
ELEMENTARY PROOF OF THE FUNDAMENTAL LEMMA

FOR A UNITARY GROUP

Yuval Z. FLICKER

Abstract. The fundamental lemma in the theory of automorphic forms is proven for the

(quasi-split) unitary group U(3) in three variables associated with a quadratic extension of

p-adic �elds, and its endoscopic group U(2), by means of a new, elementary technique. This

lemma is a prerequisite for an application of the trace formula to classify the automorphic and

admissible representations of U(3) in terms of those of U(2) and base change to GL(3). It

compares the (unstable) orbital integral of the characteristic function of the standard maximal

compact subgroup K of U(3) at a regular element (whose centralizer T is a torus), with an

analogous (stable) orbital integral on the endoscopic group U(2). The technique is based on

computing the sum over the double coset space TnG=K which describes the integral, by means

of an intermediate double coset space HnG=K for a subgroup H of G = U(3) containing T .

Such an argument originates from Weissauer's work on the symplectic group. The lemma is

proven for both rami�ed and unrami�ed regular elements, for which endoscopy occurs (the

stable conjugacy class is not a single orbit).

A. Introduction.

Let E=F be an unrami�ed quadratic extension of p-adic �elds, p > 2, G = U(2; 1;E=F )

the unitary group in 3 variables associated with E=F , H = U(1; 1)� U(1) a subgroup of

G, where U(1; 1) = U(1; 1;E=F ) is a quasi-split unitary group in 2 variables and U(1) =

U(1;E=F ) is an anisotropic torus, and T an anisotropic F -torus in H (and G) which splits

over E; then T = U(1) � U(1) � U(1). Put T = T(F ), H = H(F ), G = G(F ) for the

group of F -points of the F -groups T, H, G. Denote the group of F -points of U(1) by

E1 = fx 2 E�;Nx = 1g, N = NE=F signi�es the norm map from E to F . Let K be the

standard hyperspecial maximal compact subgroup of G, and 1K the unit element in the

Hecke algebra of K-biinvariant compactly supported functions on G.

For a suitable character � 6= 1 on the set (with a group structure) of conjugacy classes

within the stable conjugacy class of t = (a; b; c), a regular (a 6= b 6= c 6= a) element in

T = (E1)3, the �-orbital integral ��1K (t) is de�ned to be the sum { weighted by the values

of � { of the orbital integrals of 1K over the conjugacy classes within the stable conjugacy

class of t.

Analogously one has the standard maximal compact subgroup KH in H, the measure

1KH , and the stable orbital integral �st1KH
(t) on H, where \st" indicates � = 1.
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The \endoscopic fundamental lemma" asserts that �G=H(t)�
�
1K
(t) = �st1KH

(t), where in

this case the transfer factor �G=H(t) (de�ned by Langlands [L], p. 51, and in general by

Langlands and Shelstad [LS]) is (�q)�N1�N2 . Here q = #(R=���R) is the residual cardinality

of F (R : ring of integers in F , ���: generator of the maximal ideal in R), and a� b 2 ���N1R�E ,
c� b 2 ���N2R�E , de�ne the non-negative integers N1, N2 (RE : ring of integers in E).

The other \endoscopic fundamental lemma" concerns the anisotropic F -torus TL in H

and G whose splitting �eld is a biquadratic extension EL of F . Thus L is a rami�ed

quadratic extension of F . Then TL ' (EL)1 � E1 consists of scalar multiples (in E1)

of t = (t1; 1), and t is regular if t1 (2 (EL)1 = fx 2 (EL)�;Nx = 1g, N=norm from

EL to the quadratic extension of F other than E, L) does not lie in E1. De�ne n by

t1� 1 2 ���nELR
�
EL. The transfer factor �G=H(t) is (�q)�n. Once again the \lemma" asserts

�G=H(t)�
�
1K
(t) = �st1KH

(t) for a regular t.

Langlands { who stated the fundamental lemma and explained its importance to the

study of automorphic forms by means of the trace formula { suggested a proof based on

counting vertices of the Bruhat-Tits building of G. Such a proof ([LR], p. 360 [by Kottwitz,

in the EL { or rami�ed { case], and p. 388 [by Blasius-Rogawski, in the E { or unrami�ed

{ case]; both cases are attributed by [L], p. 52 to the last author [who claimed them in the

last page of his thesis]) presumes building expertise, which I do not have. This technique

has not yet been applied in rank > 1 unstable cases.

Since the orbital integrals are just integrals, our idea is simply to perform the integration

in a naive fashion, using the fact that T � H, and using a double coset decomposition

HnG=K, which we easily establish here. We then obtain a direct and elementary proof,

using no extraneous notions. The integrals which we compute are nevertheless non trivial,

and this is reected in our computations. We have used this direct approach to give a

simple proof of the fundamental lemma for the symmetric square lifting [F1] from SL(2) to

PGL(3) (in the stable and unstable cases), and a proof [F5] of this lemma for the lifting

from GSp(2) to GL(4), a rank two case, by developing and combining twisted analogues

of ideas of Kazhdan [K] and Weissauer [W], who had dealt with endoscopy for GSp(2) (an

alternative approach { using lattices { has recently been found by J. G. M. Mars). The

importance of the fundamental lemma led us to test this technique in our case. Thus here

we apply our direct approach to give an elementary and self contained proof in the unitary

case.

The problem of studying the endoscopic lifting from U(2) to U(3) was raised by R.

Langlands [L]. An attempt at this problem { based on stabilizing the trace formula for U(3)

alone { was made in reference [25] of [L] (= [Rogawski] in [GP]), but as explained in [F2],

x4.6, p. 562/3, this attempt was conceptually insu�cient for that purpose. The preprint

\L-packets and liftings for U(3)" (reference [Flicker] in [GP], [2] of [A], and p. �2 in [L])

proposed studying the endoscopic lifting from U(2) to U(3) simultaneously with base-change

from U(3) to GL(3; E) by means of the twisted trace formula. It introduced a de�nition of

packets, and reduced a complete description of these packets { as well as the lifting from

U(2) to U(3) and U(3) to GL(3; E) { to important technical assumptions, proven later

(twisted trace formula, transfer of orbital integrals). Moreover, rigidity and multiplicity
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one theorem for U(3) were reduced to the assertions of [GP], which was written later than

our preprint. The papers [F2/3] contain a much improved exposition of the preliminary

preprint. The paper [F4] contains a new technique, based on the usage of Iwahori-regular

functions. It a�ords a proof of a trace formula identity for all test functions { thus extending

the results of [F2/3] to all representations of U(3) { by simple means. Later, an exposition of

these techniques and results { but not of [F4] { was published by Rogawski (Ann. of Math.

Studies (1990)), who subsequently ([LR], p. 395) corrected an error in the computation of

the multiplicities of the non-tempered discrete series representations. Finally, we note that

Waldspurger [Wa] has recently shown that the fundamental lemma implies the existence of

smooth compactly supported functions with matching orbital integrals.

I lusted for an elementary proof as in this paper for a long time, but it was a conversation

with T. Oda and A. Murase following my talk at the conference \Automorphic forms and

algebraic groups" at RIMS, Kyoto 1995, organized by them, which helped me decompose

HnG=K and initiated the present work. D. Zinoviev suggested treating H 00nG=K, H 00 the
anisotropic inner form of H, as in his thesis [Z]; this I need for the rami�ed case. They, the

referees, and the support of the Humboldt Stiftung, are here warmly thanked.

B. Classes.

Let us review the structure of the set of (F -rational) conjugacy classes within the stable

(F -) conjugacy class of a regular element t in G. Being regular means that the centralizer

ZG(t) of t in G is a maximal F -torus T. The elements t, t0 of G are conjugate if there

is g in G with t0 = g�1tg. They are stably conjugate if there is such a g in G = G(F )

(F is a separable closure of F ). In this case g� = g�(g�1) lies in T = T(F ) for every

� in the Galois group � = Gal(F=F ), and g 7! f� 7! g�g de�nes an isomorphism from

the set of conjugacy classes within the stable conjugacy class of the regular element t of

G, to the pointed set D(T=F ) = ker[H1(F;T) ! H1(F;G)]. This set is contained in the

image E(T=F ) = Im[H1(F;Tsc) ! H1(F;T)], where Gsc denotes the simply connected

covering group of the derived group of G, and Tsc is the preimage in Gsc of the image of

T in the derived group. When F is local and nonarchimedean, H1(F;Gsc) is trivial. When

H1(F;Gsc) = f0g, D(T=F ) = E(T=F ). In this case D(T=F ) is a group. Fix an F -torus

T� in G. Put N = Norm(T�;G), the normalizer of T� in G, and W = N=T� for the Weyl

group of T� in G. The stable conjugacy classes are determined by means of the following.

1. Proposition. The set of stable conjugacy classes of F -tori of G injects naturally in

the image in H1(F;W ) of ker[H1(F;N) ! H1(F;G)]. The map is bijective when G is

quasi-split.

Proof. The tori T and T
�
are conjugate in G, thus T = g�1T

�
g for some g in G. For any t

in T there is t� in T
�
with t = g�1t�g. For t in T , we have �g�1�t��g = �t = t = g�1t�g,

hence �t� = g�1� t�g� 2 T
�
, and g� 2 N . Taking regular t (and t�), g� is uniquely

determined modulo T
�
, namely in W . For any t� in T

�
we then have �(g�1t�g) =

g�1(g�(g�1))�(t�)(�(g)g�1)g, hence the induced action on T
�
is given by ��(t�) = g��(t

�)g�1� .

The cocycle � = �(T ): � ! W , given by �(�) = g�modT
�
, determines T up to sta-

ble conjugacy. Conversely, a fg�g in ker[H1(F;N) ! H1(F;G)] determines an action
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��(t�) = g��(t
�)g�1� on T

�
. A well known theorem of Steinberg asserts that when G is

quasi split over F , a conjugacy class over F in G of a regular t� contains a rational element
g�1t�g (in G); its centralizer is an F -torus which de�nes g�. �

Let us now specialize to our situation. Put J =

�
0 1

�1
1 0

�
, and introduce an action of the

Galois group Gal(F=F ) on GL(3) by �((gij)) = (�gij) if the restriction of � to E is trivial,

and �((gij)) = J t(�gij)
�1J if � jE is the generator � of Gal(E=F ). Then G is GL(3) with

this Gal(F=F )-action, and its group G of F -rational points is G = fg 2 GL(3; E); gJ tg =

Jg. Here (gij) = (gij), and a = �a for a 2 E. Fix T� to be its diagonal subgroup. The

Weyl group W is the symmetric group S3 on 3 variables, and Gal(F=F ) acts on W via

Gal(E=F ), � mapping the reection (12) to (23), and (23) to (12), thus �xing only 1 and

(13). It is easy to classify the stable conjugacy classes of F -tori in G, but we consider only

those which split over E, resp. the biquadratic extension EL of F ; in the other cases the

stable conjugacy class consists of a single conjugacy class. The stable classes are determined

by H1(Gal(E=F );W ), resp. H1(Gal(EL=F );W ). Put NE� for fx�(x);x 2 E�g.

2. Proposition. There are two stable conjugacy classes of F -tori in G which split over E.

One consists of a single conjugacy class, represented by the torus T� (T � = fdiag(a; b; �a�1);
a 2 E�; b 2 E1 = fx 2 E�;x�x = 1g). The other consists of tori T with T = (E1)3, and

D(T=F ) = (F�=NE�)2.
The stable conjugacy classes of F -tori in G whose splitting �elds are quadratic extensions

of E, are parametrized by the (rami�ed) quadratic extensions L of F which are not isomor-

phic to E. Each stable class consists of tori T with T = (EL)1 � E1, and D(T=F ) = Z=2.

Proof. A cocycle inH1(Gal(E=F );W ) is determined by w� inW , with 1 = w�2 = w��(w�),

thus w� is 1 or (13), or (12)(23) or (23)(12). As �((23))(12)(23)(23) = 1 = �((12))(23)(12)(12),

the last two are cohomologous to 1. The cocycle w� = 1 de�nes the action ��(t�) = �(t�)
on T

�
. To determine D(T �=F ), note that H1(F;T�) = H1(Gal(E=F );T�(E)) is the

quotient of the cocycles t� = diag(a; b; c) 2 T�(E) = E�3, t��(t�) = t�2 = 1, thus

t� = diag(a; b; �a), a 2 E�, b 2 F�, by the coboundaries t��(t
�1
� ) = diag(a�c; b�b; c�a).

Since Gsc is the subgroup of G of elements of determinant 1, the cocycles which come from

H1(F;T�sc) have the form t� = diag(a; 1=a�a; �a). These are coboundaries (u��(u
�1
� ),

with u� = (a; 1=a; 1)), hence D(T �=F ) is trivial.

The cocycle w� = (13) de�nes the action ��(diag(a; b; c)) = (�a�1; �b�1; �c�1) on T
�
.

Then T = g�1T�g for some g in G with g�(g�1) = J (mod T
�
), and T = T(F ) =

(E1)3. A cocycle t� = diag(a; b; c) 2 (E�)3 of Gal(E=F ) in T(E) satis�es 1 = t�2 =

t��(t�) = diag(a=�a; b=�b; c=�c), thus a; b; c 2 F� and it comes fromTsc(E) if abc = 1. The

coboundaries take the form t��(t�)
�1 = diag(a�a; b�b; c�c), hence D(T=F ) = (F�=NE�)2.

Consider next an F -torus T in G which splits over a quadratic extension L1 of E, but

not over E. The involution �(x) = J txJ stabilizes T = T(F ), and its centralizer L�1 �E� in

GL(3; E); it induces on L1 an automorphism whose restriction to E generates Gal(E=F ).

Hence L1=F is Galois. But it is not Z=4. Indeed, if Gal(L1=F ) = Z=4 were generated
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by � , then �2 be trivial on E, (w�2)
2 = 1 implies w�2 = 1 or (13) up to coboundaries,

but (13) = w�2 = w��(w� ) = w� (13)w� (13) implies w
2
� = (13), which has no solutions,

and w�2 = 1 implies that T splits over E. Then Gal(L1=F ) = Z=2 � Z=2, and L1 is

the compositum of E and a quadratic extension L of F , not isomorphic to E. Since

p > 2, there are two such L (up to isomorphism), both rami�ed (since E=F is unrami�ed).

The Galois group Gal(LE=F ) is generated by � whose restriction to L is trivial, and �

whose restriction to E is trivial. Up to coboundaries, w� is 1 or (13). If w� = (13),

then w� 6= 1 is of order 2. Up to coboundary which does not change w�, we have w� =

(13), and replacing � by �� (thus changing L) we may assume w� = 1. If w� = 1,

w�w� = w�� = w�� = w��(w� ) = w�(13)w� (13) implies that w� (6= 1) commutes with

(13), hence w� = (13). Up to isomorphism, T consists of (a; b; c) 2 (LE)�3 which are �xed

by �(a; b; c) = (�c�1; �b�1; �a�1) and �(a; b; c) = (�c; �b; �a). Thus b = �b = �b�1 lies in

E1, and c = �a�1 = �a, namely T ' f(a; b; �a�1); b 2 E1; a��a = 1; a 2 (EL)�g.
It is simplest to compute D(T=F ) using Tate-Nakayama duality. The image of

Ĥ�1(F;X�(T sc)) = fX = (x; y; z) 2 Z3;x+ y + z = 0g=hX � �X;X � �Xi

in

Ĥ�1(F;X�(T )) = Z
3=hX � �X = (2x; 2y; 2z); X � �X = (x� z; 0; z � x)i

is Z=2. �

To compute our integrals we need explicit realizations of the tori T = (E1)3 and T =

(EL)1 � E1.

3. Proposition. Put T0 = ft0 = diag(a; b; c); a; b; c 2 E1g, h =

�
1 1

1

�1 1

�
, r = diag(r; 1; 1),

with r 2 F � NE, T1 = h�1T0h and T2 = (hr)�1T0hr. Then T1 and T2 are tori in G,

and a complete set of representatives for the conjugacy classes within the stable conjugacy

class of a regular t1 = h�1 diag(a; b; c)h in T1 (thus a 6= b 6= c 6= a), is given by t1,

t2 = r�1h�1 diag(a; b; c)hr, t3 = r�1h�1 diag(a; c; b)hr, and t4 = r�1h�1 diag(b; a; c)hr.
A set of representatives for the conjugacy classes of tori ' (LE)1 � E1 is given by

TH = f��1
�

� ����=
p
D

�
p
D �

�
; � 2 E1; �2 � ����2 = 1g � E1

� H = ZG(diag(1;�1; 1)) = U
�
0 1

1 0

�
�E1 � G = U(J);

where D 2 R� � R�2, and

TH0 = f��1
�
� ����

� �

�
; � 2 E1; �2 � ����2 = 1g �E1

� H 0 = ZG0(diag(1; 1;�1)) = U
�
��� 0

0 �1

�
� E1 � G0 = U(J 0);
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where J 0 = diag(���;�1;�����1), and J = gJ 0tg, with g =

�
1=2��� 0 �1=2
0 1 0

1 0 ���

�
, so that G0 =

g�1Gg.

Proof. An F -torus T within the stable conjugacy class de�ned by the cocycle f� 7! (13)g
in H1(Gal(E=F );W ) takes the form h�1T�h, with h in G(E) = GL(3; E) such that h� =

h�(h�1) is (13) in W . The h of the proposition satis�es �(h�1) = diag(1=2; 1; 1=2)h, and

h2 =

�
2 0

�1
0 �2

��
0 1

�1
1 0

�
. Then t1 =

� 1
2
(a+c) 1

2
(a�c)

b
1
2
(a�c) 1

2
(a+c)

�
.

A stably conjugate t2 = g�12 t1g2 = (hg2)
�1t0hg2 is de�ned by g2 2 G(E) such that

g2� = g2�(g2)
�1 = h�1a2�h, where a2� = diag(r; 1; r�1) (we take the elements of D(T1=F )

to be represented by g� = 1, a2�, a3� = diag(r; r�1; 1), a4� = diag(1; r; r�1), r 2 F �NE).

Thus we need to solve hg2J
t(hg2) = hg2�(hg2)

�1J = a2�h�(h
�1)J = a2� diag(2;�1;�2) =

diag(2r;�1;�2=r) (bar indicates componentwise action of �). Clearly g2 = r is a solution.

The next stably conjugate element is t3 = g�13 t1g3 = (hg3)
�1t0hg3, where g3 satis�es

g3� = g3�(g
�1
3 ) = h�1a3�h 2 T1. Thus we need to solve gh3J

t(hg3) = hg3�(hg3)
�1J =

a3�h�(h)
�1J = diag(2r;�2=r;�2). Since E=F is unrami�ed, there is x 2 E with xx = 2.

De�ne g3 by hg3 =

�
1 0

x�1

0 x

��
1

0 1

1

�
gh2, for which

hg3J
t(hg3) =

�
1 0

x�1

0 x

��
1

0 1

1

��
2r 0

�1
0 �2=r

��
1

0 1

1

��
1 0

x�1

0 x

�
=

�
2r 0

�1=r
0 �2

�
:

For the last case, replace the index 3 by 4, and note that a solution to hg4J
t(hg4) =

diag(2;�r;�2=r) is given by g4 de�ned by hg4 =

�
y 0

y�1

0 1

��
1

1 0

1

�
hg2, with y 2 E such

that yy = �2.
To exhibit non conjugate (in G) tori ' (LE)1 � E1 in G, we construct one (TH) in

the quasi-split subgroup H = U(1; 1) � U(1) of G, and another (TH0) in the anisotropic

subgroup H 0 = U(2) � U(1) of G. To simplify the notations, we omit the factor E1 from

the notations. To describe TH , consider the rami�ed torus ~T1 = f
�
� ����

� �

�
2 GL(2; F )g.

Put GL(2; E=F ) = fx 2 GL(2; F ); detx 2 NE� = R����2Zg. Then T \GL(2; E=F ) = Z ~T0,

where ~T0 = ~T1\SL(2; F ), and Z = F� is the center of GL(2; F ). We have E�GL(2; E=F ) =

E�U2, where U2 =
�

0 1

�1 0

�
, hence the corresponding torus in U2 is E1 ~T0. But H =

U
�
0 1

1 0

�
= D�1

1 U2D1, where D1 = diag(
p
D; 1). Then TH is as asserted.

To describe TH0 and H 0, note that there is only one form of the unitary group in

3 variables associated with a quadratic extension E=F of p-adic �elds. We then work

with G0 = U(J 0), which is g�1Gg as stated in the proposition, as the anisotropic H 0

is easily speci�ed as the centralizer ZG0(diag(1; 1;�1)). Note that we could work with

H 00 = gH 0g�1 = ZG

�
0 1=2���

1

2��� 0

�
. Now H 0 consists of diag(A; e), e 2 E1, and A 2 GL(2; E)
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with A diag(���;�1)tA = diag(���;�1). Clearly detA = u=u for some u 2 E�, and solving

the equation we see that A = u�1
� a c���
c a

�
with aa� ���cc = uu, or alternatively A =

� a uc���
c ua

�
with aa � ���cc = 1, u 2 E1. A maximal torus splitting over EL, in H 0, is given by

f��1
�
� ����

� �

�
; �� = �2 � ����2; �; � 2 F ; � 2 E�g. Since �2 � ����2 = �� 2 NE� = R����2Z,

we have that both sides are squares, say r2, r 2 F�, and dividing �; �; � by r we conclude

that �2 � ����2 = 1 = ��. Then TH0 is as asserted. �

Remark. The Weyl groupW (T ) of T = T1 in G is S3; for example, h
�1
�
y 0

y�1

0 1

��
1

1 0

1

�
h

lies in G (yy = �2) and represents the reection (12). The Weyl group W (T �) of T � in G

consists of 1 and (13) only.

C. Decompositions.

Let K be the maximal compact subgroup G(R) of G (its entries are in the ring RE

of integers of E). Denote by 1K the characteristic function of K in G, and �x the Haar

measure on G which assigns K the volume 1. Our aim is to compute the orbital integrals

Z
T�nG

1K(x
�1t�x)dx ; t� =

0
@ a+c

2
a�c
2
�

b
a�c
2�

a+c
2

1
A ;

where � is 1 or ���, thus T� = T1 if � = 1 and T� = T2 if � = ���. We shall also compute

the integrals
R
THnG 1K(x

�1tx)dx and
R
TH0nG 1K(x

�1t0x)dx. The measure on each compact

torus is chosen to assign it the volume 1, and we de�ne � by � = ���� (� = 0 or 1). Put H for

the centralizer of diag(1;�1; 1) in G; it contains T� and TH . Let N denote the unipotent

upper triangular subgroup of G; it contains

u00 =
�

1 1 1
2

0 1 1

0 0 1

�
and u0 =

�
1 x 1

0 1 x

0 0 1

�
=

�
x 0

1

0 x�1

�
u00

�
x 0

1

0 x�1

��1
(xx = 2) :

Our computation of the orbital integral is based on the following decomposition.

4. Proposition. We have G =
S
m�0

HumK, where um = u0dm, dm = diag(t; 1; t�1),

t = ���m. Further, HK
m = H \ umKu�1m consists of

�
a1�b+ta2 0 b�ta2+tb3+2a3t

2

0 a1 0

b 0 a1�b�tb3

�
2 H with

a1, a2, a3, b, b3 in RE.

Also G = [m�0H 00dmK, and H 0
m = H 0 \ g�1dmKd�1m g consists of diag(u�1

� a c���

c a

�
; e),

e 2 E1, u 2 E�, a; c 2 E with aa � ���cc = uu and ja=u � ej � j���j1+2m, jc=uj � j���jm,
or equivalently of scalar multiples by E1 of diag(e

� a uc���
c ua

�
; 1), e; u 2 E1, a; c 2 RE with

1 = aa� ���cc, ja� 1j � j���j1+2m, jcj � j���jm. Both decompositions are disjoint.

Proof. For the decomposition: G = T �NK = HNK =
S
m�0

S
"2R�

E

H

�
1 "t�1 1

2
""t�2

0 1 "t�1

0 0 1

�
K =
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S
m;"

H

�
"t�1 0

1

0 "�1t

�
u00

�
"�1t 0

1

0 "t�1

�
K =

S
m�0

Hu0mK, u0m = u00dm. It is disjoint since (by

matrix multiplication) u0m
�1
hu0m lies in K for some h in H only if n = m.

The intersection H
0K
m = H \ u0mKu

0�1
m consists of (ai; bi; ci in RE):�

1 1 1
2

0 1 1

0 0 1

��
t 0

1

0 t�1

��
a1 a2 a3
b1 b2 b3
c1 c2 c3

��
t�1 0

1

0 t

��
1 �1 1

2

0 1 �1
0 0 1

�
=

�
1 1 1

2

0 1 1

0 0 1

��
a1 ta2 t2a3

t�1b1 b2 tb3
t�2c1 t

�1c2 c3

��
1 �1 1

2

0 1 �1
0 0 1

�

in H, thus c1 = �tb1 and c1 = tc2, and we de�ne b 2 E by b1 = �2bt. Thus c1 = 2bt2,

c2 = 2bt, and we continue with

=

�
1 1 1

2
0 1 1

0 0 1

��
a1 ta2 t

2a3
�2b b2 tb3
2b 2b c3

��
1 �1 1

2
0 1 �1
0 0 1

�
=

�
1 1 1

2
0 1 1

0 0 1

��
a1 ta2�a1 1

2
a1�ta2+t2a3

�2b b2+2b �b�b2+tb3
2b 0 c3�b

�

=

�
a1�b X 1

2
b� 1

2
ta2+

1
2
tb3+t

2a3
0 a1�ta2 Y
2b 0 a1�b�ta2�tb3

�
=

�
x 0

1
0 x�1

��1�
a1�b 0 b�ta2+tb3+2a3t

2

0 a1�ta2 0
b 0 a1�b�ta2�tb3

��
x 0

1
0 x�1

�
:

Since this has to be in H, we obtained the relation X = 0, thus a1 � ta2 = b2 + 2b, which

implies that b 2 RE , and Y = 0, thus c3 � b = b+ b2 � tb3 = a1 � b� ta2 � tb3. Replacing

a1by a1+ ta2, and noting that HK
m = diag(x; 1; x�1)H 0K

m diag(x; 1; x�1)�1, the �rst part of
the proposition follows.

Recall that G0 = g�1Gg, and note that H 0 = ZG0(diag(1; 1;�1)) is StabG0(�00) = fx0 2
G0; �00x

0 = ��00; � 2 E1g, where �00 = (0; 0; 1). Put �0 = �00g
�1 = (�1; 0; 1=2���). Then

H 00 = gH 0g�1 = ZG

�
0 1=2���

1

2��� 0

�
is StabG(�0) = fx 2 G; �0x = ��0; � 2 E1g. Embed

H 00nG ,! S = f� 2 E3; �J t� = �0J
t�0 = �����1g by x 7! � = �0x. We have a disjoint

decomposition S = [m�0�0dmK, as �0dm = (����m; 0; 1=2���m+1), and �0dmK = f� 2
S; k�k = j���j�m�1g. Here k(x; y; z)k = maxfjxj; jyj; jzjg, and the union ranges only overm �
0 since fm;�m� 1g = fn;�n� 1g if n+m = �1. The decomposition G = [m�0H 00dmK
follows.

To describe H 0
m, consider the elements of d

�1
m gH 0g�1dm in K. Thus�

1=t 0

1

0 t

��
1=2��� �1=2

1

1 ���

��
a=u c���=u 0

c=u a=u 0

0 0 e

��
��� 1=2

1

�1 1=2���

��
t 0

1

0 1=t

�

=

�
(a=u+e)=2 c=2ut (a=u�e)=4���t2
���tc=u a=u c=2ut

(a=u�e)���t2 ���tc=u (a=u+e)=2

�

lies in K precisely when jc=uj � j���jm, ja=u� ej � j���j1+2m. �

Note that the integrals
R
G=K

dx and
R
H=KH

dg are independent of the choice of the Haar

measures dx on G and dh on H. Also,
R
H=KH1

dh = [KH : KH
1 ]
R
H=KH

dh for a compact

open subgroup KH
1 of KH . It is convenient to normalize the measures dx and dh to assign

K and KH the volume one. Then [KH : KH
1 ] = jKH

1 j�1.
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5. Proposition. The orbital integral of 1K at a regular t 2 T � H (T = T� or TH) can be

expressed asZ
G=K

1K(x
�1tx)dx =

X
m�0

Z
H=HKm

1K(u
�1
m h�1thum)dh =

X
m�0

Z
H=HKm

1HKm (h
�1th)dh :

At a regular t = gt0g�1 2 G, where t0 2 TH0 � H 0 � G0 = g�1Gg, we haveZ
G=K

1K(x
�1tx)dx =

X
m�0

Z
H0=H0m

1H0m(h
�1t0h)dh:

Proof. For the last equality of the �rst assertion, note that u�1m h�1thum 2 K implies that

h�1th 2 H \ umKu�1m = HK
m .

For the last claim, the left side equals

X
m�0

Z
H00=H00\dmKd

�1
m

1K(d
�1
m h�1thdm)dh

=
X
m�0

Z
H0=H0\g�1dmKd�1m g

1K(d
�1
m gh0�1t0h0g�1dm)dh;

the displayed equality follows on writing h = gh0g�1 and t0 = g�1tg. The right side is equal
to the right side of the equality of the proposition. �

We then need a decomposition for T�nH=K \ H and THnH=K \ H. Note that H =

U
�
0 1

1 0

�
�E1, where the �rst factor is the unitary group in two variables which consists of

the g in GL(2; E) with g
�
0 1

1 0

�
tg =

�
0 1

1 0

�
. Correspondingly we write T� = TH� �E1 and

K \ H = KH � E1. Put r
�
j = diag(����(j��)=2;���(j��)=2) for j � 0, j � � (mod 2). In the

following statement the factors E1 and R� { whose volume is 1 { can be ignored for our

purposes. Write [x] for the largest integer � x.

6. Proposition. We have H =
S
j�0

TH� �r�j �KH�E1 (j � �(2), j � 0), and (r
�
j )
�1TH�r

�
j \

KH = (R+ ���jRE)
�=R� � E1. Further we have H =

S
j�0

TH � rj �KH , and r�1j THrj \KH

is RL(j)
1 = E1 \ RL(j), RL(j) = R+

p
������jR, where rj =

�
0 ���

1 0

�j�2[ j
2
]

����[
j+1
2

]
�
1 0

0 ����

�j
.

Proof. Note that E = F (
p
D), D 2 R � R2. Put D1 = diag(

p
D; 1). Then U

�
0 1

1 0

�
=

D�1
1 U2D1, where U2 is the unitary group U

�
0 1

�1 0

�
. Since diag(a; a�1) = a diag(1; 1=aa),

we have E�U2 = E�GL(2; E=F ), where GL(2; E=F ) = fg 2 GL(2; F ); det g 2 NE�g;



10 YUVAL Z. FLICKER

note that NE� = ���2ZR�. Note that T1� =
n�

u �D�

�=� u

�
2 GL(2; F )

o
lies in GL(2; E=F ),

as u2 � �2D = �� 2 NE� (for � = u + �
p
D in E�). The corresponding torus in U2 is

T2� =
n
�
�

�
u ��D

�=� u

�
; � 2 E1

o
, and TH� = D�1

1 T2�D1 is the torus
n
�
�

�
u ��

p
D

�
p
D=� u

�o
in

D�1
1 U2D1 = U

�
0 1

1 0

�
. Thus the map T1� ! TH� takes an element with eigenvalues f�; �g to

one with eigenvalues f�; ��=�g. From the well known (see the Remark following the present

proof) decomposition GL(2; F ) =
S
j�0

T1� diag(1;���
j)GL(2; R) we obtain GL(2; E=F ) =S

j

T1�r
�
jGL(2; R) (j � 0, j � �(2)). Hence U2 = [T2�r�jK2, where K2 = U2 \ GL(2; RE).

Conjugating by D1 we get the decomposition of the proposition. Finally,

(r
�
j )
�1 � TH� � r�j \KH =

�
�

�

�
u ����j

p
D

�����j
p
D u

�
2 KH ; � = u+ �

p
D

�
:

The last matrix has eigenvalues � 2 E1 and ��=�. Since E=F is unrami�ed, E�=F� =

R�E=R
�, we may assume that � 2 R�E and conclude that u 2 R ; � 2 ���jR. Thus our

intersection is isomorphic to (R+ ���jRE)
�=R� � E1, as asserted.

For the last claim, in the notations of Proposition 3 in the rami�ed case (T = (LE)1�E1),

we have that GL(2; F ) = [j�0T1 diag(1; (����)j)K = [j�0T1rjK, rj = tj diag(1; (����)j),
where tj is ����j=2 if j is even, and ����(j+1)=2

�
0 ���

1 0

�
if j is odd. Then GL(2; E=F ) =

[j�0ZT0rjK, and U = U
�

0 1

�1 0

�
= [j�0E1T0rjKU , and H = U

�
0 1

1 0

�
= D�1

1 UD1 with

D1 = diag(
p
D; 1) has H = [j�0THrjKH , where TH is as described in Proposition 3.

Now r�1j THrj \ KH consists of ��1
�

� ����(����)j=
p
D

�
p
D=(����)j �

�
2 KH in the case where

j is even (replace D by 1=D when j is odd), namely j�j � j���jj. Thus r�1j THrj [ KH is

RL(j)
1 = E1 \RL(j), RL(j) = R+

p
������jR, up to factors of the form E1, whose volume is

1 and is ignored here. �

Remark. A proof of the well-known decomposition GL(2; F ) =
S
j�0

T diag(1;���j)GL(2; R) {

extracted from a letter of J.G.M. Mars { is as follows. For another proof see [F5], Lemma

I.I.1. Let E=F be a separable quadratic extension of non archimedean local �elds. Let V

be E considered as a two dimensional vector space over F . Multiplication in E gives an

embedding E � EndF (V ) and E� � GL(V ). The ring of integers RE is a lattice in V and

K = Stab(RE) is a maximal compact subgroup of GL(V ).

Let � be a lattice in V . Then R(�) = fx 2 E; x� � �g is an order. The orders in E are

RE(j) = R+���jRE , j � 0 (��� = ���F ). Note that RE(j)=RE(j+1) is a one dimensional vector

space over R=���. If R(�) = RE(j), then � = zRE(j) for some z 2 E�. Choose a basis 1,

w of E such that RE = R + Rw. De�ne dj in GL(V ) by dj(1) = 1, dj(w) = ���jw. Then

RE(j) = djRE . It follows immediately that GL(V ) = [j�0E�djK, or, in coordinates with

respect to 1, w: GL(2; F ) =
S
j�0

T diag(1;���j)GL(2; R), with T = f
�
a �b

b a+�b

�
; a; b 2 F , not

both 0g, where w2 = �+ �w, �, � 2 R.
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7. Proposition. If RE(j) = R + ���jRE, j � 0, then [R�E :RE(j)
�] is 1 if j = 0, and

(1 + q�1)qj if j � 1. Further, [(R+
p
���R)1 : (R+

p
������jR)1] = qj.

Proof. The �rst index is the quotient of [R�E : 1+���
jRE ] = (q2�1)q2(j�1) by [R�: 1+�jR] =

(q � 1)qj�1 when j � 1. When j = 0, RE(j) = RE . The last claim follows from the fact

that u2 � ����2 = 1 implies u = 1 + ����2=2 + : : : , up to a sign. �

8. Proposition. We have KH � E1 = PHH
K
m , where PH =

n� u 0

w

0 u�1

��
1 �

p
D

1

0 1

�
;

u 2 R�E, w 2 E1, � 2 R
o
, and [PH :PH \HK

m ] is 1 if m = 0 and (1� q�2)q4m if m � 1.

Proof. De�ne u 2 R�, � 2 R, by the equation
�
a b

c d

�
=
� u �

0 1

� �
d cD

c d

�
in GL(2; R). Hence

KH consists of
�
u 0

0 u�1

��
1 �

p
D

0 1

�
1
�

�
d c

p
D

c
p
D d

�
(u 2 R�E , � 2 R; � = d+ c

p
D 2 R�E), and

KH � E1 = PHH
K
m . The intersection PH \HK

m is PH when m = 0, but when m � 1 and

t = ���m, it consists of0
@ a1 + ta2 �ta2 + tb3 + 2a3t

2

a1
0 a1 � tb3

1
A = a1

0
@ 1 + ta02 �ta02 + tb03 + 2a03t

2

1

0 1� tb03

1
A ;

where a02 = a2=a1, b
0
3 = b3=a1, a

0
3 = a3=a1, a1a1 = 1. These satisfy 1 = (1 + ta02)(1� tb03),

namely b03 = a02=(1+ta
0
2). Thus t(b

0
3�a03) = t(a02=(1+ta

0
2)�a02) = t(a02�a02�ta02a02)=(1+ta02).

Erasing the prime from a2, and the middle entry 1, PH \ HK
m consists of the product of

E1 = fa1g and the matrices�
1+ta2 t(a2�a2�ta2a2)(1+ta2)�1+t22a03

0 1�ta2(1+ta2)�1
�
=
�
1+ta2 t(a2�a2)=(1+ta2)

0 1�ta2=(1+ta2)

��
1 t2a003

p
D

0 1

�
:

then [PH :PH \ HK
m ] is the product of [R�E : 1 + ���mRE ] = (q2 � 1)q2(m�1) (for a2) and

[R:���2mR] = q2m (for a3). �

De�nition. Put �(X) = 1 if \X" holds, and �(X) = 0 if \X" does not hold.

Note that
R
PH=PH\KKm f(p)dp = [PH :PH \HK

m ]
R
PH

f(p)dp, if the measure dp assigns the

compact PH the volume one.

9. Corollary. The orbital integral
R
T�nG 1K(x

�1t�x)dx is equal to

X
j�0 ; j��(2)

[�(j = 0) + (1 + q�1)qj�(j � 1)]
X
m�0

Z
PH=PH\HKm

1HKm (p
�1(r�j )

�1t�r
�
j p)dp :

For a regular t 2 TH , the orbital integral
R
THnG 1K(x

�1tx)dx is equal to

X
m�0

jHK
m j�1

X
j�0

Z
KH\r�1j THrjnKH

1HKm (k
�1r�1j trjk)dk
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=
X
j�0

qj
X
m�0

Z
PH=HKm\PH

1HKm (p
�1r�1j trjp)dp:

�

D. Computations: j � 1.

In computing the integrals
R
PH

1HKm (p
�1(r�j )

�1t�r
�
j p)dp at t� = r�1� h�1 diag(a; b; c)hr�,

we put a0 = a
b
� 1, c0 = c

b
� 1, de�ne N1 by a0 2 ���N1R�E , N2 by c0 2 ���N2R�E , N by

a0 � c0 2 ���NR�E and N+ by a0 + c0 2 ���N
+

R�E . Since � is regular, N , N1 and N2 are �nite

non-negative integers. Put M = max(N1; N2). We shall distinguish between two cases. If

ja0 � c0j < ja0j, then ja0j = jc0j = ja0 + c0j, thus N+ = N1 = N2 < N . If ja0j � ja0 � c0j,
then either ja0j < ja0 � c0j (= jc0j = ja0 + c0j, thus N+ = N2 = N < N1), or ja0j = ja0 � c0j
(� ja0 + c0j, jc0j, thus N+, N2 � N1 = N), namely N � N+. Put � = N � j, and denote {

as usual { by [x] the maximal integer � x.

10. Proposition. If j � 1, then
R
PH=PH\HKm 1HKm (p

�1(r�j )
�1t�r

�
j p)dp is 1 if m = 0, (1 �

q�2)q4m if 1 � m � min
��

�
2

�
;
h
N+

2

i�
, and (1 � q�2)q4m � (q � 1)�1q�+1�2m = (1 +

q�1)q�+2m if � = N+ < 2m � 2�. For all other m � 0 the integral is zero.

For a regular t = diag(��1
�

� ����=
p
D

�
p
D �

�
; �) in TH � H, the integralR

PH=PH\HKm 1HKm (p
�1r�1j trjp)dp is 1 if m = 0, (1 � q�2)q4m if 1 � m � min([�=2]; [(1 +

N2)=2]), and (1 + q�1)q�+2m if � = 1 + N2 < 2m � 2 + 2N2, and N2 < N . For all

other m � 0 the integral is zero. Here � = B���N (B 2 R�), and � = �1 + i�2 2 E1 with

�2 = D2���
N2 , �1; D2 2 R�.

Proof. As PH � HK
m when m = 0, we assume m � 1. We need to compute the volume of

solutions in u 2 R�E=(1 + tRE) and � 2 R=t2R (t = ���m), of the equation�
1 ��

p
D

1

0 1

��
u�1 (u�u)=u

1

0 u

� 1
2
(a+c) 1

2
(a�c)���j

b
1
2
(a�c)����j 1

2
(a+c)

!�
u (u�u)=u
1

0 u�1

��
1 �

p
D

1

0 1

�

=

�
a1�b1+ta2 b1�ta2+tb3+2a3t

2

a1
b1 a1�b1�tb3

�
;

for a1 2 E1; b1; a2; a3; b3 2 RE . To have a solution, a1 must be equal to b. We then replace

a by a=b, c by c=b on the left, and b1, a2, b3, a3 by their quotients by a1 on the right, to

assume that a1 = b = 1. Put w = �
p
D + (u � u)=uu, erase 2nd row and column of our

matrices, write b for b1, de�ne B 2 R�E by 1
2
(a� c)����j = B���� (� = N � j � N), to express

our identity as the equality of�
1 �w
0 1

� �
1
2
(a+c) 1

2
(a�c)���j=uu

1
2
(a�c)uu����j 1

2
(a+c)

��
1 w

0 1

�
=
�

1
2
(a+c)�wuuB���� B����uu(���2j=(uu)2�w2)

B����uu 1
2
(a+c)+wB����uu

�
and �

1� b+ ta2 b� ta2 + tb3 + 2a3t
2

b 1� b� tb3

�
:
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Since b 2 RE , to have solutions we must have that � � 0 (consider the entry (row, column)

= (2; 1) in our identity). This is congruent to
�
1�b b

b 1�b

�
modulo ���m. Considering the

entries (1; 1) and (2; 2), we deduce that w���� � 0 (mod ���m). If m > �, considering the

entries (1; 2) and (2; 1) we conclude that j = 0.

Since j � 1, we may now assume that 1 � m � �. Then b � ���� � 0 (���m), and from

the equality of the entries (1; 1) or (2; 2), we obtain 1
2
(a + c) � 1(���m). Put a0 = a � 1,

c0 = c � 1. Then a0 + c0 � 0(���m). Since also a0 � c0 � 0(���m), we have a0; c0 � 0(���m), and

we have a00 = a0����m, c00 = c0����m, b0 = b����m in RE . Put �0 = � �m � 0. The matrix

identity translates to 4 equations, the �rst 3 de�ne b, a2, b3 and hence are always solvable:

B����
0

uu = b0 ;
1

2
(a00 + c00) + (1� w)uuB����

0

= a2 ;
1

2
(a00 + c00) + (1 + w)uuB����

0

= �b3 ;

B00����
00

+B����
0

uu(1�D�21+���2j=(uu)2) = 2a3���
m (where B00����

00

= a00+c00 ; �1 = w=
p
D 2 R) :

If m � �0; �00, namely 2m � �, N+, any u 2 R�E , �1 2 R, make a solution (a3 is de�ned by

the 4th equation). This proves the proposition for m (1 � m � min
��

�
2

�
;
h
N+

2

i�
).

If �00 < �0, m, there are no solutions in u, �1.

If �0 < �00, m, since j � 1 and 1�D�21 2 R�, there are no solutions either.
It remains to consider the case where �0 = �00 < m (� �). Write

"�1 = �uu(1�D�21)B=B
00. Then our equation can be written in the form

1� 2a3���
m��0=B00 = �uuB=B00(1�D�21 + ���2j(uu)�2) = "�1(1 + ����2j"2) ;

where � = (B=B00)2(1�D�21), namely

" � 1+����2j"2 � 1+����2j(1+2����2j"2+�2���4j"4) = 1+����2j+2�2���4j"2+�3���6j"4 (mod ���m��
0

) ;

so that " is uniquely determined modulo ���m��
0

. Thus a choice of �1 in R determines �, and "

in R�=1+���m��
0

R, hence uu 2 R�=1+���m��
0

R. The volume of one coset mod���m��
0

in R�

is [R�: 1+���m��
0

R]�1 = 1=[(q�1)q2m���1]. Multiplying by [PH :PH \HK
m ] = (1�q�2)q4m

we get (1 + q�1)q2m+�.

In the rami�ed case, the case m = 0 is again trivial, so we assume m � 1. Putting

B1 = B�
p
D(�1)j 2 R�E , in analogy with the previous case we are led to solve in u and

�1 = w=
p
D the equation

�
���wuuB1���

� uuB1���
�(���2j+1=D(uu)2�D�21)

uuB1���
� ��+uuB1���

�

�
=
�
1�b+ta2 b�ta2+tb3+2a3t

2

b 1�b�tb3

�
�
�
1�b b

b 1�b

�
(mod���m):

As b 2 RE , using (2; 1) we have 0 � � � N . From (1; 1) and (2; 2), w���� � 0(���m). If � < m

then jwj < 1, but this contradicts (1; 2) and (2; 1). Hence 1 � m � � � N . Put b0 = b����m,
�0 = ��m. Then B1uu���

�0 = b0, �00 + (1� w)uuB1���
�0 = a2, �

00 + (1 + w)uuB1���
�0 = �b3,
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de�ne b; a2; b3. Here �
0 = �� � 1 � 0(���m) is used to de�ne �00 = �0����m. The remaining

equation (add all four entries in the matrix equality) is

B00����
00

+ uuB1���
�0(1�D�21 + ���1+2j=D(uu)2) = 2a3���

m;

where 2�00 = B00����
00

, B00 2 R�E . If 2�00 = B00���N
+

, N+ = �00 + m, then N+ = min(1 +

N2; 1 + 2N), since

�0 = �� � 1 = (1 + B2���1+2N=2 + : : : )(1 +DD2
2���

2+2N2=2 + � � � �
p
DD2���

1+N2)� 1

= �
p
DD2���

1+N2 + B2���1+2N=2 + � � � � 0(���m):

Of course � � �(���m) implies �2 � 0(���m), and m � 1 +N2.

Returning to the remaining equation, if 1 � m � �0; �00; thus 2m � �;N+, and � � N

implies 1 � m � min([�=2]; [(1 + N2)=2]), any u 2 R�E and �1 2 R make a solution, a3 is

de�ned by the equation, and the number of solutions is as stated in the proposition.

If �00 < �0;m, or �0 < �00;m, there are no solutions, as 1�D�21 2 R�.
If �0 = �00 < m � �, namely � = min(1 + N2; 1 + 2N) < 2m � 2�, but � � N implies

� = 1+N2, so N2 < N , and the number of solutions is computed as in the unrami�ed case

to be as asserted in the proposition. �

11. Proposition. When � = 1 the orbital integral
R
T�nG 1K(x

�1t�x)dx is equal to

q+1
q4�1

�
q4[

N+1
2 ] � 1

�
if N � N1, and to

� q + 1

q4 � 1
(1 + q2+4[N1=2]) +

(�q)N+N1

q � 1
+ � � q + 1

q � 1
qN+2N1

if N > N1. Here � = �(2 j N � 1�N1) (is 1 if N �N1 � 1 is even, 0 if N �N1 is even).

The orbital integral
R
THnG 1K(x

�1tx)dx is equal to: (1) if N � N2, it is (q2N+2 �
1)=((q2 + 1)(q � 1)) if N is odd, and (q2N+4 � 1)=((q2 + 1)(q � 1)) � q1+2N if N is even,

and (2) if N2 < N , it is qN+2N2+3=(q � 1)� (q2N2+2 + 1)=((q2 + 1)(q � 1)) if N2 is even,

and �(q2N2+4 + 1)=((q2 + 1)(q � 1)) + qN+2N2+3=(q � 1) if N2 is odd.

Proof. It su�ces to prove the �rst statement with N1 replaced by N+, since N > N1 if and

only if N > N+, in which case N1 = N+. The contribution from the terms j � 1 is

X
1�j�N

j��(2)

(1 + q�1)qj

0
B@1 + X

1�m�min
�
[�2 ];

h
N+

2

i�
(1� q�2)q4m +

X
�
2
=N+

2
<m��

(1 + q�1)q�+2m

1
CA :
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If � = 1, this is the entire orbital integral. In this case we replace j by 2j + 1, and let j

range over 0 � j � (N � 1)=2. If N � N+, � = N � 1� 2j is smaller than N+, and we get

(q + 1)
X

0�j�[(N�1)=2]
q2j

0
@1 + X

1�m�[(N�1)=2]�j
(1� q�2)q4m

1
A

=(q + 1)
X
j

q2j(1 + (1� q�2)q4(q4[(N�1)=2]�4j � 1)=(q4 � 1))

=
q + 1

q2 + 1

X
j

q2j(1 + q2+4[(N�1)=2]�4j)

=
q + 1

q2 + 1

�
q2[(N+1)=2] � 1

q2 � 1
+ q2+4[(N�1)=2] � 1� q�2[(N+1)=2]

1� q�2

�
;

which is equal to the asserted expression.

If (� � 1 and) N > N+, then � = N � 1 � 2j, and �
2
= N�1

2
� j > N+

2
precisely

when 1
2
(N � 1 � N+) > j (same with < or =). Note that �(N+ = �) is �. Put min =

min
��

�
2

�
;
h
N+

2

i�
. Our integral is then

(q + 1)
X

0�j�[(N�1)=2]
q2j
�

1

q2 + 1
+
q2+4min

q2 + 1

�
+ �

qN
++1

q � 1
(q2N

+ � q2[N
+=2])

=
q + 1

q2 + 1

q2[(N+1)=2] � 1

q2 � 1
+
q2(q + 1)

q2 + 1

�
0
@ X

0�j�[(N�1�N+)=2]

q4[N
+=2]q2j +

X
[(N�1�N+)=2]<j�[(N�1)=2]

q4[(N�1)=2]q�2j

1
A+ ��

=
q + 1

q4 � 1
(q2[(N+1)=2] � 1) +

q2(q + 1)

q2 + 1

�
 
q4[N

+=2] q
2[(N+1�N+)=2] � 1

q2 � 1
+ q4[(N�1)=2]

q�2([(N�1�N
+)=2]+1) � q�2([(N�1)=2]+1)

1� q�2

!
+ ��

=
q + 1

q4 � 1
(�1� q2+4[N+=2] + q2+4[N+=2]+2[(N+1�N+)=2] + q4[(N+1)=2]�2[(N+1�N+)=2])

+�
q + 1

q � 1
(qN+2N+ � qN+2[N+=2]) :

If � = 0, then N is even i� N+ is even, and
�
1
2
(N + 1�N+)

�
= 1

2
(N �N+) = [N=2]�

[N+=2]. Hence we obtain

� q + 1

q4 � 1
(1 + q2+4[N+=2]) +

q + 1

q4 � 1
q2[N

+=2]+2[N=2](q2 + q4[(N+1)=2]�4[N=2])

= � q + 1

q4 � 1
(1 + q2+4[N+=2]) +

qN
++N

q � 1
:
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If � = 1, then N is even i� N+ is odd, and
�
1
2
(N � 1�N+)

�
= 1

2
(N � 1) � 1

2
N+ =�

1
2
(N � 1)

�� �1
2
N+
�
. We get

� q + 1

q4 � 1
(1 + q2+4[N+=2])+

q + 1

q4 � 1
(q2+2[N+=2]+2[(N+1)=2] + q2[(N+1)=2]+2[N+=2])

�q + 1

q � 1
qN+2[N+=2] +

q + 1

q � 1
qN+2N+

= � q + 1

q4 � 1
(1 + q2+4[N+=2]) +

q2[N
+=2]

q � 1
(q2[(N+1)=2] � (q + 1)qN ) +

q + 1

q � 1
qN+2N+

:

The middle term is �qN+N+

=(q � 1) since N + 1 is even i� N+ is even.

In the rami�ed case we compute as follows. Suppose that N � N2. Then the integral is

X
0���N

qN��(1 +
X

1�m�[�=2]
(q4 � q2)q4(m�1)) =

X
0���N

q�=(q2 + 1)+

q2+N
X

0���N
q4[�=2]��=(q2 + 1) =

qN+1 � 1

(q2 + 1)(q � 1)
+

qN+2

q2 + 1
(

X
0��1�[N=2];�=2�1

q2�1

+
X

0��1�[(N�1)=2];�=2�1+1

q2�1�1) =
qN+2[N=2]+4 + qN+2[(N�1)=2]+3 � q � 1

q4 � 1
;

as asserted.

Suppose that N2 < N . Then the integral is

X
0���1+N2

qN��(1+
X

1�m�[�=2]
(1�q�2)q4m)+qN�N2�1

X
[(1+N2)=2]<m�1+N2

(1+q�1)q2m+1+N2

+
X

1+N2<��N
qN��(1 +

X
1�m�[(1+N2)=2]

(1� q�2)q4m) :

This is the sum of

qN+2

q2 + 1

X
0��1�[(N2+1)=2];�=2�1

q2�1 +
qN+1

q2 + 1

X
0��1�[N2=2];�=2�1+1

q2�1 +
qN

q2 + 1
� q

�N2�2 � 1

q�1 � 1

and

(1 + q�1)qN
q2(N2+2) � q2[(1+N2)=2]+2

q2 � 1
+
q4[(1+N2)=2]+2 + 1

q2 + 1
� q

N�N2�1 � 1

q � 1
:

Adding, we get the expression of the proposition. �
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12. Proposition. When � = 0, the contribution to the orbital integral of 1K at t� from

the terms indexed by j > 0 is
(q + 1)q

q4 � 1
(q4[N=2] � 1)

if N � N+; when N > N+, if N �N+ is odd (� = �(n j N �N+ > 0) is 0) we obtain

� (q + 1)q

q4 � 1
(1 + q2+4[N+=2]) +

qN+N+

q � 1
;

while if � = 1 (N �N+ > 0 is even) we obtain

� (q + 1)q

q4 � 1
(1 + q2+4[N+=2]) +

q1+2[N+=2]+2[N=2]

q � 1
+
q + 1

q � 1
qN+2N+ � q + 1

q � 1
qN+2[N+=2] :

Proof. Put � = N � 2j, 1 � j � [N=2]. The sum over j is

(1 + q�1)
X

1�j�[N=2]
q2j

0
B@ 1

q2 + 1
+
q2+4min

q2 + 1
+ �

X
�
2
=N+

2
<m��

(1 + q�1)q�+2m

1
CA :

If N � N+, then min = [�=2] = [N=2]� j and � = 0, so we get

q + 1

q(q2 + 1)

X
1�j�[N=2]

(q2j+q2+4[N=2]�2j) =
(q + 1)q

q2 + 1

�
q2[N=2] � 1

q2 � 1
+ q4[N=2]

q�2 � q�2([N=2]+1)

1� q�2

�
;

which is the asserted expression.

IfN > N+, then �=2 = N=2�j > N+=2 i� 1
2
(N�N+) > j, in which case min([�=2]; [N+=2])

is [N+=2] (it is [N=2]� j when > is replaced by <). Thus we obtain the sum of

(q + 1)q

q2 + 1

q2[N=2] � 1

q2 � 1
+
(q + 1)q2

q(q2 + 1)

0
@q4[N+=2]

X
1�j�[(N�N+)=2]

q2j + q4[N=2]
X

(N�N+)=2<j�[N=2]
q�2j

1
A

=
(q + 1)q

q2 + 1

q2[N=2] � 1

q2 � 1

+
(q + 1)q2

q(q2 + 1)

 
q4[N

+=2] q
2[(N�N+)=2]+2 � q2

q2 � 1
+ q4[N=2]

q�2[(N�N
+)=2]�2 + q�2[N=2]�2

1� q�2

!

=
(q + 1)q

q4 � 1
(�1 + q2+4[N+=2]+2[(N�N+)=2] � q2+4[N+=2] + q4[N=2]�2[(N�N

+)=2])

and

�(q + 1)2qN�2
X

N+=2<m�N+

q2m = �
q + 1

q � 1
qN (q2N

+ � q2[N
+=2]) :

When � = 0, 2[(N �N+)=2] = N �N+ � 1, and noting that N is even i� N+ is odd, the

asserted expression is obtained. When � = 1, N is even i� so is N+, hence 2[(N�N+)=2] =

N �N+ = 2[N=2]� 2[N+=2], and again we obtain the asserted expression. �
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E. Computations: j = 0.

To complete the computation of the orbital integral of 1K at t�, it remains to compute

the contribution from the term indexed by j = 0, which exists only when � = 0.

13. Proposition. When � = 0 = j, the non zero values of the integral
R
PH=PH\HKm 1KKm (p

�1t�p)dp
are: 1 if m = 0,

(a) (1� q�2)q4m if 1 � m � min([N=2]; [N+=2]),

(b) (1 + q�1)q2m+2[N=2] if [N=2] + 1 � m � min(N; [M=2]) (thus N � N+; recall:

M = max(N1; N2)),

(c) (1 + q�1)2q2m+N if [M=2] + 1 � m � N (thus N � N+) and M �N is even,

(d) (1 + q�1)q2m+2[N=2] if N + 1 � m � [M=2], and

(e) (1 + q�1)2q2m+N if max(N + 1; [M=2] + 1) � m � [(M +N)=2] and M �N is even.

Proof. As in Proposition 10, we may assume that m � 1, and compute the volume of

solutions in u 2 R�E=1 + ���mRE and � 2 R=���2mR, w = �
p
D, of the equation (for some

a2; a3; b 2 RE):

�
1
2
(a+ c)� wuuB���N uuB���N ((uu)�2 �D�2)

uuB���N 1
2
(a+ c) + wuuB���N

�
=

�
1� b+ ta2 b� ta2 + tb3 + 2a3t

2

b 1� b� tb3

�
:

Consider �rst the case where m > N . Since the matrix on the right is congruent mod ���m

to
�
1�b b

b 1�b

�
, considering the entries (1; 1) and (2; 2) of the equality, we get that w = �

p
D,

� = �1���
m�N , �1 2 R. The identities of the entries (1; 2) and (2; 1) imply that uu �

�1(���m�N ). If uu � 1(���m�N ), put uu = 1 + "0���m�N . The matrix identity becomes four

equations: b = (a0�c0)=2+"0B���m (always solvable, de�nes b), a2 = a00+"0B�B
p
D�1uu (is

solvable precisely when a00 = a0����m 2 RE, namely m � N1), �b3 = a00 + "0B + B
p
D�1uu

(solvable when m � N1), and 2a
0+B���Nuu(1+(uu)�2�2(uu)�1�D�21���2m�2N ) = 2a3���

2m.

Thus the 2nd and 3rd equations are solvable when N < m � N1 if uu � 1, and when

N < m � N2 if uu � �1. Hence we are led to consider m in the range N = N+ =

min(N1; N2) < m � M = max(N1; N2). De�ning "1 2 R by (uu)�1 = 1 + "1���
m�N ,

the remaining, 4th equation, takes the form 2a00=B+(2a00=B)"1���m�N +���m�N ("21�D�21) 2
���mRE , or 2a

00=B+���m�N (("1+a00=B)2�(a00=B)2�D�21) 2 ���mRE , and �nally (2a
00=B)(1�

(a00=2B)���m�N )+���m�N ("2�D�21) 2 ���mRE , where " = "1+a
00=B. Note that when uu � �1,

a has to be replaced by c in these equations.

We claim that to have a solution, we must have 2m � N +M . Indeed, "2 �D�21 2 R.

Put Imx = x � x for x 2 RE . Recall that aa = 1 = cc. Then Im(a � 1)=(a � c) =

�a0c0=(a0� c0) 2 ���MR�E , hence Im(a
00=B) = ���N�m Im(a0=(a0� c0)) 2 ���M+N�mR�E , and our

equation will have no solution unless M + N �m � m. For such m we may regard a00=B
as lying in R, rather then RE. There are two subcases.

If N < m �M=2, thus m �M �m, our equation reduces to "2 �D�21 2 ���NR. Then ",

�1 2 ���[(N+1)=2]R, thus (uu)�1 = 1 + (" � a00=B)���m�N 2 1 + ����M�N + ���m�N+[(N+1)=2]R.
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Let us compute the number of solutions u, �. First, note that for 0 < k � m we have

#fu 2 R�E=1+���
mRE ; uu 2 1+���kRg = [R�E : 1 + ���mRE ]

[R�: 1 + ���mR]
[���kR:���mR] = (1+q�1)qm �qm�k :

Hence

#fu 2 R�E=1+���
mRE ; (uu)�1 2 1+����M�N+���m�N+[(N+1)=2]Rg = (1+q�1)qm+N�[(N+1)=2] :

Further,

#f� 2 R=�2mR ; � = �1���
m�N ; �1 2 �[(N+1)=2]R ; thus � 2 ���m�N+[(N+1)=2]Rg

is qm+N�[(N+1)=2]: Hence the number of solutions is (1+q�1)q2m+2N�2[(N+1)=2], as asserted

in case (d) of the proposition.

If M �m < m, thus 2N , M < 2m �M +N , we need to solve the equation "2 �D�21 2
����M+N�2m + ���NR = ����M+N�2m(1 + ���2m�MR). Since F (

p
D)=F is unrami�ed, there is

a solution precisely when M +N is even. Put " = ���
1
2
(M+N)�m"2, �1 = ���

1
2
(M+N)�m�2. So

we need to solve "22 �D�22 2 1 + ���2m�MR. Namely we count the pairs

f(u 2 R�E=1 + ���mRE ; � = �1���
m�N = ���(M�N)=2�2 2 R=���2mR)g

such that (uu)�1 = 1 + "1���
m�N = 1 + (" � a00=B)���m�N + �(M�N)=2"2 and "22 � D�22 2

1 + ���2m�MR: The relation "22 � D�22 2 1 + ���2m�MR can be replaced by "22 � D�22 2 R�

if we multiply the cardinality by [R�: 1 + ���2m�MR]�1, and it can be replaced by "2 2 R

and �2 2 R if we further multiply by the quotient [RE :R
�
E ] of the volume of RE by that of

R�E . Then the number of u is ([R�E : 1 +���mRE ]=[R
�: 1 +���mR])[���(M�N)=2R:���mR], and the

number of � is [���(M�N)=2R:���2mR]. The product is

=([R�E : 1 + ���mRE ]=[R
�: 1 + ���mR])[���(M�N)=2R:���mR]

�[���(M�N)=2R:���2mR][RE:R
�
E ][R

�: 1 + ���2m�MR]�1

=(1 + q�1)qm � qm�(M�N)=2 � q2m�(M�N)=2 � (1� q�2) � ((1� q�1)q2m�M )�1

=(1 + q�1)2q2m+N :

This completes case (e) of the proposition.

It remains to consider 1 � m � N . Then ���N � 0 (���m), thus a0�c0 � 0 (���m). Considering

the entries (1; 1) and (2; 2) of our matrix identity, we get (a + c)=2 � 1(���m) (since b �
0 (���m)). Then a0 + c0 � 0 (���m), and a00 = a0����m, c00 = c0����m 2 RE . Denoting b

0 = b����m,
N 0 = N � m, we see that the �rst three equations are always solvable: b0 = uuB���N

0

,

a2 = (a00+c00)=2+uuB���N
0

(1�w),�b3 = (a00+c00)=2+uuB���N
0

(1+w) (these equations simply

de�ne b, a2, b3). The remaining equation is a
0+c0+ 1

2
(a0�c0)uu(1+(uu)�2�D�2) = 2a3���

2m.
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When 2m � N;N+ every u, � makes a solution. This completes case (a) of the proposition.

If N+ < N , 2m, then there are no solutions.

It remains to deal with the case where N � N+ and N < 2m. Put " = (uu)�1 2 R�,
x = (a0+ c0)=(a0� c0). We have to solve the equation "2+1�D�2+2"x 2 ���2m�NRE . Note

that Im(x) 2 ���N1+N2�NR�E . Since N � N+, we have N = min(N1; N2), and 2m � 2N �
N1 + N2 = N +M . Hence Im(x) 2 ���2m�NRE , and we may assume that x 2 R. Thus we

need to solve (" + x)2 � D�2 2 x2 � 1 + ���2m�NR, for a �xed x 2 ���N
+�NR� � R. Once

we �nd a solution, in " 2 R, then " 2 R�; otherwise " 2 ���R, hence D�2 2 1 + ���R, but

D 62 R�2. Note that x � 1 is 2a0=(a0 � c0) or 2c0=(a0 � c0), so x2 � 1 = 4a0c0=(a0 � c0)2 2
���N1+N2�2NR�E = ���M�NR�E . We distinguish between two cases.

IfN=2 < m � min(N; [M=2]) andN � N+, thenM�N � 2m�N > 0, and we must have

N = N+ (thus jxj = 1). Thus we need to count the " = (uu)�1 2 �x+���m�[N=2]R and � 2
���m�[N=2]R=���2mR. Then #fu 2 R�E=1+���

mRE ; uu 2 1+���m�[N=2]Rg is (1+ q�1)qm+[N=2],

while the number of the � is qm+[N=2]. This completes case (b) of the proposition.

If M=2 < m � N(� N+), thus M � N < 2m � N , we need to solve (" + x)2 � D�2 2
����M�N + ���2m�NR = ����M�N (1 + ���2m�MR) (for some � 2 R�). There is a solution

precisely when M �N is even (as NR�E = R�). As noted above, given a solution, " must

be in R�. To compute the volume of solutions, �x measures with
R
R
�

E

d�u =
R
R�

d�" and

d�" = (1� q�1)�1d" (thus
R
R�

d�" =
R
R
d"). Then the volume is

(1� q�2)q4m
Z
u2R�

E

Z
�2R

�(f(uu+ x)2 �D�2 2 ����M�N (1 + ���2m�MR)g)d�ud�

= (1� q�2)q4m(1� q�1)�1
Z
"2R

Z
�2R

�(f"2 �D�2 2 ���M�N�(1 + ���2m�MR)g)d"d�

= (1� q�2)(1� q�1)�1q4mq�(M�N)

Z
z2RE

�(fNz 2 1 + ���2m�MRg)dz :

The last integral ranges only over R�E , and there dz=jzj = (1 � q�2)d�z. Now
R
R�

�(fz 2
1 + ���2m�MRg)d�z is the inverse of

[R�: 1 + ���2m�MR] = (1� q�1)q2m�M :

Altogether we get (1� q�2)2(1� q�1)�2q4m+N�M�2m+M = (1 + q�1)2q2m+N , completing

case (c), and the proposition.

An alternative volume computation is as follows. The cardinality of f(u 2 R�E=1 +
���mRE ; � 2 R=���2mR) ; (uu + x)2 � D�2 2 ����M�N (1 + ���2m�MR)g is (1 + q�1)qm times

#f(" 2 R�=1+���mR ; � 2 : : : ) ; ("+x)2�D�2 2 : : : g, and since " must be in R� to have a

solution, this # is equal to #f(" 2 R=���mR ; � 2 R=���2mR) ; "2�D�2 2 ����M�N (1+ � � � )g.
As " = "1���

(M�N)=2, � = �1���
(M�N)=2, this product is

(1+q�1)qm�qm�(M�N)=2�q2m�(M�N)=2�volfz 2 RE ; Nz 2 1+���2m�MRg = (1+q�1)2q2m+N ;

as required. �
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14. Proposition. When � = 0 the orbital integral
R
T�nG 1K(g

�1t�g)dg is equal to

� q + 1

q4 � 1
(1 + q2+4[N1=2])� (�q)N+N1

q � 1
+ �(2 j N +N+)

q + 1

q � 1
q2N1+N ; if N1 < N ;

in which case N+ = N1 = N2, and to

� q + 1

q4 � 1
(1 + q2+4[N=2])� (�q)M+N

q � 1
+ �(2 jM �N)

q + 1

q � 1
q2N+M ; if N � N1 :

Proof. It su�ces to prove this with N1 replaced by N
+, as N1 < N precisely when N+ < N ,

in which case N+ = N1. If N
+ < N , j = 0 contributes

1 +
X

1�m�min([N=2];[N+=2])

(1� q�2)q4m =
q2 � 1

q4 � 1
(1 + q2+4[N+=2]) :

The j > 0 contributes, when � = 0, thus N +N+ is odd, the expression:

�q2 + q

q4 � 1
(1 + q2+4[N+=2]) +

qN+N+

q � 1
;

while when � = 1, thus N +N+ is even, the j > 0 contribute to the orbital integral:

�q2 + q

q4 � 1
(1 + q2+4[N+=2]) +

1

q � 1
(q1+2[N+=2]+2[N=2] + (q + 1)qN+2N+ � (q + 1)qN+2[N+=2]) :

The sum is as stated in the proposition.

If N � N+, the sum is (when M=2 < N and also when M=2 � N)

q2 + q

q4 � 1
(q4[N=2] � 1) + 1 + q2(q2 � 1)

X
0�m<[N=2]

q4m + (1 + q�1)q2[N=2]
X

[N=2]+1�m�[M=2]

q2m

+ �(2 jM �N)(1 + q�1)2qN
X

[M=2]+1�m�[(M+N)=2]

q2m

= � q + 1

q4 � 1
+
q4 + q

q4 � 1
q4[N=2] + q2[N=2]+1 � q

2[M=2] � q2[N=2]

q � 1
+ �

q + 1

q � 1
qN (qM+N � q2[M=2]) ;

which is easily seen to be the expression of the proposition (consider separately the cases

of even (� = 1) and odd (� = 0) values of M �N). �
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F. Conclusion.

Put �(t) =
R
Z(t)nG 1K(g

�1tg)dg. In the notations of Proposition 3 for anisotropic tori

which split over E, the �-orbital integral is ��1K (t0) = �(t1)+�(t2)��(t3)��(t4). The tori
T1 = Z(t1) and T2 = Z(t2) (Z(t) is the centralizer of t in G) embed as tori in H. Denote by

KH the maximal compact subgroup H \K of H, by 1KH its characteristic function in H,

choose on H the Haar measure which assigns KH the volume 1, introduce the stable orbital

integral �st1KH
(t0) = �H(t1) + �H(t2), where �

H(t) =
R
ZH(t)nH 1KH (h

�1th)dh and ZH(t)

is the centralizer in H of a regular t in H. It is well known (see, e.g., [F1], Proposition 5)

that �st1KH
(t0) = (qN (q + 1)� 2)=(q � 1) (where E=F is unrami�ed).

Remark. A proof of the last equality { extracted from Mars' letter mentioned in the Remark

following the proof of Proposition 6 { is as follows. Thus G = GL(V ) and K = Stab(RE),

dg on G assigns K the volume 1, dt on E� assigns R�E the volumes 1, and  2 E� � F�.
Then

R
E�nG 1K(g

�1g)dg=dt is
P

E�nG=K jKj=jE� \ gKg�1j1K(g�1g). But E�nG=K is

the set of E�-orbits on the set of all lattices in E. Representatives are the lattices RE(j),

j � 0. So our sum is the sum of jR�E j=jRE(j)
�j = [R�E : RE(j)

�] over the j � 0 such that

 2 RE(j)
�. As [R�E : RE(j)

�] is 1 if j = 0 and qj+1�f (qf � 1)=(q� 1) if j > 0, putting N

for the maximum of the j with  2 RE(j)
�, the integral equals (qN (q + 1)� 2)=(q � 1) if

e = 1, and (qN+1 � 1)=(q � 1) if e = 2 (ef = 2). Of course, the integral vanishes for  not

in R�E . If  = a+ bw 2 R�E , then N is the order of b. Note that the stable orbital integral

on the unitary group H in two variables is just the orbital integral on GL(2).

Put �G=H(t0) = (�q)�N1�N2 . The fundamental lemma is the following.

15. Theorem. For a regular t0 we have �G=H(t0)�
�
1K
(t0) = �st1KH

(t0).

Proof. Note that �(t2) depends only on N1, N2, N , so we write �(t2) = '(N1; N2; N), and

so �(t3) = '(N;N2; N1) and �(t4) = '(N1; N;N2). If N = N2 < N1, �(t2) = �(t4), hence

�K(t0) = �(t1)� �(t3), and this di�erence is

� 2

q � 1
(�q)N2+N1 + (�(2 j N1 �N2)� �(2 j N1 � 1�N2))

q + 1

q � 1
qN1+2N2 ;

as required.

If N = N1 � N2, �(t2) = �(t3), hence �
�(t0) = �(t1)� �(t4), and this di�erence is

� 2

q � 1
(�q)N1+N2 + (�(2 j N2 �N1)� �(2 j N2 � 1�N1))

q + 1

q � 1
qN2+2N1 ;

as required.

If N1 = N2 < N , ��(t0) is the sum of

�(t1) = � q + 1

q4 � 1
(1 + q2+4[N1=2])� (�q)N+N1

q � 1
+ �(2 j N +N1)

q + 1

q � 1
qN+2N1 ;

�(t2) = � q + 1

q4 � 1
(1 + q2+4[N1=2]) +

(�q)N+N1

q � 1
+ �(2 j N � 1�N1)

q + 1

q � 1
qN+2N1 ;
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and

��(t3)� �(t4) = �2 q + 1

q4 � 1
(q4[N1+2)=2] � 1) :

This sum is �2q2N1

q�1 + q+1
q�1q

N+2N1 , as required.

Since the two minimal numbers among N1, N2, N are equal, we are done. �

We now turn to the rami�ed case. It remains to deal with regular t0 in the torus TH0 �
H 0 � G0 of Proposition 3.

16. Proposition. The integral
R
H0=H0m

1H0m(h
�1t0h)dh of Proposition 5 is equal to (q +

1)q4m if 0 � m � min([N=2]; [N2=2]), and to (q+1)qN+2m if N � N2 and [N=2] < m � N .

Here t0 = diag(��1
�
� ����

� �

�
; 1), �� = �2 � ����2 = 1, � = B���N and � = �1 + �2

p
D,

�2 = D2���
1+N2 , and B, D2, �1, � 2 R�.

Proof. We need to compute the number of c 2 RE=���
mRE , and a 2 R�E=1 + ���1+2mRE , for

which �
a �c���
�cu au

�
�
�
� ����

� �

� � a uc���
c ua

�
= �

�
�+����(ac�ac) ����u(a2����c2)
a2�u�����c2u �+����(ac�ac)

�
lies in H 0

m. Using the description of H 0
m in Proposition 4, this is equivalent to solving

two equations: j�(a2 � ���c2)j � j���jm, which means 0 � m � N since a 2 R�E , c 2 RE ,

� 2 ���NR� (note that there is no constraint on u 2 E1, and the volume of E1 is 1), and

j�+����(ac�ac)��j � j���j1+2m. Replacing c by c=a, the equations simplify to aa����cc=aa = 1,

and j� + ����(c � c) � �j � j���j1+2m. The last equation implies � � �1 2 ���1+2mR. Since

�2 = 1 + B2���1+2N , and 1 = �� = �21 � D�22 , we conclude that �22 2 ���1+2mR, hence

�2 = D2���
1+N2 2 ���1+mR, and m � N2. Put c = c1 + c2i, i =

p
D, c � c = �2ic2,

c2 = C2���
n2 (C2 2 R�). Then our equation becomes �2BC2���

N+n2 �D2���
N2 2 ���2mR.

We shall now determine the number of c. If 0 � m � [N=2], then 2m � N , hence

2m � N2 (if there are solutions to our equation), namely m � [N2=2], and any (C2 and)

c is a solution. The number of c is #RE=���
mRE = q2m. If [N=2] < m � N , thus m �

N < 2m, we consider two subcases. If m � [N2=2], or 2m � N2, then N < N2, and

there are solutions C2 precisely when n2 � 2m � N , and any C2 is a solution. Then

c2 = C2���
n2 2 ���2m�NR=���mR ' R=���N�mR has qN�m possibilities, c1 2 R=���mR has qm,

and #c = qN . If m > [N2=2], or N2 < 2m, there are solutions only when n2 = N2 � N

(n2 � 0 implies N � N2), and the solutions are given by C2 2 �D2=2B + ���2m�N2R, and

again c2 is determined modulo ���n2���2m�N2R=���mR = R=���N�mR.
Given c 2 RE=���

mRE , we need to solve in a 2 R�E=1 + ���1+2mRE the equation (aa)2 �
aa+1=4 = 1=4����cc, namely (aa� 1=2)2 = (1� 2���cc+ : : : )2=4, or aa = 1=2� (1� 2���cc+

: : : )=2. There are no solutions for the negative sign, and there exists a solution for the

positive sign. The number of a 2 R�E=1 + ���1+2mRE with aa 2 � + ���1+2mR (� 2 R�) is
#(R�E=1 + ���1+2mRE)=#(R

�=1 + ���1+2mR) = ((q2 � 1)q2�2m=(q � 1)q2m) = (q + 1)q2m, as

asserted. �
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17. Proposition. The last orbital integral of Proposition 5, of 1K at a regular t = gt0g�1 2
G, where t0 2 TH0 � H 0 � G0, is

(q4+4min � 1)=((q2 + 1)(q � 1)) + �(N � N2)q
N (q2N+2 � q2[N=2]+2)=(q � 1):

Here min = min([N=2]; [N2=2]), and N , N2 are de�ned in Proposition 16.

Proof. The integral is equal toX
0�m�min

(q + 1)q4m + �(N � N2)
X

[N=2]<m�N
(q + 1)qN+2m;

which is equal to the asserted expressions. �

The �-orbital integral ��1K (t) of 1K on the stable conjugacy class of a regular t 2 TH �
H � G is the di�erence of �(t) =

R
THnG 1K(x

�1tx)dx and �0(t) =
R
ZG(t00)nG 1K(x

�1t00x)dx,

where t00 = gt0g�1 2 G is stably conjugate to t (and t0 2 TH0 � H 0 � G0 = g�1Gg). The
stable conjugacy class of t in H consists of a single conjugacy class, and it is well known (see

Remark before Theorem 15) that �st1KH
(t) = �H(t) = (qN � 1)=(q� 1), where N is de�ned

in Proposition 16. The transfer factor �G=H(t) is (�q)�n, where if t = (t1; 1) 2 (EL)1�E1,

the n is de�ned by t1 � 1 2 ���nELR
�
EL.

18. Theorem. For a regular t we have �G=H(t)�
�
1K
(t) = �st1KH

(t).

Proof. Since t = (� + �
p
���)(�1 � i�2) is (1 + B2���1+2N=2 + � � � + B

p
������N ) times (1 +

DD2
2���

2+2N2 + � � ��
p
DD2���

1+N2), namely 1+B���N+1=2�
p
DD2���

1+N2 + : : : , we have that

n = min(1+2N; 2+2N2). If N � N2, we then need to show that ��1K (t) = �q1+2N (qN+1�
1)=(q�1). When N2 < N , we have to show that ��1K (t) = q2+2N2(qN+1�1)=(q�1). Propo-
sition 11 gives an explicit expression for �(t). Proposition 17 gives an explicit expression

for �0(t). The di�erence, ��1K (t), is easily seen to be equal to �H(t). �

Remark. Reference [FH] is missing in [F1]; it is supplied below.
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