
SUMMATION FORMULAE, AUTOMORPHIC REALIZATIONS

AND A SPECIAL VALUE OF EISENSTEIN SERIES

Yuval Z. Flicker and J. G. M. Mars

Let F be a global �eld of characteristic other than 2 , Fv its completion at a place

v; AA its ring of adeles and  : AA ! IC� a non-trivial additive character which is trivial

on the discrete subgroup F of AA . Let C(Fv) be the Schwartz space of Fv if v is

archimedean, and the space C1c (Fv) of locally constant compactly supported IC -valued

functions on Fv if v is non-archimedean. Let f0v (2 C(Fv)) be the characteristic function

of the ring Rv of integers of Fv in the latter case. Denote by C(AA) the IC -span of


vfv; fv 2 C(Fv) for all v; fv = f0v for almost all v . Denote by  v the component of

 at v , and let dvy be the Haar measure of Fv normalized to have the property that

the Fourier transform

fv ! Ffv; Ffv(x) =

Z
Fv

fv(y) v(xy)dvy;

is an endomorphism of the vector space C(Fv) which satis�es the Fourier inversion formula

(F(Ffv))(x) = fv(�x) . Write F(
vfv) for 
vFfv . One has the well-known

POISSON SUMMATION FORMULA. The distribution D(f) =
P
x2F

f(x) on C(AA)

satis�es D(f) = D(Ff)

This formula follows easily from the Fourier inversion formula (see, e.g., [L], XIV,

x6, p. 291), and has many applications. One of these applications concerns the � -(or

Weil, oscillator, smallest) representation of the unique central topological two-fold covering

(metaplectic) group

1! f�1g ! Sv
p
*)
s
Sv ! 1; 1! f�1g ! SAA

p
*)
s
SAA ! 1

of Sv = SL(2; Fv); SAA = SL(2;AA) . As usual (see [K], or [F], [FKS]), the elements of Sv
and SAA will be described as pairs (g; �) , or �s(g) , with � in ker p = f�1g and g in

Sv or SAA , and with product rule

�s(g)� 0s(g0) = �� 0�(g; g0)s(gg0):
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For g =

�
a b

c d

�
in GL(2) , put t(g) = (c; d=det g) if cd 6= 0 and ord c is odd, and

t(g) = 1 otherwise; here (:; :) is the Hilbert symbol. Put

�(g; g0) =

�
x(gg0)

x(g)
;

x(gg0)

x(g0)det g

�
; x

��
a b

c d

��
=

�
c; c 6= 0,

d; c = 0.

Then (the restriction to SL(2) of) �(g; g0) = �(g; g0)t(g)t(g0)t(gg0)�1 is a two-cocycle of

Sv in f�1g , uniquely determined by the choice of the section s to the projection p .

De�ne a two-cocycle �AA on SAA by �AA = �v�v .

Let v : F
�
v ! IC� be the twisted character de�ned by

v(x)
�1 = jxj1=2v

Z
 v(

1

2
xy2)dvy=

Z
 v(

1

2
y2)dvy

(or v(x) = jxj
1=2
v

R
 v(�

1
2
xy2)dvy=

R
 v(�

1
2
y2)dvy) introduced by Weil [We; 1964] (see

also [F], [FKS]). It satis�es v(a)v(b) = v(ab)(a; b)v . Then v : F�v =F
�2

v ! IC� has

order 4, and AA = �vv is trivial on the subgroup F�AA�
2

of the group AA� of ideles.

The representation �v of Sv is de�ned on the space C(Fv) by means of the operators�
�v

�
�s

�
1 b

0 1

��
fv

�
(x) = � v(

1

2
bx2)fv(x);�

�v

�
�s

�
0 �1

1 0

��
fv

�
(x) = �cv(Ffv)(�x);�

�v

�
�s

�
a 0

0 a�1

��
fv

�
(x) = �v(a)jaj

1=2
v fv(ax)

(a 2 F�v ; b 2 Fv; � 2 f�1g = ker p); where cv = v(�1)
�1=2 is an eighth root of unity

in IC ( cv = 1 for almost all v and �vcv = 1 ). Note that SL(2; Fv) is generated by the

matrices

�
0 �1

1 0

�
;

�
1 b

0 1

�
, and that the discrete subgroup S(F ) = SL(2; F )

of SAA injects as a subgroup of SAA by g 7! t(g)s(g) . The representation �AA of SAA is

de�ned as the restricted tensor product �AA = 
v�v . A function h : SAA ! IC is called

genuine if h(�g) = �h(g) ( � 2 ker p ), and automorphic if h(g) = h(g)( 2 S(F )) . An

SAA -module is called automorphic if it is equivalent to a subquotient of the representation of

SAA on the space L2(S(F )nSAA)gen of genuine square-integrable complex-valued functions

on S(F )nSAA , by right translation. The summation formula implies

AUTOMORPHIC REALIZATION. For each f 2 C(AA) , the function Df (g) =

D(�AA(g)f) is automorphic.

Namely D(�AA(g)f) = D(�AA(g)f) for all  2 S(F ); g 2 SAA . It is easy to see

that Df lies in L2(S(F )nSAA)gen , and that the distribution f 7! Df intertwines the
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� -representation (�AA; C(AA)) with the regular representation of SAA on L2(S(F )nSAA)gen .

In particular the distribution D realizes �AA as an automorphic representation by virtue

of the Poisson summation formula.

We shall now develop a new summation formula, and relate it to the automorphic

realization of a GL(2) -analogue of � .

To state the new summation formula, for a �nite place v let C(F�v ) denote the

space of locally constant IC -valued functions fv on F�v whose support is bounded in Fv ,

for which there is a constant A(fv) > 0 with the property that fv0(x) = jtj
1=2
v fv(t

2x)

is independent of t 2 F�v provided that jtjv � A(fv) and jxjv � 1 . Then j:j1=4fv0
extends to a function on F�v =F

�2
v . When v is archimedean, C(F�v ) consists of smooth

functions on F�v with rapid decay at 1 and t 7! jtj
1=2
v fv(t

2x) smooth at t = 0 . Put

fv0(x) = lim
t!0

jtj
1=2
v fv(t

2x) . Denote by valv : F
�
v !! ZZ the normalized additive valuation

on F�v when v is non-archimedean. Then jxjv = q
�valv(x)
v (x 2 F�v ) , where qv is the

cardinality of the residue �eld of Rv . Let f
0
v be the element of C(F�v ) whose value at

x is zero unless valv(x) is even and positive, where f0v (x) = jxj
�1=4
v . Put C(AA�) for the

IC -span of the functions f = 
vfv , where fv = f0v for almost all v . Put

f0((xv)) = �vfv0(xv) and Ff = 
vFfv;

where

(Ffv)(x) = cvv(x)jxj
1=2
v

Z
Fv

jyj1=2v fv(xy
2) v(xy)dvy:

NEW SUMMATION FORMULA.The distribution D(f) = 2
P

x2F�
f(x)+

P
x2F�=F�2

f0(x)

on C(AA�) satis�es D(Ff) = D(f) .

Note that given f , there are only �nitely many x 2 F�=F�2 with f0(x) 6= 0 , since

AA�=F��vj1F
�
v �v<1R

�
v is �nite (its cardinality is the class number of F ), and so

is R�v =R
�2
v for each v . The rapid decay of fv at 1 guarantees the convergence ofP

f(x); x 2 F� .

The distribution D can be used to construct an operator intertwining a representation

� with a space of automorphic forms. This � will be a representation of a two-fold

topological central covering group

1! f�1g ! Hv

p
*)
s
Hv ! 1; 1! f�1g ! HAA

p
*)
s
HAA ! 1

of the group Hv = GL(2; Fv) and HAA = GL(2;AA) . Up to isomorphism, there are

two such covering groups which are de�ned by an algebraic morphism of GL(2) into

SL(n) , and the unique covering of SL(n) (see [KP], x0). They are determined by the

cohomology class of the two-cocycle �v and �AA = �v�v which de�nes the product on
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Hv and HAA . As in [K], [F], [FKS], we choose that � (de�ned above) which satis�es

�

��
a 0

0 b

�
;

�
c 0

0 d

��
= (a; d) . A two-cocycle �0 : H �H ! f�1g which repre-

sents the other cohomology class is given by �0(g; g0) = �(g; g0)(det g; det g0) . Note that

the representation �v of Sv reduces as the direct sum of two irreducible representations

�+v and ��v , on the spaces C(Fv)
+ and C(Fv)

� of even (fv(�x) = fv(x)) and odd

(fv(�x) = �fv(x)) functions in C(Fv) . Denote by Zv and ZAA the groups of scalar

matrices in Hv and HAA . Since Zv = p�1(Zv) is the center of ZvSv = p�1(SvZv); �+v
extends to a ZvSv -module by �+v (s(z))fv = v(z)fv (z 2 Zv ' F�v ) ; note that the the

extension is well-de�ned since fv is even. The center of Hv is Z2
v = p�1(Z

2

v); Z
2

v =

fz2; z 2 Zvg , and that of HAA is Z2

AA
= p�1(Z

2

AA) .

The Hv -module in question, denoted (again) by �v , is the induced representation

ind(�+v ;Hv; ZvSv) . Choosing the section x 7!

�
x 0

0 1

�
to the isomorphism SvnHv !

F�v ; g 7! det p(g); the space of �v can be viewed (e.g. on putting f(x; t) = jxj�1=2f(s

�
x 0

0 1

�
; t) )

as consisting of fv : F
�
v � Fv ! IC with fv(x; t) = jtj

1=2
v fv(xt

2; 1) (note that fv is even

in t ). Writing fv(x) for fv(x; 1) , the group Hv acts via

(�v(�s

�
a 0

0 1

�
)fv)(x) = �jaj1=2v fv(ax); (�v(�s

�
z 0

0 z

�
)fv)(x) = �(x; z)vv(z)fv(x);

(�v(�s

�
1 b

0 1

�
)fv)(x) = � v(

1

2
bx)fv(x); (�v(�s

�
0 �1

1 0

�
)fv)(x) = �(Ffv)(x):

When v is non-archimedean, since C(Fv) consists of functions which are constant at some

neighborhood of 0 in F�v , for each x 2 F�v the function fv(x; t) is constant near t = 0 ;

hence there is A(fv) > 0 such that fv0(x) = jtj
1=2
v fv(xt

2) is independent of t if jxjv � 1

and jtjv � A(fv) . Similar comments apply in the archimedean case. Consequently the

Hv -module �v can be realized on the space C(F�v ) introduced above.

The representation � of HAA is de�ned as the restricted tensor product �AA = 
v�v .

The discrete subgroup H(F ) = GL(2; F ) of HAA embeds as a subgroup of HAA . The new

summation formula implies

AUTOMORPHIC REALIZATION. For each f 2 C(AA�) , the function Df (g) =

D(�AA(g)f) is automorphic.

Namely D(�AA(g)f) = D(�AA(g)f) for all  2 H(F ); g 2 HAA . It is easy to see that

Df 2 L = L2(H(F )Z2

AA
nHAA) ( = space of genuine IC -valued functions � on H(F )nHAA

which transform under s(Z
2

AA) according to a unitary character, such that j�j
2 is integrable

on H(F )Z2

AA
nHAA ), and that f 7! Df intertwines (�; C(AA�)) with the representation r

of HAA on L by right translation. The space L splits as a direct sum (and integral) of

HAA -modules, and using the trace formula it is shown in [F] that �AA occurs discretely in
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(r; L) with multiplicity one. Thus �AA is an automorphic representation, and D yields

the unique-up-to-scalar realization of �AA as an automorphic representation, intertwin-

ing C(AA�) with L . The analogous multiplicity one result for the SAA -module �AA in

L2(S(F )nSAA)gen is proven in Waldspurger [Wa] (see also [GP] where this result of [Wa]

is deduced from the theorem of multiplicity one for HAA of [F]). In particular D is the

unique-up-to-scalar operator intertwining (�AA; C(AA)) with (r; L2(S(F )nSAA)gen) .

Proof of new summation formula. Given f = 
fv in C(AA�) , de�ne ~fv(t; x) =

jxj
1=2
v fv(tx

2)(t 2 F�v ; x 2 F�v ) , and
~fv(t; 0) = lim

x!0

~fv(t; x) . Put ~f(t; x) =
Q
v

~fv(t; x) on

AA� � AA . Then ~f(t; 0) = f0(t) , and ~f satis�es ~f(t; ax) = jaj1=2 ~f(ta2; x) . Put f�v (t; x) =R
~fv(t; y) v(xy)dy . Then (fFfv)(t; x) = jxj

1=2
v (Ffv)(tx

2) is equal to cvv(t)jtj
1=2
v f�v (t; tx) .

For � 2 F� and � 2 F we have ~f(�; �) = f(��2) and (Ff)(��2) = (fFf)(�; �) =
f�(�; ��) . Hence for any � in F� we have that

f0(�) +
X
�2F�

f(��2) =
X
�2F

~f(�; �)

is equal, by virtue of the Poisson summation formula applied to the function x 7! ~f(�; x)

on AA , to

X
�2F

f�(�; �) =
X
�2F

f�(�; ��) =
X
�2F

(fFf)(�; �) = X
�2F�

(Ff)(��2) + (Ff)0(�):

Summing over � in F�=F�2 we obtain that the expression

X
�2F�=F�2

f0(�) + 2
X
�2F�

f(�) =
X

�2F�=F�2

[
X
�2F�

f(��2) + f0(�)]

is invariant under the replacement of f by Ff , as required.

Our �nal aim is to show that D(f) is obtained as a special value of a standard

Eisenstein series (de�ned below), both in the case of S and H .

EVALUATION. The value of E(s; g; f) at s = 0 and g = id is D(f) .

The Evaluation is a Siegel-Weil formula for a quadratic form in one variable. Such

formulae have been obtained by Siegel [S], Weil [We; 1965], Mars [M], Igusa [I], Rallis [R],

and Kudla-Rallis [KR]. In the case of S = SL(2) this Evaluation is due also to Helminck

[H], p. 67, who studied the analytic properties of the Fourier coe�cients of the Eisenstein

series, and deduced a functional equation, holomorphy on Re(s) > 1; s 6= 3=2; and the

existence of at most a simple pole at s = 3=2 (Theorem 16.7, p. 63, and Theorem 18.2, p.

65). Moreover, [H] computes the residue at s = 3=2 (Theorem 17.6, p. 65). To evaluate

the Eisenstein series at s = 0 , [H] uses (on p. 67) the functional equation. Our proof,

which is based on computing directly the values of the Fourier series at s = 0 , is simpler.
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Our main interest is in the analogous result for H = GL(2) . The result for H ,

and the technique, may turn out to be useful in constructing an automorphic embedding

of the model found in [FKS] for the smallest representation of a two- fold covering of

GL(3) . The Hv -module �v de�ned above occurs in fact as a module of coinvariants of

the representation studied in [FKS], and the model of �v described here is used there. For

this reason we decided to reprove here the Evaluation for S , in a format which seems to

us to be more convenient for generalization; it is di�erent from [H] in that we evaluate the

Eisenstein series directly at s = 0 , and we do not use the functional equation. In any case

we deal not only with the non-archimedean places, but also with the archimedean places.

Then we discuss the case of H , in several di�erent ways.

As in [H], in the case of S we work with f = 
fv , even fv for all v . The Eisenstein

series is de�ned (below) as a series which converges absolutely, uniformly in compact

subsets of Re(s) > 3=2 . It is well-known that it has analytic continuation to the entire

complex plane, with a functional equation, and the continuation is holomorphic on Re(s) >

1=2 , except for (at most) a simple pole at s = 1 . We study the value at s = 0 , in the

domain of continuation. As in [H], the proof is based on computing the Fourier expansion of

the Eisenstein series along the standard non-trivial parabolic subgroup. We were motivated

to consider the Evaluation by the observation that our computations can be adapted to

show that E(0; g; f) = E(0; id; �(g)f) , and that one has the Evaluation E(0; g; f) =

D(�AA(g)f) = Df (g) . Then the summation formulae follow from the Evaluation. Indeed,

it is clear from the de�nition of E(s; g; f) that E is automorphic, namely when the

group is S we have E(s; g; f) = E(s; �g; f) for every � in S(F ) � SAA . Hence at

s = 0 and g = id we obtain
P
�2F f(�) =

P
�2F (�(�)f)(�) for all � 2 S(F ) . The

Poisson summation formula D(Ff) = D(f) follows on taking � =

�
0 �1

1 0

�
, since

then �(�)f = Ff is the Fourier transform of f . The New Summation Formula similarly

follows in the case of H . As noted above, this method of proof may apply to construct

an automorphic embedding of the model found in [FKS] for the smallest representation of

a two-fold covering of GL(3) . But this may require some e�ort, and we do not foresee

ourselves studying this problem in the very near future.

I. EVALUATION FOR S .

We begin with the case of the SAA -module (�AA; C(AA)) . To introduce the Eisenstein

series on SAA , recall the Iwasawa decomposition

Sv = NvAvKv; Nv = f

�
1 �

0 1

�
g; Av = f

�
a�1 0

0 a

�
g; Kv = SL(2; Rv):

If gv =

�
1 n

0 1

��
a�1 0

0 a

�
kv then a(gv) = jajv > 0 is uniquely determined by

gv , and so is a(g) =
Q
v

a(gv) for any g = (gv) in SAA . The functions g 7! (�(g)f)(0) and
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g 7! a(g) are left invariant under the upper-triangular subgroup P (F ) of S(F ) , viewed

as a subgroup of SAA . For every f 2 C(AA) put

E(s; g; f) =
X

2P (F )nS(F )

(�(g)f)(0)a(g)�s:

Then E(s; g; f) is an automorphic function, equal to E(s; g; f) for all  2 S(F ) . Note

that '(g) = (�(g)f)(0)a(g)�s is left invariant under NAA , and '

�
s

�
t 0

0 t�1

�
g

�
=

AA(t)jtj
s+1=2

AA
'(g) (t 2 AA�) . Consequently the series de�ning E(s; g; f) converges ab-

solutely, uniformly in compact subsets of Re(s) > 3=2 and g 2 SAA . It is well-known

that it has analytic continuation as a meromorphic function to the entire complex plane.

The proof below shows that E(s; g; f); g = id; is holomorphic at s = 0 . The complex

parameter s; Re(s) > 0 , is used to guarantee the convergence of the in�nite products

below.

To compute the Fourier expansion of E(s; g; f) at s = 0 , where g = id , it su�ces

to �nd the Fourier coe�cients

E�(s; f) =

Z
AAmodF

E(s;

�
1 u

0 1

�
; f) (�u)du

for all � in F . Here the measure du is taken to assign the compact set AAmodF the

volume one. Then Z
AAmodF

 (�u)du =

�
1; � = 0,

0; � 6= 0.

A set of representatives for the coset space P (F )nS(F ) is given by id and�
0 �1

1 0

��
1 u

0 1

�
; u 2 F . Thus for � 2 F� we have

E�(s; f) =

Z
AA
[�(s(

�
0 �1

1 0

��
1 u

0 1

�
)f ](0)k(1; u)k�s (�u)du

=

Z
AA

Z
AA
f(y) (

1

2
uy2)dyk(1; u)k�s (�u)du:

Here k(1; (uv))k =
Q
v

k(1; uv)kv , where

k(1; uv)kv =

(
max(1; juvjv) if v 6=1;

(1 + u2v)
1=2 if Fv = IR;

1 + uvuv if Fv = IC.
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The double integral over AA converges absolutely on Re (s) > 2 , and is equal to the

Eulerian product of the local integrals

Cv(�; s) =

Z
Fv

Z
Fv

fv(y) v(u(
1

2
y2 � �))k(1; u)k�sv du dy: (1)

Choose q
v
2 Fv with val(q

v
) = �1 ( q�1

v
generates the maximal ideal of the local

ring Rv ), when v is �nite. Denote by  0v a character on Fv which is trivial on Rv but

not on q
v
Rv . Given  v there is an integer c( v) with  v(x) =  0v(xq

c( v)
v

) . Note that

vol(Rv; dx) =
R
Rv
dx is equal to q

c( v)=2
v , and c( v) = 0 for almost all v .

We begin with the following local result.

PROPOSITION 1. (i) For almost all v , the integral (1) is equal to 1+(2�; q
v
)vq

�s
v .

(ii) For every place v , the integral (1) has analytic continutation to IC , and its value at

s = 0 is zero if 2� 62 F 2
v , and j�j�1v (fv(�) + fv(��)) if 2� = �2; � 2 F�v .

First we note the following

LEMMA 1. At any �nite place v , the integral
R
Fv
 0v(uq

�r
v
)k(1; u)k�sv du is zero unless

r � 0 , in which case it is equal to

qc( v)=2v

1� q�sv

1� q1�sv

(1� q(r+1)(1�s)v ):

Proof. The �rst claim follows from the fact that
R
jujv�1

 0v(uq
r
v
)du = 0 if r > 0 . If

r � 0 then the integral of the lemma is equal toZ
juj�qr

k(1; u)k�sdu+

Z
juj=qr+1

 0(uq�r)q�s(r+1)du

= qc( )=2[1 + (1� q�1)q1�s
qr(1�s) � 1

q1�s � 1
� qr�s(r+1)]

= qc( )=2(1� q�s)(1� q(r+1)(1�s))(1� q1�s)�1;

as asserted; here the index v is omitted to simplify the notations.

Consequently the integral Cv(�; s) of (1) is equal to

qc( v)=2v

1� q�sv

1� q1�sv

1X
r=0

(1� q(r+1)(1�s)v )

Z
jy2�2�j=q

�r�c( v)
v j2j

fv(y)dy: (10)

It follows that there are Av = A(fv;  v) > 0 such that (1) is zero unless j�jv � Av for

all v ; here Av = 1 for all v where fv = f0v ;  v =  0v . Hence in the function �eld case,
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for given f;  ; there are at most �nitely many non-zero E�(s; f) . Given � in F� , we

have fv = f0v ;  v =  0v; � 2 R�v and 2 2 R�v for almost all v , and then (1) is equal to

qc( v)=2v

1� q�sv

1� q1�sv

"
(1� q1�sv )

Z
jy2�2�jv=1

fv(y)dy +
X
r>0

(1� q(r+1)(1�s)v )

Z
jy2�2�jv=q

�r

v

fv(y)dy

#
:

We conclude at once the following

LEMMA 2. If fv = f0v ;  v =  0v; j�jv = 1 and j2jv = 1 , then (1) is equal to

1 + q�sv =
1� q�2sv

1� q�sv
if 2� 2 F�2v ;

or

1� q�sv = 1 + �2�(qv)q
�s
v =

1� q�2sv

1� �2�(qv)q
�s
v

if 2� 62 F�2v :

Here �2� denotes the quadratic character x 7! (2�; x)v of F�v .

Proof. In the �rst case note that if 2� = �2; j�jv = 1 , then jy2 � 2�jv < 1 implies

jy� �jv < 1 or jy+ �jv < 1 . Also
R
jyjv=1

dy = q
c( v)=2
v (1� q�1v ) . In the second case note

that (2�; q
v
)v = �1 if qv is odd and 2� is a non-square unit in F�v .

Lemma 2 completes the proof of Proposition 1(i). At any �nite v , if 2� 62 F 2
v then

only �nitely many summands of (10) are non-zero, hence (10) is o(s) ; we write o(s) for a

function whose limit at s = 0 is zero. If 2� = �2; � 2 F�v , to compute the limit at s = 0

of (10) it su�ces to take the sum only over r � R for any �xed R . We take R = R(�)

to be su�ciently large. Then each integral in (10) ranges over the y with jy � �jv or

jy + �jv equal to q
�r�c( v)
v =j�jv . Up to o(s) we obtain

1� q�sv

1� q1�sv

(1� q�1v )j�j�1v (fv(�) + fv(��))

1X
r=0

(q�rv � q1�s(r+1)v ):

Then (10) , and so also (1) , is equal to 2fv(�)j�j
�1
v , up to o(s) . This completes the proof

of Proposition 1(ii) when v is �nite.

LEMMA 3. Proposition 1(ii) holds when Fv = IR .

Proof. The integral (1) is equal to

Z Z
IR2

fv(x) e
�2�iu( 1

2
x2��)(1 + u2)�s=2du dx

=
2�1=2

�
�
s
2

� Z
IR
j�(

1

2
x2 � �)j(s�1)=2K(s�1)=2(2�j

1

2
x2 � �j)fv(x) dx: (�)

9



Here the equality follows from the well-known identity (see [B], p. 83, (27))Z
IR
(1 + x2)�te2�iaxdx = 2�tjajt�

1
2�(t)�1Kt� 1

2
(2�jaj) (a 2 IR�):

If � < 0 , then the integral of (�) over IR is an entire function of s , and (ii) follows.

If � > 0 , de�ne � > 0 by �2 = 2� . Then
R ���
0

+
R1
�+�

is holomorphic on IC , and,

using the power series expansion of Kt(z) near z = 0 , we haveZ �+�

���

�
1

2
�jx2 � �2j

�(s�1)=2
K(s�1)=2(�jx

2
� �2j)fv(x) dx

=

Z �+�

���

�[2 cos(�s=2)�((1 + s)=2)]�1(�jx2 � �2j=2)s�1fv(x)dx+ h(s)

with h(s) holomorphic at s = 0 . Consequently, up to a function which is holomorphic at

s = 0 , the integral over IR in (�) is equal twice the integral

�[2 cos(�s=2)�((1 + s)=2)]�1(��)s�1fv(�)

Z �+�

���

jx� �js�1dx;

whose residue at s = 0 is ��1=2fv(�)=� ; the lemma follows.

LEMMA 4. Proposition 1(ii) holds when Fv = IC .

Proof. The integral (1) is equal toZ Z
IC2
fv(x)e

�2�itr(u( 1
2
x2��))(1 + uu)�sdu dx

=
4�

�(s)

Z
IC
(2�j

1

2
x2 � �j)s�1Ks�1(4�j

1

2
x2 � �j)fv(x) dx: (�)

Here the equality follows from the well-known identities (see [B], p. 81, (2), and p. 95,

(51)) Z 2�

0

eiz cos �d� = 2�J0(z)

and Z 1

0

J0(ar)(1 + r2)�sr dr = (a=2)s�1Ks�1(a)=�(s) (a > 0):

Choose � 2 IC which satis�es 2� = �2 . Up to a function holomorphic at s = 0 , the

integral of (�) is equal toZ
jx��j<�

(�jx2 � �2j)s�1Ks�1(2�jx
2
� �2j)fv(x) dx

'

Z
jx��j<�

�[2 sin(�s)�(s)]�1(�jx2 � �2j)2s�2fv(x) dx

' �[2 sin(�s)�(s)]�1(2�j�j)2s�2fv(�)

Z
jx��j<�

jx� �j2s�2dx:

10



Here again we used the power-series expansion of Kt(z) at z = 0 ; ' mean equality up

to a function holomorphic at s = 0 ; j:j is the usual absolute value, and dx is the measure

de�ned by the di�erential form 2 dx ^ dx . SinceZ
jx��j<�

jx� �j2s�2dx = 2��2s=s if Re(s) > 0;

the residue at s = 0 of the integral in (�) is (4�)�1fv(�)=j�j
2 . Hence the value at s = 0

of (�) is the sum of fv(�)=j�j
2 and fv(��)=j�j

2 , as required.

We can now conclude

PROPOSITION 2. The value of the Fourier coe�cient E�(s; f) at s = 0 is 2f(�) =

f(�) + f(��) if 2� = �2; � 2 F� , and it is zero if 2� 2 F � F 2 .

Proof. Note that the � -function �(s) satis�es �(s+ 1) = s�(s) and �(1) = 1 , and it

is analytic on Re(s) > 0 . Denote by r1 (resp. r2 ) the number of real (resp. pairs of

complex) embeddings of F . The product

�(s) =
Y
v 6=1

(1� q�sv )�1

converges absolutely, uniformly in compacts of Re(s) > 1 , has analytic continuation as a

meromorphic function of s on IC , and there is a complex number A 6= 0 such that �(s)

satis�es the functional equation

�(s)�
�s
2

�r1
�(s)r2As = A1�s�

�
1� s

2

�r1
�(1� s)r2�(1� s):

Since � has a simple pole at s = 1 , one has

lim
s!0

�(s)=�(2s) = lim
s!0

�(1� s)

�(1� 2s)

�
�(2s)

�(s)

�r2  �(s)

�
�
s
2

�
!r1

= 21�r1�r2 :

Lemmas 2, 3 and 4 imply that when � = �2=2; � 2 F� , the Fourier coe�cient E�(s; f)

is
�(s)

�(2s)

Y
v2V;v 6=1

(1 + q�sv )�1
Y
v2V

Cv(�; s);

where V is a �nite set of places such that each v 62 V is �nite and has fv = f0v ;  v =

 0v; j�jv = 1; j2jv = 1 . At s = 0 this is equal to

21�r1�r2

0
@ Y
v2V;v<1

2�1

1
A Y

v2V

2fv(�)=j�jv

!
= 2f(�) = f(�) + f(��):

11



Note that �v2V j�jv = 1 , and fv(�) = 1 for v 62 V .

When 2� 2 F � F 2 , de�ne a character �� on AA� by ��(t) =
Q
v

(2�; tv)v . The

Euler product

�(s; ��) =
Y

(1� ��(qv)q
�s
v )�1

(product over the set of �nite places where �� is unrami�ed) is absolutely convergent,

uniformly in compact subsets of Re(s) > 1 , and has analytic continuation to the entire

complex plane. Its value at s = 1 is a �nite non-zero number. Denote by r�1 = r�1 (�) the

number of real places of F where � < 0 , namely where �� is quadratic, and by r+1 the

number of real places where � > 0 . From the functional equation satis�ed by �(s; ��) it

follows that �(s; ��) has a zero of order r+1 + r2 at s = 0 , and that �(2s) has a zero of

order r1 + r2 � 1 there. Lemma 2 implies that when � 2 F � F 2 , we have that

E�(s; f) =
Y
v2V

Cv(�; s)
Y
v 62V

(1 + (2�; q
v
)vq

�s)

=
�(s; ��)

�(2s)

Y
v2V

Cv(�; s)
Y
v2V 0

(1 + q�sv (2�; q
v
))�1

Y
v2V 00

(1� q�2sv )�1:

Here V is a su�ciently large �nite set of places of F; V 0 is the set of �nite v in V

where �� is unrami�ed, and V 00 is the set of �nite v in V where �� is rami�ed. It

follows that the order of zero of E�(s; f) at s = 0 is at least

r+1 + r2 � (r1 + r2 � 1) + [fv 2 V ; 2� 62 F�2v g]� [fv 2 V 0; 2� 62 F�2v g]� [V 00] = 1:

Here [V] denotes the cardinality of a set V . It follows that the limit of E�(s; f) at s = 0

is zero. The proof of proposition 2 is now complete.

PROPOSITION 3. The value at s = 0 of the Fourier coe�cient E�(s; f) at � = 0 is

f(0) .

Proof. The coset of the identity in P (R)nS(F ) yields the contribution f(0) to E0(s; f) .

Any other coset is represented by�
0 �1

1 0

��
1 u

0 1

�
, and contributes the Eulerian integral

Z
AA

Z
AA
f(y) (

1

2
uy2)k(1; u)k�sdu dy: (2)

To compute the local integral which occurs in this product we use local notations (drop

the index v ), put r = c( ) and write  for  0 . SinceZ
 (uq�r�2t)k(1; u)k�sdu

12



is zero unless r+2t � 0 where, by Lemma 1, qr=2(1� q�s)(1� q(1+r+2t)(1�s))=(1� q1�s)

is obtained, the local integralZ
f(y)

Z
 (uq�ry2)k(1; u)k�sdu dy

equals

qr=2
X
t�� r

2

1� q�s

1� q1�s
(1� q(1�s)(1+r+2t))

Z
jyj=q�t

f(y) dy: (20)

When r = 0 and f = f0 is the characteristic function of jyj � 1 , one obtains

qr
1� q�s

1� q1�s
(1� q�1)

1X
t=0

(q�t � q1�s+t(1�2s)) = qr
1� q�2s

1� q1�2s
:

It is clear that each of the summands in (20) is o(s) . Hence up to o(s) it su�ces to take

t � R in (20) ; for a su�ciently large R one has f(y) = f(0) on jyj � q�R . Taking the

sum over t � R it is clear that (20) is o(s) . It follows that (2) is equal toY
v2V

Cv(0; s)
Y
v 62V

(1� q�2sv )(1� q1�2sv )�1

=
�(2s� 1)

�(2s)

Y
v2V

Cv(0; s)
Y

v2V;v<1

(1� q�2sv )(1� q1�2sv )�1:

Here V is a su�ciently large �nite set of places. Note that �(2s� 1) has a zero of order

r2 at s = 0 . This follows from the functional equation of �(s) , since �
�
1
2

�
and �(2) are

�nite and non-zero, while �(�1 + s) has a simple pole at s = 0 . Consequently the order

of zero of (2) at s = 0 is at least r2 � (r1 + r2 � 1) + [V ]� [fv 2 V ; v < 1g] = r2 + 1 .

Hence (2) vanishes at s = 0 , and the proposition follows.

In conclusion, the value of the Fourier expansion
P
�2F

E�(s; f) of E(s; g; f); g = id ,

at s = 0 , is

E(0; id; f) =
X
�2F

E�(0; f) = f(0) + 2
X

�2F�2

f(��) =
X
�2F

f(�);

where �� is an element in F� with �2� = � . This completes the proof of the Evaluation

in the case of the group S .

As noted above, our computations can be extended to apply with any g in SAA ,

and yield the Evaluation E(0; g; f) =
P
�2F

(�(g)f)(�) . Since E(s; g; f) = E(s; �g; f) for

13



every � in S(F ) � SAA , it follows that
P
�2F

f(�) =
P
�2F

(�(�)f)(�) for any � 2 S(F ) .

The Poisson summation formula is obtained on taking � =

�
0 �1

1 0

�
, since then

�(�)f = Ff is the Fourier transform of f . Moreover, the functional f 7!
P
�2F

f(�)

intertwines �AA with its model as a discrete series automorphic representation.

II. EVALUATION FOR H .

Next we turn to the study of the HAA -module (�AA; C(AA
�)) . For f = 
fv; fv 2

C(F�v ) , consider the function f0 = 
fv0; fv0(x) = lim
t!0

jtj
1=2
v fv(t

2x) , on AA� ; it satis�es

jtj
1=2

AA
f0(t

2x) = f0(x) . The series

E(s; g; f) =
X

2P (F )nH(F )

X
x2F�=F�2

(�(g)f)
0
(x) a(g)�s

is absolutely convergent, uniformly in compact subsets of Re(s) > 3=2 . Here P is the

upper triangular parabolic subgroup of H . The proof below implies that the analytic

continuation of E(s; g; f) is holomorphic at s = 0 . We give two proofs for the Evaluation

in the case of H . The �rst is based on reduction to the case of S . At g = id , one has

EH(s; id; f) =
X


X
x

(�()f)0(x)a()
�s

=
X

�2F�=F�2

f0(�) +
X
�2F

X
�2F�=F�2

�
�

��
0 �1

1 0

��
1 �

0 1

��
f

�
0

(�)k(1; �)k�s

=
X

�2F�=F�2

[f(�; 0) +
X
�2F

Z
AA
f(�; x) (

1

2
��x2)dx � k(1; �)k�s]:

The summand in the last sum over � is no other than ES(s; id; f�) , where f�(x) =

f(�; x) . By the Evaluation for S we have ES(0; id; f�) =
P
�2F

f(�; �) . Taking the sum

over � in F�=F�2 we obtain

EH(0; id; f) =
X

�2F�=F�2

f0(�) +
X

�2F�=F�2

X
�2F�

f(�; �) =
X

�2F�=F�2

f0(�) + 2
X
�2F�

f(�);

as required.

The second proof is analogous to that given above for S: It will now be briey

described. The Fourier expansion of E(s; g; f) at g = id is
P
�2F

E�(s; f) , where

E�(s; f) =

Z
AAmodF

E(s;

�
1 u

0 1

�
; f) (u�) du:
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The coset of the identity in P (F )nH(F ) contributes

X
�2F

Z
AAmodF

[
X

x2F�=F�2

f0(x)] (u�)du =
X

x2F�=F�2

f0(x)

to the Fourier expansion. It remains to consider the contribution of the cosets of�
0 �1

1 0

��
1 u

0 1

�
to E�(s; f) . It is the sum over x 2 F�=F�2 of the Eulerian

integral Z
AA
�(

�
0 �1

1 0

��
1 u

0 1

�
f)0(x)k(1; u)k

�s  (u�) du: (3)

To compute the local factors of (3) , we pass to local notations, i.e. drop the index

v . Since

(�(

�
0 �1

1 0

��
1 u

0 1

�
)f)(x) = c(x)jxj1=2

Z
jyj1=2f(xy2) (x(

1

2
uy2 + y))dy;

we have

(�(

�
0 �1

1 0

��
1 u

0 1

�
)f)

0
(x) = c(x)jxj1=2

Z
jyj1=2f(xy2) (

1

2
uxy2)dy:

Hence the local factor in (3) is

c(x)jxj1=2
Z
u

Z
y

jyj1=2f(xy2) (u(
1

2
xy2 � �))k(1; u)k�sdu dy: (30)

There is A(f;  ) > 0 , with A(f0;  0) = 1 , such that (30) is zero unless j�j � A(f;  ) .

Hence when F is a function �eld the global integral (3) vanishes for almost all � 2 F� .

It is easy to see that for each of the remaining �nitely many � 's, for which (3) may be

non-zero, (3) would vanish for all but �nitely many x in F�=F�2 .

PROPOSITION 4. If fv = f0v ;  v =  0v; j�jv = 1; jxjv = 1 , then (30) is equal to

1 + q�sv =
1� q�2sv

1� q�sv
if 2�=x 2 F�2v ;

or Z
 v(u)k(1; u)k

�s
v du = 1� q�sv = 1 + �2�=x(qv)q

�s
v =

1� q�2sv

1� �2�=x(qv)q
�s
v

if 2�=x 62 F�2v , where �2�=x(y) = (2�=x; y)v is the quadratic character associated with

2�=x 2 F�v =F
�2
v .
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Proof. This follows at once from Lemma 2.

By Lemma 1, each of the local integrals (30) at a �nite place is equal to

qc( )=2
1� q�s

1� q1�s

X
n�0

(1� q(1+n)(1�s))c(x)jxj1=2
Z
jy2�2�=xj=q�n�c( )=j2xj

jyj1=2f(xy2) dy:

Up to o(s) it su�ces to sum only over n � R = R(�; x; f) . For a su�ciently large R we

get that each integral is zero unless there is � 2 F� with �2 = 2�=x , and then we obtain

2c(x)jxj1=2j�=xj1=4f(�)j�xj�1(1� q�1)(1� q�s)(1� q1�s)�1
X
n�R

(q�n � q1�s�ns):

Up to o(s) this is the same as the analogous sum over n � 0 , and at s = 0 we obtain

2f(�)c(x)j�j�1=4jxj�3=4:

The analogous result holds in the archimedean cases too.

Returning to the global notations of (3) , we conclude

PROPOSITION 5. The Fourier coe�cient E�(s; f) is an analytic function of s near

s = 0 (which is zero, when F is a function �eld, for all � 2 F� with only �nitely many

exceptions depending on f and  ), and its value at s = 0 is E�(0; f) = 2f(�) .

Proof. Since �(s)=�(2s) takes the value 21�r1�r2 at s = 0 , and �(s; �2�=x)=�(2s) has

a zero of order 1 � r�1 (�=x) at s = 0 , as in the case of SL(2) we conclude that given

� 2 F� the integral (3) is zero at s = 0 unless the class of 2� in F�=F�2 is represented

by x . Then E�(s; f) is equal to the value of (3) at x = � , and this is 2f(�) + o(s) , as

required.

PROPOSITION 6. The contribution to E�(s; f); � = 0 , from the cosets represented by�
0 �1

1 0

��
1 u

0 1

�
, is o(s) .

Proof. We have to compute the product over v of the local integrals

(x)jxj1=2
Z
y

jyj1=2f(xy2)

Z
u

 (uxy2)k(1; u)k�sdu dy:

As noted in the case of SL(2) , for almost all v we have j2j = 1; jxj = 1; f = f0;  =

 0; c( ) = 0 , and the result is

(1� q�2s)=(1� q1�2s):
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In general the local integral is

qc( )=2(x)jxj1=2(1�q�s)(1�q1�s)�1
X
n�0

(1�q(1+n)(1�s))

Z
jyj2=q�n�c( )=j2xj

jyj1=2f(xy2)dy:

Up to o(s) we may take n � R , and when R is su�ciently large, up to o(s) we obtain

(x)f0(x)(1� q�s)(1� q1�s)�1(1� q�1)
X
n�0

(q�n � q1�s+n(1�2s))

if val(2x) � c( ) is even, and 0 otherwise. But this expression is o(s) . Hence the

contribution to E0(s; f) under discussion is the product of a function which vanishes at

s = 0 to the order r1+r2 , and �(2s�1)=�(2s) , which vanishes to the order r2�(r1+r2�1)

(see proof of Proposition 3).

It follows from Proposition 6 that E0(0; f) =
P

x2F�=F�2

f0(x) . Using Proposition 5

we conclude that the value of E(s; id; f) at s = 0 is

D(f) =
X

x2F�=F�2

f0(x) + 2
X
x2F�

f(x);

and the proof of the Evaluation for H is complete. As noted above, one can gen-

eralize our computations to apply to E(s; g; f); s = 0 , with any g in HAA . Since

E(s;

�
0 �1

1 0

�
; f) = E(s; id; f) , this would yield another proof of the new summa-

tion formula D(f) = D(Ff) , as well as the automorphic realization of (�AA; C(AA
�)) .
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