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A b s t r a c t .  The Selberg trace formula is of unquestionable value for the study 
of automorphic forms and related objects. In principal it is a simple and natural 
formula, generalizing the Poisson summation formula, relating traces of convolu- 
tion operators with orbital integrals. This paper is motivated by the belief that 
such a fundamental and natural relation should admit a simple and short proof. 
This is accomplished here for test functions with a single supercusp-component, 
and another component which is spherical and "sufficiently-admissible" with 
respect to the other components. The resulting trace formula is then used to 
sharpen and extend the metaplectic correspondence, and the simple algebras 
correspondence, of automorphic representations, to the context of automorphic 
forms with a single supercuspidal component, over any global field. It will be 
interesting to extend these theorems to the context of all automorphic forms by 
means of a simple proof. Previously a simple form of the trace formula was 
known for test functions with two supercusp components; this was used to 
establish these correspondences for automorphic forms with two supercuspidal 
components. The notion of ~sufficienfly-admissible" spherical functions has its 
origins in Drinfeld's study of*he reciprocity law for GL(2) over a function field, 
and our form of the trace formula is analogous to Deligne's conjecture on the 
fixed point formula in 6tale cohomology, for a correspondence which is multip- 
lied by a sufficiently high power of the Frobenius, on a separated scheme of finite 
type over a finite field. Our trace formula can be used (see [FK']) to prove the 
Ramanujan conjecture for automorphic forms with a supercuspidal component 
on GL(n) over a function field, and to reduce the reciprocity law for such forms to 
Deligne's conjecture. Similar techniques are used in ['F] to establish base change 
for GL(n) in the context of automorphic forms with a single supercuspidal 
component. They can be used to give short and simple proofs of rank one lifting 
theorems for arbitrary automorphic forms; see ["F] for base change for GL(2), 
[F'] for base change for U(3), and ['F'] for the symmetric square lifting from SL(2) 
to PGL(3). 

Let F be a global field, A its ring of  adeles and A I the ring of  finite adeles, G a 
connected reductive algebraic group over F with center Z. The group G o f  F-  
rational points on G is discrete in the adele group G(A) of  G. Put G' = G/Z and 
G'(A) = G(A)/Z(A). The quotient G' \ G'(A) has finite volume with respect to the 
unique (up to a scalar multiple) Haar measure dg on G'(A). Fix a unitary 
complex-valued character to of  Z \ Z(A). For any place v of  F let Fv be the 
completion of  F at v, and Gv = G(F~) the group of  F~-points on G. If F, is 
non-archimedean, let Rv denote its ring of  integers. For almost all v the group G, is 
defined over R,, quasi-split over F~, split over an unramified extension ofF , ,  and 
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K, = G(R,) is a maximal compact subgroup. For an infinite set of  places (of 
positive density) u of  F, the group Gu is split (over Fu). A fundamental system of 
open neighbourhoods of  1 in G(A) consists of  the set Five v H, X FI,~ v K,, where V 
is a finite set of  places of  F and H~ is an open subset of  Gv, containing 1. 

Let L (G) denote the space of all complex-valued functions ~ on G \ G (A) which 
satisfy (1) O(zg)= o9(z)O(g) (z in Z(A), g in G(A)), (2) r is absolutely square- 
integrable on G' \G ' (A) .  G(A) acts on L(G) by right translation: (r(g)O)(h)= 
O(hg); L(G) is unitary since o9 is unitary. The function 0 in L(G) is called cuspidal 
if for each proper parabolic subgroup P of G over F with unipotent radical N we 
have f O(ng)dn = 0 (n in N \ N(A)) for any g in G(A). Let Lo(G) denote the space 
of  cuspidal functions in L(G), and r0 the restriction o f t  to Lo(G). The space Lo(G) 
decomposes as a direct sum with finite multiplicities of  invariant irreducible 
unitary G(A)-modules called cuspidal G-modules. 

Let f b e  a complex-valued function on G(A) with f(g) = og(z)f(zg) for z in 
Z(A), which is supported on the product of  Z(A) and a compact open neighbor- 
hood of  1 in G(A), smooth as a function on the archimedean part G(Fo~) of  G(A), 
and bi-invariant by an open compact subgroup of  G(As). Fix Haar measures dg~ 
on G'v = GdZ~ for all v, such that the product of  the volumes I K,/Zv N K,I 
converges, Then dg = | dg, is a measure on G'(A). The convolution operator 
ro(f) = fa,~A) f(g)ro(g)ilg is of  trace class; its trace is denoted by tr r0(f). Then 

(1) tr r0(f) = Y.' m(tt) tr n(f) ,  

where Y' indicates the sum over all equivalence classes of cuspidal represen- 
tations tr of  G(A), and m (n) denotes the multiplicity of  7r in L0(G); each tr here is 
unitary, and the sum is absolutely convergent. 

The Selberg trace formula is an alternative expression for (1). To introduce it 
we recall the following 

D e f i n i t i o n s .  Denote by Z~(H) the centralizer of  an element ~, in a group H. 
A semi-simple element ~, of  G is called elliptic if Z~(G'(A))IZ~(G') has finite 
volume. It is called regular if Z~(G'(A)) is a torus, and singular otherwise. Let ? be 
an elliptic element of G. The orbital integral of  f a t  ~, is defined to be 

tl~(7 , f )  = f f(gYg- 1)dg. 
G'(A)/74~') 

Similarly, for any place v of  F the element ~ of  Gv is called elliptic if  Z~(G') has 
finite volume, and regular if  Zy (G,) is a torus. If 7 is an element of  G and there is a 
place v of  F such that ? is elliptic (resp. regular) in Gv, then 7 is elliptic (resp. 
regular). The orbital integral off ,  at 7 in G, is defined to be 
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f~(~, iv) = ~')(~, ~'~ d?) = : fv(g~g-1) d e  . 

~;/74G') 

It depends on the choice of a Haar measure d~ on Zr(G'O. 
Let {0,} be an orthonormal basis for the space L0(G). The operator r0(f) is an 

integral operator on G'(A) with kernel K~f (x, y) = Z ~  r(f)~,(x)~#(y). The opera- 
tor r ( f )  is an integral operator on G'(A) with kernel K:(x, y) = ~r f ( x - lTy )  (7 in 
G'). If  G is anisotropic (namely G' \ G'(A) is compact), then Lo(G) = L(G) and 
r -- r0. Since K~I (x, y) = K:(x, y) is smooth in both x and y, we integrate over the 
diagonal x = y in G'(A), change the order of  summation and integration as usual, 
and obtain the Selberg trace formula in the case of  compact quotient, as follows. 

Proposition. I f  6 is anisotropic, then for every function f on G(A) as above 
we have 

(2) ~ '  m(rt)tr n ( f )  = ~ q~(7, f ) .  
(r} 

The sum on the left is the same as in (1). The sum on the right is finite; it ranges 
over the conjugacy classes o f  elements in G'. 

R e m a r k .  If G is anisotropic, then each element y in G is elliptic. 

For a general group G we introduce the following 

Definition. The funct ionfis  called discrete if  for every x in G(A) and 7 in G 
we have f(x-~Tx) = 0 unless ~, is elliptic regular. 

Changing again the order of  summation and integration as usual we obtain the 

P r o p o s i t i o n .  I f  f is discrete, then 

{r} 
G'(A) 

(3) 

The sum on the right is finite. It ranges over the set o f  conjugacy classes o f  elliptic 
regular elements in G'. 

R e m a r k .  It is well known that the sum on the fight is finite; for a proof see 
[FK], w (if G = GL(n)), and IF], Prop. 1.3 (in general). 

Definition. The function f i s  called cuspidal if  for every x, y in G(A) and 
every proper F-parabolic subgroup P of  G, we have fN~A)f(xny)dn -- 0, where N 
is the unipotent radical of  P. 
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When f is cuspidal, the convolution operator r ( f )  factorizes through the 
projection on Lo(G), r(f) is of  trace class, t r r o ( f ) =  tr r ( f )  and KI(x, y )=  
K~I (x, y), and we obtain 

C o r o l l a r y .  I f  f is cuspidal and discrete, then the equality (2) holds. The sum 
on the left is as in (1). The sum on the right is as in (3). 

For some applications we need to replace the requirement t h a t f  be discrete by 
a requirement on the orbital integrals of f (but  not on f i tself) .  The purpose of  this 
work is to present such a requirement, and apply the resulting trace formula to 
extend some global lifting theorems, such as those of [FK]. 

Fix a non-archimedean place u of F such that G. is split, and the component tou 
of  to at u is unramified (namely trivial on the multiplicative group R x of  R.,). 

Def in i t ion .  A complex-valued compactly-supported modulo-center func- 
tion f .  on G~ is called spherical if it is K.-biinvariant. Let H.  be the convolution 
algebra of such functions. Of  course H~ is empty unless the central character to. is 
unramified. 

For any maximal (proper) F..-parabolic subgroup P. = M~V~ of Gu, where N. is 
the unipotent radical of  P., and 34.. a Levi subgroup, define an F x -valued 

character ae. of  M.  by ae.(m) = det(ad(m) I L(N.)), where L(N~) denotes the Lie 
algebra of  N., and ad(m) I L(N~) denotes the adjoint action o f m  in M~ on L(N.). 
Let val~ : F :  ~ Z be the normalized additive valuation. Let d~ be a maximally 
split torus in G.. For any non-negative integer n let A.<, ") be the set of  a in .4~ such 
that I val. (ae.(a))l < n for some maximal Fu-parabolic subgroup P., containing A u 
of  G.. 

Def in i t ion .  A spherical function f .  is called n-admissible if the orbital 
integral O(a, f . )  is zero for every regular a in A~ n). 

Let A" denote the ring of F-adeles without u-component. Put G u ---- G(A"). 
Write f = f j u  i l l  is a function on G(A), f~ on G.,, f "  on G ", and f ( x , y ) =  
f~(x)f~(y) for x in G. and y in G". We choose the place u such that the central 
character to is unramified at u. 

T h e o r e m  1. Let f "  be a function on G" which is compactly supported 
modulo Z" = Z(A") and vanishes on the G"-orbit of  any singular ~, in G. Then 
there exists a positive integer no--no(f  u) such that for every spherical 
no-admissible function f .  there is a function f~ on G,, with (1) ~(x ,  jr,',) -- t}(x, f . )  
for all regular x in G., and (2 ) f '  -- f',,f" is discrete. 

Proo f .  For every maximal F-parabolic subgroup P of  G and every place 
v § u of  F there exists a non-negative integer Cy.e which depends on f " ,  with 
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C,~ -- 0 for almost all v, such that if  7 lies in a Levi subgroup M of P and 
fU(x-  lyx) ~ 0 for some x in G ~, then 

(4), I vaL(ae(7)) I =< G.e. 

Put C~=Zv§ Since 7 is rational (in G), the product formula 
Y-v valy(ae(7))--0 on F x implies that the inequality (4), remains valid also for 
v = u. Choose no > C~y for all (of the finitely many conjugacy classes of )  P. Letf~ 
be any spherical n0-admissible function. Put f =  f~fu.  It is well known (for a 
proof see [F], Prop. 1.3) that there are only finitely many rational conjugacy 
classes 7 in G' such that f i s  not zero on the G'(A)-orbit of  7. Note tha t f i s  zero on 
the G(A)-orbits of  all singular 7 in G by assumption. Let 7, (1 < i _--< m )  be a set of  
representatives for the regular non-elliptic rational conjugacy classes in G such 
that f i s  non-zero on their G(A)-orbits. Since y~ is non-elliptic, it lies in a Levi 
subgroup M,. of  a maximal parabolic subgroup P, ofG.  Sincef~ is n0-admisible, the 
relation t}(7~, fu) ~: 0 implies that [val~(ae,(}'~))l > no. This contradicts (4)~. 
Hence t}(7~, f~ )=  0 for all i. Let S~ denote the characteristic function of  the 
complement in G~ of  a sufficiently small open closed neighborhood of  the orbit of  
7~ in Gu. Since }'i is regular non-elliptic, we may and do take S~ to be one on the 
elliptic set of  G~. Put f'~ = f~ IIm_i S~. Then f,', is zero on the orbit of  y~ 

(1 < i < m), and ~(7, f~') = t}(7, f~) for every regular 7 in Gu. Since jr' = f'~f~ 
vanishes on the G(A)-orbit of  each rational 7 in G which is not elliptic-regular, the 
theorem follows. 

Since both sides of (2) are invariant distributions, we conclude the immediate 

C o r o l l a r y .  Suppose that f = f~f~ is a cuspidal function which vanishes on the 
G(A)-orbit of  every singular ~ in G, and~ is a spherical no-admissible function with 
no -~ no(f ~). Then the equality (2) holds, where the sum on the left is as in (1), while 
the sum on the right is as in (3). 

D e f i n i t i o n .  A Gu-module 7tu is called unramified if it has a non-zero K,,-fixed 
vector. 

For applications such as those given in Theorem 3 below, we need to show that 
the set of  n-admissible functions is sufficiently large in the following sense. 

T h e o r e m  2. Let {lt~; i _-> 0} be a sequence of  inequivalent unitary unrami- 
fled Gu-modules, and c~ complex numbers, such that E~c~ tr tt~(f~) is absolutely 
convergent for every spherical function f~. Suppose that there is a positive integer no 
such that ~,~ c~ tr 7t~(fu) -- O for all no-admissible f~. Then ci = O for all i. 

P r o o f .  This is delayed to the end of  this paper. 
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R e m a r k .  The notion of n-admissible functions is suggested by Drinfeld [D], 
at least in the case of  G --- GL(2). For a general G the Corollary is a representation 
theoretic analogue of  Deligne's conjecture on the Grothendieck-Lefschetz fixed 
point formula for the trace of  a finite flat correspondence on a separated scheme 
of  finite type over a finite field, which is multiplied by a sufficiently high power of  
the Frobenius morphism. We hope to explain this analogy in more detail in our 
work (in preparation) on the geometric Ramanujan conjecture for GL(n) (see 
also [FK']). 

In the proofs of  Theorem 2 and Theorem 3 below we shall use some results 
concerning unramified representations and spherical functions (see [C]), and 
regular functions. These will be recalled now in order to be able to give an 
uninterrupted exposition of  the proof of  Theorem 3. 

Let G be a split p-adic reductive group with minimal parabolic subgroup 
B = AN ,  where N is the unipotent radical of  B and the Levi subgroup A is a 
maximal (split) torus. Let X* = X*(A ) be the lattice of  rational characters on A, 
and let X,  = X , ( A )  be the dual lattice. IfA ~ is the maximal compact subgroup of  
A then X ,  ~--A/A ~ Let T = X*(C) denote the complex torus Hom(X, ,  CX). The 
Weyl group W of A in G acts on A, X*, X ,  and T. Each t in T defines a unique 
C X-valued character of  B which is trivial on N and on A ~ The G-module 
I ( t )  -- Ind(~U2t; B, G) normalizedly induced from the character t of  B is unrami- 
fled and has a unique unramified irreducible constituent ~t(t). We have 7t(t)--~ 
~(t ') if  and only i f  t" = wt for some w in W. The map t ~ ~z(t) is a bijection from 
the variety T~ W to the set of  unramified irreducible G-modules. Put t (n) for the t 
associated with such a it. Let a, ( 1 < i < m) be a set of  simple (with respect to N) 
roots in the vector space X* | R = Hom(X, ,  R), and ai the corresponding 
character of  A, defined as usual by ai(a) -- ad(a) ] L(N~), where ad(a) denotes the 
adjoint action of A on the Lie algebra L(N~) of  the root subgroup Ne of  at in N. 
Denote by a~ (1 ~ i _-< m) the corresponding set of  coroots in the dual space 
X,  | R, and by aiv the corresponding set of  characters of  the torus T -- X*(C) -- 
Hom(X,,  CX), defined as usual by a~V(exp T ) - - e x p ( a ~ ,  T) for all T in X* | 
C = Horn(X,, C); here ( . ,  .) is the pairing between X,  and X*. There exists 
r ----q(G)> 1 such that if  it is (irreducible, unramified and) unitary, then (l)  
q - l <  lai~(t)l < q  for all i (1 =< i _-< m), and (2) the complex conjugate [ o f t  is 
equal to w t -  ~ for some w in W. 

If  f is a spherical function then the value of  the normalized orbital integral 
F(a ,  f )  = A(a)tb(a, f )  at a regular a in A depends only on the W-orbit of  the 
image x of  a in X,;  it is denoted by F(x ,  f ) .  Let C[X,] ~" be the algebra of  
W-invariant elements in the group ring C[X,]. The Satake transform f ~ f  ~ = 

Y.x~x. F ( x ,  f ) x  defines an algebra isomorphism from the convolution algebra H of  
spherical functions, to C[X,] w. For each x in X, ,  letf(x) be the element of  H with 
f ( x )  v __ Zwew wx.  Thenf(x)  is n0-admissible if  I val ae(w(a(x)) ) t  > no for every w 
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in W and parabolic subgroup P containing A; a(x) is an element of A which 
corresponds to x under the isomorphism ofA/A ~ with X ,  fixed above. We have 

tr(x(t))(f) = t r ( I ( / ) ) ( f ) = f v ( t )  for every f in H and t in T, where f v ( t ) =  
Xx~x. F(x, f)t(x).  

Def in i t i on .  Consider x in X.  with val a(a(x)) § 0 for each root a of  A on N. 
A complex-valued locally-constant functionfwithf(zg)co(z) = f(g) for all g in G 
and z in Z which is compactly supported modulo Z is called x-regular if f (g) is 
zero unless there is z in Z such that zg is conjugate to an element a in A whose 
image in X.  is x, in which case the normalized orbital integral F(g, f )  is equal to 
w(z)-  1. If f is x-regular then we denote it by f~. A regular function is a linear 
combination with complex coefficients of  x-regular functions. 

R e m a r k s .  (1) Any regular function vanishes on the singular set; in fact it is 
supported on the regular split set by definition. 

(2) If  rt is an admissible G-module with central character co, then the norma- 
lized module n~ of  coinvariants [BZ] is an A-module; its character is denoted by 
X(nN). If f~ is an x-regular function, then a simple application of the Weyl 
integration formula and the theorem of Deligne-Casselman [CD] implies that 

tr n(f~) = [W] -1 f (Ax(rtN))(a)F(a, f~)da. 

A/z 

I f t r  rt (f~) is non-zero, then there exists (i) t in Tsuch that it is a constituent of  I(t)  
(by Frobenius reciprocity), and (ii) a subset W(~t, t) of  W such that 

tr n(f~) = Y~ t(wx) (w in W(n, t)). 
W 

(3) Each constituent of  I(t), including rt, has a non-zero vector fixed by the 
action of an Iwahori subgroup (see Borel [B], (4.7), in the case of  a reductive 
group, and [FK], w 17, for the case of  the metaplectic groups considered below). 

(4) Regular functions play a crucial role in the study of  orbital integrals of  
spherical functions; see [F"]. 

We shall now use the Corollary, Theorem 2 and the results concerning spherical 
and regular functions, to extend the global correspondence results of  [FK] (resp. 
[BDKV] and [F]) which deal with cuspidal representations of  metaplectic groups 
(resp. inner forms) of  GL(n). The definitions and proofs which are not given in 
the following discussion are detailed in these references. Put G -- GL(n). Let G be 
either a metaplectic group of G, or the multiplicative group of  a simple algebra 
central of  rank n over F.  The cuspidal G-module n = O n, and the cuspidal 
(genuine) G-module ~ = O ~t, are called corresponding if it, and ~t, correspond for 
each place v o fF ,  where the notion of  local correspondence is defined by means of  
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character relations (see [FK], w [F; III], w Fix a non-archimedean place u'. 
Let A be the set of  equivalence classes of cuspidal G-modules n with a supercuspi- 
dal component  at u', such that each component  of 7t is obtained by the local 
correspondence. Let A be the set of  equivaleiace classes of  cuspidal G-modules 
whose component  at u '  corresponds to a supercuspidal G,,-module (then fr~, is 
necessarily supercuspidal). 

T h e o r e m  3. The correspondence defines a bijection between the sets .4 and 
,~. The multiplicity of  each ~t of.4 in the cuspidal spectrum Lo(G) is one. 

R e m a r k .  (1) In [FK], w and [BDKV]; [F; III], w this is proven for the set 
of  7t in.4 with two supercuspidal components,  and the corresponding subset of,4, 

(2) Theorem 3 can be extended from the context of.4,  ,4 to the context of all 
cusp forms on G, d by known techniques; it will be interesting to establish such 
an extension by simple means. 

P r o o f  o f  T h e o r e m  3.  Fix corresponding supercuspidal G~, and Gu,- 
modules nu, and ~tu,, and matrix coefficients f~, and f,,, thereof. Then f~, and f~, are 
matching (see [FK], w [F; III], w namely have matching orbital integrals. For 
any functions f l '  on G ~' and f u' on G"', the functions f = f~,f u, and f = f,,f~' are 
cuspidal (see, e.g., [F], Lemma 1.3). Fix two distinct non-archimedean places u 
and u" of F,  other than u', with sufficiently large residual characteristics. Put  
d ~,u'*'= d(A~*',u'), where A ~*','" is the ring of  F-adeles without u, u', u" 
components.  Similarly we have G u,u',u', G u*', etc. Let f~,,.u, be any function on 
d ~' ' ' ' ' ,  andf~, any regular function on Gu,. L e t f  ~#'~" be a matching function on 
G ",'',u', and f~, a matching regular function on G~,. Put  f u =  fu,,,,f~,f~, and 
f u  =f~.u,,,,,fj~,. Put no -- max{n0(fu), n 0 ~ ) } .  Letf~ andf~ be matching spheri- 
cal n0-admissible functions. Since f~. and fu, are zero on the singular set, the 
functions f = f ~ f  ~ and f = f ~ f  ~ are zero on the G(A) and d(A)-orbits of  any 
singular element 7 in G and d (respectively); hence they are discrete. S i n c e f a n d f  
are matching, the right sides of  the trace formulae (2) for G and for d ,  namely 
Z O(y, f )  and ZO(7*, f )  (see [FK], w are equal. By the Corollary to Theorem 1, 
the left sides are equal, namely Z' m(n) t r  ~t(f) = Z' m(~t)tr ~t(f). By virtue of  the 
choice off. ,  and f~,, the it and ~ are cuspidal, with the supercuspidal components  
7tu, and ~t~, at u'. Hence m(n)  = 1 (by multiplicity one theorem for the cuspidal 
representations of GL(n)), and each component  n, of  n is relevant (see [FK], w 
IF; III], w for definition and proof).  Since tr lt,(~) ~ 0 forf~ matching anf~, and 
n, is relevant, the main local correspondence theorem ([FK], w [F; III], w 
implies that n, corresponds to some ~t,(n,), for each v. Sincef~ andf~ are spherical, 
if  tr ltu(f~) and tr ~tu(f~) are non-zero then rt~ and ~t~ are unramified, and so is 
~t~(rt.,). We write our equality in the form 
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F q 

The sum Z ranges over all equivalence classes of  unramified unitary (genuine) 

Gu-modules nu. Z~ ranges over the equivalence classes of  dU-modules ~" such that 
ft = ~t. | ~" appears in (2). E2 ranges over the 7t" = | fry such that there is a 
cuspidal n = | ~z, with ~, = ~v(rc~) for all v. Since all sums and products in the 
trace formula are absolutely convergent, and all the representations which appear 
there are unitary, Theorem 2 implies that El = Z2 for each ~t~. We write this 
identity in the form 

[~1 m(ft)tr ~..(fu-) - ~2 m(rt)tr(~tu.(ztu.))(f~.)] tr ~tu,""(f ","") = 0. 

Here Z ranges over all equivalence classes of  irreducible d ",u" modules ft ","". 

E l ranges over all irreducible G..-modules ~.. such that ~" -- ~t..~t ",u" appears in 
El, and Z 2 is over the ~t,,. such that the resulting ~t" occurs in Y.2. Since the function 
f","',"" is arbitrary, all sums here are absolutely convergent and all representations 
are unitary, a standard argument of  linear independence of  characters implies 
that Z 1 = Z 2, for every ~t ~" = ~t~," ' .  

We now use the fact that f . .  is an arbitrary regular function. If  tr ~ u ~ . )  ~ 0 
then ~.. has a non-zero vector fixed by an Iwahori subgroup. Hence the sum E l is 
finite by a theorem of  Harish-Chandra (see [B J]) which asserts that there are only 
finitely many cuspidal G-modules with fixed infinitesimal character and fixed 
ramification at all finite places. The sum ~2 consists of  at most one term, by the 
rigidity theorem for cuspidal G-modules. 

Recall that tr f t , . ( f . . )  is a linear combination of  characters (of the form 
t ~ t (wx) ,  where t lies in T = {(z~) in CX"; l-l~z~ = 1}, and x = (x~) varies over 

x, 
X .  = Z " / Z ,  and ( z~) (wx)= II~z~u)). Applying linear independence of  finitely 
many characters it is clear that Z ~ is empt~y i fZ 2 is empty, and that m(~) = 1 and 

tr ~ . . ( f . . )= tr rtu,(f~.) for all matching regular f . .  and f~. otherwise. Since the 
Hecke algebras of  G.. and G.. with respect to an Iwahori subgroup are isomorphic 
(by [FK], w 17, in the metaplectic case), we conclude that n~. and ~t,,. correspond, 
and Theorem 3 follows. 

P r o o f  o f  T h e o r e m  2. Fix r > 1. Let T' = T'(q)  be the set of  t in T with 

[ = wt - t for some w in W ( w  depends on t) and q-~ < l a ~(t)l < r for every root a 
of  A on N. The quotient/~ -- 7~(r of  T' by W is a compact Hausdorff space. Let 
C(7 ~) be the algebra of  complex-valued continuous functions on T. Let no be a 
non-negative integer. The element x of  AT. is called no-admissible if  

I val ae(a(x) ) l  >= no for every maximal parabolic subgroup P of  G. This condition 
means that there are finitely many walls, determined by the ae, in the lattice X. ,  
such that x is called n0-admissible if it is sufficiently far (the distance depends on 
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no) from these walls. The function P,(t) = Zw t(wx) (w in W) is a function on 7 ~ 
which depends only on the image o f x  in X, /W.  Note that f (x)  v = Px, and in 
particular tr(n(t))(fD=Px(t). Let C(no) be the C-span of all P~(t) with 
no-admissible x. It is a subspace of  C(T), but it is not multiplicatively closed, 
unless no = 0. An element of  C(7 ~) is called no-admissible if it lies in C(no). 

L e m m a .  The space C(O) is dense in C(7"). 

Proof .  This follows from the Stone-Weierstrass theorem, since (1) the space 
7~is compact and Hausdorff, and (2) C(0) is a subalgebra of  C(]') which separates 
points, contains the scalars and the complex-conjugate of  each of  its elements. 

Theorem 2 follows from the special ease where G = GL(n) and ci(t) = 0 for all i 
in the Proposition below. The general form with non-zero c~(t) is used in [F'] 
when G --- GL(3) to give a short and simple proof of  the trace formulae identity 
for the base-change lifting from U(3) to GL(3, E)  for an arbitrary test functionf.  

P r o p o s i t i o n .  Fix no > O. Let t~ (i >-_ O) be elements ofT"; ci complex numbers; 
~ ( j  > O) compact submanifolds ofl ' ;  and cj(t) complex valued functions on 
which are measurable with respect to a bounded measure dt on ~ .  Suppose thai 

Ic~l + ~  sup Iq(t)l +Y~ f ]cj(t)l Idt] fl--Y, 
i j tE~ j , J  

is finite, and that for any no-admissible x in X ,  we have 

(5) Y. c, Px(t,) --- ~ f cj(t)Px(t)ldt I. 
i>-o j>_o 

Then c~ = 0 for all i. 

P r o o f .  We begin with a definition. Let e be a positive number. The points t 
and t '  in 7"are called e-close if  there are representatives t and t '  o f t  and t '  in T' 
such that ]a v(t) - a v(t')] < e for every root a ~ on T( -- coroot on X,). Denote 
by ~P~(t) the e-neighborhood of  t in ~P. The quotient by e of  the volume of  T~ (t) is 
bounded uniformly in e. 

(i) Suppose that co § 0. Multiplying by a scalar we assume that Co - 1. The 
Lemma implies that for every e > 0 there is P = P~ in C(0) with P(to)--- 1, 
[P ( t )  [ < 2 for all t in I", and [P ( t )  I < e un les s  t is e2-close to to. Such a polynomial 
P is called below an e-approximation of  the delta function at to, or simple a "delta 
function" at to. Since fl is finite, for every e > 0 there exists N > 0 such that 

I c i l +  ~ f Iq(t)l Id t l<e .  
i > N  j > N  ,J 
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Take e = I/4(1 +f l ) .  Substituting P for Px in (5), i f  no = 0 then we obtain a 
contradict ion to the assumption that Co -- 1. Hence  the proposi t ion is proven in 
the case o f  no = 0. It remains to deal with a general no. 

(ii) Let x be an n0-admissible element o f  X , .  Put  k '  = 2 maxe [val ae(a(x))[.  
For  any x '  in X , ,  x + k'x" is n0-admissible. Since Px(t)P~,(t k') = ~,wEw Px+k,wx,(t), 

we have that (5) applies with P~(t) replaced by P~(t)Px,(tk'). For  a fixed x (and k'), 
x '  is arbitrary. Replacing q by qk. in the definition of  ir we argue as in (i) and 
conclude that for every r > 0 we have 

(6) Z c, Px(t,) = 0; 
i 

here the sum ranges over all i with t~ '= t k" (equality in 7~). Take r = 0. We 
conclude that the equali ty (6) holds also for any n0-admissible x,  provided  that 

the sum ranges over  the set I o f  all i for which there is k = k( i )  with t k = to k. It 
remains to prove the following 

/_ ,emma.  Suppose that c~ (i >= O) are complex numbers such that fl = Zi I ci I is 
f ini te,  and  t~ are elements o f T '  whose images in T = T ' / W  are distinct, such that 
for  each i there is k = k(i)  with t k = t~o. IfZ~ c.,P(t~) = O for  every no-admissible P 
then c~ = 0 for  all i. 

P r o o f .  We may and do assume that Co = 1 in order to derive a contradiction.  

I f  r / =  1/4(1 + p)  there is N >  0 such that Z~>N I C~I < t/, and a W-invariant  
polynomial  P(t)  = ~ b(x)Px(t) with P(to) -- 1, IP(t) l  < 2 on T '  and IP(t~)l < r/ 
for i (1 < i _-< N). This P is a "delta function",  and if  no -- 0 then we are done. I f  
no § 0 then the "delta function" P is not  necessarily n0-admissible. Our  a im is to 
replace P by an n0-admissible "delta function" on multiplying P with a suitable 

admissible polynomial  Q which (depends on P and) attains the value one at to, 
while remaining uniformly bounded  (by 2[ W]) at each t~ (i _-> 1). For  this purpose 
note that our  assumption (that for each i there is k with t k = t0 k) implies that tJto 
lies in the maximal  compact  subgroup o f  T for all i. Hence  for every x in X . ,  the 
absolute value I t,(x)l o f  the complex number  t~(x) is independent  o f  i. Take any 

one-admiss ib le /4  in X . ,  such that I t~(a)l = I/i(w/4)l for all w in W. Then 
Ie,(tDI <=[W]lto(m)l" for every posit ive integer s (and all i). Put  u , , =  

to(Wp)/I to(wp) l (w in W), and 

So = 2no + 2 max{ I val ae(a(x))l;  all P ~ A, all x with b(x)  ~ 0}. 

For  every e > 0 there is s > So such that I u~ - 11 < e for all w in W, and the 

choice of  a sufficiently small e guarantees that I P,(t~)l >= �89 t0(~)I'. Hence  the 
W-invariant  polynomial  Q,(t)=P~,(t')/P~,(t~) on T'  satisfies Qs(t0)= 1 and 

I Q,(t~)l < 2[W] for all i. The polynomial  Q(t)  = P(t)Q~(t) lies in C(no), hence it 
satisfies the relation Z; c~Q(ti) = 0. Since Q is a delta function at to, we obtain a 
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contradiction to the assumption that co ~ 0. This proves the lemma, and com- 
pletes the proof of  Theorem 2. 
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