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Abstract. In the �rst Section of this paper we obtain an asymptotic expansion near semi

simple elements, of orbital integrals �
~x( ~f) of C

1

c
-functions ~f on symmetric spaces G=H. Here

G is a reductive p-adic group, and H is the group of �xed points of an involution � on G. This

extends the germ expansion of Shalika [Sh] and Vigneras [V] in the group case.

The main part of the paper studies examples of groups G with involution �, which have the

property that the spherical characters associated with its spherical admissible representations

are not identically zero on the regular set of G=H. These include G = GL(n + m), H =

GL(n) � GL(m) for n = m = 1 or 2, and n = 1; m � 3. More general results had been

obtained by Sekiguchi [S1] in the case of real symmetric spaces, generalizing Harish-Chandra's

work in the group case, over archimedean and non archimedean �elds. Our interest is in the p-

adic case. There the techniques are entirely di�erent from Sekiguchi's. In fact we use the recent

work of Rader-Rallis [RR] who showed that the spherical character is smooth on the regular

set, and has asymptotic expansion in terms of Fourier transforms of invariant distributions on

the nilpotent cone, as found by Harish-Chandra [HC1] in the group case.

Our study of the non vanishing of some spherical characters uses a construction of an

explicit basis of the space of invariant distributions on the nilpotent cone. This is done on

regularizing spherical orbital integrals, and taking suitable linear combinations. This local

work is motivated by concrete applications to the theory of Deligne-Kazhdan lifting of spherical

automorphic representations [F2], [F20]. In some other examples, concerning G = GL(3n) and

H = GL(n) � GL(2n), and G = O(3; 2); H = O(2; 2), we explicitly construct invariant

distributions on the nilpotent cone which are equal to their Fourier transform. Such examples

do not exist in Harish-Chandra's group case.

In the last two Sections, following Harish-Chandra's simple proof in the group case [HC2],

we show that �
~x( ~f) is locally constant on the regular set of ~x, uniformly in ~f , in some cases.

Following Kazhdan's proof of his density theorem [K;Appendix], we show that an ~f which

annihilates all spherical characters has �
~x( ~f) = 0 on the regular elliptic set.

Introduction. Let G be a reductive group de�ned over a non archimedean local �eld F .

As in [SS], [St], ��� denotes an involution (automorphism of order two) of G over F . Let

H = G+ be the group of �xed points of ��� in G. Put G = G(F ), H = G+ = H(F ) for the

corresponding groups of F -points, and � for the induced involution of G. Then G, H, are

`-groups in the terminology of Bernstein-Zelevinski [BZ]. To simplify this introduction the

centers of the groups are ignored. For any `-space X one has the space C1c (X) of complex

valued locally constant compactly supported functions on X, and the dual space C1c (X)�

of distributions on X. When A is a group acting on X, C1c (X)�A denotes the space of

A-invariant distributions on X.

Following the work of Jacquet-Lai [JL] on automorphic forms with non zero periods (a

brief discussion of this motivation is postponed to the end of this introduction), there is a
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considerable interest currently in H�H-invariant distributions on G. These occur as orbital

integrals in the geometric side of Jacquet's \relative trace formula" (a more descriptive title

is \bi-period summation formula" for the case at hand), and as spherical characters on the

spectral side of this formula.

Denote the image of the map G=H ! G, g 7! ~g = g�(g)�1, by ~G. Given f 2 C1c (G),

put ~f(~g) =
R
H
f(gh)dh. If H � H acts on G by right and left multiplication, and H acts

on ~G by conjugation, then C1c (G)�H�H = C1c ( ~G)�H . Examples of elements in the space

C1c ( ~G)�H of interest are given by orbital integrals. A semi-simple (in G) element ~ of ~G is

called �-regular if its centralizer ZH(~) in H is a torus. Using the fact that H and ZH(~)

are unimodular, and [BZ], one has a unique Haar measure on the orbit O(~) = Int(H)~ '

H=ZH(~). Since this orbit is closed (by Richardson [Ri]), this extends to an H-invariant

distribution on ~G supported on the orbit O(~), denoted by �~( ~f) =
R
H=ZH(~)

~f(Int(h)~)dh

( ~f 2 C1c ( ~G)), and named the \spherical" orbital integral of ~f at ~. Thus �~ is an element

of C1c ( ~G)�H . In Section 1 we study the asymptotic behavior of the distributions �~ in the

vicinity of a semi-simple (in G) element ~s in ~G, which is not necessarily regular.

Before describing this, note that our setting of symmetric spaces G=H, reduces to the

classical \group" case of a reductive group G acting on itself by conjugation, when one

takes G = H � H and �(x; y) = (y; x). The asymptotic behavior of the orbital integrals

�(f) =
R
G=ZG()

f(Int(g))dg in the vicinity of a semi-simple element s of G has been

studied by Shalika [Sh] and Vigneras [V]. Section 1 extends their work from the group case

H � H=H, to that of a general symmetric space G=H. This extension is needed both for

the study of Jacquet's summation formula mentioned above, as well as for the study of the

spherical characters.

A preliminary result in the study of these orbital integrals is geometric. Fix a semi-simple

(in G) element ~s in ~G, and denote by ~G~s the set of ~x in ~G whose semi-simple part lies in

Int(H)~s. Then H acts on ~G~s by conjugation, and by Richardson [Ri], the set ~G~s is closed

and consists of �nitely many H-orbits. Proposition 1.1 shows that the dimension of the

complex vector space C1c ( ~G~s)
�H is �nite, bounded by the number of H-orbits in ~G~s.

The contrast between the proof of this Proposition in the symmetric space and the group

cases is interesting. In the group case, the centralizer ZG(x) of any x in G is unimodular

(e.g., Springer-Steinberg [SS]), hence the orbital integral �O(x) exists on C1c (O(x)) (by

[BZ]). By the theorem of Rao [R] (and Bernstein [Be] for GL(n) and �elds of positive

characteristic), it extends to the closure O(x) of the orbit O(x)=Int(G)x of x, and to G

(by [BZ]). These results do not extend to the general symmetric space case, but of course

one still has the \closed orbit lemma" (e.g. Borel [Bo]), and the �nite dimensionality can

be established; yet no natural basis exists.

Using the \closed orbit lemma" one can choose a basis f�g for the space C1c ( ~G~s)
�H ,

and functions ��(~x) on the regular set of ~x in ~G, called germs of orbital integrals, and the

asymptotic expansion takes the following form.

For every ~f in C1c ( ~G) and semi-simple ~s in ~G, there exists an H-invariant open and

closed neighborhood V ~f of ~s in ~G such that for every regular ~x in V ~f one has �~x( ~f) =P
� ��(~x)�(

~f).

Conversely, any H-invariant function on the regular set of ~G which is compactly sup-

ported on ~G= Int(H) and has such asymptotic behavior, is an orbital integral of some ~f .
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It is important to note that in the group case, Harish-Chandra [HC1], Theorem 10, shows

that �x(f) is zero for all x in G if it vanishes for all regular elements x in G. The proof of this

relies on [HC1], Lemma 8, which uses the local integrability of characters of supercuspidal

representations. This had been proven by Harish-Chandra [HCD]. The analogues in the

symmetric space case � the spherical characters � are rarely locally integrable, even for

spherical supercuspidal representations. The proof of [HC1], Theorem 10, does not extend

to the spherical case, and indeed the vanishing of �~x( ~f) for all regular ~x in ~G does not imply

in general that �( ~f) is zero for all � in C1c ( ~G)�H . Some examples and counter-examples

have been studied in the case of rank one symmetric spaces by van Dijk [D] in the real case,

and Rader-Rallis [RR] in the non archimedean case.

To describe the contents of the main part, Sections 2� 10, of this paper, let us recall the

notion of a spherical character of an irreducible admissible G-module � which is H-spherical.

The adjective H-spherical means that the dual �� = HomC (�; C ) of � contains a non zero

H-invariant element L. Fix also an H-invariant L0 6= 0 in the dual of the contragredient ~�

of �. Then for every f 2 C1c (G) the vector �(f)L0 lies in the smooth part � of the dual of

~�. The spherical character of � is de�ned to be L� ( ~f) =< L; �(f)L0 >. It is an H-invariant

distribution on ~G. In the group case, where G = H �H and �(x; y) = (y; x), it coincides

with the trace distribution.

Harish-Chandra [HC1], Theorem 5, described the asymptotic expansion of the character

��, where tr �(f) =
R
��(g)f(g)dg, near any semi-simple element of the group. The

description extends to the spherical situation, as shown by Hakim [H] in the case where

E=F is a quadratic �eld extension, G = G(F ) and H = G(F ) (� is the Galois action), and

Rader-Rallis [RR] in the general case of G=H ([RR] considers the expansion only near the

identity, but the description extends to any semi-simple element by the arguments of [H]).

Their combined result is as follows.

Given s in G such that ~s = s�(s)�1 is semi-simple, let M be the connected component

of the centralizer ZG(~s) of ~s in G, and M
+ =M \G+, where G+ = H is the group of �xed

points of � in G. Denote by g the Lie algebra of G, by g+ the algebra of �-�xed points

in g, and by g� the �1 eigenspace of � in g. Let M be the centralizer Zg(~s) of ~s in g,

and M� = M \ g�. Let f�g be a basis for the space of Ad(M+)-invariant distributions

on M� which are supported on the nilpotent set M�
nilp of M�. One de�nes as usual the

Fourier transform f̂ of f 2 C1c (M�) (by f̂(Y ) =
R
M�

 (B(Y;X))f(X)dX, see [HC1]). The

Fourier transform T̂ of the distribution T in C1c (M�)� is the element of C1c (M�)� de�ned

by T̂ (f) = T (f̂). Then the asymptotic expansion of Hakim [H] and Rader-Rallis [RR] can

be expressed as follows.

Given the H-spherical irreducible admissible G-module �, and the basis f�g of the �nite

dimensional space C1c (M�
nilp)

�M+

, there are unique complex numbers c�(�) such that for

every f 2 C1c (M�) which is supported in a su�ciently small neighborhood of zero, we have

the asymptotic expansion L� (f � exp) =
P

� c�(�)�̂(f).

Here the exponential map exp : M� ! ~M = f ~m = m�(m)�1;m 2 Mg is a homeomor-

phism on a su�ciently small neighborhood of zero in M�, extending under conjugation by

M+ to the entire nilpotent set of M�. Moreover, on the regular set of ~G the distribution

L� is represented by a locally constant function.

The last assertion is proven in Harish-Chandra [HC1], Theorem 3, in the group case (a
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simple proof is given in Harish-Chandra [HC2]), in [FH] in the special (quadratic) symmetric

space case considered in [FH], and in general in Rader-Rallis [RR]. It will be interesting to

extend the simple proof of [HC2] to the general spherical case.

In the group case, Harish-Chandra [HC1], Theorem 3, using [HCD], has shown that the

character of a G-module � is a locally integrable function. In particular it is not identically

zero on the regular set of G. The analogous local integrability statement holds when E=F

is quadratic, G = G(F ), H = G(F ), by Hakim [H]. Hence L� is again not identically

zero on the regular set of ~G. However, for a general symmetric space G=H, the H-invariant

distribution L� is not locally integrable. Moreover, we show (in Sections 7 and 8) that there

exist H-invariant distributions � on the nilpotent set of g� whose Fourier transform on g�

is also supported on the nilpotent set of g�. This suggests that there might be admissible

G-modules � (perhaps only in the Grothendieck group), such that L� is supported on the

nilpotent cone of g�.

In the case where the base �eld F is the �eld of real numbers, Sekiguchi [S1] has given a

condition which � when satis�ed � implies that L� is not identically zero on the regular set.

Further he listed several cases where his condition is satis�ed. The techniques employed

in the archimedean and non archimedean cases are very di�erent, but the �nal result are

similar. Sections 2-10 of this paper are then concerned with showing in some cases that L�
is not identically zero on the regular set, and that in some cases there are self-dual (equal

to their Fourier transform) distributions supported on the nilpotent cone. This we do in

the p-adic case. Our examples are consistent with those of Sekiguchi [S1].

Our examples concern the group G = GL(n + m;F ), and the involution � given by

conjugation with J = diag(In;�Im); thus H = G+ is isomorphic to GL(n; F )�GL(m;F ).

We show that when m = 1; n > 2 (see Section 4), or n = m = 1 (see Section 3), or

n = m = 2 (see Sections 7-10), for any admissible irreducible H-spherical G-module �, the

distribution L� is not identically zero on the regular set. However, in Section 5 we show

that if n = 2m;m � 1, then there are H-invariant distributions which are supported on

the nilpotent set of g� which are self dual. Section 6 constructs another example of such

invariant distributions on the nilpotent cone which are equal to their Fourier transforms,

on the pair G = O(3; 2), H = O(2; 2) of quasi-split orthogonal groups. We conjecture that

the non vanishing result holds for all n = m � 1.

Our proof uses the asymptotic expansion result of [H] and [RR] stated above. We con-

struct an explicit basis of invariant distributions on the relevant nilpotent cone on extending

orbital integrals to the closure of the orbit by viewing them as principal values of regular-

ized integrals, and taking linear combinations which are H-invariant. Then we compute

their Fourier transforms, and compare their behavior. In the vanishing case, we construct

explicit examples.

The study of the spherical characters is not an idle extension of Harish-Chandra's work

to symmetric spaces. The initial motivation has been the paper of Jacquet-Lai [JL], which

dealt with GL(2), a quadratic �eld extension E=F , and a quaternion algebra which is split

at each place where E splits over F . The relevant comparison of automorphic forms has

applications to the study of Shimura surfaces. But the splitting assumption does not give

rise to local symmetric spaces di�erent from the group case.

In [FH] the splitting assumption is removed, and the work is extended to GL(n). It is

observed that the ideas underlying the Deligne-Kazhdan simple trace formula can be used to

carry out the work without elaborating too much on the asymptotic expansion of integrals
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and characters mentioned above. But in the recent work [F20] (see [F2] for a quadratic

analogue), which concern the group G = GL(2n; F ), and the involution � which is given by

conjugation with J = diag(In;�In), thus H = G+ is isomorphic to GL(n; F )� GL(n; F ),

the property of non vanishing of the spherical character on the regular set came to play a

prominent role. This motivates and underlies our interest in the questions considered here.

Section 11 here is an attempt to extend the techniques of Harish-Chandra's short and

beautiful paper [HC2] to the context of symmetric spaces. In some cases, including (G;H) =

(G(E);G(F )), E=F a quadratic extension, we show that the orbital integral �~x( ~f) is locally

constant on the �-regular set, uniformly in f . Surely this should be provable in general by

the techniques of [HC1]. But the simplicity of the \submersion" principle of [HC2] appealed

to us. [HC2] gives also a simple proof that characters are locally constant on the regular

set. It will be interesting to extend this proof to the spherical case.

Section 12 concerns a spherical analogue of Kazhdan's density theorem [K], who dealt

with the group case. Very briey, Harish-Chandra's density mentioned above, and Bern-

stein's localization principle ([BZ], [Be]), show that the vanishing of all regular orbital

integrals implies the vanishing of all invariant distributions in the group case. Kazhdan [K]

shows in this case that the vanishing of all characters of irreducible admissible representa-

tions implies the vanishing of all regular orbital integrals, hence of all invariant distributions.

Kazhdan's proof is global. Section 12 states and proves an analogue in the spherical situa-

tion. This essentially says that the vanishing of all spherical characters implies the vanishing

of all spherical orbital integrals on the regular elliptic set. The passage from the elliptic

to general elements is a trivial change of variables formula in the group case. But I do

not know to carry it out in the spherical case. In the elliptic case, our proof is global,

as is Kazhdan's, and requires developing a bi-period summation formula, as well as basic

Galois cohomology. Bernstein [F4] has given an entirely di�erent, local proof of Kazhdan's

density theorem, but this too would not extend to the spherical case, since (in particular)

the singular orbital integrals are not determined by the regular ones.

Sections 1; 11; 12 can be read independently of each other, and so can be Sections

3; 4; 5; 6; 7� 10 which depend on Section 2.

Much of the material here I learnt from J. Bernstein, D. Kazhdan, J.G.M. Mars, and

especially S. Rallis, who suggested for example the case of Section 6. The paper was written

up while I bene�tted from the hospitality (and support) of J. Soto-Andrade at Santiago (and

the NSF \Americas Program") and R. Weissauer at Mannheim (and a DAAD grant). I am

grateful for their help and encouragement.

1. Asymptotic behaviour of orbital integrals. Let F be a non archimedean local �eld,

G a reductive group de�ned over F , ��� an involution (automorphism of order two) of G over

F , G+ = H = G� the group of �xed points of ��� in G, Z the center of G, ZH = Z\H, and

put G = G(F ), H = H(F ), Z = Z(F ), etc., for the corresponding groups of F -points, and

� for the induced involution of G (then H = G�). The groups G, H, : : : are `-groups in the

terminology of Bernstein-Zelevinski [BZ;(1.1)], namely they are Hausdor�, locally compact,

and there is a fundamental system of neighborhoods of the unit element consisting of open

compact subgroups. By abuse of terminology we refer to G, H, : : : as reductive groups, or

reductive F -groups, if G, H, : : : are. Note that H is reductive (see Steinberg [St], Theorem

8.1,and Richardson [Ri], p. 288).

De�nition. For any `-space ([BZ;(1.1)])X, denote by C1c (X) the space of complex valued
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locally constant compactly supported functions on X, and by C1c (X)� = HomC (C
1
c (X); C )

the space of distributions on X (linear complex valued functions on C1c (X)) ([BZ;(1.7)]).

In particular C1c (G=Z) is the space of locally constant functions on G which transform

trivially under Z and are compactly supported on G mod Z. More generally, we could �x

a closed subgroup Z0 of Z such that Z=Z0 has �nite volume, and a character ! of Z0, and

consider C1c;!(G=Z0), the space of locally constant functions on G which transform under Z0

via !, and are compactly supported on G mod Z0. But this would complicate the notations,

so we restrict attention to Z0 = Z, ! = 1.

The group H � H acts on G by right and left translation: (h; h0)g = hgh
0
�1, hence on

C1c (G=Z) by (h; h0)f(g) = f(h�1gh0), and on C1c (G=Z)� by ((h; h0)D)(f) = D((h; h0)�1f).

Denote by C1c (X)�A the space of A-invariant distributions on X, where A is a group which

acts on X. We are interested in the space C1c (G=Z)�H�H of H�H-invariant distributions

on G=Z. If H acts by right translation on G, then the map C1c (G=Z) ! C1c (G=HZ),

f 7! ~f , ~f(g) =
R
H=ZH

f(gh)dh, is surjective, with kernel generated by the di�erences f�h�f

(f 2 C1c (G=Z); h 2 H; h � f(g) = f(gh)). The dual map C1c (G=HZ)� ! C1c (G=Z)� is

then an injection onto the space of H-invariant distributions on G=Z. Thus, as noted

in Prasad [P], Lemma 4.1, C1c (G=Z)�H = C1c (G=HZ)�. Denote the image of the map

G=HZ ! G=ZH , g 7! ~g = g�(g)�1, by ~G. Then C1c (G=Z)�H = C1c ( ~G)�. Similarly,

C1c (G=Z)�H�H = C1c ( ~G)�H , where H acts on ~G by conjugation: h � ~g = (hg)~= Int(h)~g =

h~gh�1.

Examples of elements in the space C1c ( ~G)�H of interest are given by orbital integrals.

De�nition. An element ~ of ~G will be called �-regular if it is semi-simple in G and its

centralizer ZH(~) in H is a torus.

So if ~ is regular in G (its centralizer ZG(~) in G is a torus), then it is �-regular. A

reductive group is unimodular ([BZ;(1.19)]). Hence H is unimodular, and if ~ is �-regular,

so is the torus ZH(~). By [BZ;(1.21)], there exists a unique (up to a scalar multiple)

H-invariant distribution on H=ZH(~) (H acts by left translation). It is a measure (it

takes positive values at f 6= 0, f � 0). The orbit of ~ is denoted by O(~)=Int(H)(~) =

fInt(h)~;h 2 Hg. Then H=ZH(~) ' O(~) by h 7! Int(h)~, and we have:

De�nition. The orbital integral �~( ~f) =
R
~f(Int(h)~)dH=ZH(~)(h) is the unique (up to a

positive multiple) H-invariant measure on O(~); thus �~ spans C1c (O(~))�H .

Since ~ is semi simple, its H-orbit O(~) is closed in ~G (Richardson [Ri], Theorem 7.5, p.

287). We shall use the following observation of [BZ;(1.8),(1.9)]. If Y is an open subset in

an `-space X, and Z = X � Y , iY is the extension by zero and pZ is the restriction, then

the sequence

0! C1c (Y )
iY
�! C1c (X)

pZ
�! C1c (Z)! 0(i)

is exact, and so is its dual

0! C1c (Z)
p�
Z

�! C1c (X)�
i�
Y

�! C1c (Y )� ! 0:(ii)

Hence for a �-regular ~, the distribution �~ on the closed subset O(~) of ~G extends to a

measure on ~G, which is supported ([BZ;(1.10)]) on O(~), hence it is H-invariant. Namely
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�~ extends to an element of C1c ( ~G)�H . Our aim is to study the asymptotic behaviour of

the distributions �~ in the vicinity of a semi simple (in G) element ~s of ~G, which is not

necessarily �-regular.

Example. Before describing this, we note that our setting � of symmetric spaces G=H �

reduces to the classical situation of a reductive group G acting on itself by conjugation,

in the case where we take G = H � H, �(x; y) = (y; x). This case is referred to as the

group case. Then G� is H, embedded diagonally (x 7! (x; x)) in G. Moreover, C1c (G=Z)

is spanned by f = (f1; f2), where f(a; b) = f1(a)f2(b), fi 2 C1c (H=ZH), and, putting

 = (1; 2), ~ = (1
�1
2 ; 2

�1
1 )), we have

Z
~f(Int(x)~) =

ZZ
f(xy) =

ZZ
f1(x1y)f2(x2y)

=

ZZ
f1(x1

�1
2 x�1y)f2(y) =

Z
(f1 � f

�
2 )(x1

�1
2 x�1);

where f�2 (g) = f2(g
�1), and f1 � f2(g) =

R
H=ZH

f1(gx)f2(x
�1)dx. Then ~f(u; u�1) =

(f1�f
�
2 )(u), and �~(

~f) coincides with the orbital integral �0(f0) of f0 at 0, if ~ = (0; 
�1
0 )

and f0(u) = ~f(u; u�1). The asymptotic behaviour of the orbital integrals �0(f0) =R
G=ZG(0)

f0(Int(g)0)dg in the vicinity of a semi simple element s of G has been stud-

ied by Shalika [Sh], Vigneras [V], and others. This section merely extends their work to the

situation of general symmetric spaces G=H, not only the case of H �H=H.

Let x = su = us be the Jordan decomposition of x 2 G as a product of a semi simple

element s and a unipotent element u. As noted in [Ri], p. 287, x lies in ~G if and only if

both s and u lie in ~G. Fix a semi simple element ~s in ~G. Denote by ~G~s the set of ~x in ~G

whose semi simple part lies in Int(H)~s. Then H acts on ~G~s by conjugation. By [Ri], (9.11),

p. 303, ~G~s is closed and it consists of �nitely many H-orbits O.

1. Proposition. The dimension of the complex vector space C1c ( ~G~s)
�H is �nite, bounded

by the number of H-orbits in ~G~s.

Remark. Before starting the proof, note that in the group case (1) the centralizer ZG(x) of

any element x 2 G is unimodular (see Springer-Steinberg [SS], III, (3.27b), p. 234), hence

the orbital integral �O(x) exists on C
1
c (O(x)), where O(x)=Int(G)x is the orbit of x, and

(2) the theorem of Rao [R] shows that �O(x) extends as a G-invariant distribution to the

closure O(x) of O(x), and by (ii) to G, yielding, for each orbit O, a unique up to a scalar

multiple and measures supported on the complement O�O of O in O, G-invariant measure

�O whose support is the closure O of O. Then these �O � where O ranges over the G-orbits

in Gs = fx 2 G with semi simple part in Int(G)sg { give a basis of C1c (Gs)
�G.

In our symmetric space situation there are ~x 2 ~G~s such that ZH(~x) is not unimodular.

Then there is no H-invariant distribution on the H-orbit O(~x) of ~x. Moreover, there can

be orbits O = O(~x) such that ZH(~x) is unimodular, but the H-invariant measure �O on

C1c (O) may not extend to an H-invariant distribution on O, and ~G.

Proof. We proceed as follows. The \Closed Orbit Lemma" (see, e.g., Borel [Bo], (I.1.8),

and [HCD], Lemma 31, p. 71), implies that every orbit O in ~G~s is open in its closure, and

dimO0 < dimO for every orbit O0 6= O in O. We shall number these H-orbits O1;O2; :::;
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in such a way that dimOi � dimOi+1, O
j = [i�jOi is closed, Oj is open in Oj , and

O1 = O1=Int(H)~s. Having listed O1; : : : ;Oi, we list by Oi+1; : : : ;Oj the smallest number

of orbits (= j � i) subject to the conditions above, such that the closed set Oj supports

an H-invariant distribution �0j . In particular, �0j jOj is the H-invariant distribution on the

(open in Oj) orbit Oj of some ~xj in ~G~s, hence ZH(~xj) is unimodular. For i < m < j

either Om = O(~xm) and ZH(~xm) is not unimodular, or �Om exists on C1c (Om), but it does

not extend as an H-invariant distribution on C1c (Om). Denote by �1; : : : ;�k the basis

of C1c ( ~G~s)
�H so obtained. Then �i is supported on Oji , where 1 � ji < ji+1 � k0 =

number of H-orbits in ~G~s. This proves the proposition, and �xes a basis of the space of the

proposition (but the basis is not canonical). Indeed, we claim that given � in C1c ( ~G~s)
�H

there are complex numbers ci(1 � i � k) such that � =
P

1�i�k ck�k. These ci are chosen

by descending induction. Having chosen ck; : : : ; ci+1 such that � �
P

i+1�u�k cu�u lies in

C1c (Oji)�H , there is ci such that ��
P
i�u�k cu�u lies in C1c (Oji�1)�H , hence it must lie

in C1c (Oji�1)�H by the de�nition of �i and ji. �

For every i(1 � i � k), let ~f 0i be an element of the subspace C1c (Oji) of C
1
c (Oji) such

that �i( ~f
0
i) = 1. Then �j( ~fi) = 0 for j < i. Extend ~f 0i to

~f 00i in C1c ( ~G) (or even just

C1c ( ~G~s)). De�ne ~fi in C
1
c ( ~G) inductively to satisfy �j( ~fi) = �ij(1 � i; j � k) as follows.

Put ~fk = ~f 00k . Having de�ned
~fk; : : : ; ~fi+1; let ~fi be ~f 00i �

P
j>i �j(

~f 00i )
~fj . For any �-regular

element ~x in ~G, de�ne the complex number �i(~x) to be �~x( ~fi) =
R
~fi(Int(h)~x)dH=ZH(~x)(h).

The complex valued function �i(~x) on the �-regular set in ~G is Int(H)-invariant, and is

called a germ of orbital integrals on ~G. Then one has the following asymptotic expansion.

2. Theorem. For every ~f in C1c ( ~G) and semi simple ~s in ~G, there exists an H-invariant

open and closed neighborhood V ~f of ~s in ~G such that for every �-regular ~x in V ~f we have

�~x( ~f) =
P

1�i�k �i(~x)�i(
~f).

Namely the distributions �~x in C1c ( ~G)�H are given by the distribution
P
i �i(~x)�i in

C1c ( ~G~s)
�H , but only for �-regular ~x in a neighborhood of ~s depending on the ~f at which �~x

is evaluated. Alternatively, �xing ~f , the function �~x( ~f) of ~x in ~G= Int(H) has asymptotic

behaviour near ~s which is controlled by the functions �i(~x).

Proof. Put ~f 0 = ~f �
P

i �i(
~f) ~fi. Then �i( ~f

0) = 0 for all i. Hence for all � in C1c ( ~G~s)
�H =

(C1c ( ~G~s)=C
1
c ( ~G~s)0)

� we have �( ~f 0) = 0. Here C1c ( ~G~s)0 is the span of ~� � h � ~�, where

~� denotes the restriction of ~� 2 C1c ( ~G) to ~G~s, and h � ~�(~x) = ~�(Int(h�1)~x) (h 2 H).

It then follows that the restriction ~f 0 of ~f 0 to ~G~s lies in C1c ( ~G~s)0, namely there exist

�nitely many �i 2 C1c ( ~G) and hi 2 H such that ~f 0 =
P
i(
~�i � hi � ~�i). We conclude that

~f �
P
i �i(

~f) ~fi �
P
i(
~�i � hi � ~�i) lies in C

1
c ( ~G � ~G~s). Since ~G~s is an H-invariant closed

subset in ~G, and this function is compactly supported, there is some H-invariant open and

closed set V ~f in
~G, containing ~G~s, such that ~f =

P
i �i(

~f) ~fi+
P

i(
~�i�hi � ~�i) on V ~f . Then

for any �-regular ~x in V ~f , the H-orbit of ~x lies in V ~f , and �~x(
~f) =

P
1�i�k �i(

~f)�~x( ~fi), as

required. �

Conversely, this germ expansion characterizes the orbital integrals.
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3. Theorem. Let �(~x) be a function on the �-regular set of ~G, which is H-invariant and

its support is compact on ~G= Int(H), such that for each semi simple element ~s of ~G there

is an open and closed H-invariant neighborhood V~s of ~s in ~G, such that �(~x) =
P
i �

~s
i (~x)�

~s
i

for all �-regular ~x in V~s, where �~s
i are complex numbers, and �~s

i (~x) are the �nitely many

H-invariant functions introduced above. Then there is ~f in C1c ( ~G) such that �(~x) = �~x( ~f)

for all �-regular ~x in ~G.

Proof. The assumption at the semi simple ~s implies that for ~f~s =
P
i �

~s
i �

~f ~si we have that

�(~x) = �~x( ~f~s) for all �-regular ~x in V~s (since �~x( ~f
~s
i ) = �~s

i (~x)). We may assume that ~f~s
is supported on V~s. Since supp� is compact in ~G= Int(H), and it is covered by [V~s, union

over all semi simple ~s in ~G, there is a �nite subcover, which we may assume to be disjoint

since the V~s are open and closed. Put ~f =
P

~f~s (�nite sum). Then �(~x) = �~x( ~f) for all

�-regular ~x in ~G, as required. �

Remark. In the group case, if �x(f) =
R
f(Int(g)x)dG=ZG(x)(g) is zero for all regular ele-

ments x in G, then �x(f) = 0 for all x in G, by [HC1], Theorem 10. The proof of this

relies on [HC1], Lemma 8, which uses the local integrability of characters of supercuspidal

representations. This had been proven in [HCD]. The symmetric space analogues { the

spherical characters, which are de�ned below (as in [FH]) { are rarely locally integrable,

even for spherical supercuspidal representations. The proof of Theorem 10 in [HC1] does

not extend to the spherical case, and indeed the vanishing of �~x( ~f) for all �-regular ~x in ~G,

for a �xed ~f in C1c ( ~G), does not imply that �( ~f) = 0 for all � in C1c ( ~G)�H .

2. Spherical characters on the regular set. LetG be an `-group ([BZ]), � an involution

of G, H = G� the group of �xed points, Z = Z(G) the center of G, ~G the image of the

map G=H ! G, g 7! ~g = g�(g)�1. Let � be an irreducible admissible G-module, which is

H-spherical, thus the dual �� = HomC (�; C ) of � contains H-invariant non zero elements.

Fix L = L� 6= 0 in ��H = HomH(�; C ). Then the contragredient ~� of � is also H-

spherical: given an orthonormal basis f�g of �, de�ne L̂ = L~� in ~��H = HomH(~�; C ) by

< L~�; �̂ >=< L�; � >, where f�̂g is the basis of ~� dual to f�g. For simplicity assume that

the restriction of � to the center Z is trivial. As in [FH], [H], [Ke], [RR], we make:

De�nition. For every f 2 C1c (G=Z), the vector �(f)L̂ lies in the smooth part (~�)�sm =
~~� = � of ��. Hence the spherical character L� ( ~f) =< L; �(f)L̂ > of � is a well-de�ned

H-invariant distribution on ~G= ~Z, where ~f(~g) =
R
H
f(gh)dh.

Example. In the group case, where G = H �H and �(x; y) = (y; x), it coincides with the

trace distribution. Indeed, a G-module � = �1� �2 is H-spherical when HomH(�1� �2; C )

is non empty. Then �2 = ~�1, and an H-invariant form L : �1 � ~�1 ! C is given by

L(�1 � �̂2) =< �1; �̂2 >. In fact L =
P
�2B �̂ � �, where � ranges over an orthonormal

basis of � (check L(�1 � �̂2) on basis elements). Moreover L̂ =
P
� � �̂, and for f(x; y) =
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f1(x)f2(y) 2 C
1
c (G=Z), we have

L� ( ~f) =< L; �(f)L̂ >=
X

�1;�22B

< �̂1 � �1; �1(f1)�2 � ~�1(f2)�̂2 >

=
X
�1;�2

< �̂1; �1(f1)�2 >< �1; ~�1(f2)�̂2 >=
X
�2

<
X
�1

< �̂1; �1(f1)�2 > �1; ~�1(f2)�̂2 >

=
X
�2

< �1(f
�
2 )�1(f1)�2; �̂2 >= tr �1(f

�
2 � f1) = tr �1(f1 � f

�
2 ):

Here f�2 (x) = f2(x
�1), and (f1 �f2)(x) =

R
H=Z

f1(xy
�1)f2(y)dy is the convolution of f1 and

f2. Moreover, ~f(xy�1; yx�1) =
R
H
f(xu; yu)du = (f1 � f

�
2 )(xy

�1).

Harish-Chandra [HC1], Theorem 5, describes the asymptotic expansion of the character

��, where tr �(f) =
R
��(g)f(g)dg, near any semi simple element s of the group. This

description extends to the spherical situation, as shown by Hakim [H] in the case where

E=F is a quadratic �eld extension, G = G(E) and H = H(F ) (� is the galois action; see

[H], Theorem 2), and Rader-Rallis [RR] in the general case of G=H ([RR] considers the

expansion only near the identity, but the description extends to any semi simple element

by the arguments of [H], x2). Their combined result is as follows.

Given s in G such that ~s = s�(s)�1 is semi simple, let M be the connected component

of the centralizer ZG(~s) of ~s in G, and M
+ =M \G+, where G+ = H is the group of �xed

points of � in G. Denote by g the Lie algebra of G, by g+ the algebra of �-�xed points in g,

and by g� the �1 eigenspace of � in g. Then g = g+� g�, and g+ is the Lie algebra of G+.

Let M be the centralizer Zg(~s) of ~s in g, and M
� = M \ g�. Let f�g be a basis for the

�nite dimensional space of Ad(M+)-invariant distributions on M� which are supported on

the nilpotent set M�
nilp of M�. Since M is reductive there is an F -valued symmetric non

degenerate � andM -invariant bilinear form B onM. Fix an additive character  6= 1 of F ,

and a Haar measure dX on M�. The Fourier transform f̂ of f 2 C1c (M�) is the element

of C1c (M�) de�ned by f̂(Y ) =
R
M�

 (B(Y;X))f(X)dX. The Fourier transform T̂ of the

distribution T in C1c (M�)� is the element of C1c (M�)� de�ned by T̂ (f) = T (f̂). Then

the asymptotic expansion of the spherical character L� ( ~f) can be expressed as follows.

1. Theorem ([H],[RR]). Given the H-spherical irreducible admissible G-module �, and

the basis f�g of the �nite dimensional space C1c (M�
nilp)

�M+

, there are unique complex

numbers c�(�) such that for every f 2 C1c (M�) which is supported in a su�ciently small

neighborhood of zero, we have L� (f � exp) =
P

� c�(�)�̂(f):

Here the exponential map exp : M� ! ~M = f ~m = m�(m)�1;m 2 Mg is a homeo-

morphism on a su�ciently small neighborhood of zero in M�, extending under conjugation

by M+ to the entire nilpotent set M�
nilp of M�. Moreover, on the �-regular set of G the

distribution L� is represented by a locally constant function.

The last assertion is proven in Harish-Chandra [HC1], Theorem 3, in the group case (see

also the simple proof in [HC2]), in [FH] in the special (quadratic) case considered in [FH],

and in general in Rader-Rallis [RR]. It will be interesting to extend the simple proof of

[HC2] to the general spherical case.

In the group case, Harish-Chandra [HC1], Theorem 3, using [HCD], has shown that

the character �� of a G-module � is a locally integrable function. In particular �� is not
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identically zero on the regular set of G. The analogous local integrability statement holds

when E=F is quadratic, G = G(E); H = H(F ), by Hakim [H], Theorem 1. Hence L� is not

identically zero on the �-regular set of G.

However, for a general symmetric space G=H, the H-invariant distribution L� is not

locally integrable. Moreover, there are sometimes H-invariant distributions � on the nilpo-

tent set g�nilp of g
� whose Fourier transform on g� is also supported on the nilpotent subset

of g�. This suggests that there are { sometimes { admissible G-modules � (perhaps only

in the Grothendieck group), such that L� is supported on the nilpotent cone g�nilp.

In the general case where the base �eld F is the �eld R of real numbers, Sekiguchi [S1] has

given a condition which { when satis�ed { implies that L� is not identically zero on the �-

regular set. Further, he listed several cases where his condition is satis�ed. The techniques

employed in the archimedean case are very di�erent from those of the non archimedean

case. But the �nal results are often similar.

The purpose of this paper is to consider several examples, where we show that L� is

not identically zero on the �-regular set, and some where there are self dual distributions

supported on the nilpotent cone g�nilp. Our examples are consistent with the investigation

of Sekiguchi [S1].

Our main example concerns the group G = GL(n + m;F ), convolution � given by

conjugation with J = diag(In;�Im), thus H = G+ = G� consists of diag(A;B); A 2

GL(n; F ); B 2 GL(m;F ), g = M((n + m) � (n + m); F ), g+ = fdiag(A;B);A 2 M(n �

n; F ); B 2M(m�m;F )g, g� = f

�
0 A

B 0

�
;A 2M(n�m;F ); B 2M(m� n; F )g.

2. Theorem. When m = 1; n > 2, or n = m = 1, or n = m = 2, for any admissible

irreducible H-spherical G-module �, the distribution L� is not identically zero on the �-

regular set. However, if n = 2m;m � 1, then there are H-invariant distributions on g�

which are supported on g�nilp and are equal to their Fourier transform.

The case where m = 1 is considered (from other points of view) in ([DP] and) [F3]. The

case where n = m is considered in [F20]. There it is shown that the non vanishing assertion

of Theorem 2 has applications to the theory of liftings of admissible and automorphic

representations between GL(2n) and some of its inner forms. In fact, Theorem 2 is our

attempt to settle the Working Hypothesis II of [F20], in the case where n = m = 1 and

n = m = 2. Our approach will be to explicitly construct a basis f�g for C1c (g�nilp)
�H , and

show that no �̂; 0 6= � 2 C1c (g�nilp)
�H , can vanish identically on the �-regular set of g�.

Even in the case of n = m = 2 the computations are non trivial. They might be pursuable

in the case of n = m = 3, but perhaps new (combinatorial) techniques need to be introduced

to deal with the general case of n = m. In any case, the example of n = m = 2 is already

interesting. Note that when ~s is semi simple, M = ZG(~s) is a product of GL(ni; Ei), and

� acts trivially on all of them, except perhaps on one of them. Hence induction can be

applied, and we shall restrict our attention to ~s = 1 in G.

Let us begin by describing the H = G+-orbits on g�nilp, where G = GL(n+m;F ); H =

GL(n; F )�GL(m;F ), following Sekiguchi [S1], Lemma 6.7, p. 113, (and [S2], x3.3).

3. Proposition. Let � = (p1; p2; : : : ) be a partition of n + m, thus p1 � p2 � � � � �

pk > 0; p1 + � � � + pk = n + m. Put qi = [pi=2] for pi � 2, and let k0(0 � k0 � k) be

the integer such that pk0 > 1 � pk0+1. Write fi; 1 � i � k; pi even g as a disjoint union
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I1 [ I2. Write fi; 1 � i � k; pi odd g as I3 [ I4, disjoint union with jI3j = jI4j, and put

I 03 = fi 2 I3; pi � 3g, I 04 = fi 2 I4; pi � 3g. Put M(a � b) for the algebra of a � b

matrices over F , Jd = (�i;i+1) 2 M(d � d), Kd = t(Id; 0) 2 M((d + 1) � d) (Id is the

identity in M(d�d), tg is the transpose of g), Ld = (0; Id) in M(d� (d+1)). Then a set of

representatives for the H = GL(n)�GL(m)-orbits in g�nilp (� g� � g =M((n+m)�(n+m))

is given by

X� =
�

0 diag(X1;X2;:::;Xk0)

diag(Y1;Y2;:::;Yk0) 0

�
;

where (Xi; Yi) is (Iqi; Jqi) if i 2 I1, (Jqi ; Iqi) if i 2 I2, (Kqi ; Lqi) if i 2 I 03, (Lqi ; Kqi) if

i 2 I 04.

Proof. Let X 2 g�nilp have the Jordan canonical form J� = diag(Jp1 ; Jp2 ; : : : ), where �

is a partition of n + m as in the proposition. Write the (n + m)-dimensional row space

V = Fn+m as a direct sum of the subspaces V1 = f(x1; : : : xn; : : :0)g ' Fn and V2 =

f(0; : : :0; y1; : : : ym)g ' Fm. Then we can choose vi in V1 or V2 such that vij = viX
j�1(1 �

i � k; 1 � j � pi) make a basis of V . The elements of this basis will be ordered in chunks

vi; viX
2; viX

4 : : : or viX; viX
3 : : : , each chunk lies entirely in V1 or V2. We go through

i = 1; 2; : : : ; k, indexing the elements of the new chunk by not yet used j's � n, or by j's

> n, if the chunk lies in V1, or in V2, respectively. Then X has the form X� with respect

to this basis. �

Example. (1) If n = 1 = m; k = 1; p1 = 2, then X is U2 =
�
0 1

0 0

�
or U3 =

�
0 0

1 0

�
. If

k = 2; p1 = p2 = 1, then X = 0.

(2) If n = 2 = m; k = 1 : X =
�

0 I2
J2 0

�
or
�

0 J2
I2 0

�
. Put U1 =

�
1 0

0 0

�
, U4 =

�
0 0

0 1

�
. If

k = 2; (p1; p2) = (3; 1) : X =
�

0 U1
U2 0

�
(which is conjugate under the reection (34) to�

0 U2
U4 0

�
), or

�
0 U2
U1 0

�
. If k = 2; (p1; p2) = (2; 2); X =

�
0 I

0 0

�
;
�

0 U1
U4 0

�
(which is conjugate

under the action of the transposition (34) to
�

0 U2
U2 0

�
), or

�
0 0

I 0

�
.

If k = 3; (p1; p2; p3) = (2; 1; 1), X =
�
0 U1
0 0

�
or
�

0 0

U1 0

�
. If k = 4, X = 0.

Note that the centralizers of the X�; � = (2; 1; 1), are not unimodular. Hence there are no

invariant measures on these two orbits.

(3) If (n;m) has m = 1(n � 2), then X3 = 0 (V1X � V2; V2X
2 = 0). If p1 = 1, then X = 0.

If p1 = 2 then X is the matrix whose only non zero entry is 1 at the top right or bottom left

entry. If p1 = 3, X has top row (0; : : : ; 0; 1) and bottom row (0; 1; 0; : : : ; 0) (this matrix is

conjugate under the reection (12) to the matrix with second row (0; : : : ; 0; 1) and bottom

row (1; 0; : : : ; 0)) and its other entries are zero.

3. The case of G = GL(2); H = GL(1) � GL(1). The restriction of an H-invariant

distribution on g�nilp to an orbit O in g�nilp (namely to C1c (O)) is a multiple of the unique

(up to a scalar multiple)H-invariant measure �O on O, or it is zero if �O does not exist. Our

strategy in the proof of Theorem 2.2 will then be to determine which orbits carry an invariant

measure, examine whether �O extends to g�nilp, and if not, determine a linear combination

of measures in which it occurs, such that this linear combination is a distribution on g�nilp.

Let us consider �rst the example where G = GL(2; F ); �(g) =
�
1 0

0 �1

�
g
�
1 0

0 �1

�
. Our

aim is to prove the following.
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1. Theorem. The space C1c (g�nilp)
�H is two dimensional, with basis �0(f) = f(0) and

�(f) =

Z
F

f(yU2) (xy) ln jxjdxdy +

Z
F

f(yU3) (xy) ln jxjdxdy:

Proof. If O+=Ad(H)U2 = F�U2; U2 =
�
0 1

0 0

�
, and a0 = diag(a; 1), then

�O+
(f) =

Z
F�

f(a0U2a
0�1)d�a =

Z
F�

f(aU2)d
�a

is a linear form on C1c (O+) which does not extend to g�nilp = fxU2 + yU3;xy = 0g.

We claim that on C1c (O+), �O+
at f is equal to the principal value of d�x distribution

PV (d�x) at f+(x) = f(xU2). Recall that PV (d�x)(�), � 2 C1c (F ), is de�ned to be the

constant term c0(�) in the Laurent expansion at t = 0 of

Z
F�

�(x)jxjtd�x = t�1c�1(�) + c0(�) + tc1(�) + : : : :

This constant term c0(�) can be computed using the Hecke-Tate functional equation of the

zeta function (see Jacquet [J], whose notations we follow here):

Z
F�

�(x)jxjtd�x = Z(�; t) = "(1� t;  )L(t)L(1� t)�1Z(�̂; 1� t)

= "(1� t;  )(1� qt�1)(1� q�t)�1
Z
F�

�̂(x)jxj1�td�x

= (t�1��1 + �0 + : : : )(�(0)� t

Z
F

�̂(x) ln jxjdx+ : : : )

= ��1t
�1�(0) + (�0�(0)� ��1

Z
F

�̂(x) ln jxjdx) + : : : :

Here dx = jxjd�x, and �̂(x) =
R
F
�(y) (xy)dy is the Fourier transform of � with respect to

the character  6= 1 of F . We used the Laurent expansion jxj�t = 1� t ln jxj+ 1
2
t2(ln jxj)2+

: : : . Clearly
R
F
�̂(x) ln jxjdx converges for � 2 C1c (F ). Thus

PV (d�x)(�) = �0�(0)� ��1

Z
F

�̂(x) ln jxjdx:

Put

�+(f) =

Z
F

(f+)̂(x) ln jxjdx =

Z
F

f(yU2) (xy) ln jxjdydx:

Then �+(f) extends (a multiple of) �O+
from C1c (O+) to C

1
c (g�nilp).

Similarly, ��(f) =
R
F
f̂�(x) ln jxjdx extends �O� , where O�=Ad(H)U3 = fxU3;x 6= 0g,

and f�(x) = f(xU3), to C
1
c (g�nilp).
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However, �+ and �� are not H-invariant. Let us examine how they fail to be invariant.

For a 2 F�, put a0 = diag(a; 1), and (a�1f+)(x) = f+(ax). Then

(Ad(a0)�+)(f) = �+(Ad(a0)�1f) =

Z
F

((a�1f+)̂)(x) ln jxjdx:

Since (a�1f+)̂(x) =
R
f+(ay) (xy)dy = jaj�1(f+)̂(a�1x); using the Fourier inversion for-

mula we obtain

(Ad(a0)�+)(f) = �+(f) + f+(0) ln jaj = �+(f) + �0(f) ln jaj;

�0(f) = f(0). Similarly (Ad(a0)��)(f) = ��(f)� �0(f) ln jaj:

In conclusion, neither �+ nor �� is H-invariant. Any two extensions of �O+
to the

closure O+ of O+ will di�er by a multiple of �0. Then �
+ + �� is the unique H-invariant

extension of �O+
and of �O� to g�nilp, up to �0. Hence C1c (g�nilp)

�H has the basis �0 and

� = �+ + ��, as asserted. �

The Fourier transform of �0 is �̂0(f) = f̂(0) =
R
g�
f(X)dX, and that of � is

�̂(f) =

Z
f(
�
0 u

v 0

�
) (tr [

�
0 u

v 0

� �
0 y
0 0

�
]) (xy) ln jxjdudvdydx

+

Z
f(
�
0 u

v 0

�
) (tr [

�
0 u

v 0

��
0 0

y 0

�
]) (xy) ln jxjdudvdydx

=

Z
f(
�
0 u

x 0

�
) ln jxjdxdu+

Z
f(
�
0 x

u 0

�
) ln jxjdxdu:

Consequently, no linear combination of �̂0 and �̂ can vanish on any neighborhood of zero in

g�nilp, and so there is no admissible � such that L� be supported on g�nilp, the complement

of the �-regular set in g�. This proves Theorem 2.2 for n = m = 1. �

A related { yet di�erent { question, is as follows. For f 2 C1c (g�), and X 2 g�, the

H-orbit O=Ad(H)X lies in g�. If the centralizer ZH(X) = fh 2 H; Ad(h)X = Xg of X in

H is unimodular, one can introduce the orbital integral �O(f) =
R
H=ZH(X)

f(Ad(h)X)dh.

De�nition. A Cartan subspace c of g� is de�ned in Kostant-Rallis [KR], p. 754, or [S1],

(1.4), to be a maximal abelian subspace consisting of semi simple elements. The element

X 2 g� is called �-regular if it is semi simple and the centralizer Zg�(X) is a Cartan

subspace.

Question. Following Harish-Chandra [HC1], Theorem 10, who gave a positive answer to the

question in the group case, one may ask whether { given f { the vanishing of �O(f) for all

�-regular H-orbits O in g�, implies the vanishing of �(f) for every H-invariant distribution

� on the �-singular set of g�.

Although a general discussion will be interesting, we shall consider only the easiest

Example. Put g = M(2; F ) = 2 � 2 matrices over F , �(X) =
�
1 0

0 �1

�
X
�
1 0

0 �1

�
, G =

GL(2; F ); H = fdiag(a; b); a; b 2 F�g; g� = fuU2 + vU3;u; v 2 Fg. Then a semi simple
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element X = uU2+ vU3 of g
� is one with uv 6= 0. Its centralizer is F �X, which is a Cartan

subspace. The �-singular H-orbits are represented by U2; U3, and 0.

Put �2(f) =
R
H=ZH(U2)

f(Ad(h)U2)dh, de�ne �3(f) on replacing U2 by U3 in the de�-

nition of �2(f), and put �0(f) = f(0). Although �2, �3 converge for f 2 C1c (Ad(H)U2),

C1c (Ad(H)U3), they clearly do not converge for a general f in C1c (g�). Each of �2; �3 can

be extended to the closure of Ad(H)U2 or Ad(H)U3 in g�, but the extension { which is

unique up to a multiple of �0 { is not H-invariant. On the other hand, � = �2 + �3 is an

H-invariant distribution on the closed subset g�nilp of g�. Then � and �0 make a basis of

C1c (g�nilp)
�H , and we show:

2. Theorem. Suppose f 2 C1c (g�) has �O(f) = 0 for every �-regular H-orbit O in g�.

Then �(f) = 0 for all � in C1c (g�)�H .

Proof. Let R be the ring of integers in F . Put f(x; y) for f(xU2 + yU3), and let f0 be the

characteristic function of R � R in F � F . Then C1c (g�) = C � f0 � C1c (g� � f0g), since

f = f � f(0)f0 + f(0)f0. If O=Ad(H)
�
0 u

v 0

�
; uv 6= 0, then

�O(f) =

Z
F�

f(
�
a 0

0 1

��
0 u

v 0

��
a�1 0

0 1

�
)d�a =

Z
F�

f(
�

0 au

v=a 0

�
)d�a

=

Z
f(
�

0 a

uv=a 0

�
)d�a!

Z
f(
�
0 a

0 0

�
)d�a = �2(f)

as uv ! 0, if f 2 C1c (F � F�),

=

Z
f(
�

0 auv

1=a 0

�
)d�a!

Z
f(
�

0 0

1=a 0

�
)d�a = �3(f)

as uv ! 0, if f 2 C1c (F� � F ).

Any f 2 C1c (g��f0g) can be written as f = f2+f3, f2 2 C
1
c (F �F�), f3 2 C

1
c (F��

F ), uniquely up to the replacement of (f2; f3) by (f2 + f1; f3 � f1), f1 2 C1c (F� � F�).

Since �2(f1) = �3(f1), the distribution �(f) = �2(f2) + �3(f3) on C
1
c (g� � f0g) is well

de�ned. In fact it is supported on g�nilp, but not on f0g, hence � is equal to the sum of

the principal values extensions of �2 and �3, up to a scalar multiple and a multiple of �0.

Further,

�O(f0) =

Z
juvj�jaj�1

d�a = 1 + val(uv) (juvj = q�val(uv)):

Hence �O(f) = �O(f�f(0)f0)+�O(f(0)f0), and �O(f)=val(uv)! �0(f) = f(0) as uv ! 0.

If �0(f) = 0 then �O(f)! �(f) as uv ! 0, and the theorem follows. �

4. The case of G = GL(n); H = GL(n � 1). We now prove Theorem 2.2 for m =

1. Thus assume n � 3; G = GL(n; F ); �(g) = JgJ; J = diag(In�1;�1). Then H=Z =

GL(n � 1; F ); g� = f

�
0 tX

Y 0

�
g, where X;Y are row (n � 1)-vectors, the �-regular set is

the complement of g�nilp = fY tX = 0g. The H-orbits in g�nilp are represented by 0, X+ =

matrix whose only non zero entry is at the top right corner, X� = matrix whose only non

zero entry is at the bottom left corner, X1 = matrix with non zero rows (0; : : : ; 0; 1) at top
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and (0; : : : ; 0; 1; 0) at the bottom. The stabilizers are H;
�
1 �

0 �

�
;
�
1 0

� �

�
;

�
1 � �

0 � �

0 0 1

�
, where the

\1"s are scalars. Hence the stabilizers of X+ and X� are not unimodular.

To compute the integral �1 = �Ad(H)X1
on the orbit of X1, use the decomposition

h = kuam; a = diag(�; In�2; �);m = diag(1;m0; 1); u in the unipotent radical of the upper

triangular parabolic subgroup of type (1; n� 3; 1). The corresponding measure decomposi-

tion is dh = j�=�jn�2dkdudadm. Then

�1(f) =

Z
F�

Z
F�

fK(

�
0 0 �

0 0 0
0 ��1 0

�
)j�=�jn�2d��d��

=

Z
F�

Z
F�

fK(

�
0 0 �

0 0 0

0 � 0

�
)j��jn�2d��d��;

where fK(X) =
R
K
f(Ad(k)X)dk.

When n � 3 the integral which de�nes �1(f) is convergent. Hence �1 extends to a

distribution on the closed set g�nilp and hence on g�. Its Fourier transform is

�̂1(f) =

ZZ
fK(

�
0 tX

Y 0

�
) (tr [

�
0 0 �

0 0 0

0 � 0

��
0 tX

Y 0

�
])dXdY � j��jn�2d��d��

=

Z
fK(

�
0 0 0̂
0 0 b̂
â 0̂ 0

�
)jabjn�2d�ad�b:

Here a; b are scalars. A hat denotes the Fourier transform with respect to the indicated

parameter.

When n = 3, �̂1(f) = �1(f). But when n � 4, the support of �̂1 is not concentrated in

g�nilp. The Fourier transform of �0 is �̂0(f) =
R
f(
�

0 tX

Y 0

�
)dXdY = f(

�
0 0̂

0̂ 0

�
).

The distributions �̂0 and �̂1 have di�erent degrees of homogeneity when n � 4. Indeed,

for t 2 F�, put (tf)(X) = f(t�1X). Then

�̂1(tf) = jtj2(n�1)�2(n�2)�̂1(f) = jtj2�̂1(f); �̂0(tf) = jtj2(n�1)�̂0(f):

Consequently no element of the form �̂; 0 6= � 2 C1c (g�nilp)
�H , can be zero on the �-regular

set, since no linear combination of �̂1 and �̂0 can be concentrated on g�nilp. This completes

the proof of theorem 2.2 for m = 1. �

5. The case of G = GL(3m); H = GL(2m) � GL(m). Self dual invariant distributions

which are supported on the �-singular set exist also in the higher rank situation, where

G = GL(3m;F ); �(X) = JXJ; J = diag(I2m;�Im), so that H = GL(2m;F )� GL(m;F ).

This example generalizes the one from the previous section, where m = 1. It suggests that

there are admissible H-spherical G-modules � such that L� is supported on the �-singular

set, in fact on the unipotent set in ~G. Yet � may be reducible, and in any case we have not

proven its existence.

1. Theorem. The orbital integral � of X0 =

�
0 0 I

0 0 0

0 I 0

�
is a self dual element in C1c (g�nilp)

�H .

Here 0 and I are the zero and identity m�m matrices.

Proof. Put H0 = GL(2m;F ) � Im � H, and note that ZH0
(X0) = fu =

�
I B

0 I

�
g, hence

the orbital integral � exists. Use the Iwasawa decomposition dh = jAC�1jmdkdadu in H0,
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where a = diag(A;C), and jXj denotes jdetXj. Then for f 2 C1c (g�), putting fK(X) =R
f(Ad(k)X)dk, and noting that for A 2 GL(m;F ) and X 2 M(m;F )(= m �m matrices

over F ) the measures are related by dA = jXj�mdX, we obtain

�(f) =�Ad(H)X0
(f) =

ZZ
GL(m;F )2

fK(

�
0 0 A

0 0 0
0 C�1 0

�
)jAC�1jmdAdC

=

ZZ
M(m;F )2

fK(

�
0 0 X

0 0 0

0 Y 0

�
)dXdY:

Then

�̂(f) =�(f̂) =

Z
f̂(
�
k 0

0 1

�� 0 0 X

0 0 0

0 Y 0

��
k 0

0 1

��1
)dkdXdY

=

Z
f(
�

0 0 X1

0 0 X2

Y2 Y1 0

�
) (tr [

�
0 0 X1

0 0 X2

Y2 Y1 0

��
k 0

0 1

�� 0 0 X

0 0 0

0 Y 0

��
k 0

0 1

��1
])

=

Z
fK(

�
0 0 X1

0 0 X2

Y2 Y1 0

�
) (tr [X2Y + Y2X])dX1dX2dY1dY2dXdY

=

Z
fK(

�
0 0 X1

0 0 0

0 Y1 0

�
)dX1dY1 = �(f);

and � is indeed equal to its Fourier transform, and is supported on the nilpotent cone. �

Alternative proof. Consider the distribution �(f) =
R
f(

�
0 0 X

0 0 0

0 Y 0

�
)dXdY ,X;Y 2M(m;F ).

For p =

�
a b 0

0 c 0

0 0 d

�
in P � H(= GL(2m;F )�GL(m;F )), we have

�(pf) =

Z
f(Ad(p�1)

�
0 0 X

0 0 0

0 Y 0

�
)dXdY

=

Z
f(

�
0 0 a�1Xd

0 0 0
0 d�1Y c 0

�
)dXdY = jac�1jm�(f):

But the modular function on P is �P (p) = jac�1jm. Hence the function �f (g) = �(gf) on

G lies in the space of the induced representation indHP (�P ). Frobenius reciprocity ([BZ],

(2.29)): HomH(ind
H
P (�P ); 1) = HomP (�

�1
P �P ; 1), implies that there exists (a unique up to

a scalar multiple) ` 6= 0 in HomH(ind
H
P (�P ); 1). It is given by `(�) =

R
K
�(k)dk. Put

�(f) = `(�f ). Since �hf (g) = �(ghf) = �f (gh) = h�f (g); we have �(hf) = `(�hf) =

`(h�f ) = `(�f ) = �(f): Then � is a non zero H-invariant measure supported on g�nilp,

which is equal to its Fourier transform, as seen above. �

6. The case of G = O(n+ 1; n); H = O(n; n); n = 2. Here we show the following.

1. Theorem. There exists a non zero H-invariant measure on g� which is supported on

the nilpotent cone g�nilp, which is equal to its Fourier transform (which is then also supported

on the nilpotent cone).

Proof. Put w = (�i;2n+1�i) in GL(2n; F ), J = diag(w; 1) in GL(2n + 1; F ), and �x the

quasi-split orthogonal group G in 2n + 1 variables to be O(n + 1; n) = fg = J tg�1J 2
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GL(2n + 1; F )g. The involution � is taken to be conjugation by diag(I2n;�1), thus H =

fdiag(h; 1);h = wth�1w inGL(2n; F )g. Further, g = fX = �J tXJg, g+ = fdiag(X; 0);X =

�wtXwg, and g� consists of ~X =
�

0 X

�tXw 0

�
; X = t(x1; : : : ; x2n). The nilpotent cone g

�
nilp

of g� consists of those elements with tXwX = 0, thus
P
i xix2n+1�i = 0. It consists of two

H-orbits, f0g and Ad(H)(t(I; 0))~, where I = (1; : : : ; 1) is a row vector of length n.

Consider the linear form `(�) =
R
�(t(Xn; 0))dXn on (� 2)C1c (F 2n), where Xn =

(x1; : : : ; xn), and dXn =
Q
dxi(1 � i � n). The \Siegel" parabolic subgroup PH of H con-

sists of p = mu; m = diag(a; wta�1w); u = u(X) =
�
I X

0 I

�
; X = �wtXw: Clearly `(p��) =R

�(t(a�1Xn; 0))dXn = jdet aj`(�); and �PH (m) = jdet ajn�1. Hence ��(g) = `(g�) lies in

indHPH (�
1=(n�1)
PH

). By Frobenius reciprocity ([BZ, (2.29)]), the space HomH(ind
H
PH

(�
1=(n�1)
PH

); 1) =

HomPH (�
1=(n�1)
PH

��1PH ; 1) is zero if n 6= 2, and it is C if n = 2. Fix n = 2. Then L1(�) =R
K
�(k)dk, where K is a maximal compact open subgroup of H with H = KPH , is a non

zero element of the space on the left.

The measure �O(�) = L1(��) =
R
K
��(k)dk =

R
�(kt(Xn; 0))dXndk is non zero and is

supported on the nilpotent cone g�nilp of g�, but not on the zero orbit. It is H-invariant.

Indeed, �O(h�) = L1(�h�) = L1(h��) = L1(��) = �(�) since �h�(g) = `(gh�) = ��(gh) =

h��(g). Moreover, it is equal to its Fourier transform. Indeed

�̂O(�) =�O(�̂) =

Z
�̂(k t(Xn; 0))dXndk

=

Z
K

dk

Z
F 2

dXn

Z
F 4

�(Y ) (tr [ ~Y (k t(Xn; 0))~])dY

=

Z
K

Z
Xn

Z
Y

�(kY ) (�y4x1 � y3x2)dXndY dk

=

Z
K

dk

Z
F 2

�(k t(y1; y2; 0; 0))dy1dy2 = �O(�);

where Y = t(y1; y2; y3; y4) and Xn = (x1; x2). The theorem follows. �

7. The case of G = GL(4); H = GL(2)�GL(2). Our next aim is to construct a basis for

the space C1c (g�nilp)
�H in the case where G = GL(n+m;F ), J = diag(In;�Im); n = m = 2,

and to deduce Theorem 2.2 in this case. Our technique is straightforward. Having listed

(see Example (2), end of x2) the (�nitely many) H-orbits O in g�nilp, and erased those

which do not support an H-invariant measure (since the centralizer of their elements are

not unimodular), we need to check for which orbits O the measure in C1c (O)�H extends

to an H-invariant distribution on a closed H-invariant subset of g�nilp which contains O. It

turns out in some examples below { as was the case for n = m = 1 in x3 { that this closed

set is not the closure of O, but rather the closure of the union of several (two in our case)

orbits of the same dimension. For other orbits O, the orbital integral is not the restriction

to O of any H-invariant distribution on g�nilp.

1. Theorem. A basis for the space C1c (g�nilp)
�H of H-invariant distributions on the nilpo-

tent cone g�nilp of g� is given by the four distributions: �0(f) = �0(f) = f(0),

�1(f) =

ZZ
f(U+(Y )) (tr XY ) ln jXjdY dX +

ZZ
f(U�(Y )) (tr XY ) ln jXjdY dX;
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where X;Y range over M(2� 2; F ),

�4(f) =

Z
fK(

�
0 U

V 0

�
)dudv (U =

�
0 u

0 0

�
; V =

�
0 v

0 0

�
; fK(X) =

Z
K

f(Int(k)X)dk);

where K is the standard maximal compact open subgroup of H, and

�5(f) =

Z
fK(

�
0 U

V 0

�
) (xy) ln jxjdxdydudv (U =

�
0 u

0 y

�
; V =

�
0 v

0 0

�
)

+

Z
fK(

�
0 U

V 0

�
) (xy) ln jxjdxdydudv (U =

�
0 u

0 0

�
; V =

�
0 v

0 y

�
):

Their Fourier transforms are:

�̂0(f) =

ZZ
f(
�

0 X

Y 0

�
)dXdY; �̂4(f) = fK(

�
0 U0
U0 0

�
); U0 =

�
0̂ 0̂

0 0̂

�
;

�̂1(f) =

ZZ
f(
�

0 Z

X 0

�
) ln jXjdZdX +

ZZ
f(
�

0 X

Z 0

�
) ln jXjdZdX;

and

�̂5(f) =

Z
fK(

�
0 Ux
U0 0

�
) ln jxjdx+

Z
fK(

�
0 U0
Ux 0

�
) ln jxjdx (Ux =

�
x 0̂

0 0̂

�
):

In this section we consider the invariant distribution associated with theH-orbit of U+(I),

where U+(X) =
�
0 X

0 0

�
. This can and will be discussed in the generality of n = m � 1,

thus X is an n�n matrix over F , and I = In is the identity in GL(n; F ). The H-invariant

measure on the H-orbit Ad(H)U+(I) is the value at t = 0 of the following distribution. Put

d(A) for diag(A; I), A in GL(n; F ); recall that jAj denotes jdetAj.

Z+(f; t) =

Z
f(Ad(d(A))U+(I))jAj

tdA =

Z
f(U+(A))jAj

tdA

=

Z
f+(A)jAjtdA = Z(f+; t); (f+(A) = f(U+(A))):

Although this integral converges at t = 0 for f 2 C1c (Ad(H)U+(I)), it does not converge

for a general f in C1c (g�). However the function Z(f+; t) is the well known Zeta function

on the algebra M(n � n; F ) of n � n matrices. Its analytic properties of use for us are

studied in Jacquet [J]. In particular it has a simple pole at t = 0, and the H-invariant

measure on Ad(H)U+(I) can be extended as a measure on the closure of this orbit as the

principal value of Z+(f; t) = Z(f+; t) at t = 0. Let us explicitly compute this principal

value Z+
0 (f) = Z0(f

+).

Let �(= f+, denoted by � in [J]) be a C1c -function on M(n� n; F ). Then our Z(�; t)

coincides with Z(�; s; f) of [J], (1.1.3), with � = �; s = t, and f = 1, and � of [J] is

taken to be the trivial representation 1 of GL(n; F ). Proposition 1.2(3) of [J] asserts that
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Z(�; t) satis�es a functional equation (Z(�; s; f) should be Z(�; s+ 1
2
(n�1); f) there) which

according to [J], (1.3.7), is

Z(�; s+
1

2
(n� 1)) = "(s;  )�1L(s;1)L(1� s;1)�1Z(�̂;

1

2
(n+ 1)� s):

Put �(x) = jxj. Then Theorem 3.4 of [J] (and (1.3.11) there) asserts that L(s; J(�1�
t1 �

� � � � �r�
tr )) =

Q
i L(s+ ti; �i), where J denotes the Langlands quotient as described in [J],

(3.3) (P should be Q in (3.3.3) and on the following line, � should be � on the line before

(3.3.4)). Since 1 is J with �i = 1 and (t1; : : : ; tn) = ((n� 1)=2; (n� 3)=2; : : : ;�(n� 1)=2),

we have (by [J], (3.1.1)) that L(s;1) =
Q

0�i<n(1� q�s�
1
2
(n�1)+i)�1. If t = s+ 1

2
(n� 1),

then

Z(�; t) =" (t�
1

2
(n� 1))�1L(t�

1

2
(n� 1);1)L(

1

2
(n+ 1)� t;1)�1Z(�̂; n� t)

=" (t�
1

2
(n� 1))�1

Y
0�i<n

[(1� qt�n+i)=(1� q�t+i)]Z(�̂; n� t)

=(1� q�t)�1[(1� qt�n)" (t�
1

2
(n� 1))�1(�1)n�1

Y
1�i<n

qt�i]Z(�̂; n� t):

In particular, Z(�; t) has a simple pole at t = 0, with residue which is a multiple of

Z(�̂; n) =

Z
GL(n;F )

�̂(A)jAjndA =

Z
M(n�n;F )

�̂(X)dX = �(0)

by the Fourier inversion formula. Moreover,

Z(�̂; n� t) =

Z
GL(n;F )

�̂(A)jAjn�tdA =

Z
M(n�n;F )

�̂(X)jXj�tdX

=

Z
�̂(X)dX � t

Z
�̂(X) ln jXjdX + � � �+ (�1)m(tm=m)

Z
�̂(X)(ln jXj)mdX + : : :

= �(0)� tZ0(�) + : : : ; Z0(�) =

Z
�̂(X) ln jXjdX = �PV ft�1Z(�̂; n� t)g:

Then

Z(�; t) = (t�1c�1+ c0+ : : : )(�(0)� tZ0(�)+ : : : ) = t�1c�1�(0)+(c0�(0)� c�1Z0(�))+ : : : :

In particular, the distribution Z0(�) extends (up to a constant multiple) the H-invariant

distribution Z(�; 0) on the � 2 C1c (GL(n; F )), to C1c (M(n� n; F )).

Yet Z0(�) is not H-invariant. Recall that B = diag(B1; B2) acts on the �(= f+) by

B � �(A) = �(B�1
1 AB2). Put jBj = jB1B

�1
2 j. Then

Z0(B�) =

Z
(B�)̂(X) ln jXjdX =

ZZ
(B�)(Y ) (tr XY ) ln jXjdY dX

=Z0(�)� �(0) ln jBj (Y 7! B1Y B
�1
2 ; X 7! B2XB

�1
1 ):
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In summary, Z+
0 (f) = Z0(f

+) = �PV ft�1Z((f+)̂; n � t)g is a distribution on the

closure of Ad(H)U+(I), namely on U+(M(n � n; F )), extending the orbital integral on

Ad(H)U+(I) = fU+(X); rk(X) = ng, which satis�es Z+
0 (Bf) = Z+

0 (f)� f(0) ln jBj.

One can repeat this construction for the orbit Ad(H)U�(I), where U�(X) =
�

0 0

X 0

�
.

Put f�(A) = f(
�

0 0

A 0

�
). Then the orbital integral on this orbit is the value at t = 0 of

Z�(f; t) =

Z
f(Ad(d(A))U�(I))jAj

tdA =

Z
f�(A)jAj�tdA = Z(f�;�t):

The distribution Z�0 (f) = Z0(f
�) = �PV ft�1Z((f�)̂; n + t)g extends Z�(f; 0) from f 2

C1c (Ad(H)U�(I)) to f 2 C1c (U�(M(n � n; F ))). It transforms under the action of H

by Z�0 (Bf) = Z�0 (f) + f(0) ln jBj. Of course Bf(X) = f(B�1XB), and in particular

Bf�(A) = f�(B�1
2 AB1).

We conclude that Z0(f) = Z+
0 (f)+Z

�
0 (f) is an H-invariant distribution on g� which is

supported on g�nilp, which coincides with the orbital integral on the H-orbits of U+(I) and

U�(I) when restricted to these orbits. Explicitly

Z0(f) =

Z
(f+)̂(X) ln jXjdX +

Z
(f�)̂(X) ln jXjdX

=

ZZ
f(U+(Y )) (tr XY ) ln jXjdY dX +

ZZ
f(U�(Y )) (tr XY ) ln jXjdY dX:

In particular

Z0(f̂) =

ZZ ZZ
f(
�

0 Z

T 0

�
) (tr [

�
0 Z

T 0

��
0 Y

0 0

�
]) (tr XY ) ln jXjdZdTdY dX + : : :

=

ZZ
f(
�

0 Z

X 0

�
) ln jXjdZdX +

ZZ
f(
�

0 X

Z 0

�
) ln jXjdZdX:

Note also that for t 2 F�, if (tf)(X) = f(t�1X), then Z0(tf) = Z0(f)�n ln jtj[f(U+(0̂))+

f(U�(0̂))] and Ẑ0(tf) = jtj2n
2

Ẑ0(f) + 2n(ln jtj)jtj2n
2

f̂(0) (the hat indicating Fourier trans-

form with respect to the speci�ed location only, in g�).

8. A 4-dimensional orbit. Consider the 4 dimensional H-orbit of X4 =
�

0 U2
U2 0

�
; U2 =�

0 1

0 0

�
. The stabilizer ZH(X4) consists of all diag(A;B) with AU2 = U2B and BU2 = U2A,

thus (A;B) = (
� a1 a2

0 a4

�
;
�
a4 b2
0 a1

�
). Hence dimZH(X4) = 4, and as dimH = 8, the dimension

of Ad(H)X4 is indeed 4. The measure decompositions dA = (dk0dn0da0 =)ja01=a
0
2jdk

0da0dn0,

and dB = (dkdnda =)ja1=a2jja
0
2=a

0
1jdkd(aw(a

0))dn, where w(diag(u; v)) = diag(v; u), cor-

responding to the Iwasawa decompositions A = k0a0n0; B = kaw(a0)n, are used to rewrite

�4(f) =

Z
H=ZH(X4)

f(Ad(h)X4)dh =

Z
F�

Z
F�

fK(
�

0 a�1
2
U2

a1U2 0

�
)ja1=a2jd

�a1d
�a2;

which is the expression of the theorem.
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Note that �4(f), originally computed for f 2 C1c (Ad(H)X4), is de�ned by an integral

which converges for all f 2 C1c (g�). Hence �4 extends to an H-invariant distribution on

g� which is supported on g�nilp, with no modi�cations. Its Fourier transform is

�̂4(f) =

Z
fK(

�
0 X

Y 0

�
) (tr [

�
0 X

Y 0

� �
0 uU2
vU2 0

�
])dXdY dudv

=

Z
fK(

�
0 X

Y 0

�
) (x3v + y3u)dXdY dudv = fK(

�
0 U0
U0 0

�
)

(X =
� x1 x2
x3 x4

�
; Y =

�
y1 y2
y3 y4

�
).

9. The 5-dimensional orbits. Consider the 5-dimensional H-orbits. There are two of

these. Their analysis is similar to that of the 4 dimensional H-orbits of U+(I) and U�(I).

Namely each of the two orbital integrals can be extended as a principal value of a regularized

integral from the orbit to all of g�, but the extension is not H-invariant. On the other hand,

the sum of the two extensions is H-invariant.

As usual, we put U1 =
�
1 0

0 0

�
; U2 =

�
0 1

0 0

�
; U3 =

�
0 0

1 0

�
; U4 =

�
0 0

0 1

�
. A set of represen-

tatives for the two 5 dimensional H-orbits is given by X5;1 =
�

0 U4
U2 0

�
(which is mapped to

X�
5;1 =

�
0 U2
U1 0

�
under the action of the reection (12) in H), and X5;2 =

�
0 U2
U4 0

�
(which

is mapped to X�
5;2 =

�
0 U1
U2 0

�
under the action of the reection (34) in H).

The centralizer ZH(X5;1) consists of diag(A;B) with AU4 = U4B and BU2 = U2A. Ma-

trix multiplication implies that (A;B) = (
�
a1 0

0 a4

�
;
�
a4 b2
0 a4

�
). Hence dimZH(X5;1) = 3,

and as dimH = 8, the dimension of Ad(H)X5;1 is indeed 5. The measure decompositions

dA = dk0dr0da0, and dB = (dkdrda =)ja1=a2jdkdadr, corresponding to the Iwasawa de-

compositions A = k0r0a0; a0 = diag(a01; a
0
2), and B = ka02ar; a = diag(a1; a2), are used to

rewrite

�05;1(f) =

Z
fK(

�
0 r0U4a

�1

aU2 0

�
)ja1=a2jd

�a1d
�a2dr

0

=

Z
fK(

�
0 U

V 0

�
)d�a2da1du

(U =
�
0 u

0 a2

�
; V =

�
0 a1
0 0

�
). This integral converges for F in C1c (Ad(H)X5;1). But the

integration on a2 2 F
� by d�a2 shows that �

0
5;1 does not extend to g�.

Then we need to take the principal value at 0 in this variable, using the formula

PV (d�x)(�) = PVt=0(

Z
�(x)jxjtd�x)

= �0�(0)� ��1

Z
�(y) (xy) ln jxjdydx:

We deduce that the distribution

�5;1(f) =

Z
fK(

�
0 U

V 0

�
) (xy) ln jxjdydudvdx
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(U =
�
0 u

0 y

�
; V =

�
0 v

0 0

�
) in g� is supported on the closure Ad(H)X5;1 [ Ad(H)X4 of

Ad(H)X5;1 in g�nilp � g�, and its restriction to the H-orbit of X5;1 is a multiple of �05;1.

Reversing the Iwasawa decompositions, this distribution can also be expressed in the form

�5;1(f) =

Z
f(Ad(

�
A 0

0 B

�
)
�

0 U4
U2 0

�
) (xa02=a2) ln jxjdAdBdx;

where a2; a
0
2 are de�ned by A = k0u0a0; a0 = diag(a01; a

0
2); B = kua; a = diag(a1; a2).

Note that taking the representative X�
5;1 instead of X5;1, we would get the extension �

�
5;1

of �05;1, which is de�ned as �5;1 is, but with U =
�
0 u

0 0

�
; V =

� y v
0 0

�
. This extension di�ers

from �5;1 by a multiple of the distribution �4 which is supported on the boundary of the

orbit Ad(H)X5;1=Ad(H)X�
5;1.

To describe the orbital integral of X5;2, note that ZH(X5;2) consists of diag(A;B) with

AU2 = U2B, BU4 = U4A. Thus (A;B) = (
� a1 a2

0 a1

�
;
�
b1 0

0 a1

�
). The measure decompositions

dA = ja01=a
0
2jdk

0da0dr0, and dB = dkdrda, corresponding to the Iwasawa decompositions

A = k0r0a0; a0 = diag(a01; a
0
2), and B = ka02ar; a = diag(a1; a2), are used to rewrite this

orbital integral in the form

�05;2(f) =

Z
fK(

�
0 a0U2

rU4a
0�1 0

�
)ja01=a

0
2jda

0dr =

Z
fK(

�
0 U

V 0

�
)dudvd�y

(U =
�
0 u

0 0

�
; V =

�
0 v

0 y

�
), for f 2 C1c (Ad(H)X5;2).

The presence of d�y indicates that �05;2 does not extend to g�. But taking the principal

value with respect to this parameter we obtain the distribution

�5;2(f) =

Z
fK(

�
0 U

V 0

�
) (xy) ln jxjdydudvdx

on g�. It is supported on the closure of Ad(H)X5;2 in g
�, which is the union of the H-orbits

of X5;2 and X4 (both in g�nilp). The restriction of �5;2 to the orbit of X5;2 is a multiple of

�05;2.

If we worked with the representative X�
5;2 for the orbit of X5;2, we would have obtained

an expression ��5;2 such as �5;2, but in which U =
� y u
0 0

�
and V =

�
0 v

0 0

�
. This would di�er

from �5;2 by a multiple of �4, which is supported on the boundary Ad(H)X4 of the orbit

of X5;2. Reversing the Iwasawa decomposition we can write �5;2 in the form

�5;2(f) =

Z
f(Ad(

�
A 0

0 B

�
)
�

0 U2
U4 0

�
) (xa2=a

0
2) ln jxjdAdBdx;

where a2; a
0
2 are de�ned exactly as in the case of �5;1 from A;B.

The extensions �5;1 and �5;2 of the orbital integrals �
0
5;1 and �

0
5;2 to the closures of the

orbits are unique up to a scalar multiple and a distribution supported on the boundary

of the orbit (which is the orbit of X4). However, these distributions are not H-invariant.

Indeed, replacing f by h � f : X 7! f(Ad(h�1)X), and writing the quotient \a02=a2" of
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h�1diag(A;B) as a product of z = z(h) (which is independent of a2 and a
0
2), and a

0
2=a2, we

obtain

�5;1(hf) =

Z
f(Ad(h�1

�
A 0

0 B

�
)
�

0 U4
U2 0

�
) (z�1xza02=a2) ln jxjdAdBdx

=

Z
f(Ad(

�
A 0

0 B

�
)
�

0 U4
U2 0

�
) (xa02=a2)(ln jxj+ ln jzj)dAdBdx

=�5;1(f) +

Z
f(Ad(

�
A 0

0 B

�
)
�

0 U2
U2 0

�
) ln jzjdAdB:

In the second equality we changed variables a02 7! z�1a02, and x 7! zx. In the last equality

we applied the Fourier inversion formula in the variables a02=a2 and x. Similarly for �5;2 we

obtain

�5;2(hf) =

Z
f(Ad(h�1

�
A 0

0 B

�
)
�

0 U2
U4 0

�
) (zxz�1a2=a

0
2) ln jxjdAdBdx

=

Z
f(Ad(

�
A 0

0 B

�
)
�

0 U2
U4 0

�
) (xa2=a

0
2)(ln jxj � ln jzj)dAdBdx

=�5;2(f)�

Z
f(Ad(

�
A 0

0 B

�
)
�

0 U2
U2 0

�
) ln jzjdAdB:

However, the sum �5 = �5;1 + �5;2 is an H-invariant distribution (on g�, supported on

g�nilp, in fact on the closure of the union of the orbits of X5;1 and X5;2, which is the union of

the orbits of X5;1, X5;2 and X4). It restricts to a multiple of �5;1 (resp. �5;2) on the orbit

of X5;1 (resp. �5;2).

The Fourier transform of �5 is given by

�̂5;1(f) =

Z
fK(

�
0 X

Y 0

�
) (a) (xy) ln jxj+

Z
fK(

�
0 X

Y 0

�
) (b) (xy) ln jxj;

where X;Y are as in x10,

a = tr [
�

0 X

Y 0

��
0 U

V 0

�
] = x3v + y3u+ y4y; U =

�
0 u

0 y

�
; V =

�
0 v

0 0

�
;

and

b = tr [
�

0 X

Y 0

��
0 U

V 0

�
] = x3v + x4y + y3u; U =

�
0 u

0 0

�
; V =

�
0 v

0 y

�
:

This is equal to

Z
fK(

�
0 U0
U 0
x

0

�
) ln jxjdx+

Z
fK(

�
0 U 0

x

U0 0

�
) ln jxjdx

=

Z
fK(

�
0 Ux
U0 0

�
) ln jxjdx+

Z
fK(

�
0 U0
Ux 0

�
) ln jxjdx;

U0 =
�
0̂ 0̂

0 0̂

�
; Ux =

�
x 0̂

0 0̂

�
; U 0x =

�
0̂ 0̂

0 x

�
.
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10. The 6-dimensional orbits. According to the classi�cation of the H-orbits in Exam-

ple (2), end of x2, there are two more H-orbits, of dimension 6. We claim:

1. Theorem. The orbital integrals on the 6 dimensional H-orbits do not contribute to

C1c (g�nilp)
�H .

Proof. One of these orbits is represented by X+
6 =

�
0 I

U2 0

�
, whose centralizer ZH(X

+
6 ) is

fdiag(zn; zn)g, z is a scalar, n is a unipotent upper triangular matrix. To write out the

orbital integral of X+
6 we express the variable in the form h = diag(AB;B), and decompose

B = kau, so that dB = ja1=a2jdkdadu(a = diag(a1; a2)). Write

f+(A) =

Z
K

fK(
�

0 A

xU2A
�1 0

�
)dx;

and note that if A lies in a compact in GL(2; F ) depending on f , and so does xU2A
�1, then

x lies in a compact of F .

For any f in C1c (Ad(H)X+
6 ), the orbital integral of f on Ad(H)X+

6 is

�+6 (f) =

Z
f(Ad(

�
AB 0

0 B

�
)X+

6 )dAdB

=

Z
f(
�

0 A
xkU2k

�1A�1 0

�
)dxdAdk =

Z
K1nGL(2;F )

f+(A)dA:

Decompose dA = dk1duda
�; a� = diag(a; b); u =

�
1 y

0 1

�
, to obtain

=

Z
f(
�

0 ua�

b�1xU2 0

�
)dxdud�ad�b =

Z
f(
�

0 V

xU2 0

�
)dxdyd�ad�b;

V =
� a y
0 b

�
, where in the last equality we changed x 7! xb; y 7! y=b.

Recall that
R
F

R
F
�(x) (xy) ln jyjdxdy extends the distribution

R
F�

�(x)d�x from F� to

F . Applying this to the two variables a and b, we get the distribution

�6;1(f) =

Z
fK(

�
0 V

xU2 0

�
) (a�+ b�) ln j�j ln j�jdxdydadbd�d�

on the closure of the H-orbit of X+
6 , hence on g

�
nilp and on g�. This �6;1 extends �

+
6 , and

the extension is unique up to a linear combination of �5;1; �5;2; �4.

Similarly

�6;2(f) =

Z
fK(

�
0 xU2
V 0

�
) (a�+ b�) ln j�j ln j�jdxdydadbd�d�

is a distribution on the closure of the H-orbit of X�
6 =

�
0 U2
I 0

�
, whose restriction to the

orbit of X�
6 is a multiple of the orbital integral on this orbit. This extension of the orbital

integral of X�
6 is unique up to a linear combination of �5;1; �5;2; �4.
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Now, concerning H-invariance properties of �6;1 and �6;2, for t 2 F�, de�ne f t(X) to

be f(Ad(
�
t 0

0 I

�
)X). Then

�6;1(f
t) =�6;1(f) + (�5;1(f) + ��5;2(f)) ln jtj+ �4(f)(ln jtj)

2

=�6;1(f) + �5(f) ln jtj+ p1(ln jtj)�4(f);

and

�6;2(f
t) =�6;2(f)� (��5;1(f) + �5;2(f)) ln jtj+ �4(f)(ln jtj)

2

=�6;2(f)� �5(f) ln jtj+ p2(ln jtj)�4(f);

where p1 and p2 are quadratic polynomials with leading coe�cient 1. Consequently no

linear combination of �6;1; �6;2; �5;1; �5;2; �4; Z
+
0 ; Z

�
0 and �0, which depends non trivially

on �6;1 and �6;2, can be H-invariant. �

This completes the construction of the basis of C1c (g�nilp)
�H . Clearly the Fourier trans-

forms of this basis, �̂0; �̂1; �̂4; �̂5, are linearly independent on any neighborhood of zero in

g�, and Theorem 2.2 follows. �

11. Uniform smoothness of orbital integrals. We shall now consider the behaviour

of the G+ = H-invariant distributions �~x( ~f) as ~x varies over the �-regular set of ~G. Under

an assumption on the group { presently to be stated { we shall show that �~x( ~f) is a locally

constant function of ~x (in ~G0 = �-regular set of ~G), uniformly in ~f . Our main interest is

simply to extend Harish-Chandra's submersion principle [HC2] to the spherical settings.

Assumption. Let (P;A) be a �-invariant minimal parabolic pair in G, P = MN the cor-

responding Levi decomposition, K a maximal compact subgroup with G = PK, and put

X+ = X \G+ for X � G. Then (P+; A+) is a minimal parabolic pair in G+, and there is

a maximal compact subgroup K+ in G+ with G+ = P+K+. Denote by M� the set of m

in M+ with �(m) � 1 for every root � of A+ in P+. Then G+ = K+M�K
+, and M+=A+

is compact. Put A� = A+ \M�. Denote by g and P the Lie algebras of G and P , by g+

and P+ the sets of �xed points of � (these are the Lie algebras of G+ and P+), and by

g� and P� the �1 eigenspaces of � in g and P (these are the Lie algebras of ~G and ~P ).

Our assumption is that for any compact open subgroup K0 in K there is a compact open

subgroup P0 in P such that Int(a)( ~P \ P0) � K0 for all a in A�. Recall that a lattice L

in g is a compact open R-submodule of g, where R is the ring of integers of F . Then our

assumption can be put as saying that for any lattice L in g there is a lattice L1 in g such

that Int(a)(P� \ L1) � L for all a in A�.

Example. This assumption holds in the group case, where g = f(X;Y );X;Y 2 Hg, �(X;Y ) =

(Y;X), g+ = f(X;X)g, g� = f(X;�X)g, and in the case where E=F is a quadratic ex-

tension of �elds, g = H(E), � = galois action, g+ = H(F ), g� = ig+, where i generates

E over F and has trace zero. However, this assumption does not hold for example when

g is the algebra M(2n; F ) of 2n � 2n matrices over a �eld F , � is given by conjugation

by diag(In;�In), and P is the algebra of upper triangular matrices. In this case, taking

A to be the diagonal subgroup, A� consists of diag(a1; : : : ; a2n), ai 2 F
�, jaij � jai+1j for

1 � i < n and n < i < 2n, but not for i = n, and P� = f

�
0 X

0 0

�
g, and ~P = I +P�.

For pairs (G; �) satisfying the assumption above, following Harish-Chandra [HC2], we

prove:
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1. Theorem. Let K0 be a compact open subgroup of G. Then for every �-regular ~0 in
~G0 there is a neighborhood ~! of ~0 in ~G0, such that �~x( ~f) is constant in ~x 2 ~! for every

f 2 Cc(K0nG) (here ~f(~g) =
R
G+ f(gx)dx; g 2 G).

Following [HC2], the proof consists of several steps, the assumption will be used only in

the last step, while the �rst is the following \submersion" result. Recall (e.g., Serre [S])

that an analytic map a : X ! Y of analytic manifolds is called submersive if its di�erential

is surjective. The group G acts on itself, and on ~G, by �-Int(g) = g�(g)�1. We write

A=�B for the quotient of A by B under this �-conjugacy.

2. Proposition. Let P be a �-invariant parabolic subgroup of G. Fix a �-regular ~ in ~G0.

Then the map  ~ : G
+ ! ~G=� ~P ,  ~(x) = (Int(x)~)=� ~P , is submersive everywhere.

Proof. Since  ~(xy) =  Int(y)~(x) for all x; y in G
+, it su�ces to show that  ~ is submersive

at x = 1. Then g = g+�g�, P = P+�P�, g+ = g�, P+ = P�, g�, P�, are the Lie algebras

of G, P , G+ = G�, P+ = P �, ~G = G� and ~P . We have to show that g� = P� + (d ~)g
+.

To compute the di�erential d ~ of  ~ near zero, write

 ~(e
tX) =  � �1etX � �(�1)e�tX�() � �(�1)

= et�Ad(
�1)Xe�t�Ad�()

�1X�()�1:

Then d ~(X) = (Ad(�1)�Ad�(�1))X on X 2 g+. Since G is reductive, there exists an

F -valued symmetric non degenerate G- and �-invariant bilinear form B on g. Then g+ is

orthogonal to g� with respect to B. Let T = ker[(Ad(~)� 1)jg] denote the Lie algebra of

the torus T = ZG(~) in G. Then the orthogonal complement of d ~(g
+) in g� is

[(Ad(�1)� Ad�(�1))g+]?g� = ker[(Ad()� Ad�())jg�] = g� \Ad(�()�1)T:

Fix a split �-invariant component of P , and a corresponding Levi decomposition P =MN

of P , with Lie algebras P =M+N. Then (P�)?
g�

= N�, and

(P� + (d ~)g
+)?g� = N� \ Ad(�()�1)T

is empty. Hence P� + (d ~)g
+ = g�, as required. �

Fix a �-regular ~ in ~G0, and a parabolic subgroup P of G. Then Proposition 2 implies

that the map G+ � ~P ! ~G, (x; p) 7! px~x�1�(p)�1, is submersive. Theorem 11 of [HCD],

p. 49, then asserts that there exists a unique linear map C1c (G+� ~P )! C1c ( ~G), � 7! ��;~ ,

such that for every F in C1c ( ~G) we have

Z
G+

Z
~P

�(x; p)F (px~x�1�(p)�1)dxd`p =

Z
~G

��;~(~g)F (~g)d~g:

Here dx is a Haar measure on G+, d`p is a left invariant Haar measure on ~P , and d~g is a

Haar measure on ~G = G=G+.
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3. Proposition. Fix � in C1c (G+� ~P ). Then the map ~G0 ! C1c ( ~G), ~y 7! ��;~y, is locally

constant.

Proof. The map ~G0 � G+ � ~P ! ~G0 � ~G, (~y; x; p) 7! (~y; px~yx�1�(p)�1) is submersive. By

[HCD], Theorem 11, there is a unique linear map � 7! �� such that

ZZ Z
�(~y; x; p)�(~y; px~yx�1�(p)�1)d~ydxd`p =

ZZ
��(~y; ~g)�(~y; ~g)d~yd~g

for all � in C1c ( ~G0 � ~G). We shall use this relation with �(~y; ~g) = �(~y)F (~g), � 2 C1c ( ~G).

Then

Z
~G0
�(~y)d~y

Z
G+

Z
~P

�(~y; x; p)F (px~yx�1�(p)�1)dxd`p =

Z
~G0
�(~y)d~y

Z
~G

��(~y; ~g)F (~g)d~g

holds for all � 2 C1c ( ~G0), and so we conclude that for all ~y 2 ~G0 and F in C1c ( ~G), we have

Z
G+

Z
~P

�(~y; x; p)F (px~yx�1�(p)�1)dxd`p =

Z
~G

��(~y; ~g)F (~g)d~g:

Fix ~y0 2 ~G0, and consider �(~y; x; p) of the form �(~y)�(x; p), where � 2 C1c (G+ � ~P ),

and � 2 C1c ( ~G0) has �(~y0) = 1. Let ~G00 denote a neighborhood of ~y0 in ~G0 on which � = 1.

Then for any ~y in ~G00 and any F in C1c ( ~G), we have

Z
~G

��;~y(~g)F (~g)d~g =

Z
G+

Z
~P

�(x; p)F (px~yx�1�(p)�1)dxd`p

=

Z
G+

Z
~P

�(~y; x; p)F (px~yx�1�(p)�1)dxd`p =

Z
~G

��(~y; ~g)F (~g)d~g:

Consequently ��;~y(~g) = ��(~y; ~g) for all ~y in ~G00 and ~g in ~G. Since �� 2 C1c ( ~G0 � ~G), the

map ~y 7! ��;~y is locally constant, as required. �

Proof of theorem 1. Consider �rst a �-regular element ~ in ~G0 which is elliptic in G; namely

it lies in no proper parabolic subgroup P of G, or equivalently, its centralizer ZG(~) in G

is compact modulo the center Z = Z(G) of G. Then the centralizer ZG+(~) of ~ in G+

is G+ \ ZG(~), and it is compact modulo Z+ = G+ \ Z; Z+ is not necessarily the center

Z(G+) of G+. For such ~ 2 ~G0, we have

�~( ~f) =

Z
G+=Z+

~f(Int(x)~)dx =
X

m2M�=0MZ+

jK+mK+j

Z
K+

~fK
+

(mk~k�1m�1)dk:

Here (P;A) is the �-invariant minimal parabolic pair in G �xed prior to the statement of

Theorem 1, P =MN is the corresponding Levi decomposition, P+ = P\G+, A+ = A\G+,

and P+ = M+N+ is the Levi decomposition in G+, M� = fm 2 M+; �(m) � 1 for each

root � of A+ in P+g and 0M = fm 2 M+; �(m) = 1 for each root � of A+ in P+g.

Also jK+mK+j denotes the volume of K+mK+ in G+, and we normalize the measures on
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the compacta (e.g. K+ and ZG+(~)=Z+) to assign these groups the volume one. Finally,
~fK

+

(~) =
R
K+

~f(Int(k)~)dk.

The Assumption stated prior to the theorem implies that since M+=A+ is compact, so

M� � CA� where C is a compact subset ofM+, we can choose an open compact subgroup

P0 of P with Int(m)(P0 \ ~P ) � K0 for all m in M�. Let � be the characteristic function of

K+�P0\ ~P , and �~y = ��;~y the corresponding function on ~G. Then the map ~G0 ! C1c ( ~G),

~y 7! �~y , is smooth, andZ
K+

Z
~P\P0

F (pk~k�1�(p)�1)dkdp =

Z
~G

�~(~g)F (~g)d~g (~ 2 ~G0; F 2 C1c ( ~G)):

Applying this identity with F (~g) = ~fK
+

(m~gm�1), we haveZ
K+

Z
~P\P0

~fK
+

(mpk~k�1�(p)�1m�1)dkdp =

Z
~G

�~(~g) ~f
K+

(m~gm�1):

Our Assumption then implies that Int(m)(P0 \ ~P ) � K0 for all m 2M�. Since K0 can be

chosen to be su�ciently small, so that Int(K+)K0 � K0, we have ~f(kk0~g�(k0)
�1k�1) =

~f(k~gk�1) for all k in K+, k0 in K0, hence ~fK
+

(k0~g�(k0)
�1) = ~fK

+

(~g). We conclude thatZ
K+

~fK
+

(mk~k�1m�1)dk =

Z
~G

�~(~g) ~f
K+

(m~gm�1)d~g

=

Z
~G

�~0(~g)
~fK

+

(m~gm�1)d~g =

Z
K+

~fK
+

(mk~0k
�1m�1)dk

for all m 2 M�, and all ~ in a su�ciently small neighborhood of ~0 in ~G0 (since ~ 7! �~
is locally constant, namely constant in a su�ciently small neighborhood of ~0). Hence

�~( ~f) = �~0(
~f) for all ~ in some neighborhood of ~0 in ~G0, this neighborhood depending

only on K0.

Suppose that the �-regular ~ 2 ~G0 is not elliptic in G. Then T = ZG(~) is a torus which

is �-invariant (since �(~) = ~�1). Let A be the maximal split torus in T . Then �(A) = A,

and M = ZG(A) is a Levi component of a parabolic subgroup. Then M is �-invariant, and

we assume that it is the Levi component of a �-invariant parabolic subgroup P = MN .

Then ~ 2M , we decompose x = knm in G+ = K+N+M+, and writeZ
G+=A+

~f(x~x�1)dx =

Z
M+=A+

Z
N+

~fK
+

(m~m�1 � n0)dmdn;

where n0 = (m~m�1)�1 �n �m~m�1 �n�1 2 N: Since m~m�1 is in M , while n0 is in N , the

function ~fK
+

on M � N can be considered to be a (linear combination of) product(s) of

two functions, ~f1 on ~M , and f2 on some subset of N . Extend f2 to a function in C1c (N),

and let n range over N , rather than only N+. ThenZ
N

f2(n
0)dn = jdet(Ad(m~m�1)�1 � 1)jNj

Z
N

f2(n)dn = jdet(Ad(~)�1 � 1)jNj

Z
N

f2(n)dn;

and jdet(Ad(~)�1�1)jNj is a locally constant function in ~ 2 ~G0. Then it su�ces to restrict

attention only to ~ 2 ~G0 \M , for which the centralizer ZM+(~) in M+ is compact modulo

M+ \ Z(M). This is the case of the elliptic-in-M+ elements, considered above. �
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12. Spherical characters control orbital integrals. Let F be a local non archimedean

�eld, G a reductive group over F , ��� an involution of G over F , H = G��� the group of �xed

points of ��� in G, put G = G(F ); H = H(F ), and Z = Z(F ), where Z is the center of

G. These are `-groups in the terminology of [BZ]. De�ne ~G to be the image of the map

G=H ! G, g 7! ~g = g�(g)�1, where � is the involution of G induced by ���. Given f in

C1c (G=Z), de�ne ~f(~g) =
R
H
f(gh)dh. Then ~f lies in C1c ( ~G= ~Z), ~Z = fz�(z)�1; z 2 Zg,

and we have

�(f) =

Z
H�H=ZH�H ()

f(xy)dxdy =

Z
H=ZH (~)

~f(Int(x)~)dx = �~( ~f):

Here ZH�H() = f(x; y) 2 H � H;xy = z for some z in Zg, and ZH(~) = fx 2

H; Int(x)~ = ~z~ for some z in Zg.

Let � be an admissible irreducible G-module, and L = L� an element of the space

HomH(�; C ) of H-invariant linear forms on �. Let ~� denote the contragredient of �, and

L̂ = L̂~� an element of HomH(~�; C ). Then L̂ lies in the dual ~�� of ~�. For simplicity we

assume that � transforms trivially under Z. For every f 2 C1c (G=Z), the image �(f)L̂

of L̂ under the action of the convolution operator �(f) =
R
G=Z

f(g)�(g)dg (a choice of

a Haar measure dg is implicit), lies in the smooth part (~�)�sm = ~~� = � of ��. Hence

f 7!< L; �(f)L̂ > de�nes a distribution on G, which is bi-H-invariant.

Bernstein localization principle ([BZ], (2.37); [Be], (1.4)). If X, Y are `-spaces, H

is an `-group acting on X, and q : X ! Y is a continuous H-invariant (q(hx) = q(x) for

all h in H, x in X) map, then �y2Y C
1
c (Xy)

�H is dense in C1c (X)�H, where Xy = q�1(y).

Using this with X = ~G= ~Z and Y being the space of semi simple H-conjugacy classes ~s

in ~G= ~Z, we conclude that C1c ( ~G= ~Z)�H is generated by C1c ( ~G~s)
�H , where ~G~s denotes the

(closed) set of ~g in ~G= ~Z whose semi simple part is H-conjugate to ~s. Here ~s ranges over

the set of semi simple H-conjugacy classes in ~G= ~Z. Each of the spaces C1c ( ~G~s)
�H is �nite

dimensional, the dimension being bounded by the number of H-conjugacy classes in ~G~s

which carry an H-invariant measure (i.e., the centralizer of a representative of the H-orbit

is unimodular). It is one dimensional, spanned by the orbital integral, when ~s is �-regular

in ~G.

In the group case, C1c (Gs)
�G is spanned by the orbital integrals on the G-orbits in Gs

(which \converge", namely extend to C1c (G)�G, by Rao [R]). In the general symmetric

space situation, a basis of C1c ( ~G~s)
�H will consist only of linear combinations of extensions

of orbital integrals. A single orbital integral, namely a generator of C1c (Int(H)~g)�H (where

~g 2 ~G= ~Z has semi simple part ~s), may not extend to C1c ( ~G~s)
�H (and C1c ( ~G= ~Z)�H). Note

that since ~G~s is closed in ~G= ~Z, any element of C1c ( ~G~s)
�H extends to one in C1c ( ~G= ~Z)�H .

De�nition. The elements of C1c ( ~G~s)
�H will be called generalized orbital integrals on ~G~s.

0. Corollary. The distribution L� ( ~f) =< L; �(f)L̂ > in C1c ( ~G= ~Z)�H vanishes at ~f 2

C1c ( ~G= ~Z) if all generalized orbital integrals of ~f are zero.

Following Kazhdan's density theorem [K;Appendix] in the group case, we shall consider

now a (partial) converse to this statement.
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De�nition. The pair (G;H) has the multiplicity one property if dimC HomH(�; C ) � 1 for

every admissible irreducible G-module �.

1. Theorem. Suppose that (G;H) has the multiplicity one property, and ~f 2 C1c ( ~G= ~Z)

satis�es that L� ( ~f) =< L�; �(f)L̂~� > is zero for every admissible G-module � (with trivial

central character). Then �~( ~f) = 0 for every �-regular �-elliptic element ~ in ~G.

One would expect a stronger conclusion to hold, namely that every generalized orbital

integral of ~f is zero, or that the L� , as � ranges over the set of all admissible irreducible G-

modules, span C1c ( ~G= ~Z)�H . Perhaps this holds for any pair (G;H), without assuming the

multiplicity one property. However, even to prove the Theorem as stated, we shall assume a

natural symmetric space extension of Arthur's fundamental work [A2] on the trace formula.

One may then view our work as a motivation to carry out the computation of the spherical

{ or bi-period { summation formula, as stated below.

Recall that ~ 2 ~G is �-regular if ZH(~) is a torus, and it is �-elliptic if ZH(~) is an

elliptic torus ofH (ZH(~) is compact modulo center). The proof of the Theorem { following

Kazhdan [K;Appendix] { is global, and uses the notion of stable �-conjugacy.

De�nition. The elements ~; ~0 of ~G are stably �-conjugate if there exists x in H = H(F ),

where F is an algebraic closure of F , such that ~0 = Int(x)~, and Int(x) : ZH(~)! ZH(~
0)

is de�ned over F . As usual, ~; ~0 of ~G are called �-conjugate if ~0 = Int(x)~ for some x in

H. Also we say that ; 0 in G are (stably) �-conjugate if ~; ~0 are.

The �-conjugacy classes within the stable �-conjugacy class of ~ in ~G are parametrized

by

B�(~=F ) = HnA�(~=F )=ZH(~);

where A�(~=F ) = fx 2 H; ~0 = Int(x)~ lies in ~G, and Int(x) : ZH(~) ! ZH(~
0) is

de�ned over Fg. Note that if ~0 = Int(x)~, then for any � in Gal(F=F ) we have x~x�1 =

�(x)~�(x)�1, and x� = x�1�(x) lies in ZH(~). Then via the morphism x 7! f� 7! x� =

x�1�(x); � 2 Gal(F=F )g of pointed sets, we have

B�(~=F ) = ker[H1(F;ZH(~))! H1(F;H)]:

Thus given ~ in ~G, a ~0 which is stably �-conjugate to ~ determines (and is determined

by) a unique element of B�(~=F ). The element ~0 is �-conjugate to ~ precisely when it

determines the trivial element of H1(F;ZH(~))(= H1(Gal(F=F ); ZH(~))).

Following [K], we need to embed our local situation in a global one. Given a local �eld

F 0, group G0, involution �0 and H 0 = G0�
0

, an element ~0 in G0 which is �0-regular, put T 0 =

ZG0(~
0)(this is a �0-invariant torus since �0(~0) = ~0�1) and T 0H0 = ZH0(~0) = T 0\H 0. Fix a

galois extension F 00=F 0 of F 0 over which G0; H 0; T 0 split. Then by [F1], I, x4, Lemma, there

exists a global galois extension E=F such that at least at two places w of F we have that the

completion Fw of F at w is F 0, Ew = E
F Fw is F 00, Gal(Ew=Fw) ' Gal(E=F ). Moreover,

there exist a reductive F -group G, an involution ��� of G over F (put H = G��� for the group

of �xed points), a �-invariant torus T over F (put TH = T \H), such that Gw = G(Fw)

is G0, �w = ���jGw is �0, Hw is H 0, Tw is T 0 and TH;w = TH(Fw) is T
0
H0 . The existence

of two such places w guarantees (by [CF], middle of p. 361) that G = G(F ); H; T; TH are

dense in Gw; Hw; Tw; TH;w, and ~G = f~g; g 2 Gg in ~Gw = f~g; g 2 Gwg, ~T in ~Tw. Moreover
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Z ~Gw
( ~Tw) = Z ~Gw

( ~T ) contains Z ~G(
~T ) as a dense subset. Consequently, every neighborhood

in Z ~Gw
( ~Tw) contains an element of Z ~G(

~T ). Given ~0 in ~G�-regw , and ~fw 2 C
1
c ( ~Gw= ~Zw) with

�~0(
~fw) 6= 0, there exists ~ in ~G�-reg in any given neighborhood of ~0 such that �~( ~fw) 6= 0.

We shall use the following observation. Given ~; ~0 in ~G which are stably �-conjugate in
~Gv for some place v of F , they are �-conjugate over an algebraic closure of Fv, hence over

a �nite extension of F , namely they are stably �-conjugate in ~G.

Let A denote the ring of adeles of F , and A
u the ring of adeles with no component

at the place u of F . Introduce the pointed direct sums B�(~=A ) = �vB�(~=Fv) and

B�(~=A
w ) = �v 6=wB�(~=Fv), as well as H

1(A ;TH) = �vH
1(Fv; TH;v) and H

1(A w ;TH) =

�v 6=wH
1(Fv; TH;v). If ~; ~

0 are �-conjugate in ~Gv for all v 6= w, then ~0 de�nes the identity

element in the pointed set H1(A w ;TH). Hence ~; ~
0 are �-conjugate in ~G, by:

2. Theorem (Tate [T]). H1(A w ;TH) is isomorphic to H
1(F;TH).

The proof of Theorem 1 is based on a bi-period summation formula, which we proceed

to describe. Let G = G(A ); H = H(A );Z = Z(A ) be the groups of adele points of G;H;Z.

Let L2 = L2(ZGnG ) denote the space of complex valued, smooth on the right, functions on

G which transform trivially under Z and left action of G = G(F ), and are square integrable

on ZGnG . Then G acts on L2 by right translation: (r(g)�)(h) = �(hg) (� 2 L2; g; h 2 G ).

Denote by C1c (ZnG ) the span of the functions 
vfv on ZnG , where fv 2 C1c (Gv=Zv) for

every place v of F , and fv = f0v for almost all v. Here f0v is the constant measure of volume

one whose support is ZvKv, where Kv is a standard maximal compact subgroup of Gv.

The convolution operator r(f) =
R
ZnG

f(y)r(y)dy on L2 is an integral operator: r(f)�(x) =R
ZGnG

Kf (y; x)f(y)dy with kernel Kf (y; x) =
P
2ZnG f(y

�1x). This is the \geometric"

expression for the kernel, but there is an alternative expression for the kernel, namely the

\spectral" expression. This expression is rather complicated, see Arthur [A1]. We shall use

only a part of it here. A full discussion will remain for a future work.

The trace formula is obtained on integrating both the geometric and the spectral ex-

pressions over the diagonal x = y 2 ZGnG . The bi-period summation formula, in which

no traces appear, is obtained on integrating both expressions over x; y in ZH �HnH , where

ZH = Z\ H . Such formulas have been derived by Jacquet-Lai [JL] for G = GL(2; E); H =

GL(2; F ), E=F a quadratic extension, by [FH] when G = GL(n;E); H = GL(n; F ), and by

[F2] when G = GL(2n; F ), � is conjugation by diag(In;�In), where In is the identity in

GL(n; F ), and H ' GL(n; F )�GL(n; F ), diagonally embedded in G.

De�nition. The function fv 2 C1c (Gv=Zv) is called �-discrete if fv(g) 6= 0 implies that

ZHv (~g)=ZHv is a compact torus. Similarly, ~fv 2 C1c ( ~Gv= ~Zv) is �-discrete if ~fv(~g) 6= 0

implies that ZHv (~g)=ZHv is a compact torus. The function f = 
fv 2 C1c (G =Z) is �-

discrete if given  2 G, f(xy) 6= 0 for any x; y in H implies that ZH (~) is an elliptic torus,

namely ~ is �-regular and ZH (~)=ZH(~)ZH is compact. Similarly for ~f = 
 ~fv 2 C
1
c ( ~G =~Z).

In particular, a �-discrete ~fv is supported on the �-regular �-elliptic set, a �-discrete ~f

vanishes on the H -orbits of rational elements ~ in ~G unless they are �-regular and �-elliptic,

and ~f = 
 ~fv is �-discrete when it has a �-discrete component.

Let us compute the integral over (ZHHnH )
2 of the geometric expression for Kf (x; y),
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when f = 
fv is �-discrete. It isZZ
(H=HZH)2

X
2G=Z

f(xy�1)dxdy =

ZZ X
�2H=ZH

X
2G=HZ

f(x�y�1)dxdy

=

Z
H=HZH

dx

Z
H=ZH

dy
X

2G=HZ

f(xy) =

Z
H=HZH

dx
X

~2 ~G= ~Z

~f(Int(x)~)dx;

where ~ = �()�1 and ~f(~g) =
R
H=ZH

f(gh)dh. Since ~f is �-discrete, this is equal to

Z
H=HZH

X
~2( ~G= ~Z)=H

X
�2H=ZH(~)

~f(Int(x�)~)dx

=
X

f~g2( ~G= ~Z)=H

jZH (~)=ZH(~)ZHj

Z
H=ZH (~)

~f(Int(x)~)dx:

Here f~g ranges over the set ( ~G= ~Z)=H of H-conjugacy classes in ~G= ~Z, ZH(~) is a torus,

and the volume jZH (~)=ZH(~)ZHj is �nite by the assumption that ~f is �-regular. This

assumption also implies that the sum ranges only over �-regular �-elliptic H-conjugacy

classes ~ of rational elements, in ~G= ~Z. The sum is called the geometric part of the bi-period

summation formula.

3. Proposition. For a �-discrete ~f , the geometric part of the bi-period summation formula

is �nite.

Proof. Given a compact set C in G =Z, the set of G-orbits Int(G);  2 G=Z, whose G -orbit

Int(G ) intersects C non trivially, is �nite (see, e.g., [F1], I, x3, Proposition). We shall apply

this observation with C = supp ~f , ~ 2 ~G= ~Z. Fix ~ 2 ~G= ~Z such that Int(G )~ intersects C.

We need to show that the number of H-orbits Int(H)~1, where ~1 lies in Int(G)~, such that

Int(H )~1 intersects C non trivially, is �nite. Thus ~1 = Int(�)~, � 2 G=ZG(~), with ~1 2 ~G.

Then 1 = ~1�(~1) = �~��1�(�)~�1�(�)�1, and ��1�(�) lies in ZG(~).

A theorem of Harish-Chandra [HCD], p. 52, asserts that given ~ and the compact C in

G =Z, there exists a compact C1 in G =ZG (~), such that if Int(g)~ 2 C for g in G =ZG (~),

then g 2 C1. Applying this with Int(h)~1 2 C; h 2 H , we conclude that h� 2 C1, where

C1 = C1(~; C) is a compact in G =ZG (~).

Consider the natural projection u : G =ZG (~) ! H nG =ZG (~). Then u(C1) is compact,

while the image u(G=ZG(~)) of G=ZG(~) is discrete, in H nG =ZG (~). Hence u(�) lies in the

�nite set u(C1) \ u(G). In other words, the set Hnf� 2 G=ZG(~); Int(H �)~ intersects Cg

is �nite. It follows that the set f~ 2 ~G= ~Z; Int(H )~ \ C non empty g consists of a �nite

number of H-orbits. Hence there are only �nitely many terms, indexed by f~g 2 ( ~G= ~Z)=H,

which contribute to the geometric part of the bi-period summation formula, for any given

�-discrete test function ~f , as asserted. �

Note that each of the orbital integrals �~( ~f) =
R
H=ZH (~)

~f(Int(x)~)dx is a product of the

local orbital integrals �~( ~fv) =
R
Hv =ZHv (~)

~fv(Int(x)~)dx, when f = 
fv. For almost all

v, the component ~fv is the function ~f0v which is supported on ~Kv
~Zv, and takes the value



34 YUVAL Z. FLICKER

j ~Kv
~Zvj

�1 there. Then ~f0v (Int(x)~) 6= 0 precisely for x 2 (Kv \ Hv)ZHv (~)=ZHv (~), and

the measures on these compact subgroups are normalized so that the product of the �~( ~fv)

over v is convergent.

4. Corollary. For a �-discrete ~f = 
 ~fv, the geometric part of the formula is the �nite

sum X
f~g2( ~G= ~Z)=H

jZH (~)=ZH(~)ZHj
Y
v

�~( ~fv):

We now summarize what we need on the geometric side of the bi-period summation

formula for the proof of Theorem 1. Suppose we are given ~fw and a �-regular �-elliptic

~w 2 ~Gw= ~Zw such that �~w (
~fw) 6= 0. Then we can embed the local situation Fw; Gw; : : :

in a global situation F;G; : : : as above, �nd a global �-regular �-elliptic element ~ in ~G= ~Z

such that �~( ~fw) 6= 0, and components ~fv 2 C1c ( ~Gv= ~Zv) for all v 6= w, with ~fv = ~f0v for

almost all v, such that �~( ~fv) 6= 0 for all v 6= w. Put ~f = 
 ~fv. Then �~( ~f) 6= 0.

5. Lemma. There exists a function ~fw = 
v 6=w
~fv such that ~f = ~fw
 ~fw has the property

that �~�(
~f) 6= 0 for ~� 2 ( ~G= ~Z)=H precisely when ~� is the class Int(H)~ ~Z.

Proof. There are only �nitely many H-orbits ~� in ~G= ~Z such that �~�(
~f) 6= 0. As noted

above, ~� and ~ lie in the same H-orbit if they lie in the same Hv-orbit for all v 6= w.

Thus for each ~� 6= ~ in ( ~G= ~Z)=H with �~�(
~f) 6= 0, we can �nd a place v 6= w such that

Int(Hv)~� ~Zv 6= Int(Hv)~ ~Zv. These orbits are closed. We can then replace ~fv by its product

with the characteristic function of an open closed neighborhood of Int(Hv)~ ~Zv which does

not intersect Int(Hv)~� ~Zv. Repeating this process a �nite number of times we obtain the

function ~fw with the required properties. �

We shall next consider part of the spectral expression for the kernel Kf (x; y). This

part corresponds to the discrete spectrum L2
d of the G -module (r; L2), which consists of

subrepresentations of L2. Then the irreducible admissible G -modules � which occur in L2,

appear with �nite multiplicities. Let f�g� denote an orthonormal basis for the isotypical

component of �, and put m(�) = dimC HomG (�; L
2
d) for the multiplicity of � in L2. Then

the restriction of r(f), f 2 C1c (G =Z), to L2
d, is represented by the kernel

Kf;d(x; y) =
X
f�g

X
f�g�

�(x)(�(f)�)(y):

Here � ranges over the set of equivalence classes of the irreducible admissible G -modules in

L2
d. Integrating over x; y in ZHHnH , we obtain

X
f�g

m(�)
X
f�g�

Z
ZHHnH

�(x)dx �

Z
ZHHnH

(�(f)�)(x)dx;

where now f�g� extends over an orthonormal basis of the G -module � � L2
d. Indeed, the

linear form

P (f) =
X
f�g�

Z
ZHHnH

�(x)dx �

Z
ZHHnH

(�(f)�)(x)dx
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on C1c (G =Z) is independent of the choice of the basis f�g� of � � L2
d.

We shall now use the multiplicity one assumption for the pair (Gv; Hv) for every place

v of F . Fix an Hv-invariant linear form L�v on �v and L~�v on ~�v for each admissible

irreducible Hv-spherical Gv-module �v, such that L�v(�
0
v) = 1 for almost all v where �v is

unrami�ed and �0v is the Kv-�xed vector used in the de�nition of � as a restricted tensor

product 
�v of local Gv-modules. The form � 7!
R
ZHHnH

�(x)dx on � is then a multiple

of 
Lv.

A basis for � can also be formed on �xing an orthonormal basis for each component �v,

say f�vg, and taking the products 
v�v, where �v = �0v for almost all v. Then P (f) is

X

�v

Y
v

< L�v ; �v > �
Y
v

< L~�v ; ~�v(f
�
v )�̂v >=

Y
v

< L�v ; �v(fv)L~�v >=< L�; �(f)L~� >

up to a scalar multiple, where f�v (g) = fv(g
�1), and L� = 
L�v , L~� = 
L~�v .

6. Corollary. The discrete part of the spectral side of the bi-period summation formula for

the pair (G;H) and the function f 2 C1c (G =Z), f = 
fv, is
P

f�g c(�) < L�; �(f)L~� >;

c(�) 2 C : �

When the groupG is anisotropic, namely the quotient ZGnG is compact, the entire spec-

trum L2(ZGnG ) is discrete, namely it decomposes as a direct sum of irreducible subspaces.

However, in general, in addition to the discrete spectrum L2
d, the space L

2 would contain

also a continuous spectrum. This has been studied in depth by Arthur [A] in the group

case, where the bi-period summation formula reduces to the trace formula. We shall make

the following assumption, which asserts that the natural extension of Arthur's work holds

in the symmetric space situation. Of course, carrying out the proof of this extension would

require a serious e�ort. Our assumption is that this extension can be carried out.

Proposition�. Let f = 
fv 2 C
1
c (G =Z) be a test function such that for su�ciently many

places v of F , the component fv is �-discrete. Then the geometric side of the bi-period

summation formula for (G;H) is equal to the discrete part of the spectral side of the bi-

period summation formula, where the sum over � may include some other automorphic

representations, i.e. constituents of L2, not necessarily in the discrete spectrum.

Proof of Theorem 1. We embed the local situation of fw; : : : in a global situation, where the

place w is repeated su�ciently many times, numbered w0; w1; : : : , with w0 being the original

place w. The �-elliptic �-regular element ~w0 where �~w0 (fw0) 6= 0 can be approximated

by a global element ~ in ~G= ~Z, where �~(fw0) 6= 0, and ~ is �-elliptic �-regular at all of the

places wi. Then the function ~fw0 = 
v 6=w0fv can be chosen by Lemma 5 such that ~fwi is

�-discrete at each of the places wi, and such that �~( ~f) 6= 0, ~f = ~fw0 
 ~fw0 , and such that

if �~�(
~f) 6= 0 for a rational ~� in ~G= ~Z, then ~� is in the H-orbit of ~.

It follows that the geometric part of the bi-period summation formula reduces to a

multiple of �~( ~f) by a volume factor. Yet this geometric side is equal to the discrete part

of the spectral side, for our ~f , which has su�ciently many �-discrete components so that

Proposition� applies. But the discrete part of the spectral side is zero by the assumption

on ~fw0 , that < L�w ; �w(fw)L~�w >= 0 for every admissible irreducible Gw-module �w. The

resulting contradiction implies that �~w(
~fw) = 0 for every �-regular �-elliptic element ~w

in ~Gw= ~Zw, as required. �
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Remark. (1) \Su�ciently many" in Proposition �, is likely to be more than the rank of the

symmetric space G=H. This rank is the dimension of a maximal commutative subspace

consisting of semi simple elements in the �1 eigenspace g� of the Lie algebra g of G under

the action of the involution � on g.

(2) It will be interesting to extend the conclusion of Theorem 1 to include elements ~ 2 ~G= ~Z

other than �-regular �-elliptic ones.
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