SUMMATION FORMULAE, AUTOMORPHIC REALIZATIONS AND A SPECIAL VALUE OF EISENSTEIN SERIES

Yuval Z. Flicker and J. G. M. Mars

Let F be a global field of characteristic other than $2 \Gamma F_{v}$ its completion at a place v, \mathbb{A} its ring of adeles and $\psi: \mathbb{A} \rightarrow \mathbb{C}^{\times}$a non-trivial additive character which is trivial on the discrete subgroup F of \mathbb{A}. Let $C\left(F_{v}\right)$ be the Schwartz space of F_{v} if v is archimedean Γ and the space $C_{c}^{\infty}\left(F_{v}\right)$ of locally constant compactly supported \mathbb{C}-valued functions on F_{v} if v is non-archimedean. Let $f_{v}^{0}\left(\in C\left(F_{v}\right)\right)$ be the characteristic function of the ring R_{v} of integers of F_{v} in the latter case. Denote by $C(\mathbb{A})$ the \mathbb{C}-span of $\otimes_{v} f_{v}, \quad f_{v} \in C\left(F_{v}\right)$ for all $v, f_{v}=f_{v}^{0}$ for almost all v. Denote by ψ_{v} the component of ψ at v Гand let $d_{v} y$ be the Haar measure of F_{v} normalized to have the property that the Fourier transform

$$
f_{v} \rightarrow \mathcal{F} f_{v}, \quad \mathcal{F} f_{v}(x)=\int_{F_{v}} f_{v}(y) \psi_{v}(x y) d_{v} y
$$

is an endomorphism of the vector space $C\left(F_{v}\right)$ which satisfies the Fourier inversion formula $\left(\mathcal{F}\left(\mathcal{F} f_{v}\right)\right)(x)=f_{v}(-x)$. Write $\mathcal{F}\left(\otimes_{v} f_{v}\right)$ for $\otimes_{v} \mathcal{F} f_{v}$. One has the well-known
POISSON SUMMATION FORMULA. The distribution $D(f)=\sum_{x \in F} f(x)$ on $C(\mathbb{A})$ satisfies $D(f)=D(\mathcal{F} f)$

This formula follows easily from the Fourier inversion formula (see Γ e.g. $\Gamma[\mathrm{L}] \Gamma$ XIV Γ $\S 6 \Gamma$ p. 291) Γ and has many applications. One of these applications concerns the θ-(or Weil「oscillatorГsmallest) representation of the unique central topological two-fold covering (metaplectic) group

$$
1 \rightarrow\{ \pm 1\} \rightarrow S_{v} \stackrel{p}{\stackrel{p}{\rightleftharpoons}} \bar{S}_{v} \rightarrow 1, \quad 1 \rightarrow\{ \pm 1\} \rightarrow S_{\mathbb{A}} \stackrel{p}{\stackrel{p}{\rightleftharpoons}} \bar{S}_{\mathbb{A}} \rightarrow 1
$$

of $\bar{S}_{v}=S L\left(2, F_{v}\right), \quad \bar{S}_{\mathbb{A}}=S L(2, \mathbb{A})$. As usual (see $[\mathrm{K}] \Gamma$ or $\left.[\mathrm{F}] \Gamma[\mathrm{FKS}]\right) \Gamma$ the elements of S_{v} and $S_{\mathbb{A}}$ will be described as pairs (g, ζ) Гor $\zeta s(g) \Gamma$ with ζ in $\operatorname{ker} p=\{ \pm 1\}$ and g in \bar{S}_{v} or $\bar{S}_{\mathbb{A}}$ Гand with product rule

$$
\zeta s(g) \zeta^{\prime} s\left(g^{\prime}\right)=\zeta \zeta^{\prime} \beta\left(g, g^{\prime}\right) s\left(g g^{\prime}\right)
$$

Department of MathematicsएThe Ohio State UniversityГ231 W. 18th Ave.ГColumbus Γ OH 43210-1174. Email: flicker@math.ohio-state.edu

Mathematisch instituut Γ Rijksuniversiteit Utrecht Γ Budapestlaan 6Γ Postbus 80.010Γ 3508 TA UtrechtГThe Netherlands. Email: mars@math.ruu.nl

Partially supported by Nato grant CRG-900080

For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $G L(2) \Gamma$ put $t(g)=(c, d / \operatorname{det} g)$ if $c d \neq 0$ and ord c is odd Γ and $t(g)=1$ otherwise; here (.,.) is the Hilbert symbol. Put

$$
\alpha\left(g, g^{\prime}\right)=\left(\frac{x\left(g g^{\prime}\right)}{x(g)}, \frac{x\left(g g^{\prime}\right)}{x\left(g^{\prime}\right) \operatorname{det} g}\right), \quad x\left(\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\right)= \begin{cases}c, & c \neq 0 \Gamma \\
d, & c=0 .\end{cases}
$$

Then (the restriction to $S L(2)$ of) $\beta\left(g, g^{\prime}\right)=\alpha\left(g, g^{\prime}\right) t(g) t\left(g^{\prime}\right) t\left(g g^{\prime}\right)^{-1}$ is a two-cocycle of \bar{S}_{v} in $\{ \pm 1\}$ 「uniquely determined by the choice of the section s to the projection p. Define a two-cocycle $\beta_{\mathbb{A}}$ on $\bar{S}_{\mathbb{A}}$ by $\beta_{\mathbb{A}}=\Pi_{v} \beta_{v}$.

Let $\gamma_{v}: F_{v}^{\times} \rightarrow \mathbb{C}^{\times}$be the twisted character defined by

$$
\gamma_{v}(x)^{-1}=|x|_{v}^{1 / 2} \int \psi_{v}\left(\frac{1}{2} x y^{2}\right) d_{v} y / \int \psi_{v}\left(\frac{1}{2} y^{2}\right) d_{v} y
$$

(or $\gamma_{v}(x)=|x|_{v}^{1 / 2} \int \psi_{v}\left(-\frac{1}{2} x y^{2}\right) d_{v} y / \int \psi_{v}\left(-\frac{1}{2} y^{2}\right) d_{v} y$) introduced by Weil [We; 1964] (see also $[\mathrm{F}] \Gamma[\mathrm{FKS}])$. It satisfies $\gamma_{v}(a) \gamma_{v}(b)=\gamma_{v}(a b)(a, b)_{v}$. Then $\gamma_{v}: F_{v}^{\times} / F_{v}^{\times^{2}} \rightarrow \mathbb{C}^{\times}$has order 4Γ and $\gamma_{\mathbb{A}}=\Pi_{v} \gamma_{v}$ is trivial on the subgroup $F^{\times} \mathbb{A}^{\times^{2}}$ of the group \mathbb{A}^{\times}of ideles. The representation θ_{v} of S_{v} is defined on the space $C\left(F_{v}\right)$ by means of the operators

$$
\begin{aligned}
\left(\theta_{v}\left(\zeta s\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\right) f_{v}\right)(x) & =\zeta \psi_{v}\left(\frac{1}{2} b x^{2}\right) f_{v}(x), \\
\left(\theta_{v}\left(\zeta s\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) f_{v}\right)(x) & =\zeta c_{v}\left(\mathcal{F} f_{v}\right)(-x) \\
\left(\theta_{v}\left(\zeta s\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\right) f_{v}\right)(x) & =\zeta \gamma_{v}(a)|a|_{v}^{1 / 2} f_{v}(a x)
\end{aligned}
$$

$\left(a \in F_{v}^{\times}, \quad b \in F_{v}, \quad \zeta \in\{ \pm 1\}=k e r p\right)$, where $c_{v}=\gamma_{v}(-1)^{-1 / 2}$ is an eighth root of unity in $\mathbb{C}\left(c_{v}=1\right.$ for almost all v and $\left.\Pi_{v} c_{v}=1\right)$. Note that $S L\left(2, F_{v}\right)$ is generated by the matrices $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ 「and that the discrete subgroup $\bar{S}(F)=S L(2, F)$ of $\bar{S}_{\mathbb{A}}$ injects as a subgroup of $S_{\mathbb{A}}$ by $g \mapsto t(g) s(g)$. The representation $\theta_{\mathbb{A}}$ of $S_{\mathbb{A}}$ is defined as the restricted tensor product $\theta_{\mathbb{A}}=\otimes_{v} \theta_{v}$. A function $h: S_{\mathbb{A}} \rightarrow \mathbb{C}$ is called genuine if $h(\zeta g)=\zeta h(g)(\zeta \in$ ker $p)$ Гand automorphic if $h(\gamma g)=h(g)(\gamma \in \bar{S}(F))$. An $S_{\mathbb{A}}$-module is called automorphic if it is equivalent to a subquotient of the representation of $S_{\mathbb{A}}$ on the space $L^{2}\left(\bar{S}(F) \backslash S_{\mathbb{A}}\right)_{\text {gen }}$ of genuine square-integrable complex-valued functions on $\bar{S}(F) \backslash S_{\mathbb{A}} \Gamma$ by right translation. The summation formula implies
AUTOMORPHIC REALIZATION. For each $f \in C(\mathbb{A})$, the function $D_{f}(g)=$ $D\left(\theta_{\mathbb{A}}(g) f\right)$ is automorphic.

Namely $D\left(\theta_{\mathbb{A}}(\gamma g) f\right)=D\left(\theta_{\mathbb{A}}(g) f\right)$ for all $\gamma \in \bar{S}(F), g \in S_{\mathbb{A}}$. It is easy to see that D_{f} lies in $L^{2}\left(\bar{S}(F) \backslash S_{\mathbb{A}}\right)_{\text {gen }} \Gamma$ and that the distribution $f \mapsto D_{f}$ intertwines the
θ-representation $\left(\theta_{\mathbb{A}}, C(\mathbb{A})\right)$ with the regular representation of $S_{\mathbb{A}}$ on $L^{2}\left(\bar{S}(F) \backslash S_{\mathbb{A}}\right)_{\text {gen }}$. In particular the distribution D realizes $\theta_{\mathbb{A}}$ as an automorphic representation by virtue of the Poisson summation formula.

We shall now develop a new summation formulaए and relate it to the automorphic realization of a $G L(2)$-analogue of θ.

To state the new summation formula for a finite place v let $C\left(F_{v}^{\times}\right)$denote the space of locally constant \mathbb{C}-valued functions f_{v} on F_{v}^{\times}whose support is bounded in $F_{v} \Gamma$ for which there is a constant $A\left(f_{v}\right)>0$ with the property that $f_{v 0}(x)=|t|_{v}^{1 / 2} f_{v}\left(t^{2} x\right)$ is independent of $t \in F_{v}^{\times}$provided that $|t|_{v} \leq A\left(f_{v}\right)$ and $|x|_{v} \leq 1$. Then $|.|^{1 / 4} f_{v 0}$ extends to a function on $F_{v}^{\times} / F_{v}^{\times 2}$. When v is archimedean $\Gamma C\left(F_{v}^{\times}\right)$consists of smooth functions on F_{v}^{\times}with rapid decay at ∞ and $t \mapsto|t|_{v}^{1 / 2} f_{v}\left(t^{2} x\right)$ smooth at $t=0$. Put $f_{v 0}(x)=\lim _{t \rightarrow 0}|t|_{v}^{1 / 2} f_{v}\left(t^{2} x\right)$. Denote by $v a l_{v}: F_{v}^{\times} \rightarrow \mathbb{Z}$ the normalized additive valuation on F_{v}^{\times}when v is non-archimedean. Then $|x|_{v}=q_{v}^{-v a l_{v}(x)}\left(x \in F_{v}^{\times}\right) \Gamma$ where q_{v} is the cardinality of the residue field of R_{v}. Let f_{v}^{0} be the element of $C\left(F_{v}^{\times}\right)$whose value at x is zero unless val $_{v}(x)$ is even and positive Γ where $f_{v}^{0}(x)=|x|_{v}^{-1 / 4}$. Put $C\left(\mathbb{A}^{\times}\right)$for the \mathbb{C}-span of the functions $f=\otimes_{v} f_{v}$ एwhere $f_{v}=f_{v}^{0}$ for almost all v. Put

$$
f_{0}\left(\left(x_{v}\right)\right)=\Pi_{v} f_{v 0}\left(x_{v}\right) \quad \text { and } \quad \mathcal{F} f=\otimes_{v} \mathcal{F} f_{v}
$$

where

$$
\left(\mathcal{F} f_{v}\right)(x)=c_{v} \gamma_{v}(x)|x|_{v}^{1 / 2} \int_{F_{v}}|y|_{v}^{1 / 2} f_{v}\left(x y^{2}\right) \psi_{v}(x y) d_{v} y .
$$

NEW SUMMATION FORMULA. The distribution $D(f)=2 \sum_{x \in F^{\times}} f(x)+\sum_{x \in F^{\times} / F^{\times 2}} f_{0}(x)$ on $C\left(\mathbb{A}^{\times}\right)$satisfies $D(\mathcal{F} f)=D(f)$.

Note that given f Гthere are only finitely many $x \in F^{\times} / F^{\times 2}$ with $f_{0}(x) \neq 0 \Gamma$ since $\mathbb{A}^{\times} / F^{\times} \Pi_{v \mid \infty} F_{v}^{\times} \Pi_{v<\infty} R_{v}^{\times}$is finite (its cardinality is the class number of $\left.F\right) \Gamma$ and so is $R_{v}^{\times} / R_{v}^{\times 2}$ for each v. The rapid decay of f_{v} at ∞ guarantees the convergence of $\sum f(x), x \in F^{\times}$.

The distribution D can be used to construct an operator intertwining a representation θ with a space of automorphic forms. This θ will be a representation of a two-fold topological central covering group

$$
1 \rightarrow\{ \pm 1\} \rightarrow H_{v} \stackrel{p}{\stackrel{p}{\rightleftharpoons}} \bar{H}_{v} \rightarrow 1, \quad 1 \rightarrow\{ \pm 1\} \rightarrow H_{\mathbb{A}} \stackrel{p}{\stackrel{p}{v}} \bar{H}_{\mathbb{A}} \rightarrow 1
$$

of the group $\bar{H}_{v}=G L\left(2, F_{v}\right)$ and $\bar{H}_{\mathbb{A}}=G L(2, \mathbb{A})$. Up to isomorphism Γ there are two such covering groups which are defined by an algebraic morphism of $G L(2)$ into $S L(n) \Gamma$ and the unique covering of $S L(n)$ (see $[\mathrm{KP}] \Gamma \S 0$). They are determined by the cohomology class of the two-cocycle β_{v} and $\beta_{\mathbb{A}}=\Pi_{v} \beta_{v}$ which defines the product on
H_{v} and $H_{\mathbb{A}}$. As in $[\mathrm{K}] \Gamma[\mathrm{F}] \Gamma[\mathrm{FKS}] \Gamma$ we choose that β (defined above) which satisfies $\beta\left(\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right),\left(\begin{array}{cc}c & 0 \\ 0 & d\end{array}\right)\right)=(a, d)$. A two-cocycle $\beta^{\prime}: \bar{H} \times \bar{H} \rightarrow\{ \pm 1\}$ which represents the other cohomology class is given by $\beta^{\prime}\left(g, g^{\prime}\right)=\beta\left(g, g^{\prime}\right)\left(\operatorname{det} g, \operatorname{det} g^{\prime}\right)$. Note that the representation θ_{v} of S_{v} reduces as the direct sum of two irreducible representations θ_{v}^{+}and $\theta_{v}^{-} \Gamma$ on the spaces $C\left(F_{v}\right)^{+}$and $C\left(F_{v}\right)^{-}$of even $\left(f_{v}(-x)=f_{v}(x)\right)$ and odd $\left(f_{v}(-x)=-f_{v}(x)\right)$ functions in $C\left(F_{v}\right)$. Denote by \bar{Z}_{v} and $\bar{Z}_{\mathbb{A}}$ the groups of scalar matrices in \bar{H}_{v} and $\bar{H}_{\mathbb{A}}$. Since $Z_{v}=p^{-1}\left(\bar{Z}_{v}\right)$ is the center of $Z_{v} S_{v}=p^{-1}\left(\bar{S}_{v} \bar{Z}_{v}\right)$, θ_{v}^{+} extends to a $Z_{v} S_{v}$-module by $\theta_{v}^{+}(s(z)) f_{v}=\gamma_{v}(z) f_{v} \quad\left(z \in \bar{Z}_{v} \simeq F_{v}^{\times}\right)$; note that the the extension is well-defined since f_{v} is even. The center of H_{v} is $Z_{v}^{2}=p^{-1}\left(\bar{Z}_{v}^{2}\right), \bar{Z}_{v}^{2}=$ $\left\{z^{2} ; z \in \bar{Z}_{v}\right\}$ Гand that of $H_{\mathbb{A}}$ is $Z_{\mathbb{A}}^{2}=p^{-1}\left(\bar{Z}_{\mathbb{A}}^{2}\right)$.

The H_{v}-module in question Γ denoted (again) by $\theta_{v} \Gamma$ is the induced representation $\operatorname{ind}\left(\theta_{v}^{+} ; H_{v}, Z_{v} S_{v}\right)$. Choosing the section $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1\end{array}\right)$ to the isomorphism $S_{v} \backslash H_{v} \rightarrow$ $F_{v}^{\times}, g \mapsto \operatorname{det} p(g)$, the space of θ_{v} can be viewed (e.g. on putting $\left.f(x, t)=|x|^{-1 / 2} f\left(s\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right), t\right)\right)$ as consisting of $f_{v}: F_{v}^{\times} \times F_{v} \rightarrow \mathbb{C}$ with $f_{v}(x, t)=|t|_{v}^{1 / 2} f_{v}\left(x t^{2}, 1\right)$ (note that f_{v} is even in t). Writing $f_{v}(x)$ for $f_{v}(x, 1)$ the group H_{v} acts via

$$
\begin{array}{ll}
\left(\theta_{v}\left(\zeta s\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)\right) f_{v}\right)(x)=\zeta|a|_{v}^{1 / 2} f_{v}(a x), & \left(\theta_{v}\left(\zeta s\left(\begin{array}{cc}
z & 0 \\
0 & z
\end{array}\right)\right) f_{v}\right)(x)=\zeta(x, z)_{v} \gamma_{v}(z) f_{v}(x), \\
\left(\theta_{v}\left(\zeta s\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right) f_{v}\right)(x)=\zeta \psi_{v}\left(\frac{1}{2} b x\right) f_{v}(x), & \left(\theta_{v}\left(\zeta s\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\right) f_{v}\right)(x)=\zeta\left(\mathcal{F} f_{v}\right)(x)
\end{array}
$$

When v is non-archimedean Γ since $C\left(F_{v}\right)$ consists of functions which are constant at some neighborhood of 0 in $F_{v}^{\times} \Gamma$ for each $x \in F_{v}^{\times}$the function $f_{v}(x, t)$ is constant near $t=0$; hence there is $A\left(f_{v}\right)>0$ such that $f_{v 0}(x)=|t|_{v}^{1 / 2} f_{v}\left(x t^{2}\right)$ is independent of t if $|x|_{v} \leq 1$ and $|t|_{v} \leq A\left(f_{v}\right)$. Similar comments apply in the archimedean case. Consequently the H_{v}-module θ_{v} can be realized on the space $C\left(F_{v}^{\times}\right)$introduced above.

The representation θ of $H_{\mathbb{A}}$ is defined as the restricted tensor product $\theta_{\mathbb{A}}=\otimes_{v} \theta_{v}$. The discrete subgroup $\bar{H}(F)=G L(2, F)$ of $\bar{H}_{\mathbb{A}}$ embeds as a subgroup of $H_{\mathbb{A}}$. The new summation formula implies

AUTOMORPHIC REALIZATION. For each $f \in C\left(\mathbb{A}^{\times}\right)$, the function $D_{f}(g)=$ $D(\theta(g) f)$ is automorphic.

Namely $D\left(\theta_{\mathbb{A}}(\gamma g) f\right)=D\left(\theta_{\mathbb{A}}(g) f\right)$ for all $\gamma \in \bar{H}(F), g \in H_{\mathbb{A}}$. It is easy to see that $D_{f} \in L=L^{2}\left(\bar{H}(F) Z_{\mathbb{A}}^{2} \backslash H_{\mathbb{A}}\right) \quad\left(=\right.$ space of genuine \mathbb{C}-valued functions ϕ on $\bar{H}(F) \backslash H_{\mathbb{A}}$ which transform under $s\left(\bar{Z}_{\mathbb{A}}^{2}\right)$ according to a unitary character Γ such that $|\phi|^{2}$ is integrable on $\left.\bar{H}(F) Z_{\mathbb{A}}^{2} \backslash H_{\mathbb{A}}\right) \Gamma$ and that $f \mapsto D_{f}$ intertwines $\left(\theta, C\left(\mathbb{A}^{\times}\right)\right)$with the representation r of $H_{\mathbb{A}}$ on L by right translation. The space L splits as a direct sum (and integral) of $H_{\mathbb{A}}$-modules Γ and using the trace formula it is shown in $[\mathrm{F}]$ that $\theta_{\mathbb{A}}$ occurs discretely in
(r, L) with multiplicity one. Thus $\theta_{\mathbb{A}}$ is an automorphic representation Γ and D yields the unique-up-to-scalar realization of $\theta_{\mathbb{A}}$ as an automorphic representation Γ intertwining $C\left(\mathbb{A}^{\times}\right)$with L. The analogous multiplicity one result for the $S_{\mathbb{A}}$-module $\theta_{\mathbb{A}}$ in $L^{2}\left(\bar{S}(F) \backslash S_{\mathbb{A}}\right)_{\text {gen }}$ is proven in Waldspurger [Wa] (see also [GP] where this result of [Wa] is deduced from the theorem of multiplicity one for $H_{\mathbb{A}}$ of $[F]$). In particular D is the unique-up-to-scalar operator intertwining $\left(\theta_{\mathbb{A}}, C(\mathbb{A})\right)$ with $\left(r, L^{2}\left(\bar{S}(F) \backslash S_{\mathbb{A}}\right)\right.$ gen $)$.
Proof of new summation formula. Given $f=\otimes f_{v}$ in $C\left(\mathbb{A}^{\times}\right) \Gamma$ define $\tilde{f}_{v}(t, x)=$ $|x|_{v}^{1 / 2} f_{v}\left(t x^{2}\right)\left(t \in F_{v}^{\times}, x \in F_{v}^{\times}\right)$Гand $\tilde{f}_{v}(t, 0)=\lim _{x \rightarrow 0} \tilde{f}_{v}(t, x)$. Put $\tilde{f}(t, x)=\prod_{v} \tilde{f}_{v}(t, x)$ on $\mathbb{A}^{\times} \times \mathbb{A}$. Then $\tilde{f}(t, 0)=f_{0}(t)$ Гand \tilde{f} satisfies $\tilde{f}(t, a x)=|a|^{1 / 2} \tilde{f}\left(t a^{2}, x\right)$. Put $f_{v}^{*}(t, x)=$ $\int \tilde{f}_{v}(t, y) \psi_{v}(x y) d y$. Then $\left(\widetilde{\mathcal{F}} f_{v}\right)(t, x)=|x|_{v}^{1 / 2}\left(\mathcal{F} f_{v}\right)\left(t x^{2}\right)$ is equal to $c_{v} \gamma_{v}(t)|t|_{v}^{1 / 2} f_{v}^{*}(t, t x)$. For $\alpha \in F^{\times}$and $\beta \in F$ we have $\tilde{f}(\alpha, \beta)=f\left(\alpha \beta^{2}\right)$ and $(\mathcal{F} f)\left(\alpha \beta^{2}\right)=(\widetilde{\mathcal{F} f})(\alpha, \beta)=$ $f^{*}(\alpha, \alpha \beta)$. Hence for any α in F^{\times}we have that

$$
f_{0}(\alpha)+\sum_{\beta \in F^{\times}} f\left(\alpha \beta^{2}\right)=\sum_{\beta \in F} \tilde{f}(\alpha, \beta)
$$

is equal by virtue of the Poisson summation formula applied to the function $x \mapsto \tilde{f}(\alpha, x)$ on \mathbb{A} to

$$
\sum_{\beta \in F} f^{*}(\alpha, \beta)=\sum_{\beta \in F} f^{*}(\alpha, \alpha \beta)=\sum_{\beta \in F}(\widetilde{\mathcal{F} f})(\alpha, \beta)=\sum_{\beta \in F^{\times}}(\mathcal{F} f)\left(\alpha \beta^{2}\right)+(\mathcal{F} f)_{0}(\alpha) .
$$

Summing over α in $F^{\times} / F^{\times 2}$ we obtain that the expression

$$
\sum_{\alpha \in F^{\times} / F^{\times 2}} f_{0}(\alpha)+2 \sum_{\alpha \in F^{\times}} f(\alpha)=\sum_{\alpha \in F^{\times} / F^{\times 2}}\left[\sum_{\beta \in F^{\times}} f\left(\alpha \beta^{2}\right)+f_{0}(\alpha)\right]
$$

is invariant under the replacement of f by $\mathcal{F} f$ Гas required.
Our final aim is to show that $D(f)$ is obtained as a special value of a standard Eisenstein series (defined below) Γ both in the case of S and H.

EVALUATION. The value of $E(s, g, f)$ at $s=0$ and $g=$ id is $D(f)$.
The Evaluation is a Siegel-Weil formula for a quadratic form in one variable. Such formulae have been obtained by Siegel [S] Γ Weil [We; 1965] ${ }^{\text {Mars }}[\mathrm{M}] \Gamma$ Igusa $[\mathrm{I}] \Gamma$ Rallis $[\mathrm{R}] \Gamma$ and Kudla-Rallis [KR]. In the case of $S=S L(2)$ this Evaluation is due also to Helminck $[\mathrm{H}] \Gamma \mathrm{p} .67 \Gamma$ who studied the analytic properties of the Fourier coefficients of the Eisenstein series Γ and deduced a functional equation Γ holomorphy on $\operatorname{Re}(s)>1, s \neq 3 / 2$, and the existence of at most a simple pole at $s=3 / 2$ (Theorem $16.7 \Gamma \mathrm{p}$. 63Гand Theorem $18.2 \Gamma \mathrm{p}$. 65). Moreover $\Gamma[\mathrm{H}]$ computes the residue at $s=3 / 2$ (Theorem $17.6 \Gamma \mathrm{p}$. 65). To evaluate the Eisenstein series at $s=0 \Gamma[\mathrm{H}]$ uses (on p. 67) the functional equation. Our proof Γ which is based on computing directly the values of the Fourier series at $s=0$ Гis simpler.

Our main interest is in the analogous result for $H=G L(2)$. The result for $H \Gamma$ and the technique may turn out to be useful in constructing an automorphic embedding of the model found in [FKS] for the smallest representation of a two- fold covering of $G L(3)$. The H_{v}-module θ_{v} defined above occurs in fact as a module of coinvariants of the representation studied in [FKS] Гand the model of θ_{v} described here is used there. For this reason we decided to reprove here the Evaluation for $S \Gamma$ in a format which seems to us to be more convenient for generalization; it is different from $[\mathrm{H}]$ in that we evaluate the Eisenstein series directly at $s=0$ Гand we do not use the functional equation. In any case we deal not only with the non-archimedean places Γ but also with the archimedean places. Then we discuss the case of H Гin several different ways.

As in $[\mathrm{H}] \Gamma$ in the case of S we work with $f=\otimes f_{v}$ Гeven f_{v} for all v. The Eisenstein series is defined (below) as a series which converges absolutely Γ uniformly in compact subsets of $\operatorname{Re}(s)>3 / 2$. It is well-known that it has analytic continuation to the entire complex plane Γ with a functional equation $\Gamma a n d$ the continuation is holomorphic on $\operatorname{Re}(s)>$ $1 / 2$ Гexcept for (at most) a simple pole at $s=1$. We study the value at $s=0$ 「in the domain of continuation. As in $[\mathrm{H}] \Gamma$ the proof is based on computing the Fourier expansion of the Eisenstein series along the standard non-trivial parabolic subgroup. We were motivated to consider the Evaluation by the observation that our computations can be adapted to show that $E(0, g, f)=E(0, i d, \theta(g) f) \Gamma$ and that one has the Evaluation $E(0, g, f)=$ $D\left(\theta_{\mathbb{A}}(g) f\right)=D_{f}(g)$. Then the summation formulae follow from the Evaluation. Indeed Γ it is clear from the definition of $E(s, g, f)$ that E is automorphic Γ namely when the group is S we have $E(s, g, f)=E(s, \delta g, f)$ for every δ in $\bar{S}(F) \subset S_{\mathbb{A}}$. Hence at $s=0$ and $g=i d$ we obtain $\sum_{\beta \in F} f(\beta)=\sum_{\beta \in F}(\theta(\delta) f)(\beta)$ for all $\delta \in \bar{S}(F)$. The Poisson summation formula $D(\mathcal{F} f)=D(f)$ follows on taking $\delta=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ Гsince then $\theta(\delta) f=\mathcal{F} f$ is the Fourier transform of f. The New Summation Formula similarly follows in the case of H. As noted above Γ this method of proof may apply to construct an automorphic embedding of the model found in [FKS] for the smallest representation of a two-fold covering of $G L(3)$. But this may require some effort Γ and we do not foresee ourselves studying this problem in the very near future.

I. EVALUATION FOR S.

We begin with the case of the $S_{\mathbb{A}}$-module $\left(\theta_{\mathbb{A}}, C(\mathbb{A})\right)$. To introduce the Eisenstein series on $S_{\mathbb{A}}$ recall the Iwasawa decomposition

$$
\bar{S}_{v}=\bar{N}_{v} \bar{A}_{v} \bar{K}_{v}, \quad \bar{N}_{v}=\left\{\left(\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right)\right\}, \quad \bar{A}_{v}=\left\{\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & a
\end{array}\right)\right\}, \quad K_{v}=S L\left(2, R_{v}\right)
$$

If $g_{v}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & a\end{array}\right) k_{v}$ then $a\left(g_{v}\right)=|a|_{v}>0$ is uniquely determined by g_{v} Гand so is $a(g)=\prod_{v} a\left(g_{v}\right)$ for any $g=\left(g_{v}\right)$ in $S_{\mathbb{A}}$. The functions $g \mapsto(\theta(g) f)(0)$ and
$g \mapsto a(g)$ are left invariant under the upper-triangular subgroup $\bar{P}(F)$ of $\bar{S}(F)$ Vviewed as a subgroup of $S_{\mathbb{A}}$. For every $f \in C(\mathbb{A})$ put

$$
E(s, g, f)=\sum_{\gamma \in \bar{P}(F) \backslash \bar{S}(F)}(\theta(\gamma g) f)(0) a(\gamma g)^{-s}
$$

Then $E(s, g, f)$ is an automorphic function「equal to $E(s, \gamma g, f)$ for all $\gamma \in \bar{S}(F)$. Note that $\varphi(g)=(\theta(g) f)(0) a(g)^{-s}$ is left invariant under $\bar{N}_{\mathbb{A}} \Gamma$ and $\varphi\left(s\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right) g\right)=$ $\gamma_{\mathbb{A}}(t)|t|^{s+1 / 2} \varphi(g) \quad\left(t \in \mathbb{A}^{\times}\right)$. Consequently the series defining $E(s, g, f)$ converges absolutely Γ uniformly in compact subsets of $\operatorname{Re}(s)>3 / 2$ and $g \in S_{\mathbb{A}}$. It is well-known that it has analytic continuation as a meromorphic function to the entire complex plane. The proof below shows that $E(s, g, f), g=i d$, is holomorphic at $s=0$. The complex parameter $s, \quad \operatorname{Re}(s)>0 \Gamma$ is used to guarantee the convergence of the infinite products below.

To compute the Fourier expansion of $E(s, g, f)$ at $s=0 \Gamma$ where $g=i d \Gamma$ it suffices to find the Fourier coefficients

$$
E_{\alpha}(s, f)=\int_{\mathbb{A}_{\bmod F}} E\left(s,\left(\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right), f\right) \bar{\psi}(\alpha u) d u
$$

for all α in F. Here the measure $d u$ is taken to assign the compact set $\bmod F$ the volume one. Then

$$
\int_{\mathbb{A}_{\bmod F}} \bar{\psi}(\alpha u) d u= \begin{cases}1, & \alpha=0 \Gamma \\ 0, & \alpha \neq 0 .\end{cases}
$$

A set of representatives for the coset space $\bar{P}(F) \backslash \bar{S}(F)$ is given by $i d$ and $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right), u \in F$. Thus for $\alpha \in F^{\times}$we have

$$
\begin{aligned}
E_{\alpha}(s, f) & =\int_{\mathbb{A}}\left[\theta\left(s\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
1 & u \\
0 & 1
\end{array}\right)\right) f\right](0)\|(1, u)\|^{-s} \bar{\psi}(\alpha u) d u\right. \\
& =\int_{\mathbb{A}} \int_{\mathbb{A}} f(y) \psi\left(\frac{1}{2} u y^{2}\right) d y\|(1, u)\|^{-s} \bar{\psi}(\alpha u) d u .
\end{aligned}
$$

Here $\left\|\left(1,\left(u_{v}\right)\right)\right\|=\prod_{v}\left\|\left(1, u_{v}\right)\right\|_{v}$ Twhere

$$
\left\|\left(1, u_{v}\right)\right\|_{v}= \begin{cases}\max \left(1,\left|u_{v}\right|_{v}\right) & \text { if } v \neq \infty ; \\ \left(1+u_{v}^{2}\right)^{1 / 2} & \text { if } F_{v}=\mathbb{R} ; \\ 1+u_{v} \bar{u}_{v} & \text { if } F_{v}=\mathbb{C} .\end{cases}
$$

The double integral over \mathbb{A} converges absolutely on $R e(s)>2 \Gamma$ and is equal to the Eulerian product of the local integrals

$$
\begin{equation*}
C_{v}(\alpha, s)=\int_{F_{v}} \int_{F_{v}} f_{v}(y) \psi_{v}\left(u\left(\frac{1}{2} y^{2}-\alpha\right)\right)\|(1, u)\|_{v}^{-s} d u d y \tag{1}
\end{equation*}
$$

Choose $\underline{q}_{v} \in F_{v}$ with $\operatorname{val}\left(\underline{q}_{v}\right)=-1\left(\underline{q}_{v}^{-1}\right.$ generates the maximal ideal of the local ring $\left.R_{v}\right) \Gamma$ when v is finite. Denote by ψ_{v}^{0} a character on F_{v} which is trivial on R_{v} but not on $\underline{q}_{v} R_{v}$. Given ψ_{v} there is an integer $c\left(\psi_{v}\right)$ with $\psi_{v}(x)=\psi_{v}^{0}\left(x \underline{q}_{v}^{c\left(\psi_{v}\right)}\right)$. Note that $\operatorname{vol}\left(R_{v}, d x\right)=\int_{R_{v}} d x$ is equal to $q_{v}^{c\left(\psi_{v}\right) / 2} \Gamma$ and $c\left(\psi_{v}\right)=0$ for almost all v.

We begin with the following local result.
PROPOSITION 1. (i) For almost all v, the integral (1) is equal to $1+\left(2 \alpha, \underline{q}_{v}\right)_{v} q_{v}^{-s}$. (ii) For every place v, the integral (1) has analytic continutation to \mathbb{C}, and its value at $s=0$ is zero if $2 \alpha \notin F_{v}^{2}$, and $|\beta|_{v}^{-1}\left(f_{v}(\beta)+f_{v}(-\beta)\right)$ if $2 \alpha=\beta^{2}, \beta \in F_{v}^{\times}$.

First we note the following
LEMMA 1. At any finite place v, the integral $\int_{F_{v}} \psi_{v}^{0}\left(u \underline{q}_{v}^{-r}\right)\|(1, u)\|_{v}^{-s} d u$ is zero unless $r \geq 0$, in which case it is equal to

$$
q_{v}^{c\left(\psi_{v}\right) / 2} \frac{1-q_{v}^{-s}}{1-q_{v}^{1-s}}\left(1-q_{v}^{(r+1)(1-s)}\right) .
$$

Proof. The first claim follows from the fact that $\int_{|u|_{v} \leq 1} \psi_{v}^{0}\left(u \underline{q}_{v}^{r}\right) d u=0$ if $r>0$. If $r \geq 0$ then the integral of the lemma is equal to

$$
\begin{aligned}
& \quad \int_{|u| \leq q^{r}}\|(1, u)\|^{-s} d u+\int_{|u|=q^{r+1}} \psi^{0}\left(u \underline{q}^{-r}\right) q^{-s(r+1)} d u \\
& =q^{c(\psi) / 2}\left[1+\left(1-q^{-1}\right) q^{1-s} \frac{q^{r(1-s)}-1}{q^{1-s}-1}-q^{r-s(r+1)}\right] \\
& =q^{c(\psi) / 2}\left(1-q^{-s}\right)\left(1-q^{(r+1)(1-s)}\right)\left(1-q^{1-s}\right)^{-1},
\end{aligned}
$$

as asserted; here the index v is omitted to simplify the notations.
Consequently the integral $C_{v}(\alpha, s)$ of (1) is equal to

$$
\begin{equation*}
q_{v}^{c\left(\psi_{v}\right) / 2} \frac{1-q_{v}^{-s}}{1-q_{v}^{1-s}} \sum_{r=0}^{\infty}\left(1-q_{v}^{(r+1)(1-s)}\right) \int_{\left|y^{2}-2 \alpha\right|=q_{v}^{-r-c\left(\psi_{v}\right)}|2|} f_{v}(y) d y \tag{1}
\end{equation*}
$$

It follows that there are $A_{v}=A\left(f_{v}, \psi_{v}\right)>0$ such that (1) is zero unless $|\alpha|_{v} \leq A_{v}$ for all v; here $A_{v}=1$ for all v where $f_{v}=f_{v}^{0}, \quad \psi_{v}=\psi_{v}^{0}$. Hence in the function field case Γ
for given f, ψ, there are at most finitely many non-zero $E_{\alpha}(s, f)$. Given α in F^{\times}Twe have $f_{v}=f_{v}^{0}, \quad \psi_{v}=\psi_{v}^{0}, \alpha \in R_{v}^{\times}$and $2 \in R_{v}^{\times}$for almost all v 「and then (1) is equal to

$$
q_{v}^{c\left(\psi_{v}\right) / 2} \frac{1-q_{v}^{-s}}{1-q_{v}^{1-s}}\left[\left(1-q_{v}^{1-s}\right) \int_{\left|y^{2}-2 \alpha\right|_{v}=1} f_{v}(y) d y+\sum_{r>0}\left(1-q_{v}^{(r+1)(1-s)}\right) \int_{\left|y^{2}-2 \alpha\right|_{v}=q_{v}^{-r}} f_{v}(y) d y\right] .
$$

We conclude at once the following
LEMMA 2. If $f_{v}=f_{v}^{0}, \quad \psi_{v}=\psi_{v}^{0},|\alpha|_{v}=1$ and $|2|_{v}=1$, then (1) is equal to

$$
1+q_{v}^{-s}=\frac{1-q_{v}^{-2 s}}{1-q_{v}^{-s}} \quad \text { if } \quad 2 \alpha \in F_{v}^{\times 2}
$$

or

$$
1-q_{v}^{-s}=1+\chi_{2 \alpha}\left(\underline{q}_{v}\right) q_{v}^{-s}=\frac{1-q_{v}^{-2 s}}{1-\chi_{2 \alpha}\left(\underline{q}_{v}\right) q_{v}^{-s}} \quad \text { if } \quad 2 \alpha \notin F_{v}^{\times 2}
$$

Here $\chi_{2 \alpha}$ denotes the quadratic character $x \mapsto(2 \alpha, x)_{v}$ of $F_{v} \times$.
Proof. In the first case note that if $2 \alpha=\beta^{2}, \quad|\beta|_{v}=1 \Gamma$ then $\left|y^{2}-2 \alpha\right|_{v}<1$ implies $|y-\beta|_{v}<1$ or $|y+\beta|_{v}<1$. Also $\int_{|y|_{v}=1} d y=q_{v}^{c\left(\psi_{v}\right) / 2}\left(1-q_{v}^{-1}\right)$. In the second case note that $\left(2 \alpha, \underline{q}_{v}\right)_{v}=-1$ if q_{v} is odd and 2α is a non-square unit in F_{v}.

Lemma 2 completes the proof of Proposition 1(i). At any finite $v \Gamma$ if $2 \alpha \notin F_{v}^{2}$ then only finitely many summands of ($\underline{1}^{\prime}$) are non-zeroThence ($\underline{1}^{\prime}$) is $o(s)$; we write $o(s)$ for a function whose limit at $s=0$ is zero. If $2 \alpha=\beta^{2}, \beta \in F_{v}^{\times} \Gamma$ to compute the limit at $s=0$ of ($\underline{1}^{\prime}$) it suffices to take the sum only over $r \geq R$ for any fixed R. We take $R=R(\alpha)$ to be sufficiently large. Then each integral in ($\underline{1}^{\prime}$) ranges over the y with $|y-\beta|_{v}$ or $|y+\beta|_{v}$ equal to $q_{v}^{-r-c\left(\psi_{v}\right)} /|\beta|_{v}$. Up to $o(s)$ we obtain

$$
\frac{1-q_{v}^{-s}}{1-q_{v}^{1-s}}\left(1-q_{v}^{-1}\right)|\beta|_{v}^{-1}\left(f_{v}(\beta)+f_{v}(-\beta)\right) \sum_{r=0}^{\infty}\left(q_{v}^{-r}-q_{v}^{1-s(r+1)}\right) .
$$

Then ($\underline{1}^{\prime}$) Гand so also (1) Гis equal to $2 f_{v}(\beta)|\beta|_{v}^{-1} \Gamma$ up to $o(s)$. This completes the proof of Proposition 1(ii) when v is finite.

LEMMA 3. Proposition 1 (ii) holds when $F_{v}=\mathbb{R}$.
Proof. The integral (1) is equal to

$$
\begin{align*}
& \iint_{\mathbb{R}^{2}} f_{v}(x) e^{-2 \pi i u\left(\frac{1}{2} x^{2}-\alpha\right)}\left(1+u^{2}\right)^{-s / 2} d u d x \\
& =\frac{2 \pi^{1 / 2}}{\Gamma\left(\frac{s}{2}\right)} \int_{\mathbb{R}}\left|\pi\left(\frac{1}{2} x^{2}-\alpha\right)\right|^{(s-1) / 2} K_{(s-1) / 2}\left(2 \pi\left|\frac{1}{2} x^{2}-\alpha\right|\right) f_{v}(x) d x \tag{*}
\end{align*}
$$

Here the equality follows from the well-known identity (see $[\mathrm{B}] \Gamma \mathrm{p} .83 \Gamma(27)$)

$$
\int_{\mathbb{R}}\left(1+x^{2}\right)^{-t} e^{2 \pi i a x} d x=2 \pi^{t}|a|^{t-\frac{1}{2}} \Gamma(t)^{-1} K_{t-\frac{1}{2}}(2 \pi|a|) \quad\left(a \in \mathbb{R}^{\times}\right)
$$

If $\alpha<0 \Gamma$ then the integral of $(*)$ over \mathbb{R} is an entire function of $s \Gamma$ and (ii) follows.
If $\alpha>0$ Гdefine $\beta>0$ by $\beta^{2}=2 \alpha$. Then $\int_{0}^{\beta-\delta}+\int_{\beta+\delta}^{\infty}$ is holomorphic on \mathbb{C} Гand Γ using the power series expansion of $K_{t}(z)$ near $z=0$ एwe have

$$
\begin{aligned}
& \int_{\beta-\delta}^{\beta+\delta}\left(\frac{1}{2} \pi\left|x^{2}-\beta^{2}\right|\right)^{(s-1) / 2} K_{(s-1) / 2}\left(\pi\left|x^{2}-\beta^{2}\right|\right) f_{v}(x) d x \\
& =\int_{\beta-\delta}^{\beta+\delta} \pi[2 \cos (\pi s / 2) \Gamma((1+s) / 2)]^{-1}\left(\pi\left|x^{2}-\beta^{2}\right| / 2\right)^{s-1} f_{v}(x) d x+h(s)
\end{aligned}
$$

with $h(s)$ holomorphic at $s=0$. Consequently u up to a function which is holomorphic at $s=0 \Gamma$ the integral over \mathbb{R} in (*) is equal twice the integral

$$
\pi[2 \cos (\pi s / 2) \Gamma((1+s) / 2)]^{-1}(\pi \beta)^{s-1} f_{v}(\beta) \int_{\beta-\delta}^{\beta+\delta}|x-\beta|^{s-1} d x
$$

whose residue at $s=0$ is $\pi^{-1 / 2} f_{v}(\beta) / \beta$; the lemma follows.
LEMMA 4. Proposition 1 (ii) holds when $F_{v}=\mathbb{C}$.
Proof. The integral (1) is equal to

$$
\begin{align*}
& \iint_{\mathbb{C}^{2}} f_{v}(x) e^{-2 \pi i t r\left(u\left(\frac{1}{2} x^{2}-\alpha\right)\right)}(1+u \bar{u})^{-s} d u d x \\
& =\frac{4 \pi}{\Gamma(s)} \int_{\mathbb{C}}\left(2 \pi\left|\frac{1}{2} x^{2}-\alpha\right|\right)^{s-1} K_{s-1}\left(4 \pi\left|\frac{1}{2} x^{2}-\alpha\right|\right) f_{v}(x) d x \tag{*}
\end{align*}
$$

Here the equality follows from the well-known identities (see $[B] \Gamma$ p. $81 \Gamma(2) \Gamma$ and p. 95Γ (51))

$$
\int_{0}^{2 \pi} e^{i z \cos \theta} d \theta=2 \pi J_{0}(z)
$$

and

$$
\int_{0}^{\infty} J_{0}(a r)\left(1+r^{2}\right)^{-s} r d r=(a / 2)^{s-1} K_{s-1}(a) / \Gamma(s) \quad(a>0)
$$

Choose $\beta \in \mathbb{C}$ which satisfies $2 \alpha=\beta^{2}$. Up to a function holomorphic at $s=0 \Gamma$ the integral of $(*)$ is equal to

$$
\begin{aligned}
& \int_{|x-\beta|<\delta}\left(\pi\left|x^{2}-\beta^{2}\right|\right)^{s-1} K_{s-1}\left(2 \pi\left|x^{2}-\beta^{2}\right|\right) f_{v}(x) d x \\
& \simeq \int_{|x-\beta|<\delta} \pi[2 \sin (\pi s) \Gamma(s)]^{-1}\left(\pi\left|x^{2}-\beta^{2}\right|\right)^{2 s-2} f_{v}(x) d x \\
& \simeq \pi[2 \sin (\pi s) \Gamma(s)]^{-1}(2 \pi|\beta|)^{2 s-2} f_{v}(\beta) \int_{|x-\beta|<\delta}|x-\beta|^{2 s-2} d x .
\end{aligned}
$$

Here again we used the power-series expansion of $K_{t}(z)$ at $z=0 ; \simeq$ mean equality up to a function holomorphic at $s=0 ;|$.$| is the usual absolute valueГand d x$ is the measure defined by the differential form $2 d x \wedge d \bar{x}$. Since

$$
\int_{|x-\beta|<\delta}|x-\beta|^{2 s-2} d x=2 \pi \delta^{2 s} / s \quad \text { if } \quad \operatorname{Re}(s)>0
$$

the residue at $s=0$ of the integral in $(*)$ is $(4 \pi)^{-1} f_{v}(\beta) /|\beta|^{2}$. Hence the value at $s=0$ of $(*)$ is the sum of $f_{v}(\beta) /|\beta|^{2}$ and $f_{v}(-\beta) /|\beta|^{2}$ Гas required.

We can now conclude
PROPOSITION 2. The value of the Fourier coefficient $E_{\alpha}(s, f)$ at $s=0$ is $2 f(\beta)=$ $f(\beta)+f(-\beta)$ if $2 \alpha=\beta^{2}, \quad \beta \in F^{\times}$, and it is zero if $2 \alpha \in F-F^{2}$.

Proof. Note that the Γ-function $\Gamma(s)$ satisfies $\Gamma(s+1)=s \Gamma(s)$ and $\Gamma(1)=1 \Gamma$ and it is analytic on $\operatorname{Re}(s)>0$. Denote by r_{1} (resp. r_{2}) the number of real (resp. pairs of complex) embeddings of F. The product

$$
\zeta(s)=\prod_{v \neq \infty}\left(1-q_{v}^{-s}\right)^{-1}
$$

converges absolutely uniformly in compacts of $\operatorname{Re}(s)>1$ Chas analytic continuation as a meromorphic function of s on $\mathbb{C} \Gamma$ and there is a complex number $A \neq 0$ such that $\zeta(s)$ satisfies the functional equation

$$
\zeta(s) \Gamma\left(\frac{s}{2}\right)^{r_{1}} \Gamma(s)^{r_{2}} A^{s}=A^{1-s} \Gamma\left(\frac{1-s}{2}\right)^{r_{1}} \Gamma(1-s)^{r_{2}} \zeta(1-s)
$$

Since ζ has a simple pole at $s=1$ Cone has

$$
\lim _{s \rightarrow 0} \zeta(s) / \zeta(2 s)=\lim _{s \rightarrow 0} \frac{\zeta(1-s)}{\zeta(1-2 s)}\left(\frac{\Gamma(2 s)}{\Gamma(s)}\right)^{r_{2}}\left(\frac{\Gamma(s)}{\Gamma\left(\frac{s}{2}\right)}\right)^{r_{1}}=2^{1-r_{1}-r_{2}}
$$

Lemmas $2 \Gamma 3$ and 4 imply that when $\alpha=\beta^{2} / 2, \beta \in F^{\times}$ The Fourier coefficient $E_{\alpha}(s, f)$ is

$$
\frac{\zeta(s)}{\zeta(2 s)} \prod_{v \in V, v \neq \infty}\left(1+q_{v}^{-s}\right)^{-1} \prod_{v \in V} C_{v}(\alpha, s)
$$

where V is a finite set of places such that each $v \notin V$ is finite and has $f_{v}=f_{v}^{0}, \quad \psi_{v}=$ $\psi_{v}^{0}, \quad|\alpha|_{v}=1,|2|_{v}=1$. At $s=0$ this is equal to

$$
2^{1-r_{1}-r_{2}}\left(\prod_{v \in V, v<\infty} 2^{-1}\right)\left(\prod_{v \in V} 2 f_{v}(\beta) /|\beta|_{v}\right)=2 f(\beta)=f(\beta)+f(-\beta)
$$

Note that $\Pi_{v \in V}|\beta|_{v}=1$ Гand $f_{v}(\beta)=1$ for $v \notin V$.
When $2 \alpha \in F-F^{2} \Gamma$ define a character χ_{α} on \mathbb{A}^{\times}by $\chi_{\alpha}(t)=\prod_{v}\left(2 \alpha, t_{v}\right)_{v}$. The Euler product

$$
\zeta\left(s, \chi_{\alpha}\right)=\prod\left(1-\chi_{\alpha}\left(\underline{q}_{v}\right) q_{v}^{-s}\right)^{-1}
$$

(product over the set of finite places where χ_{α} is unramified) is absolutely convergent Γ uniformly in compact subsets of $\operatorname{Re}(s)>1 \Gamma$ and has analytic continuation to the entire complex plane. Its value at $s=1$ is a finite non-zero number. Denote by $r_{1}^{-}=r_{1}^{-}(\alpha)$ the number of real places of F where $\alpha<0$ Гnamely where χ_{α} is quadratic Γ and by r_{1}^{+}the number of real places where $\alpha>0$. From the functional equation satisfied by $\zeta\left(s, \chi_{\alpha}\right)$ it follows that $\zeta\left(s, \chi_{\alpha}\right)$ has a zero of order $r_{1}^{+}+r_{2}$ at $s=0$ Гand that $\zeta(2 s)$ has a zero of order $r_{1}+r_{2}-1$ there. Lemma 2 implies that when $\alpha \in F-F^{2} \Gamma$ we have that

$$
\begin{aligned}
& E_{\alpha}(s, f)=\prod_{v \in V} C_{v}(\alpha, s) \prod_{v \notin V}\left(1+\left(2 \alpha, \underline{q}_{v}\right)_{v} q^{-s}\right) \\
& =\frac{\zeta\left(s, \chi_{\alpha}\right)}{\zeta(2 s)} \prod_{v \in V} C_{v}(\alpha, s) \prod_{v \in V^{\prime}}\left(1+q_{v}^{-s}\left(2 \alpha, \underline{q}_{v}\right)\right)^{-1} \prod_{v \in V^{\prime \prime}}\left(1-q_{v}^{-2 s}\right)^{-1}
\end{aligned}
$$

Here V is a sufficiently large finite set of places of F, V^{\prime} is the set of finite v in V where χ_{α} is unramified Γ and $V^{\prime \prime}$ is the set of finite v in V where χ_{α} is ramified. It follows that the order of zero of $E_{\alpha}(s, f)$ at $s=0$ is at least

$$
r_{1}^{+}+r_{2}-\left(r_{1}+r_{2}-1\right)+\left[\left\{v \in V ; 2 \alpha \notin F_{v}^{\times 2}\right\}\right]-\left[\left\{v \in V^{\prime} ; 2 \alpha \notin F_{v}^{\times 2}\right\}\right]-\left[V^{\prime \prime}\right]=1 .
$$

Here [V] denotes the cardinality of a set V. It follows that the limit of $E_{\alpha}(s, f)$ at $s=0$ is zero. The proof of proposition 2 is now complete.

PROPOSITION 3. The value at $s=0$ of the Fourier coefficient $E_{\alpha}(s, f)$ at $\alpha=0$ is $f(0)$.
Proof. The coset of the identity in $\bar{P}(R) \backslash \bar{S}(F)$ yields the contribution $f(0)$ to $E_{0}(s, f)$. Any other coset is represented by

$$
\begin{gather*}
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) \text { Гand contributes the Eulerian integral } \\
\int_{\mathbb{A}} \int_{\mathbb{A}} f(y) \psi\left(\frac{1}{2} u y^{2}\right)\|(1, u)\|^{-s} d u d y \tag{2}
\end{gather*}
$$

To compute the local integral which occurs in this product we use local notations (drop the index v) put $r=c(\psi)$ and write ψ for ψ^{0}. Since

$$
\int \psi\left(u q^{-r-2 t}\right)\|(1, u)\|^{-s} d u
$$

is zero unless $r+2 t \geq 0$ whereГby Lemma $1 \Gamma q^{r / 2}\left(1-q^{-s}\right)\left(1-q^{(1+r+2 t)(1-s)}\right) /\left(1-q^{1-s}\right)$ is obtained Γ the local integral

$$
\int f(y) \int \psi\left(u q^{-r} y^{2}\right)\|(1, u)\|^{-s} d u d y
$$

equals

$$
\begin{equation*}
q^{r / 2} \sum_{t \geq-\frac{r}{2}} \frac{1-q^{-s}}{1-q^{1-s}}\left(1-q^{(1-s)(1+r+2 t)}\right) \int_{|y|=q^{-t}} f(y) d y \tag{2}
\end{equation*}
$$

When $r=0$ and $f=f^{0}$ is the characteristic function of $|y| \leq 1$ Гone obtains

$$
q^{r} \frac{1-q^{-s}}{1-q^{1-s}}\left(1-q^{-1}\right) \sum_{t=0}^{\infty}\left(q^{-t}-q^{1-s+t(1-2 s)}\right)=q^{r} \frac{1-q^{-2 s}}{1-q^{1-2 s}} .
$$

It is clear that each of the summands in $\left(\underline{2}^{\prime}\right)$ is $o(s)$. Hence up to $o(s)$ it suffices to take $t \geq R$ in $\left(\underline{2}^{\prime}\right)$; for a sufficiently large R one has $f(y)=f(0)$ on $|y| \leq q^{-R}$. Taking the sum over $t \geq R$ it is clear that $\left(\underline{2}^{\prime}\right)$ is $o(s)$. It follows that ($\underline{2}$) is equal to

$$
\begin{aligned}
& \prod_{v \in V} C_{v}(0, s) \prod_{v \notin V}\left(1-q_{v}^{-2 s}\right)\left(1-q_{v}^{1-2 s}\right)^{-1} \\
& =\frac{\zeta(2 s-1)}{\zeta(2 s)} \prod_{v \in V} C_{v}(0, s) \prod_{v \in V, v<\infty}\left(1-q_{v}^{-2 s}\right)\left(1-q_{v}^{1-2 s}\right)^{-1}
\end{aligned}
$$

Here V is a sufficiently large finite set of places. Note that $\zeta(2 s-1)$ has a zero of order r_{2} at $s=0$. This follows from the functional equation of $\zeta(s) \Gamma$ since $\Gamma\left(\frac{1}{2}\right)$ and $\zeta(2)$ are finite and non-zero Γ while $\Gamma(-1+s)$ has a simple pole at $s=0$. Consequently the order of zero of (2) at $s=0$ is at least $r_{2}-\left(r_{1}+r_{2}-1\right)+[V]-[\{v \in V ; v<\infty\}]=r_{2}+1$. Hence (2) vanishes at $s=0$ Гand the proposition follows.

In conclusion Γ the value of the Fourier expansion $\sum_{\alpha \in F} E_{\alpha}(s, f)$ of $E(s, g, f), g=i d \Gamma$ at $s=0$ Гis

$$
E(0, i d, f)=\sum_{\alpha \in F} E_{\alpha}(0, f)=f(0)+2 \sum_{\alpha \in F \times 2} f\left(\beta_{\alpha}\right)=\sum_{\beta \in F} f(\beta),
$$

where β_{α} is an element in F^{\times}with $\beta_{\alpha}^{2}=\alpha$. This completes the proof of the Evaluation in the case of the group S.

As noted above Γ our computations can be extended to apply with any g in $S_{\mathbb{A}} \Gamma$ and yield the Evaluation $E(0, g, f)=\sum_{\beta \in F}(\theta(g) f)(\beta)$. Since $E(s, g, f)=E(s, \delta g, f)$ for
every δ in $\bar{S}(F) \subset S_{\mathbb{A}} \Gamma$ it follows that $\sum_{\beta \in F} f(\beta)=\sum_{\beta \in F}(\theta(\delta) f)(\beta)$ for any $\delta \in \bar{S}(F)$. The Poisson summation formula is obtained on taking $\delta=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right) \Gamma$ since then $\theta(\delta) f=\mathcal{F} f$ is the Fourier transform of f. Moreover Γ the functional $f \mapsto \sum_{\beta \in F} f(\beta)$ intertwines $\theta_{\mathbb{A}}$ with its model as a discrete series automorphic representation.

II. EVALUATION FOR H.

Next we turn to the study of the $H_{\mathbb{A}}$-module $\left(\theta_{\mathbb{A}}, C\left(\mathbb{A}^{\times}\right)\right)$. For $f=\otimes f_{v}, \quad f_{v} \in$ $C\left(F_{v}^{\times}\right)$Cconsider the function $f_{0}=\otimes f_{v 0}, \quad f_{v 0}(x)=\lim _{t \rightarrow 0}|t|_{v}^{1 / 2} f_{v}\left(t^{2} x\right)$ Гon \mathbb{A}^{\times}; it satisfies $|t|_{\mathbb{A}}^{1 / 2} f_{0}\left(t^{2} x\right)=f_{0}(x)$. The series

$$
E(s, g, f)=\sum_{\gamma \in \bar{P}(F) \backslash \bar{H}(F)} \sum_{x \in F^{\times} / F^{\times 2}}(\theta(\gamma g) f)_{0}(x) a(\gamma g)^{-s}
$$

is absolutely convergent Γ uniformly in compact subsets of $\operatorname{Re}(s)>3 / 2$. Here \bar{P} is the upper triangular parabolic subgroup of \bar{H}. The proof below implies that the analytic continuation of $E(s, g, f)$ is holomorphic at $s=0$. We give two proofs for the Evaluation in the case of H. The first is based on reduction to the case of S. At $g=i d$ Гone has

$$
\begin{aligned}
E_{H}(s, i d, f) & =\sum_{\gamma} \sum_{x}(\theta(\gamma) f)_{0}(x) a(\gamma)^{-s} \\
& =\sum_{\alpha \in F \times / F^{\times 2}} f_{0}(\alpha)+\sum_{\beta \in F} \sum_{\alpha \in F \times / F^{\times 2}}\left(\theta\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right)\right) f\right)_{0}(\alpha)\|(1, \beta)\|^{-s} \\
& =\sum_{\alpha \in F^{\times} / F^{\times 2}}\left[f(\alpha, 0)+\sum_{\beta \in F} \int_{\mathbb{A}} f(\alpha, x) \psi\left(\frac{1}{2} \alpha \beta x^{2}\right) d x \cdot\|(1, \beta)\|^{-s}\right] .
\end{aligned}
$$

The summand in the last sum over α is no other than $E_{S}\left(s, i d, f_{\alpha}\right) \Gamma$ where $f_{\alpha}(x)=$ $f(\alpha, x)$. By the Evaluation for S we have $E_{S}\left(0, i d, f_{\alpha}\right)=\sum_{\beta \in F} f(\alpha, \beta)$. Taking the sum over α in $F^{\times} / F^{\times 2}$ we obtain
$E_{H}(0, i d, f)=\sum_{\alpha \in F^{\times} / F^{\times 2}} f_{0}(\alpha)+\sum_{\alpha \in F^{\times} / F^{\times 2}} \sum_{\beta \in F^{\times}} f(\alpha, \beta)=\sum_{\alpha \in F^{\times} / F^{\times 2}} f_{0}(\alpha)+2 \sum_{\alpha \in F^{\times}} f(\alpha)$,
as required.
The second proof is analogous to that given above for S. It will now be briefly described. The Fourier expansion of $E(s, g, f)$ at $g=i d$ is $\sum_{\alpha \in F} E_{\alpha}(s, f)$ Гwhere

$$
E_{\alpha}(s, f)=\int_{\mathbb{A}_{\bmod F} F} E\left(s,\left(\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right), f\right) \bar{\psi}(u \alpha) d u
$$

The coset of the identity in $\bar{P}(F) \backslash \bar{H}(F)$ contributes

$$
\sum_{\alpha \in F} \int_{\mathbb{A} \bmod F}\left[\sum_{x \in F^{\times} / F^{\times 2}} f_{0}(x)\right] \bar{\psi}(u \alpha) d u=\sum_{x \in F^{\times} / F^{\times 2}} f_{0}(x)
$$

to the Fourier expansion. It remains to consider the contribution of the cosets of $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right)$ to $E_{\alpha}(s, f)$. It is the sum over $x \in F^{\times} / F^{\times 2}$ of the Eulerian integral

$$
\int_{\mathbb{A}} \theta\left(\left(\begin{array}{rr}
0 & -1 \tag{르}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) f\right)_{0}(x)\|(1, u)\|^{-s} \bar{\psi}(u \alpha) d u .
$$

To compute the local factors of (즈) Γ we pass to local notations Γ i.e. drop the index v. Since

$$
\left(\theta\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\right) f\right)(x)=c \gamma(x)|x|^{1 / 2} \int|y|^{1 / 2} f\left(x y^{2}\right) \psi\left(x\left(\frac{1}{2} u y^{2}+y\right)\right) d y
$$

we have

$$
\left(\theta\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\right) f\right)_{0}(x)=c \gamma(x)|x|^{1 / 2} \int|y|^{1 / 2} f\left(x y^{2}\right) \psi\left(\frac{1}{2} u x y^{2}\right) d y
$$

Hence the local factor in (즈) is

$$
\begin{equation*}
c \gamma(x)|x|^{1 / 2} \int_{u} \int_{y}|y|^{1 / 2} f\left(x y^{2}\right) \psi\left(u\left(\frac{1}{2} x y^{2}-\alpha\right)\right)\|(1, u)\|^{-s} d u d y \tag{3}
\end{equation*}
$$

There is $A(f, \psi)>0 \Gamma$ with $A\left(f^{0}, \psi^{0}\right)=1 \Gamma$ such that $\left(\underline{3}^{\prime}\right)$ is zero unless $|\alpha| \leq A(f, \psi)$. Hence when F is a function field the global integral (3) vanishes for almost all $\alpha \in F^{\times}$. It is easy to see that for each of the remaining finitely many α 's Γ for which ($\underline{3}$) may be non-zero $\Gamma(\underline{3})$ would vanish for all but finitely many x in $F^{\times} / F^{\times 2}$.
PROPOSITION 4. If $f_{v}=f_{v}^{0}, \quad \psi_{v}=\psi_{v}^{0}, \quad|\alpha|_{v}=1, \quad|x|_{v}=1$, then ($\underline{3}^{\prime}$) is equal to

$$
1+q_{v}^{-s}=\frac{1-q_{v}^{-2 s}}{1-q_{v}^{-s}} \quad \text { if } \quad 2 \alpha / x \in F_{v}^{\times 2}
$$

or

$$
\int \psi_{v}(u)\|(1, u)\|_{v}^{-s} d u=1-q_{v}^{-s}=1+\chi_{2 \alpha / x}\left(\underline{q}_{v}\right) q_{v}^{-s}=\frac{1-q_{v}^{-2 s}}{1-\chi_{2 \alpha / x}\left(\underline{q}_{v}\right) q_{v}^{-s}}
$$

if $2 \alpha / x \notin F_{v}^{\times 2}$, where $\chi_{2 \alpha / x}(y)=(2 \alpha / x, y)_{v}$ is the quadratic character associated with $2 \alpha / x \in F_{v}^{\times} / F_{v}^{\times 2}$.

Proof. This follows at once from Lemma 2.
By Lemma 1 Гeach of the local integrals ($\underline{3}^{\prime}$) at a finite place is equal to

$$
q^{c(\psi) / 2} \frac{1-q^{-s}}{1-q^{1-s}} \sum_{n \geq 0}\left(1-q^{(1+n)(1-s)}\right) c \gamma(x)|x|^{1 / 2} \int_{\left|y^{2}-2 \alpha / x\right|=q^{-n-c(\psi)} /|2 x|}|y|^{1 / 2} f\left(x y^{2}\right) d y
$$

Up to $o(s)$ it suffices to sum only over $n \geq R=R(\alpha, x, f)$. For a sufficiently large R we get that each integral is zero unless there is $\beta \in F^{\times}$with $\beta^{2}=2 \alpha / x$ Гand then we obtain

$$
2 c \gamma(x)|x|^{1 / 2}|\alpha / x|^{1 / 4} f(\alpha)|\beta x|^{-1}\left(1-q^{-1}\right)\left(1-q^{-s}\right)\left(1-q^{1-s}\right)^{-1} \sum_{n \geq R}\left(q^{-n}-q^{1-s-n s}\right) .
$$

Up to $o(s)$ this is the same as the analogous sum over $n \geq 0$ Гand at $s=0$ we obtain

$$
2 f(\alpha) c \gamma(x)|\alpha|^{-1 / 4}|x|^{-3 / 4}
$$

The analogous result holds in the archimedean cases too.
Returning to the global notations of (3) Гwe conclude
PROPOSITION 5. The Fourier coefficient $E_{\alpha}(s, f)$ is an analytic function of s near $s=0$ (which is zero, when F is a function field, for all $\alpha \in F^{\times}$with only finitely many exceptions depending on f and ψ), and its value at $s=0$ is $E_{\alpha}(0, f)=2 f(\alpha)$.

Proof. Since $\zeta(s) / \zeta(2 s)$ takes the value $2^{1-r_{1}-r_{2}}$ at $s=0 \Gamma$ and $\zeta\left(s, \chi_{2 \alpha / x}\right) / \zeta(2 s)$ has a zero of order $1-r_{1}^{-}(\alpha / x)$ at $s=0 \Gamma$ as in the case of $S L(2)$ we conclude that given $\alpha \in F^{\times}$the integral ($\underline{3}$) is zero at $s=0$ unless the class of 2α in $F^{\times} / F^{\times 2}$ is represented by x. Then $E_{\alpha}(s, f)$ is equal to the value of (3) at $x=\alpha$ Гand this is $2 f(\alpha)+o(s)$ Гas required.

PROPOSITION 6. The contribution to $E_{\alpha}(s, f), \alpha=0$, from the cosets represented by

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right) \text {, is } o(s) \text {. }
$$

Proof. We have to compute the product over v of the local integrals

$$
\gamma(x)|x|^{1 / 2} \int_{y}|y|^{1 / 2} f\left(x y^{2}\right) \int_{u} \psi\left(u x y^{2}\right)\|(1, u)\|^{-s} d u d y .
$$

As noted in the case of $S L(2) \Gamma$ for almost all v we have $|2|=1,|x|=1, \quad f=f^{0}, \quad \psi=$ $\psi^{0}, c(\psi)=0$ Гand the result is

$$
\left(1-q^{-2 s}\right) /\left(1-q^{1-2 s}\right)
$$

In general the local integral is
$q^{c(\psi) / 2} \gamma(x)|x|^{1 / 2}\left(1-q^{-s}\right)\left(1-q^{1-s}\right)^{-1} \sum_{n \geq 0}\left(1-q^{(1+n)(1-s)}\right) \int_{|y|^{2}=q^{-n-c(\psi)} /|2 x|}|y|^{1 / 2} f\left(x y^{2}\right) d y$.

Up to $o(s)$ we may take $n \geq R$ Гand when R is sufficiently large Γ up to $o(s)$ we obtain

$$
\gamma(x) f_{0}(x)\left(1-q^{-s}\right)\left(1-q^{1-s}\right)^{-1}\left(1-q^{-1}\right) \sum_{n \geq 0}\left(q^{-n}-q^{1-s+n(1-2 s)}\right)
$$

if $\operatorname{val}(2 x)-c(\psi)$ is even Γ and 0 otherwise. But this expression is $o(s)$. Hence the contribution to $E_{0}(s, f)$ under discussion is the product of a function which vanishes at $s=0$ to the order $r_{1}+r_{2}$ Гand $\zeta(2 s-1) / \zeta(2 s)$ Wwhich vanishes to the order $r_{2}-\left(r_{1}+r_{2}-1\right)$ (see proof of Proposition 3).

It follows from Proposition 6 that $E_{0}(0, f)=\sum_{x \in F^{\times} / F^{\times 2}} f_{0}(x)$. Using Proposition 5 we conclude that the value of $E(s, i d, f)$ at $s=0$ is

$$
D(f)=\sum_{x \in F^{\times} / F^{\times 2}} f_{0}(x)+2 \sum_{x \in F^{\times}} f(x),
$$

and the proof of the Evaluation for H is complete. As noted above Γ one can generalize our computations to apply to $E(s, g, f), s=0 \Gamma$ with any g in $H_{\mathbb{A}}$. Since $E\left(s,\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), f\right)=E(s, i d, f) \Gamma$ this would yield another proof of the new summation formula $D(f)=D(\mathcal{F} f)$ 「as well as the automorphic realization of $\left(\theta_{\mathbb{A}}, C\left(\mathbb{A}^{\times}\right)\right)$.

References

[B] H. Bateman Γ Higher Transcendental Functions IIГ McGraw-Hill Γ New York 1953.
[F] Y. FlickerГ Automorphic forms on covering groups of GL(2) Г Invent. Math. 57(1980)Г119-182.
[FKS] Y. FlickerГD. KazhdanГG. SavinГExplicit realization of a metaplectic representation ГJ. Analyse Math. 55(1990)Г17-39.
[GP] S. GelbartГI. Piatetski-ShapiroГSome remarks on metaplectic cusp forms and the correspondences of Shimura and WaldspurgerГ Israel J. Math. 44(1983)Г 97-126
[H] G. F. Helminck Γ Eisenstein series on the metaplectic group: an algebraic approach $Г$ Mathematisch centrumГАmsterdamГ1983.
[I] J.-I. IgusaГLectures on forms of Higher degreeГTata Inst.ГBombayГSpringerVerlag 1978.
[KP] D. KazhdanГS. J. PattersonГMetaplectic forms P Publ. Math. IHES 59(1984) Г 35-142.
[K] T. Kubota Topological covering of $S L(2)$ over a local field Γ J. Math. Soc. Japan 19 (1967)Г114-121; and: Automorphic Forms and the Reciprocity law in a Number Field Гmimeographed notes Γ Kyoto Univ. 1969.
[KR] S. KudlaГS. RallisГOn the Weil-Siegel formulaГ J.f.d.r.u.a. Math. 387 (1988)Г 1-68.
[L] S. Lang「 Algebraic Number Theory, Addison-Wesley Γ
[M] J.G.M. Mars Γ The Siegel formula for orthogonal groups Γ in Algebraic Groups and Continuous SubgroupsГProc. Symp. Pure Math. 9 (1966)Г133-142.
[R] S. Rallis Γ L-functions and the Oscillator Representation, SLN 1245(1987).
[S] C.L. SiegelГDie Funktionalgleichungen einiger Dirichletscher ReihenГ Math. Z. 63 (1956)Г363-373.
[Wa] J.-L. WaldspurgerГCorrespondances de Shimura et Quaternions $\Gamma 1981$ Cunpublished.
[We] A. WeilГSur certains groupes d'opérateurs unitaires Γ Acta Math. 111(1964) Γ 143-211; Sur la formule de Siegel dans la theorie des groupes classiques Γ Acta Math. 113 (1965)Г1-87.

