A SIMPLE TRACE FORMULA ${ }^{\dagger}$

By
YUVAL Z. FLICKER AND DAVID A. KAZHDAN
Department of Mathematics, Harvard University, Science Center, One Oxford Street, Cambridge, MA 02138, USA

Abstract

The Selberg trace formula is of unquestionable value for the study of automorphic forms and related objects. In principal it is a simple and natural formula, generalizing the Poisson summation formula, relating traces of convolution operators with orbital integrals. This paper is motivated by the belief that such a fundamental and natural relation should admit a simple and short proof. This is accomplished here for test functions with a single supercusp-component, and another component which is spherical and "sufficiently-admissible" with respect to the other components. The resulting trace formula is then used to sharpen and extend the metaplectic correspondence, and the simple algebras correspondence, of automorphic representations, to the context of automorphic forms with a single supercuspidal component, over any global field. It will be interesting to extend these theorems to the context of all automorphic forms by means of a simple proof. Previously a simple form of the trace formula was known for test functions with two supercusp components; this was used to establish these correspondences for automorphic forms with two supercuspidal components. The notion of "sufficiently-admissible" spherical functions has its origins in Drinfeld's study of the reciprocity law for GL(2) over a function field, and our form of the trace formula is analogous to Deligne's conjecture on the fixed point formula in étale cohomology, for a correspondence which is multiplied by a sufficiently high power of the Frobenius, on a separated scheme of finite type over a finite field. Our trace formula can be used (see [FK']) to prove the Ramanujan conjecture for automorphic forms with a supercuspidal component on GL(n) over a function field, and to reduce the reciprocity law for such forms to Deligne's conjecture. Similar techniques are used in ['F] to establish base change for $\mathrm{GL}(n)$ in the context of automorphic forms with a single supercuspidal component. They can be used to give short and simple proofs of rank one lifting theorems for arbitrary automorphic forms; see ["F] for base change for GL(2), [F^{\prime}] for base change for $U(3)$, and [' F^{\prime}] for the symmetric square lifting from $\mathrm{SL}(2)$ to PGL(3).

Let F be a global field, \mathbf{A} its ring of adeles and \mathbf{A}_{f} the ring of finite adeles, \boldsymbol{G} a connected reductive algebraic group over F with center Z. The group G of F rational points on G is discrete in the adele group $G(\mathbf{A})$ of G. Put $G^{\prime}=G / Z$ and $G^{\prime}(\mathbf{A})=G(\mathbf{A}) / Z(\mathbf{A})$. The quotient $G^{\prime} \backslash G^{\prime}(\mathbf{A})$ has finite volume with respect to the unique (up to a scalar multiple) Haar measure $d g$ on $G^{\prime}(\mathbf{A})$. Fix a unitary complex-valued character ω of $Z \backslash Z(\mathbf{A})$. For any place v of F let F_{v} be the completion of F at v, and $G_{v}=G\left(F_{v}\right)$ the group of F_{v}-points on G. If F_{v} is non-archimedean, let R_{ν} denote its ring of integers. For almost all v the group G_{v} is defined over R_{v}, quasi-split over F_{v}, split over an unramified extension of F_{v}, and

[^0]$K_{v}=G\left(R_{v}\right)$ is a maximal compact subgroup. For an infinite set of places (of positive density) u of F, the group G_{u} is split (over F_{u}). A fundamental system of open neighbourhoods of 1 in $G(\mathbf{A})$ consists of the set $\Pi_{v \in V} H_{v} \times \Pi_{v \notin V} K_{v}$, where V is a finite set of places of F and H_{v} is an open subset of G_{v}, containing 1.

Let $L(G)$ denote the space of all complex-valued functions ϕ on $G \backslash G(A)$ which satisfy (1) $\phi(z g)=\omega(z) \phi(g)(z$ in $Z(\mathbf{A}), g$ in $G(\mathbf{A})),(2) \phi$ is absolutely squareintegrable on $G^{\prime} \backslash G^{\prime}(\mathbf{A}) . G(\mathbf{A})$ acts on $L(G)$ by right translation: $(r(g) \phi)(h)=$ $\phi(h g) ; L(G)$ is unitary since ω is unitary. The function ϕ in $L(G)$ is called cuspidal if for each proper parabolic subgroup P of G over F with unipotent radical N we have $\int \phi(n g) d n=0(n$ in $N \backslash N(\mathbf{A}))$ for any g in $G(\mathbf{A})$. Let $L_{0}(G)$ denote the space of cuspidal functions in $L(G)$, and r_{0} the restriction of r to $L_{0}(G)$. The space $L_{0}(G)$ decomposes as a direct sum with finite multiplicities of invariant irreducible unitary $G(\mathbf{A})$-modules called cuspidal G-modules.

Let f be a complex-valued function on $G(\mathbf{A})$ with $f(g)=\omega(z) f(z g)$ for z in $Z(A)$, which is supported on the product of $Z(A)$ and a compact open neighborhood of 1 in $G(A)$, smooth as a function on the archimedean part $G\left(F_{\infty}\right)$ of $G(\mathbf{A})$, and bi-invariant by an open compact subgroup of $G\left(\mathbf{A}_{f}\right)$. Fix Haar measures $d g_{v}$ on $G_{v}^{\prime}=G_{v} / Z_{v}$ for all v, such that the product of the volumes $\left|K_{v} / Z_{v} \cap K_{v}\right|$ converges, Then $d g=\otimes d g_{v}$ is a measure on $G^{\prime}(\mathbf{A})$. The convolution operator $r_{0}(f)=\int_{G^{\prime}(\mathrm{A})} f(g) r_{0}(g) \dot{d} g$ is of trace class; its trace is denoted by $\operatorname{tr} r_{0}(f)$. Then

$$
\begin{equation*}
\operatorname{tr} r_{0}(f)=\Sigma^{\prime} m(\pi) \operatorname{tr} \pi(f) \tag{1}
\end{equation*}
$$

where Σ^{\prime} indicates the sum over all equivalence classes of cuspidal representations π of $G(\mathbf{A})$, and $m(\pi)$ denotes the multiplicity of π in $L_{0}(G)$; each π here is unitary, and the sum is absolutely convergent.

The Selberg trace formula is an alternative expression for (1). To introduce it we recall the following

Definitions. Denote by $Z_{\gamma}(H)$ the centralizer of an element γ in a group H. A semi-simple element γ of G is called elliptic if $Z_{\gamma}\left(G^{\prime}(\mathbf{A})\right) / Z_{\gamma}\left(G^{\prime}\right)$ has finite volume. It is called regular if $Z_{\gamma}\left(G^{\prime}(\mathbf{A})\right)$ is a torus, and singular otherwise. Let γ be an elliptic element of G. The orbital integral of f at γ is defined to be

$$
\Phi(\gamma, f)=\int_{G^{\prime}(\mathbf{A})\left(Z_{\gamma}\left(G^{\prime}\right)\right.} f\left(g \gamma g^{-1}\right) d g
$$

Similarly, for any place v of F the element γ of G_{v} is called elliptic if $Z_{\gamma}\left(G_{v}^{\prime}\right)$ has finite volume, and regular if $Z_{y}\left(G_{v}\right)$ is a torus. If γ is an element of G and there is a place v of F such that γ is elliptic (resp. regular) in G_{v}, then γ is elliptic (resp. regular). The orbital integral of f_{v} at γ in G_{v} is defined to be

$$
\Phi\left(\gamma, f_{v}\right)=\Phi\left(\gamma, f_{v} ; d_{\gamma}\right)=\int_{G \gamma Z_{X}\left(G_{v}\right)} f_{v}\left(g \gamma g^{-1}\right) \frac{d g}{d_{\gamma}} .
$$

It depends on the choice of a Haar measure d_{γ} on $Z_{\gamma}\left(G_{v}^{\prime}\right)$.
Let $\left\{\phi_{\alpha}\right\}$ be an orthonormal basis for the space $L_{0}(G)$. The operator $r_{0}(f)$ is an integral operator on $G^{\prime}(\mathbf{A})$ with kernel $K_{f}^{0}(x, y)=\Sigma_{\alpha, \beta} r(f) \phi_{\alpha}(x) \bar{\phi}_{\beta}(y)$. The operator $r(f)$ is an integral operator on $G^{\prime}(\mathbf{A})$ with kernel $K_{f}(x, y)=\Sigma_{\gamma} f\left(x^{-1} \gamma y\right)(\gamma$ in G^{\prime}). If \boldsymbol{G} is anisotropic (namely $G^{\prime} \backslash G^{\prime}(\mathbf{A})$ is compact), then $L_{0}(G)=L(G)$ and $r=r_{0}$. Since $K_{f}^{0}(x, y)=K_{f}(x, y)$ is smooth in both x and y, we integrate over the diagonal $x=y$ in $G^{\prime}(\mathbf{A})$, change the order of summation and integration as usual, and obtain the Selberg trace formula in the case of compact quotient, as follows.

Proposition. If \boldsymbol{G} is anisotropic, then for every function f on $G(\mathbf{A})$ as above we have

$$
\begin{equation*}
\Sigma^{\prime} m(\pi) \operatorname{tr} \pi(f)=\sum_{\{v\}} \Phi(\gamma, f) \tag{2}
\end{equation*}
$$

The sum on the left is the same as in (1). The sum on the right is finite; it ranges over the conjugacy classes of elements in G^{\prime}.

Remark. If \boldsymbol{G} is anisotropic, then each element γ in G is elliptic.
For a general group \boldsymbol{G} we introduce the following
Definition. The function f is called discrete if for every x in $G(\mathbf{A})$ and γ in G we have $f\left(x^{-1} \gamma x\right)=0$ unless γ is elliptic regular.

Changing again the order of summation and integration as usual we obtain the
Proposition. If is discrete, then

$$
\begin{equation*}
\int_{G^{\prime}(\mathbf{A})}\left[\sum_{y \in G^{\prime}} f\left(x^{-1} \gamma x\right)\right] d x=\sum_{\{\gamma\}} \Phi(\gamma, f) . \tag{3}
\end{equation*}
$$

The sum on the right is finite. It ranges over the set of conjugacy classes of elliptic regular elements in G^{\prime}.

Remark. It is well known that the sum on the right is finite; for a proof see [FK], $\S 18$ (if $G=\mathrm{GL}(n)$), and [F], Prop. I. 3 (in general).

Definition. The function f is called cuspidal if for every x, y in $G(\mathbf{A})$ and every proper F-parabolic subgroup P of \boldsymbol{G}, we have $\int_{N(A)} f(x n y) d n=0$, where N is the unipotent radical of \boldsymbol{P}.

When f is cuspidal, the convolution operator $r(f)$ factorizes through the projection on $L_{0}(G), r(f)$ is of trace class, $\operatorname{tr} r_{0}(f)=\operatorname{tr} r(f)$ and $K_{f}(x, y)=$ $K_{f}^{0}(x, y)$, and we obtain

Corollary. Iff is cuspidal and discrete, then the equality (2) holds. The sum on the left is as in (1). The sum on the right is as in (3).

For some applications we need to replace the requirement that f be discrete by a requirement on the orbital integrals of f (but not on f itself). The purpose of this work is to present such a requirement, and apply the resulting trace formula to extend some global lifting theorems, such as those of [FK].

Fix a non-archimedean place u of F such that G_{u} is split, and the component ω_{u} of ω at u is unramified (namely trivial on the multiplicative group R_{u}^{\times}of R_{u}).

Definition. A complex-valued compactly-supported modulo-center function f_{u} on G_{u} is called spherical if it is K_{u}-biinvariant. Let \mathbf{H}_{u} be the convolution algebra of such functions. Of course \mathbf{H}_{u} is empty unless the central character ω_{u} is unramified.

For any maximal (proper) F_{u}-parabolic subgroup $P_{u}=M_{u} N_{u}$ of G_{u}, where N_{u} is the unipotent radical of P_{u} and M_{u} a Levi subgroup, define an F_{u}^{\times}-valued character $\alpha_{P_{u}}$ of M_{u} by $\alpha_{P_{u}}(m)=\operatorname{det}\left(\operatorname{ad}(m) \mid L\left(N_{u}\right)\right)$, where $L\left(N_{u}\right)$ denotes the Lie algebra of N_{u}, and ad $(m) \mid L\left(N_{u}\right)$ denotes the adjoint action of m in M_{u} on $L\left(N_{u}\right)$. Let $\mathrm{val}_{u}: F_{u}^{\times} \rightarrow \mathrm{Z}$ be the normalized additive valuation. Let A_{u} be a maximally split torus in G_{u}. For any non-negative integer n let $A_{u}^{(n)}$ be the set of a in A_{u} such that $\left|\operatorname{val}_{u}\left(\alpha_{P_{u}}(a)\right)\right|<n$ for some maximal F_{u}-parabolic subgroup P_{u} containing A_{u} of G_{u}.

Definition. A spherical function f_{u} is called n-admissible if the orbital integral $\Phi\left(a, f_{u}\right)$ is zero for every regular a in $A_{u}^{(n)}$.

Let \mathbf{A}^{u} denote the ring of F-adeles without u-component. Put $G^{u}=G\left(\mathbf{A}^{u}\right)$. Write $f=f_{u} f^{u}$ if f is a function on $G(\mathbf{A}), f_{u}$ on G_{u}, f^{u} on G^{u}, and $f(x, y)=$ $f_{u}(x) f^{u}(y)$ for x in G_{u} and y in G^{u}. We choose the place u such that the central character ω is unramified at u.

Theorem 1. Let f^{u} be a function on G^{u} which is compactly supported modulo $Z^{u}=Z\left(\mathbf{A}^{u}\right)$ and vanishes on the G^{u}-orbit of any singular γ in G. Then there exists a positive integer $n_{0}=n_{0}\left(f^{u}\right)$ such that for every spherical n_{0}-admissible function f_{u} there is a function f_{u}^{\prime} on G_{u} with $(1) \Phi\left(x, f_{u}^{\prime}\right)=\Phi\left(x, f_{u}\right)$ for all regular x in G_{u}, and (2) $f^{\prime}=f_{u}^{\prime} f^{\prime \prime}$ is discrete.

Proof. For every maximal F-parabolic subgroup P of \boldsymbol{G} and every place $v \neq u$ of F there exists a non-negative integer $C_{v, p}$ which depends on f^{u}, with
$C_{v, P}=0$ for almost all v, such that if γ lies in a Levi subgroup M of P and $f^{u}\left(x^{-1} \gamma x\right) \neq 0$ for some x in G^{u}, then

$$
\begin{equation*}
\left|\operatorname{val}_{v}\left(\alpha_{P}(\gamma)\right)\right| \leqq C_{v, P} \tag{4}
\end{equation*}
$$

Put $C_{u, P}=\Sigma_{v \neq u} C_{v, p}$. Since γ is rational (in G), the product formula $\Sigma_{v} \operatorname{val}_{v}\left(\alpha_{P}(\gamma)\right)=0$ on F^{\times}implies that the inequality (4) ${ }_{v}$ remains valid also for $v=u$. Choose $n_{0}>C_{u, p}$ for all (of the finitely many conjugacy classes of) P. Let f_{u} be any spherical n_{0}-admissible function. Put $f=f_{u} f^{u}$. It is well known (for a proof see [F], Prop. I.3) that there are only finitely many rational conjugacy classes γ in G^{\prime} such that f is not zero on the $G^{\prime}(\mathbf{A})$-orbit of γ. Note that f is zero on the $G(\mathbf{A})$-orbits of all singular γ in G by assumption. Let $\gamma_{i}(1 \leqq i \leqq m)$ be a set of representatives for the regular non-elliptic rational conjugacy classes in G such that f is non-zero on their $G(\mathbf{A})$-orbits. Since γ_{i} is non-elliptic, it lies in a Levi subgroup M_{i} of a maximal parabolic subgroup P_{i} of G. Since f_{u} is n_{0}-admisible, the relation $\Phi\left(\gamma_{i}, f_{u}\right) \neq 0$ implies that $\left|\operatorname{val}_{u}\left(\alpha_{P_{i}}\left(\gamma_{i}\right)\right)\right|>n_{0}$. This contradicts (4) u_{u}. Hence $\Phi\left(\gamma_{i}, f_{u}\right)=0$ for all i. Let S_{i} denote the characteristic function of the complement in G_{u} of a sufficiently small open closed neighborhood of the orbit of γ_{i} in G_{u}. Since γ_{i} is regular non-elliptic, we may and do take S_{i} to be one on the elliptic set of G_{u}. Put $f_{u}^{\prime}=f_{u} \Pi_{i=1}^{m} S_{i}$. Then f_{u}^{\prime} is zero on the orbit of γ_{i} $(1 \leqq i \leqq m)$, and $\Phi\left(\gamma, f_{u}^{\prime}\right)=\Phi\left(\gamma, f_{u}\right)$ for every regular γ in G_{u}. Since $f^{\prime}=f_{u}^{\prime} f^{u}$ vanishes on the $G(\mathbf{A})$-orbit of each rational γ in G which is not elliptic-regular, the theorem follows.

Since both sides of (2) are invariant distributions, we conclude the immediate
Corollary. Suppose that $f=f_{u} f^{u}$ is a cuspidal function which vanishes on the $G(\mathbf{A})$-orbit of every singular γ in G, and f_{u} is a spherical n_{0}-admissible function with $n_{0}=n_{0}\left(f^{u}\right)$. Then the equality (2) holds, where the sum on the left is as in (1), while the sum on the right is as in (3).

Definition. A G_{u}-module π_{u} is called unramified if it has a non-zero K_{u}-fixed vector.

For applications such as those given in Theorem 3 below, we need to show that the set of n-admissible functions is sufficiently large in the following sense.

Theorem 2. Let $\left\{\pi_{i} ; i \geqq 0\right\}$ be a sequence of inequivalent unitary unramified G_{u}-modules, and c_{i} complex numbers, such that $\Sigma_{i} c_{i} \operatorname{tr} \pi_{i}\left(f_{u}\right)$ is absolutely convergent for every spherical function f_{u}. Suppose that there is a positive integer n_{0} such that $\Sigma_{i} c_{i} \operatorname{tr} \pi_{i}\left(f_{u}\right)=0$ for all n_{0}-admissible f_{u}. Then $c_{i}=0$ for all i.

Proof. This is delayed to the end of this paper.

Remark. The notion of n-admissible functions is suggested by Drinfeld [D], at least in the case of $G=\mathrm{GL}(2)$. For a general G the Corollary is a representation theoretic analogue of Deligne's conjecture on the Grothendieck-Lefschetz fixed point formula for the trace of a finite flat correspondence on a separated scheme of finite type over a finite field, which is multiplied by a sufficiently high power of the Frobenius morphism. We hope to explain this analogy in more detail in our work (in preparation) on the geometric Ramanujan conjecture for GL(n) (see also [FK^{\prime}]).

In the proofs of Theorem 2 and Theorem 3 below we shall use some results concerning unramified representations and spherical functions (see [C]), and regular functions. These will be recalled now in order to be able to give an uninterrupted exposition of the proof of Theorem 3.

Let G be a split p-adic reductive group with minimal parabolic subgroup $B=A N$, where N is the unipotent radical of B and the Levi subgroup A is a maximal (split) torus. Let $X^{*}=X^{*}(A)$ be the lattice of rational characters on A, and let $X_{*}=X_{*}(A)$ be the dual lattice. If A^{0} is the maximal compact subgroup of A then $X_{*} \simeq A / A^{0}$. Let $T=X^{*}(\mathbf{C})$ denote the complex torus $\operatorname{Hom}\left(X_{*}, \mathbf{C}^{\times}\right)$. The Weyl group W of A in G acts on A, X^{*}, X_{*} and T. Each t in T defines a unique C^{\times}-valued character of B which is trivial on N and on A^{0}. The G-module $I(t)=\operatorname{Ind}\left(\delta^{1 / 2} t ; B, G\right)$ normalizedly induced from the character t of B is unramified and has a unique unramified irreducible constituent $\pi(t)$. We have $\pi(t) \simeq$ $\pi\left(t^{\prime}\right)$ if and only if $t^{\prime}=w t$ for some w in W. The map $t \rightarrow \pi(t)$ is a bijection from the variety T / W to the set of unramified irreducible G-modules. Put $t(\pi)$ for the t associated with such a π. Let $\alpha_{i}(1 \leqq i \leqq m$) be a set of simple (with respect to N) roots in the vector space $X^{*} \otimes \mathbf{R}=\operatorname{Hom}\left(X_{*}, \mathbf{R}\right)$, and α_{i} the corresponding character of A, defined as usual by $\alpha_{i}(a)=\operatorname{ad}(a) \mid L\left(N_{i}\right)$, where ad (a) denotes the adjoint action of A on the Lie algebra $L\left(N_{i}\right)$ of the root subgroup N_{i} of α_{i} in N. Denote by $\boldsymbol{\alpha}_{i}^{\vee}(1 \leqq i \leqq m)$ the corresponding set of coroots in the dual space $X_{*} \otimes \mathbf{R}$, and by $\alpha_{i}{ }^{\vee}$ the corresponding set of characters of the torus $T=X^{*}(\mathbf{C})=$ $\operatorname{Hom}\left(X_{*}, \mathbf{C}^{\times}\right)$, defined as usual by $\alpha_{i}^{\vee}(\exp T)=\exp \left\langle\alpha_{i}^{\vee}, T\right\rangle$ for all T in $X^{*} \otimes$ $\mathbf{C}=\operatorname{Hom}\left(X_{*}, \mathbf{C}\right)$; here $\langle.,$.$\rangle is the pairing between X_{*}$ and X^{*}. There exists $q=q(G)>1$ such that if π is (irreducible, unramified and) unitary, then (1) $\boldsymbol{q}^{-1}<\left|\alpha_{i}^{v}(t)\right|<q$ for all $i(1 \leqq i \leqq m)$, and (2) the complex conjugate \bar{t} of t is equal to $w t^{-1}$ for some w in W.

If f is a spherical function then the value of the normalized orbital integral $F(a, f)=\Delta(a) \Phi(a, f)$ at a regular a in A depends only on the W-orbit of the image x of a in X_{*}; it is denoted by $F(x, f)$. Let $\mathbf{C}\left[X_{*}\right]^{W}$ be the algebra of W-invariant elements in the group ring $\mathbf{C}\left[X_{*}\right]$. The Satake transform $f \rightarrow f^{\vee}=$ $\Sigma_{x \in X_{*}} F(x, f) x$ defines an algebra isomorphism from the convolution algebra \mathbf{H} of spherical functions, to $\mathbf{C}\left[X_{*}\right]^{W}$. For each x in X_{*}, let $f(x)$ be the element of \mathbf{H} with $f(x)^{v}=\Sigma_{w \in W} w \boldsymbol{x}$. Then $f(x)$ is n_{0}-admissible if \mid val $\alpha_{P}(w(a(x))) \mid \geqq n_{0}$ for every w
in W and parabolic subgroup P containing $A ; a(x)$ is an element of A which corresponds to x under the isomorphism of A / A^{0} with X_{*} fixed above. We have $\operatorname{tr}(\pi(t))(f)=\operatorname{tr}(I(t))(f)=f^{\vee}(t)$ for every f in \mathbf{H} and t in T, where $f^{\vee}(t)=$ $\Sigma_{x \in X_{*}} F(x, f) t(x)$.

Definition. Consider \boldsymbol{x} in X_{*} with val $\alpha(a(x)) \neq 0$ for each root α of A on N. A complex-valued locally-constant function f with $f(z g) \omega(z)=f(g)$ for all g in G and z in Z which is compactly supported modulo Z is called x-regular if $f(g)$ is zero unless there is z in Z such that $z g$ is conjugate to an element a in A whose image in X_{*} is \boldsymbol{x}, in which case the normalized orbital integral $F(g, f)$ is equal to $\omega(z)^{-1}$. If f is \boldsymbol{x}-regular then we denote it by f_{x}. A regular function is a linear combination with complex coefficients of \boldsymbol{x}-regular functions.

Remarks. (1) Any regular function vanishes on the singular set; in fact it is supported on the regular split set by definition.
(2) If π is an admissible G-module with central character ω, then the normalized module π_{N} of coinvariants [BZ] is an A-module; its character is denoted by $\chi\left(\pi_{N}\right)$. If f_{x} is an \boldsymbol{x}-regular function, then a simple application of the Weyl integration formula and the theorem of Deligne-Casselman [CD] implies that

$$
\operatorname{tr} \pi\left(f_{x}\right)=[W]^{-1} \int_{A / Z}\left(\Delta \chi\left(\pi_{N}\right)\right)(a) F\left(a, f_{x}\right) d a
$$

If $\operatorname{tr} \pi\left(f_{x}\right)$ is non-zero, then there exists (i) t in T such that π is a constituent of $I(t)$ (by Frobenius reciprocity), and (ii) a subset $W(\pi, t)$ of W such that

$$
\operatorname{tr} \pi\left(f_{x}\right)=\sum_{w} t(w x) \quad(w \text { in } W(\pi, t))
$$

(3) Each constituent of $I(t)$, including π, has a non-zero vector fixed by the action of an Iwahori subgroup (see Borel [B], (4.7), in the case of a reductive group, and [FK], $\S 17$, for the case of the metaplectic groups considered below).
(4) Regular functions play a crucial role in the study of orbital integrals of spherical functions; see [$\mathrm{F}^{\prime \prime}$].

We shall now use the Corollary, Theorem 2 and the results concerning spherical and regular functions, to extend the global correspondence results of [FK] (resp. [BDKV] and [F]) which deal with cuspidal representations of metaplectic groups (resp. inner forms) of GL (n). The definitions and proofs which are not given in the following discussion are detailed in these references. Put $G=\mathrm{GL}(n)$. Let \tilde{G} be either a metaplectic group of G, or the multiplicative group of a simple algebra central of rank n over F. The cuspidal G-module $\pi=\otimes \pi_{v}$ and the cuspidal (genuine) \tilde{G}-module $\tilde{\pi}=\otimes \tilde{\pi}_{v}$ are called corresponding if π_{ν} and $\tilde{\pi}_{\nu}$ correspond for each place v of F, where the notion of local correspondence is defined by means of
character relations (see [FK], §27; [F; III], §1). Fix a non-archimedean place u^{\prime}. Let A be the set of equivalence classes of cuspidal G-modules π with a supercuspidal component at u^{\prime}, such that each component of π is obtained by the local correspondence. Let \tilde{A} be the set of equivalence classes of cuspidal \tilde{G}-modules $\tilde{\pi}$ whose component at u^{\prime} corresponds to a supercuspidal $G_{u^{\prime}}$-module (then $\tilde{\pi}_{u^{\prime}}$ is necessarily supercuspidal).

Theorem 3. The correspondence defines a bijection between the sets A and \tilde{A}. The multiplicity of each $\tilde{\pi}$ of \tilde{A} in the cuspidal spectrum $L_{0}(\tilde{G})$ is one.

Remark. (1) In [FK], §28; and [BDKV]; [F; III], §8; this is proven for the set of π in A with two supercuspidal components, and the corresponding subset of \tilde{A}.
(2) Theorem 3 can be extended from the context of A, \tilde{A} to the context of all cusp forms on G, \tilde{G} by known techniques; it will be interesting to establish such an extension by simple means.

Proof of Theorem 3. Fix corresponding supercuspidal $G_{u^{\prime}}$ and $\tilde{G}_{u^{\prime}}$ modules $\pi_{u^{\prime}}$ and $\tilde{\pi}_{u^{\prime}}$, and matrix coefficients $f_{u^{\prime}}$ and $\tilde{f}_{u^{\prime}}$ thereof. Then $f_{u^{\prime}}$ and $\tilde{f}_{u^{\prime}}$ are matching (see [FK], §7; [F; III], §1), namely have matching orbital integrals. For any functions $f^{u^{\prime}}$ on $G^{u^{\prime}}$ and $\tilde{f}^{u^{\prime}}$ on $\tilde{G}^{u^{\prime}}$, the functions $f=f_{u^{\prime}} f^{u^{\prime}}$ and $\tilde{f}=\tilde{f}_{u^{\prime}} \tilde{f}^{u^{\prime}}$ are cuspidal (see, e.g., [F], Lemma I.3). Fix two distinct non-archimedean places u and $u^{\prime \prime}$ of F, other than u^{\prime}, with sufficiently large residual characteristics. Put $\tilde{G}^{u, u^{\prime}, u^{\prime \prime}}=\tilde{G}\left(\mathbf{A}^{u, u^{\prime}, u^{\prime}}\right)$, where $\mathbf{A}^{u, u^{\prime}, u^{\prime \prime}}$ is the ring of F-adeles without $u, u^{\prime}, u^{\prime \prime}$ components. Similarly we have $G^{u, u^{\prime}, u^{*}}, G^{u, u^{\prime}}$, etc. Let $f^{u, u^{\prime}, u^{*}}$ be any function on $\tilde{G}^{u, u^{\prime}, u^{*}}$, and $f_{u^{\prime}}$ any regular function on $G_{u^{\prime \prime}}$. Let $f^{u, u^{\prime}, u^{\prime \prime}}$ be a matching function on $G^{u, u^{\prime}, u^{\prime \prime}}$, and $f_{u^{\prime \prime}}$ a matching regular function on $G_{u^{*}}$. Put $f^{u}=f^{u, u^{\prime}, u^{\prime \prime}} f_{u^{\prime}} f_{u^{*}}$ and
 cal n_{0}-admissible functions. Since $f_{u^{\prime \prime}}$ and $f_{u^{\prime \prime}}$ are zero on the singular set, the functions $f=f_{u} f^{u}$ and $\tilde{f}=f_{u} f^{u}$ are zero on the $G(\mathbf{A})$ and $\tilde{G}(\mathbf{A})$-orbits of any singular element γ in G and \tilde{G} (respectively); hence they are discrete. Since f and \mathcal{f} are matching, the right sides of the trace formulae (2) for G and for \tilde{G}, namely $\Sigma \Phi(\gamma, f)$ and $\Sigma \Phi\left(\gamma^{*}, f\right)$ (see [FK], §4), are equal. By the Corollary to Theorem 1, the left sides are equal, namely $\Sigma^{\prime} m(\pi) \operatorname{tr} \pi(f)=\Sigma^{\prime} m(\tilde{\pi}) \operatorname{tr} \tilde{\pi}(\tilde{f})$. By virtue of the choice of $f_{u^{\prime}}$ and $f_{u^{\prime}}$, the π and $\tilde{\pi}$ are cuspidal, with the supercuspidal components $\pi_{u^{\prime}}$ and $\tilde{\pi}_{u^{\prime}}$ at u^{\prime}. Hence $m(\pi)=1$ (by multiplicity one theorem for the cuspidal representations of $\mathrm{GL}(n)$), and each component π_{ν} of π is relevant (see [FK], $\S 27$; [F; III], $\S 7$; for definition and proof $)$. Since $\operatorname{tr} \pi_{v}\left(f_{v}\right) \neq 0$ for f_{v} matching an f_{v}, and π_{v} is relevant, the main local correspondence theorem ([FK], §27; [F; III], §8) implies that π_{v} corresponds to some $\tilde{\pi}_{v}\left(\pi_{v}\right)$, for each v. Since f_{u} and f_{u} are spherical, if $\operatorname{tr} \pi_{u}\left(f_{u}\right)$ and $\operatorname{tr} \tilde{\pi}_{u}\left(f_{u}\right)$ are non-zero then π_{u} and $\tilde{\pi}_{u}$ are unramified, and so is $\tilde{\pi}_{u}\left(\pi_{u}\right)$. We write our equality in the form

$$
\Sigma\left[\sum_{1} m(\tilde{\pi}) \operatorname{tr} \tilde{\pi}^{u}\left(\tilde{f}^{u}\right)-\Sigma_{2} m(\pi) \operatorname{tr}\left(\tilde{\pi}^{u}\left(\pi^{u}\right)\right)\left(\tilde{f}^{u}\right)\right] \operatorname{tr} \tilde{\pi}_{u}\left(f_{u}\right)=0
$$

The sum Σ ranges over all equivalence classes of unramified unitary (genuine) \tilde{G}_{u}-modules $\tilde{\pi}_{u} . \Sigma_{1}$ ranges over the equivalence classes of \tilde{G}^{u}-modules $\tilde{\pi}^{u}$ such that $\tilde{\pi}=\tilde{\pi}_{u} \otimes \tilde{\pi}^{u}$ appears in (2). Σ_{2} ranges over the $\pi^{u}=\otimes_{v \neq u} \tilde{\pi}_{v}$ such that there is a cuspidal $\pi=\otimes \pi_{\nu}$ with $\tilde{\pi}_{\nu}=\tilde{\pi}_{\nu}\left(\pi_{v}\right)$ for all ν. Since all sums and products in the trace formula are absolutely convergent, and all the representations which appear there are unitary, Theorem 2 implies that $\Sigma_{1}=\Sigma_{2}$ for each $\tilde{\pi}_{u}$. We write this identity in the form

$$
\sum\left[\sum^{1} m(\tilde{\pi}) \operatorname{tr} \tilde{\pi}_{u^{\prime}}\left(\tilde{f}_{u^{\prime \prime}}\right)-\sum^{2} m(\pi) \operatorname{tr}\left(\tilde{\pi}_{u^{\prime}}\left(\pi_{u^{\prime}}\right)\right)\left(\tilde{f}_{u^{\prime \prime}}\right)\right] \operatorname{tr} \tilde{\pi}^{u, u^{\prime \prime}}\left(\tilde{f}^{u, u^{*}}\right)=0
$$

Here Σ ranges over all equivalence classes of irreducible $\tilde{G}^{u, u^{*}}$ modules $\tilde{\pi}^{u, u^{\prime}}$. Σ^{1} ranges over all irreducible $\tilde{G}_{u^{\prime}}$-modules $\tilde{\pi}_{u^{\prime \prime}}$ such that $\tilde{\pi}^{u}=\tilde{\pi}_{u^{\prime}} \tilde{\pi}^{u, u^{\prime \prime}}$ appears in Σ_{1}, and Σ^{2} is over the $\tilde{\pi}_{u^{*}}$ such that the resulting $\tilde{\pi}^{u}$ occurs in Σ_{2}. Since the function $f^{u, u^{\prime}, u^{\prime}}$ is arbitrary, all sums here are absolutely convergent and all representations are unitary, a standard argument of linear independence of characters implies that $\Sigma^{1}=\Sigma^{2}$, for every $\tilde{\pi}^{u^{\prime \prime}}=\tilde{\pi}_{u} \tilde{\pi}^{u, u^{*}}$.

We now use the fact that $\tilde{f}_{u^{*}}$ is an arbitrary regular function. If $\operatorname{tr} \tilde{\pi}_{u^{\prime}}\left(\tilde{f}_{u^{*}}\right) \neq 0$ then $\tilde{\pi}_{u^{\prime}}$ has a non-zero vector fixed by an Iwahori subgroup. Hence the sum Σ^{1} is finite by a theorem of Harish-Chandra (see [BJ]) which asserts that there are only finitely many cuspidal \tilde{G}-modules with fixed infinitesimal character and fixed ramification at all finite places. The sum Σ^{2} consists of at most one term, by the rigidity theorem for cuspidal G-modules.

Recall that $\operatorname{tr} \tilde{\pi}_{u^{\prime}}\left(f_{u^{\prime \prime}}\right)$ is a linear combination of characters (of the form $t \rightarrow t(w \boldsymbol{x})$, where t lies in $T=\left\{\left(z_{i}\right)\right.$ in $\left.\mathbf{C}^{\times n} ; \Pi_{i} z_{i}=1\right\}$, and $\boldsymbol{x}=\left(x_{i}\right)$ varies over $X_{*}=\mathbf{Z}^{n} / \mathbf{Z}$, and $\left.\left(z_{i}\right)(w \boldsymbol{x})=\Pi_{i} z_{w(i)}^{x_{i}}\right)$. Applying linear independence of finitely many characters it is clear that Σ^{1} is empty if Σ^{2} is empty, and that $m(\tilde{\pi})=1$ and $\operatorname{tr} \tilde{\pi}_{u^{*}}\left(\tilde{f}_{u^{*}}\right)=\operatorname{tr} \pi_{u^{\prime}}\left(f_{u^{*}}\right)$ for all matching regular $f_{u^{*}}$ and $\tilde{f}_{u^{*}}$ otherwise. Since the Hecke algebras of $G_{u^{*}}$ and $\tilde{G}_{u^{\prime \prime}}$ with respect to an Iwahori subgroup are isomorphic (by [FK], $\S 17$, in the metaplectic case), we conclude that $\pi_{\mu^{*}}$ and $\tilde{\pi}_{\mu^{*}}$ correspond, and Theorem 3 follows.

Proof of Theorem 2. Fix $q \geqq$ 1. Let $T^{\prime}=T^{\prime}(q)$ be the set of t in T with $\bar{t}=w t^{-1}$ for some w in $W(w$ depends on $t)$ and $q^{-1} \leqq\left|\alpha^{v}(t)\right| \leqq q$ for every root α of A on N. The quotient $\tilde{T}=\tilde{T}(q)$ of T^{\prime} by W is a compact Hausdorff space. Let $\mathbf{C}(\tilde{T})$ be the algebra of complex-valued continuous functions on \tilde{T}. Let n_{0} be a non-negative integer. The element x of X_{*} is called n_{0}-admissible if \mid val $\alpha_{P}(a(x)) \mid \geqq n_{0}$ for every maximal parabolic subgroup P of G. This condition means that there are finitely many walls, determined by the α_{P}, in the lattice X_{*}, such that \boldsymbol{x} is called n_{0}-admissible if it is sufficiently far (the distance depends on
n_{0}) from these walls. The function $P_{x}(t)=\Sigma_{w} t(w x)$ (w in W) is a function on \tilde{T} which depends only on the image of x in X_{*} / W. Note that $f(x)^{\vee}=P_{x}$, and in particular $\operatorname{tr}(\pi(t))\left(f_{x}\right)=P_{x}(t)$. Let $C\left(n_{0}\right)$ be the C-span of all $P_{x}(t)$ with n_{0}-admissible \boldsymbol{x}. It is a subspace of $\mathbf{C}(\tilde{T})$, but it is not multiplicatively closed, unless $n_{0}=0$. An element of $\mathbf{C}(\tilde{T})$ is called n_{0}-admissible if it lies in $C\left(n_{0}\right)$.

Lemma. The space $C(0)$ is dense in $\mathbf{C}(\tilde{T})$.
Proof. This follows from the Stone-Weierstrass theorem, since (1) the space \tilde{T} is compact and Hausdorff, and (2) $C(0)$ is a subalgebra of $\mathbf{C}(\tilde{T})$ which separates points, contains the scalars and the complex-conjugate of each of its elements.

Theorem 2 follows from the special case where $G=\mathrm{GL}(n)$ and $c_{i}(t)=0$ for all i in the Proposition below. The general form with non-zero $c_{i}(t)$ is used in [$\left.\mathrm{F}^{\prime}\right]$ when $G=\mathrm{GL}(3)$ to give a short and simple proof of the trace formulae identity for the base-change lifting from $U(3)$ to $\mathrm{GL}(3, E)$ for an arbitrary test function f.

Proposition. Fix $n_{0} \geqq 0$. Let $t_{i}(i \geqq 0)$ be elements of $\tilde{T} ; c_{i}$ complex numbers; $\tilde{T}_{j}(j \geqq 0)$ compact submanifolds of \tilde{T}; and $c_{j}(t)$ complex valued functions on \tilde{T}_{j} which are measurable with respect to a bounded measure dt on \tilde{T}_{j}. Suppose that

$$
\beta=\sum_{i}\left|c_{i}\right|+\sum_{j} \sup _{t \in T_{j}}\left|c_{j}(t)\right|+\sum_{j} \int_{\dot{T}_{j}}\left|c_{j}(t)\right||d t|
$$

is finite, and that for any n_{0}-admissible \boldsymbol{x} in X_{*} we have

$$
\begin{equation*}
\sum_{i \geq 0} c_{i} P_{x}\left(t_{i}\right)=\sum_{j \geq 0} \int_{T_{j}} c_{j}(t) P_{x}(t)|d t| \tag{5}
\end{equation*}
$$

Then $c_{i}=0$ for all i.
Proof. We begin with a definition. Let ε be a positive number. The points t and t^{\prime} in \tilde{T} are called ε-close if there are representatives t and t^{\prime} of t and t^{\prime} in T^{\prime} such that $\left|\alpha^{\vee}(t)-\alpha^{v}\left(t^{\prime}\right)\right|<\varepsilon$ for every root α^{\vee} on $T\left(=\right.$ coroot on $\left.X_{*}\right)$. Denote by $\tilde{T}_{e}(t)$ the ε-neighborhood of t in \tilde{T}. The quotient by ε of the volume of $\tilde{T}_{\varepsilon}(t)$ is bounded uniformly in ε.
(i) Suppose that $c_{0} \neq 0$. Multiplying by a scalar we assume that $c_{0}=1$. The Lemma implies that for every $\varepsilon>0$ there is $P=P_{\varepsilon}$ in $C(0)$ with $P\left(t_{0}\right)=1$, $|P(t)| \leqq 2$ for all t in \tilde{T}, and $|P(t)|<\varepsilon$ unless t is ε^{2}-close to t_{0}. Such a polynomial P is called below an ε-approximation of the delta function at t_{0}, or simple a "delta function" at t_{0}. Since β is finite, for every $\varepsilon>0$ there exists $N>0$ such that

$$
\sum_{i>N}\left|c_{i}\right|+\sum_{j>N} \int_{\hat{t}_{j}}\left|c_{j}(t)\right||d t|<\varepsilon
$$

Take $\varepsilon=1 / 4(1+\beta)$. Substituting P for P_{x} in (5), if $n_{0}=0$ then we obtain a contradiction to the assumption that $c_{0}=1$. Hence the proposition is proven in the case of $n_{0}=0$. It remains to deal with a general n_{0}.
(ii) Let \boldsymbol{x} be an n_{0}-admissible element of X_{*}. Put $k^{\prime}=2 \max _{P} \mid$ val $\alpha_{P}(a(x)) \mid$. For any \boldsymbol{x}^{\prime} in $X_{*}, \boldsymbol{x}+k^{\prime} x^{\prime}$ is n_{0}-admissible. Since $P_{x}(t) P_{x^{\prime}}\left(t^{k^{\prime}}\right)=\Sigma_{w \in W} P_{x+k^{\prime} w x^{\prime}}(t)$, we have that (5) applies with $P_{x}(t)$ replaced by $P_{x}(t) P_{x^{\prime}}\left(t^{k^{\prime}}\right)$. For a fixed x (and k^{\prime}), \boldsymbol{x}^{\prime} is arbitrary. Replacing \boldsymbol{q} by $\boldsymbol{q}^{k^{\prime}}$ in the definition of \tilde{T} we argue as in (i) and conclude that for every $r \geqq 0$ we have

$$
\begin{equation*}
\sum_{i} c_{i} P_{x}\left(t_{i}\right)=0 \tag{6}
\end{equation*}
$$

here the sum ranges over all i with $t_{i}^{k^{\prime}}=t_{r}^{k^{\prime}}$ (equality in \tilde{T}). Take $r=0$. We conclude that the equality (6) holds also for any n_{0}-admissible \boldsymbol{x}, provided that the sum ranges over the set I of all i for which there is $k=k(i)$ with $t_{i}^{k}=t_{0}^{k}$. It remains to prove the following

Lemma. Suppose that $c_{i}(i \geqq 0)$ are complex numbers such that $\beta=\Sigma_{i}\left|c_{i}\right|$ is finite, and t_{i} are elements of T^{\prime} whose images in $\tilde{T}=T^{\prime} / W$ are distinct, such that for each i there is $k=k(i)$ with $t_{i}^{k}=t_{0}^{k}$. If $\Sigma_{i} c_{i} P\left(t_{i}\right)=0$ for every n_{0}-admissible P then $c_{i}=0$ for all i.

Proof. We may and do assume that $c_{0}=1$ in order to derive a contradiction. If $\eta=1 / 4(1+\beta)$ there is $N>0$ such that $\Sigma_{i>N}\left|c_{i}\right|<\eta$, and a W-invariant polynomial $P(t)=\Sigma_{x} b(x) P_{x}(t)$ with $P\left(t_{0}\right)=1,|P(t)| \leqq 2$ on T^{\prime} and $\left|P\left(t_{i}\right)\right|<\eta$ for $i(1 \leqq i \leqq N)$. This P is a "delta function", and if $n_{0}=0$ then we are done. If $n_{0} \neq 0$ then the "delta function" P is not necessarily n_{0}-admissible. Our aim is to replace P by an n_{0}-admissible "delta function" on multiplying P with a suitable admissible polynomial Q which (depends on P and) attains the value one at t_{0}, while remaining uniformly bounded (by $2[W]$) at each $t_{i}(i \geqq 1$). For this purpose note that our assumption (that for each i there is k with $t_{i}^{k}=t_{0}^{k}$) implies that t_{i} / t_{0} lies in the maximal compact subgroup of T for all i. Hence for every \boldsymbol{x} in X_{*}, the absolute value $\left|t_{i}(x)\right|$ of the complex number $t_{i}(x)$ is independent of i. Take any one-admissible μ in X_{*}, such that $\left|t_{i}(\mu)\right| \geqq\left|t_{i}(w \mu)\right|$ for all w in W. Then $\left|P_{\mu}\left(t_{i}^{s}\right)\right| \leqq[W]\left|t_{0}(m)\right|^{s}$ for every positive integer s (and all i). Put $u_{w}=$ $t_{0}(w \mu) /\left|t_{0}(w \mu)\right|(w$ in $W)$, and

$$
s_{0}=2 n_{0}+2 \max \left\{\left|\operatorname{val} \alpha_{P}(a(x))\right| ; \text { all } P \supset A, \text { all } x \text { with } b(x) \neq 0\right\}
$$

For every $\varepsilon>0$ there is $s>s_{0}$ such that $\left|u_{w}^{s}-1\right|<\varepsilon$ for all w in W, and the choice of a sufficiently small ε guarantees that $\left|P_{\mu}\left(t_{0}^{s}\right)\right| \geqq \frac{1}{2}\left|t_{0}(\mu)\right|^{s}$. Hence the W-invariant polynomial $Q_{s}(t)=P_{\mu}\left(t^{s}\right) / P_{\mu}\left(t_{0}^{s}\right)$ on T^{\prime} satisfies $Q_{s}\left(t_{0}\right)=1$ and $\left|Q_{s}\left(t_{i}\right)\right| \leqq 2[W]$ for all i. The polynomial $Q(t)=P(t) Q_{s}(t)$ lies in $C\left(n_{0}\right)$, hence it satisfies the relation $\Sigma_{i} c_{i} Q\left(t_{i}\right)=0$. Since Q is a delta function at t_{0}, we obtain a
contradiction to the assumption that $c_{0} \neq 0$. This proves the lemma, and completes the proof of Theorem 2.

References

[BDKV] J. Bernstein, P. Deligne, D. Kazhdan and M.-F. Vigneras, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984.
[BZ] J. Bernstein and A. Zelevinsky, Induced representations of reductive p-adic groups I, Ann. Sci. Ec. Norm. Sup., 4^{e} série, 10 (1977), 441-472.
[B] A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259.
[BJ] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Symp. Pure Math. 33 (1979), I, 189-208.
[C] P. Cartier, Representations of p-adic groups: A survey, Proc. Symp. Pure Math. 33 (1979), I, 111-155.
[CD] W. Casselman, Characters and Jacquet modules, Math. Ann. 230 (1977), 101-105; see also: P. Deligne, Le support du caractère d'une répresentation supercuspidale, C.R. Acad. Sci. Paris 283 (1976), 155-157.
[D] V. Drinfeld, Elliptic modules II, Mat. Sbornik 102 (144)(1977) (2) (= Math. USSR Sbornik 31 (1977) (2), 159-170).
[F] Y. Flicker, Rigidity for automorphic forms, J. Analyse Math. 49 (1987), 135-202.
[F'] Y. Flicker, Base change trace identity for U(3), preprint, MSRI (1986); see also: Packets and liftings for $U(3)$, J. Analyse Math. 50 (1988), 19-63, this issue.
[$\mathrm{F}^{\prime \prime}$] Y. Flicker, Stable base change for spherical functions, Nagoya Math. J. 106 (1987), 121-142.
['F] Y. Flicker, Regular trace formula and base change for GL(n), preprint.
["F] Y. Flicker, Regular trace formula and base change lifting, Am. J. Math., to appear.
['F'] Y. Flicker, On the symmetric square. Total global comparison, preprint.
[FK] Y. Flicker and D. Kazhdan, Metaplectic correspondence, Publ. Math. IHES 64 (1987), 53-110.
[FK'] Y. Flicker and D. Kazhdan, Geometric Ramanujan conjecture and Drinfeld reciprocity law, Proc. Selberg Symposium, Oslo, June 1987.
(Received March 22, 1987)

[^0]: ${ }^{\dagger}$ Partially supported by NSF grants.

