
ON ZEROES OF THE TWISTED TENSOR L-FUNCTION

Yuval Z. Flicker

A. Notations, results, remarks. Let E=F be a separable quadratic extension

of global �elds, A = A F and A E the associated rings of adeles, and A
� ; A �

E
their

multiplicative groups of ideles. Signify by G the group scheme GL(n) over F , and

put G = G(F ), G0 = G(E), G = G(A ), G 0 = G(A E ), and Z(' F�), Z 0(' E�);Z('

A
�), Z0(' A

�);Z0(' A
�
E
) for their centers. Fix a unitary character " of Z0=Z 0, and

denote by � a cuspidal G 0 -module whose central character is ". Such a � is called

distinguished if there is a form � in � such that
R
ZGnG

�(x)dx 6= 0; clearly " is

trivial on Z if � is distinguished.

If G0 = ResE=FG is the group obtained from G by restriction of scalars from E

to F , then (G0 = G0(F ); G 0 = G0(A ) and) its dual group bG0 is [G(C ) � G(C )] o

Gal(E=F ), where the non-trivial element � of the Galois group Gal(E=F ) acts by

permuting the two copies of G(C ). As in [F1] the twisted tensor representation r

of bG0 is de�ned on the n2-dimensional complex space C n 
 C
n by

(r(a; b))(x
 y) = ax
 by and (r(�))(x
 y) = y 
 x (a; b 2 G(C ); x; y 2 C
n):

The irreducible admissible G
0 -module � factorizes as a local product 


v

�v (v

ranges over all F -places) of G0v-modules �v. Here Fv is the completion of F at v

(we also write Rv for its ring of integers, � = �
v
for a generator of its maximal ideal,

and qv for the cardinality of Rv=(�v), when v is non-archimedean), andGv = G(Fv),

G0
v
= G(Ev)(= G0(Fv)).

For almost all F -places v the component �v of � is unrami�ed. If v stays prime in

E, such �v is determined by the semi-simple conjugacy class t(�v) = (z(�v)�1)��

in bG0
v
= [G(C ) � G(C )] o Gal(Ev=Fv), where z(�v) is the diagonal matrix whose

eigenvalues (zi(�v); 1 � i � n) are the Hecke eigenvalues of the unrami�ed G0v-

module �v.

If v splits into v0 and v00 in E, then Ev = Fv � Fv, G
0
v = Gv � Gv, and �v =

�v0 � �v00 is determined by the semi-simple conjugacy class t(�v) = z(�v0)� z(�v00)

in bG0
v
= G(C ) � G(C ), where z(�v0) is a diagonal matrix whose diagonal entries

zi(�v0)(1 � i � n) are the Hecke eigenvalues of �v0 (same for �v00 and z(�v00)).

Correspondingly, as in [F1] we introduce the L-factors

L(s; r(�v)
 !v) = det[I � q�s
v
!v(�v)r(t(�v))]

�1;

where ! = 
!v is a unitary character of Z=Z unrami�ed at our v.

At a place which stays prime this L-factor is equal toY
1�i�n

(1� q�s
v
!v(�v)zi(�v))

�1
�

Y
1�j<k�n

(1� q�2s
v

!2
v
(�
v
)zj(�v)zk(�v))

�1;
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while at v which splits in E it is

Y
1�i;j�n

(1� q�s
v
!v(�v)zi(�v0)zj(�v00))

�1 = L(s; !v 
 �v0 � �v00):

Denote by V a set of F -places containing the archimedean places and those where

E, ! or � ramify. The partial twisted tensor L-function is the in�nite product

LV (s; r(�)
 !) =
Y
v 62V

L(s; r(�v)
 !v);

which converges absolutely in some right half plane Re(s) >> 1.

The local L-factors L(s; r(�v)
 !v) can be introduced for non-archimedean v 2

V too as nowhere vanishing functions of the form P (q�s
v
)�1, where P (X) is a

polynomial in X with P (0) = 1. The de�nition in the case of v which splits is

given as in [JPS], Theorem 2.7, where L(s; �1v��2v) is de�ned. The de�nition and

properties of these factors for a non-split v are analogously proven in the Appendix

to this paper.

At the archimedean places the L-factors are the associated L-factors of the rep-

resentation of the Weil groups which parametrize �v (and so r(�v)
 !v). But the

local functional equation has been proven in [JS1], Theorem 5.1, only in the split

case, where Ev = Fv � Fv. It will be interesting to extend the work of [JS1] to

apply in the non-split case too.

We shall then assume that every archimedean place v of F splits in E. Under

this assumption the complete L-function L(s; r(�)
!) is de�ned to be the product

over all places of the local factors. We shall assume throughout this paper that if

! 6= 1 then ! does not factorizes through z 7! �(z) = jzj, as this case can easily be

reduced to the case of ! = 1. Indeed, if �E(x) = jxxj1=2(x 2 A
�
E
), then

L(s; r(�)
 !�t) = L(s+ t; r(�)
 !) = L(s; r(�
 �
t=2
E

)
 !):

For the same reason we may and will assume that the central character " of � is

trivial on A
� .

The work of [F1] then extends at once to show that L(s; r(�)
 !) has analytic

continuation to the entire complex s-plane with possible poles only at s = 0; 1.

This L-function satis�es a functional equation relating s and 1 � s. These poles

are at most simple, and occur precisely when r(�)
 ! is of the form r(�0), with a

distinguished �0. By r(�)
 ! = r(�0) we mean that r(�v)
 !v = r(�0
v
) for almost

all v. See the Remark at the end of this paper concerning such ! and �.

Let L(T ) be a separable �eld extension of F of degree n. Its multiplicative group

T is isomorphic over F to the group of F -points of an elliptic torus T over F of

G, thus T (F ) = T . The torus T is uniquely determined up to conjugacy in G,

and its Lie algebra is isomorphic to L(T ), over F . Denote by !T the character

x 7! !(detx) of A �
L(T )

= T (A ), and by L(s; !T ) the Hecke L-function associated
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with the character !T . Similarly we have L(s; !). The function L(s; !) has analytic

continuation to the entire complex s-plane, with at most simple poles at s = 0; 1.

These poles occur precisely when ! = 1.

Note that by class �eld theory ! can be identi�ed with a character of the Weil

groupW (F=F ), where F is a separable algebraic closure of F containing L(T ), and

!T with the restriction to the subgroup W (F=L(T )). The Hecke L-functions can

be viewed as Artin L-functions associated with these Galois representations. The

main result of this paper is the following.

1. Theorem. Let � be a distinguished cuspidal G 0 -module with a supercuspidal

component, and ! a unitary character of Z=Z. Let s0 be a complex number such that

for every separable �eld extension L(T ) of F of degree n, the L-function L(s; !T )

vanishes at s = s0 to the order m. Then L(s; r(�)
 !) vanishes at s = s0 to the

order m.

Note that if L(s; !T ) vanishes at s = s0, then jRe s0 �
1
2
j < 1

2
.

For n = 2 the assumption on the L(s; !T ) can be replaced by a single assumption

about the vanishing of L(s; !) at s = s0, since for an abelian extension L(T )=F one

has the factorization L(s; !T ) =
Q
�

L(s; �!), where � runs through the characters of

A
�=F�NL(T )=F A

�
L(T )

, or equivalently, by class �eld theory, of Gal(L(T )=F ). For

n > 2, and ! = 1, it is known that L(s; !) divides L(s; !T ) if L(T )=F is a normal

extension (see, e.g., [CF], p. 225), and also when the Galois group of the normal

closure of L(T ) over F is solvable (see [W] for this and related results).

In general this divisibility follows from Artin's conjecture. Indeed, denote by

IndF
T
!T the representation ofW (F=F ) induced from the character !T ofW (F=L(T )).

Then

L(s; !T ) = L(s; IndF
T
(!T )) = L(s; !)L(s; �);

since IndF
T
(!T ) contains the character ! with multiplicity one (by Frobenius reci-

procity); � is the quotient of IndF
T
!T by !. If ! is of �nite order, it can be viewed

as a character of Gal(L=F ) for some Galois �eld extension L of F containing L(T ).

Then !T can be viewed as a character of the subgroup Gal(L=L(T )), and IndF
T
!T

is a representation of the �nite group Gal(L=F ). Artin's conjecture for the group

Gal(L=F ) asserts that L(s; �) is entire unless !T = 1 and ! 6= 1, in which case

L(s; �) is holomorphic except at s = 0; 1, where it has a simple pole. In particular,

when n = 3 or n = 4, and ! = 1, since Artin's conjecture is known for the sym-

metric groups S3 and S4, the vanishing of the L-function L(s; 11) associated with

the trivial character 11 of A �=F� implies the vanishing of L(s; 11T ) (at s = s0, to

the order m), for each extension L(T ) of F of degree 3 or 4, and the assumption of

the Theorem 1 on the L(s; 11T ) can be replaced by a single assumption on L(s; 11).

The work in this paper was motivated by an observation of the introduction

to [F2]. Let r(�) be the (�nite dimensional) representation of the Weil group

W (F=F ) obtained on composing with the twisted tensor representation r : bG0 !
Aut(C n
C n), a representation � which parametrizes (conjecturally) a distinguished
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representation of G 0 (� factorizes through a base change map b from the dual groupbU = G(C ) oW (F=F ) of the unitary group U in n variables associated with E=F ).

The formal observation in [F2] is that r(�) contains a copy of the trivial representa-

tion ofW (F=F ); the �xed vector is written out in [F2]. Theorem 1 is an L-function

reection of the underlying representation theoretic fact.

The proof is based on integrating the kernel K'(x; y) of the usual convolution

operator r(') on the space of cusp forms on G
0 , against an Eisenstein series in

x, over x and y in ZGnG . The integral is expanded geometrically and spectrally.

Theorem 1 is deduced from the resulting equality for a family of test functions. We

can work in the context of GL(n) with a general n � 2 since we use ideas which

were previously constructive in developing a simple form of the trace formula (see,

e.g., [FK] and [F3]), although we do not use the trace formula in this work.

For related results in the split case E = F � F and the adjoint representation

L-function L(s; ! 
 � � ��)=L(s; !), see [Z], [JZ], in the context of GL(2), and [F4]

in the context of GL(n).

B. Core identity. We shall work with the space L(G0) of complex valued functions

� on G0nG 0 which satisfy (1) �(zg) = "(z)�(g) (z 2 Z
0; g 2 G

0), (2) � is absolutely

square integrable on Z
0G0nG 0 . The group G

0 acts on L(G0) by right translation:

(r(g)�)(h) = �(hg). The action is unitary since " is.

De�nition. The function � 2 L(G0) is called cuspidal if for each proper parabolic

subgroup P 0 of GL(n) over E with unipotent radical N 0 we have
R
�(ng)dg = 0

(n 2 N 0nN 0) for all g 2 G
0 .

Let r0 be the restriction of r to the space L0(G
0) of cusp forms in L(G0). The

space L0(G
0) decomposes as a direct sum with �nite multiplicities of invariant

irreducible unitary G 0 -modules called cuspidal G 0 -modules.

Denote by C1
c
(G0

v
; "�1
v
) the convolution algebra of complex valued functions 'v

on G0
v
with 'v(g) = "v(z)'v(zg) (z 2 Z

0
v
; g 2 G0

v
) which are compactly supported

modulo Z 0v, smooth if v is archimedean and locally constant if not. Implicit is a

choice of a Haar measure dgv on G0
v
=Z 0

v
. It is chosen to have that the product of

the volumes jK 0
v=Z

0
v \K

0
vj over all F -places v converges. Here K 0

v is the standard

maximal compact subgroup ofG0
v
; when v is non-archimedean we haveK 0

v
= G(R0

v
),

where R0v is the ring of integers in Ev (R0v is Rv0 � Rv00 if v splits into v0, v00 in

E, and Rv is the ring of integers in Fv). Denote by H v the convolution algebra of

K 0
v-biinvariant functions in C

1
c (G0v; "

�1
v ), and by '0

v its unit element.

Denote by C1
c
(G 0 ; "�1) the linear span of the products 
'v; 'v 2 C

1
c
(G0

v
; "�1
v
)

for all v, and 'v = '0
v for almost all v. Put dg = 
dgv. The convolution operator

r(') =
R
G0=Z0

'(g)r(g)dg is an integral operator on L(G) with the kernel K'(x; y) =P
'(x�1y) ( 2 G0=Z 0).

De�nition. (1) Denote by a bar the Galois action of Gal(E=F ) on E. For g =

(gij) 2 GL(n;E), put g = (gij).

(2) The element  of G0 is called r-elliptic (resp. r-regular) if the element �1 of
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G0 is elliptic (resp. regular). The analogous de�nition holds in the local case with

Fv; Ev; G
0
v
replacing F;E;G0.

(3) The function ' 2 C1
c
(G 0 ; "�1) is called r-discrete if for every x; y in G and 

in G0 we have '(xy) = 0 unless  is r-elliptic r-regular.

(4) The elements ; 0 in G0 (resp. G0v) are r-conjugate if there are x; y in G (resp.

Gv) with 
0 = xy.

Here \r-" is an abbreviation for \relatively-". Recall that � in G0 = GL(n;E)

(resp. G0
v
= GL(n;Ev)) is called regular if its centralizer in G0 (resp. G0

v
) is an

F -torus T 0 (thus T 0(F ) = T 0 is a torus in G0) (resp. Ev-torus T
0
v). Such � is elliptic

if it lies in a torus G0 (resp T 0
v
) and T

0=T 0Z0 has �nite volume (resp. T 0
v
=Z 0

v
is

compact). Thus � is elliptic regular if and only if it lies in no proper E-parabolic

subgroup of G0 (resp. Ev-parabolic subgroup of G0
v
). The centralizer of an elliptic

regular  2 G0 is the multiplicative group of a �eld extension of E of degree n.

Consider the set S = fx 2 G0;xx = 1g. By [F2], Proposition 10, we have

2. Lemma. (1) The map G0=G ! S, x 7! xx�1, is a bijection. It bijects the

double coset GxG with the orbit Ad(G)(xx�1) under the adjoint action of G. (2) If

x; y 2 S are conjugate by an element of G0, then they are conjugate by an element

of G.

Note that the centralizer of �1 is de�ned over F since x�1x�1 = �1

implies x(�1)�1x�1 = (�1)�1. We obtain the following description of the

r-regular r-conjugacy classes in G0.

2.1 Corollary. Let fTg be a set of representatives for the G-conjugacy classes of

(maximal) F -tori in G, T 0 = T (E) the group of E-points on T , and T 0,r-reg the

set of r-regular elements in T 0. Denote by W (T ) = NG(T )=T the Weyl group of

T in G, and write t0 � t00 for t0; t00 in G0 if there are w 2 W (T ) and t 2 T with

wt0w�1 = tt00. Then a set of representatives for the set of r-conjugacy classes of

the r-regular elements in G0 is given by the union over fTg of the T 0,r-reg= �. A

set of representatives for the subset of r-conjugacy classes of the r-regular r-elliptic

elements in G0 is given by the union over the set fTgell of the elliptic tori in fTg,

of the T 0, r-reg= �.

The kernel K'(x; y) =
P
'(x�1y) ( 2 G0=Z 0) can now be expressed as

X
fTgell

X
2T 0,r-reg=Z0

X
�12G=T

X
�22N(T )nG

'(x�1�1�2y)

=
X
fTgell

[W (T )]�1
X

2T 0,r-reg=TZ0

X
�12G=T

X
�22G=Z

'(x�1�1�2y);(2:2)

for an r-discrete function '.

De�nition. The function 'v 2 C
1
c
(G0

v
; "�1
v
) is called r-discrete if for every x; y in

Gv and  2 G
0
v
we have 'v(xy) = 0 unless  is r-elliptic r-regular.
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It is clear that ' = 
'v is r-discrete if it has an r-discrete component. Indeed,

an element � 2 G0 is elliptic (resp. regular) if it is elliptic (resp. regular) in G0
v
for

some v.

This kernel will be integrated against an Eisenstein series in x. Identify GL(n�1)

with a subgroup of GL(n) via g 7!

�
g 0

0 1

�
, and put Q = GL(n � 1)N , where

N is the unipotent upper triangular group. Let S(Fnv ) be the space of smooth

and rapidly decreasing (if v is archimedean), or locally constant compactly sup-

ported (otherwise) complex valued functions on Fnv . Denote by �0
v the character-

istic function of Rn
v
in Fn

v
if v is non-archimedean. Let S(A n) be the linear span

of the functions � = 
�v, �v 2 S(Fn
v
) for all v;�v = �0

v
or almost all v. Put

" = (0; : : : ; 0; 1) 2 A
n . The integral in

f(g; s) = !(det g)j det gjs
Z
A�

�(a"g)jajns!n(a)d�a(2:3)

converges absolutely, uniformly in compact subsets of Re(s) � 1
n
. The absolute

value is normalized as usual, and ! is a unitary character of A �=F�.

It follows from Lemmas (11.5), (11.6) of [GoJ] that the Eisenstein series

E(g;�; !; s) =
X

f(g; s) ( 2 ZQnG)

converges absolutely in Re(s) > 1. In [JS], (4.2), p. 545, and [JS2], (3.5), p. 7 (with

a slight modi�cation due to the position of ! here), it is shown that E(g;�; !; s)

extends to a meromorphic function on Re(s) > 0, in fact to the entire complex

s-plane with a functional equation E(g;�; !; s) = E(tg�1; b�; !�1; 1� s), where tg

is the transpose of g, and b� is the Fourier transform of the \Schwartz" function

� (with respect to some additive character  6= 1 of A =F ). Moreover E(g;�; !; s)

is slowly increasing (with respect to some Siegel domain) in g 2 GnG , and is

holomorphic except possibly at s = 0; 1, where the pole is at most simple. Note

that f(g) and E(g; s) are Z-invariant.

3. Proposition. For any character ! of Z�=F�, Schwartz function � in S(A n),

and r-discrete function ' on G
0 , for each �eld extension L(T ) of degree n of F

there is an entire holomorphic function A(�; !; '; L(T ); s) in s in C such that

ZZ
(ZGnG)2

K'(x; y)E(x;�; !; s)dx dy(3:1)

=
X
L(T )

A(�; !; '; L(T ); s)L(s; !T)

on Re s > 1. The sum over L(T ) ranges over a �nite set (of �eld extensions L(T )

of degree n of F , up to isomorphism over F ) depending on (the support of) '.
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Proof. Since K'(x; y) is left G-invariant as a function in x (and in y), the �rst

expression (on the left) of (3.1),

ZZ
(ZGnG)2

K'(x; y) �
X

2ZQnG

f(x; s)dx dy;

is equal, in the domain of convergence of the series de�ning the Eisenstein series,

to Z
ZQnG

(

Z
GZnG

K'(x; y)dy)f(x; s)dx:

Substituting (2.2) this is equal to

Z
ZQnT

dx �

Z
ZGnG

dy �
X
fTgell

[W (T )]�1
X

2T 0,r-reg=Z0T

X
�12G=T

X
�22ZnG

'(x�1�1�2y)f(x; s)

=
X
fTgell

[W (T )]�1
X

2T 0,r-reg=Z0T

Z
ZnG

dx

Z
ZnG

'(x�1y)f(x; s)dy:

The last equality follows from the decomposition G = QT , Q \ T = f1g, and the

left Q-invariance of f(x; s) as a function in x.

To justify the change of summations and integrations, note that given ' the sums

over T and  (in T 0=TZ 0) are �nite. Indeed, consider x�1�1x. Its characteristic

polynomial has rational coe�cients (in F ), which lie in a compact depending on

the support of ' (the intersection of a discrete and a compact set if �nite). Hence

the sum over T is �nite, as asserted in the proposition. Moreover, the sum over

 2 T 0,r-reg=TZ 0 is �nite. The T are elliptic since ' is r-discrete.

Now for any elliptic regular �1, if x�1�1x lies in the compact supp' in

G
0=Z0, then x(2 G ) lies in a compact of TnG . Moreover, the function �("tx) in

t 2 T, is compactly supported, uniformly in x in a compact of TnG . Hence x lies

in a compact of ZnG if '(x�1y)f(x; s) 6= 0. But now x�1y lies in the compact

supp', x lies in a compact, and  in a �nite set. Hence y lies in a compact of

G =Z, our integrals are absolutely convergent, and the change of sums and integrals

is justi�ed.

Substituting now the expression (2.3) for f(x; s), we obtain a sum over T and 

of the product of [W (T )]�1 and

ZZ
(ZnG)2

'(x�1y)f(x; s)dx dy =

Z
G

dx

Z
ZnG

'(x�1y)dy � !(detx)j detxjs�("x)

=

Z
TnG

Z
G=Z

'(x�1xy)dy �

Z
T

�(�tx)!(det tx)j det txjsdt dx:
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The inner integral over T is a \Tate integral" which de�nes the L-function L(s; !T ).

Note that the integral in x is taken over a compact in TnG , and the integral over

y ranges over a compact in ZnG . The proposition follows.

C. Spectral analysis. There is another expression for the kernel K'(x; y), which

we proceed to describe in the special case where ' is cuspidal.

De�nition. The function ' on G
0 is called cuspidal if for every x; y in G

0 and

every proper F -parabolic subgroup P 0 of G0, we have
R
N0
'(xny)dn = 0, where

N
0 = N 0(A ) is the unipotent radical of the parabolic subgroup P

0 = P 0(A ) of G 0 .

For a cuspidal ', the convolution operator r(') factorizes through the projection

on the space L0(G
0) of cusp forms. The kernel K'(x; y) has then the spectral

decomposition

K'(x; y) =
X
�

K�

'
(x; y); where K�

'
(x; y) =

X
��

(r(')��)(x)�
�

(y):

The � range over all cuspidal G 0 -modules in L0(G
0). The �� range over an orthonor-

mal basis consisting of K 0 =
Q
v

K 0
v-�nite vectors in � (K 0

v is the standard maximal

compact subgroup in G0
v
). The �� are rapidly decreasing functions, and the sum

over �� is �nite for each ' (uniformly in x and y) since ' is K 0 -�nite. The sum over

� converges in L2, hence also in the space of rapidly decreasing functions. Hence

K'(x; y) is rapidly decreasing in x and y, and the product of K'(x; y) with the

slowly increasing function E(x;�; !; s) is integrable over (ZGnG )2 . Consequently

(3.1) can be expressed in the form

X
�

X
��

Z
ZGnG

(r(')��)(x)E(x;�; !; s)dx �

Z
ZGnG

�
�

(y)dy:

A cuspidal G 0 -module which contains a vector �� whose integral over ZGnG is

non-zero is called distinguished. Hence the sum over � ranges over the distinguished

cuspidal G 0 -modules only.

To prove Theorem 1 let s0 be a complex number such that for every separable

�eld extension L(T ) of F degree n, the L-function L(s; !T ) vanishes at s = s0 to

the order m � 1. It is well-known that then jRe(s0)�
1
2
j < 1

2
. It follows that (3.1)

vanishes at s = s0 to the order m, and thus for all j(0 � j � m) we have

X
�

X
��

Z
ZGnG

(�(')��)(x)E(j)(x;�; !; s0)dx �

Z
ZGnG

�
�

(y)dy = 0:(3:2)

Here E(j)(�; s0) =
d
j

dsj
E(�; s)js=s0.

The test function ' is an arbitrary cuspidal discrete function on G 0 , and our aim

is to show the vanishing of a single summand in the last double sum over � and
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��. In fact, �x a cuspidal distinguished G
0 -module �0 whose component at some

F -place v2 is supercuspidal, for which Theorem 1 will be proven.

Let V be a �nite set of F -primes, containing the archimedean primes and those

where �0, ! or E=F ramify. Consider ' = 
'v (product over all F -places v) with

'v 2 C
1
c (G0v; "

�1
v ) for all v, and 'v = '0

v (= the unit element in the Hecke algebra

H v ) for almost all v. For all v 62 V the component 'v is taken to be spherical,

namely 'v 2 H v . Each of the operators �v('v) (v 62 V ) factorizes through the

projection on the subspace �
K
0

v
v of K 0

v-�xed vectors in �v. This subspace is zero

unless �v is unrami�ed, in which case �
K
0

v
v is one-dimensional. On this K 0

v
-�xed

vector, the operator �v('v) acts as the scalar '_v (t(�v)), where '
_
v denotes the

Satake transform of 'v. Put '_(t(�V )) for the product over v 62 V of '_
v
(t(�v)),

�V ('V ) = 

v2V

�v('v), and �
K
0
;V for the space of

Q
v 62V

K 0
v
-�xed vectors in �. Then

(3.2) takes the form

X
f�;�K

0;V 6=0g

'_(t(�V ))a(�; 'V ; j;�; !; s0) = 0;(3:3)

where

a(�; 'V ; j;�; !; s) =
X
��

Z
ZGnG

(�V ('V )�
�)(x)E(j)(s;�; !; s)dx �

Z
ZGnG

�
�

(y)dy:(3:4)

The sum over � ranges over the set of distinguished cuspidal G 0 -modules � =


�v such that �v is unrami�ed outside V . The sum over �� ranges over those

elements in the orthonormal basis of � which appears in (3.2), which are Kv-

invariant and eigenfunctions of �v('v) ('v 2 H v , necessarily with the eigenvalues

t(�v)) as functions in x 2 Gv, for any v 62 V . In particular, such �� factorizes

as ��(x) = ��
V
(xV )

Q
v 62V

��v
v
(xv); here �

�v
v

is a right K 0
v
-invariant function on G0

v

whose value at 1 is vol(K 0
vZ

0
v=Z

0
v)
�1 and which transforms under Z 0v via "v, which is

an eigenfunction of the convolution operators r('v) ('v 2 H v ) with the eigenvalue

t(�v).

A standard argument (see, e.g., Theorem 2 in [FK] in a more involved situation),

based on the absolute convergence of the sum over � in (3.3), standard estimates

on the Hecke parameters t(�v) of the unitary unrami�ed �v(v 62 V ), and the Stone-

Weierstrass theorem, implies the following.

4. Proposition. Let � be a cuspidal distinguished G
0 -module which has a super-

cuspidal component, ! a unitary character of Z=Z, and s0 a complex number as

in Theorem 1. Then for any j, � and a function 'V for which ' is cuspidal and

discrete with any choice of 
'v(v 62 V ), the sum (3.4) is zero.

D. Constant term expanded. We shall now proceed to recall from [F1] the

relation between the integral over x in (3.4) and the L-function L(s; r(�) 
 !).
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First we need a lemma, and some notations. Let  6= 1 be a character of A =F ,

and  0 the character of A E =(A + E) de�ned by  0(x) =  ((x � x)=(x0 � x0)) on

x 2 A E . Here x0 is a �xed element of E � F , and � as usual � bar signi�es the

Galois action of Gal(E=F ). Denote by  0
v
the component at an F -place v.

De�nition. A G0
v
-module �v is called generic if HomN 0

v
(�v;  

0
v
) 6= f0g, where  0

v

is the character n = (nij) 7!  0(
P

1�i<n

ni;i+1) of the unipotent upper triangular

subgroup N 0
v of G

0
v.

By [GK], or Corollary 5.17 of [BZ], a generic �v embeds in the induced G0v-

module Ind( 0
v
;G0

v
; N 0

v
). Moreover, the dimension of Hom(�v; Ind( 

0
v
)) is at most

one, equivalently the dimension of HomN 0

v
(�v;  

0
v
) is at most one.

De�nition. If �v is generic, denote by W (�v) its realization in Ind( 0v); W (�v) is

called the Whittaker model of �v.

Any component of a cuspidal G 0 -module is generic. Since �v is admissible, each

Whittaker function in W (�v) is smooth (under right action of G0
v
). Denote by

W (�) the linear span of the functions W (x) =
Q
v

Wv(xv), where Wv 2 W (�v) for

all v, and Wv is the normalized (by W 0
v
(1) = 1) unrami�ed (right-K 0

v
-invariant)

vector W 0
v for all v outside V .

Given W in W (�), the function �W (x) =
P

p2N 0nQ0
W (px) is a cuspidal function

in the space of � � L0(G
0), and the space of � is spanned by such �W . If � is

distinguished, namely there is � 2 � with
R
ZGnG

�(x)dx 6= 0, then � =
P
i

�Wi
and

we conclude that � has a distinguished vector of the form �W .

Given a cusp form � in �, consider the Whittaker functionW�(x) =
R
N 0nN0

�(nx) 
0
(n)dn

in W (�). Here  
0
(n) =  0(n�1). It is easy to see that if � = �W , then W� is W .

The following simple fact is used in [F1]; a proof is included here, since it was not

given there.

5. Lemma. Given W = 
Wv in W (�) and �(x) =
P

p2N 0nQ0
W (px), we have

Z
NnN

�(nx)dn =
X

p2NnQ

W (px):

Proof. Let � be a cusp form. We �rst recall the proof of the expansion

�(x) =
X

p2N 0

nnQ
0

n

W�(px):

The index (n here) signi�es the size of the matrix, and prime means entries in E

(rather than F ). Embed G0
m

in G0
n
(m � n) via x 7!

�
x 0

0 1

�
, and denote by
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V 0
n
the unipotent radical of the parabolic subgroup of G0

n
of type (n � 1; 1). For

v = (vij) in V
0
n
put  0(v) =  0(vn�1;n), and consider

F�(p) =

Z
V 0nnV

0

n

�(vp) 0(v)dv:

Since � is cuspidal, only non-trivial characters of V0
n
=V 0

n
need be considered here.

These make a single orbit under the action of G0n�1. The stabilizer of v 7!  0(v) is

G0
n�2V

0
n�1. Hence we have the Fourier expansion

�(e) =
X

pn�12G0n�2
V 0
n�1

nG0
n�1

F�(pn�1):

Now F� is a cusp form on G
0
n�1 . Hence by induction on n we have

F�(p) =
X

pn�22G0n�3
V 0
n�2

nG0
n�2

� � �
X
p12G01

WF�
(p1p2 � � � pn�2p):

But WF�
(x) = W�

�
x 0

0 1

�
. Hence

�(e) =
X
pn�1

X
pn�2

� � �
X
p1

W�(p1p2 � � � pn�2pn�1) =
X

p2N 0

nnQ
0

n

W�(p);

as required.

To prove the lemma, using the same notations we consider

�Nn
(x) =

Z
NnnNn

�(mx)dm:

Since

�Nn�1
(v) =

X
p0
n�1

2G0
n�2

V 0
n�1

nG0
n�1

F�Nn�1
(p0
n�1v);

the integral

�Nn
(e) =

Z
VnnVn

�Nn�1
(v)dv

is equal to Z
VnnVn

X
p0
n�1

F�Nn�1
(p0n�1v)dv =

X
pn�1

F�Nn�1
(pn�1):

The last sum ranges over pn�1 2 Gn�2Vn�1nGn�1 since

Z
VnnVn

 0(p0n�1vp
0
n�1

�1)dv 6= 0
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implies that p0
n�1 2 G

0
n�1 must lie in Gn�1. Now

F�Nn�1
(pn�1) =

Z
V 0nnV

0

n

�Nn�1
(vnpn�1) 

0
n
(vn)dvn;

and by induction we have

�Nn�1
(x) =

X
pn�22Nn\Gn�2nGn�2

W�; 0
n�1

(pn�2x):

The index of  0n indicates that it is a character on the group N
0
n . Substituting we

obtain Z
V 0nnV

0

n

X
pn�2

W�; 0
n�1

(pn�2vnpn�1) 
0
n(vn)dvn:

But given pn�2 and vn there is v0n in V
0
n with  0n(vn) =  0n(v

0
n) and pn�2vn =

v0
n
pn�2. By de�nition of W�; 0n

, the last displayed expression can be expressed as

(F�Nn�1
(pn�1) =)

X
pn�2

W�; 0n
(pn�2pn�1):

We conclude that

�Nn
(e) =

X
pn�1

X
pn�2

W�; 0n
(pn�2pn�1) =

X
p2NnnQn

W�; 0n
(p);

as required.

E. L-functions emerge. We can now return to the integral over x in (3.4) and

the fundamental identity of [F1] which expresses it as an L-function. Thus we

take W = 
Wv in W (�) with Wv = W 0
v
(2 W (�v)) for all v 62 V , such that the

cuspidal function �(x) =
P

P2N 0nQ0
W (px) in the space of � � L0(G

0) is distinguished

(its integral over the closed subspace ZGnG is non-zero). Substituting the series

de�nition of E(x;�; !; s) =
P

ZQnG

f(x; s), we obtain

Z
ZGnG

�(x)E(x;�; !; s)dx=

Z
ZQnG

�(x)f(x; s)dx

=

Z
QnG

�(x)�("x)!(detx)j detxjsdx =

Z
QNnG

�("x)j detxjs!(detx)

Z
NnN

�(nx)dn dx

=

Z
QNnG

�("x)!(detx)j detxjs[
X
NnQ

W�(px)]dx =

Z
NnG

�("x)j detxjs!(detx)W�(x)dx;
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using Lemma 5. Choosing � 2 S(A n) to be factorizable, namely �(x) =
Q
�v(xv)

with �v 2 S(F
n

v
) for all v (with �v = �0

v
for v 62 V ), since W�(x) =

Q
v

Wv(xv) the

last integral is a product over v of the local integralsZ
NvnGv

�v("x)j detxj
s

v!v(detx)Wv(x)dx:(5:1)

When Wv = W 0
v
and �v = �0

v
(and �v, !v and Ev=Fv are unrami�ed), the

last local integral is shown in [F1], Proposition, p. 305, on using Schur function

computations, to be equal to L(s; r(�v) 
 !v) (in [F1], !v is taken to be 1, but

the general case follows on adjusting the computations there). At the \bad" non-

archimedean places v 2 V , where rami�cation may occur, the following is shown in

the Appendix below, in analogy with the split case � where E is replaced by F �F

� which is studied in [JPS], Theorem 2.7, pp. 390-393, 395-398.

First, the integral (5.1) is a rational function in q�s
v
. Second, there is a polyno-

mial P (x;�v; !v) with constant term 1 over C , such that the C -span of the integrals

(5.1), as �v ranges over S(F
n

v
) and Wv over W (�v), is precisely the principal frac-

tional ideal L(s; r(�v)
!v)C [q
s

v ; q
�s
v ] in the fraction �eld C (qsv ) of the ring C [q

s

v ; q
�s
v ]

of polynomials in qs
v
and q�s

v
. Here L(s; r(�v) 
 !v) is P (q

�s
v
;�v; !v)

�1, and t is

referred to as the \greatest common denominator", or \g.c.d.", of all the integrals

(5.1). The quotient of (5.1) by L(s; r(�v) 
 !v) satis�es a functional equation

s$ 1� s.

In the archimedean case, let �0
v
be the representation of the Weil group which

parametrizes �v. De�ne L(s; r(�v)
 !v) to be the L-factor L(s; r(�v)
 !v) asso-

ciated with the representation r(�v)
 !v of the Weil group of Fv(= R or C ). The

local integral (5.1) and its quotient by L(s; r(�v) 
 !v), and the local functional

equation, are studied in [JS1], Theorem 5.1, in the case when v splits in E.

We shall assume that each archimedean place v of F splits in E. Then the total

L-function L(s; r(�)
 !) is de�ned as the product over all v of the local factors.

The product, as well as the integrals and sums in the fundamental identity leading

to (5.1) above, converge absolutely in some right half plane. Since E(x;�; !; s) is

holomorphic except at s = 0 and 1 (for a suitable � and !; see [F1], Lemma, p.

301), the total L-function L(s; r(�)
!) is entire except possibly for at most simple

poles at s = 0 and 1 if r(�)
 ! = r(�0), and �0 is distinguished.

Proof of Theorem 1. Let � be a cuspidal distinguished G 0 -module with a supercus-

pidal component at v2, ! a unitary character of Z=Z, and s0 a complex number

such that (3.4) is 0 at s = s0 for all j (0 � j � m), � and 'V (with discrete

cuspidal ' = 'V 
 ( 

v 62V

'v)). In (3.4), V is a �nite set of F -places containing

the archimedean places, and those where �, ! or E=F ramify. Fix a distinguished

factorizable automorphic form �0 = 
�0v in the space of � � L0(G), which is

K 0
v
-invariant for all v 62 V .

The space of vectors � in � � L0(G
0) which are K 0

v-invariant for all v 62 V is

spanned by the factorizable, thus �(x) =
Q
v

�v(xv), such vectors. Given such a
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� = 
�v, our aim is (in particular) to choose a function 'v such that ' be cuspidal

and r-discrete, and �('V )�
0 = �.

At v2 consider the matrix coe�cient '0
v2
(x) = h�v2(x

�1)�0
v2
; �v2i of the super-

cuspidal G0
v2
-module �v2 . Note that �v2 and �0

v2
are functions in C1

c
(G0

v
; "v), and

h�; �i denotes the natural inner product. The function '0v2 lies in C
1
c (G0v; "

�1
v ), and

it is a supercusp form (
R
'0v2(xny)dn = 0, n 2 N 0

v2
= unipotent radical of any

proper parabolic subgroup of G0
v2
). A function ' = 
'v whose component at a

place, say v2, is a supercusp form, is cuspidal. By the Schur orthogonality rela-

tions, the convolution operator �v2('
0
v2
) maps the vector �0

v2
to (a multiple of) �v2 ,

and any vector orthogonal to �0v2 is mapped to 0. Working with ' = 
'v whose

component at v2 is '0
v2

we then have that ' is cuspidal, and that the component

of the �V ('V )�
� which occurs in (3.4) at v2 is �v2 .

Put V 00 = V �fv2g, let v1 be an F -place in V
00, say where � and ! are unrami�ed,

Wv is W
0
v and �v is �

0
v, and �v1 = �0v1 = �0v1 , and put V 0 = V 00 � fv1g. For each

v 2 V 0 there is a congruence subgroup K 00
v
of K 0

v
such that both �0

v
and �v are

right K 00
v -invariant. Namely both �0v and �v are non-zero vectors in the �nite

dimensional space �
K
00

v
v of K 00

v
-�xed vectors in �v. The Hecke algebra H (K 00

v
) of

K 00
v
-biinvariant functions in C1

c
(G0

v
; "�1
v
) generate the algebra of endomorphisms

of the �nite dimensional space �
K
00

v
v . Consider '0v 2 H (K 00

v ) such that �v('
0
v) maps

�0
v
to �v, and any vector orthogonal to �0

v
(is mapped by �v('

0
v
)) to 0. Choosing

' = 
'v, with 'v = '0
v
for all v 2 V 0, we conclude that any automorphic form ��

which may contribute a non-zero term to (3.4), has the component �0
v
for all v 6= v1.

But �� is automorphic, and G
0 = G0

Q
v 6=v1

G0
v1
, hence �� is uniquely determined to

be �0. The vector ( 

v2V 0

�v('
0
v
))�0 has the component �v for every v 6= v1. Since it

is automorphic, the same argument implies that �V 0('V 0)�
0 = �.

We still need to choose the component 'v1 of ' in such a way that ' be r-discrete.

Note that we choose v1 to be a place where �; ! and E=F are unrami�ed, and the

components �0
v1

of �0 and �v1 of � are both equal to the (normalized) K 0
v
-�xed

vector �0
v1

in �v1 .

Recall that the function 'v1 2 C
1
c
(G0

v1
; "�1
v1
) is called r-discrete if it is supported

on the r-regular r-elliptic set of G0
v1
. Also, a function ' = 
'v whose component

at v1 is r-discrete is necessarily r-discrete. It su�ces to choose an r-discrete 'v1
whose support is contained in Z 0

v
K 0
v
, and which is constant on the intersection of

its support with K 0
v. Suitably normalized we have that �v1('v1)�

0
v1

= �v1 for such

'v1 .

We conclude that the only non-zero summand in (3.4) is the one indexed by �0.

Since � = �V ('V )�
0 is arbitrary, and for a suitable such � the integral over x in

(3.4) is equal to L(j)(s; r(�) 
 !), we conclude that (3.4) is a non-zero multiple

of L(j)(s; r(�) 
 !) (for some choice of 'V and �). Here L(j)(s) denotes the jth

derivatives of L(s). However, Proposition 4 asserts that (3.4) vanishes at s = s0.

Hence L(s; r(�) 
 !) vanishes at s = s0 to the order m under the conditions of

Theorem 1, whose proof is now complete.
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Remark. By [F1] and the following Appendix, the L-function L(s; r(�) 
 !) is

everywhere holomorphic except possibly at s = 0, 1, where it has a simple pole

if r(�) 
 ! = r(�0) and �0 is distinguished. But L(s; !) has a simple pole at

s = 0; 1 when ! = 1. Hence Theorem 1 implies (for a distinguished � and a

character ! which satis�es its assumptions) that the \twisted adjoint" function

L(s; r(�)
!)=L(s; !) is holomorphic everywhere except possibly at s = 0; 1. There

it has a simple pole precisely when ! 6= 1 and r(�)
! = r(�0) with a distinguished

cuspidal �0. The last identity is meant in the local sense, for almost all places.

Suppose that ! and � are such that the poles do occur. Let 
 be a character

of A �
E
=E� whose restriction to A

�=F� is !. Then r(�) 
 ! = r(� 
 
). Since

r(�0) = r(�

), by [F1], Corollary on p. 310, �

 is also distinguished. Then � is

distinguished and
R
ZGnG

�(x)!(x)dx 6= 0 for some � 2 �; hence ! has order n. Such

� can be studied along lines suggested by the conjecture and techniques of [F2]. In

particular, when ! is primitive of order n, it is associated by class �eld theory to a

cyclic extension T of F , and it is likely that the associated � are parametrized by

the non-trivial characters of T0�=T 0�T� , where T 0 = T 
F E.

Put ��(g) = ��(g). By [F2], Proposition 12, if � is distinguished then � ' ��. If

� 
 
 is also distinguished, then (� 
 
)� ' � 
 
. Altogether we have � ' �� '

�
 (
=
�) = �
 (

), and !jF�NE=F A
�
E
is of order dividing n. If !jF�NE=F A

�
E

is primitive of order n, namely T 0 = T 
F E is a �eld, then by [K] the G0-module

� is parametrized by a character � of T0�=T 0�, and �(�)� = �(�
�1
), where the

last bar indicates the non-trivial automorphism of T 0 over T . Hence � is trivial on

T 0�NT 0=TT
0�, but we suggest above that � is likely to be parametrized by the �

on T
0�=T 0� which are trivial on T

� .

Appendix: On the local twisted tensor L-function

Let E=F be a quadratic separable extension of global �elds, � an irreducible

cuspidal representation of GL(n; A E ), and r the twisted tensor representation r :

[GL(n; C )�GL(n; C )]oGal(E=F ) ! Aut(C n
C n) of [F1]. Let V be a �nite set of

places of F , containing the archimedean places and those where E=F or � ramify.

The partial twisted tensor L-function LV (s; r(�)) is de�ned to be the product over

all v 62 V of the local L-factors L(s; r(�v)). The product converges absolutely in

some half-plane Re(s) > c. When each archimedean place of F splits in E, this

LV (s; r(�)) is shown in [F1] to be holomorphic on Re(s) � 1, except when � is

GL(n; A )-distinguished, in which case a simple pole occurs, on Re(s) = 1 (at s = 1

if the central character !� of � is trivial on A
�).

At a place v which splits inE we haveEv = Fv�Fv andGL(n;Ev) = GL(n; Fv)�

GL(n; Fv), and the component �v of � is of the form �1v � �2v. The local L-factor

L(s; r(�v)) is simply the tensor product L-function L(s; �1v��2v). This last factor

was introduced by [JPS], Theorem 2.7, in the non-archimedean case and by [JS1],

Theorem 5.1, in the archimedean case, for all generic �iv, not necessarily unrami�ed.

Let  
v
be a non-trivial character of Fv (in C

�), and  v(u) =  
v
(
P

1�i�n

ui;i+1),
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where u = (ui;j) 2 Nv, a character of the unipotent upper triangular subgroup

Nv of Gv = GL(n; Fv). Denote by W (�iv;  v) the Whittaker  v-model of �iv,

and for W1v 2 W (�1v;  v), W2v 2 W (�2v;  
�1
v
) and �v 2 C1

c
(Fn
v
), and with

" = (0; : : : ; 0; 1) 2 Fn
v
, put

	(s;W1v;W2v;�v) =

Z
NvnGv

W1v(g)W2v(g)j det gj
s�v("g)dg:

It is shown in [JPS], [JS1] that the quotient 	(s;W1v;W2v;�v)=L(s; �1v � �2v)

satis�es a functional equation where, in particular, s; �1v; �2v are replaced by 1�s,

and the contragredients ��1v; ��2v.

The purpose of this appendix is to introduce the twisted tensor L-factor L(s; r(�v))

for any (possibly rami�ed) quadratic separable extension Ev=Fv of local non-archimedean

�elds, and any generic representation �v of G
0
v
= GL(n;Ev).

Let  0
v
be a non-trivial character of Ev which is trivial on Fv. Note that Ev=Fv '

Fv. Any such character is of the form  0
v
(x) =  

v
((x � x)=(x0 � x0)), where

x 2 Ev and the action of Gal(Ev=Fv) on Ev is denoted by a bar, for a �xed

x0 2 Ev�Fv. Then a character  
0
v of the unipotent upper triangular subgroup N

0
v of

G0
v
= GL(n;Ev), which is trivial on Nv, is de�ned as before. Denote by W (�v;  

0
v
)

the  0v-Whittaker space of �v, and for Wv 2W (�v;  
0
v) and �v 2 C

1
c (Fnv ) consider

the integral

	(s;Wv;�v) =

Z
NvnGv

Wv(g)j det gj
s�v("g)dg:

When Ev=Fv;  v and �v are unrami�ed,Wv is the unit elementW 0
v
ofW (�v;  

0
v
),

and �v is the characteristic function �0
v of R

n

v , Rv being the ring of integers in Fv,

it is shown in [F1] that 	(s;W 0
v
;�0

v
) = L(s; r(�v)). In analogy with [JPS] we shall

introduce L(s; r(�v)) for a general �v as a generator of some fractional ideal (gen-

erated by the 	(s;Wv;�v)), and show that the quotient 	(s;Wv;�v)=L(s; r( v))

satis�es a functional equation, in which s and �v are replaced by 1 � s and the

contragredient ��v.

Having de�ned the local L-factor for all non-archimedean places (it is de�ned

in [JS1] for the archimedean places which split in E), the complete L-function

L(s; r(�)) can be de�ned as the product over all places v of F of the L(s; r(�v)),

for E=F in which each archimedean place of F splits in E. The global functional

equation for the global integrals 	(s;W;�) of [F], together with the local functional

equations of [JPS] and [JS1] in the split cases, and the one of this note in the

non-split non-archimedean case, implies the existence of a monomial "(s; r(�)) =

c(�)e"(�)s in s ("(�) in C , c(�) in C
�), and the functional equation L(s; r(�)) =

"(s; r(�))L(1� s; r(��)) for the twisted tensor L-function.

Moreover it is shown in [F1] that 	(s;W;�) is holomorphic in s 2 C except

possibly for a simple pole at s = 1 and s = 0 (when � is GL(n; A )-distinguished,

whose central character is trivial on A �). Since the local work shows that L(s; r(�v))

is a sum of 	(s;Wv;�v)'s, it follows that L(s; r(�)), which is initially de�ned in
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some right half plane, has analytic continuation to the entire complex s-plane with

at most two poles, at s = 0; 1, which are simple and occur precisely for distinguished

�. The work here also replaces the (complicated proof of the) Lemma on p. 306

of [F1]. It is this function L(s; r(�)) which is studied in the paper preceding this

appendix.

From now on we can use local notations, thus let E=F be a quadratic separable

extension of local non-archimedean �elds, put G = GL(n; F ), G0 = GL(n;E), let

N;N 0 be the corresponding unipotent upper-triangular subgroups, and  ;  0 their

characters, � a generic irreducible G0-module with a unitary central character, and

W (�;  0) its  0-Whittaker model (for any irreducible G0-module there exists at most

one (non-zero)  0-Whittaker model; � is called generic when it exists). Denote by

R the ring of integers in F , and by q the cardinality of its residue �eld. The purpose

of this appendix is to prove the following.

Theorem. (i) For each W 2W (�;  0) and � 2 C1
c
(Fn), the integral 	(s;W;�)

is absolutely convergent for a large Re(s) to a rational function of X = q�s.

(ii) There exists a polynomial P (X) 2 C [X] with P (0) = 1 such that the integrals

	(s;W;�) span the fractional ideal L(s; r(�))C [X;X�1 ] of the ring C [X;X�1 ],

where L(s; r(�)) = P (X)�1.

(iii) There exists an integer m(�;  0) and a non-zero complex number c(�;  0), such

that

	(1� s;fW; b�)=L(1� s; r(��)) = !�(�1)
n�1"(s; r(�);  0)	(s;W;�)=L(s; r(�))

for all W 2 W (�;  ), � 2 C1
c
(Fn). Here !� is the central character of �; �� the

contragredient of �, and we put

"(s; r(�);  0) = c(�;  0)Xm(�; 0); fW (g) =W (J tg�1); b�(x) =
Z
Fn

�(y) (tr x�y)dy:

Here J 2 G is the matrix whose non-zero entries are 1, located on the anti-diagonal.

Proof. The proof of (i) and (ii) is similar to that of (i), (ii) in [JPS], Theorem 2.7.

Since W and � are smooth, using the Iwasawa decomposition we obtain a �nite

sum

	(s;W;�) =
X
i

Z
A

Wi(a)�i(an)�
�1
B
(a)j det ajsd�a:

Here A is the diagonal subgroup of G and B = AN , and Wi 2 W (�;  0), �i 2

C1c (F ). We put

a = diag(a1a2 : : : an; a2 : : : an; : : : ; an�1an; an):

By [JPS1] there exists a �nite set � = �(�;  0) of �nite functions � on A0 (contin-

uous functions whose translates span a �nite dimensional vector space), such that

for every W 2W (�;  0) there are �� 2 C
1
c
(En�1) with

W (a) =
X
�2�

��(a1; a2; : : : ; an�1)�(a) (a 2 A0):
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Hence

jW (a)j �
X
�2�+

�+
�
(a1; : : : ; an�1)�(a)

where now �+ is a �nite set of �nite functions on A0 which take non-negative real

values, and �+
�
in C1

c
(En�1) are � 0. Each function �+

�
is bounded by a �nite sum

of positive-valued quasi-characters.

Then 	(s;W;�) is a �nite sum of termsZ
A

�(a1; : : : ; an�1; an)�(a)�
�1
B
(a)j det ajsd�a

with � 2 C1c (Fn) and � in a �xed �nite set � of �nite functions on A. Each

product (���1
B
)(a) is a �nite sum of products �1(a1) : : : �n(an), where each � is a

�nite function on F� in a �xed �nite set. We obtain a �nite sum of the integralsY
1�i�n

Z
F�

�i(ai)�i(ai)jaij
isd�ai (�i 2 C

1
c
(F )):(�)

Replacing the �i and �i by their absolute values it follows that 	(s;W;�) is

absolutely convergent for large Re (s). Each factor in (�) is a sum of geometric

series in X which converge to Qi(X)(1 � �iX
ki)�1, where Qi 2 C [X] and �i; ki

depend only on �i. Hence 	(s;W;�) is a rational function of X as asserted in (i),

with a common denominator independent of W , �.

The subspace of the �eld C (X) generated by these fractions is an ideal for the

ring C [X;X�1 ]. Indeed, if Wh(g) = W (gh);�h(x) = �(xh), then 	(s;Wh;�h) is

the product of j dethj�s and 	(s;W;�).

It is easy to see (as in [F1], Proposition, (ii) on p. 308, which is proven on the

middle of p. 309), that 	(s;W;�) is identically 1 for a suitable choice of W , �.

Hence the ideal contains 1 and admits a unique generator of the form P (X)�1, with

P 2 C [X] and P (0) = 1, as asserted in (ii).

For (iii), note �rst that if "(s; r(�);  0) exists, then it is necessarily a monomial.

Indeed, applying the asserted functional equation with (s; ��;  0�1;fW; b�) replacing
(1� s; �;  0;W;�), and noting that !��!� = 1, we obtain

	(s;W;�)=L(s; r(�)) = !�(�1)
n�1"(1�s; r(��);  0�1)	(1�s;fW; b�)=L(1�s; r(��)):

Combining this with the equation of (iii), we conclude that the product of "(s; r(�);  0)

and "(1�s; r(��);  0�1), both in C [X;X�1 ], is 1. Hence "(s; r(�);  0) = c(�;  0)Xm(�; 0),

as asserted.

From its integral representation (for large Re(s)), we obtain

	(s; �(g)W; �(g)�) = j det gj�s	(s;W;�);

where �(g)�(x) = �(xg). The identity

(�(g)�)b = j det gj�s�(tg�1)b�
implies

	(1� s; (�(g)W )e; (�(g)�)b) = j det gj�s	(s;fW; b�):
Then (iii) follows at once from the following.
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Proposition. With the exception of �nitely many values of X = q�s, the space of

bilinear forms B on W (�;  0)� C1
c
(Fn) which satisfy

B(�(g)W; �(g)�) = j det gj�sB(W;�)

is at most one dimensional.

As in [JPS], (iii) of Theorem 2.7, our proof relies heavily on results of [BZ] (and

[BZ1]). Denote by �G the modular function on an `-group G, thus ��1
G

is the �G

of [BZ], Prop. 1.19. Let H be a closed subgroup of G. Denote by ind(�;G;H)

the unnormalized induction with compact supports of [BZ], and by i(�;G;H) =

ind(��
1=2
H
�
�1=2
G

;G;H) the normalized induction with compact supports of [BZ1].

Denote by Ind(�;G;H) and I(�;G;H) the unnormalized and normalized induction

with arbitrary supports of [BZ] and [BZ1]. Then i(�)_ = I(�_) by [BZ], Prop.

2.25(c). The space BilG(�1; �2) of bilinear forms B on �1 � �2 (�i are G-modules)

which satisfy B(�1(g)v1; �2(g)v2) = B(v1; v2) (vi 2 �i; g 2 G) is isomorphic to

HomG(�1; ��2). Frobenius reciprocity ([BZ], Theorem 2.28) asserts

BilG(�; i(�)) = HomG(�; I(�
_)) = HomH(�; �

_�
1=2
H
�
�1=2
G

) = BilH(�; ��
1=2
G
=�

1=2
H

):

Returning to our usual notations (G = GL(n; F ), etc.), let P be the group of

g 2 G with "g = " (a prime will always indicate the same group with E instead of

F , thus P 0 is de�ned using G0). Then Fn�f0g = PnG. The space of � 2 C1
c
(Fn)

with �(0) = 0 is isomorphic to

C1
c
(Fn�f0g) = C1

c
(PnG) = i(�

�1=2
P

;G;P ); �P

�
g x

0 1

�
= j det gj (g 2 Gn�1);

we write Gm for GL(m;F ). De�ne the character � : E� ! C
� by �(x) = jxxj1=2 .

Then 	(s;W;�) (W 2W (�;  0);� 2 C1c (Fn);�(0) = 0) de�nes an element in

BilG(� 
 �s; i(�
�1=2
P

;G;P )) = BilP (� 
 �s; ��1
P
) = BilP (� 
 �s�1; 11);

where 11 denotes the trivial P -module on the space C , namely a P -invariant form on

�
�s�1. The main step in the proof of the proposition is to establish the following

Main Lemma. With the exception of �nitely many values of X = q�s, the di-

mension of BilP (� 
 �s�1; 11) is at most one.

For each j(0 � j < n), put H 0
j
= G0

j
N 0, where G0

j
embeds in G0 = G0n via

g 7!

�
g 0

0 I

�
. Then H 0

j
consists of

�
g x

0 u

�
, g 2 G0

j
, u 2 N 0

n�j . Given a G0
j
-

module � and the character  0 of N 0
n�j , denote by � 
  0 the H 0

j
-module on the

space of � on which

�
g x

0 u

�
acts by �(g) 0(u). Corollary 5.13 of [BZ] asserts:
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Lemma 1. For every irreducible admissible G0
j
-module �, the induced P 0-module

ind(�
 0;P 0; H 0
j
) is irreducible. Every irreducible admissible P 0-module � is equiv-

alent to one of the form ind(� 
  0;P 0; H 0
j
), where � is an admissible irreducible

G0
j
-module, uniquely determined (so is j) by �.

For any P 0-module V , denote by V �
 0

= HomN 0(V;  0�1) = BilN 0(V;  0) the

space of linear forms � : V ! C with �(�(u)v) =  0(u)�(v) (u 2 N 0; v 2 V ). Since

� is generic and irreducible (as a G0-module), the uniqueness of the  0-Whittaker

model W =W (�;  0) implies that dimC W
�
 0

= 1. Also one has

Lemma 2. If � is an irreducible admissible P 0-module, then dimC �
�
 0
� 1, with

equality precisely when � ' � , where � = ind( 0;P 0; N 0).

Proof. Indeed, ��
 0

= BilN 0(�;  0) = BilP 0(�; ind( 
0;P 0; N 0)) by Frobenius reci-

procity, and � is irreducible by Lemma 1.

Corollary 5.22 of [BZ] establishes the following.

Lemma 3. The restriction ResP 0� of � to P 0 has �nite length (as a P 0-module).

Thus there exist a decomposition W (�;  0) =
S

0�i�I

Wi, Wi+1 � Wi;W0 = f0g, Wi

is stable under P 0 and �i =Wi+1=Wi is an irreducible admissible P 0-module.

Since the functor V ! V �
 0

is exact, by Lemma 2 there is a unique index i0
(0 � i0 � I) with �i0 ' � , and ��

i; 0
= f0g for i 6= i0.

Our proof of the Main Lemma is tantamount to showing, for an irreducible

P 0n�1-module �1, that the dimension of the space of P -invariant forms on ind(�1


 0;P 0
n
; P 0

n�1), where P
0
n
= P 0 and P 0

n�1 = H 0
n�2, is equal to the dimension of the

space of Pn�1-invariant forms on �1. By induction this dimension is then equal

to the dimension of the space of Gj-invariant forms on the irreducible G0
j
-module

� attached to �1 by Lemma 1. In fact we shall work directly with �, instead of

applying induction, although the reader can safely read our proofs assuming that

j = n� 2. The twist by �s is introduced to guarantee that the only constituent �i
in ResP 0� (see Lemma 3) which has a non-zero P -invariant form is the one indexed

by i = i0.

Let K;H be two closed subgroups of an `-group G, and (�; V ) a G-module.

Choose a set of representatives g for HnG=K, put Hg = K \ g�1Hg and denote

by g� the representation g�(g�1hg) = �(h) of Hg on V . We shall use the following

well-known result (we do not include a proof for it, although this is in fact implicit

in the proof of the Main Lemma following Lemma 9 below; see also the functorial

Theorem 5.2 of [BZ1] in the case of parabolic subgroups, and [S], x7.3, Proposition

22, in the case of �nite groups).

Lemma 4. The restriction to K of ind(�;G;H) has a composition series consisting

of ind(g�;K;Hg), where g ranges over a set of representatives for HnG=K.

This Lemma will be applied to each of the irreducible P 0-modules � = �i of
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Lemma 3. By Lemma 1 we have

� 
 �s�1 = �s�1

 ind(�
  0;P 0; H 0

j
) = ind((�
 �s�1)
  0;P 0; H 0

j
)

for some j(0 � j < n) and irreducible G0
j
-module � uniquely determined by �.

Applying Lemma 4 with G = P 0, H = H 0
j
, K = P , we conclude:

Lemma 5. The restriction to P of the induced P 0-module � 
 �s�1 has a compo-

sition series consisting of ind(g[(� 
 �s�1) 
  0];P; P \ g�1H 0
j
g), where g ranges

over H 0
j
nP 0=P .

The double coset space H 0
j
nP 0=P is equal to N 0

n�1 �G
0
j
nG0

n�1=Gn�1. We have

Lemma 6. The group G0 is the disjoint union of the double cosets B0�G over all

w in the Weyl group W (A0; G0) (= Normalizer (A0)=A0 of A0 in G0) with w2 = 1.

Here � = �w 2 G0 satis�es ���1 = w, where w is the representative whose entries

are 0 and 1. The double coset is independent of the choice of the representative �.

Proof. As noted in [F2], Proposition 10(1), the map G0=G! S = fg 2 G0; gg = 1g,

by g 7! gg�1, is a bijection. Indeed, it is clearly well de�ned and injective, and

the surjectivity follows at once from the triviality of H1(Gal(E=F ); GL(n;E)) (if

gg = 1, a� = g de�nes a cocycle, which is then a coboundary, namely there is

x 2 G0 with g = a� = xx�1).

If g 2 G0 maps to s 2 S, then bg 7! bsb
�1
. By the Bruhat decomposition

G0 = B0WB0 applied to S, varying g in its double coset B0gG we may assume

that g 7! wb 2 S, where w 2 W and b 2 B0. Since wb lies in S, 1 = wbwb. Hence

w�1 = bwb, and the uniqueness of the Bruhat decomposition implies that w�1 = w.

Write now b = an with a 2 A0, n 2 N 0. Since 1 = wbwb, we have 1 = wawa. De�ne

an action � of Gal(E=F ) on A0 by �(a0) = wa0w�1. Since a�(a) = 1, f� 7! ag

de�nes an element of H1(Gal(E=F ); A0). This last group is trivial, hence there

exists some c 2 A0 with a = wc�1wc. Since cwanc�1 = wcnc�1, replacing g by cg

we may assume that g 7! wn. Again wn 2 S implies 1 = wnwn, so if we de�ne

a Galois action � on N 0 \ wN 0w by �(n0) = wn0w, the map f� 7! ng de�nes an

element of H1(Gal(E=F ); N 0 \wN 0w). Since this last group is trivial, there exists

an m 2 N 0(\wN 0w) with n = wm�1wm. Hence mwnm�1 = w, and replacing g by

mg we may assume that g 7! gg�1 = w. Since G0=G ' S the existence of g, and

the independence of B0�wG of the choice of �w, are clear. The lemma follows.

A set of representatives for N 0
n�1 �G

0
j
nG0n�1=Gn�1 is then given by g = g(�; a) =

�a, where � = �w satis�es ���1 = w, w2 = 1, w 2W (A0; G0
n�1)=W (A0; G0

j
), thus w

is a product over i of disjoint transpositions (ki;mi), 1 � ki < mi < n and mi > j,

and a ranges over A0=fa = waw�1 2 A0g G0
j
\A0. When j = n� 2, the only w 6= 1

is represented by w = (k;m) = (n� 2; n� 1).

By Frobenius reciprocity ([BZ], Prop. 2.29), we have

BilP (ind(
g[(�
 �s�1)
  0]; P; P \ g�1H 0

j
g); 11)

= BilP\g�1H0

j
g(
g[(�
 �s�1)
  0]�P =�P\g�1H0

j
g; 11):
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Lemma 7. If g = g(�w; a) and w 6= 1, then the last space is zero.

Proof. Denote by (k;m) the transposition in w 6= 1 with maximal m. Let u be the

unipotent upper triangular matrix in H 0
j
whose only non-zero entries outside the

diagonal are x(2 E) at the place (row, column)= (m;m+ 1), and y at (k;m+ 1).

We choose y to be y = xa1+mak=am+1am if a = diag(a1; : : : ; an�1). Then a
�1ua

has the entry x0 = xa1+m=am at (m;m + 1) and x0 = yam+1=ak = xa1+m=am at

(k;m + 1), hence g�1ug = ��1a�1ua� lies in g�1H 0
j
g \ P . This g�1ug acts on

g((�
�s�1)
 0) by multiplication by �(I) 0(u) =  0(x), and trivially on 11. Since

x is arbitrary in E, and  0 6= 1, the lemma follows.

Lemma 8. With the exception of at most �nitely many values of X = q�s, the

conclusion of Lemma 7 holds when j � 1.

Proof. We may assume (by Lemma 7) that w = 1, and take �w = 1. The element

h = diag(z; : : : ; z; 1; : : : ; 1) of H 0
j
(with z 2 F� and deth = zj) commutes with any

a in A0, and it lies in P . It acts on (�
�s�1)
 by multiplication by !�(z)jzj
j(s�1),

where !� is the central character of �, and trivially on 11. Hence if j 6= 0, with the

exception of at most �nitely many values of X = q�s, our space is f0g.

We clearly have

Lemma 9. In the remaining case of j = 0, w = 1 (and �w = 1), we have

H 0
j
= N 0, g = a ranges over A0=A, and P \ g�1H 0

j
g = N . Then HomN (

a 0; 11) is

zero if g = a 62 A, for then a 0(u) =  0(aua�1) is non-trivial on u 2 N . If g = a

lies in A we may take a = 1, and then HomN ( 
0; 11) = C since  0 is trivial on N .

Proof of Main Lemma. Note that by Lemma 6 the homogeneous space X 0 =

H 0
j
nP 0 = G0

j
N 0nP 0 is the disjoint union of the cosets G0

j
N 0nG0

j
N 0A0�wGn�1, where

w ranges over the set of w in W (A0; G0
n�1) with w

2 = 1, taken modulo W (A0; G0
j
).

Put X 0
1 for the union over all such w with w 6= 1. It is an open subset of X 0. The

space of ind((�
 �s�1)
  0;P 0; H 0
j
) consists of functions on X 0. Lemma 7 implies

that any P -invariant linear form on ind((�
�s�1)
 0;P 0; H 0
j
) - equivalently a form

in BilP (ind((�
 �s�1)
  0;P 0; H 0
j
); 11), viewed as a function of its �rst variable -

must vanish on the functions which are supported on X 0
1. Consequently its value

depends only on the restriction of the functions in ind((�
 �s�1) 
  0;P 0; H 0
j
) to

the closed subset X 0 � X 0
1 = NGjnA

0Gn�1 of X 0. Lemma 8 shows that any such

bilinear form is zero if j 6= 0, except for at most �nitely many values of X = q�s.

When j = 0, denote by A01 an open subset of A0 which does not contain A.

Lemma 9 implies that the P -invariant linear form must vanish on the functions

which are supported on the open subset NnA01Gn�1 of NnA
0Gn�1. Hence its value

at a function depends only on the restriction of the function to the closed subset

Nn(A0 �A01)Gn�1. In particular we may choose A01 to be the complement in A0 of

the closed subset A of A0.

In conclusion BilP (�i
 �
s�1; 11) is zero for each �i of Lemma 3, except for i = i0

when �i0 = �(= ind( 0;P 0; N 0)), where BilP (� 
 �s�1; 11) = BilP (�; 11) = C . The
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Main Lemma follows from this by virtue of Lemma 3.

Proof of Proposition. Put S = C1
c
(Fn) and S0 = C1

c
(Fn � f0g). We conclude

that any

H 2 HomP (� 
 �s�1; 11) = BilG(� 
 �s; S0)

restricts to zero onWi0
(in the notations of Lemma 3), and it is uniquely determined

by its restriction to Wi0+1, and its quotient � = �i0 =Wi0+1=Wi0
. In other words,

given non-zeroH,H 0 in BilG(�
�
s; S0) there is a scalar c such thatH0 = H 0�cH is

zero (in HomP (Wi0+1
�
s�1; 11), hence also in HomP (�
�

s�1; 11)). Consequently,

given non-zero H, H 0 in BilG(�
�
s; S), there is a scalar c such that the restriction

of H0 = H 0�cH toW (�
�s;  0)�S0 is zero. Note thatW (�
�s;  0) 'W (�;  0)

via W 
 �s $W , (W 
 �s)(g) = W (g)�(det g)s for g 2 G0.

The map � 7! �(0) is an isomorphism of S=S0 with C . Hence the G-invariant

bilinear form H0 on W (�
 �s;  0)�S is of the form H0(W;�) = h(W )�(0), where

h is a G-invariant linear form on � 
 �s. If h 6= 0 then !�(z)jzj
ns = 1 for all

z 2 F�, where !� is the central character of �. Hence H0 = H 0 � cH vanishes,

except possibly for a �nite number of values of X = q�s. With the exception of

these values of s, we then have that BilG(� 
 �s; S) is at most one dimensional,

and the proposition follows, as does ((iii) of) the Theorem.

Remark. Suppose that � = I(�1; : : : ; �m) is a G
0-module normalizedly induced

from the following P 0-module, where P 0 =M 0N 0 is the standard parabolic subgroup

of type (n1; : : : ; nm). This representation is trivial on the unipotent radical N 0, and

is given by the generic irreducible GL(ni; E)-modules �i on the ith factor of the

Levi factor M 0. By [Ze], Theorem 9.7(b) in the non-archimedean case, and [V]

in the archimedean case, every generic irreducible G0-module is of this form, with

square- integrable �i.

It is likely that one has

L(s; r(�)) =
Y
i

L(s; r(�i))
Y
j<k

L(s; �j � �k);(�)

and that the analogous relation holds for the "-factors too. These relations are to be

expected in analogy with standard properties of L and "-functions of representations

of Weil groups, and they are established in the split case where E = F �F in [JPS]

for non-archimedean F , and in [JS] for archimedean F .

In fact the relation (*) is the basis of the proof of the analogue of our Theorem in

the split archimedean case in [JS]. For this reason it will be worthwhile (but we do

not plan on doing this, at least soon) to establish (*) in our non-split case, especially

for E=F = C =R (where the ni are 1 or 2), for then an archimedean analogue of

our Theorem is likely to follow, and the global results of [F1] and our paper above

would extend to all separable quadratic extensions E=F , not only those where each

real place of F splits in E.
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