y,7w) + o by choice of /", /w

and y, we conclude that F(j/,/J = F(y,^), as required.

Theorem^(ig.2). — If tr^(^) == o for all tempered^ then F(xJ^) = o for all
regular x in G(FJ.

Proof. — As this is analogous to the proof of Theorem 19 we shall be brief. By [BW],
XI, (2j i i ) , the Grothendieck group of G(FJ is spanned by G(FJ-modules induced
from M(FJ-modules p^® S, where p' is tempered and ^ is an unramified character of
the center of the Levi subgroup M(FJ. Hence we may assume that tr%J/;) = o
for all admissible %^. We choose F with completion F^,, supercuspidal f^ and /"
supported on the elliptic regular set, approximate x by a global elliptic regular y as
in (18)3 conclude that 2^(jQ 0(^,/) is o by the assumption, and reduce the support of/^
to make this finite sum range over y only. As ^(y,/"7) + o by construction, the
claim follows.

Remark. — Harish-Chandra [H], Theorem 10, shows that if F(A:,/) = o for all
regular x, then D(/) = o for any invariant distribution D on the space of the
functions /.

ao. Approximation. — Theorem 19 and a standard approximation argument
imply

Proposition. — Let V be a finite set of places containing the archimedean places, u, u'\ u"
and those v with \ n [„ < i. For each v outside V fix an unramified representation ̂  and a cor-
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responding ̂  {see (i i)). For ̂ A y i/z V choose matching f^,fy, so that the conditions at u, u\ u"
of Corollary 18 are held. Then

(20.0) S n tr^(/,) = S n tr^(^).
TC oev 7^ vev

jE^A J^m ranges over all discrete series %, n whose components at u, u' are elliptic^ and at any v out-
side V are the given ̂  and TT^.

We use the Proposition with a cuspidal n and a set V as above so that TT^, TC^ are
elliptic, and TC^, is unramified. The rigidity (strong multiplicity one) theorem for
cusp forms ofG(A) [JS] implies that TT is the unique entry on the left if we choose {7^}
to be the components outside V of TC. At each archimedean place v denote by %„ the
representation corresponding to T^. Using the arguments of the proof of Theorem 19
at the archimedean places, we obtain the statement of the Proposition with V replaced
by its subset of finite places.

Denote by?c^ the representation corresponding to TT^, by Theorem 16. Since TT^,
is unramified and non degenerate, %^ is equal to an irreducible representation induced
from the Borel subgroup ([Z], Theorem 9.7). The argument of the proof of Theorem 19,
which uses regular functions and linear independence of characters, as permitted by
Harish-Chandra's finiteness theorem and fixing the components at infinity, implies
that the Proposition holds with the set V replaced by V-{^"}, provided the sum on the
right ranges over ?c whose component at u" is %^. Then the identity takes the form

(20.1) ntr^/J =2m({^})ntr%^);

products over v in a finite set V, and sum over equivalence classes of ({?^}) with positive
integral multiplicities m.

Thus from now on we use (20. i) with a finite set V of finite places, including u, u'
but not u"\ this identity is valid for arbitrary matching functions whose components
at u, u' satisfy the requirements of Corollary 18. We use it in the case where n is cus-
pidal, and the components at u, u' of some ̂  which appears on the right of (20. i) are
supercuspidal. We construct such n in the Lemma below. Fix a place w in V. For

each ̂  we write ^(%J = S II tr ̂ {fv) {v in V? v ^ w). The sum ranges over the % of
/>^ f>^

the Proposition whose component at w is %„,. Let^, f^ be matrix coefficients of the
/^/

supercuspidal components at u, u' of%', so that tr?^,(^) == i for v = u, u\ For each
/^/

v =t= w, u, u' in V choose a large j, and let^y be the characteristic function 9^ of (10).
r*^

Then tr^(^,) is a non-negative integer (see (10)), and each ^(%^) is a non-negative
integer. Also we put c = II tr ̂ {fy) {v in V, v =(= w). Then for all matching fvj,fw
we obtain

(20.2) c tr TrJ/J == 2^(%J tr^(^).
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To construct TT as in the discussion above, let F be a global field; w, u, u' distinct
finite places o fF ;Va finite set of finite places, including u, u ' , excluding w, of cardinality
at least three. As usual (see (10)) we denote by n (resp. %) representations ofG (resp. G)
with central character <o (resp. S) (see (6)).

Lemma. — Suppose we have (i) a square'integrable representation TC^,; (2) supercuspidal
representations ̂  at v = u, u! \ (3) supercuspidal representations T^ at all v + u, u' in V.
Then there exist cuspidal representations TC, TT" of G, such that: (i) the component at w ofn is as
in (i) and that O/TC" is unramified; (ii) their components at all finite places v 4= w outside V are
unramified \ (iii) at any v =)= u, u' in V the components of n and TC" are as in (3); (iv) at
v == u, u' their components n^ = ̂  satisfy tr T^(/) 4= o, where / matches {see (8)) a matrix

coefficient f^ of the ^ of (2).

proof. — Let G' be the multiplicative group of a central division algebra over F
of rank r which is anisotropic at u, u ' , w, and unramified outside V u { w}. For v = u, u'
let ̂  be a representation ofG'(FJ with tr <(/') + o, where/' is a function on G'(FJ
matching (see [DKV] or [F"]) a function/, as specified in (iv). For v =t= u, u' in V u{w},
denote by ̂  a representation ofG'(FJ corresponding (see [DKV] or [F"]) to TC^ Let/'
be a function on G'(A) such that: (a) its component/' at v in V u {w} is a matrix coeffi-
cient of <; (b) at all other finite places we take /' =/° (see (n)) ; (c) /'(i) 4= o;
(d) for Y in PG'(F) and x in PG'(F)\PG'(A) we have f\x-^x) = o unless y = i.
Here we put PG' for G'/Z.

It is clear that there exists an/' which satisfies (d) in addition to (a), (b), (c).
Indeed, the finiteness argument in the proof of Theorem 18 implies that there are only
finitely many conjugacy classes y with f\x~1 ̂ x) =t= o. To obtain (d) we take the archi-
medean components of/' to be supported on a sufficiently small set.

Let r be the right representation on the space L^G') of smooth functions on
G'(F)\G'(A) which transform under Z (A) according to co. The kernel of the ope-
rator r(/') is given by S/'(A:-1 yj/) (y in PG'(F)). Its trace is obtained on integrating
the kernel over the diagonal x =y in PG'(F)\PG'(A). By (d), the trace of r(/')
is the product of/'(i) (4= o by (c)) and the volume of PG'(F)\PG'(A). It is non-zero.
Hence there exists an automorphic representation TT' of G' which is unramified by (b)
outside Vu{^}. Denote by TC the representation of G corresponding (by [DKV]
or [F"]) to TT'. It is cuspidal, as it has supercuspidal components (by (a)), and has the
properties required by the lemma.

To produce TT" we repeat the above steps but with G' which splits at w, and/'
whose component at w is/p°. The TT" which is so obtained is cuspidal, hence non-
degenerate. Its component 7 '̂ at w is unramified, and non-degenerate, hence equal
(by [Z], Theorem 9.7) to a representation induced from a minimal parabolic subgroup.
It is clearly a lift of some such induced representation %y,'. The lemma follows.
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m. — APPLICATIONS

2i» Square-integrable. — For brevity we now omit the index w in (20.2).
Our aim is to show that the % in (20.2) are square-integrable if TT is. So
we consider a small compact open congruence subgroup G* of K* = K*(K), with
C* = (G* n N) (C* n M) (G* n N) for any standard parabolic P = MN. Here N
denotes the unipotent radical of the opposite parabolic P == MN. We take t in A so
that P = P(* (see (14)) is standard. It suffices to consider only t in the center of M.
Then r(e n M) r-1 is in G* n M, r(G* n N) r-1 in C n N, and r-^C? n N) r
is in G* n N. Namely Lemma 2. i of [C] holds with t* replacing g and C* replacing K^.

/^/ /^/ /^/
Let f == fy, be the function with the properties of (6), supported on ZC* t* C*, with the
value Sp^^/jerC/C'nZ| on C'r C'. Let ^ == ̂  be the function on M
supported on Z^C* n jM) whose value on ^(G* n M) is | C* n M/C' n 2 |-1, and
which transforms under Z as usual. Put ̂  for ^ when t == i.

Lemma. — (i) We have tr%(/) == tr^?)- (n) The orbital integral ¥(x,f) off
at the regular element x is o unless x is conjugate to a member of M. For a regular x in M we

have F(;c,/) == S ,̂ F^-{wxw~1^ ̂ ); ̂  sum ranges over the quotient W(M, G) of the normalizer
of M. in G by M.

Proof. — (i) follows as in [C], Lemma 5.1, which deals with the case n = i.
For (ii) we note that by the characterization (8) of orbital integrals, there exists a func-
tion/' on 6 which satisfies the assertion of (ii). But then it follows from Weyl integration
formula, and Theorem 14, that tr%(/') == tr?^?) for any %. Hence tr%(/) = tr%(/')
for all %, and F(.y,/') == F(^,/) for all regular x in G by Theorem 15. i, as required.

In the proof of the following Proposition we use Harish-Ghandra's criterion for
square-integrability ([G'], Theorem 4.4.6; [S], Theorem 4.4.4). To state it, we
define a central exponent of n with respect to M to be the central character of an irredu-
cible constituent of TT^ . We say that the central exponent <o of n with respect to M^
(6 in A, as in (14)) decays if | (o(a) [ < i for every a in A@ with |a(fl) | ^ i for all a
in A — 6, with | a(^) | < i for some a. The criterion asserts that TT is discrete series
if and only if its central character is unitary, and its central exponents with respect to
any proper Levi subgroup all decay.
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Proposition. — Suppose n in (20.2) is square-integrable. Then so are all of the %.

Proof. — Fix an open compact C" as above, and a proper standard parabolic P.
Take any r in the center ofM with P^ == P. Since/"(of the Lemma) is (^-invariant,
the sum in (20.2) is finite (by the theorem of Harish-Ghandra [BJ], mentioned in (19)
and (20)), independently of F.

We have tr%(/) == tr?^?) by (i) of the Lemma. Ifpis an irreducible cons-
tituent of%N? denote its character by ̂  and its central character by Sp. Then

trpW == J^(r x) ̂ (r x) dx = S,(r) trp^),

where tr p^i) is the (non-negative integral) multiplicity of the trivial representation
of C* n M in p".

The function ^ defined prior to the Lemma is supported on a neighborhood of
the identity in M, multiplied by the central element t*. Proposition 10 asserts that there
exists a function 9 on M matching ^. The characterization (8) of orbital integrals
asserts that there exists/on G which matches cp in the sense of (ii) in the above Lemma.
Hence there exists/matching/, so that (20.2) can be applied. By the Weyl integration
formula and Theorem 14 we have

tr TC(/) = STJ (A^(TT)) M F(^,/) dx = STJ (A^(7r)) {x) F( ,̂/) dx

= ST,MJ(AMX^N))WF(^y)^ .

As t lies in the center of M, changing variables x -> tx we obtain

Spin., <OpW 2j(A^ ^c(p)) {x) F(^, ̂ ) dx == Sp cop(^) tr p(^),

where 9^ matches ̂  as in (10). Note that tr p(<p^) is a complex numbef independent
of t.

We now conclude that the identity (20.2) implies the identity
5;^^^)=2^(p)^(r)

for every t in the center of M with P( = P. On the left the sum is over the irreducible
constituents p in TT^, and the c^ are complex numbers. On the right the 'p are the irre-
ducible constituents of the ̂  for the finitely many % which occur. The coefficients % ( p )
are all positive integers, hence there are no cancellations on the right. Since t is suffi-
ciently arbitrary, and cx)p all decay, linear independence of characters implies that the S~
all decay. Harish-Ghandra's criterion then implies that all % with a C^-fixed vector,
which appear in (20.2), are square-integrable. However, we can take G* to be as small
as we like. Hence every % in (20.2) is square-integrable, as required.

22. Asymptotics. — As usual, n and % are admissible and irreducible. Denote
by [W(%)] the dimension of the space ofWhittaker vectors (see [BZ], [KP] (p. 74) for
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a definition) of% with respect to a fixed non-trivial additive character ^. This [W(%)]
is independent of ^3 and [W(7r)] ^ i. The representation % is called non-degenerate
if [W(%)] + o. The functions 9(p,7'), ^ and 9^ are defined in (10). Put

A(%) = lim^, tr%(9;) ^r(r-lV2, A^) = lim^, tr^.) q-^-W.

Theorem. — a) TA^ limits A{n) and A(%) m'ĵ  and are finite, b) TA?^ m^ c>o
so that A(%) = ̂ [W(%)]; ^/a^ 6: == i.

Proo/'. — Denote the character of n by ^. We have

tr7r(9(p,j)) =J^xW(9(pJ))W ̂  ̂ ^(P^OP^J))^) -̂

For a sufficiently large j, if u lies in U^ (see (10)), Proposition 13 implies that

X(P") ==S^,7r) ̂ ).

The sum ranges over the nilpotent orbits in the Lie algebra Lie M(p) of the centralizer M(p)
of p in G. Hence it remains to study ^(9(1, j)), and ^((pj) for (b), for all nilpotent
orbits S m Lie G.

Recall that the dimension of the nilpotent orbit S in Lie M(p) is even. Put
dim^ = 2 d . If ^(p) is the regular nilpotent orbit in Lie M(p), then its dimension is
maximal, and equal to 2w(p). In the notations of (10)3 m(p) = (S, rf — r)/2. Note
that r(p) + w(p) == r(r — i)/2. In particular, w(i) == r(r — i)/2 is greater than w(p)
if p + i.

Recall that the Fourier transform ^(/) == v^(/) is defined ([Ho]) for a function/
supported on ZK by

Js La ̂ I + x) ^(tr XY) </Y ̂ (x)-
Since (10) the function <p(i,j) is (for simplicity of notation we ignore the center) the
quotient by the volume |K | of the characteristic function of Uj == i + K,? and K^ is
the compact open subgroup of X in Lie G with | X | ^ q~3, we have that

wij»== wSJ^^dvd^
= ̂  | Ko|-1 f f , +(tr XY) dY rfv,(X) = ̂  ̂ (9(1, o)).•/ s j KQ

Hence the contribution of any non-regular nilpotent orbit ^ disappears in the limit,
and (a) follows. To prove (b) we note that ^(<pp == ^(9(1 J)) (large j), and recall
from [KP], p. 99, that c^{i), %) = [W(%)]. (b) follows once we establish the identity
^(i)(9(1.0)) = I-

Thus we take p = i, so that M(p) = G. Each nilpotent orbit S; in Lie G deter-
mines a standard parabolic subgroup P(^) of G. Denote by Tr(^) the representation
of G unitarily induced from the trivial representation of P(^). By [Ho], Lemma 5,
we have trn(^){f) = ^(/). But tr?^) (9(1, o)) is equal to i, since Tr(^) is unra-
mified and has a unique vector fixed by K = G(R). The theorem follows.
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23. Proposition. — If % is square-integrable then it has a Whittaker vector.

Proof. — Let P C G be the stabilizer of a vector in Fr (as in [BZ]). Let N denote
the maximal unipotent subgroup of G in Py. We may assume that N is the group of
unipotent upper triangular matrices. Denote by ^: F -> Cx a non-trivial additive

r-l
character ofF, and by ^ : N -> C>< the character <p(n) = ^ ( S n, ̂ i) (n == (^.) inN).

»== i '
The map p : G -> G splits over N. Hence we consider N as a subgroup of G. We
have a natural isomorphism N == ^ X N, where N ==^~1(N). Let ^ : N -> Cx

be the character defined by ^{^n) == S(^) ^(n); as usual, S is the central character
of% (fixed in (6)). Put P == p~l(P). Let L be the space of complex valued func-
tions 9 on P with <p(%^) == ^(^) <p(j?) {V in N, p in P), with | <p | in L^NN^P). Denote,
by a the representation of P on L by right translation. It follows from Mackey's theory
of induced representations that <r is irreducible. The number [W(%)] of Whittaker
vectors of % is determined by the restriction of % to P. By Frobenius reciprocity [BZ]
we have that [W(%)] is equal to the dimension ofHom(% | P, a). Indeed, the Kirillov
model can be realized in L^NN^P); see [B], Theorem 6.2, p. 78.

Let L' be the space of complex-valued absolutely square-integrable (with respect
to a right invariant measure) functions 9 on ]P with <p(^) = S(^) ^ { p ) (^ in [A^, P'm ?).
Denote by p the representation of P on L' by right translations.

Lemma. — p is a multiple of a.

Proof. — Induction on r; hence we denote P by P,. in the course of the
proof. Let U be the unipotent radical of Py, and G^_i its Levi component. Put
U ^p-1^) (^^ X U), and G^_i = ̂ (Gr-i)- Denote by U the dual group
(of characters) of U. For each X in U, we define the character ^ ofU by ̂ (^) = S(^) \{u).
Denote by P^ the stabilizer of X in Py. It contains U, and P^ is conjugate to the sub-
group Py_i U of Py for any non-trivial X. Identify P^U with Py_i , and denote by Oy_^
and p^_^ the corresponding representations of Py_r Extend X to a character on P^
by \{p) = i fo r^ inP ,_ i .

Let (p\ W^) be the representation I( X; P,., U) of Py induced from the character X
of U. Since p = (.̂  d\ it suffices to show that p^ is a multiple of (jy for all non-

trivial X. But p^ is induced from the representation I(X; P\ U) ^ X ® py_ i of
P^ = UP^_i. The induction assumption asserts that py_ i is a multiple of (5r-i-
Hence p^ is a multiple of I(X® (7y_i; P^, P^) ^ <?,., as required.

Let T be the right representation of G on the space of absolutely square-integrable
complex valued functions <p on G with <p(2^) = S(y <p(^).

Corollary. — The restriction of T ^0 P is a multiple of a.
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Proof, — The restriction of r to P is a multiple of p.

To complete the proof of the Proposition, it remains to note that n is a direct
summand of T, for then the Corollary asserts that the restriction of % to P is a multiple
of o-, as required.

Proposition (23.1). — Suppose that on the left of (20. i) there appears a cuspidal TT, and
for each v in V the component 7^ is square-integrable. Then the sum over % is finite.

Proof. — We use (20.1) with the functions 9^ and 9^ of (10) at all v =)= u, u'
in V, multiplied by a suitable power ofq3 as specified in (22). For a sufficiently larger
the left side is bounded by a fixed positive number, by the inequality (a) of Theorem 22.
On the right all contributions are non-negative, as explained in (10). Each n^ is square-
integrable by Proposition 21. Each non-zero entry is bounded from below by a fixed
positive number, for a sufficiently large j, by Proposition 23 and the equality (b) of
Theorem 22. The proposition follows.

24. Measures. — The following is (an alternative exposition to) a computation
of [KP']. Our aim is to choose Haar measures dx, dx so that when the characters /, ^
below (which are independent of dx, dx) are related in a certain way, then we have the
relation trn(f) == tr%(/) (which does depend on dx, dx) for all matching/,/. This
amounts to choosing the scalar c' in the Corollary below.

Lemma. — Suppose TT, % with characters ,̂ ̂  satisfy the identity tr TC(/) = tr%(/) for
<^>/ < /̂

all /, / with F(.r,/) == F(A"*,/). Then for each torus T there is a constant b(T) with

(24.1) A^*) = &(T) S .̂,,̂  Ax(<) W.

The sum ranges over all t in T/Z such that there is z in Z/Z* with t* z = x*; here Z* == { z*; z in Z }.

Proof.

JSr^^ dx = ^[WCT)]-! J^A^f) F(fJ) at,

is equal to

J^XW/W ̂  = S,r[W(T)]-iJ^Ax(<) F(<V) A.

Recall that if t lies in T but not in T* Z, then F(^,/) vanishes by Proposition 3. The
lemma follows.

Lemma. — We have [̂  : F^] = n2/!^ ^ ̂  : R^] == »/|»|.

Proof. — This is [KP], Lemma 0.3.2.
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Recall (2) that p(K) = K, but p{Z) == T is the subgroup Fxn/d of Z ^ F^
In particular Z/Z' has order {n|d)2|\n|d\.

Let the measures Ac, <£: on G/Z, G/Z be related by c ' \ KZ/Z [^ = | KZ/Z [^.
Here | S [^ denotes the volume of a set S with respect to a measure co.

Lemma. — 6(T) z'j- independent ofT. It is equal to b=c'n\d\|d\nr\.

Proof. — Consider the natural epimorphism e : G/Z -> G/Z. We claim that the/v
pullback e*{dx) of dx satisfies c" dx = e*{dx), where c" = c ' nfd \n\d\. Indeed, since
e restricts to an epimorphism KZ'/Z' -> KZ/Z, with kernel K n Z/Z' n K ^ R^R^
of cardinality [R" : R^] = n \d\\d \n\, we have

| KZ/Z |,, == (n\d \ nld\) \ KZ/Z |,, = ." | KZ/Z |£.

The Jacobian of the map x -> x\ G/Z-^ G/Z is |7^r- l |(A(^)/A(^))2. Hence
the pullback via * of dx is A-^A^/A^)]2 rf^ where b == <:" l^-'].^/ /^

For any/supported on the regular set, define f{x) = (A/) (^^/^(.v). Then

J^XW/W dx = J^xW[(A7) (^)/AM] <^

= b f^ (A^) W[7(^)/A(^)] ^[A(A;»)/AWP ̂

= A Jg^ A^)-1^,,,,^ ,.,_,)(AX) W S(^)]7W ̂ .

Since f is arbitrary, the lemma follows.

Lemma. — b is equal to nfd \nr|d\lf2.

Proof. — The required character relation (24. i) holds (by [F], p. 141) in the case
of a representation induced from a Borel subgroup; Here T is the split torus A, and
the sum over t consists of nr~l equal terms. Hence bnr~l == [A: A()] = r^fd \nr|d\lf2,
where AQ is a maximal abelian subgroup of X, and the lemma follows.

Corollary. — If /, ^ are related by (24.1) andf^fare any matching functions, then we
f^/ /^/

have trn{f) == tr%(y) provided that the measures dx, dx are related by c' = \nr|d^l2.
f>^

From now on we choose dx, dx to be so related.
Let X(G)g be the disjoint union of a set of representatives T for the conjugacy

/̂ /K/ f^/ ^,

classes of elliptic tori in G. Fix a Haar measure dt on T/Z. Then

^=S([W(T)] | T/Z |)-1 A2 dt

defines a measure on X(G)JZ. Define the inner product

<^ T>=Sxw.r^{x) ™ dx ̂  ̂ ([WCT)] IT/ZD-^A^) ATO dt
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on the space of integrable functions ^, ^' on X(G)g which transform on Z by S. The
analogous definition applies to conjugacy invariant functions /, %' on G, which transform
on Z by co.

Proposition. — Let ^, ^' and ^/, ^' A^ ^flirj of characters related by (24.1). Then
<%r>=<%, x>.

Proo/'. — If T is elliptic then it is isomorphic to the multiplicative group E x of a
field extension E of degree r of F. The map x -> x* from T/Z to T/Z is injective.
Indeed if x^ = ̂  z {x, x ' in E^ z in F^), then {x'fxY lies in F^ but (r, rf) == i
hence A:'/^ lies in ' F X . In particular, E x n n Fxn/d == Fxn. Hence ^ is supported on
T* Z and A^(^*) = & A^(.v), as a function on T. The corresponding term in < , > is

|T/Z|-iJ^A^)A^)A

= [T/Z: (T/Z^IT/ZI-IJ^A^^AXWA.

Here dt is the pullback of dt with respect to the map x -> .y*. But

[(T/Z) : (T/Z)*] == [̂  : E^F^ == [EX : E^/pE^F^: Exn]

= n2\n\sl|[Fxn/d: Fxn] = n2 \nr\-l|d2 \d\-1 = &2,
as asserted.

25. Proposition, — Suppose that on the left of (20.0) there appears a single cuspidal n,
and for each v in V the component T^ is square-integrable. Then there is a single % on the right
side of (20. i).

Proof. — For any v in V we obtain from (20. i) (single term on the left) the identity
tr7r,(/J =S^)tr^(^),

on fixing the component ofy at the places of V other than y. The sum is finite by Pro-
position 23. i. It is non-empty since the left side is non-zero. For each % which appears
on the right of (20. i), the product II^(^) (v inV) is equal to a positive integer by linear
independence of (finitely many) characters. Since the sum is finite, the distributions tr %^

/^/
are represented by functions which are smooth on the regular set, and fy is an arbitrary
function on the regular set. We deduce the character relation

b A^) = 2^) A^*)

for all x in G with elliptic regular x* in G; b is as in (24).
The orthonormality relations for square-integrable representations of [K']y

Theorem K, imply that for any discrete series representations %, %' we have that <(^^c '^>
is i if%, %' are equivalent, and o otherwise. For brevity we put '/ = x(^)? ^C' = x(^)>
Z == X(^)- Th^
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i ^ < / > / > = <^(^) 3c> ^(^) ?>
X^ //^' \ ~l ^ 1 \ / r^ ^/1 \ V I /^/ \ I <»

=== ̂  ̂ )^(0 <X. X > = S|C(TCJ[2.
TTy, Tip %y

Hence |^(^)|^ i for all local ?^ in (20.1). But nc(%J is integral, hence |^(%J| = i
for all %„ and the proposition follows.

25.1. Alternative proof. — The proof of Proposition 25 given above is, in some
sense, elementary. It is based on the existence of Whittaker models (23), and their
relations with characters (22) by means of the matching result of (10), near the identity.
We shall now present a simpler proof, which is based on the results of [K/] about the
existence and properties of pseudo-coefficients. It is independent of the work of (22),
(23). When combined with the construction of Lemma 26 it can be made independent
of (10) too. The <;(%) of (21.1) become the multiplicities of cuspidal representations
with a certain local behaviour.

We use the following Theorem K of [K']. Recall that < .,. > is defined in (24),
and <S>" in (6). We denote the character of% (resp. %') by ^ (resp. ^').

r>^

Theorem. — Given a square-integrable representation %, there exists a function f such that
/v /-^ />^

<S>^x,f) == o for any regular non-elliptic x in G, and ^"[x^f) == ̂ {x) for any regular elliptic x
in G. Moreover, ^^') = i, but <^^ ' ) == o for all tempered irreducible^' inequivalent/^/ /%>/
to %. Hence tr%(y) = i, and tr%'(y) == o for such %'.

/^f
Such an f is called a pseudo-coefficient of %.

PfoofofProposition 25. — The left side of (20. i) consists of a single term with square-
integrable components. The right side contains at least one term, and all %„ are square-
integrable. Choose a %' which appears, and let^ be a pseudo-coefficient of?^. for all v.<^/
With this choice ofy, the right side of (20. i) becomes a sum of I's. By the Theorem

<" /̂
we have ^'(Vy) == ̂  on tlle elliptic regular set (and o on the regular non-elliptic set).
Theorem 13 implies that there exists a matching function fy for all y. Then
tv^{fv) = < X v ? X ^ > ? where /^ is the function on the elliptic set of G defined by
b A^(A?) == A^(;v*). The Schwarz lemma implies that

l<Xt^>12 ^ < X f ? X . > <X^Z.> = <^^> == I;

indeed, < / , ^ c> = i and <^c,^c> = i for square-integrable TT^ and %„. Hence the
left side of (20. i) is at most one, and the right side consists of a single term, as required.

Remark. — Since we have the equality | < ̂ , /^ > | = i, the Schwarz lemma implies
that there exists a complex c with | c \ = i and ^ = c^ on the elliptic regular set.

26. Correspondence. — Let F be a local non-archimedean field. Recall (10)
that by TC, % we mean representations ofG, G with central characters co, S related (in (6))
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by co(^) = S^^")). In particular (i) co is trivial on the group of nth roots of unity
in F, (2) % is genuine, namely the restriction of its central character to ^ is injective.

Definition. — We say that % corresponds, or lifts, to TC, if they satisfy the character
relation

(26.1) A^(%)(0 = ^^T/z;^^,.mZ}S(^) A^(7r)(^)

& /^ yw

yor <z// ^ m G with regular x* in , or equivalently tr n{f) •== tr%(y) for all matching f,f.
Here, T is the projection to G of the centralizer in G of x*.

Remark. — Recall that (A/(%)) [ y ) == o \Sy is regular in G but p { y ) is not of the
form ?('?) X71 for ? in Z, x in G.

Theorem. — The correspondence defines a bijection from the set of square-integrable represen-
tations % of G to the set of square-integrable representations n of G.

Proof. — Let F be a totally imaginary global field whose completion at w is our
local field. Given a square-integrable TT^, we use Lemma 20 to construct TT and TT".
Proposition 25 and (20.1) imply that we obtain two equalities IIa^, = ]"[?„, where/^
a^ = tr ^(Yy), and (By == tr%y(^). One ranges over V, the other over V u { w } .
Hence a ,̂ == (B^,, and %y, is as required.

Remark. — Had we argued that ^ = i (v =(= w) at a pseudo-coefficient f^, we
could as in Remark (25. i) conclude only that | o ,̂ | == i, and that COL^, == (3 ,̂ with | c \ = i.

To prove the opposite direction, namely that given a (local) % there exists a n as
in the theorem, we can use Lemma 20, with ( i) replaced by: n^ is a square-integrable

^w

with tr ̂ {fw) 4= o, where f^ is a function matching a pseudo-coefficient j^, of the
given ^.

Remark. — Alternatively, we define a non-zero conjugacy class function

XW-^-W))^) A(^)/A(^)

on the elliptic regular set of G. By the completeness of characters of representations
of the anisotropic form of G with respect to the inner form < , >, and the correspon-
dence of [DKV] (see [F"]), there exists a square-integrable n with <%^, ^> 4= o. But TT
corresponds to some %' as above, hence ^'^^E^^ o, and %' ^ % by the ortho-
gonality relations for characters of square-integrable representations.

The theorem follows, since the uniqueness of n or % in the theorem is clear from
linear independence of characters.

Corollary. — If n is supercuspidal then so is %.

This is obvious (14). But if% is supercuspidal the corresponding discrete series TT
need not be supercuspidal. As an example we take the case of r = 2 and even n,
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and consider the special representation a in the composition series of the induced
representation I(v | [1/2, v | |-1/2), where v(y = - i for some i: in ^. Since

(o fA ) === (o A ) 11; ̂ ^^ ̂ ^ tlle ̂ ^ !si^e °^ (2() • J ) vanishes outside the maximal
compact subgroup (modulo Z) of each torus; hence % is supercuspidal (see (14)) which
corresponds to a discrete series non-supercuspidal TI:(= o).

More generally, suppose that (i) r === mr', (2) p is a square-integrable GL(r', F)-
module, (3) the order of the restriction p of the central character of p to ̂  is divisible
byw. Let M = II, M,, M, = GL(r')(i ^ i ̂  w), put v(^) === |detA:|. Write I(p(s))
for the G-module induced from the M-module which is the product of the M^-modules
p^((m+i)/2)-^ ry^ I(p(s)) has a unique square-integrable (called generalized Steinberg)
subrepresentation cr(p(s)). It is clear from (26.1), Theorem 14 and the Geometric
Lemma (2.12) of [BZ], that the corresponding ? is supercuspidal. Moreover, I(p(s))
has a unique quotient (non-tempered) representation 7r(p(s)), which is one-dimensional
when p is one-dimensional (namely r' = i), and the sum on the right of (26.1) for
7r(p(s)) is equal to the sum for (r(p(s)) perhaps up to a sign (which depends only on m
and r').

26.2. Induction. — By a parabolic (resp. Levi) subgroup P (resp. M) of 6 we
mean the pullback via p : 6 -> G of such a subgroup P (resp. M) of G.

We say that the M-module ^ lifts to an M-module p if (26. i) holds (for A: in M).
Suppose that M = M^ x ... X M^ with M, == GL(r,). Thus we identify M, with
a subgroup of M. Each m in M can be written (not uniquely) in the form m^ . . . %^
(%in M,=^-i(M,)).

Let B be a maximal subgroup ofFX with the property that (A, b ' ) = i for all b, b'
in Fx. It contains F^. Let M® be the group ofm, in M, with det p^) in B, and M"
the group o f w i n M with %, in M" for all i. Then m, m\ == m\ m, for any %, m' in M^
and i+J, by (3). Let p^ be an irreducible ZM^-module which transforms under Z
by £. Its restriction 'p/' to ZM® is the sum of the conjugates p/^ of some irreducible 'p/
by m in M^/ZM?. They are all inequivalent unless M, == GL(i). Let p^ = ®'p/
be their tensor product. It is irreducible. It follows from (3) that for any m
in M — M® Z (we may assume that m is diagonal), p'' is not equivalent to its conjugate ̂ fm

by m. Hence the M-module p' induced from the M3 Z-module p'' is irreducible. It is
clearly independent of the choice of the irreducible p^. Hence we write ® p^ for p'.
The character of^is supported on M^ Z, where ST* is the group ofwin M with det p(m^
in Fxn for all i. It is a scalar multiple of the product of the characters ofp^, the scalar
being independent of the ^ (it depends on the M,). Write % = = I ( p ' ) = = I ( 0 p ^ ) for
the G-module unitarily induced from y. A standard computation of a character of an
induced representation (see [D]), easily adapted to the context of covering groups
(see [F], p. 141, where, as noted in (n), lines 13, 14, — 8, — 7, — 3 of page 141, and 2,
6, 7 of 142, should be multiplied by t == [S : -So] (== ̂ r-l of (24))), asserts
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Proposition. — If the irreducible ZM^-modules p^ lift to the ZM^-modules p,, then U®^)
lifts to 1(0 p,).

Proo/l — As is clear from the construction of ®p^, we have that I(p') lifts to I(p)
C p = 0 p , , p = = 0p»), at least up to a positive multiple which does not depend on p
and p". Since the proposition holds at least in the case of M being the diagonal subgroup A,
it follows in general on applying induction in stages.

27. Tempered. — The bijection (26) of the set of discrete series % and the set
of discrete series n (with central character trivial on ?.„), yields new results about the
representations of the group G.

Lemma. — Suppose that the irreducible tempered representation % is elliptic. Then % is
square-integrable.

Proof. — Suppose the character '/of?cis non-zero at the elliptic regular element^*.
Let f be the characteristic function of a small neighborhood ofy (modulo Z), where ^

/^/ t^/
is constant. Then <^ ^"(Y)) 4= o. Since f is supported on the regular set, there
is a matching/, with F(;c,/) = F(^,/). As follows from the completeness of characters
on the anisotropic form of G, and the correspondence of [DKV] (see [F"]), there are
finitely many discrete series T^ with characters ^, and complex numbers <:,, so that
<I)"(A",/) = S^^(x) on the elliptic regular set. The correspondence of (26) implies
that ^"(A:*,/) == S^^(.y*), where ^ are the characters of the corresponding discrete
series representations %, of G. Hence <^, 0"(/)> = S^^<'%, ^>. Since this is
non-zero, we have < % 5 ^ ) + ° ^or ^me i. But the orthogonality relations of
Theorem 25.1 imply that % is equivalent to the discrete series ^, as required.

Proposition. — Let V be a square-integrable representation of a Levi subgroup M. Then
the (unitarily) induced representation %" = I(5?) is irreducible.

In particular, the same conclusion holds when 3' is tempered.

Proof. — (i) We shall first show that %" is a multiple of an irreducible represen-
tation. By induction, we assume the assertion for all proper Levi subgroups of G.
Suppose that %" contains the irreducible representation %'.

Suppose that %' does not lie in the space Ri(G) of [K7], which is spanned over C
by the properly induced representations. Then by Theorem D of [K/], %' is elliptic.
Since it is also tempered, the Lemma implies that %' is square-integrable. The unique-
ness Theorem (2.10) of [BW] implies that %' == S', M = G and so %' == %", as required.

Suppose that %' does lie in Rj(G). Then by Proposition i . i of [K7], there are
finitely many proper Levi subgroup L^, irreducible tempered L^-modules p^, and complex
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numbers a,, so that in the Grothendieck group R(G) we have %' = S, a, I (p.; G, 1,).
Since p, is tempered, there is a unique (up to conjugacy) pair (5,., R,), where R, is a
Levi subgroup of Tl, and 5, is a square-integrable R,-module, such that p, is a direct
summand of 1(5',; tl,, El,). Since T., 4= G, the induction assumption implies that there is
a positive integer (3,- \ such that 1(5,; L,, R,) = ?,-x y,. ^HCTCC TC' = S, a, (B, 1(5,; G, £,).
The uniqueness of 5 implies that either %" = 1(5,; G, £,.), or %" and 1(5,) are not
relatives (in the terminology of [K/]). Hence %' = a%", where a is the sum of a, p,
over the i where %" = 1(5,), as required.

(2) It remains to show that 1(5) is in fact irreducible. For that we use the work
of [S] which is stated for a connected reductive algebraic group, but whose proofs hold
for the metaplectic group as well. First we consider the case where M == p(M) is
of rank one, thus M = M' X M", with M' = GL(fl), M" == GL(&). Then [S],
Theorem 2.5.8 (p. 99), implies that 1(5) is irreducible unless a == b, in which case
its composition series has length bounded by the order of the Weyl group W(A) of [S],
p. 100, which is two. But if 1(5) is the direct sum ofk copies of an irreducible, its com-
muting algebra has dimension k2, which is at least four, unless k = i.

(3) Next we consider the general case. We shall express the M-module 5 as
a product of square-integrables in the sense of (26.2). We may, upon rear-
ranging the factors, assume that 5 = (5^ x . . . X 5^) X (5g X ... X 03) X ...,
where each square-integrable M.-module 5, (M, = GL(r,)) occurs t, times, and
5,, 5,. are inequivalent if i + j. Then r = = S , r , ^ . Put t^ == o. The center of
M == (Mi X ... X Mi) x (Ma x . . . ) X .. . is A = A^ X A^ X .... Let W(A)
be the product S, X S, X ... of the symmetric groups S^. on ^ letters. The Harish-
Chandra commuting algebra theorem ([S], §5.5.3) asserts that the commuting algebra
of 1(5) is spanned by the intertwining operators R(w) (w in W(A)), subject to the rela-
tions R(i) == i, R(w) R(w') == R(ww'). Hence it is generated by the R(^(t)), where s(i)
is a reflection of the form (i, i + i)(^-i< i ̂  ^)- However, the operator R(^'))
is induced (recall the induction is a functor) from the intertwining operator of the repre-
sentation induced from 5 on M (M == M[ X . . . X Mj to G, == p~~1 G,, where G,
is Mi x ... X M,'_i x X, x M,'̂  X ... X M, and X, == GL(2r,) if M; = GL(^.).
It follows from the rank one case considered in (2) that R(^(i)) is a scalar. Hence the
commuting algebra of 1(5) consists of scalars, which proves that 1(5) is irreducible,
as required.

Remark. — (i) We do not discuss here the question of normalization of intertwining
operators; see [KP], Theorem 1.2.6, for a special case.

(2) It is possible to complete the proof of irreducibility above, on further analyzing
the proof of Chapter II of[S], without using the commuting algebra theorem of Chapter V,
but we do not do it here.
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27.1. Irreducibility. — Let p^ be supercuspidal M^-modules, where

M,=p{M,)=GL{r,), £r ,=r;
i«l

v is the character v(^) = \detp{y)\l/n of M,; j, are real numbers; T= Up^s)) is the
G-module obtained by induction from the M = p~ l(^^ M,)-module II p^ v8*' constructed

i

in (26.2). If P is a parabolic with Levi M, then the Jacquet module Ip of T with respect
to P consists (by [BZ], (2.12)) of composition factors of the form po(s) = n'p^v80^),
where <y ranges over the symmetric group S^ on m letters.

Definition. — ( i) If% is a subquotient of I, then its support is the set of M-modules po(s)
which are constituents of %p.

(2) % is called multiplicity free if each po(s) occurs in %p at most once.
(3) A reflection in S^ of the form s{i) == (t, i + i) is called admissible if

|^4.i — ^| =t= i or p^i is inequivalent to %. This term depends on p'(s).

Lemma. — (i) If m == 2, fl^rf [^i — ̂ | =f= i or pl.pg ar^ inequivalent, then
I == !('?! Vs1 X pa v82) is irreducible.

(2) 77^ support o/Tiis invariant under the action of the set of admissible reflections.

Proof. — (i) By Proposition 27, which deals with the tempered case s^ == s^, we
may assume that s^ =t= s^, hence that J^> s^ without loss of generality. The Jacquet
module of I with respect to the parabolic of type (r^, r^) has two exponents, one increasing
and one decaying. If I is reducible then its composition series has length two (by [S],
Theorem 2.5.8, since the p, are supercuspidal). One of the constituents has only
decaying exponents, hence it is square-integrable by Harish-Chandra's criterion
([S]? (4 •4- 4); [G'J, (4.4.6)), quoted prior to Proposition 21. But this square-
integrable should lift by Theorem 26 to a square-integrable constituent of the lift
I =^ I(p^1 X p2^2) off. As I is irreducible (by [BZ]), (i) follows.

(2) Suppose that p"(s) lies in the support of %; we have to show that so does
p^(s) == p^ Vs1 x ... X ^4. i v8*^1 X ^ v81 X .... For that we consider the parabolic Cl
of type (r^, ..., ^_i, ^ + ^+i? ^+25 • • • ) ? ^d its standard Levi subgroup L. Since
%p === (%Q);;^p, there is an irreducible L-module ¥ in the composition series of %Q such
that ^Ln? contains p'(s). But part (i) implies that if |^+i — s^\ 4= i or pi ,p»+i are
inequivalent, then ^Lnp contains also p^)(s), and (2) follows.

Proposition. — (i) If^i is multiplicity free, and the set of admissible transpositions acts
transitively on the support of^, then % is irreducible.

(2) Suppose that^' and 5?" are square-integrable, and \s\ < 1/2. Then

T^ys8 x?"v-8)
is irreducible.
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Remark. — (2) here sharpens (i) of the lemma.

Proof. — ( i ) This is clear by (2) of the lemma, and the fact that each subquotient
of% has a non-zero subquotient po(s) in itsjacquet module %p.

(2) By Theorem 26, and the results of [BZ] for G, it follows that there exist super-
cuspidal 'p' and y", which correspond to square-integrable GL(r')- and GL(r")-modules,
where r == m' r' + m" r", such that the support of T consists of all m' + m" tuples (^)
obtained from

(.) (,,.)=((?•, "̂  +,),(?•, "•̂ -3 +,),...,

(y,'^^+>);(?",^-^ --),...)>
V 2 / \ 2 1 1

where we put (p",.?) for p" Vs, on permuting by a in S^+^ which satisfies a{i) < a{j)
if i<j ^. m1 or w'< i<j. We may assume that s =1= o by Proposition 27. This
set is multiplicity free, and the set of admissible transpositions act transitively if (i) ^ ' is
inequivalenttoy'^or.when p" = p"', if (2) m' — m" is even, as 2 \s\ < i; or (3) m' — w"
is odd, unless |j| == 1/4. Hence the proposition follows from part (i), except that we
have to deal with the case where ^ == p'" (and m' — m" is odd, \s\ == 1/4). In this
case we use the notation (*) for vectors in the support, omitting the reference to p'', p'";
namely from now on we deal with the case '?' = '?".

By a segment we mean a vector (c,) of real numbers with ^ — ^+1== i tor all i.
The center of the segment (^, . . . ,<J is (^ — 6-J/2. The vector {c,) is called an
L-vector if it has a partition (b^) into segments b^ = (^) whose centers are nonj
decreasing. The description of tempered representations ofG by [BZ], transferred to G
by Theorem 26 and Proposition 27, together with the classification theorems of [BW],
IV, § 2, asserts that each irreducible 6-module has (at least one) L-vector in its support.
But it is easy to check that the support of our I, namely the set of {a^) obtained from
the (a,) of (*), contains only one L-vector. Hence I is irreducible, as required.

Corollary. — Given any irreducible p", p'", and 3", 3'", s as in (2) of the proposition,
I(p" X ?' Vs X y" v"8 X 'p'") is equal to I(p" X S"' v"5 X ?' ̂  X p"'). In particular, one
of them is unitarizable if and only if so is the other.

proof. -— This follows by induction in stages, since I(S" Vs X " S " v"8) is irreducible,
hence equal to US" v-8 xy 'v 8 ) .

27.2. Unitarity. — Let U be a finite dimensional complex vector space.

Lemma. — Let < •, • >„ be a family of non-degenerate Hermitian forms on U depending
continuously on a parameter s in a connected set. If < •, • >s is positive definite for some value of s,
then it is positive definite for all s.
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Proof. — The set of s where < •, • >^ is positive definite is clearly open and closed.

Proposition. — The G-modules I(s) == I(3v8 x Sv"8) 0/27.1 (2) are unitary.

Remark. — For brevity we say unitary for unitarizable.

Proof. — Let V, be the space of the representation I{s). As a space V, is indepen-
dent of j, but the action of 6 does depend on s. Since Y(^) is irreducible, it
^ equivalent tojts contragredient I ( s ) ' == I(3v-8, Sv8). The choice of an isomorphism
!(.$•) -^ !(.?)' === I(— s), which is unique up to a scalar, determines an Hermitian inner
product < •, • \ on V, which is non-degenerate. We can choose the isomorphism,
or the inner product < • , -\, to vary continuously with s. For each compact open
congruence subgroup C in K ^ K", the isomorphism V, ->V_, determines an iso-
morphism from the space V^ ofG-fixed vectors in V,, to the dual (V^)' = (V,)0 = V°
For each G we obtain a continuous family < •, ->^ of non-degenerate Hermitian inner
products, which varies continuously with the parameter s in — 1/2 < s< 1/2.

Now the tempered I(o) is unitary, being unitarily induced from a unitary repre-
sentation y x 5?. Hence < - , - \ c ^ positive-definite at s = o. Consequently it
is positive-definite for all s (— 1/2 < s < 1/2) and for all C (by the Lemma). As V, is
the union of V^ over all C, we conclude that < • , • > , is positive-definite for all s, hence Y(^)
is unitary, as required.

Corollary. —Let ^ (i ^ i ^ m) be square-integrable, let s, (i ^ i ̂  k\ k ^ m) be
m ic

positive numbers with s,< 1/2, and let S' denote the product II (?, v81 X ^v"81) X Tl ?
^ ^ i=;l ^ j^m+l 3

in the sense of (26.2). Then I = 1(3') is unitary for any choice of a parabolic subgroup or,
equivalently, for any order of the factors'S, v81, 'S, ^~s», 3^.

Proof. — I is independent of the choice of order of the factors by Corollary 27. i.
m

Let M = n (M, x M,) x n^M .̂ be the Levi subgroup from which we induce.

If M,==GL(r,), put L,==GL(2r,), and L = II, L, x II^M,. Since

I (y ;G,M)=I ( I (y ; lL ,M) ;G, t ) ,

and 1(3'; L, M) is unitary by the Proposition, we conclude that Tis unitary.

Theorem. — Suppose that the p^ (o ^ i ^ m) are irreducible and tempered, and s, (i ^ i ^ m)
m

are distinct positive numbers with s,< 1/2. Put p == II (%v81 X ^v"81). Then the induced

representations T= I(p') and I(po X p) are irreducible.

Proof. — We induce from the Levi M == Mp X II (M, x M,); here MQ == GL(ro),
TO ^ o, and 7-0 == o means that MQ does not appear in M. There exists a
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parabolic subgroup P with Levi subgroup M such that the vector determined by
(o; Ji, — ^; ^25 •— -^ • • •) 1̂  m Ae positive Weyl chamber (in the Lie algebra of the
diagonal subgroup) determined by P. Consequently I has a unique quotient J (see
[BW], IV, (4.6)5 p. 127). On the other hand, the Corollary implies that I is unitary.
As each constituent of a unitary representation is a direct summand of it, the unique
quotient J has to be I itself, and we conclude that I is irreducible.

Definition. — A G-module % is called relevant if it is equivalent to I(po X 'p) or
I(p') as in the Proposition. In the case n = i this definition applies to G.

We have just seen that the relevant representations are irreducible.
The motivation for this definition is the fact that each component of any cuspidal

automorphic G(A)-module is unitary and non-degenerate, hence relevant by [B],
Lemma 8.9, p. 94, and [Z], Theorem 9.7 (b).

/V/

27.3. We say that f is good if there exists an f matching /. An admissible TC is
called metic (= met(aplect)ic) if for each subquotient TC' ofn (not necessarily irreducible)
there is a good/so that tr TT'(/) 4= o. Ifn is induced from an irreducible elliptic repre-
sentation p = (p^) of a Levi subgroup M = 11̂  M^, M^ = GL(r^), then it is metic
if and only if the central character of each p, is trivial on ^.

Corollary 26.2 now implies that Theorem 26 extends to all relevant, in particular
tempered, representations, from the case of square-integrables, by induction.

Theorem. — The correspondence relation (see Definition (26)) defines a bijection between
the set of genuine relevant % and the set of relevant metic n. It commutes with induction, bijects
square-integrables with square-integrables and tempered with tempered.

t^ <^
Proposition. — Suppose that f and f satisfy tr7c(/) ==tr%(/) for all corresponding

tempered TC and %, and trn{f) == o for the irreducible tempered n not obtained from any %.
^

Then f and f are matching.

Proof. — Induction on the Levi subgroup M. If p, p" are corresponding tempered
,̂ < /̂

representations of M, M, we have tr p(/M) = ^P^/M^ Hence

F(^,/) = F^./M) = FV.A) === F(^7),

for all x in M with regular x*, by induction. It remains to establish this relation for
elliptic x with regular x*. Fix such a pair ^, x*. Let U be a sufficiently small compact

^ ^ ^
neighborhood ofjy, and/' a function on G as in (6), supported nearyZ, whose orbital

/^/ /<^/ ~
integral ^{f) is the characteristic function of ZU* . Let/' be a matching function

/^
on G; it exists by Remark (i) following Theorem 13. Now '0(/') is a finite linear combi-
nation of the characters of square-integrable %, with coefficients ^, by [K], Theorem K.
Then '0(/') is the corresponding combination of the characters of the TT^ which corres-
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pond to the ̂  by Theorem 26. Since U* is small, the Weyl integration formula implies
that Z;^tr%,(/) is equal to f F^*,/"') F(r,/) dt, where T is the centralizer of j

J T/Z /^/
in G. The assumption of the proposition implies that 2^ tr %,(/) is equal to S^ tr T^(/).
But this is f F(^/') F(^,/) dt. We take U to be so small that both F(r,7) and

f>^
F(^,/) are constant on U. The desired equality F^*,/) == F(.y,/) now follows from
the choice of/' and/"', which guarantees that F(^,/') = F(r,/^).

/^/
Corollary. — For each f there is a matching f.

/^/
Proof. — Given / we define the function F on the space of tempered TC as follows.

/^/
I f r r i s a lift of a (tempered) %, we put F(7r) = tr%(/). Otherwise we put F(7r) = o.
This is a function in F^ (see (1.2) of [BDK]), hence a trace function by Theorem i .3
of [BDK]. Namely, there is an/with F(TC) = tr 7r(/) for all tempered TT. The corol-
lary now follows from the Proposition.

28. Global lifting. — From now on we denote by n and % (global) discrete series
representations (see (18)), with elliptic components at the two places u, u ' . We say
that the genuine representation % == ®%^ of G(A) (quasi-) lifts to TT == ®T^ on G(A)
if%^ corresponds (see (26)) to T^ for (almost) all places v. We say that TC is metic if there
exists a good /== ®j^ (that is, with a matching f == 0/y), so that tr7r(/) =)= o.
Namely, its components are all metic.

In what follows TT is not required to be cuspidal. But when n does not have a
supercuspidal component, we have to use the following

Assertion. — The conclusion of Theorem 18 remains valid under the same assumptions,
/^/

except thatf^ is not required anymore to be a supercusp form. This is likely to follow from work
/^/

in progress of Arthur. If f has no supercusp component, the simple form of the left
side of (18. i) holds for G by virtue of Theorem 27.3. It is not so for SL(r).

Arthur expresses the right side, called the 0-expansion, in terms of invariant dis-
tributions under no condition on f. These invariant distributions are then expressed
as sums of products of local invariant distributions. The assumption of Theorem 18
at M, u' implies the vanishing of all terms indexed by elements with non-elliptic semi-
simple part. At the remaining elements we obtain orbital integrals of the local compo-
nents ̂ y. These vanish because of the assumption at u".

/^
The Assertion implies that Corollary 18 holds also when/and/do not have super-

cuspidal components.

Proposition. — For each metic n there exists a genuine % which quasi-lifts to TV. Ifn has
two supercuspidal components it quasi-lifts to a metic n.
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Proof. — Given TT, we use the identity (20.1), and the theorem of Jacquet-Sha-
lika [JS] which asserts that if TT appears on the left, then it is the only term there, up to
multiplicity. If n is cuspidal, this is the rigidity (strong multiplicity one) theorem for
cusp forms of G. This proves the existence of%, since the left side is non-zero.

In the opposite direction, given %° we form (20.1). If n does not exist then
SII tr^(fy) = o. At the two places where %^ is supercuspidal we let fy be a matrix

r^
coefficient. It suffices to let fy be the characteristic function <p^. of (10) at all other

f^
finite y, so that tr^(^) is a non-negative integer, to deduce a contradiction.

Theorem. — If n is metic cuspidal with elliptic components at the three places u, u\ »",
then there is a unique discret-series representation % ofQ(A) which lifts to TT. Any discrete-series %'
which quasi-lifts to n is equal to %.

Remark. — (i) Omitting the assumption at u" we can conclude the existence of %
such that %„ lifts to ̂  for all v 4= u, u'.

(2) The last claim of the Theorem combines the multiplicity one theorem for 5(A)
and the rigidity theorem for G(A), at least for the % which appear in the Theorem.

(3) Our proof generalizes to deal with all cuspidal TC once an identity of trace
formulae is available with no restriction on u, u'.

Proof. — We use the identity (20. i), where on the left appears TT, with multipli-
city i. Since TT is cuspidal, it has a Whittaker model, and its local components are all
non-degenerate. Hence its components at u, u* are discrete series, and correspond to

/N/

discrete series %„, v == u, u\ Let fy be their pseudo-coefficients. With this choice of
function at u, u ' y we need to show that there is an entry %" on the right of (20. i) whose
components %^ correspond to the components TT^ ofn at each u =t= u, u' in V. For such v
denote n^ by TT'. It is non-degenerate. Hence, by [Z], Theorem 9.7 (b), it is equal
to a representation I(p' v8) induced from a discrete series representation p" of a Levi
subgroup M, tensored by an unramified quasi-character v8 of M. Being a component
of an automorphic representation, TT' is unitarizable. Hence Lemma 8.9 of [B], p. 94,
implies that n' is relevant; see Definition 27.2. This fact motivated our study of relevant
representations in (27.2). By Theorem 27.3 this relevant TT' corresponds to the relevant
representation %' == ICp"' v 8 ' ) induced from the product of the discrete series p'' which
lifts to p', and the corresponding character.

According to Corollary 27, for any f there is a matching f so that our n, %' satisfy^»>/
tr7r'(/) ==tr %'(/). This argument applies at all v + u, u' in V. Hence (20.1)
becomes

n,tr%;(^)=2.(%)n,tr^(/:).

The product is over all v + u, u' in V and c(%) is a natural number. This holds for
arbitrary {^; v =t= M, u' inV}. The theorem now follows from linear independence of
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characters. Note that the component at u" of each % on the right must lift to TC^..
But u" can be replaced by u and u ' . This determines the components of%" at all places,
as required.

29. Duals. — We shall now discuss the local representations which are dual—in
the sense of [Z]—to the square-integrable non-supercuspidal representations, and their
global analogues. These include the one-dimensional representations. Fix a global
field F, with places y, w, ...

Suppose r = r' m, and p is a cuspidal representation of GL(r', A) with a central
character 6. We write p(w) for the representation p X ... X p (m times) of

M=II,M, , M,=GL(r') (KKw) .

If v(A:) = [det^l, and s == ({m — i)/2, (m — 3)/2, ..., — (m — i)/2), write v(s) for
the product of the characters v^-^1)/2)--1 of M,, and p(s) for p(m)®v(s). The auto-
morphic induced representation I(p(s)) of G(A) has an irreducible quotient 7i:(p(s)),
obtained as the image of the intertwining operator T(^o, X) of [J], Proposition, p. 189.
This quotient 7c(p(s)) is a discrete series representation ([J], end of (2.4), p. 191). If^
is a discrete series representation with ^ ^ 7r(p(s)),, for almost all y, then this holds
for all v ([JS]). The local component 7r(p(s)),, is the unique irreducible quotient of
I(p,,(s))([J], Proposition, p. 189). When p,, is square-integrable, then I(p^(s)) has a
square-integrable irreducible subrepresentation cr(p,,(s)) ([Z]), which is dual, in the
sense of [Z], to the quotient 7r(p,,(s)). Note that we follow the convention of [J], where
the components of s = (^, ^5 • • • ) satisfy ^ -~ ^+1 == i. The convention of [Z]
is the opposite: s^^ — ^ == i. Hence our sub (and quotient) are quotient (and sub)
in [Z].

Suppose that the order of 6 on ^ is m' dividing m. Define s' by the expression
for s, with m' replacing w, and also s", with w" replacing m. Here w' w" == m. It
is then clear that p(s) = p(s') (w") ®v(w' s"). Also, 7c(p(s)) is a quotient of the repre-
sentation I(7c(p(s')) (w") ®v(w's")), induced to G from the Levi subgroup of type
(r^,...,^).

We deal first with the case of m = w', or w" == i.

Theorem.— Suppose p^ is square-integrable and its central character has order m on (JL^.
Let c^ be the square-integrable subrepresentation of I(p^(s)), and Sy, the supercuspidal represen-
tation which lifts to a^; see the example following Corollary 26. Then the quotient n^, = 7r(p^(s))

satisfies tr T^(/J = (- ir-'tr^J^ for all f, with matching^.

Remark. — It is possible to give a local proof of this claim, by expressing the cha-
racter of Oy, as an alternating sum of certain induced representations analogous to TC^
(the case r' == i is in [G'], § 8), and concluding that tr ^(^,) = (— i^^trffj^)
for the f^ as above. Indeed, the properly induced representations in this sum are not

106



METAPLECTIC CORRESPONDENCE 107

metic, due to the requirement on the central character of py,. The following proof is
global.

Proof. — As in Lemma 20, we construct a cuspidal representation p, whose compo-
nent at w is our p^; whose archimedean components are spherical; whose components
at two finite places u, u' are supercuspidal, with central character of order m on ^.
Consider the trace identity (20. i), where the quotient 7r(p(s)) is the unique term on the
left (up to multiplicity). At u (and u') let/y be a pseudo-coefficient of cr^ = c^(p(s)),

f^/
and f^ a (matching) pseudo-coefficient of the square-integrable ^ which lifts to o^.
It is clear (by considering the Jacquet modules) that 3^ is supercuspidal. Then
tr^(^) = (— ^}m~l, and tr^(^) = i on the right side of (20.1). This eli-
minates M, u' from the set V of (20. i).

To eliminate the archimedean components of TC, one can try to show that the archi-
medean components of n are lifts of Gy-modules. For the special case of the one dimen-
sional representation see [KP'], Proposition 5. Q (ii). But we do not do it here. Instead,
we note that spherical functions at infinity can be matched ([KP'], proof of Prop. 5.9 (iii)),
and use linear independence with respect to the Hecke algebra to fix the components
at infinity. At the remaining finite v =(= w in V we use the functions of (10) to obtain
the identity (20.2). Again w is omitted, n is 7r^(p(s)), and the eft) are positive integers.

Now, the condition on the central character of p implies the following. The
Jacquet module of n with respect to any proper Levi subgroup M' = TI, M,' consists
of irreducibles p' = (p,7), such that the central character ofp.'is non-trivial on ^ (all i).

/^/
Hence the p' satisfy tr P'(^M') == ° ^or ^^fv. matching a^,.

As in (21) we observe that all % are supercuspidal. The proof of (25.1) implies
that there is a single term in (20. i), and (20.2) reduces to c tr r^{f) == tr ?(/), where c
has absolute value i. But ? is supercuspidal and lifts to a discrete-series representation a
of G. Hence ctr-K^f) == tra{f). Hence or is the square-integrable constituent in
the composition series ofl(p(s)), and comparing the characters ofo- and n on the elliptic
set we find that c == (— i)'"""1, as required.

The Theorem exhibits a special phenomenon. The unitary non-tempered
local 7^(p(s)) can be viewed as a lift, up to a sign ifw is even, of a supercuspidal %, which
lifts, according to Theorem 27, to the discrete series o(p(s)) which is dual to 7T(p(s)).
Hence there are global metic representations 7t(p(s)) which are discrete series but not
cuspidal, which are quasi-lifts of cuspidal representations % with supercuspidal compo-
nents. Moreover, almost all components of such % are non-tempered. Such % are
cuspidal representations which do not satisfy the so called generalized Ramanujan
conjecture.

Next we deal with the general local case, where m = m' m". It has already been
noted that 7r(p(s)) is a quotient of ^^(s')) (m") ®v(m' s"). The Theorem implies
that tr7r(p(s'))(/) = (— ^'-^tr^s')^/) for/on GL(r'm') matching to a J.
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Theorem 26 (see the example following Corollary 26) asserts that there is a supercus-
pidal y(p(s')) which lifts to cy(p(s')); Theorem 27 and Corollary 26.2 imply that
I == I((r(p(s')) (w") ® v(w' s")) corresponds to the representation I induced from
y{p(s')) (w") O^w' s") on the Levi subgroup of type (r' m\ ..., r' w'). Moreover,
I has the square-integrable subrepresentation (r(p(s)), and this is a lift of the square-
integrable !? = y(p(s)). Comparing the Jacquet modules of? and cr(p(s)), we conclude
that 3" is the square-integrable subquotient of I. Put L = (— ^(»»»'-i)w»^ por sim-
plicity we now assume that p is supercuspidal, and m divides n.

Theorem (29.1). — The representation I has a subquotient %((r(p(s))), which satisfies

^ ̂ {s)) (/) == l tr%(G^(p(s))) { / ) f^ matching f and f.

Proof. — We consider our local representation 7T(p(s)) as the component at w o
a global representation 7r(p(s)), constructed using a cuspidal representation p whose
component at w is our local p^. Our assumption is that the order of the restriction to (JL^
of the central character 6^ ofp^ is m'. Note that we can construct p so that at two other
places v = u, u\ the component p,, is square-integrable with central character 6,, whose
restriction to ^ has order m. Then 7r(p,,(s)) corresponds, in the sense of Theorem 29,
to supercuspidal ^ for v === u, u\ We apply the trace formula (20.1) with the

< /̂
global 7r(p(s)), and takej^, to be a coefficient of S,, at v = u, u\ to obtain the iden-
tity (20.2), with positive ^(%). We now return to local notations.

Let M' be the Levi subgroup of type (r'w', . . . ,r 'w'). Consider matching/
/-h/

and/with F{x,f) = o unless, up to conjugacy, Ma;of(i4) (and [C]) is contained in M'.
We conclude from (20.2) and Theorem 14 the identity ctrn^{f^.) = Sc(%) tr%^ (/N')?
where N' is the unipotent radical of the standard parabolic with Levi subgroup M'.
But the Jacquet module ny, is the representation 7T(p(s'))(w")®v(m's"). Denote
by y(p(s')) the supercuspidal representation matching 7r(p(s')) in the sense of
Theorem 29. Since the function /^ ls an arbitrary function on M' (see the proof of
Proposition 21), we conclude by linear independence of characters on M', that, in (20.2),
there appears a single irreducible representation %" whose Jacquet module with respect

- - . /^/
to M' is non-zero. Further, TT == 7r(p(s)) satisfies i tr ̂ '{f^) = ̂ ^'{fw) (we

have w" factors, each yielding (— i)^"1 by Theorem 29). In particular, %" is a sub-
quotient of L

/^/
By induction, we assume that the relation ^^^'{fy) = ^^'(YN') holds for

all M ' + G . Hence we have i tr n{f) = tr%"(/) +Sc(%)tr%(/) for any mat-
/^/ /^/

ching/,/, where the % are all supercuspidal. Choose/to be a coefficient of one of the n.
For a matching/we have tr (r(/) == o, where a is the square-integrable quotient (r(p(s))
determined by n == 7r(p(s)), so that the characters of a and TT are equal on the elliptic
regular set up to a sign. Indeed, suppose tr (T(/) 4= o. Since a is the lift of a square-
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integrable, necessarily a subquotient!? of I by (26. i) and Frobenius reciprocity, we obtain
by the orthogonality relations that 3' is equivalent to the supercuspidal %, which is impos-
sible. Hence <;(%) = o for the supercuspidal %, as required.

It is clear that the above local Theorem can be used as in (28) to obtain global
lifting results. But we do not elaborate on this.

Finally, note that in the case of r = 2 the local Theorem(s) 26(29) give(s) a com-
plete description of the local correspondence. In this case the full trace formulae for G
and 6 are easily computed (as in [F], but note that in (5) of [F], p. 159, there should

appear a sum over x in Yxnf2|pxnfd (with d == i since m = o in [F]), and ( ) has

to be replaced by its multiple by x). They can be compared (with no restriction onj^)
due to the explicit comparison of weighted orbital integrals for matching spherical
functions in [F], p. 170. The complicated regularity argument of [F], p. 160, can be
replaced by the correction argument of [F'], p. 59. The local results and the identity

/v
of trace formulae for arbitrary/./imply at once the full global correspondence in the
caseofGL(2) ,([F],§5).
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