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Put G = PGL(3) and H = H0 = SL(2) . Let F be a local �eld, and �; �0; �00

complex-valued characters of F� . Denote by I0(�) = Ind (�
1=2
0 �;P0; H(F )) the

H(F ) -module normalizedly induced from the character
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the upper triangular subgroup P0 of H(F ) ; here �0(
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) = jaj2: Denote

by I(�0; �00) = Ind (�1=2(�0; �00);P;G(F )) the G(F ) -module normalizedly induced

from the character (�0; �00) :
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A! �0(a=b)�00(b=c) of the upper triangular

subgroup P of G(F ) ; here � (
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A) = ja=cj2 . The Grothendieck group

K(H) is the free abelian group generated by the set of equivalence classes of the

irreducible H(F ) -modules. Let [�0] denote the image in K(H) of an H(F ) -

module �0 . Put J =

0
@ 0 1

1

1 0

1
A , and �(g) = J tg�1J for g in G(F ) .

An irreducible G(F ) -module � is called � -invariant if it is equivalent to the

G(F ) -module �� de�ned by ��(g) = �(�g) . The notion of � -invariance extends

to the Grothendieck group K(G) of G(F ) . The subgroup K(G; �) of K(G)

which is generated by the irreducible � -invariant G(F ) -modules is a direct sum-

mand of K(G) ; its complement is generated by the irreducible non- � -invariant

G(F ) -modules. Let [�] denote the image in K(G; �) of a G(F ) -module � . De-

note I(�; �) by I(�) . It is clear that I(�) is � -invariant and [I(�)] 6= 0 . We

say that [I0(�)] lifts to [I(�0; �00)] , and I0(�) to I(�0; �00) , if [I(�0; �00)] = [I(�)] .

This is a trivial case of a de�nition in terms of character relations (see [II]) of a sur-

jective lifting monomorphism from K(H) to K(G; �) . The trivial H(F ) -module

lifts to the trivial G(F ) -module, and consequently the Steinberg H(F ) -module

lifts to the Steinberg constituent in [I(�)] , where �(x) = jxj .
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If F is non-archimedean, let R denote its ring of integers , put K = G(R)

and K0 = H(R) . A G(F ) -module � is called unrami�ed if it has a non-zero

K -�xed vector. An H(F ) -module is called unrami�ed if it has a non-zero K0 -

�xed vector. If I(�0; �00) is � -invariant and unrami�ed then there is � with

[I(�0; �00)] = [I(�)] . If [I(�0; �00)] 6= 0 and it is not of the form [I(�)] , then �0; �00

and �0�00 are characters of (strict) order two.

Let F be a global �eld. Let A be the ring of adeles of F . Denote the completion

of F at its place v by Fv . An irreducible G(A ) -module � is the restricted

direct product 
�v over all places v of F of irreducible Gv = G(Fv) -modules

�v ; for almost all v the component �v is unrami�ed and there are unrami�ed

characters �v and �0v of F�
v such that �v is the unique unrami�ed subquotient

of I(�v; �
0
v) . If � is � -invariant then �v is the unique unrami�ed subquotient

of I(�v) for some unrami�ed �v . Similarly an irreducible H(A ) -module �0 is


�0v with unrami�ed �0v in I0(�v); �v unrami�ed, for almost all v .

We say that an irreducible H(A ) -module �0 = 
�0v quasi-lifts to the irre-

ducible G(A ) -module � = 
�v if for almost all v the induced representations

[I(�0v; �
00
v)] determined by �v is [I(�v)] where �0v determines [I0(�v)] . Let �0v

be an irreducible Hv = H(Fv) -module, and �00v an irreducible GL(2; Fv) -module

whose restriction to Hv contains �0v . The packet of �0v is the set f[�0v]g of

the images [�0v] in K(Hv) of the irreducible Hv -modules �0v in the restriction

of �00v to Hv ; it is independent of the choice of �
0
0v ; it consists of at most four

elements, and it contains at most one unrami�ed element. To simplify the notations

we write f�0vg for f[�0v]g ; it is a set of Hv -modules which are determined only

up to equivalence. The packet f�0g (see [LL]) of the irreducible H(A ) -module

�0 = 
�0v is the set of all (equivalence classes of) irreducible H(A ) -modules

�00 = 
�00v with �00v ' �0v for almost all v and �00v in f�0vg for all v . If �0
quasi-lifts to � then each member of f�0g quasi-lifts to � and we say that the

packet of �0 quasi-lifts to � .

Let L(H) be the space of smooth complex-valued slowly increasing functions  

on

H(F )nH(A ) , and L0(H) the subspace of  with
R
U(F )nU(A )

 (ux)du = 0 . Here

U is the group of upper triangular unipotent matrices in H . The group H(A )

acts on L(H) , and on L0(H) , by right translation. An irreducible constituent of

L(H) (resp. L0(H)) is called an automorphic (resp. cuspidal) H(A ) -module.

Let K be a quadratic galois extension of F . Let N denote the norm map from

K to F . Let K1 denote the kernel of the map N : K� ! F� , thus K1 = fx

in K�;xx = 1g . Let A 1
K be fx in A

�

K ;xx = 1g; A �K is the group of K -ideles,

x is the image of x under Gal(K=F ) . Let � be a complex-valued character of

A 1
K =K

1 . If v splits K=F , namely K 
F Fv = Fv � Fv , then K1
v = f(x; y) in

Fv � Fv;xy = 1g ' F�
v , and the restriction of � to K1

v (in A 1
K ) is a character

�v of F�
v . Let � denote the non-trivial character of A � with kernel F�NA�

K ,

and �v its restriction to F�
v . There exists a unique H(A ) -packet f�0(�)g which

contains an automorphic (cuspidal if � 6= 1) H(A ) -module �0 = 
�0v such that

for almost all places v of F we have that �0v is in I0(�v) if v splits in K , and
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�0v in I0(�v) if v stays prime in K . Not every member of the packet f�0(�)g

is automorphic but if a cuspidal H(A ) -module lies in a packet f�0(�)g then its

multiplicity in L0(H) is one; see [LL] or [IV, (1.3)]. A cuspidal H(A ) -module �0
is called old if there exists a �eld K and a character � 6= 1 such that �0 lies in

f�0(�)g . A cuspidal H(A ) -module is called new if it is not old. Each member of

a packet of a new H(A ) -module is cuspidal; see [LL] or [IV, (1.3)].

In this article we prove a trace identity (see Theorem below), which, using the

techniques of [IV; x2] and the stable and unstable transfer of general test functions

(see [I], x3), and unit elements of the Hecke algebras (see [V]), implies the following

main theorem of the theory of the symmetric square. It is the following

Main Theorem. (1) Each cuspidal H(A ) -modules occurs in the cuspidal spec-

trum L0(H) with multiplicity one. (2) If the cuspidal H(A ) -modules �0 = 
�0v
and �00 = 
�00v have �0v ' �00v for almost all v then their packets f�0g and

f�00g are equal. (3) The relation of quasi-lifting de�nes a bijection from the set of

packets of new H(A ) -modules to the set of cuspidal � -invariant G(A ) -modules.

As shown in [IV, x2], this follows (not without e�ort) from the Theorem presently

to be stated. In the notations of [IV], it is clear that f�0(�)g quasi-lifts to

I(�(�=�); �) . It is also shown in [IV, x2] that the Theorem below implies: (4)

the "twisted" character of a � -invariant supercuspidal Gv -module is a � -stable

function (it is constant on each stable � -conjugacy class of � -regular elements in

Gv ), and (5) the � -invariant automorphic G(A ) -modules which are not quasi-lifts

of automorphic H(A ) -modules are of the form I(�1) (or I(�1; 1)) where �1 is a

cuspidal or one-dimensional PGL(2; A ) -module. Other applications of the theory

of the symmetric square are described in [IV, x2].

Put H1 = PGL(2) . Let fv (resp. f0v; f1v) denote a complex-valued, smooth

(that is, locally-constant if Fv is non-archimedean), compactly-supported function

on Fv (resp. Hv; H1v ). If Fv is non-archimedean put K1v = H1(Rv) , and let

f0v (resp. f00v; f
0
1v) be the measure of volume one which is supported on Kv (resp.

K0v; K1v) and is constant on this group. Here we used the uniqueness of the Haar

measure (up to a constant) to identify the space of locally-constant compactly-

supported measures with the space of locally-constant compactly-supported func-

tions on Gv (resp. Hv; H1v) once a Haar measure is chosen.

At any place v , the functions fv and f0v (resp. fv and f1v) are called

matching if they have matching orbital integrals (for a de�nition see [I, x3]; briey,

they satisfy �(�)�st(�; fv) = �0()�
st(; f0v) for every � in Gv with regular

norm  = N� , respectively, �(�)�us(�; fv) = �1(1)�1(1; f1v) for every � in

Gv with regular norm 1 = N1�; �
st(�; fv) means "stable � -orbital integral of fv

at � ", and �us(�; fv) is the "unstable � -orbital integral of fv at � ". These are

de�ned and studied in [I, x3].

The Theorem of [V] asserts that f0v and f00v are matching, and that f0v and f01v
are matching. This local proof relies on recent work of Waldspurger. There are other

proofs of these assertions (see, e.g., [I, x4], for a proof of the �rst assertion), but they

are more complicated. Let f = 
fv (resp. f0 = 
f0v; f1 = 
f1v) be functions
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on G(A ) (resp. H(A ); H1(A )) such that (1) fv = f0v ; f0v = f00v; f1v = f01v for

almost all v , and such that (2) fv and f0v , and fv and f1v , are matching for all

v . The functions f; f0; f1 exist since the conditions (1) and (2) are compatible,

namely f0v and f00v as well as f0v and f01v are matching.

In [III, x3] we de�ned various sums, denoted by I�i , of traces (such as tr f�0g(f0); tr�1(f1);

tr�(f � �)) of convolution operators (f�0g(f0); �1(f1) and �(f � �)) ; the sums

I; I 0; I 00; I 01 depend on f ; the sums I0; I
0
0; I

00
0 depend on f0 , and I1 on f1 . Put

T = I +
1

2
I 0 +

1

4
I 00 +

1

2
I 01 � I0 �

1

2
I 00 �

1

4
I 000 �

1

2
I1:

It follows from the proofs of [IV, x2] that the Main Theorem is a consequence of

the following

Theorem. We have T = 0 for any matching f; f0; f1 as above.

It is also shown in [IV, x2] that when T = 0 then I = I0; I
0 = I 00; I

00 = I 000 ; I1 =

I 01 . In [IV, (1.6.3)], the theorem is proven in the case that there exists a place

u of F such that f1u = 0 . Then f1 = 0 and I1 = 0 , and T depends only

on the f and f0 with matching fv and f0v , such that fu and f0u satisfy the

conditions implied by f1u = 0 . In particular, [IV, x2] uses the fact that f0v and

f00v are matching, but not the statement that f0v and f01v are matching. In [IV,

x2] the special case of the Main Theorem which concerns cuspidal H(A ) -modules

with a square-integrable component (at u ) is deduce from the special case T = 0

if f1u = 0 of the Theorem. The assertion that f0v and f01v are matching is proven

by local means in [V]. Assuming this result, our Theorem becomes accessible to the

method of proof of [IV, x2], and the purpose of this article is to prove it. The proof

is a natural extension of the proof given in [IV, (1.6.3)] under the assumption that

f1u = 0 . It is based on the usage of regular, or Iwahori type, functions.

It is clear from the proof given below that it applies to establish relatively ef-

fortlessly, and conceptually, the analytic part of the comparison of trace formulae

for general test functions in any lifting situation where all groups involved have

(split) rank bounded by one. In our case the ("twisted") rank of G = PGL(3) is

one. In particular our technique establishes the comparison of trace formulae for

any test functions in the cases of (1) base-change from U(3) to GL(3; E) which

is studied in [F3], [F4], [F7; IV], and [F5] ([F6] contains another proof of the trace

formulae comparison for a general test function in the case of base-change from

U(3) to GL(3; E) ; it relies on properties of quasi-spherical functions, but does not

generalize to establish our Theorem), (2) cyclic base-change lifting for GL(2) (see

[F8] where our present technique is used to give a simple proof of this problem); (3)

base-change form U(2) to GL(2; E) (see [F2]); (4) metaplectic correspondence for

GL(2) (see [F1]).

The proof of the Theorem is based on the usage of regular functions in the sense

of [IV], [FK], and [F7; III, IV]. That such functions would be useful in this context

was discovered by us while working on the joint paper [FK] with D. Kazhdan,

being inspired by the proof � see [FK], Sections 16, 17 � of the metaplectic
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correspondence for representations of GL(n) with a vector �xed by an Iwahori

subgroup. Although these functions can be introduced for any quasi-split group, to

simplify the notations we discuss these functions here only in the case of the group

GL(n) (and SL(n); PGL(n)) .

Let F be a local non-archimedean �eld, R its ring of integers, � a local

uniformizer in R;q = �
�1; q the cardinality of the residue �eld R=(�); j � j the

valuation on F normalized to have j�j = q�1 (thus jqj = q); G the group

GL(n; F ); K = GL(n;R) a maximal compact subgroup in G;B the Iwahori sub-

group of G which consists of matrices in K which are upper triangular modulo

�; A the diagonal subgroup of G , A(R) = A \ K = A \ B , and U the upper

triangular unipotent subgroup; AU is a minimal parabolic subgroup.

The vector m = (m1; � � � ;mn) in Zn is called regular if mi > mi+1 for all

i ( 1 � i < n) . Let qm be the matrix diag (qm1 ; � � � ;qmn) in A . The matrix

a = diag (a1; � � � ; an) in A is called strongly regular if jaij > jai+1j for all i , and

m -regular if a = uqm for a regular m and u in A(R) . A conjugacy class in G

is called strongly (resp. m -)regular if it contains a strongly (resp. m -) regular

element. An element of G is called regular if its eigenvalues are distinct.

Denote by J the matrix whose (i; j) entry is �i;n�j . Put �(g) = J tg�1J .

The elements g and g0 of G are called � -conjugate if there is x in G with

g0 = xg�(x)�1 . For m = (m1; � � � ;mn) in Zn put �m = (�mn; � � � ;�m2;�m1) ,

and say that m is � -regular if m+�m is regular. The element a of A is called

m - � -regular if m is � -regular and a�(a) is (m + �m )-regular; a is called

strongly � -regular if it is m - � -regular for some m . A � -conjugacy class in G

is called strongly (or m -) � -regular if it contains a strongly (or m ) � -regular

element in A . Note that if a is m -regular then a is m - � -regular since a�(a)

is (m+ �(m)) -regular. We have

Proposition 1. If a is m -regular then (1) each conjugacy class in G which

intersects BaB is m -regular; (2) each � -conjugacy class in G which intersects

BaB contains an m -regular element in A ; in particular it is m - � -regular.

Proof. We shall prove (2); (1) follows by the same method on erasing � through-

out. Write g0 � g if g is � -conjugate to g0 in G . We have to show that any

b0ab (b0; b in B) is � -conjugate to an m -regular element. Since �B = B , up to

� -conjugacy we may assume that b0 = 1 . Each element b in B can be written in

a unique way as a product b0b�b+ with b0 in A(R) , b� = 1+n� , b+ = 1+n+ ,

where n� (resp. n+ ) is a lower (resp. upper) triangular nilpotent matrix. Put

~a = ab0 . Then

ab = ~ab�b+ � �(b+)~ab� = (~ab�~a
�1)~a(b�1

�
~a�1�(b+)~ab�)

� ~a(b�1
�
~a�1�(b+)~ab�)�(~ab�~a

�1):

Denote by kxk the maximum of the valuations of the entries of a matrix x

in G . Put b0+ = ~a�1�(b+)~a and b0
�
= �(~ab�~a

�1) , and also n0+ = b0+ � 1 and
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n0� = b0� � 1 . Since � stabilizes every congruence subgroup of G , and ~a is

m -regular, we have kn0+k < kn+k and kn0
�
k < kn�k . Moreover, it is clear that

b�1
� b0+b�b

0
� = b000b

00
�b

00
+ with max(kn00�k; kn

00
+k) � max(kn0�k; kn

0
+k) . Repeating this

process we obtain a matrix of the form a0(1 + ") with m -regular a0 and " with

k"k smaller than any given positive number. The proposition follows.

Let f be a locally-constant compactly-supported complex-valued function on

G , dx a Haar measure on G , and ��(; f) =
R
f(x�1�(x))dx=d the (twisted

or) � -orbital integral of f at the element  of G (the integration is taken over

G�
nG , where G�

 is the � -centralizer of  in G , and d is a Haar measure on

G�
 ). Denote by L(G) the Lie algebra of G ; if G = GL(n) then L(G) =Mn (the

algebra of n� n matrices). Put Ad (�)X = �J tXJ for X in L(G) . Denote by

Ad () the adjoint action of  on L(G) . We say that  is � -regular if �() is

regular (has distinct eigenvalues) in G . If  is � -regular, its � -orbit is closed,

and the convergence of ��(; f) is clear; this is the only case to be used in this

paper, but the convergence of ��(; f) is known in general. Put

��() = j detf(1� Ad (�))jL(G)=L(G�
)gj

1=2:

This is well-de�ned since Ad (�) acts trivially on G�
 and therefore trivially

also on L(G�
 ) . Put F �(; f) = ��()��(; f) . Let U be the unipotent upper

triangular subgroup in G , A the diagonal subgroup, and K the maximal compact

subgroup G(R) . Each of A , U , K is � -invariant, and A normalizes U . Put

A� = fa in A;�a = ag . For  in A put ��() = j det Ad (�)jL(U)j and

f�U () = ��()1=2
Z
A�nA

Z
U

Z
K

f(�(k)�1�(a)�1 auk) dk du da:

A standard formula of change of variables (see, e.g., [FK], x7) asserts that for

any � -regular  in A we have F �(; f) = f�U () . Consequently it is clear

from Proposition 1(2) that if f is (a multiple of) the characteristic function of

BaB , where a is an m -regular element, then F �(; f) is a scalar multiple of the

characteristic function of the union of the � -conjugacy classes in G which contain

an m -regular element, namely of the set of the m - � -regular � -conjugacy classes

in G . Consequently we can introduce the following

De�nition. For any regular m in Zn let �m;� denote the multiple of the char-

acteristic function of BqmB such that F �(; �m;�) is zero unless  lies in an

m - � -regular � -conjugacy class in G , where F �(; �m;�) = 1 .

Analogous de�nitions will now be introduced in the non-twisted case. We sim-

ply have to erase � everywhere. Thus the orbital integral of a locally-constant

compactly-supported complex-valued function f on G at  in G is denoted by

�(; f) =
R
f(x�1x)dx=d;x ranges over GnG , where G is the centralizer of

 in G . If  is regular, namely it has distinct eigenvalues 1; : : : ; n , the orbit of

 is closed and �(; f) is clearly convergent. Put

�() = j detf(1� ad ())jL(G)=L(G)gj
1=2;
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it is equal to

j�i<j(i � j)
2
j
1=2=j det j(n�1)=2:

Put F (; f) = �()�(; f) . If  lies in A put �() = j det Ad ()jL(U)j ;

it is equal to �i<j ji=jj . Put fU () = �()1=2
R
U

R
K
f(k�1nk) dk dn . Since

F (; f) = fU () for all regular  in A it is clear from Proposition 1(1) that if f

is (a multiple of) the characteristic function of BaB , where a is an m -regular

element, than F (; f) is a scalar multiple of the characteristic function of the

union of the m -regular conjugacy classes in G . Consequently we can introduce

the following

De�nition. Denote by �m the multiple of the characteristic function of BqmB

such that F (; �m) is 0 unless  lies in an m -regular conjugacy class, where

F (; �m) = 1 .

Let � be an admissible G -module. Let �(f) be the convolution operatorR
f(x)�(x)dx ; it is of �nite rank, hence has a trace, denoted by tr �(f) . It

is easy to see that there exists a conjugacy invariant locally-constant complex-

valued function � on the regular set (distinct eigenvalues) of G , with tr �(f) =R
G
�(x)f(x)dx for any f supported on the regular set of G . The function � = ��

is called the character of � ; it is clearly independent of the choice of the measure

dx .

If V is the space of � , then VU = f�(u)v�v; v in V , u in Ug is stabilized by

A since A normalizes U , and V=VU is an admissible (namely it has �nite length)

A -module denoted by �0U . The A -module �U = ��1=2�0U is called the A -module

of U -coinvariants of � . The composition series of the admissible A -module �U
consists of �nitely many irreducible A -modules, namely characters on A (since A

is abelian), which we call here the exponents of � . The character �(�U ) of �U is

the sum of the exponents of � .

If �U 6= f0g then by Frobenius reciprocity � is a subquotient of the G -module

I(�) = Ind(�1=2�;AU;G) normalizedly induced from the character � of A ex-

tended to AU by one on U ; here � is any exponent of � . Let W = N(A)=A

be the Weyl group of A in G ; N(A) is the normalizer of A in G . Put w� for

the character a 7! �(w(a)) of A . De�ne J = (�i;n+1�i) . The Theorem of [C]

asserts that (���)(a) = (�(�U ))(J aJ ) for every strongly regular a in A . Hence

�(I(�)U ) = �w� (sum over w in W ), and each exponent of � is of the form w

in W . Since �m is supported on the m -regular set, the Weyl integration formula

implies that

tr �(�m) = [W ]�1

Z
A

(���)(a)F (a; �m)da = (�(�U ))(q
m)

Z
A(R)

�(a)da:

Namely the trace tr �(�m) is zero unless the composition series of �U consists of

unrami�ed characters, in which case (for a suitable choice of measures) tr �(�m)

is the sum of �(qm) over the exponents (with multiplicities) of � . We conclude:
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Proposition 2. If � is an unrami�ed character of A then

tr (I(�))(�m) = �w(w�)(q
m) (w in W ):

Let V denote the space of � , VB(�) the subspace of B -�xed vectors in V ,

and VB(�) the space VB(�) when � = I(�) . Then �(�m) acts on VB(�) , and

we have

Proposition 3. If � in an unrami�ed character of A then the dimension of

VB(�) is the cardinality [W] of W . The set f w;w in Wg of functions on G

such that  w is supported on AUwB and satis�es  w(auwb) = (��1=2)(a) ( a in

A , u in U , b in B) , is a basis of the space VB(�) .

Proof. This is clear from the decomposition AUnG = (AU)\Kn(AU)\K �W �B .

For each i (1 � i � n) let ei be the vector (0; : : : ; 0; 1; 0; : : : ; 0) in Zn ; the

non-zero entry is at the i -th place. A vector �ij = ei � ej (i 6= j) is called

here a root of A . It is called positive if i < j , negative if i > j , and simple

if j = i + 1 (1 < i < n) . Put � = ��>0� (= (n � 1; n � 3; : : : ; 1 � n)) . Then

�(qm) = qh�;mi . Denote by U the unipotent lower triangular subgroup. We have

Proposition 4. (1) If m = (m1; : : : ;mn) = �ni=1miei satis�es m1 � � � � � mn ,

and h = qm , then the cardinality of the set BhB=B is �(h) . (2) Put B� = B\U .

Then for every w in W , the cardinality of the set

w[h�1B�h=B� \ h�1B�h]w
�1=U \ wh�1B�hw

�1

is �1=2(h)=�1=2(whw�1) .

Proof. If B+ = B\U;B0 = B\A , then B = B�B0B+; h
�1B�h � B�; h

�1B+h �

B+ and

BhB=B ' h�1Bh �B=B = h�1B�h �B=B ' h�1B�h=h
�1B�h \ B�;

(1) follows; the proof of (2) is similar.

The Weyl group W is isomorphic to the symmetric group Sn on n letters. It

is generated by the simple transpositions si = (i; i + 1)(1 � i � n) . The length

function ` on W associates to each w in W the least non-negative integer `(w)

such that w can be expressed as a product of `(w) simple transpositions. It is

easy to verify that (�(�m) w)(u) is zero for every u 6= w in W with `(u) � `(w) .

Proposition 5. For every w in W we have (�(�m) w)(w) = �(whw�1) (where

h = qm ), and �m is equal to jBhBj�1�1=2(h) ch (BhB) .
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Proof. Compute:

(�( ch (BhB)) w)(w) =

Z
BhB

 w(wx)dx = jBj�x2BhB=B w(wh � h
�1x)

= jBj(��1=2)(whw�1)�x2h�1B�h=B�\h�1B�h w(wxw
�1

� w)

= jBj(w�)(h) � �1=2(whw�1) � (�1=2(h)=�1=2(whw�1)) w(w)

= jBj(w�)(h)�1=2(h) w(w) = jBhBj � ��1=2(h) � (w�)(h):

Conclude:

tr �[jBhBj�1�1=2(h) ch (BhB)] = �w(w�)(h) = tr �(�m):

Since �m is by de�nition a multiple of ch (BhB) , the proposition follows.

We conclude that the matrix of �(�m) with respect to the basis f w;w in Wg

of VB(�) (this basis is partially ordered by the length function ` on W ) is of the

form Z +N , where Z is a diagonal matrix with diagonal entries �(whw�1) (w

in W ), and N is a strictly upper triangular nilpotent matrix of size [W ]� [W ] .

Thus we have N [W ] = 0 .

Proposition 6. If m = (mi) and m0 = (m0

i) satisfy mi � mi+1;m
0

i � m0

i+1(1 �

i < n) then �(�m)�(�m0) = �(�m+m0) .

Proof. Since hB�h
�1 � B� and h�1B+h � B+ , we have BqmBqm

0

B = Bqmqm
0

B =

Bqm+m0

B .

We shall consider only operators �(�m) with regular m . Since the semi-group

of m in Zn with mi � mi+1 � 0 (1 � i < n) is generated by �
j
i=1ei =

(1; : : : ; 1; 0; : : : ; 0)(1 � j < n) , we need only consider (products of �nitely many

commuting) matrices of the form (Z +N)m , m � 0 .

Proposition 7. Let Z be a diagonal matrix with entries z� along the diagonal.

Let N = (n�;�) be a strictly upper triangular matrix with Ns = 0 . Then (Z+N)m

is the matrix whose (�1; �r) entry is

�sr=1[�f�1<�2<���<�rgn�1;�2 � � �n�r�1;�r�1�k�r(�1)
k�1zm�k

Y
1�i<j<r
i;j 6=k

(z�i�z�j )=
Y

1�i<j�r

(z�i�z�j )]:

Proof. This is easily proven by induction. To obtain this formula, we argue as

follows. The non-commutative binomial expansion, easily veri�ed by induction,

asserts

(Z +N)m = �sr=1(�f(ij);�
r

j=1
ij=m+1�rgZ

i1NZi2 : : :NZir ):
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Here
Zi1N : : :NZir = (zi1�1)(n�1;�2)(z

i2
�2
) : : : (n�r�1;�r )(z

ir
�r
)

= (��2;�3;:::;�r�1n�1;�2n�2;�3 : : : n�r�1;�r � z
i1
�1
� � � zir�r ):

To take the sum over (ij) we note that by induction we have

��r

j=1
ij=m+1�rz

i1
1 � � � zirr = �rk=1(�1)

k+1zmk

Y
1�i<j<r
i;j 6=k

(zi � zj)=
Y

1�i<j�r

(zi � zj):

The proposition follows.

As usual, let � be an unrami�ed character on A . Let  K;� be the function on

G de�ned by

 K;�(pk) = (��1=2)(p) (p in P = AN; k in K):

It lies in the space of I(�) . Put �i = �(qei) . Suppose that �i 6= q�j for all

i 6= j . Put

c�(�) =
1� �i=�j

1� �i=q�j
if � = �ij ;(7:1)

and

cw(�) = ��c�(�) (� > 0; w� < 0):

The Weyl group W acts on the set of roots. Suppose that �i 6= �j for all i 6= j .

Then for each w in W there exists a unique G -morphism Rw;� from I(�) to

I(w�) which maps  K;� to  K;w� ; this is the content of [C2] , Theorem 3.1,

where our � is denoted by � , our cw(�) is denoted by cw(�)
�1 in [C2] , and it

is shown in [C2] , (3.1), that our Rw;� has the form cw(�)
�1Tw (in the notations

of [C2] ). The uniqueness of Rw;� implies that if w = wt : : : w2w1 in W , then

Rw;� = Rwt;wt�1:::w2w1� � � �Rw2;w1�Rw1;�:(7:2)

Put ci(�) for csi(�) . The action of Rw;� on VB(�) is described in [C2] .

Theorem 3.4, which asserts the following

Proposition 8. For each i(1 � i < n) , put Ri = Rsi;� . If `(siw) > `(w) , then

Ri( w) = (1� ci(�)) w + q�1ci(�) siw

and

Ri( siw) = ci(�) w + (1� q�1ci(�)) siw:

Next we analyze in greater detail the case when G is H = SL(2) . Here we put

m = (m;�m) where m is a positive integer, h = qm =

�
qm 0

0 q�m

�
. Note that

�(h) = q2m . Let z be a non-zero complex number, and � the unrami�ed character
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of A = f(
a 0

0 a�1 )g with �((
q 0

0 1=q
)) = z . Thus, if ~� is an extension of � to

the diagonal subgroup in GL(2) , then z = ~�1=~�2 in our previous notations. The

Weyl group W consists of two elements. If s denotes the non-trivial one, put

c for cs(�) ; then c = (1 � z)=(1 � z=q) . With respect to the basis f 1;  sg ,

the matrix of R = Rs;� is (
1� c c

c=q 1� c=q
) . Then dc

dz
= q(1 � q)=(q � z)2 and

detR = (1� qz)=(z � q) . Hence

R�1 =
z � q

1� qz
(
1� c=q �c

�c=q 1� c
); R0 =

d

dz
R =

1� q

(z � q)2
(
�q q

1 �1
);

and

R0R�1 =
q � 1

(z � q)(qz � 1)
(
�q q

1 �1
):

Proposition 9. The matrix of the operator �(�m) , where � = I(�) and �m =

jBhBj�1�1=2(h) ch (BhB) , with respect to the basis f 1;  sg , is

�
zm (q � 1)z(1� z)�1(z�m � zm)

0 z�m

�
:

Proof. For w; u in W = f1; sg , we are to compute

jBj�1(�( ch (BhB)) w)(u) = �x2h�1B�h=h�1B�h\B� w(uhx):

If u = s we obtain jBhBj w(sh) , which is zero if w = 1 and jBhBj(��1=2)(shs�1)

if w = s . If u = 1 we obtain

(��1=2)(h)
X
x

 w((
1 0

q2m�1x 1
)); (x in R=�2mR):

Using the relation

�
1 0

t 1

�
=

�
1 1=t

0 1

��
1=t 0

0 t

��
0 �1

1 0

��
1 1=t

0 1

�

it is clear that when w = 1 only the term of x = 0 in R=�2mR is non-zero, and

we obtain (��1=2)(h) . When w = s only the terms of x 6= 0 are non-zero; there

are (q�1)q2m�i�1 elements x in R=�2mR with absolute value q�i(0 � i < 2m) ,

and our sum becomes

(q � 1)

2m�1X
i=0

q2m�i�1(��1=2)

��
q1�2mqi 0

0 q�iq2m�1

��
= (q � 1)

2m�1X
i=0

q2m�i�1(qz)i+1�2m

= (q � 1)z1�m(1� z)�1(z�m � zm):

Since (��1=2)(h) = (qz)m and jBhBj�1�1=2(h) = q�m , the proposition follows.
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Corollary 10. For any m � 0 we have

tr [R0
�R�1

� I(�; �m)]

=
(q � 1)=z

(z � q)(z�1 � q)
[z�m + qzm � (q � 1)z(z � 1)�1(zm � z�m)]:(10:1)

We shall now use these computations to express the trace fomula for H = SL(2)

in a convenient form. Thus let F be a global �eld, �x a non-archimedean place u

of F , �x a function f0v for all v 6= u such that f0v = f00v for almost all v .

Proposition 11. There exists a positive integer m0 , depending on ff0v; v 6= ug ,

with the following property. Suppose that m � m0 ; f0u is the function �m on

Hu ; f0 is f0v ; and x is an element of H(F ) with eigenvalues in F� . Then

f0(x) = 0 .

Proof. Denote the eigenvalues of x by a and a�1 . If f0(x) 6= 0 then f0v(x) 6= 0

for all v , and there are C0v � 1 with C0v = 1 for almost all v such that

C�1
0v � jajv � C0v(�)v

holds for all v 6= u . Since a lies in F� we have �vjajv = 1 . Hence (�)u holds

with C0u = �v 6=uC0v . But if f0u = �m and f0u(x) 6= 0 then jaju = qmu or q�mu .

The choice of m0 with qm0

u > C0u establishes the proposition.

We conclude that for f0 = f0v as in Proposition 11, the group theroetic side

of the trace formula consists only of orbital integrals of elliptic regular elements;

weighted orbital integrals and orbital integrals of singular classes do not appear.

In the representation theoretic side of the trace formula there appears a sum of

traces tr �0(f0) , described as I0; I
0
0; I

�
0 in [III, (3.3)], Proposition (1), p. 207, and

[IV, (1.3)]. There are two additional terms, denoted by S0; S
0
0 in [III], p. 207,

`: � 5 . They involve integrals over the analytic manifold of unitary characters

�(a) = �0(a)jaj
s ( s in iR ) of A �=F� ; each connected component of this manifold

is isomorphic to R . The �rst term, denoted by S0=2 in [III], p. 208, is

1

2
��0

Z
iR

m0(�)

m(�)
�v tr (I0(�v))(f0v)jdsj:(11:1)

The sum ranges over a set of representatives for the connected components, m(�)

is the quotient L(1; �)=L(1; ��1) of values of L -functions (see [III, x3]). Since all

sums and products in the trace formula are absolutely convergent we obtain

Z
jzj=1

d(z)(zm + z�m)jd�zj:(11:1)0

Here d(z) is an integrable functions on the unit circle jzj = 1 in C . We used the

fact that tr (I0(�u))(�m) = zm + z�m , where z = �u((
q 0

0 q�1 )) .
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The second term, denoted by S00=2 in [III], p. 208, `: 6 , is the sum over all

places w of the terms

1

2
��0

Z
iR

tr [R�1
w R0

wI0(�w)](f0w) ��v 6=w tr [I0(�v)](f0v)jdsj:(11:2)w

The summands (11:2)w which are indexed by w 6= u depend on f0u via tr [I0(�u)](f0u) =

zm + z�m ; they can be included in the expression (11.1) 0 on changing d(z)

to another function with the same properties. Left is only (11.2) u , in which

tr [R�1
w R0

wI0(�w; f0w)] is given by Corollary 10.

This completes our discussion of the trace formula for H = SL(2) . Clearly this

discussion applies also in the case of H1 = PGL(2) . Again we take a global function

f1 = 
f1v (matching, as in the statement of the Theorem), whose component

f1u at u is su�ciently regular with respect to the other components, so that the

analogue of Proposition 11 holds. The group theoretic part of the trace formula for

H1 then consists of orbital integrals of elliptic regular elements. There appears a

sum of traces tr�1(f1) , described as I 01 in [III], p. 209, `: 5 (where the left side

should be eI1 , not I 01 as misprinted there), and [IV, (1.3)], and a term analogous

to (11.1) (or (11.1 0 ), denoted by S1=2 in [III], p. 209, `: 5 , and a sum of terms

of the form (11.2) w over all places w of F , which comes from the term S01=2 of

[III], p. 209, `: 5 . Note that the contribution of eI1 to J is multiplied by 1=2 . We

need consider only the analogue for H1 of (11.2) u , since (11.2) w for w 6= u can

be included in (11.1) 0 . Here write z for �(q) , when the induced representation

I1(�) of H1(Fu) from the character

�
a �

0 b

�
! �(a=b) is considered. Then

�1 = z; �2 = z�1 and c = (1 � z2)=(1 � z2=q) in the notations of (6.1). Hence
dc
dz

= 2zq(1� q)=(q � z2)2 , detR = (1� qz2)=(z2 � q) ,

R =

�
1� c c

c=q 1� c=q

�
; R�1R0 =

2z(q � 1)

(z2 � q)(1� qz2)

�
q �q

�1 1

�

and

I1(�1;m) =

0
@ zm (q � 1)z(zm � z�m)=(z � z�1)

0 z�m

1
A

where I1 = I1(�)(= I1(z)) and �1;m is the function jBhBj�1�1=2(h) ch (BhB)

associated with h = (
qm 0

0 1
) in H1(Fu) . Namely we have

Proposition 12. For every m � 0 we have

tr [R�1R0I1(�; �1;m)]

=
2(q � 1)=z

(z2 � q)(z�2 � q)
[qzm + z�m � (q � 1)z(zm � z�m)=(z � z�1)]:(12:1)

This completes our discussion of the trace formula for H1 = PGL(2) .
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Remark. The above discussion applies for any group of rank one. For example it

applies also in the case of the unitary group U(3) in three variables, de�ned by

means of a quadratic extension E=F (see [F3], [F4] and [F5]). Here we take a place

u which stays prime in E , and note that the de�nition of cw(�) in the quasi-split

case is di�erent from the split case discussed here; see [C2], p. 397.

It remains to carry out analogous discussion of the twisted trace formula of

G = PGL(3) for a function f = 
fv as in the Theorem whose component fu
at u is su�ciently regular with respect to the other components. Again the trace

formula consists of (1) twisted orbital integrals of � -elliptic regular elements only,

by virtue of the immediate twisted analogue of Proposition 11; (2) discrete sum

described as I; I 0; I 00 in [III], p. 201 and p. 203, and [IV, (1.3)]; (3) an integral as

in (11.1) 0 , see S of [III], (2.2.4) on p. 202; (4) a sum over w of terms analogous to

(11.2) w , see S0 of [III], (2.2.5), p. 202. Note that the contribution to our formulae

is (S + S0)=4 , see the line prior to (2.2.4), [III], p. 202. Only the term at w = u

has to be explicitly evaluated, and we proceed to establish the suitable analogue of

Corollary 10 and Proposition 12 for PGL(3), twisted by � .

Recall that if � is a G -module we de�ne �� to be the G -module ��(g) =

�(�g) . The notion of a � -invariant G -module is de�ned in the introduction. If

�0 is a character of A , put ��0 for the character �0 � � of A . Then �I(�0)

is I(��0) . We denote by �(�) the operator from I(�0) to I(��0) which maps

 in the space of I(�0) to  � � . In particular, when �0 is unrami�ed, �(�)

maps  w;�0 in VB(�
0) to  �w;��0 in VB(��

0) . If I(�0) is � -invariant then

[I(�0)] and [I(��0)] are equal as elements of the Grothendieck group K(G; �) ,

and there exists w in W with ��0 = w�0 . If G = PGL(3) and �0 = ��0 then

there is a character � of F� such that �0(diag(a; b; c)) = �(a=c) . Suppose in

addition that �0 is unrami�ed, and �x as a basis of VB(�
0) = VB(��

0) the set

 1 =  id;  2 =  (12);  3 =  (23);  4 =  (23)(12);  5 =  (12)(23);  6 =  (13) , where

W = fid; (12); (23); (12)(23); (23)(12); (13)g . Then the matrix of �(�) with respect

to this basis is the 6�6 matrix whose non-zero entries are equal to one and located

at (1; 1); (2; 3); (3; 2); (4; 5); (5; 4); (6; 6) . Here � = I(�0) . Denote by A the matrix

of �(�m) , with m = (1; 0; 0) , with respect to our basis, and by B the matrix of

�(�m) with m = (1; 1; 0) . Then An (resp. Bm ) is the matrix of �(�m) with

m = (n; 0; 0) (resp. m = (m;m; 0) ), and AnBm = BmAn by Proposition 6. A

direct computation, as in Proposition 9, shows that

A =

0
BBBBB@

z (q � 1)z 0 0 0 q(q � 1)z

0 1 0 q � 1 0 0

0 0 z (q � 1)z (q � 1)z (q � 1)2z

0 0 0 z�1 0 0

0 0 0 0 1 q � 1

0 0 0 0 0 z�1

1
CCCCCA
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and

B =

0
BBBBB@

z 0 (q � 1)z 0 0 q(q � 1)z

0 z 0 (q � 1)z (q � 1)z (q � 1)2z

0 0 1 0 q � 1 0

0 0 0 1 0 q � 1

0 0 0 0 z�1 0

0 0 0 0 0 z�1

1
CCCCCA

Here z = �(q) . Proposition 7 implies that

An =

0
BBBBB@

zn (q � 1)z�(n) 0 (q � 1)2z�(n) 0 q(q � 1)z(n)

0 1 0 (q � 1)�(n) 0 0

0 0 zn (q � 1)z(n) (q � 1)z�(n) (q � 1)2z((n) + �(n))

0 0 0 z�n 0 0

0 0 0 0 1 (q � 1)�(n)

0 0 0 0 0 z�n

1
CCCCCA
;

where �(n) = (zn � 1)=(z � 1) ;

�(n) = [zn(1� z�1)� (z � z�1) + z�n(z � 1)]=(z � 1)(1� z�1)(z � z�1);

(n) = (zn � z�n)=(z � z�1); �(n) = (1� z�n)=(1� z�1);

and

Bm =

0
BBBBB@

zm 0 (q � 1)z�(m) 0 (q � 1)2z�(m) q(q � 1)z(m)

0 zm 0 (q � 1)z�(m) (q � 1)z(m) (q � 1)2z(�(m) + (m))

0 0 1 0 (q � 1)�(m) 0

0 0 0 1 0 (q � 1)�(m)

0 0 0 0 z�m 0

0 0 0 0 0 z�m

1
CCCCCA
:

In particular we conclude the following

Proposition 13. For any m = (m1;m2;m3) with m1 � m2 � m3 we have

tr [�(�m)�(�)] = �0(hm) + �0(J hmJ ) = �(hm�(hm)) + �(Jhm�(hm)J );

where hm = qm , that is, = zm1�m3 + zm3�m1 .

On the other hand it is easy to compute the twisted character � = �� of

� = I(�0) ; see [II, (1.4)]. Recall that � is a locally constant function on the

� -regular set of G with tr �(f � �) =
R
f(g)�(g)dg for every locally-constant

function on the � -regular set of G . Now the twisted character � of � = I(�0)

is supported on the set of g in G such that g�(g) is conjugate to a diagonal

element, where �(h)�(h) = zm1�m3 + zm3�m1 at h = hm . Using the Weyl

integration formula we conclude that

tr [�(�m;�)�(�)] = zm1�m3 + zm3�m1 ;

where �m;� is the unique multiple of ch (BhmB) with F �(hm; �m;�) = 1 . It

follows from Proposition 13 that we have
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Proposition 14. We have �m;� = �m(= �1=2(hm)jBhmBj
�1 ch (BhmB)) .

The operator R = R((13)) from VB(�
0) to VB(J�

0) is the product of three

operators, according to (7.2). Write VB(�1; �2; �3) for VB(�
0) if �i(i = 1; 2; 3) are

the parameters associated to �0 in (7.1). Then R is the product of R1 = R((12))

form VB(z; 1; z
�1) to VB(1; z; z

�1) , then R2 = R((23)) to VB(1; z
�1; z) , and

then R3 = R((12)) to VB(z
�1; 1; z) . Put c1 = (1 � z)=(1 � z=q) , c2 = (1 �

z2)=(1� z2=q) . Put

A1 =

0
BBBBB@

�1 1 0 0 0 0

1=q �1=q 0 0 0 0

0 0 �1 0 1 0

0 0 0 �1 0 1

0 0 1=q 0 �1=q 0

0 0 0 1=q 0 �1=q

1
CCCCCA
;

A2 =

0
BBBBB@

�1 0 1 0 0 0

0 �1 0 1 0 0

1=q 0 �1=q 0 0 0

0 1=q 0 �1=q 0 0

0 0 0 0 �1 1

0 0 0 0 1=q �1=q

1
CCCCCA
:

Then R1 = R3 = I + c1A1 and R2 = I + c2A2 ; further, R = R3R2R1 . Now

denote (the right side of) (10.1) by X(z;m) , that of (12.1) by Y (z;m) , and

tr [R�1R0AnBm�(�)] by Z(z;n;m) . Then we have

Proposition 15. For every m;n � 0 we have

2X(z;n+m) + Y (z;n+m) = Z(z;n;m):

Proof. We proved this using the symbolic manipulation language Mathematica.

The di�erence of the two sides of the Proposition is denoted by DIFF in the �le

given below, and it took the OSU Sun computer three minutes to arrive at the

conclusion that DIFF=0. The �le is given as an appendix at the end of the paper.

In this appendix we denote A1 by A , A2 by B , c1 by c , c2 by d , Ri by Ri ,

R�1 by S , �(�) by s , �(n) , etc., by an , etc., An; Bm by An;Bm , Z(z;n;m)

by Z , X(z;n+m) by X , Y (z;n+m) by Y .

Remark. The fact that Z(z;n;m) depends only on n+m is remarkable.

Corollary 16. The sum of twice (11:2)u for H = SL(2) with (11:2)u for H1 =

PGL(2) is equal to the term (11:2)u for G = PGL(3) .

Proof. It follows from Proposition 14 that the function �m;� with m = (m +

n; n; 0) matches the function �(m+n;�m�n) on H = SL(2) and �(m+n;0) on
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H1 = PGL(2) . Using [III], p. 204, `: �4 , p. 207, `: �5 , and p. 209, `: 5 (where

the left side is eI1 and not I 01 as misprinted there), we obtain that J of [III], p.

209, `: � 3 , is equal to

(S + S0)=4� (S0 + S00)=2� (S1 + S01)=4

in the notations of [III]. The S0i are those leading to the (11:2)u here. The corollary

then follows from Proposition 15.

The Theorem now follows as in [IV, (1.6.3)]. On the one hand T of the Theorem

is a discrete sum of the form

X
i

ci(z
m
i + z�mi ) +

X
j

ajz
m
j ;

where zj lies in the �nite set fq; q�1; q1=2; q�1=2;�q1=2;�q�1=2g , and zi in jzij =

1 or q�1=2 < zi < q1=2 or �q1=2 < zi < �q�1=2 . On the other hand T is equal

to an integral of the form (11.1) 0 . Here m is a su�ciently large positive integer.

The argument of [IV, (1.6.3)] implies that the coe�cients ci and aj are zero. In

particular T = 0 , and the Theorem follows.
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Correction to [F9]. As noted in [F10], p. 3, the sentence on p. 141, ` . 4-

5, of [F9], does not su�ce to pass from Lemma 6.4 to Lemma 6.5 of [F9], but

Proposition 8 of [L] does. To complete [F9], this passage is carried out below. It

relies on a property of a spherical representation which distinguishes it from other

representations with an Iwahori �xed vector, which occur in [F9], (6.4). In an

attempt to make this correction readable, we reproduce here some material from

[F9]. We put this correction here as both this paper and [F9] use Iwahori-regular

functions.

Let G be a quasi-split reductive group over a local non-archimedean �eld F ,

which splits over an unrami�ed extension of F , and B = AU a minimal parabolic

subgroup over F (such that both the Levi subgroup A and unipotent radical U

are invariant under the automorphism � of [F9]). Denote by � a set of simple

roots of A on U . It is a subset of X�(A) = Hom(Gm ; A) . There is a canon-

ical isomorphism X�(A) 
 F�g�!A(F ) ; denote the image of � 
 � , � 2 � ,

� = uniformizer in F , by a� . Any unrami�ed character ( �u in [F9], Lemma 6.4)

of A(F ) , can be written as the product �� , where � is a unitary unrami�ed char-

acter of A(F ) , and � is an unrami�ed positive valued character of A(F ) , with

�(a�) � 1 for all � 2 �0 . The set �M = f� 2 �; �(a�) = 1g is a basis for a set

of roots of A in U \M = N , where M is the standard (M � A) Levi subgroup

of a standard parabolic subgroup P =MU which is uniquely de�ned by this basis.

Further we �x an element ! in the Weyl group WF = Norm(A(F ); G(F ))=A(F ) ,

of minimal length, such that !�(t) = �!
�1

(t) = �(!�1(t)) satis�es !�(a�) � 1 for

all � 2 � . The minimality implies that for � 2 � we have !� < 0 if and only if

� 2 ���M , and !�(a�) < 1 .

Consider the G(F ) -module iGA(
!(��)) which is normalizedly induced from the

character !(��) of B(F ) (extended from A(F ) by 1 on U(F ) ). If M! is the Levi

subgroup of the F -parabolic P! de�ned by �M!
= f� 2 �; !�(a�) = 1g , then !�

extends to a character of M!(F ) , and iGA(
!(��)) = iGM!

(!�
iM!

A (!�)) is induced in

stages. The normalizedly induced M!(F ) -module iM!

A (!�) is unitarizable, since
!� is a unitary character (of A(F ) , hence of B(F ) \ M!(F ) = A(F )N!(F )) .

Hence it splits as a direct sum of tempered representations ��K!
, where { accord-

ing to [K], Theorem, p. 400 { K! ranges over the set of good maximal compact

subgroups of M! . In particular, by [T] the adjoint group M!;ad(F ) of M!(F )

acts transitively on the set f�K!
g of components of iM!

A (!�) .

By the Langlands' classi�cation ([BW], Ch. XI, or [S]), each of iGM!
(!� 
 �K!

)

has a unique quotient LGM!
(!� 
 �K!

) , which is the image of the standard inter-

twining operator T! from iGM!
(!�
�K!

) to iGM (�
�K) . Here we write �K for the

irreducible (tempered) constituents (in fact direct summands) of iMA (�) ; K ranges

over the good maximal compact subgroups of M(F ) , and Mad(F ) acts transitively

on the set of �K . Then LGM!
(!� 
 �K!

) is a subrepresentation of iGM (� 
 �K) for

some K depending on K! , and the direct sum over K! , which we denote by

LGA(
!(��)) , is a subrepresentation of iGA(��) =

L
K

iGM (� 
 �K) , obtained as the

image of the intertwining operator T! : iGA(
!(��))! iGA(�u) .
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Since the character �� is unrami�ed, the representation iGA(
!(��)) is spheri-

cal, its K(F ) -�xed vector �K(F );!(��) is de�ned by the characteristic function of

K(F )(= the �xed hyperspecial compact open subgroup of G(F ) ). According to

[C2], Theorem 3.1, p. 397, the image T!(�K(F );!(��)) is the product of �K(F );�� ,

and a product over � 2 � with !� < 0 of some numbers c�(
!(��)) , which are

non-zero since j!(��)(a�)j =
!�(a�) < 1 for all such � . Hence LGA(

!(��)) is

spherical, containing a non-zero K(F ) -�xed vector.

Since LGA(
!(��)) is a subrepresentation of the induced iGA(��) , Frobenius reci-

procity ([BZ])

HomG(F )(L
G
A(

!(��)); iGA(��)) = HomM(F )(L
G
A(

!(��))N ; i
M
A (��))

implies that there is a non-zero morphism LGA(
!(��))N ! iMA (��) . Since the group

Mad(F ) acts transitively on the set of irreducible constituents (direct summands)

of iMA (��) = � 
 iMA (�) , and on LGA(
!(�v))N , this morphism is surjective. As a

functor � ! �U of coinvariants is exact, the morphism LGA(
!(��))U ! iMA (��)U =L

w
w�� , w 2 W (A(F );M(F )) , is onto. The constituents of the module �U of

coinvariants will be called here exponents of � . We conclude that the exponents of

the orbit under Gad(F ) of the spherical subrepresentation �0 of iGA(��) include

the characters w�� (w 2 WM = W (A(F );M(F ))) , but no other Gad(F ) -orbit

of constituents of iGA(��) has these exponents. Denote by W (�) a set of w in

W =W (A(F ); G(F )) such that the set of exponents of � is fw(��);w 2W (�)g .

Recall that Lemma 5 of [F9] asserts that for an irreducible G(F ) -module � ,

and a regular function f = ft 2 C1
c (G(F )) as de�ned in [F9], p. 133 ( f is

supported on the G(F ) -orbits of tA(F ) , R = ring of integers in F , t in A(F )

with j�(t)j 6= 1 for all � 2 � , and the normalized orbital integral F (x; f) is the

characteristic function of the G(F ) -orbits of tA(R) in G(F ) ), the trace tr�(f)

is 0 unless � is a constituent of some iGA(��) as above (�(a�) � 1 for all � 2 � ),

in which case tr�(f) is equal to
P

w2W (�)

w(��)(t) , where fw(��);w 2 W (�)g is

the set of exponents of � . If �ad denotes the orbit of the irreducible � under

Gad(F ) , the W (�) are chosen to be pairwise disjoint, and W (�ad) =
S

�2�ad

W (�) ,

then tr�ad(f) equals
P

�2W (�ad)

w(��)(t) . The set W (�ad) contains WM precisely

when �ad contains the spherical constituent of iGA(��) .

Similar observations apply for a spherical representation �0 of G0 = G(E)

(where E=F is unrami�ed cyclic extension as in [F9]) which is � -invariant (Gal (E=F ) =

h�i) . Such �0 is the subrepresentation of an induced G(E) -module I 0(�0) , where

�0 is an unrami�ed character of A(E) with ��0 = �0 . Since I 0(�0) is � -invariant,

it extends to a representation { denoted I 00(�0) { of G00 = G(E) o Gal (E=F ) .

Let � be a regular function on G(E) as in [F9], p. 131 (for some t0 in G(E)

with j�(Nt0)j 6= 1 for all � 2 � , � is supported on the � -conjugacy classes of

t0A(RE) , and the normalized � -orbital integral F (t0 � �; � ) is the characteristic

function of this set in G(E) ). A standard computation of the character of an
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induced representation implies that

tr I 0(�0; ��) =

Z
A(E)

F (a� �; �)��0(a)da =
X
w

w(��0)(t0);

the sum ranges over the w in W 0 = Norm (A(E)�;G(E))=A(E) . Such w lies

in WE = Norm(A(E); G(E))=A(E) , and it satis�es �(w) = w , hence it lies in

W = WF = W
h�i
E . Since ��0 = �0 there is an unrami�ed character � of A(F )

with �0(a) = �(Na) (a 2 A(E)) . We write � = �� as in the non-twisted case

( � unitary unrami�ed, � > 0 , �(a�) � 1 for all � 2 � ), and �0 = �0�0 .

The normalized module of U(E) -coinvariants of a G00 -module �00 is denoted by

�00U ; it is an A00 = A(E) o h�i -module. The value of the character �(�00) at

t0�� , multiplied by the factor �(t0��) , is equal { by the twisted analogue of [C]

recorded in [F9], Lemma 1, p. 131 { to the value of �(�00U ) at t0�� ; contributions

to this trace are obtained only from A00 -modules whose restriction to A(E) is a

� -invariant character. Namely the � -exponents of any constituent of I 0(�0�0) are

among the w(�0�0)(t0) = w(��)(Nt) . From the discussion in the non-twisted case,

it follows that the exponents of the Gad(E) -orbit of the spherical subrepresentation

of I 0(�0�0) include those parametrized by the w in WM , but no other constituent

of I 0(�0�0) has these exponents. Since in the stable trace formula only orbits under

the adjoint group appear, rather than individual representations, Lemma 6.5 now

follows from Lemma 6.4 of [F9].
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Correction to [F7; I, x7]. We have used the regular-Iwahori functions in many

contexts, but the Theorem of [F9] was used only in [F7; IV]. We use this opportunity

to make the following corrections to [F7; I, x7].

p. 159, ` . 4, add: For every M < G , put avM = �ww , where the sum ranges over

a set of representatives w in WG for the w in WG=WM with w(M) = wMw�1

equals M . Put ~rGM = avM � rGM . Then ~r�GM = r�GM � av�M . Note that

w � i�MG = (iMG � w)
� is equal to i�MG for any w in WG with wM =M .

p. 160, ` . 4, before "This", insert: Hence ~r�GMf
M = 0 for M = L , and so for all

M .

page line replace by

157 �11;�9 BZ BZ 0

�10 �
w

= �
w

159 1 RGM rGM

14 N M

21 L � G L �M

�3 iMw;M avM � iMw;M

6; 11; 15; 16; 20; 21; 23(�3); 24; 28(�2) r�GM (or rGM ) ~r�GM (or ~rGM )

160 2; 7; 8; 9(�2); 17(�2) ditto ditto

2 s� avM � s�

2 where the where

4(�2) fL av�L � f
L

12 iNw;N avN � iNw;N
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