ON ZEROES OF THE TWISTED TENSOR L-FUNCTION Yuval Z. Flicker

A. Notations, results, remarks. Let E / F be a separable quadratic extension of global fields, $\mathbb{A}=\mathbb{A}_{F}$ and \mathbb{A}_{E} the associated rings of adeles, and $\mathbb{A}^{\times}, \mathbb{A}_{E}^{\times}$their multiplicative groups of ideles. Signify by \underline{G} the group scheme $G L(n)$ over F, and put $G=\underline{G}(F), G^{\prime}=\underline{G}(E), \mathbb{G}=\underline{G}(\mathbb{A}), \mathbb{G}^{\prime}=\underline{G}\left(\mathbb{A}_{E}\right)$, and $Z\left(\simeq F^{\times}\right), Z^{\prime}\left(\simeq E^{\times}\right), \mathbb{Z}(\simeq$ $\left.\mathbb{A}^{\times}\right), \mathbb{Z}^{\prime}\left(\simeq \mathbb{A}^{\times}\right), \mathbb{Z}^{\prime}\left(\simeq \mathbb{A}_{E}^{\times}\right)$for their centers. Fix a unitary character ε of $\mathbb{Z}^{\prime} / Z^{\prime}$, and denote by π a cuspidal \mathbb{G}^{\prime}-module whose central character is ε. Such a π is called distinguished if there is a form ϕ in π such that $\int_{\mathbb{Z} G \backslash \mathbb{G}} \phi(x) d x \neq 0$; clearly ε is trivial on \mathbb{Z} if π is distinguished.

If $\underline{G}^{\prime}=\operatorname{Res}_{E / F} \underline{G}$ is the group obtained from \underline{G} by restriction of scalars from E to F, then $\left(G^{\prime}=\underline{G}^{\prime}(F), \mathbb{G}^{\prime}=\underline{G}^{\prime}(\mathbb{A})\right.$ and) its dual group $\underline{\widehat{G}}^{\prime}$ is $[\underline{G}(\mathbb{C}) \times \underline{G}(\mathbb{C})] \rtimes$ $\operatorname{Gal}(E / F)$, where the non-trivial element σ of the Galois group $\operatorname{Gal}(E / F)$ acts by permuting the two copies of $\underline{G}(\mathbb{C})$. As in [F1] the twisted tensor representation r of $\underline{\widehat{G}}^{\prime}$ is defined on the n^{2}-dimensional complex space $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ by

$$
(r(a, b))(x \otimes y)=a x \otimes b y \text { and }(r(\sigma))(x \otimes y)=y \otimes x \quad\left(a, b \in \underline{G}(\mathbb{C}) ; x, y \in \mathbb{C}^{n}\right)
$$

The irreducible admissible \mathbb{G}^{\prime}-module π factorizes as a local product $\underset{v}{\otimes} \pi_{v}(v$ ranges over all F-places) of G_{v}^{\prime}-modules π_{v}. Here F_{v} is the completion of F at v (we also write R_{v} for its ring of integers, $\underline{\pi}=\underline{\pi}_{v}$ for a generator of its maximal ideal, and q_{v} for the cardinality of $R_{v} /\left(\underline{\pi}_{v}\right)$, when v is non-archimedean), and $G_{v}=\underline{G}\left(F_{v}\right)$, $G_{v}^{\prime}=\underline{G}\left(E_{v}\right)\left(=\underline{G}^{\prime}\left(F_{v}\right)\right)$.

For almost all F-places v the component π_{v} of π is unramified. If v stays prime in E, such π_{v} is determined by the semi-simple conjugacy class $t\left(\pi_{v}\right)=\left(z\left(\pi_{v}\right) \times 1\right) \times \sigma$ in $\underline{\widehat{G}}_{v}^{\prime}=[\underline{G}(\mathbb{C}) \times \underline{G}(\mathbb{C})] \rtimes \operatorname{Gal}\left(E_{v} / F_{v}\right)$, where $z\left(\pi_{v}\right)$ is the diagonal matrix whose eigenvalues $\left(z_{i}\left(\pi_{v}\right) ; 1 \leq i \leq n\right)$ are the Hecke eigenvalues of the unramified $G_{v^{-}}^{\prime}$ module π_{v}.

If v splits into v^{\prime} and $v^{\prime \prime}$ in E, then $E_{v}=F_{v} \oplus F_{v}, G_{v}^{\prime}=G_{v} \times G_{v}$, and $\pi_{v}=$ $\pi_{v^{\prime}} \times \pi_{v^{\prime \prime}}$ is determined by the semi-simple conjugacy class $t\left(\pi_{v}\right)=z\left(\pi_{v^{\prime}}\right) \times z\left(\pi_{v^{\prime \prime}}\right)$ in $\underline{\widehat{G}}_{v}^{\prime}=\underline{G}(\mathbb{C}) \times \underline{G}(\mathbb{C})$, where $z\left(\pi_{v^{\prime}}\right)$ is a diagonal matrix whose diagonal entries $z_{i}\left(\pi_{v^{\prime}}\right)(1 \leq i \leq n)$ are the Hecke eigenvalues of $\pi_{v^{\prime}}$ (same for $\pi_{v^{\prime \prime}}$ and $z\left(\pi_{v^{\prime \prime}}\right)$).

Correspondingly, as in [F1] we introduce the L-factors

$$
L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right)=\operatorname{det}\left[I-q_{v}^{-s} \omega_{v}\left(\underline{\pi}_{v}\right) r\left(t\left(\pi_{v}\right)\right)\right]^{-1}
$$

where $\omega=\otimes \omega_{v}$ is a unitary character of \mathbb{Z} / Z unramified at our v.
At a place which stays prime this L-factor is equal to

$$
\prod_{1 \leq i \leq n}\left(1-q_{v}^{-s} \omega_{v}\left(\underline{\pi}_{v}\right) z_{i}\left(\pi_{v}\right)\right)^{-1} \cdot \prod_{1 \leq j<k \leq n}\left(1-q_{v}^{-2 s} \omega_{v}^{2}\left(\underline{\pi}_{v}\right) z_{j}\left(\underline{\pi}_{v}\right) z_{k}\left(\underline{\pi}_{v}\right)\right)^{-1}
$$

[^0]while at v which splits in E it is
$$
\prod_{1 \leq i, j \leq n}\left(1-q_{v}^{-s} \omega_{v}\left(\underline{\pi}_{v}\right) z_{i}\left(\pi_{v^{\prime}}\right) z_{j}\left(\pi_{v^{\prime \prime}}\right)\right)^{-1}=L\left(s, \omega_{v} \otimes \pi_{v^{\prime}} \times \pi_{v^{\prime \prime}}\right)
$$

Denote by V a set of F-places containing the archimedean places and those where E, ω or π ramify. The partial twisted tensor L-function is the infinite product

$$
L^{V}(s, r(\pi) \otimes \omega)=\prod_{v \notin V} L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right)
$$

which converges absolutely in some right half plane $\operatorname{Re}(s) \gg 1$.
The local L-factors $L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right)$ can be introduced for non-archimedean $v \in$ V too as nowhere vanishing functions of the form $P\left(q_{v}^{-s}\right)^{-1}$, where $P(X)$ is a polynomial in X with $P(0)=1$. The definition in the case of v which splits is given as in [JPS], Theorem 2.7, where $L\left(s, \pi_{1 v} \times \pi_{2 v}\right)$ is defined. The definition and properties of these factors for a non-split v are analogously proven in the Appendix to this paper.

At the archimedean places the L-factors are the associated L-factors of the representation of the Weil groups which parametrize π_{v} (and so $r\left(\pi_{v}\right) \otimes \omega_{v}$). But the local functional equation has been proven in [JS1], Theorem 5.1, only in the split case, where $E_{v}=F_{v} \oplus F_{v}$. It will be interesting to extend the work of [JS1] to apply in the non-split case too.

We shall then assume that every archimedean place v of F splits in E. Under this assumption the complete L-function $L(s, r(\pi) \otimes \omega)$ is defined to be the product over all places of the local factors. We shall assume throughout this paper that if $\omega \neq 1$ then ω does not factorizes through $z \mapsto \nu(z)=|z|$, as this case can easily be reduced to the case of $\omega=1$. Indeed, if $\nu_{E}(x)=|x \bar{x}|^{1 / 2}\left(x \in \mathbb{A}_{E}^{\times}\right)$, then

$$
L\left(s, r(\pi) \otimes \omega \nu^{t}\right)=L(s+t, r(\pi) \otimes \omega)=L\left(s, r\left(\pi \otimes \nu_{E}^{t / 2}\right) \otimes \omega\right)
$$

For the same reason we may and will assume that the central character ε of π is trivial on \mathbb{A}^{\times}.

The work of [F1] then extends at once to show that $L(s, r(\pi) \otimes \omega)$ has analytic continuation to the entire complex s-plane with possible poles only at $s=0,1$. This L-function satisfies a functional equation relating s and $1-s$. These poles are at most simple, and occur precisely when $r(\pi) \otimes \omega$ is of the form $r\left(\pi^{\prime}\right)$, with a distinguished π^{\prime}. By $r(\pi) \otimes \omega=r\left(\pi^{\prime}\right)$ we mean that $r\left(\pi_{v}\right) \otimes \omega_{v}=r\left(\pi_{v}^{\prime}\right)$ for almost all v. See the Remark at the end of this paper concerning such ω and π.

Let $L(T)$ be a separable field extension of F of degree n. Its multiplicative group T is isomorphic over F to the group of F-points of an elliptic torus \underline{T} over F of \underline{G}, thus $\underline{T}(F)=T$. The torus T is uniquely determined up to conjugacy in G, and its Lie algebra is isomorphic to $L(T)$, over F. Denote by ω_{T} the character $x \mapsto \omega(\operatorname{det} x)$ of $\mathbb{A}_{L(T)}^{\times}=\underline{T}(\mathbb{A})$, and by $L\left(s, \omega_{T}\right)$ the Hecke L-function associated
with the character ω_{T}. Similarly we have $L(s, \omega)$. The function $L(s, \omega)$ has analytic continuation to the entire complex s-plane, with at most simple poles at $s=0,1$. These poles occur precisely when $\omega=1$.

Note that by class field theory ω can be identified with a character of the Weil group $W(\bar{F} / F)$, where \bar{F} is a separable algebraic closure of F containing $L(T)$, and ω_{T} with the restriction to the subgroup $W(\bar{F} / L(T))$. The Hecke L-functions can be viewed as Artin L-functions associated with these Galois representations. The main result of this paper is the following.

1. Theorem. Let π be a distinguished cuspidal \mathbb{G}^{\prime}-module with a supercuspidal component, and ω a unitary character of \mathbb{Z} / Z. Let s_{0} be a complex number such that for every separable field extension $L(T)$ of F of degree n, the L-function $L\left(s, \omega_{T}\right)$ vanishes at $s=s_{0}$ to the order m. Then $L(s, r(\pi) \otimes \omega)$ vanishes at $s=s_{0}$ to the order m.

Note that if $L\left(s, \omega_{T}\right)$ vanishes at $s=s_{0}$, then $\left|\operatorname{Re} s_{0}-\frac{1}{2}\right|<\frac{1}{2}$.
For $n=2$ the assumption on the $L\left(s, \omega_{T}\right)$ can be replaced by a single assumption about the vanishing of $L(s, \omega)$ at $s=s_{0}$, since for an abelian extension $L(T) / F$ one has the factorization $L\left(s, \omega_{T}\right)=\prod_{\zeta} L(s, \zeta \omega)$, where ζ runs through the characters of $\mathbb{A}^{\times} / F^{\times} N_{L(T) / F} \mathbb{A}_{L(T)}^{\times}$, or equivalently, by class field theory, of $G a l(L(T) / F)$. For $n>2$, and $\omega=1$, it is known that $L(s, \omega)$ divides $L\left(s, \omega_{T}\right)$ if $L(T) / F$ is a normal extension (see, e.g., [CF], p. 225), and also when the Galois group of the normal closure of $L(T)$ over F is solvable (see [W] for this and related results).

In general this divisibility follows from Artin's conjecture. Indeed, denote by $\operatorname{In} d_{T}^{F} \omega_{T}$ the representation of $W(\bar{F} / F)$ induced from the character ω_{T} of $W(\bar{F} / L(T))$. Then

$$
L\left(s, \omega_{T}\right)=L\left(s, \operatorname{Ind}_{T}^{F}\left(\omega_{T}\right)\right)=L(s, \omega) L(s, \rho)
$$

since $\operatorname{Ind} d_{T}^{F}\left(\omega_{T}\right)$ contains the character ω with multiplicity one (by Frobenius reciprocity); ρ is the quotient of $\operatorname{Ind} d_{T}^{F} \omega_{T}$ by ω. If ω is of finite order, it can be viewed as a character of $\operatorname{Gal}(L / F)$ for some Galois field extension L of F containing $L(T)$. Then ω_{T} can be viewed as a character of the subgroup $G a l(L / L(T))$, and $\operatorname{In} d_{T}^{F} \omega_{T}$ is a representation of the finite group $G a l(L / F)$. Artin's conjecture for the group $\operatorname{Gal}(L / F)$ asserts that $\mathrm{L}(s, \rho)$ is entire unless $\omega_{T}=1$ and $\omega \neq 1$, in which case $L(s, \rho)$ is holomorphic except at $s=0,1$, where it has a simple pole. In particular, when $n=3$ or $n=4$, and $\omega=1$, since Artin's conjecture is known for the symmetric groups S_{3} and S_{4}, the vanishing of the L-function $L(s, \mathbb{1})$ associated with the trivial character $\mathbb{1}$ of $\mathbb{A}^{\times} / F^{\times}$implies the vanishing of $L\left(s, \mathbb{1}_{T}\right)$ (at $s=s_{0}$, to the order m), for each extension $L(T)$ of F of degree 3 or 4 , and the assumption of the Theorem 1 on the $L\left(s, \mathbb{1}_{T}\right)$ can be replaced by a single assumption on $L(s, \mathbb{1})$.

The work in this paper was motivated by an observation of the introduction to [F2]. Let $r(\rho)$ be the (finite dimensional) representation of the Weil group $W(\bar{F} / F)$ obtained on composing with the twisted tensor representation $r: \underline{\widehat{G}}^{\prime} \rightarrow$ Aut $\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$, a representation ρ which parametrizes (conjecturally) a distinguished
representation of $\mathbb{G}^{\prime}(\rho$ factorizes through a base change map b from the dual group $\widehat{U}=\underline{G}(\mathbb{C}) \rtimes W(\bar{F} / F)$ of the unitary group U in n variables associated with $E / F)$. The formal observation in [F2] is that $r(\rho)$ contains a copy of the trivial representation of $W(\bar{F} / F)$; the fixed vector is written out in [F2]. Theorem 1 is an L-function reflection of the underlying representation theoretic fact.

The proof is based on integrating the kernel $K_{\varphi}(x, y)$ of the usual convolution operator $r(\varphi)$ on the space of cusp forms on \mathbb{G}^{\prime}, against an Eisenstein series in x, over x and y in $\mathbb{Z} G \backslash \mathbb{G}$. The integral is expanded geometrically and spectrally. Theorem 1 is deduced from the resulting equality for a family of test functions. We can work in the context of $G L(n)$ with a general $n \geq 2$ since we use ideas which were previously constructive in developing a simple form of the trace formula (see, e.g., $[\mathrm{FK}]$ and $[\mathrm{F} 3]$), although we do not use the trace formula in this work.

For related results in the split case $E=F \oplus F$ and the adjoint representation L-function $L(s, \omega \otimes \pi \times \check{\pi}) / L(s, \omega)$, see [Z], [JZ], in the context of $G L(2)$, and [F4] in the context of $G L(n)$.
B. Core identity. We shall work with the space $L\left(G^{\prime}\right)$ of complex valued functions ϕ on $G^{\prime} \backslash \mathbb{G}^{\prime}$ which satisfy (1) $\phi(z g)=\varepsilon(z) \phi(g)\left(z \in \mathbb{Z}^{\prime}, g \in \mathbb{G}^{\prime}\right)$, (2) ϕ is absolutely square integrable on $\mathbb{Z}^{\prime} G^{\prime} \backslash \mathbb{G}^{\prime}$. The group \mathbb{G}^{\prime} acts on $L\left(G^{\prime}\right)$ by right translation: $(r(g) \phi)(h)=\phi(h g)$. The action is unitary since ε is.

Definition. The function $\phi \in L\left(G^{\prime}\right)$ is called cuspidal if for each proper parabolic subgroup \underline{P}^{\prime} of $G L(n)$ over E with unipotent radical \underline{N}^{\prime} we have $\int \phi(n g) d g=0$ $\left(n \in N^{\prime} \backslash \mathbb{N}^{\prime}\right)$ for all $g \in \mathbb{G}^{\prime}$.

Let r_{0} be the restriction of r to the space $L_{0}\left(G^{\prime}\right)$ of cusp forms in $L\left(G^{\prime}\right)$. The space $L_{0}\left(G^{\prime}\right)$ decomposes as a direct sum with finite multiplicities of invariant irreducible unitary \mathbb{G}^{\prime}-modules called cuspidal \mathbb{G}^{\prime}-modules.

Denote by $C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}^{-1}\right)$ the convolution algebra of complex valued functions φ_{v} on G_{v}^{\prime} with $\varphi_{v}(g)=\varepsilon_{v}(z) \varphi_{v}(z g)\left(z \in Z_{v}^{\prime}, g \in G_{v}^{\prime}\right)$ which are compactly supported modulo Z_{v}^{\prime}, smooth if v is archimedean and locally constant if not. Implicit is a choice of a Haar measure $d g_{v}$ on $G_{v}^{\prime} / Z_{v}^{\prime}$. It is chosen to have that the product of the volumes $\left|K_{v}^{\prime} / Z_{v}^{\prime} \cap K_{v}^{\prime}\right|$ over all F-places v converges. Here K_{v}^{\prime} is the standard maximal compact subgroup of G_{v}^{\prime}; when v is non-archimedean we have $K_{v}^{\prime}=\underline{G}\left(R_{v}^{\prime}\right)$, where R_{v}^{\prime} is the ring of integers in $E_{v}\left(R_{v}^{\prime}\right.$ is $R_{v^{\prime}} \times R_{v^{\prime \prime}}$ if v splits into $v^{\prime}, v^{\prime \prime}$ in E, and R_{v} is the ring of integers in F_{v}). Denote by \mathbb{H}_{v} the convolution algebra of K_{v}^{\prime}-biinvariant functions in $C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}^{-1}\right)$, and by φ_{v}^{0} its unit element.

Denote by $C_{c}^{\infty}\left(\mathbb{G}^{\prime}, \varepsilon^{-1}\right)$ the linear span of the products $\otimes \varphi_{v}, \varphi_{v} \in C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}^{-1}\right)$ for all v, and $\varphi_{v}=\varphi_{v}^{0}$ for almost all v. Put $d g=\otimes d g_{v}$. The convolution operator $r(\varphi)=\int_{\mathbb{G}^{\prime} / \mathbb{Z}^{\prime}} \varphi(g) r(g) d g$ is an integral operator on $L(G)$ with the kernel $K_{\varphi}(x, y)=$ $\sum \varphi\left(x^{-1} \gamma y\right)\left(\gamma \in G^{\prime} / Z^{\prime}\right)$.

Definition. (1) Denote by a bar the Galois action of $G a l(E / F)$ on E. For $g=$ $\left(g_{i j}\right) \in G L(n, E)$, put $\bar{g}=\left(\bar{g}_{i j}\right)$.
(2) The element γ of G^{\prime} is called r-elliptic (resp. r-regular) if the element $\gamma \bar{\gamma}^{-1}$ of
G^{\prime} is elliptic (resp. regular). The analogous definition holds in the local case with $F_{v}, E_{v}, G_{v}^{\prime}$ replacing F, E, G^{\prime}.
(3) The function $\varphi \in C_{c}^{\infty}\left(\mathbb{G}^{\prime}, \varepsilon^{-1}\right)$ is called r-discrete if for every x, y in \mathbb{G} and γ in G^{\prime} we have $\varphi(x \gamma y)=0$ unless γ is r-elliptic r-regular.
(4) The elements γ, γ^{\prime} in G^{\prime} (resp. G_{v}^{\prime}) are r-conjugate if there are x, y in G (resp. G_{v}) with $\gamma^{\prime}=x \gamma y$.

Here " r-" is an abbreviation for "relatively-". Recall that δ in $G^{\prime}=G L(n, E)$ (resp. $G_{v}^{\prime}=G L\left(n, E_{v}\right)$) is called regular if its centralizer in \underline{G}^{\prime} (resp. G_{v}^{\prime}) is an F-torus \underline{T}^{\prime} (thus $\underline{T}^{\prime}(F)=T^{\prime}$ is a torus in G^{\prime}) (resp. $E_{v^{\prime}}$-torus T_{v}^{\prime}). Such δ is elliptic if it lies in a torus $G^{\prime}\left(\operatorname{resp} T_{v}^{\prime}\right)$ and $\mathbb{T}^{\prime} / T^{\prime} \mathbb{Z}^{\prime}$ has finite volume (resp. $T_{v}^{\prime} / Z_{v}^{\prime}$ is compact). Thus δ is elliptic regular if and only if it lies in no proper E-parabolic subgroup of G^{\prime} (resp. E_{v}-parabolic subgroup of G_{v}^{\prime}). The centralizer of an elliptic regular $\gamma \in G^{\prime}$ is the multiplicative group of a field extension of E of degree n.

Consider the set $S=\left\{x \in G^{\prime} ; x \bar{x}=1\right\}$. By [F2], Proposition 10, we have
2. Lemma. (1) The map $G^{\prime} / G \rightarrow S, x \mapsto x \bar{x}^{-1}$, is a bijection. It bijects the double coset $G x G$ with the orbit $\operatorname{Ad}(G)\left(x \bar{x}^{-1}\right)$ under the adjoint action of G. (2) If $x, y \in S$ are conjugate by an element of G^{\prime}, then they are conjugate by an element of G.

Note that the centralizer of $\gamma \bar{\gamma}^{-1}$ is defined over F since $x \gamma \bar{\gamma}^{-1} x^{-1}=\gamma \bar{\gamma}^{-1}$ implies $\bar{x}\left(\gamma \bar{\gamma}^{-1}\right)^{-1} \bar{x}^{-1}=\left(\gamma \bar{\gamma}^{-1}\right)^{-1}$. We obtain the following description of the r-regular r-conjugacy classes in G^{\prime}.
2.1 Corollary. Let $\{\underline{T}\}$ be a set of representatives for the G-conjugacy classes of (maximal) F-tori in $\underline{G}, T^{\prime}=\underline{T}(E)$ the group of E-points on \underline{T}, and $T^{\prime, \text { r-reg }}$ the set of r-regular elements in T^{\prime}. Denote by $W(T)=N_{G}(T) / T$ the Weyl group of T in G, and write $t^{\prime} \sim t^{\prime \prime}$ for $t^{\prime}, t^{\prime \prime}$ in G^{\prime} if there are $w \in W(T)$ and $t \in T$ with $w t^{\prime} w^{-1}=t t^{\prime \prime}$. Then a set of representatives for the set of r-conjugacy classes of the r-regular elements in G^{\prime} is given by the union over $\{T\}$ of the $T^{\prime, r-r e g} / \sim . A$ set of representatives for the subset of r-conjugacy classes of the r-regular r-elliptic elements in G^{\prime} is given by the union over the set $\{T\}_{\text {ell }}$ of the elliptic tori in $\{T\}$, of the T^{\prime}, r-reg $/ \sim$.

The kernel $K_{\varphi}(x, y)=\sum \varphi\left(x^{-1} \gamma y\right)\left(\gamma \in G^{\prime} / Z^{\prime}\right)$ can now be expressed as

$$
\begin{align*}
& \sum_{\{T\}_{\text {ell }}} \sum_{\gamma \in T^{\prime}, \mathrm{r-reg} / Z^{\prime}} \sum_{\delta_{1} \in G / T} \sum_{\delta_{2} \in N(T) \backslash G} \varphi\left(x^{-1} \delta_{1} \gamma \delta_{2} y\right) \\
& =\sum_{\{T\}_{\text {ell }}}[W(T)]^{-1} \sum_{\gamma \in T^{\prime}, \text { r-reg } / T Z^{\prime}} \sum_{\delta_{1} \in G / T} \sum_{\delta_{2} \in G / Z} \varphi\left(x^{-1} \delta_{1} \gamma \delta_{2} y\right), \tag{2.2}
\end{align*}
$$

for an r-discrete function φ.
Definition. The function $\varphi_{v} \in C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}^{-1}\right)$ is called r-discrete if for every x, y in G_{v} and $\gamma \in G_{v}^{\prime}$ we have $\varphi_{v}(x \gamma y)=0$ unless γ is r-elliptic r-regular.

It is clear that $\varphi=\otimes \varphi_{v}$ is r-discrete if it has an r-discrete component. Indeed, an element $\delta \in G^{\prime}$ is elliptic (resp. regular) if it is elliptic (resp. regular) in G_{v}^{\prime} for some v.

This kernel will be integrated against an Eisenstein series in x. Identify $G L(n-1)$ with a subgroup of $G L(n)$ via $g \mapsto\left(\begin{array}{ll}g & 0 \\ 0 & 1\end{array}\right)$, and put $\underline{Q}=G L(n-1) \underline{N}$, where \underline{N} is the unipotent upper triangular group. Let $S\left(F_{v}^{n}\right)$ be the space of smooth and rapidly decreasing (if v is archimedean), or locally constant compactly supported (otherwise) complex valued functions on F_{v}^{n}. Denote by Φ_{v}^{0} the characteristic function of R_{v}^{n} in F_{v}^{n} if v is non-archimedean. Let $S\left(\mathbb{A}^{n}\right)$ be the linear span of the functions $\Phi=\otimes \Phi_{v}, \Phi_{v} \in S\left(F_{v}^{n}\right)$ for all $v, \Phi_{v}=\Phi_{v}^{0}$ or almost all v. Put $\underline{\varepsilon}=(0, \ldots, 0,1) \in \mathbb{A}^{n}$. The integral in

$$
\begin{equation*}
f(g, s)=\omega(\operatorname{det} g)|\operatorname{det} g|^{s} \int_{\mathbb{A}^{\times}} \Phi(a \underline{\varepsilon} g)|a|^{n s} \omega^{n}(a) d^{\times} a \tag{2.3}
\end{equation*}
$$

converges absolutely, uniformly in compact subsets of $\operatorname{Re}(s) \geq \frac{1}{n}$. The absolute value is normalized as usual, and ω is a unitary character of $\mathbb{A}^{\times} / F^{\times}$.

It follows from Lemmas (11.5), (11.6) of [GoJ] that the Eisenstein series

$$
E(g, \Phi, \omega, s)=\sum f(\gamma g, s) \quad(\gamma \in Z Q \backslash G)
$$

converges absolutely in $\operatorname{Re}(s)>1$. In [JS], (4.2), p. 545, and [JS2], (3.5), p. 7 (with a slight modification due to the position of ω here), it is shown that $E(g, \Phi, \omega, s)$ extends to a meromorphic function on $\operatorname{Re}(s)>0$, in fact to the entire complex s-plane with a functional equation $E(g, \Phi, \omega, s)=E\left({ }^{t} g^{-1}, \widehat{\Phi}, \omega^{-1}, 1-s\right)$, where ${ }^{t} g$ is the transpose of g, and $\widehat{\Phi}$ is the Fourier transform of the "Schwartz" function Φ (with respect to some additive character $\psi \neq 1$ of $\mathbb{A} / F)$. Moreover $E(g, \Phi, \omega, s)$ is slowly increasing (with respect to some Siegel domain) in $g \in G \backslash \mathbb{G}$, and is holomorphic except possibly at $s=0,1$, where the pole is at most simple. Note that $f(g)$ and $E(g, s)$ are \mathbb{Z}-invariant.
3. Proposition. For any character ω of $\mathbb{Z}^{\times} / F^{\times}$, Schwartz function Φ in $S\left(\mathbb{A}^{n}\right)$, and r-discrete function φ on \mathbb{G}^{\prime}, for each field extension $L(T)$ of degree n of F there is an entire holomorphic function $A(\Phi, \omega, \varphi, L(T), s)$ in s in \mathbb{C} such that

$$
\begin{align*}
& \iint_{(\mathbb{Z} G \backslash \mathbb{G})^{2}} K_{\varphi}(x, y) E(x, \Phi, \omega, s) d x d y \tag{3.1}\\
= & \sum_{L(T)} A(\Phi, \omega, \varphi, L(T), s) L\left(s, \omega_{T}\right)
\end{align*}
$$

on Res >1. The sum over $L(T)$ ranges over a finite set (of field extensions $L(T)$ of degree n of F, up to isomorphism over F) depending on (the support of) φ.

Proof. Since $K_{\varphi}(x, y)$ is left G-invariant as a function in x (and in y), the first expression (on the left) of (3.1),

$$
\iint_{(\mathbb{Z} G \backslash \mathbb{G})^{2}} K_{\varphi}(x, y) \cdot \sum_{\gamma \in Z Q \backslash G} f(\gamma x, s) d x d y
$$

is equal, in the domain of convergence of the series defining the Eisenstein series, to

$$
\int_{\mathbb{Z} Q \backslash \mathbb{G}}\left(\int_{G \mathbb{Z} \backslash \mathbb{G}} K_{\varphi}(x, y) d y\right) f(x, s) d x
$$

Substituting (2.2) this is equal to

$$
\begin{aligned}
& \int_{\mathbb{Z} Q \backslash \mathbb{T}} d x \cdot \int_{\mathbb{Z} G \backslash \mathbb{G}} d y \cdot \sum_{\{T\}_{\text {ell }}}[W(T)]^{-1} \sum_{\gamma \in T^{\prime, \mathrm{r-reg}} / Z^{\prime}} \sum_{T} \sum_{\delta_{1} \in G / T} \sum_{\delta_{2} \in Z \backslash G} \varphi\left(x^{-1} \delta_{1} \gamma \delta_{2} y\right) f(x, s) \\
= & \sum_{\{T\}_{\text {ell }}}[W(T)]^{-1} \sum_{\gamma \in T^{\prime \prime,-\mathrm{reg}} / Z^{\prime}} \int_{T_{\mathbb{Z} \backslash \mathbb{G}}} d x \int_{\mathbb{Z} \backslash \mathbb{G}} \varphi\left(x^{-1} \gamma y\right) f(x, s) d y .
\end{aligned}
$$

The last equality follows from the decomposition $G=Q T, Q \cap T=\{1\}$, and the left Q-invariance of $f(x, s)$ as a function in x.

To justify the change of summations and integrations, note that given φ the sums over T and γ (in $T^{\prime} / T Z^{\prime}$) are finite. Indeed, consider $x^{-1} \gamma \bar{\gamma}^{-1} x$. Its characteristic polynomial has rational coefficients (in F), which lie in a compact depending on the support of φ (the intersection of a discrete and a compact set if finite). Hence the sum over T is finite, as asserted in the proposition. Moreover, the sum over $\gamma \in T^{\prime, \text { r-reg }} / T Z^{\prime}$ is finite. The T are elliptic since φ is r-discrete.

Now for any elliptic regular $\gamma \bar{\gamma}^{-1}$, if $x^{-1} \gamma \bar{\gamma}^{-1} x$ lies in the compact $\operatorname{supp} \varphi$ in $\mathbb{G}^{\prime} / \mathbb{Z}^{\prime}$, then $x(\in \mathbb{G})$ lies in a compact of $\mathbb{T} \backslash \mathbb{G}$. Moreover, the function $\Phi(\underline{\varepsilon} t x)$ in $t \in \mathbb{T}$, is compactly supported, uniformly in x in a compact of $\mathbb{T} \backslash \mathbb{G}$. Hence x lies in a compact of $\mathbb{Z} \backslash \mathbb{G}$ if $\varphi\left(x^{-1} \gamma y\right) f(x, s) \neq 0$. But now $x^{-1} \gamma y$ lies in the compact $\operatorname{supp} \varphi, x$ lies in a compact, and γ in a finite set. Hence y lies in a compact of \mathbb{G} / \mathbb{Z}, our integrals are absolutely convergent, and the change of sums and integrals is justified.

Substituting now the expression (2.3) for $f(x, s)$, we obtain a sum over T and γ of the product of $[W(T)]^{-1}$ and

$$
\begin{aligned}
& \iint_{(\mathbb{Z} \backslash \mathbb{G})^{2}} \varphi\left(x^{-1} \gamma y\right) f(x, s) d x d y=\int_{\mathbb{G}} d x \int_{\mathbb{Z} \backslash \mathbb{G}} \varphi\left(x^{-1} \gamma y\right) d y \cdot \omega(\operatorname{det} x)|\operatorname{det} x|^{s} \Phi(\underline{\varepsilon} x) \\
& =\int_{\mathbb{T} \backslash \mathfrak{G} \mathbb{G} / \mathbb{Z}} \int_{\mathbb{T}} \varphi\left(x^{-1} \gamma x y\right) d y \cdot \int_{\mathbb{T}} \Phi(\underline{\epsilon} t x) \omega(\operatorname{det} t x)|\operatorname{det} t x|^{s} d t d x .
\end{aligned}
$$

The inner integral over \mathbb{T} is a "Tate integral" which defines the L-function $L\left(s, \omega_{T}\right)$. Note that the integral in x is taken over a compact in $\mathbb{T} \backslash \mathbb{G}$, and the integral over y ranges over a compact in $\mathbb{Z} \backslash \mathbb{G}$. The proposition follows.
C. Spectral analysis. There is another expression for the kernel $K_{\varphi}(x, y)$, which we proceed to describe in the special case where φ is cuspidal.

Definition. The function φ on \mathbb{G}^{\prime} is called cuspidal if for every x, y in \mathbb{G}^{\prime} and every proper F-parabolic subgroup \underline{P}^{\prime} of \underline{G}^{\prime}, we have $\int_{\mathbb{N}^{\prime}} \varphi(x n y) d n=0$, where $\mathbb{N}^{\prime}=\underline{N^{\prime}}(\mathbb{A})$ is the unipotent radical of the parabolic subgroup $\mathbb{P}^{\prime}=\underline{P^{\prime}}(\mathbb{A})$ of \mathbb{G}^{\prime}.

For a cuspidal φ, the convolution operator $r(\varphi)$ factorizes through the projection on the space $L_{0}\left(G^{\prime}\right)$ of cusp forms. The kernel $K_{\varphi}(x, y)$ has then the spectral decomposition

$$
K_{\varphi}(x, y)=\sum_{\pi} K_{\varphi}^{\pi}(x, y), \quad \text { where } \quad K_{\varphi}^{\pi}(x, y)=\sum_{\phi^{\pi}}\left(r(\varphi) \phi^{\pi}\right)(x) \bar{\phi}^{\pi}(y)
$$

The π range over all cuspidal \mathbb{G}^{\prime}-modules in $L_{0}\left(G^{\prime}\right)$. The ϕ^{π} range over an orthonormal basis consisting of $\mathbb{K}^{\prime}=\prod_{v} K_{v}^{\prime}$-finite vectors in π (K_{v}^{\prime} is the standard maximal compact subgroup in G_{v}^{\prime}). The ϕ^{π} are rapidly decreasing functions, and the sum over ϕ^{π} is finite for each φ (uniformly in x and y) since φ is \mathbb{K}^{\prime}-finite. The sum over π converges in L^{2}, hence also in the space of rapidly decreasing functions. Hence $K_{\varphi}(x, y)$ is rapidly decreasing in x and y, and the product of $K_{\varphi}(x, y)$ with the slowly increasing function $E(x, \Phi, \omega, s)$ is integrable over $(\mathbb{Z} G \backslash \mathbb{G})^{2}$. Consequently (3.1) can be expressed in the form

$$
\sum_{\pi} \sum_{\phi^{\pi}} \int_{\mathbb{Z} G \backslash \mathbb{G}}\left(r(\varphi) \phi^{\pi}\right)(x) E(x, \Phi, \omega, s) d x \cdot \int_{\mathbb{Z} G \backslash \mathbb{G}} \bar{\phi}^{\pi}(y) d y .
$$

A cuspidal \mathbb{G}^{\prime}-module which contains a vector ϕ^{π} whose integral over $\mathbb{Z} G \backslash \mathbb{G}$ is non-zero is called distinguished. Hence the sum over π ranges over the distinguished cuspidal \mathbb{G}^{\prime}-modules only.

To prove Theorem 1 let s_{0} be a complex number such that for every separable field extension $L(T)$ of F degree n, the L-function $L\left(s, \omega_{T}\right)$ vanishes at $s=s_{0}$ to the order $m \geq 1$. It is well-known that then $\left|\operatorname{Re}\left(s_{0}\right)-\frac{1}{2}\right|<\frac{1}{2}$. It follows that (3.1) vanishes at $s=s_{0}$ to the order m, and thus for all $j(0 \leq j \leq m)$ we have

$$
\begin{equation*}
\sum_{\pi} \sum_{\phi^{\pi}} \int_{\mathbb{Z} G \backslash \mathbb{G}}\left(\pi(\varphi) \phi^{\pi}\right)(x) E^{(j)}\left(x, \Phi, \omega, s_{0}\right) d x \cdot \int_{\mathbb{Z} G \backslash \mathbb{G}} \bar{\phi}^{\pi}(y) d y=0 . \tag{3.2}
\end{equation*}
$$

Here $E^{(j)}\left(*, s_{0}\right)=\left.\frac{d^{j}}{d s^{j}} E(*, s)\right|_{s=s_{0}}$.
The test function φ is an arbitrary cuspidal discrete function on \mathbb{G}^{\prime}, and our aim is to show the vanishing of a single summand in the last double sum over π and
ϕ^{π}. In fact, fix a cuspidal distinguished \mathbb{G}^{\prime}-module π^{\prime} whose component at some F-place v_{2} is supercuspidal, for which Theorem 1 will be proven.

Let V be a finite set of F-primes, containing the archimedean primes and those where π^{\prime}, ω or E / F ramify. Consider $\varphi=\otimes \varphi_{v}$ (product over all F-places v) with $\varphi_{v} \in C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}^{-1}\right)$ for all v, and $\varphi_{v}=\varphi_{v}^{0}(=$ the unit element in the Hecke algebra \mathbb{H}_{v}) for almost all v. For all $v \notin V$ the component φ_{v} is taken to be spherical, namely $\varphi_{v} \in \mathbb{H}_{v}$. Each of the operators $\pi_{v}\left(\varphi_{v}\right)(v \notin V)$ factorizes through the projection on the subspace $\pi_{v}^{K_{v}^{\prime}}$ of K_{v}^{\prime}-fixed vectors in π_{v}. This subspace is zero unless π_{v} is unramified, in which case $\pi_{v}^{K_{v}^{\prime}}$ is one-dimensional. On this K_{v}^{\prime}-fixed vector, the operator $\pi_{v}\left(\varphi_{v}\right)$ acts as the scalar $\varphi_{v}^{\vee}\left(t\left(\pi_{v}\right)\right)$, where φ_{v}^{\vee} denotes the Satake transform of φ_{v}. Put $\varphi^{\vee}\left(t\left(\pi^{V}\right)\right)$ for the product over $v \notin V$ of $\varphi_{v}^{\vee}\left(t\left(\pi_{v}\right)\right)$, $\pi_{V}\left(\varphi_{V}\right)=\underset{v \in V}{\otimes} \pi_{v}\left(\varphi_{v}\right)$, and $\pi^{\mathbb{K}^{\prime}, V}$ for the space of $\prod_{v \notin V} K_{v}^{\prime}$-fixed vectors in π. Then (3.2) takes the form

$$
\begin{equation*}
\sum_{\left\{\pi ; \pi^{K^{\prime}, V} \neq 0\right\}} \varphi^{\vee}\left(t\left(\pi^{V}\right)\right) a\left(\pi, \varphi_{V}, j, \Phi, \omega, s_{0}\right)=0 \tag{3.3}
\end{equation*}
$$

where
$(3 . \operatorname{dit})\left(\pi, \varphi_{V}, j, \Phi, \omega, s\right)=\sum_{\phi^{\pi}} \int_{\mathbb{Z} G \backslash \mathbb{G}}\left(\pi_{V}\left(\varphi_{V}\right) \phi^{\pi}\right)(x) E^{(j)}(s, \Phi, \omega, s) d x \cdot \int_{\mathbb{Z} G \backslash \mathbb{G}} \bar{\phi}^{\pi}(y) d y$.
The sum over π ranges over the set of distinguished cuspidal \mathbb{G}^{\prime}-modules $\pi=$ $\otimes \pi_{v}$ such that π_{v} is unramified outside V. The sum over ϕ^{π} ranges over those elements in the orthonormal basis of π which appears in (3.2), which are $K_{v^{-}}$ invariant and eigenfunctions of $\pi_{v}\left(\varphi_{v}\right)\left(\varphi_{v} \in \mathbb{H}_{v}\right.$, necessarily with the eigenvalues $\left.t\left(\pi_{v}\right)\right)$ as functions in $x \in G_{v}$, for any $v \notin V$. In particular, such ϕ^{π} factorizes as $\phi^{\pi}(x)=\phi_{V}^{\pi}\left(x_{V}\right) \prod_{v \notin V} \phi_{v}^{\pi_{v}}\left(x_{v}\right)$; here $\phi_{v}^{\pi_{v}}$ is a right K_{v}^{\prime}-invariant function on G_{v}^{\prime} whose value at 1 is $\operatorname{vol}\left(K_{v}^{\prime} Z_{v}^{\prime} / Z_{v}^{\prime}\right)^{-1}$ and which transforms under Z_{v}^{\prime} via ε_{v}, which is an eigenfunction of the convolution operators $r\left(\varphi_{v}\right)\left(\varphi_{v} \in \mathbb{H}_{v}\right)$ with the eigenvalue $t\left(\pi_{v}\right)$.

A standard argument (see, e.g., Theorem 2 in [FK] in a more involved situation), based on the absolute convergence of the sum over π in (3.3), standard estimates on the Hecke parameters $t\left(\pi_{v}\right)$ of the unitary unramified $\pi_{v}(v \notin V)$, and the StoneWeierstrass theorem, implies the following.
4. Proposition. Let π be a cuspidal distinguished \mathbb{G}^{\prime}-module which has a supercuspidal component, ω a unitary character of \mathbb{Z} / Z, and s_{0} a complex number as in Theorem 1. Then for any j, Φ and a function φ_{V} for which φ is cuspidal and discrete with any choice of $\otimes \varphi_{v}(v \notin V)$, the sum (3.4) is zero.
D. Constant term expanded. We shall now proceed to recall from [F1] the relation between the integral over x in (3.4) and the L-function $L(s, r(\pi) \otimes \omega)$.

First we need a lemma, and some notations. Let $\psi \neq 1$ be a character of \mathbb{A} / F, and $\underline{\psi}^{\prime}$ the character of $\mathbb{A}_{E} /(\mathbb{A}+E)$ defined by $\underline{\psi}^{\prime}(x)=\underline{\psi}\left((x-\bar{x}) /\left(x_{0}-\bar{x}_{0}\right)\right)$ on $x \in \overline{\mathbb{A}}_{E}$. Here x_{0} is a fixed element of $E-F$, and - as usual - bar signifies the Galois action of $G a l(E / F)$. Denote by $\underline{\psi}_{v}^{\prime}$ the component at an F-place v.

Definition. A G_{v}^{\prime}-module π_{v} is called generic if $\operatorname{Hom}_{N_{v}^{\prime}}\left(\pi_{v}, \psi_{v}^{\prime}\right) \neq\{0\}$, where ψ_{v}^{\prime} is the character $n=\left(n_{i j}\right) \mapsto \underline{\psi}^{\prime}\left(\sum_{1 \leq i<n} n_{i, i+1}\right)$ of the unipotent upper triangular subgroup N_{v}^{\prime} of G_{v}^{\prime}.

By [GK], or Corollary 5.17 of [BZ], a generic π_{v} embeds in the induced $G_{v^{-}}^{\prime}$ module $\operatorname{Ind}\left(\psi_{v}^{\prime} ; G_{v}^{\prime}, N_{v}^{\prime}\right)$. Moreover, the dimension of $\operatorname{Hom}\left(\pi_{v}, \operatorname{Ind}\left(\psi_{v}^{\prime}\right)\right)$ is at most one, equivalently the dimension of $\operatorname{Hom}_{N_{v}^{\prime}}\left(\pi_{v}, \psi_{v}^{\prime}\right)$ is at most one.

Definition. If π_{v} is generic, denote by $W\left(\pi_{v}\right)$ its realization in $\operatorname{Ind}\left(\psi_{v}^{\prime}\right) ; W\left(\pi_{v}\right)$ is called the Whittaker model of π_{v}.

Any component of a cuspidal \mathbb{G}^{\prime}-module is generic. Since π_{v} is admissible, each Whittaker function in $W\left(\pi_{v}\right)$ is smooth (under right action of G_{v}^{\prime}). Denote by $W(\pi)$ the linear span of the functions $W(x)=\prod_{v} W_{v}\left(x_{v}\right)$, where $W_{v} \in W\left(\pi_{v}\right)$ for all v, and W_{v} is the normalized (by $W_{v}^{0}(1)=1$) unramified (right- K_{v}^{\prime}-invariant) vector W_{v}^{0} for all v outside V.

Given W in $W(\pi)$, the function $\phi_{W}(x)=\sum_{p \in N^{\prime} \backslash Q^{\prime}} W(p x)$ is a cuspidal function in the space of $\pi \subset L_{0}\left(G^{\prime}\right)$, and the space of π is spanned by such ϕ_{W}. If π is distinguished, namely there is $\phi \in \pi$ with $\int_{\mathbb{Z} G \backslash G} \phi(x) d x \neq 0$, then $\phi=\sum_{i} \phi_{W_{i}}$ and we conclude that π has a distinguished vector of the form ϕ_{W}.

Given a cusp form ϕ in π, consider the Whittaker function $W_{\phi}(x)=\int_{N^{\prime} \backslash \mathbb{N}^{\prime}} \phi(n x) \bar{\psi}^{\prime}(n) d n$ in $W(\pi)$. Here $\bar{\psi}^{\prime}(n)=\psi^{\prime}\left(n^{-1}\right)$. It is easy to see that if $\phi=\phi_{W}$, then W_{ϕ} is W. The following simple fact is used in [F1]; a proof is included here, since it was not given there.
5. Lemma. Given $W=\otimes W_{v}$ in $W(\pi)$ and $\phi(x)=\sum_{p \in N^{\prime} \backslash Q^{\prime}} W(p x)$, we have

$$
\int_{N \backslash \mathbb{N}} \phi(n x) d n=\sum_{p \in N \backslash Q} W(p x) .
$$

Proof. Let ϕ be a cusp form. We first recall the proof of the expansion

$$
\phi(x)=\sum_{p \in N_{n}^{\prime} \backslash Q_{n}^{\prime}} W_{\phi}(p x) .
$$

The index (n here) signifies the size of the matrix, and prime means entries in E (rather than F). Embed G_{m}^{\prime} in $G_{n}^{\prime}(m \leq n)$ via $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1\end{array}\right)$, and denote by
V_{n}^{\prime} the unipotent radical of the parabolic subgroup of G_{n}^{\prime} of type $(n-1,1)$. For $v=\left(v_{i j}\right)$ in \mathbb{V}_{n}^{\prime} put $\psi^{\prime}(v)=\underline{\psi}^{\prime}\left(v_{n-1, n}\right)$, and consider

$$
F_{\phi}(p)=\int_{V_{n}^{\prime} \backslash \mathbb{V}_{n}^{\prime}} \phi(v p) \psi^{\prime}(v) d v
$$

Since ϕ is cuspidal, only non-trivial characters of $\mathbb{V}_{n}^{\prime} / V_{n}^{\prime}$ need be considered here. These make a single orbit under the action of G_{n-1}^{\prime}. The stabilizer of $v \mapsto \psi^{\prime}(v)$ is $G_{n-2}^{\prime} V_{n-1}^{\prime}$. Hence we have the Fourier expansion

$$
\phi(e)=\sum_{p_{n-1} \in G_{n-2}^{\prime} V_{n-1}^{\prime} \backslash G_{n-1}^{\prime}} F_{\phi}\left(p_{n-1}\right)
$$

Now F_{ϕ} is a cusp form on $\mathbb{G}_{n-1}^{\prime}$. Hence by induction on n we have

$$
F_{\phi}(p)=\sum_{p_{n-2} \in G_{n-3}^{\prime} V_{n-2}^{\prime} \backslash G_{n-2}^{\prime}} \cdots \sum_{p_{1} \in G_{1}^{\prime}} W_{F_{\phi}}\left(p_{1} p_{2} \cdots p_{n-2} p\right) .
$$

But $W_{F_{\phi}}(x)=W_{\phi}\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)$. Hence

$$
\phi(e)=\sum_{p_{n-1}} \sum_{p_{n-2}} \cdots \sum_{p_{1}} W_{\phi}\left(p_{1} p_{2} \cdots p_{n-2} p_{n-1}\right)=\sum_{p \in N_{n}^{\prime} \backslash Q_{n}^{\prime}} W_{\phi}(p)
$$

as required.
To prove the lemma, using the same notations we consider

$$
\phi_{N_{n}}(x)=\int_{N_{n} \backslash \mathbb{N}_{n}} \phi(m x) d m
$$

Since

$$
\phi_{N_{n-1}}(v)=\sum_{p_{n-1}^{\prime} \in G_{n-2}^{\prime} V_{n-1}^{\prime} \backslash G_{n-1}^{\prime}} F_{\phi_{N_{n-1}}}\left(p_{n-1}^{\prime} v\right)
$$

the integral

$$
\phi_{N_{n}}(e)=\int_{V_{n} \backslash \mathbb{V}_{n}} \phi_{N_{n-1}}(v) d v
$$

is equal to

$$
\int_{V_{n} \backslash \mathbb{V}_{n}} \sum_{p_{n-1}^{\prime}} F_{\phi_{N_{n-1}}}\left(p_{n-1}^{\prime} v\right) d v=\sum_{p_{n-1}} F_{\phi_{N_{n-1}}}\left(p_{n-1}\right)
$$

The last sum ranges over $p_{n-1} \in G_{n-2} V_{n-1} \backslash G_{n-1}$ since

$$
\int_{V_{n} \backslash \mathbb{V}_{n}} \psi^{\prime}\left(p_{n-1}^{\prime} v p_{n-1}^{\prime}-1\right) d v \neq 0
$$

implies that $p_{n-1}^{\prime} \in G_{n-1}^{\prime}$ must lie in G_{n-1}. Now

$$
F_{\phi_{N_{n-1}}}\left(p_{n-1}\right)=\int_{V_{n}^{\prime} \backslash \mathbb{V}_{n}^{\prime}} \phi_{N_{n-1}}\left(v_{n} p_{n-1}\right) \psi_{n}^{\prime}\left(v_{n}\right) d v_{n}
$$

and by induction we have

$$
\phi_{N_{n-1}}(x)=\sum_{p_{n-2} \in N_{n} \cap G_{n-2} \backslash G_{n-2}} W_{\phi, \psi_{n-1}^{\prime}}\left(p_{n-2} x\right) .
$$

The index of ψ_{n}^{\prime} indicates that it is a character on the group \mathbb{N}_{n}^{\prime}. Substituting we obtain

$$
\int_{V_{n}^{\prime} \backslash \mathbb{V}_{n}^{\prime}} \sum_{p_{n-2}} W_{\phi, \psi_{n-1}^{\prime}}\left(p_{n-2} v_{n} p_{n-1}\right) \psi_{n}^{\prime}\left(v_{n}\right) d v_{n}
$$

But given p_{n-2} and v_{n} there is v_{n}^{\prime} in \mathbb{V}_{n}^{\prime} with $\psi_{n}^{\prime}\left(v_{n}\right)=\psi_{n}^{\prime}\left(v_{n}^{\prime}\right)$ and $p_{n-2} v_{n}=$ $v_{n}^{\prime} p_{n-2}$. By definition of $W_{\phi, \psi_{n}^{\prime}}$, the last displayed expression can be expressed as

$$
\left(F_{\phi_{N_{n-1}}}\left(p_{n-1}\right)=\right) \sum_{p_{n-2}} W_{\phi, \psi_{n}^{\prime}}\left(p_{n-2} p_{n-1}\right) .
$$

We conclude that

$$
\phi_{N_{n}}(e)=\sum_{p_{n-1}} \sum_{p_{n-2}} W_{\phi, \psi_{n}^{\prime}}\left(p_{n-2} p_{n-1}\right)=\sum_{p \in N_{n} \backslash Q_{n}} W_{\phi, \psi_{n}^{\prime}}(p),
$$

as required.
E. L-functions emerge. We can now return to the integral over x in (3.4) and the fundamental identity of [F1] which expresses it as an L-function. Thus we take $W=\otimes W_{v}$ in $W(\pi)$ with $W_{v}=W_{v}^{0}\left(\in W\left(\pi_{v}\right)\right)$ for all $v \notin V$, such that the cuspidal function $\phi(x)=\sum_{P \in N^{\prime} \backslash Q^{\prime}} W(p x)$ in the space of $\pi \subset L_{0}\left(G^{\prime}\right)$ is distinguished (its integral over the closed subspace $\mathbb{Z} G \backslash \mathbb{G}$ is non-zero). Substituting the series definition of $E(x, \Phi, \omega, s)=\sum_{Z Q \backslash G} f(\gamma x, s)$, we obtain

$$
\begin{aligned}
& \int_{\mathbb{Z} G \backslash \mathbb{G}} \phi(x) E(x, \Phi, \omega, s) d x=\int_{\mathbb{Z} Q \backslash \mathbb{G}} \phi(x) f(x, s) d x \\
= & \int_{Q \backslash \mathbb{G}} \phi(x) \Phi(\underline{\varepsilon} x) \omega(\operatorname{det} x)|\operatorname{det} x|^{s} d x=\int_{Q \mathbb{N} \backslash \mathbb{G}} \Phi(\underline{\varepsilon} x)|\operatorname{det} x|^{s} \omega(\operatorname{det} x) \int_{N \backslash \mathbb{N}} \phi(n x) d n d x \\
= & \int_{Q \mathbb{N} \backslash \mathbb{G}} \Phi(\underline{\varepsilon} x) \omega(\operatorname{det} x)|\operatorname{det} x|^{s}\left[\sum_{N \backslash Q} W_{\phi}(p x)\right] d x=\int_{\mathbb{N} \backslash \mathbb{G}} \Phi(\underline{\varepsilon} x)|\operatorname{det} x|^{s} \omega(\operatorname{det} x) W_{\phi}(x) d x,
\end{aligned}
$$

using Lemma 5. Choosing $\Phi \in S\left(\mathbb{A}^{n}\right)$ to be factorizable, namely $\Phi(x)=\prod \Phi_{v}\left(x_{v}\right)$ with $\Phi_{v} \in S\left(F_{v}^{n}\right)$ for all v (with $\Phi_{v}=\Phi_{v}^{0}$ for $\left.v \notin V\right)$, since $W_{\phi}(x)=\prod_{v} W_{v}\left(x_{v}\right)$ the last integral is a product over v of the local integrals

$$
\begin{equation*}
\int_{N_{v} \backslash G_{v}} \Phi_{v}(\underline{\varepsilon} x)|\operatorname{det} x|_{v}^{s} \omega_{v}(\operatorname{det} x) W_{v}(x) d x . \tag{5.1}
\end{equation*}
$$

When $W_{v}=W_{v}^{0}$ and $\Phi_{v}=\Phi_{v}^{0}$ (and π_{v}, ω_{v} and E_{v} / F_{v} are unramified), the last local integral is shown in [F1], Proposition, p. 305, on using Schur function computations, to be equal to $L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right.$) (in [F1], ω_{v} is taken to be 1 , but the general case follows on adjusting the computations there). At the "bad" nonarchimedean places $v \in V$, where ramification may occur, the following is shown in the Appendix below, in analogy with the split case - where E is replaced by $F \oplus F$ - which is studied in [JPS], Theorem 2.7, pp. 390-393, 395-398.

First, the integral (5.1) is a rational function in q_{v}^{-s}. Second, there is a polynomial $P\left(x ; \pi_{v}, \omega_{v}\right)$ with constant term 1 over \mathbb{C}, such that the \mathbb{C}-span of the integrals (5.1), as Φ_{v} ranges over $S\left(F_{v}^{n}\right)$ and W_{v} over $W\left(\pi_{v}\right)$, is precisely the principal fractional ideal $L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right) \mathbb{C}\left[q_{v}^{s}, q_{v}^{-s}\right]$ in the fraction field $\mathbb{C}\left(q_{v}^{s}\right)$ of the ring $\mathbb{C}\left[q_{v}^{s}, q_{v}^{-s}\right]$ of polynomials in q_{v}^{s} and q_{v}^{-s}. Here $L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right)$ is $P\left(q_{v}^{-s} ; \pi_{v}, \omega_{v}\right)^{-1}$, and t is referred to as the "greatest common denominator", or "g.c.d.", of all the integrals (5.1). The quotient of (5.1) by $L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right)$ satisfies a functional equation $s \leftrightarrow 1-s$.

In the archimedean case, let ρ_{v}^{\prime} be the representation of the Weil group which parametrizes π_{v}. Define $L\left(s, r\left(\pi_{v}\right) \otimes \omega_{v}\right)$ to be the L-factor $L\left(s, r\left(\rho_{v}\right) \otimes \omega_{v}\right)$ associated with the representation $r\left(\rho_{v}\right) \otimes \omega_{v}$ of the Weil group of $F_{v}(=\mathbb{R}$ or $\mathbb{C})$. The local integral (5.1) and its quotient by $L\left(s, r\left(\rho_{v}\right) \otimes \omega_{v}\right)$, and the local functional equation, are studied in [JS1], Theorem 5.1, in the case when v splits in E.

We shall assume that each archimedean place v of F splits in E. Then the total L-function $L(s, r(\pi) \otimes \omega)$ is defined as the product over all v of the local factors. The product, as well as the integrals and sums in the fundamental identity leading to (5.1) above, converge absolutely in some right half plane. Since $E(x, \Phi, \omega, s)$ is holomorphic except at $s=0$ and 1 (for a suitable Φ and ω; see [F1], Lemma, p. 301), the total L-function $L(s, r(\pi) \otimes \omega)$ is entire except possibly for at most simple poles at $s=0$ and 1 if $r(\pi) \otimes \omega=r\left(\pi^{\prime}\right)$, and π^{\prime} is distinguished.

Proof of Theorem 1. Let π be a cuspidal distinguished \mathbb{G}^{\prime}-module with a supercuspidal component at v_{2}, ω a unitary character of \mathbb{Z} / Z, and s_{0} a complex number such that (3.4) is 0 at $s=s_{0}$ for all $j(0 \leq j \leq m), \Phi$ and φ_{V} (with discrete cuspidal $\left.\varphi=\varphi_{V} \otimes\left(\underset{v \notin V}{\otimes} \varphi_{v}\right)\right)$. In (3.4), V is a finite set of F-places containing the archimedean places, and those where π, ω or E / F ramify. Fix a distinguished factorizable automorphic form $\phi^{\prime}=\otimes \phi_{v}^{\prime}$ in the space of $\pi \subset L_{0}(G)$, which is K_{v}^{\prime}-invariant for all $v \notin V$.

The space of vectors ϕ in $\pi \subset L_{0}\left(G^{\prime}\right)$ which are K_{v}^{\prime}-invariant for all $v \notin V$ is spanned by the factorizable, thus $\phi(x)=\prod_{v} \phi_{v}\left(x_{v}\right)$, such vectors. Given such a
$\phi=\otimes \phi_{v}$, our aim is (in particular) to choose a function φ_{v} such that φ be cuspidal and r-discrete, and $\pi\left(\varphi_{V}\right) \phi^{\prime}=\phi$.

At v_{2} consider the matrix coefficient $\varphi_{v_{2}}^{\prime}(x)=\left\langle\pi_{v_{2}}\left(x^{-1}\right) \phi_{v_{2}}^{\prime}, \phi_{v_{2}}\right\rangle$ of the supercuspidal $G_{v_{2}}^{\prime}$-module $\pi_{v_{2}}$. Note that $\phi_{v_{2}}$ and $\phi_{v_{2}}^{\prime}$ are functions in $C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}\right)$, and $\langle\cdot, \cdot\rangle$ denotes the natural inner product. The function $\varphi_{v_{2}}^{\prime}$ lies in $C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}^{-1}\right)$, and it is a supercusp form $\left(\int \varphi_{v_{2}}^{\prime}(x n y) d n=0, n \in N_{v_{2}}^{\prime}=\right.$ unipotent radical of any proper parabolic subgroup of $\left.G_{v_{2}}^{\prime}\right)$. A function $\varphi=\otimes \varphi_{v}$ whose component at a place, say v_{2}, is a supercusp form, is cuspidal. By the Schur orthogonality relations, the convolution operator $\pi_{v_{2}}\left(\varphi_{v_{2}}^{\prime}\right)$ maps the vector $\phi_{v_{2}}^{\prime}$ to (a multiple of) $\phi_{v_{2}}$, and any vector orthogonal to $\phi_{v_{2}}^{\prime}$ is mapped to 0 . Working with $\varphi=\otimes \varphi_{v}$ whose component at v_{2} is $\varphi_{v_{2}}^{\prime}$ we then have that φ is cuspidal, and that the component of the $\pi_{V}\left(\varphi_{V}\right) \phi^{\pi}$ which occurs in (3.4) at v_{2} is $\phi_{v_{2}}$.

Put $V^{\prime \prime}=V-\left\{v_{2}\right\}$, let v_{1} be an F-place in $V^{\prime \prime}$, say where π and ω are unramified, W_{v} is W_{v}^{0} and Φ_{v} is Φ_{v}^{0}, and $\phi_{v_{1}}=\phi_{v_{1}}^{\prime}=\phi_{v_{1}}^{0}$, and put $V^{\prime}=V^{\prime \prime}-\left\{v_{1}\right\}$. For each $v \in V^{\prime}$ there is a congruence subgroup $K_{v}^{\prime \prime}$ of K_{v}^{\prime} such that both ϕ_{v}^{\prime} and ϕ_{v} are right $K_{v}^{\prime \prime}$-invariant. Namely both ϕ_{v}^{\prime} and ϕ_{v} are non-zero vectors in the finite dimensional space $\pi_{v}^{K_{v}^{\prime \prime}}$ of $K_{v}^{\prime \prime}$-fixed vectors in π_{v}. The Hecke algebra $\mathbb{H}\left(K_{v}^{\prime \prime}\right)$ of $K_{v}^{\prime \prime}$-biinvariant functions in $C_{c}^{\infty}\left(G_{v}^{\prime}, \varepsilon_{v}^{-1}\right)$ generate the algebra of endomorphisms of the finite dimensional space $\pi_{v}^{K_{v}^{\prime \prime}}$. Consider $\varphi_{v}^{\prime} \in \mathbb{H}\left(K_{v}^{\prime \prime}\right)$ such that $\pi_{v}\left(\varphi_{v}^{\prime}\right)$ maps ϕ_{v}^{\prime} to ϕ_{v}, and any vector orthogonal to ϕ_{v}^{\prime} (is mapped by $\pi_{v}\left(\varphi_{v}^{\prime}\right)$) to 0 . Choosing $\varphi=\otimes \varphi_{v}$, with $\varphi_{v}=\varphi_{v}^{\prime}$ for all $v \in V^{\prime}$, we conclude that any automorphic form ϕ^{π} which may contribute a non-zero term to (3.4), has the component ϕ_{v}^{\prime} for all $v \neq v_{1}$. But ϕ^{π} is automorphic, and $\mathbb{G}^{\prime}=G^{\prime} \prod_{v \neq v_{1}} G_{v_{1}}^{\prime}$, hence ϕ^{π} is uniquely determined to be ϕ^{\prime}. The vector $\left(\underset{v \in V^{\prime}}{\otimes} \pi_{v}\left(\varphi_{v}^{\prime}\right)\right) \phi^{\prime}$ has the component ϕ_{v} for every $v \neq v_{1}$. Since it is automorphic, the same argument implies that $\pi_{V^{\prime}}\left(\varphi_{V^{\prime}}\right) \phi^{\prime}=\phi$.

We still need to choose the component $\varphi_{v_{1}}$ of φ in such a way that φ be r-discrete. Note that we choose v_{1} to be a place where π, ω and E / F are unramified, and the components $\phi_{v_{1}}^{\prime}$ of ϕ^{\prime} and $\phi_{v_{1}}$ of ϕ are both equal to the (normalized) K_{v}^{\prime}-fixed vector $\phi_{v_{1}}^{0}$ in $\pi_{v_{1}}$.

Recall that the function $\varphi_{v_{1}} \in C_{c}^{\infty}\left(G_{v_{1}}^{\prime}, \varepsilon_{v_{1}}^{-1}\right)$ is called r-discrete if it is supported on the r-regular r-elliptic set of $G_{v_{1}}^{\prime}$. Also, a function $\varphi=\otimes \varphi_{v}$ whose component at v_{1} is r-discrete is necessarily r-discrete. It suffices to choose an r-discrete $\varphi_{v_{1}}$ whose support is contained in $Z_{v}^{\prime} K_{v}^{\prime}$, and which is constant on the intersection of its support with K_{v}^{\prime}. Suitably normalized we have that $\pi_{v_{1}}\left(\varphi_{v_{1}}\right) \phi_{v_{1}}^{\prime}=\phi_{v_{1}}$ for such $\varphi_{v_{1}}$.

We conclude that the only non-zero summand in (3.4) is the one indexed by ϕ^{\prime}. Since $\phi=\pi_{V}\left(\varphi_{V}\right) \phi^{\prime}$ is arbitrary, and for a suitable such ϕ the integral over x in (3.4) is equal to $L^{(j)}(s, r(\pi) \otimes \omega)$, we conclude that (3.4) is a non-zero multiple of $L^{(j)}\left(s, r(\pi) \otimes \omega\right.$) (for some choice of φ_{V} and Φ). Here $L^{(j)}(s)$ denotes the j th derivatives of $L(s)$. However, Proposition 4 asserts that (3.4) vanishes at $s=s_{0}$. Hence $L(s, r(\pi) \otimes \omega)$ vanishes at $s=s_{0}$ to the order m under the conditions of Theorem 1, whose proof is now complete.

Remark. By [F1] and the following Appendix, the L-function $L(s, r(\pi) \otimes \omega)$ is everywhere holomorphic except possibly at $s=0,1$, where it has a simple pole if $r(\pi) \otimes \omega=r\left(\pi^{\prime}\right)$ and π^{\prime} is distinguished. But $L(s, \omega)$ has a simple pole at $s=0,1$ when $\omega=1$. Hence Theorem 1 implies (for a distinguished π and a character ω which satisfies its assumptions) that the "twisted adjoint" function $L(s, r(\pi) \otimes \omega) / L(s, \omega)$ is holomorphic everywhere except possibly at $s=0,1$. There it has a simple pole precisely when $\omega \neq 1$ and $r(\pi) \otimes \omega=r\left(\pi^{\prime}\right)$ with a distinguished cuspidal π^{\prime}. The last identity is meant in the local sense, for almost all places.

Suppose that ω and π are such that the poles do occur. Let Ω be a character of $\mathbb{A}_{E}^{\times} / E^{\times}$whose restriction to $\mathbb{A}^{\times} / F^{\times}$is ω. Then $r(\pi) \otimes \omega=r(\pi \otimes \Omega)$. Since $r\left(\pi^{\prime}\right)=r(\pi \otimes \Omega)$, by [F1], Corollary on p. 310, $\pi \otimes \Omega$ is also distinguished. Then π is distinguished and $\int_{\mathbb{Z} G \backslash \mathbb{G}} \phi(x) \omega(x) d x \neq 0$ for some $\phi \in \pi$; hence ω has order n. Such π can be studied along lines suggested by the conjecture and techniques of [F2]. In particular, when ω is primitive of order n, it is associated by class field theory to a cyclic extension T of F, and it is likely that the associated π are parametrized by the non-trivial characters of $\mathbb{T}^{\prime \times} / T^{\prime \times} \mathbb{T}^{\times}$, where $T^{\prime}=T \otimes_{F} E$.

Put $\pi^{*}(g)=\check{\pi}(\bar{g})$. By [F2], Proposition 12, if π is distinguished then $\pi \simeq \pi^{*}$. If $\pi \otimes \Omega$ is also distinguished, then $(\pi \otimes \Omega)^{*} \simeq \pi \otimes \Omega$. Altogether we have $\pi \simeq \pi^{*} \simeq$ $\pi \otimes\left(\Omega / \Omega^{*}\right)=\pi \otimes(\Omega \bar{\Omega})$, and $\omega \mid F^{\times} N_{E / F} \mathbb{A}_{E}^{\times}$is of order dividing n. If $\omega \mid F^{\times} N_{E / F} \mathbb{A}_{E}^{\times}$ is primitive of order n, namely $T^{\prime}=T \otimes_{F} E$ is a field, then by $[\mathrm{K}]$ the G^{\prime}-module π is parametrized by a character θ of $\mathbb{T}^{\prime \times} / T^{\prime \times}$, and $\pi(\theta)^{*}=\pi\left(\bar{\theta}^{-1}\right)$, where the last bar indicates the non-trivial automorphism of T^{\prime} over T. Hence θ is trivial on $T^{\prime \times} N_{T^{\prime} / T} \mathbb{T}^{\prime \times}$, but we suggest above that π is likely to be parametrized by the θ on $\mathbb{T}^{\times} / T^{\prime \times}$ which are trivial on \mathbb{T}^{\times}.

Appendix: On the local twisted tensor L-function

Let E / F be a quadratic separable extension of global fields, π an irreducible cuspidal representation of $G L\left(n, \mathbb{A}_{E}\right)$, and r the twisted tensor representation r : $[G L(n, \mathbb{C}) \times G L(n, \mathbb{C})] \rtimes G a l(E / F) \rightarrow A u t\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$ of $[F 1]$. Let V be a finite set of places of F, containing the archimedean places and those where E / F or π ramify. The partial twisted tensor L-function $L^{V}(s, r(\pi))$ is defined to be the product over all $v \notin V$ of the local L-factors $L\left(s, r\left(\pi_{v}\right)\right)$. The product converges absolutely in some half-plane $\operatorname{Re}(s)>c$. When each archimedean place of F splits in E, this $L^{V}(s, r(\pi))$ is shown in [F1] to be holomorphic on $\operatorname{Re}(s) \geq 1$, except when π is $G L(n, \mathbb{A})$-distinguished, in which case a simple pole occurs, on $\operatorname{Re}(s)=1$ (at $s=1$ if the central character ω_{π} of π is trivial on \mathbb{A}^{\times}).

At a place v which splits in E we have $E_{v}=F_{v} \oplus F_{v}$ and $G L\left(n, E_{v}\right)=G L\left(n, F_{v}\right) \times$ $G L\left(n, F_{v}\right)$, and the component π_{v} of π is of the form $\pi_{1 v} \times \pi_{2 v}$. The local L-factor $L\left(s, r\left(\pi_{v}\right)\right)$ is simply the tensor product L-function $L\left(s, \pi_{1 v} \times \pi_{2 v}\right)$. This last factor was introduced by [JPS], Theorem 2.7, in the non-archimedean case and by [JS1], Theorem 5.1, in the archimedean case, for all generic $\pi_{i v}$, not necessarily unramified.

Let $\underline{\psi}_{v}$ be a non-trivial character of $F_{v}\left(\right.$ in $\left.\mathbb{C}^{\times}\right)$, and $\psi_{v}(u)=\underline{\psi}_{v}\left(\sum_{1 \leq i \leq n} u_{i, i+1}\right)$,
where $u=\left(u_{i, j}\right) \in N_{v}$, a character of the unipotent upper triangular subgroup N_{v} of $G_{v}=G L\left(n, F_{v}\right)$. Denote by $W\left(\pi_{i v}, \psi_{v}\right)$ the Whittaker ψ_{v}-model of $\pi_{i v}$, and for $W_{1 v} \in W\left(\pi_{1 v}, \psi_{v}\right), W_{2 v} \in W\left(\pi_{2 v}, \psi_{v}^{-1}\right)$ and $\Phi_{v} \in C_{c}^{\infty}\left(F_{v}^{n}\right)$, and with $\underline{\varepsilon}=(0, \ldots, 0,1) \in F_{v}^{n}$, put

$$
\Psi\left(s, W_{1 v}, W_{2 v}, \Phi_{v}\right)=\int_{N_{v} \backslash G_{v}} W_{1 v}(g) W_{2 v}(g)|\operatorname{det} g|^{s} \Phi_{v}(\underline{\varepsilon} g) d g
$$

It is shown in [JPS], [JS1] that the quotient $\Psi\left(s, W_{1 v}, W_{2 v}, \Phi_{v}\right) / L\left(s, \pi_{1 v} \times \pi_{2 v}\right)$ satisfies a functional equation where, in particular, $s, \pi_{1 v}, \pi_{2 v}$ are replaced by $1-s$, and the contragredients $\check{\pi}_{1 v}, \check{\pi}_{2 v}$.

The purpose of this appendix is to introduce the twisted tensor L-factor $L\left(s, r\left(\pi_{v}\right)\right)$ for any (possibly ramified) quadratic separable extension E_{v} / F_{v} of local non-archimedean fields, and any generic representation π_{v} of $G_{v}^{\prime}=G L\left(n, E_{v}\right)$.

Let $\underline{\psi}_{v}^{\prime}$ be a non-trivial character of E_{v} which is trivial on F_{v}. Note that $E_{v} / F_{v} \simeq$ F_{v}. Any such character is of the form $\underline{\psi}_{v}^{\prime}(x)=\underline{\psi}_{v}\left((x-\bar{x}) /\left(x_{0}-\bar{x}_{0}\right)\right)$, where $x \in E_{v}$ and the action of $\operatorname{Gal}\left(E_{v} / F_{v}\right)$ on E_{v} is denoted by a bar, for a fixed $x_{0} \in E_{v}-F_{v}$. Then a character ψ_{v}^{\prime} of the unipotent upper triangular subgroup N_{v}^{\prime} of $G_{v}^{\prime}=G L\left(n, E_{v}\right)$, which is trivial on N_{v}, is defined as before. Denote by $W\left(\pi_{v}, \psi_{v}^{\prime}\right)$ the ψ_{v}^{\prime}-Whittaker space of π_{v}, and for $W_{v} \in W\left(\pi_{v}, \psi_{v}^{\prime}\right)$ and $\Phi_{v} \in C_{c}^{\infty}\left(F_{v}^{n}\right)$ consider the integral

$$
\Psi\left(s, W_{v}, \Phi_{v}\right)=\int_{N_{v} \backslash G_{v}} W_{v}(g)|\operatorname{det} g|^{s} \Phi_{v}(\underline{\varepsilon} g) d g
$$

When $E_{v} / F_{v}, \psi_{v}$ and π_{v} are unramified, W_{v} is the unit element W_{v}^{0} of $W\left(\pi_{v}, \psi_{v}^{\prime}\right)$, and Φ_{v} is the characteristic function Φ_{v}^{0} of R_{v}^{n}, R_{v} being the ring of integers in F_{v}, it is shown in [F1] that $\Psi\left(s, W_{v}^{0}, \Phi_{v}^{0}\right)=L\left(s, r\left(\pi_{v}\right)\right)$. In analogy with [JPS] we shall introduce $L\left(s, r\left(\pi_{v}\right)\right)$ for a general π_{v} as a generator of some fractional ideal (generated by the $\Psi\left(s, W_{v}, \Phi_{v}\right)$, and show that the quotient $\Psi\left(s, W_{v}, \Phi_{v}\right) / L\left(s, r\left(\psi_{v}\right)\right)$ satisfies a functional equation, in which s and π_{v} are replaced by $1-s$ and the contragredient $\check{\pi}_{v}$.

Having defined the local L-factor for all non-archimedean places (it is defined in [JS1] for the archimedean places which split in E), the complete L-function $L(s, r(\pi))$ can be defined as the product over all places v of F of the $\mathrm{L}\left(s, r\left(\pi_{v}\right)\right)$, for E / F in which each archimedean place of F splits in E. The global functional equation for the global integrals $\Psi(s, W, \Phi)$ of $[\mathrm{F}]$, together with the local functional equations of [JPS] and [JS1] in the split cases, and the one of this note in the non-split non-archimedean case, implies the existence of a monomial $\varepsilon(s, r(\pi))=$ $c(\pi) e^{\varepsilon(\pi) s}$ in $s\left(\varepsilon(\pi)\right.$ in $\mathbb{C}, c(\pi)$ in $\left.\mathbb{C}^{\times}\right)$, and the functional equation $L(s, r(\pi))=$ $\varepsilon(s, r(\pi)) L(1-s, r(\check{\pi}))$ for the twisted tensor L-function.

Moreover it is shown in [F1] that $\Psi(s, W, \Phi)$ is holomorphic in $s \in \mathbb{C}$ except possibly for a simple pole at $s=1$ and $s=0$ (when π is $G L(n, \mathbb{A})$-distinguished, whose central character is trivial on $\left.\mathbb{A}^{\times}\right)$. Since the local work shows that $L\left(s, r\left(\pi_{v}\right)\right)$ is a sum of $\Psi\left(s, W_{v}, \Phi_{v}\right)$'s, it follows that $L(s, r(\pi))$, which is initially defined in
some right half plane, has analytic continuation to the entire complex s-plane with at most two poles, at $s=0,1$, which are simple and occur precisely for distinguished π. The work here also replaces the (complicated proof of the) Lemma on p. 306 of [F1]. It is this function $L(s, r(\pi))$ which is studied in the paper preceding this appendix.

From now on we can use local notations, thus let E / F be a quadratic separable extension of local non-archimedean fields, put $G=G L(n, F), G^{\prime}=G L(n, E)$, let N, N^{\prime} be the corresponding unipotent upper-triangular subgroups, and ψ, ψ^{\prime} their characters, π a generic irreducible G^{\prime}-module with a unitary central character, and $W\left(\pi, \psi^{\prime}\right)$ its ψ^{\prime}-Whittaker model (for any irreducible G^{\prime}-module there exists at most one (non-zero) ψ^{\prime}-Whittaker model; π is called generic when it exists). Denote by R the ring of integers in F, and by q the cardinality of its residue field. The purpose of this appendix is to prove the following.

Theorem. (i) For each $W \in W\left(\pi, \psi^{\prime}\right)$ and $\Phi \in C_{c}^{\infty}\left(F^{n}\right)$, the integral $\Psi(s, W, \Phi)$ is absolutely convergent for a large $\operatorname{Re}(s)$ to a rational function of $X=q^{-s}$.
(ii) There exists a polynomial $P(X) \in \mathbb{C}[X]$ with $P(0)=1$ such that the integrals $\Psi(s, W, \Phi)$ span the fractional ideal $L(s, r(\pi)) \mathbb{C}\left[X, X^{-1}\right]$ of the ring $\mathbb{C}\left[X, X^{-1}\right]$, where $L(s, r(\pi))=P(X)^{-1}$.
(iii) There exists an integer $m\left(\pi, \psi^{\prime}\right)$ and a non-zero complex number $c\left(\pi, \psi^{\prime}\right)$, such that

$$
\Psi(1-s, \widetilde{W}, \widehat{\Phi}) / L(1-s, r(\check{\pi}))=\omega_{\pi}(-1)^{n-1} \varepsilon\left(s, r(\pi), \psi^{\prime}\right) \Psi(s, W, \Phi) / L(s, r(\pi))
$$

for all $W \in W(\pi, \psi), \Phi \in C_{c}^{\infty}\left(F^{n}\right)$. Here ω_{π} is the central character of $\pi, \check{\pi}$ the contragredient of π, and we put
$\varepsilon\left(s, r(\pi), \psi^{\prime}\right)=c\left(\pi, \psi^{\prime}\right) X^{m\left(\pi, \psi^{\prime}\right)}, \widetilde{W}(g)=W\left(J^{t} g^{-1}\right), \widehat{\Phi}(x)=\int_{F^{n}} \Phi(y) \psi(\operatorname{tr} x \cdot y) d y$.
Here $J \in G$ is the matrix whose non-zero entries are 1, located on the anti-diagonal.
Proof. The proof of (i) and (ii) is similar to that of (i), (ii) in [JPS], Theorem 2.7. Since W and Φ are smooth, using the Iwasawa decomposition we obtain a finite sum

$$
\Psi(s, W, \Phi)=\sum_{i} \int_{A} W_{i}(a) \Phi_{i}\left(a_{n}\right) \delta_{B}^{-1}(a)|\operatorname{det} a|^{s} d^{\times} a
$$

Here A is the diagonal subgroup of G and $B=A N$, and $W_{i} \in W\left(\pi, \psi^{\prime}\right), \Phi_{i} \in$ $C_{c}^{\infty}(F)$. We put

$$
a=\operatorname{diag}\left(a_{1} a_{2} \ldots a_{n}, a_{2} \ldots a_{n}, \ldots, a_{n-1} a_{n}, a_{n}\right)
$$

By [JPS1] there exists a finite set $\Xi=\Xi\left(\pi, \psi^{\prime}\right)$ of finite functions ξ on A^{\prime} (continuous functions whose translates span a finite dimensional vector space), such that for every $W \in W\left(\pi, \psi^{\prime}\right)$ there are $\phi_{\xi} \in C_{c}^{\infty}\left(E^{n-1}\right)$ with

$$
W(a)=\sum_{\xi \in \Xi} \phi_{\xi}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \xi(a) \quad\left(a \in A^{\prime}\right)
$$

Hence

$$
|W(a)| \leq \sum_{\xi \in \Xi^{+}} \phi_{\xi}^{+}\left(a_{1}, \ldots, a_{n-1}\right) \xi(a)
$$

where now Ξ^{+}is a finite set of finite functions on A^{\prime} which take non-negative real values, and ϕ_{ξ}^{+}in $C_{c}^{\infty}\left(E^{n-1}\right)$ are ≥ 0. Each function ϕ_{ξ}^{+}is bounded by a finite sum of positive-valued quasi-characters.

Then $\Psi(s, W, \Phi)$ is a finite sum of terms

$$
\int_{A} \phi\left(a_{1}, \ldots, a_{n-1}, a_{n}\right) \xi(a) \delta_{B}^{-1}(a)|\operatorname{det} a|^{s} d^{\times} a
$$

with $\phi \in C_{c}^{\infty}\left(F^{n}\right)$ and ξ in a fixed finite set Ξ of finite functions on A. Each product $\left(\xi \delta_{B}^{-1}\right)(a)$ is a finite sum of products $\eta_{1}\left(a_{1}\right) \ldots \eta_{n}\left(a_{n}\right)$, where each η is a finite function on F^{\times}in a fixed finite set. We obtain a finite sum of the integrals

$$
\begin{equation*}
\prod_{1 \leq i \leq n} \int_{F^{\times}} \phi_{i}\left(a_{i}\right) \eta_{i}\left(a_{i}\right)\left|a_{i}\right|^{i s} d^{\times} a_{i} \quad\left(\phi_{i} \in C_{c}^{\infty}(F)\right) \tag{*}
\end{equation*}
$$

Replacing the ϕ_{i} and η_{i} by their absolute values it follows that $\Psi(s, W, \Phi)$ is absolutely convergent for large $R e(s)$. Each factor in $(*)$ is a sum of geometric series in X which converge to $Q_{i}(X)\left(1-\alpha_{i} X^{k_{i}}\right)^{-1}$, where $Q_{i} \in \mathbb{C}[X]$ and α_{i}, k_{i} depend only on η_{i}. Hence $\Psi(s, W, \Phi)$ is a rational function of X as asserted in (i), with a common denominator independent of W, Φ.

The subspace of the field $\mathbb{C}(X)$ generated by these fractions is an ideal for the ring $\mathbb{C}\left[X, X^{-1}\right]$. Indeed, if $W_{h}(g)=W(g h), \Phi_{h}(x)=\Phi(x h)$, then $\Psi\left(s, W_{h}, \Phi_{h}\right)$ is the product of $|\operatorname{det} h|^{-s}$ and $\Psi(s, W, \Phi)$.

It is easy to see (as in [F1], Proposition, (ii) on p. 308, which is proven on the middle of p .309), that $\Psi(s, W, \Phi)$ is identically 1 for a suitable choice of W, Φ. Hence the ideal contains 1 and admits a unique generator of the form $P(X)^{-1}$, with $P \in \mathbb{C}[X]$ and $P(0)=1$, as asserted in (ii).

For (iii), note first that if $\varepsilon\left(s, r(\pi), \psi^{\prime}\right)$ exists, then it is necessarily a monomial. Indeed, applying the asserted functional equation with $\left(s, \check{\pi}, \psi^{\prime-1}, \widetilde{W}, \widehat{\Phi}\right)$ replacing ($\left.1-s, \pi, \psi^{\prime}, W, \Phi\right)$, and noting that $\omega_{\check{\pi}} \omega_{\pi}=1$, we obtain
$\Psi(s, W, \Phi) / L(s, r(\pi))=\omega_{\pi}(-1)^{n-1} \varepsilon\left(1-s, r(\check{\pi}), \psi^{\prime-1}\right) \Psi(1-s, \widetilde{W}, \widehat{\Phi}) / L(1-s, r(\check{\pi}))$.
Combining this with the equation of (iii), we conclude that the product of $\varepsilon\left(s, r(\pi), \psi^{\prime}\right)$ and $\varepsilon\left(1-s, r(\check{\pi}), \psi^{\prime-1}\right)$, both in $\mathbb{C}\left[X, X^{-1}\right]$, is 1 . Hence $\varepsilon\left(s, r(\pi), \psi^{\prime}\right)=c\left(\pi, \psi^{\prime}\right) X^{m\left(\pi, \psi^{\prime}\right)}$, as asserted.

From its integral representation (for large $\operatorname{Re}(s)$), we obtain

$$
\Psi(s, \pi(g) W, \rho(g) \Phi)=|\operatorname{det} g|^{-s} \Psi(s, W, \Phi)
$$

where $\rho(g) \Phi(x)=\Phi(x g)$. The identity

$$
(\rho(g) \Phi)^{\wedge}=|\operatorname{det} g|^{-s} \rho\left({ }^{t} g^{-1}\right) \widehat{\Phi}
$$

implies

$$
\Psi\left(1-s,(\pi(g) W)^{\sim},(\rho(g) \Phi)^{\wedge}\right)=|\operatorname{det} g|^{-s} \Psi(s, \widetilde{W}, \widehat{\Phi})
$$

Then (iii) follows at once from the following.

Proposition. With the exception of finitely many values of $X=q^{-s}$, the space of bilinear forms B on $W\left(\pi, \psi^{\prime}\right) \times C_{c}^{\infty}\left(F^{n}\right)$ which satisfy

$$
B(\pi(g) W, \rho(g) \Phi)=|\operatorname{det} g|^{-s} B(W, \Phi)
$$

is at most one dimensional.
As in [JPS], (iii) of Theorem 2.7, our proof relies heavily on results of [BZ] (and [BZ1]). Denote by δ_{G} the modular function on an ℓ-group G, thus δ_{G}^{-1} is the Δ_{G} of [BZ], Prop. 1.19. Let H be a closed subgroup of G. Denote by $\operatorname{ind}(\rho ; G, H)$ the unnormalized induction with compact supports of [BZ], and by $i(\rho ; G, H)=$ $\operatorname{ind}\left(\rho \delta_{H}^{1 / 2} \delta_{G}^{-1 / 2} ; G, H\right)$ the normalized induction with compact supports of [BZ1]. Denote by $\operatorname{Ind}(\rho ; G, H)$ and $I(\rho ; G, H)$ the unnormalized and normalized induction with arbitrary supports of [BZ] and [BZ1]. Then $i(\rho)^{\vee}=I\left(\rho^{\vee}\right)$ by [BZ], Prop. 2.25 (c). The space $B i l_{G}\left(\pi_{1}, \pi_{2}\right)$ of bilinear forms B on $\pi_{1} \times \pi_{2}$ (π_{i} are G-modules) which satisfy $B\left(\pi_{1}(g) v_{1}, \pi_{2}(g) v_{2}\right)=B\left(v_{1}, v_{2}\right)\left(v_{i} \in \pi_{i}, g \in G\right)$ is isomorphic to $\operatorname{Hom}_{G}\left(\pi_{1}, \check{\pi}_{2}\right)$. Frobenius reciprocity ([BZ], Theorem 2.28) asserts
$\operatorname{Bil}_{G}(\pi, i(\rho))=\operatorname{Hom}_{G}\left(\pi, I\left(\rho^{\vee}\right)\right)=\operatorname{Hom}_{H}\left(\pi, \rho^{\vee} \delta_{H}^{1 / 2} \delta_{G}^{-1 / 2}\right)=\operatorname{Bil}_{H}\left(\pi, \rho \delta_{G}^{1 / 2} / \delta_{H}^{1 / 2}\right)$.

Returning to our usual notations ($G=G L(n, F)$, etc.), let P be the group of $g \in G$ with $\underline{\varepsilon} g=\underline{\varepsilon}$ (a prime will always indicate the same group with E instead of F, thus P^{\prime} is defined using $\left.G^{\prime}\right)$. Then $F^{n}-\{\underline{0}\}=P \backslash G$. The space of $\Phi \in C_{c}^{\infty}\left(F^{n}\right)$ with $\Phi(\underline{0})=0$ is isomorphic to
$C_{c}^{\infty}\left(F^{n}-\{\underline{0}\}\right)=C_{c}^{\infty}(P \backslash G)=i\left(\delta_{P}^{-1 / 2} ; G, P\right), \quad \delta_{P}\left(\begin{array}{cc}g & x \\ 0 & 1\end{array}\right)=|\operatorname{det} g| \quad\left(g \in G_{n-1}\right) ;$
we write G_{m} for $G L(m, F)$. Define the character $\nu: E^{\times} \rightarrow \mathbb{C}^{\times}$by $\nu(x)=|x \bar{x}|^{1 / 2}$. Then $\Psi(s, W, \Phi)\left(W \in W\left(\pi, \psi^{\prime}\right), \Phi \in C_{c}^{\infty}\left(F^{n}\right), \Phi(\underline{0})=0\right)$ defines an element in

$$
\operatorname{Bil}_{G}\left(\pi \otimes \nu^{s}, i\left(\delta_{P}^{-1 / 2} ; G, P\right)\right)=\operatorname{Bil}_{P}\left(\pi \otimes \nu^{s}, \delta_{P}^{-1}\right)=B i l_{P}\left(\pi \otimes \nu^{s-1}, \mathbb{1}\right)
$$

where $\mathbb{1 l}$ denotes the trivial P-module on the space \mathbb{C}, namely a P-invariant form on $\pi \otimes \nu^{s-1}$. The main step in the proof of the proposition is to establish the following

Main Lemma. With the exception of finitely many values of $X=q^{-s}$, the dimension of $\operatorname{Bil}_{P}\left(\pi \otimes \nu^{s-1}, \mathbb{1}\right)$ is at most one.

For each $j(0 \leq j<n)$, put $H_{j}^{\prime}=G_{j}^{\prime} N^{\prime}$, where G_{j}^{\prime} embeds in $G^{\prime}=G_{n}^{\prime}$ via $g \mapsto\left(\begin{array}{cc}g & 0 \\ 0 & I\end{array}\right)$. Then H_{j}^{\prime} consists of $\left(\begin{array}{cc}g & x \\ 0 & u\end{array}\right), g \in G_{j}^{\prime}, u \in N_{n-j}^{\prime}$. Given a G_{j-}^{\prime} module ρ and the character ψ^{\prime} of N_{n-j}^{\prime}, denote by $\rho \otimes \psi^{\prime}$ the H_{j}^{\prime}-module on the space of ρ on which $\left(\begin{array}{ll}g & x \\ 0 & u\end{array}\right)$ acts by $\rho(g) \psi^{\prime}(u)$. Corollary 5.13 of [BZ] asserts:

Lemma 1. For every irreducible admissible G_{j}^{\prime}-module ρ, the induced P^{\prime}-module ind $\left(\rho \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right)$ is irreducible. Every irreducible admissible P^{\prime}-module ξ is equivalent to one of the form ind $\left(\rho \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right)$, where ρ is an admissible irreducible G_{j}^{\prime}-module, uniquely determined (so is j) by ξ.

For any P^{\prime}-module V, denote by $V_{\psi^{\prime}}^{*}=\operatorname{Hom}_{N^{\prime}}\left(V, \psi^{\prime-1}\right)=\operatorname{Bil}_{N^{\prime}}\left(V, \psi^{\prime}\right)$ the space of linear forms $\lambda: V \rightarrow \mathbb{C}$ with $\lambda(\pi(u) v)=\psi^{\prime}(u) \lambda(v)\left(u \in N^{\prime}, v \in V\right)$. Since π is generic and irreducible (as a G^{\prime}-module), the uniqueness of the ψ^{\prime}-Whittaker model $W=W\left(\pi, \psi^{\prime}\right)$ implies that $\operatorname{dim}_{\mathbb{C}} W_{\psi^{\prime}}^{*}=1$. Also one has

Lemma 2. If ξ is an irreducible admissible P^{\prime}-module, then $\operatorname{dim}_{\mathbb{C}} \xi_{\psi^{\prime}}^{*} \leq 1$, with equality precisely when $\xi \simeq \tau$, where $\tau=\operatorname{ind}\left(\psi^{\prime} ; P^{\prime}, N^{\prime}\right)$.

Proof. Indeed, $\xi_{\psi^{\prime}}^{*}=\operatorname{Bil}_{N^{\prime}}\left(\xi, \psi^{\prime}\right)=\operatorname{Bil}_{P^{\prime}}\left(\xi, \operatorname{ind}\left(\psi^{\prime} ; P^{\prime}, N^{\prime}\right)\right)$ by Frobenius reciprocity, and τ is irreducible by Lemma 1.

Corollary 5.22 of [BZ] establishes the following.
Lemma 3. The restriction Res $_{P^{\prime}} \pi$ of π to P^{\prime} has finite length (as a P^{\prime}-module). Thus there exist a decomposition $W\left(\pi, \psi^{\prime}\right)=\bigcup_{0 \leq i \leq I} W_{i}, W_{i+1} \supseteq W_{i}, W_{0}=\{0\}$, W_{i} is stable under P^{\prime} and $\xi_{i}=W_{i+1} / W_{i}$ is an irreducible admissible P^{\prime}-module.

Since the functor $V \rightarrow V_{\psi^{\prime}}^{*}$ is exact, by Lemma 2 there is a unique index i_{0} $\left(0 \leq i_{0} \leq I\right)$ with $\xi_{i_{0}} \simeq \tau$, and $\xi_{i, \psi^{\prime}}^{*}=\{0\}$ for $i \neq i_{0}$.

Our proof of the Main Lemma is tantamount to showing, for an irreducible P_{n-1}^{\prime}-module ρ_{1}, that the dimension of the space of P-invariant forms on $\operatorname{ind}\left(\rho_{1} \otimes\right.$ $\psi^{\prime} ; P_{n}^{\prime}, P_{n-1}^{\prime}$), where $P_{n}^{\prime}=P^{\prime}$ and $P_{n-1}^{\prime}=H_{n-2}^{\prime}$, is equal to the dimension of the space of P_{n-1}-invariant forms on ρ_{1}. By induction this dimension is then equal to the dimension of the space of G_{j}-invariant forms on the irreducible G_{j}^{\prime}-module ρ attached to ρ_{1} by Lemma 1 . In fact we shall work directly with ρ, instead of applying induction, although the reader can safely read our proofs assuming that $j=n-2$. The twist by ν^{s} is introduced to guarantee that the only constituent ξ_{i} in $\operatorname{Res}_{P^{\prime}} \pi$ (see Lemma 3) which has a non-zero P-invariant form is the one indexed by $i=i_{0}$.

Let K, H be two closed subgroups of an ℓ-group G, and (ρ, V) a G-module. Choose a set of representatives g for $H \backslash G / K$, put $H_{g}=K \cap g^{-1} H g$ and denote by ${ }^{g} \rho$ the representation ${ }^{g} \rho\left(g^{-1} h g\right)=\rho(h)$ of H_{g} on V. We shall use the following well-known result (we do not include a proof for it, although this is in fact implicit in the proof of the Main Lemma following Lemma 9 below; see also the functorial Theorem 5.2 of [BZ1] in the case of parabolic subgroups, and [S], $\S 7.3$, Proposition 22 , in the case of finite groups).

Lemma 4. The restriction to K of ind $(\rho ; G, H)$ has a composition series consisting of ind $\left({ }^{g} \rho ; K, H_{g}\right)$, where g ranges over a set of representatives for $H \backslash G / K$.

This Lemma will be applied to each of the irreducible P^{\prime}-modules $\xi=\xi_{i}$ of

Lemma 3. By Lemma 1 we have

$$
\xi \otimes \nu^{s-1}=\nu^{s-1} \otimes \operatorname{ind}\left(\rho \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right)=\operatorname{ind}\left(\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right)
$$

for some $j(0 \leq j<n)$ and irreducible G_{j}^{\prime}-module ρ uniquely determined by ξ. Applying Lemma 4 with $G=P^{\prime}, H=H_{j}^{\prime}, K=P$, we conclude:

Lemma 5. The restriction to P of the induced P^{\prime}-module $\xi \otimes \nu^{s-1}$ has a composition series consisting of ind $\left({ }^{g}\left[\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime}\right] ; P, P \cap g^{-1} H_{j}^{\prime} g\right)$, where g ranges over $H_{j}^{\prime} \backslash P^{\prime} / P$.

The double coset space $H_{j}^{\prime} \backslash P^{\prime} / P$ is equal to $N_{n-1}^{\prime} \cdot G_{j}^{\prime} \backslash G_{n-1}^{\prime} / G_{n-1}$. We have
Lemma 6. The group G^{\prime} is the disjoint union of the double cosets $B^{\prime} \eta G$ over all w in the Weyl group $W\left(A^{\prime}, G^{\prime}\right)\left(=\right.$ Normalizer $\left(A^{\prime}\right) / A^{\prime}$ of A^{\prime} in $\left.G^{\prime}\right)$ with $w^{2}=1$. Here $\eta=\eta_{w} \in G^{\prime}$ satisfies $\eta \bar{\eta}^{-1}=w$, where w is the representative whose entries are 0 and 1. The double coset is independent of the choice of the representative η.

Proof. As noted in [F2], Proposition 10(1), the map $G^{\prime} / G \rightarrow S=\left\{g \in G^{\prime} ; g \bar{g}=1\right\}$, by $g \mapsto g \bar{g}^{-1}$, is a bijection. Indeed, it is clearly well defined and injective, and the surjectivity follows at once from the triviality of $H^{1}(\operatorname{Gal}(E / F), G L(n, E)$) (if $g \bar{g}=1, a_{\sigma}=g$ defines a cocycle, which is then a coboundary, namely there is $x \in G^{\prime}$ with $\left.g=a_{\sigma}=x \bar{x}^{-1}\right)$.

If $g \in G^{\prime}$ maps to $s \in S$, then $b g \mapsto b s \bar{b}^{-1}$. By the Bruhat decomposition $G^{\prime}=B^{\prime} W B^{\prime}$ applied to S, varying g in its double coset $B^{\prime} g G$ we may assume that $g \mapsto w b \in S$, where $w \in W$ and $b \in B^{\prime}$. Since $w b$ lies in $S, 1=w b w \bar{b}$. Hence $w^{-1}=b w \bar{b}$, and the uniqueness of the Bruhat decomposition implies that $w^{-1}=w$. Write now $b=a n$ with $a \in A^{\prime}, n \in N^{\prime}$. Since $1=w b w \bar{b}$, we have $1=w a w \bar{a}$. Define an action σ of $\operatorname{Gal}(E / F)$ on A^{\prime} by $\sigma\left(a^{\prime}\right)=w \bar{a}^{\prime} w^{-1}$. Since $a \sigma(a)=1,\{\sigma \mapsto a\}$ defines an element of $H^{1}\left(\operatorname{Gal}(E / F), A^{\prime}\right)$. This last group is trivial, hence there exists some $c \in A^{\prime}$ with $a=w \bar{c}^{-1} w c$. Since $\bar{c} w a n c^{-1}=w c n c^{-1}$, replacing g by $\bar{c} g$ we may assume that $g \mapsto w n$. Again $w n \in S$ implies $1=w n w \bar{n}$, so if we define a Galois action σ on $N^{\prime} \cap w N^{\prime} w$ by $\sigma\left(n^{\prime}\right)=w \bar{n}^{\prime} w$, the map $\{\sigma \mapsto n\}$ defines an element of $H^{1}\left(\operatorname{Gal}(E / F), N^{\prime} \cap w N^{\prime} w\right)$. Since this last group is trivial, there exists an $m \in N^{\prime}\left(\cap w N^{\prime} w\right)$ with $n=w \bar{m}^{-1} w m$. Hence $\bar{m} w n m^{-1}=w$, and replacing g by $\bar{m} g$ we may assume that $g \mapsto g \bar{g}^{-1}=w$. Since $G^{\prime} / G \simeq S$ the existence of g, and the independence of $B^{\prime} \eta_{w} G$ of the choice of η_{w}, are clear. The lemma follows.

A set of representatives for $N_{n-1}^{\prime} \cdot G_{j}^{\prime} \backslash G_{n-1}^{\prime} / G_{n-1}$ is then given by $g=g(\eta, a)=$ ηa, where $\eta=\eta_{w}$ satisfies $\eta \bar{\eta}^{-1}=w, w^{2}=1, w \in W\left(A^{\prime}, G_{n-1}^{\prime}\right) / W\left(A^{\prime}, G_{j}^{\prime}\right)$, thus w is a product over i of disjoint transpositions $\left(k_{i}, m_{i}\right), 1 \leq k_{i}<m_{i}<n$ and $m_{i}>j$, and a ranges over $A^{\prime} /\left\{a=w \bar{a} w^{-1} \in A^{\prime}\right\} G_{j}^{\prime} \cap A^{\prime}$. When $j=n-2$, the only $w \neq 1$ is represented by $w=(k, m)=(n-2, n-1)$.

By Frobenius reciprocity ([BZ], Prop. 2.29), we have

$$
\begin{aligned}
& \operatorname{Bil}_{P}\left(\operatorname{ind}\left({ }^{g}\left[\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime}\right] ; P, P \cap g^{-1} H_{j}^{\prime} g\right), \mathbb{1}\right) \\
& =\operatorname{Bil}_{P \cap g^{-1} H_{j}^{\prime} g}\left({ }^{g}\left[\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime}\right] \delta_{P} / \delta_{P \cap g^{-1} H_{j}^{\prime} g}, \mathbb{1}\right) .
\end{aligned}
$$

Lemma 7. If $g=g\left(\eta_{w}, a\right)$ and $w \neq 1$, then the last space is zero.
Proof. Denote by (k, m) the transposition in $w \neq 1$ with maximal m. Let u be the unipotent upper triangular matrix in H_{j}^{\prime} whose only non-zero entries outside the diagonal are $x(\in E)$ at the place (row, column $)=(m, m+1)$, and y at $(k, m+1)$. We choose y to be $y=\overline{x a}_{1+m} a_{k} / a_{m+1} \bar{a}_{m}$ if $a=\operatorname{diag}\left(a_{1}, \ldots, a_{n-1}\right)$. Then $a^{-1} u a$ has the entry $x^{\prime}=x a_{1+m} / a_{m}$ at $(m, m+1)$ and $\bar{x}^{\prime}=y a_{m+1} / a_{k}=\overline{x a}_{1+m} / \bar{a}_{m}$ at $(k, m+1)$, hence $g^{-1} u g=\eta^{-1} a^{-1} u a \eta$ lies in $g^{-1} H_{j}^{\prime} g \cap P$. This $g^{-1} u g$ acts on ${ }^{g}\left(\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime}\right)$ by multiplication by $\rho(I) \psi^{\prime}(u)=\underline{\psi}^{\prime}(x)$, and trivially on $\mathbb{1}$. Since x is arbitrary in E, and $\underline{\psi}^{\prime} \neq 1$, the lemma follows.

Lemma 8. With the exception of at most finitely many values of $X=q^{-s}$, the conclusion of Lemma 7 holds when $j \geq 1$.

Proof. We may assume (by Lemma 7) that $w=1$, and take $\eta_{w}=1$. The element $h=\operatorname{diag}(z, \ldots, z, 1, \ldots, 1)$ of H_{j}^{\prime} (with $z \in F^{\times}$and $\operatorname{det} h=z^{j}$) commutes with any a in A^{\prime}, and it lies in P. It acts on $\left(\rho \otimes \nu^{s-1}\right) \otimes \psi$ by multiplication by $\omega_{\rho}(z)|z|^{j(s-1)}$, where ω_{ρ} is the central character of ρ, and trivially on $\mathbb{1 1}$. Hence if $j \neq 0$, with the exception of at most finitely many values of $X=q^{-s}$, our space is $\{0\}$.

We clearly have
Lemma 9. In the remaining case of $j=0$, $w=1$ (and $\eta_{w}=1$), we have $H_{j}^{\prime}=N^{\prime}, g=a$ ranges over A^{\prime} / A, and $P \cap g^{-1} H_{j}^{\prime} g=N$. Then Hom $N\left({ }^{a} \psi^{\prime}, \mathbb{1}\right)$ is zero if $g=a \notin A$, for then ${ }^{a} \psi^{\prime}(u)=\psi^{\prime}\left(a u a^{-1}\right)$ is non-trivial on $u \in N$. If $g=a$ lies in A we may take $a=1$, and then $\operatorname{Hom}_{N}\left(\psi^{\prime}, \mathbb{1}\right)=\mathbb{C}$ since ψ^{\prime} is trivial on N.

Proof of Main Lemma. Note that by Lemma 6 the homogeneous space $X^{\prime}=$ $H_{j}^{\prime} \backslash P^{\prime}=G_{j}^{\prime} N^{\prime} \backslash P^{\prime}$ is the disjoint union of the cosets $G_{j}^{\prime} N^{\prime} \backslash G_{j}^{\prime} N^{\prime} A^{\prime} \eta_{w} G_{n-1}$, where w ranges over the set of w in $W\left(A^{\prime}, G_{n-1}^{\prime}\right)$ with $w^{2}=1$, taken modulo $W\left(A^{\prime}, G_{j}^{\prime}\right)$. Put X_{1}^{\prime} for the union over all such w with $w \neq 1$. It is an open subset of X^{\prime}. The space of $\operatorname{ind}\left(\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right)$ consists of functions on X^{\prime}. Lemma 7 implies that any P-invariant linear form on $\operatorname{ind}\left(\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right)$ - equivalently a form in $\operatorname{Bil}_{P}\left(\operatorname{ind}\left(\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right), \mathbb{1}\right)$, viewed as a function of its first variable must vanish on the functions which are supported on X_{1}^{\prime}. Consequently its value depends only on the restriction of the functions in $\operatorname{ind}\left(\left(\rho \otimes \nu^{s-1}\right) \otimes \psi^{\prime} ; P^{\prime}, H_{j}^{\prime}\right)$ to the closed subset $X^{\prime}-X_{1}^{\prime}=N G_{j} \backslash A^{\prime} G_{n-1}$ of X^{\prime}. Lemma 8 shows that any such bilinear form is zero if $j \neq 0$, except for at most finitely many values of $X=q^{-s}$.

When $j=0$, denote by A_{1}^{\prime} an open subset of A^{\prime} which does not contain A. Lemma 9 implies that the P-invariant linear form must vanish on the functions which are supported on the open subset $N \backslash A_{1}^{\prime} G_{n-1}$ of $N \backslash A^{\prime} G_{n-1}$. Hence its value at a function depends only on the restriction of the function to the closed subset $N \backslash\left(A^{\prime}-A_{1}^{\prime}\right) G_{n-1}$. In particular we may choose A_{1}^{\prime} to be the complement in A^{\prime} of the closed subset A of A^{\prime}.

In conclusion $\operatorname{Bil}_{P}\left(\xi_{i} \otimes \nu^{s-1}, \mathbb{1}\right)$ is zero for each ξ_{i} of Lemma 3, except for $i=i_{0}$ when $\xi_{i_{0}}=\tau\left(=\operatorname{ind}\left(\psi^{\prime} ; P^{\prime}, N^{\prime}\right)\right)$, where $\operatorname{Bil}_{P}\left(\tau \otimes \nu^{s-1}, \mathbb{1}\right)=\operatorname{Bil}_{P}(\tau, \mathbb{1})=\mathbb{C}$. The

Main Lemma follows from this by virtue of Lemma 3.
Proof of Proposition. Put $S=C_{c}^{\infty}\left(F^{n}\right)$ and $S_{0}=C_{c}^{\infty}\left(F^{n}-\{\underline{0}\}\right)$. We conclude that any

$$
H \in \operatorname{Hom}_{P}\left(\pi \otimes \nu^{s-1}, \mathbb{1}\right)=\operatorname{Bil}_{G}\left(\pi \otimes \nu^{s}, S_{0}\right)
$$

restricts to zero on $W_{i_{0}}$ (in the notations of Lemma 3), and it is uniquely determined by its restriction to $W_{i_{0}+1}$, and its quotient $\tau=\xi_{i_{0}}=W_{i_{0}+1} / W_{i_{0}}$. In other words, given non-zero H, H^{\prime} in $B i l_{G}\left(\pi \otimes \nu^{s}, S_{0}\right)$ there is a scalar c such that $H_{0}=H^{\prime}-c H$ is zero (in $\operatorname{Hom}_{P}\left(W_{i_{0}+1} \otimes \nu^{s-1}, \mathbb{1}\right)$, hence also in $\left.\operatorname{Hom}_{P}\left(\pi \otimes \nu^{s-1}, \mathbb{1}\right)\right)$. Consequently, given non-zero H, H^{\prime} in $B i l_{G}\left(\pi \otimes \nu^{s}, S\right)$, there is a scalar c such that the restriction of $H_{0}=H^{\prime}-c H$ to $W\left(\pi \otimes \nu^{s}, \psi^{\prime}\right) \times S_{0}$ is zero. Note that $W\left(\pi \otimes \nu^{s}, \psi^{\prime}\right) \simeq W\left(\pi, \psi^{\prime}\right)$ via $W \otimes \nu^{s} \leftrightarrow W,\left(W \otimes \nu^{s}\right)(g)=W(g) \nu(\operatorname{det} g)^{s}$ for $g \in G^{\prime}$.

The map $\Phi \mapsto \Phi(\underline{0})$ is an isomorphism of S / S_{0} with \mathbb{C}. Hence the G-invariant bilinear form H_{0} on $W\left(\pi \otimes \nu^{s}, \psi^{\prime}\right) \times S$ is of the form $H_{0}(W, \Phi)=h(W) \Phi(\underline{0})$, where h is a G-invariant linear form on $\pi \otimes \nu^{s}$. If $h \neq 0$ then $\omega_{\pi}(z)|z|^{n s}=1$ for all $z \in F^{\times}$, where ω_{π} is the central character of π. Hence $H_{0}=H^{\prime}-c H$ vanishes, except possibly for a finite number of values of $X=q^{-s}$. With the exception of these values of s, we then have that $B i l_{G}\left(\pi \otimes \nu^{s}, S\right)$ is at most one dimensional, and the proposition follows, as does ((iii) of) the Theorem.

Remark. Suppose that $\pi=I\left(\pi_{1}, \ldots, \pi_{m}\right)$ is a G^{\prime}-module normalizedly induced from the following P^{\prime}-module, where $P^{\prime}=M^{\prime} N^{\prime}$ is the standard parabolic subgroup of type $\left(n_{1}, \ldots, n_{m}\right)$. This representation is trivial on the unipotent radical N^{\prime}, and is given by the generic irreducible $G L\left(n_{i}, E\right)$-modules π_{i} on the i th factor of the Levi factor M^{\prime}. By [Ze], Theorem 9.7(b) in the non-archimedean case, and [V] in the archimedean case, every generic irreducible G^{\prime}-module is of this form, with square- integrable π_{i}.

It is likely that one has

$$
\begin{equation*}
L(s, r(\pi))=\prod_{i} L\left(s, r\left(\pi_{i}\right)\right) \prod_{j<k} L\left(s, \pi_{j} \times \pi_{k}\right), \tag{*}
\end{equation*}
$$

and that the analogous relation holds for the ε-factors too. These relations are to be expected in analogy with standard properties of L and ε-functions of representations of Weil groups, and they are established in the split case where $E=F \oplus F$ in [JPS] for non-archimedean F, and in [JS] for archimedean F.

In fact the relation $\left(^{*}\right)$ is the basis of the proof of the analogue of our Theorem in the split archimedean case in [JS]. For this reason it will be worthwhile (but we do not plan on doing this, at least soon) to establish $\left({ }^{*}\right)$ in our non-split case, especially for $E / F=\mathbb{C} / \mathbb{R}$ (where the n_{i} are 1 or 2), for then an archimedean analogue of our Theorem is likely to follow, and the global results of [F1] and our paper above would extend to all separable quadratic extensions E / F, not only those where each real place of F splits in E.

References

[BZ] J. Bernstein, A. Zelevinsky, Representation of the group $G L(n, F)$ where F is a non-Archimedean local field, Uspekhi Mat. Nauk 31 (1976), 5-70; [BZ1] Induced representations of reductive p-adic groups. I, Ann. Sci. ENS 10 (1977), 441-472.
[CF] J. W. S. Cassels, A. Frohlich, Algebraic number theory, Academic Press, 1967.
[F] Y. Flicker, [F1] Twisted tensors and Euler products, Bull. Soc. Math. France 116 (1988), 295-313; [F2] On distinguished representations, J. reine angew. Math. 418 (1991), 139-172; [F3] Regular trace formula and base change for $G L(n)$, Annales Inst. Fourier 40 (1990), 1-30; [F4] The adjoint representation L-function for $G L(n)$, Pacific J. Math. 154 (1992), 231-244.
[FK] Y. Flicker, D. Kazhdan, A simple trace formula, J. Analyse Math. 50 (1988), 189-200.
[GK] I. Gelfand, D. Kazhdan, On representations of the group $G L(n, K)$, where K is a local field, in Lie groups and their representations, John Wiley and Sons (1975), 95-118.
[GoJ] R. Godement, H. Jacquet, Zeta function of simple algebras, SLN 260 (1972).
[JPS] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464; [JPS1] Automorphic forms on GL(3), Annals of Math. 103 (1981), 169-212.
[JS] H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representation I, Amer. J. Math. 103 (1981), 499-558; [JS1] Rankin-Selberg convolutions: Archimedean theory, in Festschrift in Honor of I. I. Piatetski-Shapiro, IMCP 2 (1990), 125-207; [JS2] A non-vanishing theorem for zeta-functions of $G L_{n}$, Invent. Math. 38 (1976), 1-16.
[JZ] H. Jacquet, D. Zagier, Eisenstein series and the Selberg trace formula II, Trans. AMS 300 (1987), 1-48.
[K] D. Kazhdan, On lifting, in Lie Group Representations II, SLN 1041 (1984), 209-249.
[S] J.-P. Serre, Linear representations of finite groups, GTM 42, Springer Verlag (1977).
[V] D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48(1978), 75-98.
[W] R. van der Waall, Holomorphy of quotients of zeta functions, in Algebraic Number Fields, ed. A. Fröhlich, Academic Press (1977), 649-662.
[Z] D. Zagier, Eisenstein series and the Selberg trace formula I, in Automorphic forms, representation theory and arithmetic, Tata Inst., Bombay,

Springer-Verlag 1981.
[Ze] A. Zelevinsky, Induced representations of reducible p-adic groups. II. On irreducible representations of $G L(n)$, Ann. Sci. ENS 13 (1980), 165-210.

[^0]: Department of Mathematics, 231 W. 18th Ave., The Ohio State University, Columbus, OH 43210-1174; email: flicker@math.ohio-state.edu

