
P A C K E T S  A N D  L I F T I N G S  F O R  U(3)  

YUVAL Z. FLICKER t 
Department of Mathematics, Harvard University, Science Center, 

One Oxford Street, Cambridge, MA 02138, USA 

O. I n t r o d u c t i o n  

Let E /F  be a quadratic extension of non-archimedean local fields of character- 
istic 0, put G' = GL(3, E), and denote by G the unitary group in three variables 
over F which splits over E. We realize G as the group o f g  in G' with a(g) -- g, 
where o(g) = j t g -  t j ,  and 

~ J =  1 

I 

Similarly, we realize the unitary group H in two variables over E / F  as a subgroup 
o fH '  = GL(2, E), where J i s  replaced by 

in the definition of a. 

10] 

Our aim here is to give a complete description of the (equivalence classes of) 
irreducible admissible G-modules ~r, in terms of the (equivalence classes of) o- 
invariant a-stable admissible irreducible G'-modules H. This is done by means of 
character relations with respect to the base-change lift b from G to G', and the 
endo-lift e from H to G, defined in [U]. Namely we now complete the second step, 
local lifting, of the program initiated in [U], where the global quasi-lifting is dealt 
with. Consequently, the third step, global lifting, of [U], can be carried out for 
most automorphic representations. This is done in chapter II below. 

We use the notations and definitions of [U]. Thus r f ,  ' f  denote matching 
([U], Lemmas 2.7 and 3.3) complex-valued locally-constant functions on G', G, 
H. ' f is  compactly supported; ~, f t ransform under the center Z', Z of G', G by 
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matching characters to'-1, (2)--i ( tot (z)  ffi to(Z/2)) ,  and are compactly- supported 
modulo the center. Thus the stable orbital integrals of  f match the twisted stable 
orbital integrals of  ~, and the unstable orbital integrals o f f  match the stable 
orbital integrals of  'f. We denote by )~, the character [H] of  n. It is a locally- 
integrable function on G with tr rt(fdg) = f x~(g)f(g)dg (g in G) for all measures 
fdg; it is locally constant on the regular set. 

D e f i n i t i o n .  A G-module II is called a-invariant if ~ ~ H, where ~ 
n(a(g)). 

The twisted character ;Cn of  such II is a locally-integrable function on G', which 
satisfies 

tr Fl(~dg X a) -- ; xn(g)C(g)dg (g in G') 

for all r Xn depends on the e-conjugacy classes; it is locally constant on the 
a-regular set. 

Def in i t ion .  A e- invadant  H is called a-stable if  its character depends only 
on the stable a-conjugacy classes in G', namely tr l-I(~ X e)  depends only o n f .  

Our purpose in this paper is to refine the following base-change result, which is 
our initial assumption here. It is proven in [U"]. All of  our modules are 
admissible and irreducible. 

L o c a l  B a s e - C h a n g e .  For every a-stable tempered G'-module H there exist 
non-negative integers m'(n) which are non-zero for finitely many tempered 
G-modules rt, so that for all matching ~, f we have 

( . )  tr H(~ X a) -- Y. m '0 t ) t r  ~t(f). 

In fact, this relation defines a partition of  the set of  (equivalence classes of) 
tempered irreducible G-modules into disjoint finite sets. 

Def in i t ion .  (1) This finite set of  rt which appear in the sum on the fight of  
(.) is called a packet, and denoted by {rt}, or {~t(H)}. It consists of  tempered 
G-modules. 

(2) H is called the base-change lift of(each element ~t in) the packet {~t(II)}. 

To refine the identity (.) we prove here that the multiplicities m ' (n )  are equal 
to 1 (using [GP]), and count the rt which appear in the sum. The result depends on 
the a-stable H. It is clear from the work of  [U], w that: 

T h e  a - s t a b l e  FI are :  the a-invariant H which are square-integrable, one 
dimensional, or induced I(T | x)from a maximal parabolic subgroup, where on 
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the 2 • 2 factor the H'-module z | x is the tensor product o f  an H'-module z 
obtained by the stable base change map of[U(2)] (b" in [U'], w and theft.red 
character x o f  CJNCEfrom [U], which is non-trivial on Ce. 

In the local case Ce = E • and N is the norm from E to F. Namely r | x is 
obtained by the unstable map of [U(2)] (b' in [U'], w 1.3), from a packet {p } of  H- 
modules (defined in [U(2)]). From now on the II are assumed to be a-stable. Our 
main local results are as follows: 

Local  Resu l t s .  (1) I f I I  is square-integrable, the packet {x(II)} consists o f  a 
single square-integrable G-module x. lfl-I is o f  the form I(~ | x), and T is the stable 
base-change lift o f  a square-integrable H-packet {p}, then the cardinality o f  
{x(II)} is twice that o f {p} .  

Remark. In the last case we denote {~r(II)} also by (x(p)}, and say that {tr} 
endo-lifts to {x(p)} -- {~r(I(p | x))}. 

Let {p } be a square-integrable H-packet. It consists of  one or two elements. 

Local  Resu l t s .  (2) I f { p }  consists o f  a single element then {x} consists o f  
two elements, rc + and ~r-, and we have the character relation 

tr p.('f) = tr x+( f )  - tr x - ( f )  

for all matching ' f , f . l f  {p } consists o f  two elements, then there are four members 
in {x(p)}, and three distinct square-integrable H-packets {pi } (i -- 1, 2, 3), with 
{ x (p~) } = { x (p) }. With this order, the four members o f  { xi } can be indexed so that 
we have the relations 

tr{p~}('f) = tr ~,(f)  + tr xi+ l(f)  - -  tr x ,~  c) - tr x,.(f) 

for all matching f ,  "f. Here i', i" are so that {i + 1, i', i"} = {2, 3, 4}..4 single 
element in the packet has a Whittaker vector. It is x + i f  [{p}] -- 1, and 7q i f  
[{p}] = 2. 

Remark. The proof that a packet contains no more than one non-degenerate 
member is only sketched, in the case of  odd residual characteristic, as it depends 
on a twisted analogue of  [Ro], which is not yet available in print. 

In the case of  the special H-module s(fl) and its one-dimensional complement 
1 (]3), we denote their stable base-change lifts by s ~(fl') and 1'(/3'). p is a character of  
C~ -- E I (norm-one subgroup in EX), and p'(a) = p(a/a)  is a character of  CE. 

Local  Resu l t s .  (3) The packet {x(s(fl))} consists o f  a supercuspidal x -  = 
xb-, and the square-integrable subquotient x + ~ x ; ,  o f  the induced G-module 
1 = I(p'lcvla). I is reducible ([U'], w o f  length two, and its non-tempered 
subquotient is denoted by x x _~ x~ .  The character relations are 
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tr(s(fl))('f) = tr n+( f )  - tr n - ( f ) ,  

tr(l(fl))( 'f) -- tr n x ( f )  + tr g - ( f ) ,  

tr I(s'(fl') | x; r • a) = tr n+( f )  + tr 1t-(f),  

tr I(l '(fl ')  | x; r • a) = tr ~ • ( f )  -- tr r~ - (f).  

As the base-change character relations for induced modules are easy 
([U], Lemma 1.4), we obtained the character relations for all (not necessarily 
tempered) a-stable G'-modules. 

It will be useful to record here in a diagram our standard notations. 

Liftings 

b 
G = U(3) , G' = GL(3, E)  

n = U(2)  , n '  = 0J42 ,  E ) ,  n 

The notations are explained in [U'], w 1.3. The diagram is commutative since we 

put here the unstable base change map b' on the left, and the stable base change 
map b" on the right. 

Functions 

, f  '0 

Packets 

b 
z t ,  , H I ( z |  I ( r )  

p ' ~ |  T~ p 

In addition to an identity of  trace formulae ([U'], Proposition 4.4), we use the 
recent fundamental study by Kazhdan [K] which yields in particular the orthogo- 
nality relations for characters conjectured in [U(3)]. Hence the present work is a 
modified reproduction of  most of  chapter 7 of  [U(3)]. Other parts of  chapter 7, as 

well as chapter 8, of  [U(3)], appear in [U"]. The transfer of  orbital integrals used 
below is stated in [U], Lemma 3.3, for the case r  fofbase-change (for spherical 
functions the proof is given in [Sph]). For the case f - -  ' f o f  endo-lifting, it is stated 
in [U], I.emma 2.7. Here, when E / F  is unramified, the case of  the unit element of  
the Hecke algebra is due to Rogawski (thesis, unpublished), the extension to other 
spherical functions is as in [Sph], and homogeneity of  germs ([H]) implies the 
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transfer f--. ' f  for general functions. When E/F is ramified, the transfer f - - - ' f  
has been proven by Langlands and/or Shelstad (in preparation). We envisage 
another proof, based on the ideas of  [Sym; V], but have not carried it out as yet. 
To obtain the above local results for an unramified E/F, no knowledge of  any 
ramified place is needed. 

These precise local results can be used together with the identity of  trace 
formulae to obtain complete results about the global liftings. In this paper we 
prove these global results only for automorphic representations with two elliptic 
components. As we explain below, the global results can also be proven by means 
of simple methods for all automorphic representations, but this we delay to 
another paper (see [TF]). For the global results of  the present work we need the 
identity [U'], Proposition 4.4, of trace formulae, only for matching test functions 
~, f, ' fwith two local components whose orbital integrals vanish on the regular 
split set (these components will be called discrete or elliptic below). For such 
global functions, all weighted orbital integrals and integrals involving logarithmic 
derivatives of intertwining operators in the trace formulae of  the rank one groups 
G', G, H, are zero; (G' = GL(3, E) has twisted rank one, and its twisted trace 
formula is similar to that of  a group of  rank one (such as G and H)). Using regular 
functions it is shown in [Sym; III (3.7.2)] and [Sym; IV (1.6.3)] that the required 
equality of trace formulae of  G', G, H holds for matching r f ,  ' fw i th  a single 
discrete component (it is clear that the computations of  [Sym] in the context of  
the symmetric square hold also in the present easier situation). Consequently, 
our global results hold also for automorohic representations with one elliptic 
component. 

It is important to note that working with a global function ~- -  | 4v which has 
at least one discrete component 4u at a place which stays prime in E, we may 
choose the unstable transfer '4u of  4~ to be zero (namely we require the (twisted) 
orbital integrals of  4, to be stable). In this case the function '4 on His  zero, and we 
do not need to establish the unstable base-change transfer 4v ' "  '4~ from G~' to H~ 
for any place v. This unstable transfer (stated in [U] as Lemma 3.4) can be proven 
using combinatorics on the Bruhat-Tits building of PGL(3). A more abstract 
proof of this unstable transfer can be given along the lines of  [Sym; V], where the 
analogous unstable transfer is proven in the context of  the symmetric-square 
lifting. But we have not yet carried out his "more abstract" proof. Here the crucial 
case is that of  the transfer of  the unit element 4 ~ in the Hecke algebra of  G~' to the 
unit element '4 ~ in the Hecke algebra of Hr. Assuming this transfer (40 ---- '4 ~ we 
prove in [TF] the equality of  the trace formulae for G/(twisted), G and H, for 
arbitrary matching test functions ('4, 4, f ,  ' f) .  The argument in [TF] is simple, 
and relies on properties of  pseudo-spherical functions (introduced in [TF]). 
Consequently, our global lifting results are valid for all automorphic represen- 
tations with no restriction at any place. 
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Another proof  for the identity of the trace formulae of  G', G, H for arbitrary 
matching ('~, ~, f ,  ' f )  is given in [Sym; VI] (in the context of  the more difficult 
comparison of the symmetric square), and in [BC] in the context of  the easier 
comparison of base change for GL(2). It relies on properties of  regular functions. 
The proofs of  [TF] and [Sym; VI] are simple. An optimal choice of  a component  
of  the test functions annihilates a priori the complicated terms (weighted and 
singular orbital integrals) in the trace formulae. These "simple" proofs can be 
carried out also in the context of  cuspidal G-modules with a supercuspidal 
component,  where G is any reductive group (see [FK]). They are analogous to 
Deligne's conjecture on the fixed point formula in ~tale cohomology of  correspon- 
dences on a separated scheme of  finite type over a finite field (see [FK']). In [U(3)] 
we proposed yet another technique, based on computing all terms in the trace 
formulae and "correcting" the weighted orbital integrals as in [U(2)] and [GL(3)]. 
However these computat ions seemed (and still do seem) to me to be too long and 
complicated to be worth formalizing. The (two different) proofs of  [TF] and 
[Sym; VI] seem to me to be satisfactorily short and abstract. 

Having made these comments,  we shall now state our global results, in the 
context of  automorphic forms with "two elliptic components"  (these results are 
based on a straightforward comparison of  trace formulae, and do not use the 
unstable transfer Ov-"O,). Fix two places u, u' of F,  such that u is non- 
archimedean and stays prime in E. Fix G,, and Gu,-modules rt ~ and ~t ~ which are 
one-dimensional, Steinberg or not contained in any modules induced from the 
Borel subgroup. Let H ~ (and II~ be the G'-(and G.',,-)modules which are the 
base-change lifts of the packets { rt ~ } (and {it ~ }), and (po } (and (po, }) the Hu (and 
H~,) packets which endo-lift to { rt ~ } (and { rt ~ }); note that these p 's  do not always 
exist (po does not exist i fu  splits in E / F a n d  ~t ~ is elliptic, and ifE~ is a field and 7t ~ 
is one-dimensional or Steinberg). Denote by A(Tt ~ rt~ the family (set with 
multiplicities) of  discrete-series automorphic G-modules n -- O n, whose compo- 
nents at u and u '  are 7t ~ and rt~ Similarly, we introduce A(l'l~, l'I~,) and 
A ({pO }, {pO }). Our global results concern only members  of  these three families. 
To start with, we have: 

M u l t i p l i d t y  O n e  T h e o r e m .  Each discrete-series automorphic G-module 
in A ( rt ~ rt~ occurs in the discrete-spectrum o f  L2( G, to) with multiplicity one. 

In particular, A (rt ~ rt~ consists of  inequivalent representations. 
Our main global results consist of  a definition and description of  the packets of  

discrete-series G-modules. To introduce the definition, recall that we defined 
above G,-packets of  tempered G,-modules at each v (if v splits then 
G, = GL(3, F,) and a packet consists of  a single irreducible). If  rt, is a non- 
tempered irreducible G,-module then its packet {Tt,} consists of  n, alone. For 
example, the packet of  ~t x consists only of  ~t x . Also we make the following 
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D e f i n i t i o n .  The quasi-packet rt(fl,) of  the non- tempered subquot ient  It x = 
7r~ of  I(fl~x, vJl:), where fl, is a character o f  C~, - - E l ,  consists o f  it x and 

This local definition is made  for global purposes.  Thus  a packet  consists o f  
tempered G,-modules, or o f  a single non- tempered element.  A quasi-packet 
consists of  a non-tempered rt x and a supercuspidal  ~r~-. The packet o f  it,- consists 

of  rtZ and rt, + , where 7t, + is the square-integrable const i tuent  of I(fl,r~v; ~/2). 

D e f i n i t i o n .  (1) Given a local packet  P, for all v such that P, contains an 
unramified member  ~r ~ for almost  all v, we define the globalpacket P to be the set 
of  products | rt, over  all v, where 7t, lies in Pv for all v, and rt, -- rt ~ for almost  

all v. 
(2) Given a character # o f  C~ = A~e/E ~, the quasi-packet  rt(g) is defined as in 

the case of  packets, where P, is replaced by the quasi-packet  7t(/A) for all v. 
(3) The H(A)-module  p = | p, endo-lift to the G(A)-module  rt -- | ~tv if  p, 

endo-lifts to 7t, (i.e. {p,} endo-lifts to {it,}) for all v. Similarly, 7 t - - |  n, 
base-change lifts to the G'(A}-module II -- | I-Iv if  rt, base-change lifts to II, 
for all v. 

A complete description o f  the packets is as follows. 

Global L i f t i n g .  The base change lifting is a one-to-one correspondence fiom 
the set of  packets and quasi-packets which contain an automorphic G-module, to 
the set of  a-invariant automorphic G'-modules H whose components are a-stable 
(these are described by the sums 01, 02, 03 in w 1 below). 

As usual, we write n(p) for a packet  whiclr base-changes to H = I(T | x), where 

z is the stable base-change lift o f  the H-packe t  p. We conclude: 

Description o f  packets .  Each discrete-series G-module rt lies in one of the 
following. 

(1) A packet n(l-l) associated with a discrete series a-invariant G'-module H. 
(2) A packet n(p) associated with a discrete series automorphic H-module p 

which is not of  the form p(O, to/02). 
(3) A quasi-packet rt~) associated with an automorphic one-dimensional H- 

module p = #(det).  

M u l t i p l i c i t i e s .  (1) The multiplicity of  a G(A)-module rt = @ ~, from a 
packet it (l-I) of  type ( 1 ) in the discrete-spectrum of  G is one. Namely each element rt 
of n(I1) is automorphic, in the discrete-series. 

(2) The multiplicity of  n from a packet n(p) or a quasi-packet n ~ )  in the 
discrete-spectrum of  G is equal to one or zero; this multiplicity is not constant over 
n(p) and ~t~). It is given by 
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with ever, n,) = 1 i f  n, = •x and ev(ltv, rt,) = - 1, i f  rt~ = nT , i f  n lies in n(lt). I f  re 
lies in n(p), and there is a single p which endo-lifts to n, then the multiplicity is 

where e,(o,, ~ )  = 1 i f  re, lies in g(p,) +, and e,(p, g,) = - 1 i f  ~, lies in ~ , ) - .  I f  ~ 
lies in ~(Pl)= n(,o2)--rc~) where p~, P2, P3 are distinct H-packets, then the 
multiplicity o f  n is (1 + Z~= 1 < ei, n > )/4, where the signs ( e~, ~ ) = II, ( ei, re, ) are 
defined in II. 1.2. 

In particular we have the following 

Rigidity T h e o r e m .  I f  n and n' are discrete series G-modules whose compo- 
nents rcv and rt~ are equivalent for almost all v, then they lie in the same packet, or 
quasi-packet. 

C o r o l l a r y .  (1) Suppose that n is a discrete-series G-module which has a 
component o f  the form nw• Then rt lies in a quasi-packet n(p). In particular its 
components are o f  the form rcx for almost all v, and o f  the form rt7 for the 
remaining finite set o f  even cardinality o f  places o f f  which stay prime in E.  

(2) I f  re is a discrete series G-module with an elliptic component at a place o f F  
which splits in E,  or a one-dimensional or Steinberg component at a place o f F  
which stays prime in E, then n lies in a packet rc(rI), where Yl is a discrete-series 
G'-module. 

The discrete series G-modules with an elliptic component at a place v of  F 

which splits in E can easily be transferred to discrete-series 'G-modules, where 'G 
is the inner form of G which is ramified at v. 

Our local results hold for every local non-archimedean field, of  any characteris- 

tic, since by the Theorem of  [K'] our results can be transferred from the case of  
characteristic zero to the case of  positive characteristic. Consequently (once the 
twisted trace formula for G and a is made available in the function field case) our 

global results hold for every global field, in particular function fields, not only 
number fields. 

Finally, we note that in this paper we concentrate on the description of  G- 
packets in the p-adic case, and we work with a global extension E/Fwhich  splits 

at each archimedean place. The analogous results in the real case are well-known. 
They are described in the Appendix to this paper. The main difference is that in 

the p-adic case G = U(3) does not have inner forms non-isomorphic to itself, 
while in the real cask the quasi-split U(2, 1) has a compact inner form U(3). 

Consequently, a discrete-series U(2, 1)-packet in the real case consists of  three G- 
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modules, while in the p-adic case the G-packet consists of  one, two or four 
elements. Of course in the real case there are no supercuspidal G-modules. In 
particular, in the Appendix we use our global results to determine those automor- 
phic G-modules which make a non-zero contribution to the cohomology outside 
the middle dimension. These are the automorphic elements in the quasi-packets 

I.  L o c a l  L i f t i n g  

w T r a c e  f o r m u l a e  

Our aim here is to study the local liftings. Thus we fix a quadratic extension of  
local non-archimedean fields. We start with the identity of  trace formulae of  [U'], 
Proposition 4.4. We denote by E / F  a quadratic extension of  number fields such 

that F has no real places and at the place w of F we obtain that Ew/Fw is our 
quadratic extension. Denote by V a finite set of  places of  F including the 

archimedean and those which ramify in E. The products below range over V; at 
each v in Vwe choose matching functions ~ ,  f~, 'f~, as in [U], Lemmas 2.7, 3.3. 
We fix an unramified G~-module rt ~ at each v outside V. The sums below range 

over the automorphic G', G or / / -modules  with component matching it ~ at all v 
outside V. Proposition 4.4. of  [U'] asserts the following 

P ropos i t i on .  The identity of  trace formulae takes the form 

* ,  +  a,2+ = F , -  �89 - i f 3 +   F6. 

By the rigidity theorem for G' at most one of  the terms ~i is non-zero, and 
consists of a single contribution, where 

~t  = Y. I] tr l'Iv(~ X a), 
n 

the sum being over the a-invariant discrete-series (automorphic) G'-modules H; 

these are the (a-invariant) cuspidal or one-dimensional G'-modules; 

~2 -- Y, I] tr I(z~ | xv; r X tr), 

the sum being over the tr-invariant discrete-series (i.e. cuspidal or one-dimensio- 
nal)/ / ' -modules r which are obtained by the stable base-change map b" in [U]; 

~3 -- Y, I-I tr I((lu, It', It "); ~ • tr), 

where the sum is over the distinct unordered triples/~, # ' ,  It" of  characters of  
CJCr .  
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On the fight, 

the sum is over the 

Fi = Y~ m(x)  II tr ~,0~,); 
ff 

equivalence classes of  discrete-series (automorphic) G- 
modules tt; they occur with finite multiplicities m(Tt). 

F2= ~ I-I tr{p,}('f,), 
p .p(o, 'o) 

the sum ranges over the (automorphic) discrete-series packets p of  H which are 
not of  the form p(O, '0) (see 
dimensional (see [U(2)]). 

[U(2)]). These packets p are cuspidal or one- 

F3= Y. rI tr{p,}('f,), 
p -p(O,'O) 

where the sum ranges over the packets p = p(O, '0), where 0, '0 and co/0. '0 are 

distinct. 

F~fY~ 1-I t rR( /z , ) I (# , , f~) -  Y, H tr{p,}('f,); 
,~ p 

the first sum is over the characters/z ofCe/CFwith113 @ m'. The second is over the 
packets p = p(O, m/02), where 03 @ to. 

w C o i n v a r i a n t s  

Some of  our proofs below are inductive on the rank, and depend on reduction 
to the elliptic set of  a smaller Levi subgroup. 

In our rank one case there is only one induction step, and here we set up the 
required notations. Let E/F be a quadratic extension of  local fields. 

Denote by A the diagonal subgroup, by N the unipotent upper-triangulai 
subgroup of  G, and by K the maximal compact subgroup G(R) of  G, so thal 
G -~ ANK; R is the ring of  integers in F. We use the analogous notations '.4, 'N, '~ 
in the case of  H, and A', N', K' in the case of  G', the even drop the primes if nr 
confusion is likely to occur. Put 

f f S(k-'<,,,k)d,,dk (a -- (a, p,  <i - '), l a l < l ) ,  

K N 

where ~(a, p,  ~ -1) __ l a I s is the modulus funct ion on G. I f ( x ,  tO is a G-module,  
then the quotient VN of Vby the span of  the vectors 7r ( n ) v -  v (n in N, v in v) is an 
A-module ~N, whose tensor product with J-u2 is the normalized A-module 

(~N, VN) of  N-coinvariants of  ~. The theorem of  Deligne-Casselman [C] asserts 
that at a ---(a, fl, &-t) with I~l < 1, we have z~(a)ffi)~t~(a), hence Ax, (a ) - -  
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Z~,(a), where a ( a )  = I(a - fl)(,8 - & - l) l ( = l a I- ~ if  l al  < 1). Consequently,  i f f  
is supported on the conjugacy classes o f  the a with I a [ < 1, we conclude from the 
Weyl integration formula that 

tr n ( f )  = tr n~0cN). 

Similar definitions can be int roduced in the cases of  H and G'-modules.  

Definit ion.  A G-module  zr is called supercuspidaliflr~r is {0}. In our  case rtN 
can have up to two central exponents  (characters o f  A ). it is called tempered if they 
are bounded, and square-integrable if  it is strictly less than 1 on the a with 
l al < 1. In particular, a square-integrable 7r has at most  one central exponent  
in :r 

We shall use these results to study the following identity. Suppose that  (p } is a 
square-integrable H-module ,  and re(p, zt), c and c '  are complex numbers,  
where zt are (equivalence classes o f )  unitarizable G-modules,  and the sum 

Y.~ re(p, ~t)tr r t (f)  is absolutely convergent.  Moreover,  suppose that  this sum 
ranges over a countable set S which has the following property.  For  every open 
compact subgroup/(1 o f  G there is a finite set S(KI) such that tr z~0 c) = 0 for every 

n in S - S(KI) and every Ki-biinvariant f .  Suppose that  for all matching (0, f ,  ' f )  
we have 

(t.2.1) c tr l ( r  | x; r X rr) + c '  t r{pJ( ' f )  = ~ m(,o, lr)tr rt0c), 

where z is the stable base-change lift o f  {p }. In this case we have 

P r o p o s i t i o n .  (i) The set S consists o f ( l )  square-integrable but not Steinberg 
G-modules, and (2) proper submodules of  G-modules induced from a unitary 
character of A. 

(ii) If{p} is supercuspidal then the zt o f ( l )  are supercuspidal. 
(iii) f f  {p } is Steinberg then precisely one ~ of(l)  is not supercuspidal; it is a 

subquotient of  an induced G-module I(prv~a). 
(iv) I f  the re(p, zt) are all non-negative then the zt are all square integrable. 

R e m a r k .  (a) Then 7t ment ioned  in (2) above are not  square-integrable, since 
their central exponents do not  decay. They exist, and are described in [U], (1) o f  
w but we need not use this fact. (b) In (iii), v(x)-- [xl a n d / t  is a (unitary) 
character o f  E • trivial on FX. Our  p roof  implies that if  the identity (1.2. I) exists, 
then I(Oxo l~) is reducible. In this way, we recover a result o f  Keys, recorded in 
[U], (3) o f  w In [U], w we give a complete  list o f  reducible induced G- 
modules. There we quote  the work o f  Keys. Our  work here gives an alternative 
proof that the list describes all reducible induced G-modules.  
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P r o o f .  Let fl be a character o r e  x. For every n _-_ 1 letf~ be a function which 
is supported on the conjugacy classes of (a, fl,& -~) with [al =q~, with 
F(a, f , )  -~ fl(a) + fl(& - 1) if  a = (a, 1, & - ~ with [ a J = q - n. If  (p)  is supercuspi- 
dal then {p~} is zero and so is I(~ | ~c)s. I f p  is Steinberg then I(z | IC)N has a 
single ~-invariant exponent, which satisfies tr[I(r | Ic)s](O~ • t r )=  tr{p}N('fv) 
for any triple (~, f ,  ' f )  of  matching functions, where f is in the span of the f~, 
n > 1. In particular, (1.2.1) takes the form 

(1.2.2) (c' + c)tr{p}s('f~) = ~ m(p, n)tr ~r~(fs) 

f o r f a s  above. It is clear that there exists a compact open subgroup KL of  G, 
depending only on the restriction offl  to the group R~ of units in E x, such tha t J  
can be chosen to be K~-biinvariant. Hence the sum in (1.2.2) is finite. Applying 
linear independence of  finitely many characters of  the form n ~ z ~, the proposi- 
t ion follows once we make the following observation. I f  ~t and Tt' are irreducible 
inequivalent G-modules which have equal central exponent, then they are the 
(only) constituents of  a reducible G-module I0/)  induced from a character ~/ 
of  A with q(a) = rl(JaJ- ~); namely the composition series of  I(~/)N consists of  
two equal characters, necessarily unitary. Then tr~t~(fs)=trTr~(fN), and 
re(p, lt)tr lts(fN) + re(p, 7t')tr 7t/v(fN) is zero if re(p, n) + re(p, 7r') is zero. If  
re(p, it) and re(p, 7t') are both non-negative their central exponents cannot cancel 
each other, and (iv) follows. 

R e m a r k .  We have re(p, ~t) = c + c' for the ~z of(iii). 

w L o c a l  identity 

As in (1.2), let E / F  be a quadratic extension of  local non-archimedean fields. 
Let {p} be a square-integrable H-packet, and z its stable base chane lift. In this 
section our aim is to prove the following 

P r o p o s i t i o n .  For every square-integrable G-module rt there exists a non- 
negative integer re(p, it) such that for every triple (r f ,  ' f )  o f  matching functions 
we have the identity 

(1.3.1) t r { p } ( ' f ) + t r I ( z | 2 1 5  re(p, n)tr n(f ) .  

P r o o f .  We use the identity of  Proposition 1.1. Thus we fix a quadratic 
extension of  global fields where F h a s  no real places, such that for some place w of 
F the completion Ew/Fw is the local quadratic extension of  the proposition. 
Denote by Z(E)  the center of  GL(2, E). Let H~ be the group o f g  in GL(2, F)  with 
determinant  in N~/rE x. Using the relation Z(E)HI = Z(E)H,  and the Deligne- 
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Kazhdan simple trace formula for / /1 ,  it is easy to prove the existence of  a 
cuspidal H-packet {p) whose component at w is the H,~-packet {p) of the 
proposition, which has the following properties. At some place w' ~ w of  Fwhich  
is unramified (in particular non-split) in E/F the component pw, is the Steinberg 
Hw,-module. At each place v of F which ramifies in E the component (Pv } is 
properly induced. At each v ~ w, w' which is unramified in E/F the component 
(pv } is unramified. At some v which splits in E/Fthe component is supercuspidal. 

The packet (p } lifts to a tr-invariant cuspidal H'-module r via the stable base 
change map of [U(2)], and to r | x via the unstable map. There are contributions 
only in ~2, F2 and possibly F~ of  Proposition 1.1, as we now choose the 7t ~ there so 
that the packet {p ) is the only term in F2. A priori the identity O2 + F2 = 2F~ holds 
where Visa "sufficiently large" set containing w and w'. However, for each v ~ w, 
w' we may choose Ir ~ to be defined by the component {Pv ) of  {p ) in the natural 
way, since the endo-lifting e : H~ ~ G~ is already defined for split places v, for 
unramified v if {p ) is unramified, and for properly induced H,-modules (at the 
finitely many v which ramify in E/F). Then we can apply a standard argument of  
"generalized linear independence of characters in an absolutely convergent sum 
of unitary characters" at each v ~ w, w' in V, to conclude that 02 + F2 -- 2F~ 
where Vconsists of (w, w'} only (and n o are fixed for all v # w, w'). 

To write the identity 02 + F2 = 2FI with V = {w, w'} in a convenient form, 
any object (such as a function or representation) x,, with a subscript w will be 
written simply as x (without a subscript), while an object with subscript w', such 
as xw,, will be written as .r Then we have 

(i) 
tr I ( t  | k; ~ • or). tr I(z | x; ~ • tr) + tr{'~}('f), tr{p}('f) 

= 2  ~ m(ft, n) . t r f r ( f ) . t rn( f ) .  

The sum ranges over a set of  equivalence classes of unitary G-modules 7t and 
G-modules ~. The multiplicities mffr, it) are non-negative integers. 

The identity (i) holds for any pairs (~, f ,  ' f )  and (0, f ,  ' f )  of  matching triples, 
such that the unstable orbital integrals of  either ~ or O (or both) are zero, so that 
we need not use the twisted unstable transfer ~ - -  '# from G' to H of  [U], Lemma 
3.4. Had we used this transfer we would construct {p} such that {Pw,} is 
unramified, and use "linear independence" of characters also at w' to derive the 
identity (1.3.1) as the case V = {w) of the identity O2 + F2 -- 2F~. As the re(p, n) 
would be non-negative multiplicities, the n in (1.3.1) are square-integrable by 
Proposition 1.2, (iv). 

To derive (1.3.1) from the identity (i), we use Kazhdan's result [K] concerning 
the existence of pseudo-coefficients. Namely, let rt' be a tempered elliptic G- 
module. If n' is not supercuspidal then it is a constituent of  a reducible properly 
induced G-module I of  length two, and we denote the other constituent by it". 
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This n"  is non- tempered if  n '  is square-integrable. Then [K] proves  that there 
exists a function f '  whose orbital integrals vanish on the regular split set, such 

that tr n ' ( f ' ) =  1, tr n " ( f ) =  - I (if n"  exists), and tr  n ( f ' ) =  0 for any other  
irreducible equivalence class of  G-modules.  This f '  is called a pseudo-coefficient 
of  n'. Since it is a discrete function (its orbital integrals vanish on the regular split 
set), there exists ~' m a t c h i n g f '  whose unstable twisted orbital  integrals are zero. 
We prove the following 

L e m m a .  Denote by S the set o f  pairs (~, n)  which appear in the sum on the 
right of( i )  such that both ~t and rt are square-integrable. Then for any pair (f, f )  
such that at least one o f f  or f is discrete, the right side o f  (i) is equal to 
27 rn(~, n)tr  fr(f)tr  7t(f), where the sum Z" ranges over S.  

P r o o f .  We first note that  if  neither ~t nor n is elliptic, then tr ~t~)tr  7t(f) 
vanishes if one o f f  and f is discrete. N o w  if  :t" is non-square-integrable with 
m(~t, zt") v~ 0 for some ~, then we have the following possibilities: 

( l )  Both 7t" and ~t are not  elliptic. 
(2) it ~ is not elliptic and ~ is supercuspidal.  Evaluating (i) with f being a 

pseudo-coefficient o f  ~t we derive a contradict ion f rom (iv) o f  Proposi t ion 1.2. 
(3) n" is not elliptic and ~ is one of  the two const i tuents  ~t' and  ~t ~ o f  a 

reducible induced G-module.  At least one o f  the two, say ~t', is tempered.  
Evaluate (i) at a pseudo-coefficient o f  ~', to deduce  f rom Proposi t ion  1.2 that  
m(~ ' ,  ~z") = m(~t", ~"); we are reduced to the si tuation o f ( l )  on writing ~t for the 
sum of  ~r' and ~t". 

(4) zt" is elliptic, and it' is the tempered  G-module  such that {~t', ~t"} are the 
consti tuents o f  a reducible induced G-module.  I f  ~t is supercuspidal,  we are done 
as in (2). I f  ~t is not elliptic, we are done as in (3). Then we assume that  ~t is one o f  
the two constituents,  ~t' ( tempered) and ~t", o f  a reducible induced d -modu le .  Pu t  

a = m(fr', 7t'), b = m(~t', rt"), c = m(~t", n'), d = m(~t", n"). We claim that a -- 
b = c = d. I f  we prove this, we are reduced to the case of  (1), and the l emma 
follows. To prove the claim, we evaluate (i) at f =  f ' ,  where f '  is a pseudo-  
coefficient o f  n'. Proposi t ion 1.2 and the following remark imply that  (a)c = d, 

and (fl) either a = b or l a - b l = 1. Next,  we evaluate (i) a t f = f ' ,  where f '  is a 
pseudo-coefficient of  $', and deduce f rom Proposi t ion 1.2 that a + b = c + d = 

2c. If  [a - b I = 1 then a + b is both odd  and even, a contradiction.  I f a  = b then 
a = c, and the lemma follows. 

By virtue o f  the Lemma we may assume that rt and ~ in (i) are square integrable. 
Let ~t' be the square integrable const i tuent  in the composi t ion  series o f  the 
reducible induced G-module  l(xvl~2). It is the square-integrable G-module  

assigned to/~ by Proposi t ion 1.2, (iii). Evaluating (i) at f = f ' ,  where f '  is a 
pseudo-coefficient o f  ~t', we obtain 
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(ii) c t r I ( r |  m(~ t ' , n ) t rn ( f )  
I t  

for all matching (O, f ,  ' f) .  Here c, c' are complex numbers. If f is a discrete 
function then using the argument of Proposition 1.2, we obtain 

(iii) t r l (z  | x; ~ X a) + tr{p}('f) = 2 ~ m(~t', n)tr n(f) .  
~t 

The sums on the fight of  (ii), (iii) range over the same sets. Since tr{p }('f) 
depends only on the unstable orbital integrals of  the discrete f ,  and 
tr l(z | x; ~ X a) on the stable integrals only, it follows that c = 1 and c' --- 1. But 
then (ii) is (1.3.1), and the proposition follows. 

Remark .  We are permitted to use Proposition 1.2 in the proof of  the above 
proposition since the sums ~ ,  F~ consist ofautomorphic forms, and a well-known 
result of Harish-Chandra asserts that there exists only finitely many automorphic 
G-modules with a given infinitesimal character and a non-zero vector fixed by the 
action of a given compact open subgroup of G(Af). Here A I denotes the ring of  
adeles with no archimedean components. 

Our next aim will be to show that the sum of  (1.3.1) is finite. We repeat the 
base-change result (.) of  the introduction as follows: 

(1.3.2) tr I ( r  | k; ~ X tr) = ~ m'(p, n)tr  rt(f). 
x 

The sum is finite, the it are square-integrable, the m'(p, n) are non-negative 
integers. Putting (1.3.1) and (1.3.2) together we obtain 

(1.3.3) tr{p}('f) = Y. m"(p, n)tr n( f ) ,  
i t  

where m"(p, n) = 2m(p, n) - m'(p, n) is an integer, which need not be positive. 
Note that the right side of(1.3.3) is independent of the orbital integrals o f f  on the 
cubic tori of  G. 

w Conjugacy 

In this section we recall results of  [U], w to be used below to prove that the 
sum of(1.3.3) (hence of(1.3.1)) is finite. Two regular elements g, g '  of  G, and two 
tori T, T' of G, are called stably conjugate if they are conjugate in G(F) where aCis 
an algebraic closure of  F.  Let A(T /F)  be the set of  x in G(F) such that 
T' = XT = x T x  -~ is defined over F. Then the set B(T /F)  = G \ A ( T / F ) / T  para- 
metrizes the morphisms of  T into G over F, up to inner automorphisms by 
elements of G. If T is the centralizer o fg  in G then B(T /F)  parametrizes the set of  
conjugacy classes within the stable conjugacy class o f g  in G. The map 
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defines a bijection 

x ~-~ {T ~-, x, = x -  lz(x); z in Gal(f /F)}  

B ( T / F )  ~ ker[Hl(F, T) ~ HI(F, G)]. 

Since F is non-archimedean, Hi(F,  G~) = {0} and 

ker[Hl(F, T ) ~ H I ( F ,  G)] - Ira[HI(F, T ~ ) ~ H I ( F ,  G)] 

is a group. By the Tate-Nakayama theory this group is isomorphic to 

C(T /F)  = Im[H-l(X,(Tsc)) ~ H-~(X,(T))] .  

We denote by W ( T )  the Weyl group of  Tin  G, and by W'(T) the Weyl group o f T  
in A(T/F) .  We write o for the non-trivial element in GaI(E/F). There are four 
types of  tori in G, denoted (0), (1), (2), (3), which we now describe. 

A torus of  type (0) is one which is stably conjugate to the diagonal subgroup A 
of  G. The stable conjugacy class of  a regular element in such a torus consists of  a 
single conjugacy class, and [ W ( A ) ] = [ W ' ( A ) ] =  2. Here A is isomorphic to 
E • • E I. We shall also denote below A by S. 

A torus T of  type (3) js associated with a cubic extension K of  E and an 
automorphism o'  of  order two of  K whose restriction to E is o. Then T is 
isomorphic to the kernel of  the norm map x ~ x o ' x  on K. It is easy to check that 
the galois closure of  K over E is galois over F. If  K / E  is not galois or if  
GaI(K/F) - Z/6 then W'(T) is trivial. If  Gal(K/F) ---- $3 then W'(T) = Z/3. The 
stable conjugacy class of  any regular element in a torus of  type (3) consists of  a 
single conjugacy class. 

A torus T of type (2) is associated with a quadratic extension K of E which is 
biquadratic over F,  and an element o '  o f  Gal(K/F) whose restriction to E is o. 
Then T is isomorphic to K I •  E I, where K 1 is the kernel of  the norm map 
x ~ x o ' x  on K x. Here W'(T) -- 7_,/2. Moreover, the stable conjugacy class of  any 
element of  G whose centralizer is a torus of  type (2) consists of  two conjugacy 
classes in G. We may and we do choose a representative S for this stable 
conjugacy class in the subgroup H -- {(au); a~j -- 0 if  i + j  is odd} of  G. We also 
choose a torus S'  which is stably conjugate but not conjugate to S. It does not 
lie in/~.  

A torus T of  type (1) is compact and splits over E. It is isomorphic to 
E l X E ! • E I. The group C(T /F)  is isomorphic to Z/2 • 7_,/2, hence there are 
four conjugacy classes within the stable conjugacy class of  a regular element of  G 
whose centralizer is a torus o f  type (1). It is clear that W'(T) -- $3, and that this 
group acts transitively on the set of  non-trivial characters of  the group C(T/F) .  
Moreover, there are four conjugacy classes, say S, S', 'S, 'S', in the stable 
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conjugacy class oftori of  type (1), and one of  these classes, say S, is distinguished, 
in the following sense. 

All unitary groups G ( J ) =  (g in GL(3, E); gjtg = j},  where J is any form 
(matrix in GL(3, F)), are isomorphic over F. We normally work with J = Js ince  
then the proper parabolic subgroup of G = G(J) is the upper triangular subgroup. 
Suppose now that J = diag(1, 1,j), where j lies in F x, and put G(j) for G(J). 
Denote the diagonal subgroup of  G(j) by T(j) It is clear that (a) i f j  lies in NE x 
the W(T(j)) = $3; (b) If j l ies in F - NE then W(T(j)) contains the transposition 
represented by 

~ 1 0 , 

0 0 

and W(T(j)) = Z/2. Since W'(T) = $3, there is a torus S in  Gwith W(S) = $3 and 
three non-conjugate tori S', 'S, 'S'  in G with F-Weyl group isomorphic to Z/2. We 
may and we do choose representatives S and S' in the subgroup/ t  of  G which, 
modulo Z, is isomorphic to H over F. We also write below Sn for the intersection 
of S with H. 

To recall the definition of transfer of  orbital integrals of  functions f o n  G to 
functions ' f on  H = I:I/Z, we embed H in H C G by 

0 l 
C 

c 0 

A regular stable conjugacy class in H with eigenvalues a, fl determines a 
semi-simple stable conjugacy class with eigenvalues a, 1, fl in G/Z. This map is 
neither injective nor surjective, as we now show on listing to tori in H. 

There are three types of  tori in H. A torus T~ of  H is of  type (0) if  it is stably 
conjugate to the diagonal subgroup A~ of  H. The stable conjugacy class o f  a 
regular element in such a torus consists of  a single conjugacy class. I f (a ,  1, a - i) is 
the set ofeigenvalues of  a regular stable conjugacy class 7 of  type (0) in G, then y is 
the image of a unique stable conjugacy class 7H in H. The eigenvalues of 7~ are 
(a, a-1). Note that W(AH) = W'(A~) ----- Z/2. 

A torus Tx of His  of  type (2) if  its splitting fields is a quadratic extension KofE 
which is biquadratic over F. It is associated with an extension ~r' to Koft7 on E,  
and isomorphic to K l = (x  in KX; xa'x -- 1 }. Here there is no difference between 
conjugacy and stable conjugacy as C(TH/F) = {0}. If(a,  1, fl) are the eigenvalues 
of a stable conjugacy class y of  type (2) which is regular in G, then 7 is the image of 
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a unique stable conjugacy class 3,H in H. The eigenvalues of 3,n are (a, fl). Note that 
W'(T,,) = Z/2. 

A torus Tn of H is of  type (1) if it is compact and it splits over E.  It is 
isomorphic to E ' • E 1, and C(Tn/F) = Z/2. We have W'(TH) = Z/2. Let 3' be a 
regular stable conjugacy class of type (1) in G with eigenvalues (a, 1, fl) modulo 
Z.  It is also represented by (1/a, 1, fl/a) and (1/,8, 1, a/fl) modulo Z. Hence the 
stable conjugacy class in G/Z defined by 3, is obtained by three distinct stable 
conjugacy classes in H, with eigenvalues (a, fl), (1/a, fl/a), (1/fl, odfl). 

Regular conjugacy classes of  type (3) in G are not obtained from H, since each 
torus of H splits over a quadratic extension of  E. 

The homogeneous space B(T/F) is acted upon by the group C(T/F). We 
identify the two on choosing the base point S (out of  S, "S, S', "S" i f  the type is (1), 
and out of  S, S', if the type is (2)). The group C(T~I/F) naturally embeds as a 
subgroup of C(T/F) if  Tis the image ZTH of  TH in G. If  Tis a torus of  type (1) or 
(2), let e be the non-trivial character on C(T/F) which is trivial on C(Tu/F). By 
the choice of  base point above we view e as a character on B(S/F)/B(SH/F), and 
define for each regular 7 in S 

0(7, f ,  e) = ~ e(6)0(7 z, f ) ,  
g 

where d ranges over a set of  representatives for B(S/F). Explicitly, if the stable 
conjugacy class 3, is regular of  type (1) and contains the conjugacy classes 
represented by x in S, x '  in S', 'x in 'S, 'x' in 'S', then we put 

0(7, f ,  e) = O(x, f )  + O(x', f )  -- O('x, f )  -- O('x', f ) .  

If  7 is a regular stable conjugacy class of  type (2), it contains the conjugacy classes 
represented by x in S and x '  in S', and we put 

�9 (3,, f ,  e) = ~(x ,  f )  -- ~(x ' ,  f ) .  

In addition, if 7 is regular of  type (0) we put ~(7, f ,  e) ---- @(7, f ) .  
We also need transfer factors, as follows. Let I" I be the valuation on F 

normalized by I ~tl = q -  ', where ~ is a generator of  the maximal ideal in the ring 
R of integers in F,  and q is the cardinality of  the residue field R/(~t). I f  a is 
algebraic over F w e  put I a I = }Nx/Fa I utK:Fj, where K -- F(a). Now ifTA is a stable 
conjugacy class in H with eigenvalues a, fl, put A'(TH) ---- l a -- fl I. If  7 is a stable 
conjugacy class in G with eigenvalues a, 1, fl modulo Z then we put 

zx(7) = I(ot-  1 ) ( f l -  1)(or-fl)] .  

Suppose that 7 lies in the subgroup/-) of  G; then modulo Z it is of  the form 
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~ 0 I , 

* 0 

and we write 

x ( ~ )  = x (  - ( ,~ - 1 ) 6 0  - 1 ) ) ,  

where r is the character ofE•  x which is non-trivial on F x, fixed in [U]. 
Denote by tlY(?n, ' f )  the stable orbital integral of  the function ' f on  H at the 

regular stable conjugacy class ~'x. 

De f in i t i on .  The functions f o n  G and ' f o n  H a r e  called matching if  for every 
regular stable conjugacy class in G of  type (0), (1) or (2) which is represented by ~, 
in S~ = S r H, we have 

tc(y)A(y)(I)(y, f ,  e) --- A'(y)(I)'(y', f ) .  

In the sequel we assume the following 

L e m m a .  For every f there exists a matching ' f . 

R e m a r k .  This isalso stated as Lemma 2.7 in [U]. I fE /F i s  unramified and 
f = f o ,  , f =  ,)co are the unit  elements of  the Hecke algebras of  G and H,  this 
Lemma is due to Rogawski (thesis, unpublished). The case o f  locally constant f 
and 'ffollows by homogeneity of  germs. I f  E/F is ramified the Lemma is due to 
Langlands, who used his theory of  "Igusa data" (in preparation). We envisage 
another proof  but this will not be given here. 

w O r t h o g o n a l i t y  

Here we study a transfer 'D -~ 'D~ of  distributions which is dual to the transfer 
f - -  ' foforbi ta l  integrals from G to H.  This study is used to conclude that the sum 
of (1.3.3) is finite. 

Def in i t i on .  (1) A distribution 'D on H i s  called stable i f 'D( ' f )  depends only 
on the stable orbital integrals of 'f. 

(2) A function ' f o n  H extends uniquely to a function ' f o n / ~  with 'f(zh) 
o~-J(z)'f(h) (z in Z, h in R).  A distribution '/9 on H extends to '/) on I-7 by 
'O(~) = 'D(f) .  

(3) Given a stable distribution 'D on H,  let 'Da be the distribution on G with 
'Do(f) --- 'D('f)( -- 'D('f)), where ' f i s  a function on H matchingf .  

R e m a r k .  (1) The map w~-,w-- {v~--~w~ = z(w)w-1; Tin GaI (F /F) )embeds  
W'(T)/W(T) as a subset of  C(T/F). 
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(2) W'(T) acts on C(T/F). Ifw lies in W'(T), and 6in C(T/F) is represented by 
{g, = r(g)g -~ } with g in A(T/F),  then 

w(~) = w- l -  {(wg), } ( = { wr(w) -1. z(wg)(wg) --1} 

= { wr(g)g- I w - i} = w~w - 1) ~ C(T/F). 

(3) Let d be a locally integrable conjugacy invariant complex valued function 
on G with d(zg) = m(z)d(g) (z in Z). The Weyl integration formula asserts 

GIZ T /Z  

The sum ranges over a set of  representatives T for the conjugacy classes of  tori 
in G. Suppose that t is a regular element of  G which lies in T. Then the number of 
t~ in B(T/F)  such that t 6 is conjugate to an element of  Tis [ W'(T)]/[ W(T)]. Hence 
if the function d is invariant under stable conjugacy, then we have 

f f ( g )d (g )dg= Y~ [W'(T)] -1 f /x(t)24v(t , f)d(t)dt .  
{r}, 

GIZ TIZ 

Here { T}, is a set of  representatives for the stable conjugacy classes oftori  in G. If  
'd  is a locally integrable stable function o n / t  then 

f r [W'(T,,)]-'f 
{Tub 

g/Z Tn 

As in [U], tlr(t, ' f )  denotes the stable orbital integral of ' f ,  and tle(t, f )  is that off .  
{Th,}, is a set of  representatives for the stable conjugacy classes of tori in H. 
W'(Tz) indicates the Weyl group in A (Tz/F). It consists of  two elements. 

2.2.1.  P r o p o s i t i o n .  Suppose that 'D is a stable distribution on t71 repre- 
sented by the locally integrable (stable) function 'd. Then the corresponding 
distribution 'DG on G is given by a locally integrable function 'dG defined on the 
regular set o f  G by "da(t) = 0 i f  t lies in a torus o f  type (3), and by 

(2.2.1) A(t)'da(t ~) = ~, x(w(t))zx'(w(t))e(w)e(w(t~))'d(w(t)) 
w 

i f  t lies in the chosen torus S o f  type (0), (1) or (2), and ~ lies in C(S/F) ( ---B (S/F)). 
Here w(t) = wtw -1, and the sum ranges over all w in W'(Sn) \ W'(S). 

P r o o f .  Fix i = 0, 1 or 2, and let Sbe  the distinguished torus of  type (i). Let t~ 
be an element of  B(S/F),  g a representative of  ~ in A (S/F), and T = S ~ = g -  lSg 
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the associated torus. L e t f  be a function on the regular set of  G such that r f) is 
supported on the conjugacy class of  T. Then 

= ' D t f )  = [W'(S.)]-I f zx,(t)2~,(r,f),d(t)dt 'Da(f) 
SIZ 

= [W'(S,)]-I f A'(t)[x(t)A(t) Y~ e(6')~I~(te, f)]'d(t)dt. 
,J 6' 

s / z  

The sum ranges over all 6' in B(S/F) such that S o' = T. Thus ~' is represented by 
wg (i.e. 6'--- {(wg), = z(wg)(wg)-l)), where w ranges over W'(S)/gW(T)g -1. 
Since e is trivial on the image of B(SH/F) in B(S/F), we obtain 

s I z  

= [ W ( T ) 1 - 1  f [~ x(w(t))A'(w(t))e(w)e(w(6))'d(w(t))] A(t)cp(t6'f)dt" 
s/z 

Here w ranges over W'(S.) \ W'(S). By definition of 'de this is equal to 

= [ W ( T ) ] - '  : A(t)zdP(t,f)'datt)dt = : f(g)'da(g)dg; 
TIZ G/Z 

hence the proposition follows. 

Definition.  (1) Let d, d '  be conjugacy invariant functions on the elliptic set 
of G. Put 

(d,d') = ~ [W(T)] -1 f A(t)2d(t)d'(t)dt 
{T}. 

TIZ 

--- ~ [W'(T)] -~ ~ : A(t)2d(t~)d'(t6)dt" 
{T}. a 6ED(TIF) 

TIZ 

Here { T}e (resp. { T}e~) is a set of  representatives for the (resp. stable) conjugacy 
classes of elliptic tori T in G. 

(2) Let 'd, 'd '  be stable conjugacy invariant functions of  the elliptic set of  H. 
Put 

'('d,'d'}= Y, [W'(T.)I-I[D(T./F)] : A'(t)2'd(t)'d(t)dt. 
{r,).~ 

Tn 
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Here ( T ,  }e,s is a set of  representatives for the stable conjugacy classes of  elliptic 
toil in H. 

2 .2 .2 .  P r o p o s i t i o n .  Let 'd, 'd' be stable functions on (the elliptic set of) 11, 
and 'dG, 'db the associated class functions on (the elliptic set of) G. Then 

('de, 'db ) = 2 .'<'d, 'd'). 

Proof.  By (2.2.1) we have 

('de, 'db) = ~ Y~ [ W'(S)] - '  f 
{s} 6~c(s/e) 

s i z  

Y~ x(w(t))x(w'(t)) 
w,w'E W'(S.)\ W'(S) 

A'(w(t))A'(w'(t))e(w)e(w') 'd(w(t)) '3'(w'(t))e(w(J))e(w'(J)). 

Note that e is a character of  order 2. Here S ranges over the set of  (conjugacy 
classes of )  distinguished tori in G of  type (1) and (2). The group W'(Sn)\  W'(S) 
acts simply transitively on the set of  non-trivial characters of  C(S/F). Hence 
X, e(w(O))e(w'(6)) ~ 0 implies that e(w(d)) = e(w'(d)) for all ~ and that w = w'. 
Changing variables we conclude that 

('de,'db) = Y~ ([C(S/F)]/(W'(S.)]) f A'(t)2'd(t)'d'(t)dt 
{s} 

S/Z 

=2 • ([C(T./F)I/[W'(T.)]) y A'(t)2'd(t)'d'(t)dt 
{r.}, 

T~ 

--- 2. ' ( 'd,  'd ') .  

Here we used the relation [C(T/F)] = 2[C(T,/F)] for tori To f type  (1) or (2). The 
proposition follows. 

D e f i n i t i o n .  (1) Let dbe  a conjugacy invariant function on the elliptic set Ge 
of  G. Define dn to be the stable function on the elliptic set 11e of  11 with 

A'(t)d.(t) = A(t)x(t) ~ e(~)d(t 6) 
6~S(S/F) 

on the t in S, where S is any distinguished torus of  type (1) or (2) in 11. 

2 .2 .3 .  P r o p o s i t i o n .  (1) I f  dis a conjugacy invariant function on Ge and'dis 
a stable function on He, both locally integrable, then (d, 'da) --- ' (d. ,  'd). 

(2) The locally integrable class function d on G~ is stable i f  and only i f  d .  --O, 
and i f  and only i f (d ,  X({P})e) vanishes for every square-integrable H-packet {p }. 
Here X({P }) is the sum of  the characters o f  the (one or two) irreducible H-modules 
in (p}. 
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Proof .  By (2.2.1) the inner product (d, 'do) is equal to 

2 [w,(s)]-1 f 
{S} dEB(S/F) 

s / z  

A(t)d(t ~) ~ ~(w(t))A'(w(t))e(w)e(w(d))'d(w(t)) 
w 

(s} 
S / Z  

iS} 
SIZ 

= Y, [WI(Tn)] - '  f A(t)2d~t(t)'d(t)dt ='(du, 'd) ,  
{ r.}, 

T. 

where w ranges over W'(Sn)\ W'(S), and (1) follows. For (2), note that dn -- 0 if  
and only if dn(w-ltw) -- 0 for every T, t in T and w in W'(T), and W'(T) acts 
transitively on the set of  non-trivial characters of  C(T/F). Hence dis stable if  and 
only if dn = 0. Now the X({P }) make a basis for the space of  stable functions on 
the elliptic set of  H, hence dtt = 0 if and only if '(dn, X({P}))= 0 for all 
square-integrable H-packets {p}, as required. 

2.2.4. P r o p o s i t i o n .  The sum of(1.3.3) is finite. 

Proof .  Numbering the countable set of  7t in (1.3.3) with m"(p, zt) v~ 0 we 
rewrite (1.3.3) in the form tr{p}(If) = Xib_~ mitr rti(f), where l ~ b < ~ .  The m, 
are non-zero integers, and the ~t~ are square integrable. For each i in the sum letf~ 
be the product of  a pseudo-coefficient of  ~ti with mi/[ m~[. For any finite a 
(1 _-< a _-< b) pu t f=  = Z = f ,  where Z ~ indicates the sum over i (1 _-< i _-< a). Then 

a 2-- I mtl = mi t r  7t~(f ) 

= ( t r { p  } ( ' f = ) )  2 

= (X ( {P } )a ,  ~ Ximi/I m,l)  ~ 

<(X({P}) X ( { P } ) ( ~  ~Zi) = a ,  G) X~, 

--- 2a. '(X({P}), X({P })) 

= 2a[{p}], 
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where [{p}] is the number  of irreducibles in the H-packet {,o}, and Yi is the 
character of  z~i. Then a ___< 2[{p}], and the proposition follows. In fact, we also 
proved the 

C o r o l l a r y .  The sum of(1.3.3) extends over at most two 7t if[ {,o }] = 1 and four 
n i f  [{p }] = 2. The coefficients m"(p, re) are bounded by two in absolute value, and 
they are equal to one in absolute value i f  there are at least two rc in the sum. 

w  E v a l u a t i o n  

Let E /F  be a quadratic extension of  non-archimedean local fields. 
Our next aim is to evaluate the integers m "(p, rt) and m'(p,  rt) which appear in 

(1.3.2) and (1.3.3), and describe the 7~ which occur in these sums. Recall ([U(2)]) 
that a packet {p } of  square-integrable H-modules  consists of  a single element, 
unless it is associated with two distinct characters 0, '0 o fE ' .  In the last case {p} is 
denoted by p(O, '0). It consists of  two supercuspidal H-modules.  In Corollary 
2.2.4 it is shown that the sum of (1.3.3) consists of  a most  2[{p }] elements. 

P r o p o s i t i o n .  The sum in (1.3.3) consists of  2[{p}] terms. The coefficients 
m"(p, rt) are equal to 1 or - I, and both values occur for each p. 

P r o o f .  Put 0p -- X({P})G. Put 03 for the (twisted) character of  I(z @ x) (of 
(1.3.2)), viewed as a stable (conjugacy) function on G. Consider the inner product  

< Op, Or> = (~ m"(p, ~)X,, Y~ m'(p, rt')X~,> = ~ m"(p,  tOm'(p,  n). 

By (2.2.1), since 03 is a stable function (0p, 0,) is equal to 

Y~ [W(S)] - '  Y~ f (zxO,)(t) 
{S} aE C(S/F) w ~ W'(Sn)\ w'(S) 

S/Z 

~w(t))A'(w(t))e(w)e(w(J))X({p })(w(t))dt. 

Since t is a non-trivial character of  the group C(S/F), we have 

e ( w ( a ) )  = o. 
J~C(S/F) 

Hence (0p, 0r ) ffi 0; the point  is that 0, is stable and Bp is an anti-stable function. 
Since the m'(p, ~) are non-negative integers, we conclude that the integers 
m"(p, ~) do not all have the same sign. In particular, there are at least two n in 
(1.3.3). Corollary 2.2.4 then implies that ]m"(p,  n)l is one (if it is non-zero). 
Moreover, if {p'} is also a square-integrable H-packet, then 
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2 "'(Z((P}), Z({P'})) ---- (On, 0p,) 

m"(p, E m"(p, 

= E m"tp, lr) 

by (2.2.2) and the orthonormality relations (of [K], Theorem K) for characters 
)~ of square-integrable G-modules :t. Taking p =p'  we conclude that 
Z~ m"(p, 7r) 2 = 2[{p}], and the proposition follows. 

Coro l la ry .  For each square-integerable H-packet {p} there exist 2[{p}] 
inequivalent square-integrable G-modules which we gather in two non-empty 
disjoint sets ~r+(p) and 7t-(p), such that 

tr{p }('f) = tr(Tt + (p))(f) - tr(~ - (p))(f). 

Here tr(~ +(p))(f) is the sum of tr t t(f)  over the tt in the set 7r +(p). In particular, 
if {p} consists of  a single term, then 7t +(p) and tr-(p) are irreducible G-modules. 

w Stabi l i ty  

We shall now show that if m'(p, It) # 0, namely if :t contributes to (1.3.2), then 
it lies either in lt+(p) or in 1t-(p). We begin with rewriting (1.3.2). For each 
(irreducible) ~+ in tt +(p) there is a non-negative integer m(tr+), and for each 1t- 
in ~t-(p) there is such m(~r-), with the following property. Put 

~+  ( f ) = ~  (2m(Tt+)+ 1)tr t t+(f)  (~z + in ~+(p)), 

Y~- (f) = ~ (2m(lt-) + l ) t r  t t - ( f )  (i t-  in ~-(p)),  

and 

Then 

S ~ (f)  = Y~ 2 m(p, tr)tr 7t(f) (Tr not in it +(p), g-(p)).  

Y~ m'(p, lt)tr tr(f) -- ~ + ( f )  + ~ - ( f )  + S ~ ( f )  
x 

(this relation defines m(tt +) and m(Tr-)). Also we write X +, X-, Z ~ for the 
corresponding (finite) sums of  characters: 

Z + = ~ (2m(tr + ) +  1)Z(tt+), 
n+en+(p) 

Z-  = ~ ( 2 m ( l t - ) +  1)Z(~r-), 
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z~ re(p, n ) z ( n )  (n ~ + ( p )  u ~-(p)).  

P r o p o s i t i o n .  ~~ OC) --- O for every f o n  G; equivalently, re(p, n) = O for every 
n not in n+(p) andn-(p) .  

Proo f .  By virtue of  the (elementary)Proposit ion 5 of  [U"], it suffices to 
prove the followng. 

L e m m a .  The class function Z + + Z -  on G is stable. 

Proof.  In view of  Proposition 2.2.3 (2) it suffices to show that (Z + + Z- ,  Op,) 
vanishes for every square-integrable H-packet {p'}. We distinguish between two 
cases, when p' # p and when p '  -- p. In the first case we note that if  the irreducible 

occurs in tt +(p) or n -(p), then it occurs in l ( z  | x) with m'(p, ~) # 0. But then 
m'(p', n) -- 0 since the characters of I (z  | ir and I(z '  | K) are orthogonal (by the 
twisted analogue of  [K]), and n does not occur in n +(p') or ~z-(p'). Consequently 

<x + + x - ,  0p,) = (x + + z - ,  z (~  +60')) - x(~ -(p'))) -- 0. 

I f p ' =  p, as in the proof of  Proposition 2.3 we have 

O = ( O , , O p ) =  Y~ ( 2 m ( n + ) + l )  - E ( 2 m ( n - ) + l ) = ( Z + + x - , O . ) .  
n+~n+(p) x-~n-(p) 

This completes the proof of  the lemma, hence also of  the proposition. 

C o r o l l a r y .  For every square-integrable H-packet {,o } we have 

~] (2m(n +) + 1) = Y~ (2re(n- )  + 1). 
x+ez+(p) x-~x-(p) 

In particular i f  the packet {p } consists o f  one element then m (n +) = m (n -). 

In the next w we deal with each H-module p to show that m(n  +) = 
r e ( n - )  = 0. Thus we obtain a precise form of(1.3.2) and (1.3.3). 

w Specia ls  

There are several special cases which we now discuss. Let fl be a character of  E~, 
and fl' the character o r E  x given by fl'(a) = fl(a/d). Let p be the special (namely 
square-integrable) subquotient sp68) of  the unitarily induced H-module ' I  = 
168'v v2) from the character (a, ~ -  ~)~fl '(a)Ja [~/2. The image T o fp  by the stable 
base-change map of  [U(2)] is the special H'-module sp68'), which lies in the 
induced module ' I '  -- I68"v ~/2, f l 'v-  ~/2). As the packet of  the square-integrable p 
consists of  a single element, we conclude that there exist two tempered irreduc- 
ible G-modules denoted n + = n +68) and n -  -- 7t-68), and a non-negative integer 
m, so that 
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(3.l.l) t r p ( ' f )  --- tr r t+0 c) - tr  ~ - ( f )  

and 

(3.1.2) t r I ( r  | x; # • a)  = (2m + 1)[tr n + ( f )  + tr n - ( f ) ] ,  

for all matching ~, f ,  'f .  

Proposition. m = 0, zt- is supercuspidal, and ~ + is the square-integrable 
subquotient r~, in the composition series o f  the induced G-module I(fl'xvt/2). 

P roo f .  On the set o f  x = (a, 1, a -1) in G with l a I <  1, since ' fN(x )=  

tr(x)f~(x) and to(x) = x(a), the Del igne-Casse lman theorem [C] and the relation 
(3.1.1) imply that 

x(a)fl'(a)l a I '/2 = ~c(a)(A'Z({p }))((a, a - ')) 

---- (AX(rt +))((a, 1, 0 - I ) )  -- (zxX(n-))((a, I, a-~))  

= (~ (7 [ ; ) ) ( ( a ,  l ,  a -1)) _ (~(7[N))((a,  l ,  a - i ) ) .  

Since the composi t ion series o f  an induced G-module  has length at most  two, 
and at most one of  its consti tuents is square integrable, and since 7t + (p) and It-  (p) 
consist of  square-integrable G-modules,  it follows from linear independence o f  

characters on .4 that  (1) Z0z~7)--0,  hence 7t- is supercuspidal,  and (2) 
(~(n~))((a, 1, a - l ) )  = fl ' (a)x(a)Ja I v2. 

By Frobenius reciprocity ~ + is a const i tuent  o f  I(fl'~'v t/2). Since 7t + is square- 

integrable we conclude that I(fl 'rv 1/2) is reducible, and 7t + -- i t ; .  
To show that 2m + 1 -- 1 (and m = 0) we use again the theorem of  [C] to 

conclude from (3. 1.2) that  since the A ' -module  I (z  | K)N o f  N'-coinvar iants  has a 

single decreasing a- invar iant  component ,  and so does ~t +, they are equal, and the 
proposition follows. 

w Trivial 

Let l(fl) be the one-dimensional  complement  o f  sp(fl) in ' / ;  1'(~) its base- 
change lift, namely the one-dimensional  const i tuent  in "I'; and 7t x =  7t~ the 
non-tempered subquot ient  o f  I = I(fl'rvl12). 

C o r o l l a r y .  For every matching q~, f ,  ' f , we have 

t r ( l (f l ))( ' f )  = tr  n x ( f )  + tr n - ( f ) ,  

tr I ( l ' ( f l )  | x; # | a)  = tr 7t •  - tr 7t-(f) .  

P r o o f .  This follows since the composi t ion  series o f  I consists o f  Jt • n +. 
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w T w i n s  

The next special case to be  studied is that o f  [{p }] --- 2. Then in the notations o f  
[U(2)], {p} is of  the form p(O, '0), associated with an unordered pair 0, "0 of  

characters o f E ' .  {p} consists of  two supercuspidals when 0 # '0. It lifts to the 
induced H'-module z 0 ic- ~ = I(O"x.- t, '0'~c- l), where O'(x) = O(x/YO, "O'(x) = 
'O(x/yc) (x in E• via the stable base-change map of  [U(2)], and to 1(0', "0") = 
via the unstable map. The o-invariant G'-module I (O  is 1(0', '0', oJ'/0'. '0"). It is 
also obtained, by the same process, from the H-module  p'  = p(O, oM0. '0) ,  and 
the H-module  p"  =p( 'O,  r  We now assume that 0, '0, oM0. '0  are all 
distinct, so that {p}, {p'} and {p~} are disjoint packets consisting of  two 
supercuspidals each. 

We also write p~ = p ,  P2 =P' ,  P3 = P " .  I f  z = I(0", "0"), we conclude that there 
are four inequivalent irreducible supercuspidal G-modules 7rj (1 _-< j < 4), and 

non-negative integers my, so that 

tr l(z; ~ • e)  -- ~ (2mj + 1)tr nj(f).  
) 

Moreover, there are numbers e U (1 < i < 3; 1 _-<j < 4), equal to 1 or - 1, such 
that for any i -- 1, 2, 3, the set {e 0 (1 < j  <4)}  is equal to the set {1, - 1}, and 
thoy satisfy 

4 

tr, A( ' f )  -- Y, e~ tr 7rj(f) (1 < i < 3). 
j - I  

w P r o p o s i t i o n .  (1) Foreach  i there are exactly t w o j  with e0 -- 1. (2) mj 

is independent o f  j;  put  m = mj. (3) The product e~je2je3j is independent o f  j .  

P r o o f .  Note that (1) asserts that n+ = ~r +(p) and ~r- consist of  two elements 

each. To prove (1), note that the orthogonality relations on H imply that if  there 
exists an i for which exactly two e a are 1, then this is valid for all i. Thus, i f  (1) 

does not hold, then there are two i for which the number of  j with e 0 = 1 is 
(without loss of  generality) one (otherwise this number is three, and this case is 
dealt with in exactly the same way). Hence we may assume that i --- 1 and 2, and 

ell ---- 1, e22 = 1 (we cannot have e2~ =eH = 1 since p, p '  are inequivalent). Since 
the stable character 0, is orthogonal to the unstable character Or, (all i), we 
conclude that 

2ma + 1 ~ 2m2+ 1 + 2m3 + 1 + 2m4 + l, 

2m2+ 1 -- 2m~ + l + 2m3+ 1 + 2m4+ 1. 

Hence m3 + m4 + 1 -- 0, contradicting the assumption that mj are non-negative. 
(1) follows. 
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To establish (2), we first claim that there existsj so that eu is independent of i .  If  
this claim is false, we may assume that ett, et2, e2~, e2~, e32, e34 are equal. But then 
the characters of  {p'} and (p"} are not orthogonal. This contradicts the orthogo- 
nality relations on H, hence the claim. Up to reordering indices, the claim implies 
that e, ,  e~2, e21, e23, e3~, e34, are equal. As (Or, Op,) = 0, we conclude that 

ml + m2 ----- m3 + m4, mi  + m3 = m2 + m4, mt + m 4 = m 2 + m3. 

Hence m r is independent of  j ,  and (2) follows. Also it follows that ciiez~e3s is 
independent of j ,  hence (3). 

w P r o p o s i t i o n .  Let p be any square-integrable H-module, so that we 

have t rH(r  X a) -- Z (2m0t)  + I)tr n(f) ,  where II - - I ( z  | tc), the sum ranges 

over 2[{p }] inequivalent stluare-integrable ~ , and m ( ~ ) are non-negative integers. 

Then there exists a n in the sum with re(n) = O. This ~ has a Whittaker vector; the 

other 2[{p}] - 1 G-modules do not have a Whittaker vector. 

Proof .  We give two proofs, local and global. The local proof is based on a 
theorem of  Rodier [Ro], and Harish-Chandra's theory [H] of  characters. 
Theorem 5 of [H] asserts that the character X of  the admissible irreducible G- 
module n, at x = exp Xnear  1 (Xnear  0 in the Lie algebra L ( G )  of  G), is given by 

z(x)  = E c(O AX). 

The sum extends over all nilpotent orbits in L ( G )  (equivalently, unipotent orbits 
in G). vr is a Haar measure on the orbit ~, ~r is its Fourier transform, and c(~) are 
complex coefficients. The theorem of  [Ro] asserts that there is a regular orbit ~' so 
that c(~') is equal to the number of  Whittaker vectors of  ~. In fact the proof o f  
[Ro] is given only under some restriction on the residual characteristic, which 
amounts in our case to: the residual characteristic o f F  is odd. 

The same statement holds in the twisted case (but this does not appear in print; 
hence our local proof is merely a sketch). L ( G )  has to be replaced by the Lie 
algebra of  the o-centralizer G[ of  1 in G'; but GI is G, and the same sum is 
obtained. 

In the case of  G = U(3), there is a single regular unipotent conjugacy class ~'. 
The ~r are homogeneous [HI in t in F x near 0, and the degree of  homogeneity 
of ~r differs from the degree of  ~r for the other three orbits. Since FI -- I(z | r )  is 
tempered, it is non-degenerate, and has a unique Whittaker vector. We obtain the 
identity 

1 ~- Y. ( 2 m 0 r )  + l )c(~' ,  7r). 
~t 
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We put c(~', n) for the coefficient c(q') in the expression for the character X o fn .  
Hence there is rt' with m(n') = 0 and c(~', n') -- 1, while c(~', n) = 0 for the 

§ n'. The proposition follows (when the residual characteristic is odd). 
The second proof  is global. It relies on a result o f  Gelbart and Piatetski-Shapiro 

[GP]. Thus let p, be a supercuspidal H,-module,  where E,/Fu is a non-archime- 

dean quadratic extension. Choose a quadratic extension E / F  of  global fields 
whose completion at a finite place u is the above Eu/Fu, such that at some u '  § u 
we have F~, = F~ and F~, = E~. Construct a cuspidal H-module  p such that (1) its 

components at u and u '  are (equivalent to) p~, (2) at two finite places v' and v" 
which split E/F,  the components are supercuspidal. We may take a totally 
imaginary F. The trace formula yields the identity 

2 ~  rn(n) H tr n , ( ~ ) =  II t r I ( r ,  | 162  H trp,( ' f , )  

-- 1-[ m,[tr n~ + ~ )  + tr n;- ~ )1  + 1-I [tr n, + ~ )  - tr n,-- ~ ) ]  

= E t(n)  1-I tr n,(f,). 

The products range over the finite set Vof  the non-split finite places v where p, is 
supercuspidal, m(rt) is the multiplicity of  the discrete-series n whose component 

at v in Vis n,, and at v outside Vit is determined byp, .  e(n) is the sum of l I  m, and 
(e, n)  -- 1-I (e, n~) (v in V). Here (e, n,) is 1 if  n, lies in n~ + , and - 1 if  n, lies in 

n~-. Linear independence of  characters implies that m (n) -- 0 unless the compo- 

nent r~v o f n  at v in Vis in n, + or h e ,  and then 2m(n)  is equal to e(n). 
Proposition 8.S(iii) (p. 172) and 2.4(i) of  [GP] imply that for some n with 

re(n) § 0 above, we have rn(rt) -- 1. Since (e, n)  is 1 or - 1, we conclude that 
lrI m, is 1 or 3. Since mu, = m,,  and the m, are all positive integers, we deduce that 

m, = 1, as required. 

w P r o p o s i t i o n .  In the notations of  Proposition 3.4, eve~.e3j = 1. 

P r o o f .  Again we use the trace formula, and global notations. We study the 
situation at a place w. We may assume that E l F  are totally imaginary. At three 
finite places v -- vm ( § w; m = 1, 2, 3) which do not split (and do not ramify) we 

choose 0 ,  '0, so that p,, p;, p", are supercuspidal. Since ei~ ez/, e3j, is independent of  
j ,  then for each v there existsj  = j ( v )  so that e~ is independent o f / .  Since e~ can 
attain only two values, and we have three v at our disposal, we can assume that 
e~lj,, ~ --- e~,~, where jm --j(vm), and both sides are independent of  i~, i2. 

We now construct global characters 0, '0 with the chosen components at Vl, v2 
and our place w, which are unramified at each place which does not split in E / F  
(we can take 0 , -  '0, at the v which ramify). It is clear that p~ =p(O, '0), 
P2 = p(O, o~/0 . '0), P3 = p('O, o~/0. "0) are cuspidal and distinct. All three appear 
in the trace formula together with I(T @ x ) -  I(0", '0', oY/0".'0'), and with 
coefficients n(p) -- �89 (see [U(2)]). Namely, we obtain 
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IF[ [~ tr ~zjv(f~)]+ ~ ~ [~ gijvtr nj~(f~)]= 4 ~. m(Tt) I-[ trTz~(f~). 

The product ranges over v -- w, v~, v:. At v --- v,, (m = 1, 2) we take f~ to be a 
coefficient of 7tj,, where j -- j(v)  was chosen above. Then the product  rI can be 
taken only over our place w. Hence, for every j ,  we have 

1 + ~ eijw-~ 0 (modulo 4). 
i 

This holds only if e~jw - 1 for an odd number  of  i, and the proposition follows. 

w To sum up our case (3.3), fix 0, '0 so that Pl = p ( 0 , ' 0 ) ,  ,o2= 

p(O, o9/0. '0) are disjoint supercuspidal H-packets. Denote by II the induced G'- 
module I(0", '0', o9'/0". '0'). 

C o r o l l a r y .  There exist four  supercuspidal G-modules rtj (1 < j < 4), so that Ttl 

has a Whit taker vector but ny ( j  ~ 1) do not, so that 

tr I-I(~ • tr) --- ~ tr 7tj(f), 
J 

and 

tr pi( ' f)  ---- tr 7rl(f) + tr ~i+l ( f )  -- tr Ire(f) -- tr hi-(f) .  

i', i" are so that ( i  + 1, i', i"} = (2, 3, 4}. 

We write 7r +(pi) for {z~l, ~i+1}, and n-(Pi) for {Tri,, 7r~.}. 

w p(O, &)/0 2) 

The next special case of  interest is that of  the packet associated with/7 -- 
p(O, ~0/02), where 0 3 ~  w, so that {p} consists of  supercuspidals; in fact {p} 
consists of  a single element, and this is clear also from the comments  below. The 
associated G'-module is the cr-invariant tempered induced H -- I(0", o9'/0 '2, 0'). 

It is the base-change lift of  the reducible G-module :r = 1(0'). :r is the direct sum 
of  the tempered irreducible 7r + and ~r-. Then we have 

tr H(~ X ~) = tr zc(f) = tr 7r +(f)  + tr 7r - ( f ) ,  

and also 

tr p ( ' f )  -- tr 7t +(f)  -- tr ~ - ( f ) ,  

for a suitable choice of  it +. Namely 7r + has a Whittaker vector, while x -  does not. 
In particular 2[ {p }] = [{ lr +, 7r-}] = 2, so that {p } consists o f  a single element, as 
asserted. 
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w P a c k e t s  

With this we have completed the description of all tempered packets {7~ } of  G. 
The packets are in a bijection with the tempered e-stable G'-modules YI. It has 
been shown already in [U"] that if  I-I is a square-integrable a-invariant G'- 

module, then it is ~-stable, and the packet {7c } consists of  a single element. I f I I  is 
induced from a square-integrable H'-module, and it is e-stable, then it is of  the 
form I(z | ~), where z is the stable base-change lift o f a  square-integrable packet 
{p} of H. The associated G-packet {~} consists of  2 = 2[{p}] elements, each 
occurring with multiplicity one. I f H  is induced from the diagonal subgroup, and 
it is not simply the base-change lift of  an induced G-module I(/z) (in which case 
the packet {~} consists of the irreducible constituents of I(/z)), then I'l is of  the 
form I(0 ' ,  '0', w ' /0 ' . ' 0 ' ) ,  where the three characters are distinct, and trivial on 
F • In this case the packet {Tz} consists of  4 = 2[{p}] elements, where p = 
p(O, '0). 

Using this, and the related character identities between p and the difference 
of members of  { 7r }, we can use the trace formula to describe the discrete spectrum 

of G. 

II.  G l o b a l  L i f t ing  

w Trace  formula  

First we recall Proposition I. 1.1. 

Propos i t ion .  We have F1 -- (I)1 + ~((I)2 -t- F2) + ~((I)3 + F3). 

Proof .  We have to show that F~ is 0, in the notation of(I.l.1). If/z and 0are 
related by IZ(Z) --- O(z/~.), and p - -p(O,  o~/02), then the G-module I ~ , )  is the 
direct sum of  7E~ + and 7~,  and by (I.3.8) we have 

tr p,( ' f )  -- tr 7~ + (f~) - tr 7{~ (j~,). 

Shahidi [Sh] used work of  Keys to show that 

tr R(lz , ) I (# , ,  f , )  = ( - 1, E , /F , ) [ t r  ~ (f~) -- tr 7~ (f~)], 

where the Hilbert symbol ( - 1, E, /F , )  is equal to 1 if - 1 lies in Nr/rE x , and to 
- 1 otherwise. It is 1 for almost all v, and the product of(  - 1, E,  IF,)  over all v is 
1. Hence F6 = O, as required. 

In view of  the local liftings results, this gives an explicit description of  the 
discrete spectrum of  G. 
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w To write out the three terms in the expression for the discrete spectrum 
FI, we introduce some notations. If H~ is a tempered o-stable G'-module, we 
write {~tv(II,)} for the associated packet of  G,-modules. We apply this termino- 
logy also when IL is one-dimensional, where {try(Fly)} consists of  a single 
one-dimensional G~-module; and also when FI, is the lift of  an induced G,-module 
I~ , ) .  If  {p~} is a packet of  H~ which lifts by stable base-change to the H'-module 
zv, we put {~t,(p~)} for {~t,(I(~, | lc~))}. It consists of  2[{p,)] elements; it is the 
disjoint union of the set ~t +(p,) and 7t-(p~), whose cardinalities are equal ifE~ is a 
field; n-(p,)  is empty if E, -- F~ (B F~. Given p ,  we write e(~t,) = 1 for it, in it +(p,), 
and e ( l t ~ ) = -  1 for ~v in ~t,-(p,). In particular, if  [{p,}]=2,  we defined in 
Proposition 1.3.4 the sign t0~ as a coefficient of  ltj, in {Tt,(p,)}, and we put 
ei(~zj,) -- ~ .  We have {~,(p~,)} = {~z,(P2~)) = {~z~(p3,)}, and e~ depends on Pi. 

w Using these notations we can write 

~, = E II tr(~z,(II,)}(f,). 
n 

The sum ranges over all discrete-series automorphic o-invariant G'-modules H. 
Note that we use here the rigidity theorem, and the multiplicity one theorem for 
the discrete spectrum of  GL(3, A~). 

w ~(~2 + F2) is the sum of  two terms. The first is 

_1 f 
~]'[ [tr(~, + (p,))(f,) + tr(;z~- (p~))(f,)] 

2 p§ 
L--  

+ ]-[ [tr(~ + (p,))~,) -- tv(~z~- (p,))(f~)]} 

= ~  m(p,~)  ]-[ tr n,(f~). 
/ t  

The first sum is over the discrete-series automorphic H'-packets p which are 
neither one-dimensional, nor of  the form p(O, '0). The multiplicity re(p, x) is 
[I + e(n)]/2, where e(~) -- II t(lr,); it is 0 or 1. The sum over n is taken over all 
products O n,, such that there exists p as above, and lr, is in {n,(p~)} for all v, and 
~, is unramified (so that e(n~) - 1) for almost all v. Thus m(p, :r) =ffi 1 exactly 
when the number of  components lr, in ~ -  (p,) is even. Otherwise the product @ lr, 
is not automorphic. 

The other term in ~(~2 + F2) is 
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1 f } H {tr nx  (jr,) _ tr ~ ;  ( f ) ]  + rI [tr # x  ( f )  + tr g7  ( f ) ]  

- - ~  m(~,  it) H tr n , ( f ) .  
# 

The first sum is over all charac ters / t  o f  Ce ~ , or one-dimensional  au tomorphic  
H-modules .  We put  m (g, 7t) ---- [ 1 + e (rt) ]/2, where e ( ~r ) is 1-I e ( rr, ), and e ( tt x ) = 1, 

e(rt~- ) = - 1. The sum over  rr ranges over  the products  | n,, such that there 
exists a # as above,  with rr~ = n x for almost  all v, and rr, = tt~- at the other  places. 
m(g ,  it) is 0 unless there is an even number  o f  places v where it, is rt,-. 

w  There remains the sum ~(~3 + F3). It is equal to 

l [ ,  3 , ] 2 H J-,Y' tr(nj,(pv))(f,)+ ,-~ r l  J=,Y" eov tr(nj,(g,))(f,) 

--Y, re(p, 7t) II tr n,(j~,). 

The first sum ranges over  the discrete-series au tomorphic  H-packe t s  o f  the 
form p = p(O, "0), where 0, '0, 09/0 . '0  are distinct. They are taken modulo  the 
equivalence relation p(O, '0) ~, p(O, 09/0. '0) ~, p('O, 09/0. '0). The multiplicity 

"rn(p, n) = [1 + ~ _  1 ei(n)]/4 is equal to 0 or  1. The sum ranges over  the products  
| try, such that there exists p as above  so that zt, lies in (try(p,)} for all v, and it is 
unramified at almost  all v (namely it is n~,), so that  e~(n,) is 1 at almost  all v. 

w  This gives a complete  descript ion of  the discrete-series o f  G. We 

introduce some more  terminology. The local packets {rt, } have been defined in all 
cases, except for try = rt x . This is a non- tempered  G,-module.  We define the 
packet o f  it x to consist o f  n x alone. The quasi-packet rt(lz,) of  7r x will be the set 

{n x , n~-}, consisting o f  a non- tempered  and a supercuspidal.  Thus  a packet  
consists o f  tempered G,-modules,  or  o f  a single non- tempered  element; a quasi- 

packet is defined for global purposes.  Given a local packet  P, at all v, so that it 
contains an unramified m e m b e r  n o for  almost  all v, we define the globalpacket P 
to be the set o f  products  | rtv over  all v, so that ~t, = ~r ~ for  almost  all v, and 

{n,} = P, for all v. Given a charac te r#  o f C e  ~ , we define the quasi-packet 7r(g) as in 
the case of  the packets, where P,  is replaced by  the quasi-packet n0A) at all v. 

A standard argument,  based on the absolute convergence o f  the sums, and the 
unitarizability of  all representations which occur  in the trace formula, implies: 

w  T h e o r e m .  The base-change lifting is a one-to-one correspondence 
from the set of  packets and quasi-packets which contain a discrete-series automor- 
phic G-module, to the set of  o-invariant automorphic G'-modules which appear in 
�9 ~, r or 03. Namely, a discrete-series G-module n lies in one of  the following. 
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(1) A packet 7t(II) associated with a discrete-series a-invariant G'-module I-1. 
(2) A packet rt(p ) associated with a discrete-series automorphic H'-module p which 
is not o f  the form p(O, to~02). (3) A quasi-packet rt(lt), associated with an 
automorphic one-dimensional H-module p --/l(det). 

The multiplicity of 7t from a packet 7t(I-l) in the discrete spectrum of G is 1. 
Namely each member 7t of  n(Il) is automorphic, in the discrete series. The 
multiplicity of  a member 7r of  a packet zt (p) or a quasi-packet 7t(g) in the discrete 
spectrum of  G is equal to m(p, n) or m(/z, 7t), respectively. This number is 1 or 0, 
but it is not constant over ~t(p) or it(g). Namely, in cases (2) and (3) not each 
member of  rt(p) or n(g) is automorphic. 

w C o r o l l a r y .  The multiplicity o f  an automorphic G-module in the dis- 
crete spectrum is 1. I f  Tt and it" are discrete-series G-modules whose components rt, 
and 7t'~ are equivalent at almost all v, then they lie in the same packet, or 
quasi-packet. 

The first statement is called multiplicity one theorem for the discrete spectrum 
of  G. The second is the rigidity theorem. 

The automorphic members 7r of  the quasi-packet ~t(,u) have components 7t7 at 
the remaining finite set of  places, which do not split in E/F.  Each such rr is a 
counter-example to the g~neralized Ramanujan Conjecture, which suggests that 
all components 7t, of  a cuspidal G-module rr are tempered. However, we expect 
this Conjecture to be valid for the members 7t of  the packets rt(i.l), it(p). 

w P r o p o s i t i o n .  Suppose that rt is a discrete series G-module which has a 
component o f  the form n x . Then almost all components o f  it are o f  the form n x , 
and rt lies in a quasi-packet n(g). 

Proo f .  7t defines a member I-I ofO~, O2 or O3 whose component at w is of  the 
form l(rw), where r,, is a one-dimensional H~-module. But then II must be of  the 
form I(T), where ~: is a one-dimensional H'-module, and the claim follows. 

The Theorem has the following obvious 

w C o r o l l a r y .  There is a bijection from the set o f  automorphic discrete- 
series H-packets p which are not o f  the form 17(0, to/02), to the set o f  automorphic 
discrete-series G-packets o f  the form rt(,o ). 

This generalizes a result of  Kudla [Ku], and sharpens Theorem 4.4 of  [U'], 
Also we deduce 

w C o r o l l a r y .  Suppose that 7t is a discrete-series G-module whose compo- 
nent rt, at a place v which splits E / F  is elliptic. Then 7r lies in a packet tt(i.l), where 
I-I is in the discrete-series. 
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Let 'G' be the multiplicative group of  a division algebra of  dimension 9 central 
Over E,  which is unramified outside the places u', u" of  E above a finite place u of  
F which splits in E, and which is anisotropic at u' and u ~. Suppose o is an 
involution of  the second kind, namely its restriction to the center E x is a(z)  = ~. 
Denote by 'G the associated unitary group, namely the group of  x in 'G' with 
x~(x) -- 1. It is not hard to compare the trace formulae in the compact case and 
deduce from our local lifting that we have 

w P r o p o s i t i o n .  The base-change lifting defines a bijection between the 
set of  automorphic packets of'G-modules, and the set of  a-invariant automorphic 
'G'-modules. 

This sharpens the result o f  [U"], w 
The Deligne-Kazhdan correspondence, from the set o f  automorphic 'G'- 

modules, to the set o f  discrete-series automorphic G'-modules with an elliptic 
component at u and u', implies 

w Coro l lary .  The relation '~tv ~ 7iv for all v r u defines a bijection 
between the set of automorphic packets of'G-modules 'Tt, and the set of  automor- 
phic packets of G-modules of  the form 7t = tt(1-I), whose component at u is elliptic. 
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A p p e n d i x  

Here we record well-known results concerning the representation theories of  
the groups of  this paper in the case of  the archimedean quadratic extension C / R .  

For proofs we refer to [BW], Ch. VI; [Kr], and [W], w and to [C1], [Sd]. This is 
then used in conjuction with Theorem II.2.1 and its corollaries to determine all 
automorphic G-modules with non-trivial cohomology outside of  the middle 
dimension. 

We first recall some notations. Denote by a the non-trivial element of  
Gal(C/R). Put 2 = ez for z in C, and C 1 --- {z/t; z in CX}. Put H '  -- GL(2, C), 
G ' =  GL(3, C), 

H = U ( l ,  1 ) = { h i n H ' ; h w q i - - w = [  O1 

and 

G -- U(2, 1 )=  

[0 :lJ 
g in G'; gjt$ = d __ 1 , 

1 

The center Z of  G is isomorphic to C~; so is that of  H.  Fix an integer w and a 
character t o ( z / t )  -~ ( z / 2 )  w of  C I. Put to'(z) = to(z/e). Any representation of  any 

subgroup of  G which contains Z will be assumed below to transform under Z by 
to. Choosing the positive square-root of  a positive number, write ( z [2 )  n for 
z2"/(z2) ", for n in �89 and z in C x. 

The diagonal subgroup An of  H will be identified with the subgroup of  the 

diagonal subgroup A of  G consisting of  diag(z, z', 2-~) with z '  -- 1. For any 
character Xn of An there are complex a, c with a + c in Z such that 

xx(diag(z, *- ~)) = (zt)  ~162 +~2. 

This Xx extends uniquely to a character X of A whose restriction to Z is to. In fact 
b --- w - a - c is integral, and X -- x(a, b, c) is defined by 

;c(diag(z, z', t-1)) = (zt)(,,-On(z/2)c,, +,)nz,b" 
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A character x of C x which is trivial on the multiplicative group R+ x of positive 
real numbers but non-trivial on R x is of  the form x ( z ) =  (z /2)  k+ln, where k is 
integral. 

The H-module I(X.) = I(Z.;  B. ,  H)  = Ind(O~2X.; B. ,  H)  norrnalizedly in- 
duced from the character X. of  An extended trivially to the upper triangular 
subgroup B .  of  H, is irreducible unless a, c are distinct integers. In the latter case 
the sequence J H ( I ( x . ) )  of  constituents, repeated with their multiplicities, in the 
composition series of I(X.), consists of  an irreducible finite-demensional H- 
module F .  = F . (X.)  ---- F . ( a ,  c) of  dimension l a - c I (and central character 
z ~ z a +c), and the two irreducible square-integrable constituents of  the packet 
p = p(a,  c) (of highest weight l a - c I + 1) on which the center of  the universal 
enveloping algebra of  H acts by the same character as on FH. The Langlands 
classification of [BW], Ch. IV, defines a bijection between the set of  packets and 
the set of  H~ classes of homomorphisms from the Weil group 

Wcnt= (z, a ; z i n  C x, trz =~tr,  tr 2 = - 1) 

to the dual g r o u p / t  ---/-~ X Wcn~,/-~ = GL(2, C), whose composition with the 
second projection is the identity. Such homomorphism is called discrete if  its 
image is not conjugate by ~ to a subgroup o f / ~ .  = B .  • Wcta. The packet 
p(a,  c) = p(c, a)  corresponds to the homomorphism h(g. )  --- h(a,  c) defined by 

((Z,o,~ 0 ) (0 - ; )  2~--~ •  O" ~---> •  
(zl~.y 

It is discrete if  and only if a ~ c. 

The composition h(a,  b, c) of h (x .  | x - ' )  = h(a  - k - �89 c - k - �89 with the 
endo-lift e : H ~ G of [ U'] is the homomorphism Wcn~---" d defined by 

Z " *  

(z /2)  a 0 

(z/e.) b 

0 ( z / z )  c 

X z ,  tr---~ J X Gr. 

The corresponding G-packet n -- n(a,  b, c) depends only on the set {a, b, c}. It 
consists of  square-integrables if and only if a, b, c are distinct. 

Suppose that a > b _-> c are integers, and put 

Z = ) c ( a , b , c ) ,  X + = X ( b , a , c ) ,  Z - = ) ~ ( a , c , b ) .  

If b > c (resp. a > b) then the normalizedly induced G-module I(x +) (resp. 
I(X-)) has a unique irreducible non-tempered infinite-dimensional quotient 
J+ = J+(a,  b, c) (resp. J -  = J - ( a ,  b, c)). This J+ (resp. J - )  is unitary if and only 
i fb  - c = 1 (resp. a - b = 1); see [Kr] or [W]. 
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I f a  > b = c (resp. a = b > c) then the character ;f+ (resp. X-) of A is unitary 

and the packet rt consists of  the two constituents of  Iof +) (resp. Iof-)) .  There is a 
unique element rt +(a, b, c) in the packet :t = rt(a, b, c) with a Whittaker model. 

The other element in ~t is denoted by i t-  -- r t-(a,  b, c). The composition series of  

I o f - )  consists of  J -  and rt + i f a  > b = c, and that o f / o f  +) consists o f J  § and :z + 

i f a  = b  > c .  
I f  a > b > c then Iof) has a unique finite-dimensional quotient F = FOf); its 

highest weight, with respect to B, is the character diag(x, y, z) ---,x"- ~ybzC+ 1. The 
packet n consists of three square-integrable G-modules D, D +, D - .  For a suitable 

choice (see [BW] or [W]) the composition series o f /o f )  consists o f F ,  J§ J - ,  D, 

that o f / o f  +) consists of  J +, D § D, and that o f / 0 f - )  consists of J - ,  D - ,  D. 
There is a unique choice of complex structure on G/K (see below) which makes 

J§ D § holomorphic, J - ,  D -  anti-holomorphic, and D neither holomorphic nor 

anti-holomorphic. 
To fix notations in a manner consistent with the non-archimedean case, note 

that iffl is a one-dimensional H-module then there are unique integers a _>-- b > c 

with a + b + c - - w  and either (i) b = c +  1, f l=f l (b ,c) ,  or (ii) a = b +  1, 
fl = fl(a, b). If, in addition, a > b > c, put n# x = J+ and ha-- -- D - in case (i), and 
n# x = J - ,  rip- = D + in case (ii). The motivation for this choice of  notations is the 

following character identities. Put 

p = p ( a , c ) @ x - ' ,  p + = p ( b , c ) |  p - = p ( a , b ) |  

Then (p, p +, p - } is the set of  H-packets which lift to the G-packet ~t - ~t(a, b, c) 
via the endo-lifting e. As noted above, p, p+ and p -  are distinct if and only if  

a > b > c, equivalently n consists of  three square-integrable G-modules. More- 

over, every square-integrable H-packet is of  the form p, p + or p -  for unique 

a > b > = c , a > c .  
If  a = b = c t h e n  p = p + = p -  is the H-packet which consists of  the consti- 

tuents of  l o f t ( a ,  c) @ x-l) ,  and ~t = Iof(a, b, c)) is irreducible. 

I f a  > b  = c p u t  (p, 7t +) -- 1, (p, 7t-) = - 1. 

If  a = b > c p u t  ( p ,  ~t + ) - -  l ,  ( p ,  i t - )  = - 1 .  

I f a  > b > c put (p', D ) -- 1 forp '  = p, p +, p - ,  and: (p, D + ) = - l, (p, D -  ) = 
- -  l ;  ( p + , D  + )  = 1 ,  (p+,D-) - -  - 1; (p-,D +) - -  - 1 ,  ( p - , D - )  = 1.  

A.1 P r o p o s i t i o n  ([Sd]).  For all matchingfunctions fon  G and f z  on H, we 
have 

tr cr'(fz) -- Y~ (p', n)tr rc'ff) 
~tE/l 

(p'----p,p+ orp-). 

From this it is easy to conclude the following 
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A.2. Corol lary .  For every one-dimensional H-module fl we have tr fl(f~) --- 
tr np x 0 c) + tr n i  (/')for all matching functions f o n  G andfH on H. 

Further, ifp is a tempered H-module, it the endo-lift ofp (then rt is a G-packet), 
p'  is the base-change lift ofp (thus p' is a b-invariant H'-module), and n'  = I(p') is 
the G'-module normalizedly induced from p' (we regard H'  as a Levi subgroup of 
a maximal parabolic subgroup of G'), then we have 

A.3. Propos i t ion  ([C1]). For all matching f on G and 0 on G' we have 
tr n(f)  --- tr n'(�9 X a). 

From this it is easy to conclude the following 

A.4. Corollary. For every one-dimensional H-module fl we have 
tr(l(fl'))(O X a) = tr npx (f) _ tr gp- (f), for all matching functions f o n  G and r on 
G 1 . 

Our next aim is to determine the (L(G), K)-cohomology of the G-modules 
described above, where L (G) denotes the complexified Lie algebra of G. For that 
we describe the K-types of these G-modules, following [W], w and [BW], Ch. VI. 
Note that G -- U(2, I) can be defined by means of the form 

[ 1  011 J ' - -  1 

0 

whose signature is also (2,1) and it is conjugate to 

J =  1 

I 

by 

B= 

2-01n 0 1 2 ~i/2 1 

2- in 0 - 2- in.j 

of  [W], p. 181. To ease the comparison with [W] we now take G to be defined 
using J'. In particular we now take A to be the maximal torus of  G whose 
conjugate by B is the diagonal subgroup of  G(J). A character Z of  A is again 
associated with (a, b, c) in C 3 such that a + c and b are integral, and I(X) denotes 
the G-module normalizedly induced from X extended to the standard Borel 
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subgroup B. The maximal compact subgroup K of G is isomorphic to U(2) X 

U(1); it consists of  the matrices (~ ~); u in SU(2); a, fl in U(1)=  C ~. Write 

d(x, y, z) for the diagonal matrix diag(x, y, z). Note that A t7 K consists of  
yd(a, a -2, a), and the center of  K consists of  yd(a, a, a -2). 

Let 7tx denote the space of  K-finite vectors of  the admissible G-module 7t. By 

Frobenius reciprocity, as a K-module I(Y)x is the direct sum of  the irreducible 
K-modules h, each occurring with multiplicity dim[HomA nx(Z, h)]. The h are 

parametrized by (a', b', c') in Z 3, such that dim h - - a ' +  1, and the central 

character of  h is 7d(fl, fl, B -2) ~> flb'7~'; hence b'----~c'(3) and a'~---b'(2). In this 
case we write h = h(a', b', c'). For any integers a, b, c, p, q with p, q > 0 we 
also write 

hp,q = h(p + q, 3(p - q) - 2(a + c - 2b), a + b + c). 

A.5.  L e m m a .  The K-module I(z)x, X = x ( a , b , c ) ,  is isomorphic to 
 p >_0h.q 

Proof .  The restriction o f h  = h(a', b', c') to the diagonal subgroup 

D = {~dt~a, ~/~, ~ -2)} 

of  K is the direct sum of  the characters anflb'3'c' over the integral n with 

- a '  < n < a '  and n -~a'(2). Hence the restriction ofh  toA N Kis  the direct sum 
of  the characters ?d(a, a -2 a) ~-> a c~n-b'u2? c] On the other hand, the restriction of  
X = x(a,  b, c) to A N Kis  the character yd(a, a -2, a)t--.>a a +c-2bya+b+c. If  -- a < 

n _--< a '  and n - - - -a ' (2) ,  there are unique p, q > 0 w i t h  a '  - -  p + q ,  a n d  n = p - q .  

Then h(a', b', c') ] (A • K) contains z(a,  b, c) [ (A N K) i f  and only if  there are 

p, q > 0 with a '  = p + q, b' --- 3(p - q) - 2(a + c - 2b) and c' --- a + b + c, as 
required. 

For integral a, b, c put X = z ( a ,  b, c), X + = z ( b ,  a, c), Z -  =x (a ,  c, b). Also 
write 

and 

h+q = h(p + q, 3(p - q) - 2(b + c - 2a), a + b + c), 

hp.q = h(p + q, 3(p - q) - 2(a + b - 2c), a + b + c). 

The Lemma implies that 

I(Z)x = �9 hp,q, I(z+)x ffi ~ h+q, I ( z - ) x  = �9 h;,, 

(sum over p, q > 0). Write JH(~z) for the unordered sequence of  constituents of  
the G-module n, repeated with their multiplicities. 

I f  a > b > c then JH(I(z)) = {F, J+,  J - ,  D} and by [W], w the K-type 
decomposition of  the constituents is of  the form �9 hp,q, where the sums range 



60 YUVAL Z. FLICKER 

over: (1) p < a - b ,  q < b - c  for  F ;  (2) p > a - b ,  q < d - c  for  J+ ;  (3) 

p < a - b, q >_- b - c for  J - ;  (4) p > a - b, q > b - c for  D.  Further ,  

JH(I(z+)) = { J+, D +, D}. The  K-types  are o f  the form ~ hp+q, with sums over: 

(1) p >0,  a - b  < q < a  - c  for  J+ ;  (2) p >0 ,  q < a  - b  for  D+;  (3) p > 0 ,  

q > a - c for  D.  Finally, JH(I ( z - ) )  -- { J - ,  D - ,  D }. The  K-types  are o f  the fo rm 

h ~ ,  with sums over: (1) b - c < p < a - c, q > 0 for  J - ;  (2) p < b - c, q > 0 

for D - ;  (3) p > a - c, q >_-- 0 for  D - .  Recall that  J+  is uni tary  i f  and only i f  

b - c = 1, and J -  is uni tary  i f  and only i f  a - b = i. 

I f  a > b = c  (resp. a = b > c )  then )~+ (resp. Z - )  is unitary,  and  I(Z +) 

(resp. I ( Z - ) )  is the direct  sum o f  the uni tary  G-modules  ~t + and ~t-. The  

K-type decomposi t ion  is ~t + = ~ h + q  (p_->0, q > _ - a - b ) ,  r t x - - ~ h + q  

(p > O, q < a - b ) i f  a > b = c, and rt~ = ~) hi, q (p > b - c, q > O), Tt~ = ~ h~,q 
(p < b - c, q >_- 0) i f a  -- b > c. Moreover ,  JH(I(x)) is {rt x -- J - ,  ~ + } i f a  > b -- 

c, and {Tt x = J+ ,  ~r + } i f  a -- b > c. The  corresponding K- type  decomposi t ions  

are J - = ~ h p , q  ( p < a - b , q > = O ) ,  J + = ~ h p , q  ( p > O , q < b - c ) .  As noted  

above, J -  is uni tary i f  and only i f  a -- 1 = b = c; J+  is uni tary  i f  and  only i f  

a = b = c + l .  
Next  we define ho lomorphic  and ant i -holomorphic  vectors,  and  describe those 

G-modules  which contain such vectors.  Wri te  P+  for  the vector  space o f  matr ices 

0 0 

x y 

in the complexified Lie algebra L(G) -- M(3 ,  C), and 

P - =  0 0 

0 0 

Then  P+,  P -  are K-modules  under  the adjoint  act ion o f  K, dea r ly  i somorphic  to 

h(1, 3, 0) and h(1, - 3, 0). 

D e f i n i t i o n .  A vector  in the space rtr o f  K-finite vectors  in a G-module  7t is 

called holomorphic i f  it is annihi la ted by P - ,  and  anti-holomorphic i f  it is 

annihilated by P+.  

A . 6 .  L e m m a .  I f  I (z)  is irreducible then l ( z )r  contains neither holomorphic 
nor anti-holomorphic vectors. 

P r o o f .  The  K-modules  P+ = h(1, 3, 0) and P -  = h(1, - 3, 0) act by  

h ( l , 3 , 0 ) |  + 1,b + 3, c ) O h ( a  - 1, b + 3, c) 
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and 

h(l ,  - 3, 0) | h(a, b, c) = h(a + 1, b - 3, c) �9 h(a - 1, b - 3, c). 

Hence the action of P+ on I(z)x  maps hp,q to hp + l.q ~ h~,q_ t, and that of P -  maps 
hp.q to hp,q+~ �9 hp_~,q. Consequently if  hp,,, is annihilated by P+, then �9 hp,q 
(p _>- p ' ,  q < q') is an (L(G), K)-submodule of I(z),  and if P -  annihilates hp, q, 
then �9 hp,q (p _--< p' ,  q _-> q') is an (L(G), K)-submodule of  I(z). The lemma 
follows. 

D e f i n i t i o n .  Denote by 7rx~o~ the space ofholomorphic  vectors in rtx, and by 
rtx~ the space of  anti-holomorphic vectors. 

The above proof  implies also the following 

A.7 .  L e m m a .  (i) The following is a complete list o f  irreducible unitary G- 
modules with holomorphic vectors: 

(1) r t = D + ( a , b , c ) ,  where a > b  >c;  then zCX,ho,=h(a - b  - 1, 
a + b - 2 c  + 3 ,  a + b  + c ) ;  

(2) r c = J + ( a , b , b - l ) ,  with a>_b; then ~x .ho l = h(a -b ,  a - b + 2 ,  
a + 2b - 1); 

(3) rr -- zt-(a, b, b), a > b; then ZtX,ho~ ----- h(a - b - 1, a - b + 3, a + 2b). 
(ii) The following is a complete list o f  irreducible unitary G-modules with anti- 

holomorphic vectors: 
(1) r t = D - ( a , b , c ) ,  a > b > c ;  then r t x , ~ = h ( b - c - 1 ,  b + c - 2 a - 3 ,  

a + b  +c ) ;  
(2) rt = J - ( b  + 1, b, c), b >= c; then rtx,~ = h(b - c, c - b - 2, 2b + c + 1); 
(3) ~r -- ~ - ( a ,  a,  c), a > c; then rtK,,~ = h(a - c - 1, c - a - 3, 2a + c). 

Let F = F(a, b, c) be the irreducible finite-dimensional G-module with highest 
weight d(x, y, z) ~ xa-~ybz~+~; it is the unique finite-dimensional quotient of 
I(g), X -- x(a,  b, c). Let F d e n o t e  the contragradient o f F ,  let ~t be an irreducible 
unitary G-module, and denote by H~(L(G), K; 7t | F) the (L(G), K)-cohomo- 
logy of  it O/~. This cohomology vanishes, by [BW], Theorem 5.3, p. 29, unless ~t 
and F have equal infinitesimal characters, namely 7t is associated with the triple 
(a, b, c) of  F. It follows from the K-type computations above that one has (cf. 
[BW], Theorem VI.4.1 l, p. 201) the following 

A.8 .  P r o p o s i t i o n .  I f  HJ(rc | F) ~ 0 for some j then 7t is one o f  the 

following. 
(1) lfrt is D(a, b, c), D+(a, b, c) o rD- (a ,  b, c) then Hi(zt | F) is 0 i f j  ~ 2 and 

c i f j=2.  
(2) I f  Tt is J - ( a , b , c )  with a - b = l  or J+(a ,b , c )  with b - c = l  then 

HJ(~t O P) is 0 i f  j § 1, 3 and C i f  j = l, 3. 
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(3) HJ(F | ~') is 0 unless j = O, 2, 4, when it is C. 

Finally we use the results of  Theorem II.2.1 and its corollaries to describe the 

cohomology of  automorphic forms. Thus let F be a totally real number field, E a 
totally imaginary quadratic extension of  F, G' an inner form of  G which is 
defined using the multiplicative group 'G' of a division algebra of  dimension 9 
central over E and an involution of  the second kind. The set S of  archimedean 
places of  F is the disjoint union of  the set S' where 'G is quasi-split (--- U(2, 1)), 
and the s e t S  # where 'G is anisotropic ( ~  U(3)). Put 'Go = I L e s ' G ,  "K~ = 
ILEs 'K ,  and write 'G ' ,  'G'~, 'K ' ,  'K~ for the corresponding products over S" and 
S #. Here 'K~ -- "G~ for v in S", 'K~ ~-- U(2) • U(1) for v in S'. Fix an irreducible 
finite-dimensional 'G :module  F, for all v in S. P u t / ~ - -  O P~ (v in S). Then 
F, = F~(a~, b~, c,) for integral a, > b, > c, if v is in S'. Let n - - @  n, be a 

discrete-series infinite-dimensional automorphic 'G-module. Then n, is unitary 
for all v and n~ is infinite-dimensional for all v outside S #. Put ~o0 = | ~, (v in S). 
IfH*(L('G~), 'K~; xoo | F) v~ O, then n~ = F, for all v in S #, and 

H*(L('G~), 'K~; 7r~ | :) = II H*(L('G,), 'K,; 7r, | P~). 
yES '  

A.9.  P r o p o s i t i o n .  Let x be an automorphic discrete series 'G-module. Put 
d = dim[L('G~)/L('K~)]. IfHJ(L('G~), "K~; zt~ | F) v k Oforj ~ dthen either zt is 
one-dimensional or 7t lies in a quasi-packet 7t(IZ ) o f  Theorem II.2.1, associated with 
an automorphic one-dimensional H-module p = lZ o det. In the last case we have 
(1) a~ - b, -- 1 or b, - c~ = 1 for all v in S', (2) 7t, is o f  the form ~t x or 7t( for all v 
outside S" (it is it x for almost all v), and (3) 'G is quasi-split at each finite place o f  
the totally real field F (thus 'G' -- GL(3, E) is split). 

P r o o f .  If zt is infinite-dimensional and H j ~ 0 fo r j  § d, then there is v in S '  
such that 7t, is of  the form ~t x . Theorem II.2.1 then implies that 7t is of  the form 
~t(/z), and (2) follows. Since ~t, is unitary (for v in S'), (1) follows from (2). Finally 
(3) results from Corollary II.2.7 of  Theorem II.2.1, which asserts that if  'G has 
automorphic representations of  the form ~ (#) where # is a character o f  H ,  then 
'G' = GL(3,  E )  is the multiplicative group of  the split simple algebra of  dimen- 
sion 9 over E. 

The last assertion of  the Proposition can be rephrased as follows. 

A .10 .  C o r o l l a r y .  I f ' G '  is the multiplicative group o f  a division algebra, 
then any discrete-series automorphic 'G-module with cohomology outside the 
middle dimension is necessarily one-d~mensional. 

This sharpens results o f  [K], w in the case o f  n -- 3. 
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