ON ZEROES OF THE TWISTED TENSOR *L*-FUNCTION Yuval Z. Flicker

A. Notations, results, remarks. Let E/F be a separable quadratic extension of global fields, $\mathbb{A} = \mathbb{A}_F$ and \mathbb{A}_E the associated rings of adeles, and \mathbb{A}^{\times} , \mathbb{A}_E^{\times} their multiplicative groups of ideles. Signify by \underline{G} the group scheme GL(n) over F, and put $G = \underline{G}(F)$, $G' = \underline{G}(E)$, $\mathbb{G} = \underline{G}(\mathbb{A})$, $\mathbb{G}' = \underline{G}(\mathbb{A}_E)$, and $Z(\simeq F^{\times})$, $Z'(\simeq E^{\times})$, $\mathbb{Z}(\simeq$ $\mathbb{A}^{\times})$, $\mathbb{Z}'(\simeq \mathbb{A}^{\times})$, $\mathbb{Z}'(\simeq \mathbb{A}_E^{\times})$ for their centers. Fix a unitary character ε of \mathbb{Z}'/Z' , and denote by π a cuspidal \mathbb{G}' -module whose central character is ε . Such a π is called distinguished if there is a form ϕ in π such that $\int_{\mathbb{Z}G\setminus\mathbb{G}}\phi(x)dx\neq 0$; clearly ε is trivial on \mathbb{Z} if π is distinguished.

If $\underline{G}' = \operatorname{Res}_{E/F}\underline{G}$ is the group obtained from \underline{G} by restriction of scalars from E to F, then $(G' = \underline{G}'(F), \mathbb{G}' = \underline{G}'(\mathbb{A})$ and) its dual group $\underline{\widehat{G}}'$ is $[\underline{G}(\mathbb{C}) \times \underline{G}(\mathbb{C})] \rtimes \operatorname{Gal}(E/F)$, where the non-trivial element σ of the Galois group $\operatorname{Gal}(E/F)$ acts by permuting the two copies of $\underline{G}(\mathbb{C})$. As in [F1] the twisted tensor representation r of $\underline{\widehat{G}}'$ is defined on the n^2 -dimensional complex space $\mathbb{C}^n \otimes \mathbb{C}^n$ by

 $(r(a,b))(x\otimes y) = ax\otimes by \text{ and } (r(\sigma))(x\otimes y) = y\otimes x \quad (a,b\in\underline{G}(\mathbb{C});\ x,y\in\mathbb{C}^n).$

The irreducible admissible \mathbb{G}' -module π factorizes as a local product $\bigotimes_{v} \pi_{v}$ (v ranges over all F-places) of G'_{v} -modules π_{v} . Here F_{v} is the completion of F at v (we also write R_{v} for its ring of integers, $\underline{\pi} = \underline{\pi}_{v}$ for a generator of its maximal ideal, and q_{v} for the cardinality of $R_{v}/(\underline{\pi}_{v})$, when v is non-archimedean), and $G_{v} = \underline{G}(F_{v})$, $G'_{v} = \underline{G}(E_{v})(=\underline{G}'(F_{v}))$.

For almost all *F*-places v the component π_v of π is unramified. If v stays prime in E, such π_v is determined by the semi-simple conjugacy class $t(\pi_v) = (z(\pi_v) \times 1) \times \sigma$ in $\underline{\widehat{G}}'_v = [\underline{G}(\mathbb{C}) \times \underline{G}(\mathbb{C})] \rtimes Gal(E_v/F_v)$, where $z(\pi_v)$ is the diagonal matrix whose eigenvalues $(z_i(\pi_v); 1 \leq i \leq n)$ are the Hecke eigenvalues of the unramified G'_v -module π_v .

If v splits into v' and v'' in E, then $E_v = F_v \oplus F_v$, $G'_v = G_v \times G_v$, and $\pi_v = \pi_{v'} \times \pi_{v''}$ is determined by the semi-simple conjugacy class $t(\pi_v) = z(\pi_{v'}) \times z(\pi_{v''})$ in $\underline{\hat{G}}'_v = \underline{G}(\mathbb{C}) \times \underline{G}(\mathbb{C})$, where $z(\pi_{v'})$ is a diagonal matrix whose diagonal entries $z_i(\pi_{v'})(1 \le i \le n)$ are the Hecke eigenvalues of $\pi_{v'}$ (same for $\pi_{v''}$ and $z(\pi_{v''})$).

Correspondingly, as in [F1] we introduce the *L*-factors

$$L(s, r(\pi_v) \otimes \omega_v) = \det[I - q_v^{-s} \omega_v(\underline{\pi}_v) r(t(\pi_v))]^{-1},$$

where $\omega = \otimes \omega_v$ is a unitary character of \mathbb{Z}/Z unramified at our v.

At a place which stays prime this L-factor is equal to

$$\prod_{1 \le i \le n} (1 - q_v^{-s} \omega_v(\underline{\pi}_v) z_i(\pi_v))^{-1} \cdot \prod_{1 \le j < k \le n} (1 - q_v^{-2s} \omega_v^2(\underline{\pi}_v) z_j(\underline{\pi}_v) z_k(\underline{\pi}_v))^{-1},$$

Department of Mathematics, 231 W. 18th Ave., The Ohio State University, Columbus, OH 43210-1174; email: flicker@math.ohio-state.edu

while at v which splits in E it is

$$\prod_{1\leq i,j\leq n} (1-q_v^{-s}\omega_v(\underline{\pi}_v)z_i(\pi_{v'})z_j(\pi_{v''}))^{-1} = L(s,\omega_v\otimes\pi_{v'}\times\pi_{v''}).$$

Denote by V a set of F-places containing the archimedean places and those where E, ω or π ramify. The partial twisted tensor L-function is the infinite product

$$L^{V}(s, r(\pi) \otimes \omega) = \prod_{v \notin V} L(s, r(\pi_{v}) \otimes \omega_{v}),$$

which converges absolutely in some right half plane Re(s) >> 1.

The local L-factors $L(s, r(\pi_v) \otimes \omega_v)$ can be introduced for non-archimedean $v \in V$ too as nowhere vanishing functions of the form $P(q_v^{-s})^{-1}$, where P(X) is a polynomial in X with P(0) = 1. The definition in the case of v which splits is given as in [JPS], Theorem 2.7, where $L(s, \pi_{1v} \times \pi_{2v})$ is defined. The definition and properties of these factors for a non-split v are analogously proven in the Appendix to this paper.

At the archimedean places the *L*-factors are the associated *L*-factors of the representation of the Weil groups which parametrize π_v (and so $r(\pi_v) \otimes \omega_v$). But the local functional equation has been proven in [JS1], Theorem 5.1, only in the split case, where $E_v = F_v \oplus F_v$. It will be interesting to extend the work of [JS1] to apply in the non-split case too.

We shall then assume that every archimedean place v of F splits in E. Under this assumption the complete L-function $L(s, r(\pi) \otimes \omega)$ is defined to be the product over all places of the local factors. We shall assume throughout this paper that if $\omega \neq 1$ then ω does not factorizes through $z \mapsto \nu(z) = |z|$, as this case can easily be reduced to the case of $\omega = 1$. Indeed, if $\nu_E(x) = |x\overline{x}|^{1/2} (x \in \mathbb{A}_E^{\times})$, then

$$L(s, r(\pi) \otimes \omega \nu^t) = L(s+t, r(\pi) \otimes \omega) = L(s, r(\pi \otimes \nu_E^{t/2}) \otimes \omega).$$

For the same reason we may and will assume that the central character ε of π is trivial on \mathbb{A}^{\times} .

The work of [F1] then extends at once to show that $L(s, r(\pi) \otimes \omega)$ has analytic continuation to the entire complex s-plane with possible poles only at s = 0, 1. This L-function satisfies a functional equation relating s and 1 - s. These poles are at most simple, and occur precisely when $r(\pi) \otimes \omega$ is of the form $r(\pi')$, with a distinguished π' . By $r(\pi) \otimes \omega = r(\pi')$ we mean that $r(\pi_v) \otimes \omega_v = r(\pi'_v)$ for almost all v. See the Remark at the end of this paper concerning such ω and π .

Let L(T) be a separable field extension of F of degree n. Its multiplicative group T is isomorphic over F to the group of F-points of an elliptic torus \underline{T} over F of \underline{G} , thus $\underline{T}(F) = T$. The torus T is uniquely determined up to conjugacy in G, and its Lie algebra is isomorphic to L(T), over F. Denote by ω_T the character $x \mapsto \omega(\det x)$ of $\mathbb{A}_{L(T)}^{\times} = \underline{T}(\mathbb{A})$, and by $L(s, \omega_T)$ the Hecke L-function associated

with the character ω_T . Similarly we have $L(s, \omega)$. The function $L(s, \omega)$ has analytic continuation to the entire complex s-plane, with at most simple poles at s = 0, 1. These poles occur precisely when $\omega = 1$.

Note that by class field theory ω can be identified with a character of the Weil group $W(\overline{F}/F)$, where \overline{F} is a separable algebraic closure of F containing L(T), and ω_T with the restriction to the subgroup $W(\overline{F}/L(T))$. The Hecke *L*-functions can be viewed as Artin *L*-functions associated with these Galois representations. The main result of this paper is the following.

1. Theorem. Let π be a distinguished cuspidal \mathbb{G}' -module with a supercuspidal component, and ω a unitary character of \mathbb{Z}/\mathbb{Z} . Let s_0 be a complex number such that for every separable field extension L(T) of F of degree n, the L-function $L(s, \omega_T)$ vanishes at $s = s_0$ to the order m. Then $L(s, r(\pi) \otimes \omega)$ vanishes at $s = s_0$ to the order m.

Note that if $L(s, \omega_T)$ vanishes at $s = s_0$, then $|Re s_0 - \frac{1}{2}| < \frac{1}{2}$.

closure of L(T) over F is solvable (see [W] for this and related results).

For n = 2 the assumption on the $L(s, \omega_T)$ can be replaced by a single assumption about the vanishing of $L(s, \omega)$ at $s = s_0$, since for an abelian extension L(T)/F one has the factorization $L(s, \omega_T) = \prod_{\zeta} L(s, \zeta \omega)$, where ζ runs through the characters of $\mathbb{A}^{\times}/F^{\times}N_{L(T)/F}\mathbb{A}_{L(T)}^{\times}$, or equivalently, by class field theory, of Gal(L(T)/F). For n > 2, and $\omega = 1$, it is known that $L(s, \omega)$ divides $L(s, \omega_T)$ if L(T)/F is a normal extension (see, e.g., [CF], p. 225), and also when the Galois group of the normal

In general this divisibility follows from Artin's conjecture. Indeed, denote by $Ind_T^F \omega_T$ the representation of $W(\overline{F}/F)$ induced from the character ω_T of $W(\overline{F}/L(T))$. Then

$$L(s, \omega_T) = L(s, Ind_T^F(\omega_T)) = L(s, \omega)L(s, \rho),$$

since $Ind_T^F(\omega_T)$ contains the character ω with multiplicity one (by Frobenius reciprocity); ρ is the quotient of $Ind_T^F\omega_T$ by ω . If ω is of finite order, it can be viewed as a character of Gal(L/F) for some Galois field extension L of F containing L(T). Then ω_T can be viewed as a character of the subgroup Gal(L/L(T)), and $Ind_T^F\omega_T$ is a representation of the finite group Gal(L/F). Artin's conjecture for the group Gal(L/F) asserts that $L(s, \rho)$ is entire unless $\omega_T = 1$ and $\omega \neq 1$, in which case $L(s, \rho)$ is holomorphic except at s = 0, 1, where it has a simple pole. In particular, when n = 3 or n = 4, and $\omega = 1$, since Artin's conjecture is known for the symmetric groups S_3 and S_4 , the vanishing of the L-function $L(s, \mathbb{1})$ associated with the trivial character $\mathbb{1}$ of $\mathbb{A}^{\times}/F^{\times}$ implies the vanishing of $L(s, \mathbb{1}_T)$ (at $s = s_0$, to the order m), for each extension L(T) of F of degree 3 or 4, and the assumption of the Theorem 1 on the $L(s, \mathbb{1}_T)$ can be replaced by a single assumption on $L(s, \mathbb{1})$.

The work in this paper was motivated by an observation of the introduction to [F2]. Let $r(\rho)$ be the (finite dimensional) representation of the Weil group $W(\overline{F}/F)$ obtained on composing with the twisted tensor representation $r: \underline{\widehat{G}}' \to Aut(\mathbb{C}^n \otimes \mathbb{C}^n)$, a representation ρ which parametrizes (conjecturally) a distinguished representation of $\mathbb{G}'(\rho)$ factorizes through a base change map b from the dual group $\widehat{U} = \underline{G}(\mathbb{C}) \rtimes W(\overline{F}/F)$ of the unitary group U in n variables associated with E/F). The formal observation in [F2] is that $r(\rho)$ contains a copy of the trivial representation of $W(\overline{F}/F)$; the fixed vector is written out in [F2]. Theorem 1 is an L-function reflection of the underlying representation theoretic fact.

The proof is based on integrating the kernel $K_{\varphi}(x, y)$ of the usual convolution operator $r(\varphi)$ on the space of cusp forms on \mathbb{G}' , against an Eisenstein series in x, over x and y in $\mathbb{Z}G\backslash\mathbb{G}$. The integral is expanded geometrically and spectrally. Theorem 1 is deduced from the resulting equality for a family of test functions. We can work in the context of GL(n) with a general $n \geq 2$ since we use ideas which were previously constructive in developing a simple form of the trace formula (see, e.g., [FK] and [F3]), although we do not use the trace formula in this work.

For related results in the split case $E = F \oplus F$ and the adjoint representation *L*-function $L(s, \omega \otimes \pi \times \check{\pi})/L(s, \omega)$, see [Z], [JZ], in the context of GL(2), and [F4] in the context of GL(n).

B. Core identity. We shall work with the space L(G') of complex valued functions ϕ on $G' \setminus \mathbb{G}'$ which satisfy (1) $\phi(zg) = \varepsilon(z)\phi(g)$ ($z \in \mathbb{Z}', g \in \mathbb{G}'$), (2) ϕ is absolutely square integrable on $\mathbb{Z}'G' \setminus \mathbb{G}'$. The group \mathbb{G}' acts on L(G') by right translation: $(r(g)\phi)(h) = \phi(hg)$. The action is unitary since ε is.

Definition. The function $\phi \in L(G')$ is called *cuspidal* if for each proper parabolic subgroup \underline{P}' of GL(n) over E with unipotent radical \underline{N}' we have $\int \phi(ng)dg = 0$ $(n \in N' \setminus \mathbb{N}')$ for all $g \in \mathbb{G}'$.

Let r_0 be the restriction of r to the space $L_0(G')$ of cusp forms in L(G'). The space $L_0(G')$ decomposes as a direct sum with finite multiplicities of invariant irreducible unitary \mathbb{G}' -modules called *cuspidal* \mathbb{G}' -modules.

Denote by $C_c^{\infty}(G'_v, \varepsilon_v^{-1})$ the convolution algebra of complex valued functions φ_v on G'_v with $\varphi_v(g) = \varepsilon_v(z)\varphi_v(zg)$ $(z \in Z'_v, g \in G'_v)$ which are compactly supported modulo Z'_v , smooth if v is archimedean and locally constant if not. Implicit is a choice of a Haar measure dg_v on G'_v/Z'_v . It is chosen to have that the product of the volumes $|K'_v/Z'_v \cap K'_v|$ over all F-places v converges. Here K'_v is the standard maximal compact subgroup of G'_v ; when v is non-archimedean we have $K'_v = \underline{G}(R'_v)$, where R'_v is the ring of integers in E_v $(R'_v$ is $R_{v'} \times R_{v''}$ if v splits into v', v'' in E, and R_v is the ring of integers in F_v). Denote by \mathbb{H}_v the convolution algebra of K'_v -biinvariant functions in $C_c^{\infty}(G'_v, \varepsilon_v^{-1})$, and by φ_v^0 its unit element.

Denote by $C_c^{\infty}(\mathbb{G}', \varepsilon^{-1})$ the linear span of the products $\otimes \varphi_v, \varphi_v \in C_c^{\infty}(G'_v, \varepsilon_v^{-1})$ for all v, and $\varphi_v = \varphi_v^0$ for almost all v. Put $dg = \otimes dg_v$. The convolution operator $r(\varphi) = \int_{\mathbb{G}'/\mathbb{Z}'} \varphi(g) r(g) dg$ is an integral operator on L(G) with the kernel $K_{\varphi}(x, y) = \sum \varphi(x^{-1}\gamma y) \ (\gamma \in G'/Z')$.

Definition. (1) Denote by a bar the Galois action of Gal(E/F) on E. For $g = (g_{ij}) \in GL(n, E)$, put $\overline{g} = (\overline{g}_{ij})$.

(2) The element γ of G' is called *r*-elliptic (resp. *r*-regular) if the element $\gamma \overline{\gamma}^{-1}$ of

G' is elliptic (resp. regular). The analogous definition holds in the local case with F_v, E_v, G'_v replacing F, E, G'.

(3) The function $\varphi \in C_c^{\infty}(\mathbb{G}', \varepsilon^{-1})$ is called *r*-discrete if for every x, y in \mathbb{G} and γ in G' we have $\varphi(x\gamma y) = 0$ unless γ is *r*-elliptic *r*-regular.

(4) The elements γ, γ' in G' (resp. G'_v) are *r*-conjugate if there are x, y in G (resp. G_v) with $\gamma' = x\gamma y$.

Here "r-" is an abbreviation for "relatively-". Recall that δ in G' = GL(n, E)(resp. $G'_v = GL(n, E_v)$) is called *regular* if its centralizer in \underline{G}' (resp. G'_v) is an *F*-torus \underline{T}' (thus $\underline{T}'(F) = T'$ is a torus in G') (resp. E_v -torus T'_v). Such δ is *elliptic* if it lies in a torus G' (resp T'_v) and $\mathbb{T}'/T'\mathbb{Z}'$ has finite volume (resp. T'_v/Z'_v is compact). Thus δ is elliptic regular if and only if it lies in no proper *E*-parabolic subgroup of G' (resp. E_v -parabolic subgroup of G'_v). The centralizer of an elliptic regular $\gamma \in G'$ is the multiplicative group of a field extension of *E* of degree *n*.

Consider the set $S = \{x \in G'; x\overline{x} = 1\}$. By [F2], Proposition 10, we have

2. Lemma. (1) The map $G'/G \to S$, $x \mapsto x\overline{x}^{-1}$, is a bijection. It bijects the double coset GxG with the orbit $Ad(G)(x\overline{x}^{-1})$ under the adjoint action of G. (2) If $x, y \in S$ are conjugate by an element of G', then they are conjugate by an element of G.

Note that the centralizer of $\gamma \overline{\gamma}^{-1}$ is defined over F since $x\gamma \overline{\gamma}^{-1}x^{-1} = \gamma \overline{\gamma}^{-1}$ implies $\overline{x}(\gamma \overline{\gamma}^{-1})^{-1}\overline{x}^{-1} = (\gamma \overline{\gamma}^{-1})^{-1}$. We obtain the following description of the r-regular r-conjugacy classes in G'.

2.1 Corollary. Let $\{\underline{T}\}\$ be a set of representatives for the G-conjugacy classes of (maximal) F-tori in $\underline{G}, T' = \underline{T}(E)$ the group of E-points on \underline{T} , and $T'^{,r-reg}$ the set of r-regular elements in T'. Denote by $W(T) = N_G(T)/T$ the Weyl group of T in G, and write $t' \sim t''$ for t', t'' in G' if there are $w \in W(T)$ and $t \in T$ with $wt'w^{-1} = tt''$. Then a set of representatives for the set of r-conjugacy classes of the r-regular elements in G' is given by the union over $\{T\}$ of the $T'^{,r-reg}/\sim$. A set of representatives for the subset of r-conjugacy classes of the r-regular r-elliptic elements in G' is given by the union over the set $\{T\}_{ell}$ of the elliptic tori in $\{T\}$, of the $T'^{,r-reg}/\sim$.

The kernel $K_{\varphi}(x,y) = \sum \varphi(x^{-1}\gamma y) \ (\gamma \in G'/Z')$ can now be expressed as

(2.2)
$$\sum_{\{T\}_{ell}} \sum_{\gamma \in T', r\text{-}reg} \sum_{/Z'} \sum_{\delta_1 \in G/T} \sum_{\delta_2 \in N(T) \setminus G} \varphi(x^{-1}\delta_1\gamma\delta_2 y)$$
$$= \sum_{\{T\}_{ell}} [W(T)]^{-1} \sum_{\gamma \in T', r\text{-}reg} \sum_{/TZ'} \sum_{\delta_1 \in G/T} \sum_{\delta_2 \in G/Z} \varphi(x^{-1}\delta_1\gamma\delta_2 y),$$

for an r-discrete function φ .

Definition. The function $\varphi_v \in C_c^{\infty}(G'_v, \varepsilon_v^{-1})$ is called *r*-discrete if for every x, y in G_v and $\gamma \in G'_v$ we have $\varphi_v(x\gamma y) = 0$ unless γ is *r*-elliptic *r*-regular.

It is clear that $\varphi = \otimes \varphi_v$ is *r*-discrete if it has an *r*-discrete component. Indeed, an element $\delta \in G'$ is elliptic (resp. regular) if it is elliptic (resp. regular) in G'_v for some v.

This kernel will be integrated against an Eisenstein series in x. Identify GL(n-1) with a subgroup of GL(n) via $g \mapsto \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}$, and put $\underline{Q} = GL(n-1)\underline{N}$, where \underline{N} is the unipotent upper triangular group. Let $S(F_v^n)$ be the space of smooth and rapidly decreasing (if v is archimedean), or locally constant compactly supported (otherwise) complex valued functions on F_v^n . Denote by Φ_v^0 the characteristic function of R_v^n in F_v^n if v is non-archimedean. Let $S(\mathbb{A}^n)$ be the linear span of the functions $\Phi = \otimes \Phi_v$, $\Phi_v \in S(F_v^n)$ for all $v, \Phi_v = \Phi_v^0$ or almost all v. Put $\underline{\varepsilon} = (0, \ldots, 0, 1) \in \mathbb{A}^n$. The integral in

(2.3)
$$f(g,s) = \omega(\det g) |\det g|^s \int_{\mathbb{A}^{\times}} \Phi(a\underline{\varepsilon}g) |a|^{ns} \omega^n(a) d^{\times}a$$

converges absolutely, uniformly in compact subsets of $Re(s) \geq \frac{1}{n}$. The absolute value is normalized as usual, and ω is a unitary character of $\mathbb{A}^{\times}/F^{\times}$.

It follows from Lemmas (11.5), (11.6) of [GoJ] that the Eisenstein series

$$E(g, \Phi, \omega, s) = \sum f(\gamma g, s) \quad (\gamma \in ZQ \backslash G)$$

converges absolutely in Re(s) > 1. In [JS], (4.2), p. 545, and [JS2], (3.5), p. 7 (with a slight modification due to the position of ω here), it is shown that $E(g, \Phi, \omega, s)$ extends to a meromorphic function on Re(s) > 0, in fact to the entire complex *s*-plane with a functional equation $E(g, \Phi, \omega, s) = E({}^tg^{-1}, \widehat{\Phi}, \omega^{-1}, 1-s)$, where tg is the transpose of g, and $\widehat{\Phi}$ is the Fourier transform of the "Schwartz" function Φ (with respect to some additive character $\psi \neq 1$ of \mathbb{A}/F). Moreover $E(g, \Phi, \omega, s)$ is slowly increasing (with respect to some Siegel domain) in $g \in G \setminus \mathbb{G}$, and is holomorphic except possibly at s = 0, 1, where the pole is at most simple. Note that f(g) and E(g, s) are \mathbb{Z} -invariant.

3. Proposition. For any character ω of $\mathbb{Z}^{\times}/F^{\times}$, Schwartz function Φ in $S(\mathbb{A}^n)$, and r-discrete function φ on \mathbb{G}' , for each field extension L(T) of degree n of F there is an entire holomorphic function $A(\Phi, \omega, \varphi, L(T), s)$ in s in \mathbb{C} such that

(3.1)
$$\iint_{(\mathbb{Z}G\backslash \mathbb{G})^2} K_{\varphi}(x,y) E(x,\Phi,\omega,s) dx \, dy$$
$$= \sum_{L(T)} A(\Phi,\omega,\varphi,L(T),s) L(s,\omega_T)$$

on Re s > 1. The sum over L(T) ranges over a finite set (of field extensions L(T) of degree n of F, up to isomorphism over F) depending on (the support of) φ .

Proof. Since $K_{\varphi}(x, y)$ is left *G*-invariant as a function in x (and in y), the first expression (on the left) of (3.1),

$$\iint_{(\mathbb{Z}G\backslash \mathbb{G})^2} K_{\varphi}(x,y) \cdot \sum_{\gamma \in ZQ\backslash G} f(\gamma x,s) dx \, dy,$$

is equal, in the domain of convergence of the series defining the Eisenstein series, to

$$\int\limits_{\mathbb{Z} Q \setminus \mathbb{G}} (\int\limits_{G \mathbb{Z} \setminus \mathbb{G}} K_{\varphi}(x,y) dy) f(x,s) dx.$$

Substituting (2.2) this is equal to

$$\int_{\mathbb{Z}Q\setminus\mathbb{T}} dx \cdot \int_{\mathbb{Z}G\setminus\mathbb{G}} dy \cdot \sum_{\{T\}_{ell}} [W(T)]^{-1} \sum_{\gamma\in T', r\text{-}reg} \sum_{Z'T} \sum_{\delta_1\in G/T} \sum_{\delta_2\in Z\setminus G} \varphi(x^{-1}\delta_1\gamma\delta_2y)f(x,s)$$
$$= \sum_{\{T\}_{ell}} [W(T)]^{-1} \sum_{\gamma\in T', r\text{-}reg} \int_{Z'T} \int_{\mathbb{Z}\setminus\mathbb{G}} dx \int_{\mathbb{Z}\setminus\mathbb{G}} \varphi(x^{-1}\gamma y)f(x,s)dy.$$

The last equality follows from the decomposition G = QT, $Q \cap T = \{1\}$, and the left Q-invariance of f(x, s) as a function in x.

To justify the change of summations and integrations, note that given φ the sums over T and γ (in T'/TZ') are finite. Indeed, consider $x^{-1}\gamma\overline{\gamma}^{-1}x$. Its characteristic polynomial has rational coefficients (in F), which lie in a compact depending on the support of φ (the intersection of a discrete and a compact set if finite). Hence the sum over T is finite, as asserted in the proposition. Moreover, the sum over $\gamma \in T'$, r-reg/TZ' is finite. The T are elliptic since φ is r-discrete.

Now for any elliptic regular $\gamma \overline{\gamma}^{-1}$, if $x^{-1} \gamma \overline{\gamma}^{-1} x$ lies in the compact $supp \varphi$ in \mathbb{G}'/\mathbb{Z}' , then $x \in \mathbb{G}$ lies in a compact of $\mathbb{T}\setminus\mathbb{G}$. Moreover, the function $\Phi(\underline{\varepsilon}tx)$ in $t \in \mathbb{T}$, is compactly supported, uniformly in x in a compact of $\mathbb{T}\setminus\mathbb{G}$. Hence x lies in a compact of $\mathbb{Z}\setminus\mathbb{G}$ if $\varphi(x^{-1}\gamma y)f(x,s) \neq 0$. But now $x^{-1}\gamma y$ lies in the compact supp φ , x lies in a compact, and γ in a finite set. Hence y lies in a compact of \mathbb{G}/\mathbb{Z} , our integrals are absolutely convergent, and the change of sums and integrals is justified.

Substituting now the expression (2.3) for f(x, s), we obtain a sum over T and γ of the product of $[W(T)]^{-1}$ and

$$\begin{split} & \iint_{(\mathbb{Z}\backslash\mathbb{G})^2} \varphi(x^{-1}\gamma y) f(x,s) dx \, dy = \int_{\mathbb{G}} dx \int_{\mathbb{Z}\backslash\mathbb{G}} \varphi(x^{-1}\gamma y) dy \cdot \omega(\det x) |\det x|^s \Phi(\underline{\varepsilon}x) \\ & = \int_{\mathbb{T}\backslash\mathbb{G}} \int_{\mathbb{G}/\mathbb{Z}} \varphi(x^{-1}\gamma xy) dy \cdot \int_{\mathbb{T}} \Phi(\underline{\epsilon}tx) \omega(\det tx) |\det tx|^s dt \, dx. \end{split}$$

The inner integral over \mathbb{T} is a "Tate integral" which defines the *L*-function $L(s, \omega_T)$. Note that the integral in x is taken over a compact in $\mathbb{T}\backslash\mathbb{G}$, and the integral over y ranges over a compact in $\mathbb{Z}\backslash\mathbb{G}$. The proposition follows.

C. Spectral analysis. There is another expression for the kernel $K_{\varphi}(x, y)$, which we proceed to describe in the special case where φ is cuspidal.

Definition. The function φ on \mathbb{G}' is called *cuspidal* if for every x, y in \mathbb{G}' and every proper *F*-parabolic subgroup \underline{P}' of \underline{G}' , we have $\int_{\mathbb{N}'} \varphi(xny) dn = 0$, where $\mathbb{N}' = \underline{N}'(\mathbb{A})$ is the unipotent radical of the parabolic subgroup $\mathbb{P}' = \underline{P}'(\mathbb{A})$ of \mathbb{G}' .

For a cuspidal φ , the convolution operator $r(\varphi)$ factorizes through the projection on the space $L_0(G')$ of cusp forms. The kernel $K_{\varphi}(x, y)$ has then the spectral decomposition

$$K_{\varphi}(x,y) = \sum_{\pi} K_{\varphi}^{\pi}(x,y), \quad \text{where} \quad K_{\varphi}^{\pi}(x,y) = \sum_{\phi^{\pi}} (r(\varphi)\phi^{\pi})(x)\overline{\phi}^{\pi}(y).$$

The π range over all cuspidal \mathbb{G}' -modules in $L_0(G')$. The ϕ^{π} range over an orthonormal basis consisting of $\mathbb{K}' = \prod_v K'_v$ -finite vectors in π (K'_v is the standard maximal compact subgroup in G'_v). The ϕ^{π} are rapidly decreasing functions, and the sum over ϕ^{π} is finite for each φ (uniformly in x and y) since φ is \mathbb{K}' -finite. The sum over π converges in L^2 , hence also in the space of rapidly decreasing functions. Hence $K_{\varphi}(x, y)$ is rapidly decreasing in x and y, and the product of $K_{\varphi}(x, y)$ with the slowly increasing function $E(x, \Phi, \omega, s)$ is integrable over $(\mathbb{Z}G\backslash\mathbb{G})^2$. Consequently (3.1) can be expressed in the form

A cuspidal \mathbb{G}' -module which contains a vector ϕ^{π} whose integral over $\mathbb{Z}G\backslash\mathbb{G}$ is non-zero is called distinguished. Hence the sum over π ranges over the distinguished cuspidal \mathbb{G}' -modules only.

To prove Theorem 1 let s_0 be a complex number such that for every separable field extension L(T) of F degree n, the L-function $L(s, \omega_T)$ vanishes at $s = s_0$ to the order $m \ge 1$. It is well-known that then $|Re(s_0) - \frac{1}{2}| < \frac{1}{2}$. It follows that (3.1) vanishes at $s = s_0$ to the order m, and thus for all $j(0 \le j \le m)$ we have

(3.2)
$$\sum_{\pi} \sum_{\phi^{\pi}} \int_{\mathbb{Z}G\backslash\mathbb{G}} (\pi(\varphi)\phi^{\pi})(x) E^{(j)}(x,\Phi,\omega,s_0) dx \cdot \int_{\mathbb{Z}G\backslash\mathbb{G}} \overline{\phi}^{\pi}(y) dy = 0.$$

Here $E^{(j)}(*, s_0) = \frac{d^j}{ds^j} E(*, s)|_{s=s_0}$.

The test function φ is an arbitrary cuspidal discrete function on \mathbb{G}' , and our aim is to show the vanishing of a single summand in the last double sum over π and ϕ^{π} . In fact, fix a cuspidal distinguished \mathbb{G}' -module π' whose component at some F-place v_2 is supercuspidal, for which Theorem 1 will be proven.

Let V be a finite set of F-primes, containing the archimedean primes and those where π', ω or E/F ramify. Consider $\varphi = \otimes \varphi_v$ (product over all F-places v) with $\varphi_v \in C_c^{\infty}(G'_v, \varepsilon_v^{-1})$ for all v, and $\varphi_v = \varphi_v^0$ (= the unit element in the Hecke algebra \mathbb{H}_v) for almost all v. For all $v \notin V$ the component φ_v is taken to be spherical, namely $\varphi_v \in \mathbb{H}_v$. Each of the operators $\pi_v(\varphi_v)$ ($v \notin V$) factorizes through the projection on the subspace $\pi_v^{K'_v}$ of K'_v -fixed vectors in π_v . This subspace is zero unless π_v is unramified, in which case $\pi_v^{K'_v}$ is one-dimensional. On this K'_v -fixed vector, the operator $\pi_v(\varphi_v)$ acts as the scalar $\varphi_v^{\vee}(t(\pi_v))$, where φ_v^{\vee} denotes the Satake transform of φ_v . Put $\varphi^{\vee}(t(\pi^V))$ for the product over $v \notin V$ of $\varphi_v^{\vee}(t(\pi_v))$, $\pi_V(\varphi_V) = \bigotimes_{v \in V} \pi_v(\varphi_v)$, and $\pi^{\mathbb{K}', V}$ for the space of $\prod_{v \notin V} K'_v$ -fixed vectors in π . Then

(3.2) takes the form

(3.3)
$$\sum_{\{\pi;\pi^{\mathbb{K}',V}\neq 0\}} \varphi^{\vee}(t(\pi^V))a(\pi,\varphi_V,j,\Phi,\omega,s_0) = 0$$

where

$$(3.4)(\pi,\varphi_V,j,\Phi,\omega,s) = \sum_{\phi^{\pi}} \int_{\mathbb{Z}G\backslash\mathbb{G}} (\pi_V(\varphi_V)\phi^{\pi})(x) E^{(j)}(s,\Phi,\omega,s) dx \cdot \int_{\mathbb{Z}G\backslash\mathbb{G}} \overline{\phi}^{\pi}(y) dy.$$

The sum over π ranges over the set of distinguished cuspidal \mathbb{G}' -modules $\pi = \otimes \pi_v$ such that π_v is unramified outside V. The sum over ϕ^{π} ranges over those elements in the orthonormal basis of π which appears in (3.2), which are K_v -invariant and eigenfunctions of $\pi_v(\varphi_v)$ ($\varphi_v \in \mathbb{H}_v$, necessarily with the eigenvalues $t(\pi_v)$) as functions in $x \in G_v$, for any $v \notin V$. In particular, such ϕ^{π} factorizes as $\phi^{\pi}(x) = \phi_V^{\pi}(x_V) \prod_{v \notin V} \phi_v^{\pi_v}(x_v)$; here $\phi_v^{\pi_v}$ is a right K'_v -invariant function on G'_v whose value at 1 is $vol(K'_v Z'_v / Z'_v)^{-1}$ and which transforms under Z'_v via ε_v , which is an eigenfunction of the convolution operators $r(\varphi_v)$ ($\varphi_v \in \mathbb{H}_v$) with the eigenvalue $t(\pi_v)$.

A standard argument (see, e.g., Theorem 2 in [FK] in a more involved situation), based on the absolute convergence of the sum over π in (3.3), standard estimates on the Hecke parameters $t(\pi_v)$ of the unitary unramified $\pi_v (v \notin V)$, and the Stone-Weierstrass theorem, implies the following.

4. Proposition. Let π be a cuspidal distinguished \mathbb{G}' -module which has a supercuspidal component, ω a unitary character of \mathbb{Z}/\mathbb{Z} , and s_0 a complex number as in Theorem 1. Then for any j, Φ and a function φ_V for which φ is cuspidal and discrete with any choice of $\otimes \varphi_v (v \notin V)$, the sum (3.4) is zero.

D. Constant term expanded. We shall now proceed to recall from [F1] the relation between the integral over x in (3.4) and the L-function $L(s, r(\pi) \otimes \omega)$.

First we need a lemma, and some notations. Let $\psi \neq 1$ be a character of \mathbb{A}/F , and ψ' the character of $\mathbb{A}_E/(\mathbb{A}+E)$ defined by $\psi'(\overline{x}) = \psi((x-\overline{x})/(x_0-\overline{x}_0))$ on $x \in \overline{\mathbb{A}}_E$. Here x_0 is a fixed element of E - F, and - as usual - bar signifies the Galois action of Gal(E/F). Denote by ψ'_v the component at an F-place v.

Definition. A G'_v -module π_v is called generic if $Hom_{N'_v}(\pi_v, \psi'_v) \neq \{0\}$, where ψ'_v is the character $n = (n_{ij}) \mapsto \underline{\psi}'(\sum_{1 \leq i < n} n_{i,i+1})$ of the unipotent upper triangular subgroup N'_v of G'_v .

By [GK], or Corollary 5.17 of [BZ], a generic π_v embeds in the induced G'_v module $Ind(\psi'_v; G'_v, N'_v)$. Moreover, the dimension of $Hom(\pi_v, Ind(\psi'_v))$ is at most one, equivalently the dimension of $Hom_{N'_v}(\pi_v, \psi'_v)$ is at most one.

Definition. If π_v is generic, denote by $W(\pi_v)$ its realization in $Ind(\psi'_v)$; $W(\pi_v)$ is called the Whittaker model of π_v .

Any component of a cuspidal \mathbb{G}' -module is generic. Since π_v is admissible, each Whittaker function in $W(\pi_v)$ is smooth (under right action of G'_v). Denote by $W(\pi)$ the linear span of the functions $W(x) = \prod_v W_v(x_v)$, where $W_v \in W(\pi_v)$ for all v, and W_v is the normalized (by $W_v^0(1) = 1$) unramified (right- K'_v -invariant) vector W_v^0 for all v outside V.

Given W in $W(\pi)$, the function $\phi_W(x) = \sum_{p \in N' \setminus Q'} W(px)$ is a cuspidal function in the space of $\pi \subset L_0(G')$, and the space of π is spanned by such ϕ_W . If π is distinguished, namely there is $\phi \in \pi$ with $\int_{\mathbb{Z}G \setminus \mathbb{G}} \phi(x) dx \neq 0$, then $\phi = \sum_i \phi_{W_i}$ and we conclude that π has a distinguished vector of the form ϕ_W .

Given a cusp form ϕ in π , consider the Whittaker function $W_{\phi}(x) = \int_{N' \setminus \mathbb{N}'} \phi(nx) \overline{\psi}'(n) dn$ in $W(\pi)$. Here $\overline{\psi}'(n) = \psi'(n^{-1})$. It is easy to see that if $\phi = \phi_W$, then W_{ϕ} is W. The following simple fact is used in [F1]; a proof is included here, since it was not given there.

5. Lemma. Given $W = \otimes W_v$ in $W(\pi)$ and $\phi(x) = \sum_{p \in N' \setminus Q'} W(px)$, we have

$$\int_{N \setminus \mathbb{N}} \phi(nx) dn = \sum_{p \in N \setminus Q} W(px).$$

Proof. Let ϕ be a cusp form. We first recall the proof of the expansion

$$\phi(x) = \sum_{p \in N'_n \setminus Q'_n} W_{\phi}(px).$$

The index (n here) signifies the size of the matrix, and prime means entries in E (rather than F). Embed G'_m in G'_n $(m \le n)$ via $x \mapsto \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$, and denote by

$$F_{\phi}(p) = \int_{V'_n \setminus \mathbb{V}'_n} \phi(vp) \psi'(v) dv.$$

Since ϕ is cuspidal, only non-trivial characters of \mathbb{V}'_n/V'_n need be considered here. These make a single orbit under the action of G'_{n-1} . The stabilizer of $v \mapsto \psi'(v)$ is $G'_{n-2}V'_{n-1}$. Hence we have the Fourier expansion

$$\phi(e) = \sum_{p_{n-1} \in G'_{n-2}V'_{n-1} \setminus G'_{n-1}} F_{\phi}(p_{n-1})$$

Now F_{ϕ} is a cusp form on \mathbb{G}'_{n-1} . Hence by induction on n we have

$$F_{\phi}(p) = \sum_{p_{n-2} \in G'_{n-3}V'_{n-2} \setminus G'_{n-2}} \cdots \sum_{p_1 \in G'_1} W_{F_{\phi}}(p_1 p_2 \cdots p_{n-2} p).$$

But $W_{F_{\phi}}(x) = W_{\phi} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$. Hence

$$\phi(e) = \sum_{p_{n-1}} \sum_{p_{n-2}} \cdots \sum_{p_1} W_{\phi}(p_1 p_2 \cdots p_{n-2} p_{n-1}) = \sum_{p \in N'_n \setminus Q'_n} W_{\phi}(p),$$

as required.

To prove the lemma, using the same notations we consider

$$\phi_{N_n}(x) = \int_{N_n \setminus \mathbb{N}_n} \phi(mx) dm.$$

Since

$$\phi_{N_{n-1}}(v) = \sum_{p'_{n-1} \in G'_{n-2}V'_{n-1} \setminus G'_{n-1}} F_{\phi_{N_{n-1}}}(p'_{n-1}v),$$

the integral

$$\phi_{N_n}(e) = \int_{V_n \setminus \mathbb{V}_n} \phi_{N_{n-1}}(v) dv$$

is equal to

$$\int_{V_n \setminus \mathbb{V}_n} \sum_{p'_{n-1}} F_{\phi_{N_{n-1}}}(p'_{n-1}v) dv = \sum_{p_{n-1}} F_{\phi_{N_{n-1}}}(p_{n-1}).$$

The last sum ranges over $p_{n-1} \in G_{n-2}V_{n-1} \setminus G_{n-1}$ since

$$\int_{V_n \setminus \mathbb{V}_n} \psi'(p'_{n-1}vp'_{n-1}^{-1})dv \neq 0$$

implies that $p'_{n-1} \in G'_{n-1}$ must lie in G_{n-1} . Now

$$F_{\phi_{N_{n-1}}}(p_{n-1}) = \int_{V'_n \setminus \mathbb{V}'_n} \phi_{N_{n-1}}(v_n p_{n-1}) \psi'_n(v_n) dv_n,$$

and by induction we have

$$\phi_{N_{n-1}}(x) = \sum_{p_{n-2} \in N_n \cap G_{n-2} \setminus G_{n-2}} W_{\phi,\psi'_{n-1}}(p_{n-2}x).$$

The index of ψ'_n indicates that it is a character on the group \mathbb{N}'_n . Substituting we obtain

$$\int_{V'_{n} \setminus \mathbb{V}'_{n}} \sum_{p_{n-2}} W_{\phi,\psi'_{n-1}}(p_{n-2}v_{n}p_{n-1})\psi'_{n}(v_{n})dv_{n}.$$

But given p_{n-2} and v_n there is v'_n in \mathbb{V}'_n with $\psi'_n(v_n) = \psi'_n(v'_n)$ and $p_{n-2}v_n = v'_n p_{n-2}$. By definition of W_{ϕ,ψ'_n} , the last displayed expression can be expressed as

$$(F_{\phi_{N_{n-1}}}(p_{n-1})) = \sum_{p_{n-2}} W_{\phi,\psi'_n}(p_{n-2}p_{n-1}).$$

We conclude that

$$\phi_{N_n}(e) = \sum_{p_{n-1}} \sum_{p_{n-2}} W_{\phi,\psi'_n}(p_{n-2}p_{n-1}) = \sum_{p \in N_n \setminus Q_n} W_{\phi,\psi'_n}(p),$$

as required.

E. *L*-functions emerge. We can now return to the integral over x in (3.4) and the fundamental identity of [F1] which expresses it as an *L*-function. Thus we take $W = \otimes W_v$ in $W(\pi)$ with $W_v = W_v^0 (\in W(\pi_v))$ for all $v \notin V$, such that the cuspidal function $\phi(x) = \sum_{P \in N' \setminus Q'} W(px)$ in the space of $\pi \subset L_0(G')$ is distinguished

(its integral over the closed subspace $\mathbb{Z}G\backslash\mathbb{G}$ is non-zero). Substituting the series definition of $E(x, \Phi, \omega, s) = \sum_{ZQ\backslash G} f(\gamma x, s)$, we obtain

$$\begin{split} &\int_{\mathbb{Z}G\backslash\mathbb{G}} \phi(x)E(x,\Phi,\omega,s)dx = \int_{\mathbb{Z}Q\backslash\mathbb{G}} \phi(x)f(x,s)dx \\ &= \int_{Q\backslash\mathbb{G}} \phi(x)\Phi(\underline{\varepsilon}x)\omega(\det x) |\det x|^s dx = \int_{Q\mathbb{N}\backslash\mathbb{G}} \Phi(\underline{\varepsilon}x) |\det x|^s \omega(\det x) \int_{N\backslash\mathbb{N}} \phi(nx)dn \, dx \\ &= \int_{Q\mathbb{N}\backslash\mathbb{G}} \Phi(\underline{\varepsilon}x)\omega(\det x) |\det x|^s [\sum_{N\backslash Q} W_{\phi}(px)] dx = \int_{\mathbb{N}\backslash\mathbb{G}} \Phi(\underline{\varepsilon}x) |\det x|^s \omega(\det x) W_{\phi}(x) dx, \end{split}$$

using Lemma 5. Choosing $\Phi \in S(\mathbb{A}^n)$ to be factorizable, namely $\Phi(x) = \prod \Phi_v(x_v)$ with $\Phi_v \in S(F_v^n)$ for all v (with $\Phi_v = \Phi_v^0$ for $v \notin V$), since $W_{\phi}(x) = \prod_v W_v(x_v)$ the

last integral is a product over v of the local integrals

(5.1)
$$\int_{N_v \setminus G_v} \Phi_v(\underline{\varepsilon}x) |\det x|_v^s \omega_v(\det x) W_v(x) dx.$$

When $W_v = W_v^0$ and $\Phi_v = \Phi_v^0$ (and π_v , ω_v and E_v/F_v are unramified), the last local integral is shown in [F1], Proposition, p. 305, on using Schur function computations, to be equal to $L(s, r(\pi_v) \otimes \omega_v)$ (in [F1], ω_v is taken to be 1, but the general case follows on adjusting the computations there). At the "bad" nonarchimedean places $v \in V$, where ramification may occur, the following is shown in the Appendix below, in analogy with the split case – where E is replaced by $F \oplus F$ – which is studied in [JPS], Theorem 2.7, pp. 390-393, 395-398.

First, the integral (5.1) is a rational function in q_v^{-s} . Second, there is a polynomial $P(x; \pi_v, \omega_v)$ with constant term 1 over \mathbb{C} , such that the \mathbb{C} -span of the integrals (5.1), as Φ_v ranges over $S(F_v^n)$ and W_v over $W(\pi_v)$, is precisely the principal fractional ideal $L(s, r(\pi_v) \otimes \omega_v) \mathbb{C}[q_v^s, q_v^{-s}]$ in the fraction field $\mathbb{C}(q_v^s)$ of the ring $\mathbb{C}[q_v^s, q_v^{-s}]$ of polynomials in q_v^s and q_v^{-s} . Here $L(s, r(\pi_v) \otimes \omega_v)$ is $P(q_v^{-s}; \pi_v, \omega_v)^{-1}$, and t is referred to as the "greatest common denominator", or "g.c.d.", of all the integrals (5.1). The quotient of (5.1) by $L(s, r(\pi_v) \otimes \omega_v)$ satisfies a functional equation $s \leftrightarrow 1 - s$.

In the archimedean case, let ρ'_v be the representation of the Weil group which parametrizes π_v . Define $L(s, r(\pi_v) \otimes \omega_v)$ to be the *L*-factor $L(s, r(\rho_v) \otimes \omega_v)$ associated with the representation $r(\rho_v) \otimes \omega_v$ of the Weil group of $F_v (= \mathbb{R} \text{ or } \mathbb{C})$. The local integral (5.1) and its quotient by $L(s, r(\rho_v) \otimes \omega_v)$, and the local functional equation, are studied in [JS1], Theorem 5.1, in the case when v splits in E.

We shall assume that each archimedean place v of F splits in E. Then the total L-function $L(s, r(\pi) \otimes \omega)$ is defined as the product over all v of the local factors. The product, as well as the integrals and sums in the fundamental identity leading to (5.1) above, converge absolutely in some right half plane. Since $E(x, \Phi, \omega, s)$ is holomorphic except at s = 0 and 1 (for a suitable Φ and ω ; see [F1], Lemma, p. 301), the total L-function $L(s, r(\pi) \otimes \omega)$ is entire except possibly for at most simple poles at s = 0 and 1 if $r(\pi) \otimes \omega = r(\pi')$, and π' is distinguished.

Proof of Theorem 1. Let π be a cuspidal distinguished \mathbb{G}' -module with a supercuspidal component at v_2 , ω a unitary character of \mathbb{Z}/Z , and s_0 a complex number such that (3.4) is 0 at $s = s_0$ for all $j (0 \leq j \leq m)$, Φ and φ_V (with discrete cuspidal $\varphi = \varphi_V \otimes (\underset{v \notin V}{\otimes} \varphi_v)$). In (3.4), V is a finite set of F-places containing the archimedean places, and those where π , ω or E/F ramify. Fix a distinguished factorizable automorphic form $\phi' = \otimes \phi'_v$ in the space of $\pi \subset L_0(G)$, which is K'_v -invariant for all $v \notin V$.

The space of vectors ϕ in $\pi \subset L_0(G')$ which are K'_v -invariant for all $v \notin V$ is spanned by the factorizable, thus $\phi(x) = \prod_v \phi_v(x_v)$, such vectors. Given such a $\phi = \otimes \phi_v$, our aim is (in particular) to choose a function φ_v such that φ be cuspidal and *r*-discrete, and $\pi(\varphi_V)\phi' = \phi$.

At v_2 consider the matrix coefficient $\varphi'_{v_2}(x) = \langle \pi_{v_2}(x^{-1})\phi'_{v_2}, \phi_{v_2} \rangle$ of the supercuspidal G'_{v_2} -module π_{v_2} . Note that ϕ_{v_2} and ϕ'_{v_2} are functions in $C_c^{\infty}(G'_v, \varepsilon_v)$, and $\langle \cdot, \cdot \rangle$ denotes the natural inner product. The function φ'_{v_2} lies in $C_c^{\infty}(G'_v, \varepsilon_v^{-1})$, and it is a supercusp form $(\int \varphi'_{v_2}(xny)dn = 0, n \in N'_{v_2} = \text{unipotent radical of any}$ proper parabolic subgroup of G'_{v_2}). A function $\varphi = \otimes \varphi_v$ whose component at a place, say v_2 , is a supercusp form, is cuspidal. By the Schur orthogonality relations, the convolution operator $\pi_{v_2}(\varphi'_{v_2})$ maps the vector ϕ'_{v_2} to (a multiple of) ϕ_{v_2} , and any vector orthogonal to ϕ'_{v_2} is mapped to 0. Working with $\varphi = \otimes \varphi_v$ whose component at v_2 is φ'_{v_2} we then have that φ is cuspidal, and that the component of the $\pi_V(\varphi_V)\phi^{\pi}$ which occurs in (3.4) at v_2 is ϕ_{v_2} .

Put $V'' = V - \{v_2\}$, let v_1 be an F-place in V'', say where π and ω are unramified, W_v is W_v^0 and Φ_v is Φ_v^0 , and $\phi_{v_1} = \phi'_{v_1} = \phi_{v_1}^0$, and put $V' = V'' - \{v_1\}$. For each $v \in V'$ there is a congruence subgroup K''_v of K'_v such that both ϕ'_v and ϕ_v are right K''_v -invariant. Namely both ϕ'_v and ϕ_v are non-zero vectors in the finite dimensional space $\pi_v^{K''_v}$ of K''_v -fixed vectors in π_v . The Hecke algebra $\mathbb{H}(K''_v)$ of K''_v -biinvariant functions in $C_c^{\infty}(G'_v, \varepsilon_v^{-1})$ generate the algebra of endomorphisms of the finite dimensional space $\pi_v^{K''_v}$. Consider $\varphi'_v \in \mathbb{H}(K''_v)$ such that $\pi_v(\varphi'_v)$ maps ϕ'_v to ϕ_v , and any vector orthogonal to ϕ'_v (is mapped by $\pi_v(\varphi'_v)$) to 0. Choosing $\varphi = \otimes \varphi_v$, with $\varphi_v = \varphi'_v$ for all $v \in V'$, we conclude that any automorphic form ϕ^{π} which may contribute a non-zero term to (3.4), has the component ϕ'_v for all $v \neq v_1$. But ϕ^{π} is automorphic, and $\mathbb{G}' = G' \prod_{v \neq v_1} G'_{v_1}$, hence ϕ^{π} is uniquely determined to be ϕ' . The vector $(\bigotimes_{v \in V'} \pi_v(\varphi'_v))\phi'$ has the component ϕ_v for every $v \neq v_1$. Since it is automorphic, the same argument implies that $\pi_{V'}(\varphi_{V'})\phi' = \phi$.

We still need to choose the component φ_{v_1} of φ in such a way that φ be *r*-discrete. Note that we choose v_1 to be a place where π, ω and E/F are unramified, and the components ϕ'_{v_1} of ϕ' and ϕ_{v_1} of ϕ are both equal to the (normalized) K'_v -fixed vector $\phi^0_{v_1}$ in π_{v_1} .

Recall that the function $\varphi_{v_1} \in C_c^{\infty}(G'_{v_1}, \varepsilon_{v_1}^{-1})$ is called *r*-discrete if it is supported on the *r*-regular *r*-elliptic set of G'_{v_1} . Also, a function $\varphi = \otimes \varphi_v$ whose component at v_1 is *r*-discrete is necessarily *r*-discrete. It suffices to choose an *r*-discrete φ_{v_1} whose support is contained in $Z'_v K'_v$, and which is constant on the intersection of its support with K'_v . Suitably normalized we have that $\pi_{v_1}(\varphi_{v_1})\phi'_{v_1} = \phi_{v_1}$ for such φ_{v_1} .

We conclude that the only non-zero summand in (3.4) is the one indexed by ϕ' . Since $\phi = \pi_V(\varphi_V)\phi'$ is arbitrary, and for a suitable such ϕ the integral over x in (3.4) is equal to $L^{(j)}(s, r(\pi) \otimes \omega)$, we conclude that (3.4) is a non-zero multiple of $L^{(j)}(s, r(\pi) \otimes \omega)$ (for some choice of φ_V and Φ). Here $L^{(j)}(s)$ denotes the *j*th derivatives of L(s). However, Proposition 4 asserts that (3.4) vanishes at $s = s_0$. Hence $L(s, r(\pi) \otimes \omega)$ vanishes at $s = s_0$ to the order *m* under the conditions of Theorem 1, whose proof is now complete. Remark. By [F1] and the following Appendix, the L-function $L(s, r(\pi) \otimes \omega)$ is everywhere holomorphic except possibly at s = 0, 1, where it has a simple pole if $r(\pi) \otimes \omega = r(\pi')$ and π' is distinguished. But $L(s, \omega)$ has a simple pole at s = 0, 1 when $\omega = 1$. Hence Theorem 1 implies (for a distinguished π and a character ω which satisfies its assumptions) that the "twisted adjoint" function $L(s, r(\pi) \otimes \omega)/L(s, \omega)$ is holomorphic everywhere except possibly at s = 0, 1. There it has a simple pole precisely when $\omega \neq 1$ and $r(\pi) \otimes \omega = r(\pi')$ with a distinguished cuspidal π' . The last identity is meant in the local sense, for almost all places.

Suppose that ω and π are such that the poles do occur. Let Ω be a character of $\mathbb{A}_{E}^{\times}/E^{\times}$ whose restriction to $\mathbb{A}^{\times}/F^{\times}$ is ω . Then $r(\pi) \otimes \omega = r(\pi \otimes \Omega)$. Since $r(\pi') = r(\pi \otimes \Omega)$, by [F1], Corollary on p. 310, $\pi \otimes \Omega$ is also distinguished. Then π is distinguished and $\int_{\mathbb{Z}G\backslash\mathbb{G}} \phi(x)\omega(x)dx \neq 0$ for some $\phi \in \pi$; hence ω has order n. Such π can be studied along lines suggested by the conjecture and techniques of [F2]. In particular, when ω is primitive of order n, it is associated by class field theory to a cyclic extension T of F, and it is likely that the associated π are parametrized by the non-trivial characters of $\mathbb{T}'^{\times}/T'^{\times}\mathbb{T}^{\times}$, where $T' = T \otimes_F E$.

Put $\pi^*(g) = \check{\pi}(\overline{g})$. By [F2], Proposition 12, if π is distinguished then $\pi \simeq \pi^*$. If $\pi \otimes \Omega$ is also distinguished, then $(\pi \otimes \Omega)^* \simeq \pi \otimes \Omega$. Altogether we have $\pi \simeq \pi^* \simeq \pi \otimes (\Omega/\Omega^*) = \pi \otimes (\Omega\overline{\Omega})$, and $\omega|F^{\times}N_{E/F}\mathbb{A}_E^{\times}$ is of order dividing n. If $\omega|F^{\times}N_{E/F}\mathbb{A}_E^{\times}$ is primitive of order n, namely $T' = T \otimes_F E$ is a field, then by [K] the G'-module π is parametrized by a character θ of $\mathbb{T}'^{\times}/T'^{\times}$, and $\pi(\theta)^* = \pi(\overline{\theta}^{-1})$, where the last bar indicates the non-trivial automorphism of T' over T. Hence θ is trivial on $T'^{\times}N_{T'/T}\mathbb{T}'^{\times}$, but we suggest above that π is likely to be parametrized by the θ on $\mathbb{T}'^{\times}/T'^{\times}$ which are trivial on \mathbb{T}^{\times} .

Appendix: On the local twisted tensor *L*-function

Let E/F be a quadratic separable extension of global fields, π an irreducible cuspidal representation of $GL(n, \mathbb{A}_E)$, and r the twisted tensor representation r: $[GL(n, \mathbb{C}) \times GL(n, \mathbb{C})] \rtimes Gal(E/F) \to Aut(\mathbb{C}^n \otimes \mathbb{C}^n)$ of [F1]. Let V be a finite set of places of F, containing the archimedean places and those where E/F or π ramify. The partial twisted tensor L-function $L^V(s, r(\pi))$ is defined to be the product over all $v \notin V$ of the local L-factors $L(s, r(\pi_v))$. The product converges absolutely in some half-plane Re(s) > c. When each archimedean place of F splits in E, this $L^V(s, r(\pi))$ is shown in [F1] to be holomorphic on $Re(s) \geq 1$, except when π is $GL(n, \mathbb{A})$ -distinguished, in which case a simple pole occurs, on Re(s) = 1 (at s = 1if the central character ω_{π} of π is trivial on \mathbb{A}^{\times}).

At a place v which splits in E we have $E_v = F_v \oplus F_v$ and $GL(n, E_v) = GL(n, F_v) \times GL(n, F_v)$, and the component π_v of π is of the form $\pi_{1v} \times \pi_{2v}$. The local L-factor $L(s, r(\pi_v))$ is simply the tensor product L-function $L(s, \pi_{1v} \times \pi_{2v})$. This last factor was introduced by [JPS], Theorem 2.7, in the non-archimedean case and by [JS1], Theorem 5.1, in the archimedean case, for all generic π_{iv} , not necessarily unramified.

Let $\underline{\psi}_v$ be a non-trivial character of F_v (in \mathbb{C}^{\times}), and $\psi_v(u) = \underline{\psi}_v(\sum_{1 \le i \le n} u_{i,i+1})$,

where $u = (u_{i,j}) \in N_v$, a character of the unipotent upper triangular subgroup N_v of $G_v = GL(n, F_v)$. Denote by $W(\pi_{iv}, \psi_v)$ the Whittaker ψ_v -model of π_{iv} , and for $W_{1v} \in W(\pi_{1v}, \psi_v)$, $W_{2v} \in W(\pi_{2v}, \psi_v^{-1})$ and $\Phi_v \in C_c^{\infty}(F_v^n)$, and with $\underline{\varepsilon} = (0, \ldots, 0, 1) \in F_v^n$, put

$$\Psi(s, W_{1v}, W_{2v}, \Phi_v) = \int_{N_v \setminus G_v} W_{1v}(g) W_{2v}(g) |\det g|^s \Phi_v(\underline{\varepsilon}g) dg.$$

It is shown in [JPS], [JS1] that the quotient $\Psi(s, W_{1v}, W_{2v}, \Phi_v)/L(s, \pi_{1v} \times \pi_{2v})$ satisfies a functional equation where, in particular, s, π_{1v}, π_{2v} are replaced by 1 - s, and the contragredients $\check{\pi}_{1v}, \check{\pi}_{2v}$.

The purpose of this appendix is to introduce the twisted tensor *L*-factor $L(s, r(\pi_v))$ for any (possibly ramified) quadratic separable extension E_v/F_v of local non-archimedean fields, and any generic representation π_v of $G'_v = GL(n, E_v)$.

Let $\underline{\psi}'_v$ be a non-trivial character of E_v which is trivial on F_v . Note that $E_v/F_v \simeq F_v$. Any such character is of the form $\underline{\psi}'_v(x) = \underline{\psi}_v((x-\overline{x})/(x_0-\overline{x}_0))$, where $x \in E_v$ and the action of $Gal(E_v/F_v)$ on E_v is denoted by a bar, for a fixed $x_0 \in E_v - F_v$. Then a character ψ'_v of the unipotent upper triangular subgroup N'_v of $G'_v = GL(n, E_v)$, which is trivial on N_v , is defined as before. Denote by $W(\pi_v, \psi'_v)$ the ψ'_v -Whittaker space of π_v , and for $W_v \in W(\pi_v, \psi'_v)$ and $\Phi_v \in C_c^{\infty}(F_v^n)$ consider the integral

$$\Psi(s, W_v, \Phi_v) = \int_{N_v \setminus G_v} W_v(g) |\det g|^s \Phi_v(\underline{\varepsilon}g) dg$$

When E_v/F_v , ψ_v and π_v are unramified, W_v is the unit element W_v^0 of $W(\pi_v, \psi'_v)$, and Φ_v is the characteristic function Φ_v^0 of R_v^n , R_v being the ring of integers in F_v , it is shown in [F1] that $\Psi(s, W_v^0, \Phi_v^0) = L(s, r(\pi_v))$. In analogy with [JPS] we shall introduce $L(s, r(\pi_v))$ for a general π_v as a generator of some fractional ideal (generated by the $\Psi(s, W_v, \Phi_v)$), and show that the quotient $\Psi(s, W_v, \Phi_v)/L(s, r(\psi_v))$ satisfies a functional equation, in which s and π_v are replaced by 1 - s and the contragredient $\check{\pi}_v$.

Having defined the local L-factor for all non-archimedean places (it is defined in [JS1] for the archimedean places which split in E), the complete L-function $L(s, r(\pi))$ can be defined as the product over all places v of F of the $L(s, r(\pi_v))$, for E/F in which each archimedean place of F splits in E. The global functional equation for the global integrals $\Psi(s, W, \Phi)$ of [F], together with the local functional equations of [JPS] and [JS1] in the split cases, and the one of this note in the non-split non-archimedean case, implies the existence of a monomial $\varepsilon(s, r(\pi)) =$ $c(\pi)e^{\varepsilon(\pi)s}$ in $s(\varepsilon(\pi)$ in $\mathbb{C}, c(\pi)$ in \mathbb{C}^{\times}), and the functional equation $L(s, r(\pi)) =$ $\varepsilon(s, r(\pi))L(1-s, r(\check{\pi}))$ for the twisted tensor L-function.

Moreover it is shown in [F1] that $\Psi(s, W, \Phi)$ is holomorphic in $s \in \mathbb{C}$ except possibly for a simple pole at s = 1 and s = 0 (when π is $GL(n, \mathbb{A})$ -distinguished, whose central character is trivial on \mathbb{A}^{\times}). Since the local work shows that $L(s, r(\pi_v))$ is a sum of $\Psi(s, W_v, \Phi_v)$'s, it follows that $L(s, r(\pi))$, which is initially defined in some right half plane, has analytic continuation to the entire complex s-plane with at most two poles, at s = 0, 1, which are simple and occur precisely for distinguished π . The work here also replaces the (complicated proof of the) Lemma on p. 306 of [F1]. It is this function $L(s, r(\pi))$ which is studied in the paper preceding this appendix.

From now on we can use local notations, thus let E/F be a quadratic separable extension of local non-archimedean fields, put G = GL(n, F), G' = GL(n, E), let N, N' be the corresponding unipotent upper-triangular subgroups, and ψ, ψ' their characters, π a generic irreducible G'-module with a unitary central character, and $W(\pi, \psi')$ its ψ' -Whittaker model (for any irreducible G'-module there exists at most one (non-zero) ψ' -Whittaker model; π is called generic when it exists). Denote by R the ring of integers in F, and by q the cardinality of its residue field. The purpose of this appendix is to prove the following.

Theorem. (i) For each $W \in W(\pi, \psi')$ and $\Phi \in C_c^{\infty}(F^n)$, the integral $\Psi(s, W, \Phi)$ is absolutely convergent for a large Re(s) to a rational function of $X = q^{-s}$.

(ii) There exists a polynomial $P(X) \in \mathbb{C}[X]$ with P(0) = 1 such that the integrals $\Psi(s, W, \Phi)$ span the fractional ideal $L(s, r(\pi))\mathbb{C}[X, X^{-1}]$ of the ring $\mathbb{C}[X, X^{-1}]$, where $L(s, r(\pi)) = P(X)^{-1}$.

(iii) There exists an integer $m(\pi, \psi')$ and a non-zero complex number $c(\pi, \psi')$, such that

$$\Psi(1-s,\widetilde{W},\widehat{\Phi})/L(1-s,r(\check{\pi})) = \omega_{\pi}(-1)^{n-1}\varepsilon(s,r(\pi),\psi')\Psi(s,W,\Phi)/L(s,r(\pi))$$

for all $W \in W(\pi, \psi)$, $\Phi \in C_c^{\infty}(F^n)$. Here ω_{π} is the central character of $\pi, \check{\pi}$ the contragredient of π , and we put

$$\varepsilon(s,r(\pi),\psi') = c(\pi,\psi')X^{m(\pi,\psi')}, \ \widetilde{W}(g) = W(J^tg^{-1}), \ \widehat{\Phi}(x) = \int_{F^n} \Phi(y)\psi(tr\,x\cdot y)dy.$$

Here $J \in G$ is the matrix whose non-zero entries are 1, located on the anti-diagonal.

Proof. The proof of (i) and (ii) is similar to that of (i), (ii) in [JPS], Theorem 2.7. Since W and Φ are smooth, using the Iwasawa decomposition we obtain a finite sum

$$\Psi(s, W, \Phi) = \sum_{i} \int_{A} W_i(a) \Phi_i(a_n) \delta_B^{-1}(a) |\det a|^s d^{\times} a.$$

Here A is the diagonal subgroup of G and B = AN, and $W_i \in W(\pi, \psi'), \Phi_i \in C_c^{\infty}(F)$. We put

$$a = diag(a_1a_2\ldots a_n, a_2\ldots a_n, \ldots, a_{n-1}a_n, a_n).$$

By [JPS1] there exists a finite set $\Xi = \Xi(\pi, \psi')$ of finite functions ξ on A' (continuous functions whose translates span a finite dimensional vector space), such that for every $W \in W(\pi, \psi')$ there are $\phi_{\xi} \in C_c^{\infty}(E^{n-1})$ with

$$W(a) = \sum_{\xi \in \Xi} \phi_{\xi}(a_1, a_2, \dots, a_{n-1})\xi(a) \qquad (a \in A').$$

Hence

$$|W(a)| \le \sum_{\xi \in \Xi^+} \phi_{\xi}^+(a_1, \dots, a_{n-1})\xi(a)$$

where now Ξ^+ is a finite set of finite functions on A' which take non-negative real values, and ϕ_{ξ}^+ in $C_c^{\infty}(E^{n-1})$ are ≥ 0 . Each function ϕ_{ξ}^+ is bounded by a finite sum of positive-valued quasi-characters.

Then $\Psi(s, W, \Phi)$ is a finite sum of terms

$$\int_A \phi(a_1, \dots, a_{n-1}, a_n) \xi(a) \delta_B^{-1}(a) |\det a|^s d^{\times} a$$

with $\phi \in C_c^{\infty}(F^n)$ and ξ in a fixed finite set Ξ of finite functions on A. Each product $(\xi \delta_B^{-1})(a)$ is a finite sum of products $\eta_1(a_1) \dots \eta_n(a_n)$, where each η is a finite function on F^{\times} in a fixed finite set. We obtain a finite sum of the integrals

(*)
$$\prod_{1 \le i \le n} \int_{F^{\times}} \phi_i(a_i) \eta_i(a_i) |a_i|^{is} d^{\times} a_i \qquad (\phi_i \in C_c^{\infty}(F)).$$

Replacing the ϕ_i and η_i by their absolute values it follows that $\Psi(s, W, \Phi)$ is absolutely convergent for large Re(s). Each factor in (*) is a sum of geometric series in X which converge to $Q_i(X)(1 - \alpha_i X^{k_i})^{-1}$, where $Q_i \in \mathbb{C}[X]$ and α_i, k_i depend only on η_i . Hence $\Psi(s, W, \Phi)$ is a rational function of X as asserted in (i), with a common denominator independent of W, Φ .

The subspace of the field $\mathbb{C}(X)$ generated by these fractions is an ideal for the ring $\mathbb{C}[X, X^{-1}]$. Indeed, if $W_h(g) = W(gh), \Phi_h(x) = \Phi(xh)$, then $\Psi(s, W_h, \Phi_h)$ is the product of $|\det h|^{-s}$ and $\Psi(s, W, \Phi)$.

It is easy to see (as in [F1], Proposition, (ii) on p. 308, which is proven on the middle of p. 309), that $\Psi(s, W, \Phi)$ is identically 1 for a suitable choice of W, Φ . Hence the ideal contains 1 and admits a unique generator of the form $P(X)^{-1}$, with $P \in \mathbb{C}[X]$ and P(0) = 1, as asserted in (ii).

For (iii), note first that if $\varepsilon(s, r(\pi), \psi')$ exists, then it is necessarily a monomial. Indeed, applying the asserted functional equation with $(s, \check{\pi}, \psi'^{-1}, \widetilde{W}, \widehat{\Phi})$ replacing $(1 - s, \pi, \psi', W, \Phi)$, and noting that $\omega_{\check{\pi}} \omega_{\pi} = 1$, we obtain

 $\Psi(s, W, \Phi) / L(s, r(\pi)) = \omega_{\pi}(-1)^{n-1} \varepsilon(1-s, r(\check{\pi}), \psi'^{-1}) \Psi(1-s, \widetilde{W}, \widehat{\Phi}) / L(1-s, r(\check{\pi})).$

Combining this with the equation of (iii), we conclude that the product of $\varepsilon(s, r(\pi), \psi')$ and $\varepsilon(1-s, r(\check{\pi}), \psi'^{-1})$, both in $\mathbb{C}[X, X^{-1}]$, is 1. Hence $\varepsilon(s, r(\pi), \psi') = c(\pi, \psi') X^{m(\pi, \psi')}$, as asserted.

From its integral representation (for large Re(s)), we obtain

$$\Psi(s,\pi(g)W,\rho(g)\Phi) = |\det g|^{-s}\Psi(s,W,\Phi),$$

where $\rho(g)\Phi(x) = \Phi(xg)$. The identity

$$(\rho(g)\Phi)\widehat{} = |\det g|^{-s}\rho({}^tg^{-1})\widehat{\Phi}$$

implies

$$\Psi(1-s,(\pi(g)W)\tilde{}, (\rho(g)\Phi)\tilde{}) = |\det g|^{-s}\Psi(s,\widetilde{W},\widehat{\Phi})$$

Then (iii) follows at once from the following.

Proposition. With the exception of finitely many values of $X = q^{-s}$, the space of bilinear forms B on $W(\pi, \psi') \times C_c^{\infty}(F^n)$ which satisfy

$$B(\pi(g)W, \rho(g)\Phi) = |\det g|^{-s}B(W, \Phi)$$

is at most one dimensional.

As in [JPS], (iii) of Theorem 2.7, our proof relies heavily on results of [BZ] (and [BZ1]). Denote by δ_G the modular function on an ℓ -group G, thus δ_G^{-1} is the Δ_G of [BZ], Prop. 1.19. Let H be a closed subgroup of G. Denote by $ind(\rho; G, H)$ the unnormalized induction with compact supports of [BZ], and by $i(\rho; G, H) =$ $ind(\rho \delta_H^{1/2} \delta_G^{-1/2}; G, H)$ the normalized induction with compact supports of [BZ1]. Denote by $Ind(\rho; G, H)$ and $I(\rho; G, H)$ the unnormalized and normalized induction with arbitrary supports of [BZ] and [BZ1]. Then $i(\rho)^{\vee} = I(\rho^{\vee})$ by [BZ], Prop. 2.25(c). The space $Bil_G(\pi_1, \pi_2)$ of bilinear forms B on $\pi_1 \times \pi_2$ (π_i are G-modules) which satisfy $B(\pi_1(g)v_1, \pi_2(g)v_2) = B(v_1, v_2)$ ($v_i \in \pi_i, g \in G$) is isomorphic to $Hom_G(\pi_1, \check{\pi}_2)$. Frobenius reciprocity ([BZ], Theorem 2.28) asserts

$$Bil_G(\pi, i(\rho)) = Hom_G(\pi, I(\rho^{\vee})) = Hom_H(\pi, \rho^{\vee} \delta_H^{1/2} \delta_G^{-1/2}) = Bil_H(\pi, \rho \delta_G^{1/2} / \delta_H^{1/2}).$$

Returning to our usual notations (G = GL(n, F), etc.), let P be the group of $g \in G$ with $\underline{\varepsilon}g = \underline{\varepsilon}$ (a prime will always indicate the same group with E instead of F, thus P' is defined using G'). Then $F^n - \{\underline{0}\} = P \setminus G$. The space of $\Phi \in C_c^{\infty}(F^n)$ with $\Phi(\underline{0}) = 0$ is isomorphic to

$$C_c^{\infty}(F^n - \{\underline{0}\}) = C_c^{\infty}(P \setminus G) = i(\delta_P^{-1/2}; G, P), \quad \delta_P\begin{pmatrix} g & x \\ 0 & 1 \end{pmatrix} = |\det g| \quad (g \in G_{n-1});$$

we write G_m for GL(m, F). Define the character $\nu : E^{\times} \to \mathbb{C}^{\times}$ by $\nu(x) = |x\overline{x}|^{1/2}$. Then $\Psi(s, W, \Phi)$ $(W \in W(\pi, \psi'), \Phi \in C_c^{\infty}(F^n), \Phi(\underline{0}) = 0)$ defines an element in

$$Bil_G(\pi \otimes \nu^s, i(\delta_P^{-1/2}; G, P)) = Bil_P(\pi \otimes \nu^s, \delta_P^{-1}) = Bil_P(\pi \otimes \nu^{s-1}, \mathbb{1}),$$

where $\mathbb{1}$ denotes the trivial *P*-module on the space \mathbb{C} , namely a *P*-invariant form on $\pi \otimes \nu^{s-1}$. The main step in the proof of the proposition is to establish the following

Main Lemma. With the exception of finitely many values of $X = q^{-s}$, the dimension of $Bil_P(\pi \otimes \nu^{s-1}, 1)$ is at most one.

For each $j(0 \leq j < n)$, put $H'_j = G'_j N'$, where G'_j embeds in $G' = G'_n$ via $g \mapsto \begin{pmatrix} g & 0 \\ 0 & I \end{pmatrix}$. Then H'_j consists of $\begin{pmatrix} g & x \\ 0 & u \end{pmatrix}$, $g \in G'_j$, $u \in N'_{n-j}$. Given a G'_j -module ρ and the character ψ' of N'_{n-j} , denote by $\rho \otimes \psi'$ the H'_j -module on the space of ρ on which $\begin{pmatrix} g & x \\ 0 & u \end{pmatrix}$ acts by $\rho(g)\psi'(u)$. Corollary 5.13 of [BZ] asserts:

Lemma 1. For every irreducible admissible G'_j -module ρ , the induced P'-module $ind(\rho \otimes \psi'; P', H'_j)$ is irreducible. Every irreducible admissible P'-module ξ is equivalent to one of the form $ind(\rho \otimes \psi'; P', H'_j)$, where ρ is an admissible irreducible G'_j -module, uniquely determined (so is j) by ξ .

For any P'-module V, denote by $V_{\psi'}^* = Hom_{N'}(V, \psi'^{-1}) = Bil_{N'}(V, \psi')$ the space of linear forms $\lambda : V \to \mathbb{C}$ with $\lambda(\pi(u)v) = \psi'(u)\lambda(v)$ $(u \in N', v \in V)$. Since π is generic and irreducible (as a G'-module), the uniqueness of the ψ' -Whittaker model $W = W(\pi, \psi')$ implies that $\dim_{\mathbb{C}} W_{\psi'}^* = 1$. Also one has

Lemma 2. If ξ is an irreducible admissible P'-module, then $\dim_{\mathbb{C}} \xi_{\psi'}^* \leq 1$, with equality precisely when $\xi \simeq \tau$, where $\tau = ind(\psi'; P', N')$.

Proof. Indeed, $\xi_{\psi'}^* = Bil_{N'}(\xi, \psi') = Bil_{P'}(\xi, ind(\psi'; P', N'))$ by Frobenius reciprocity, and τ is irreducible by Lemma 1.

Corollary 5.22 of [BZ] establishes the following.

Lemma 3. The restriction $\operatorname{Res}_{P'}\pi$ of π to P' has finite length (as a P'-module). Thus there exist a decomposition $W(\pi, \psi') = \bigcup_{\substack{0 \leq i \leq I}} W_i, W_{i+1} \supseteq W_i, W_0 = \{0\}, W_i$ is stable under P' and $\xi_i = W_{i+1}/W_i$ is an irreducible admissible P'-module.

Since the functor $V \to V_{\psi'}^*$ is exact, by Lemma 2 there is a unique index i_0 $(0 \le i_0 \le I)$ with $\xi_{i_0} \simeq \tau$, and $\xi_{i,\psi'}^* = \{0\}$ for $i \ne i_0$.

Our proof of the Main Lemma is tantamount to showing, for an irreducible P'_{n-1} -module ρ_1 , that the dimension of the space of P-invariant forms on $ind(\rho_1 \otimes \psi'; P'_n, P'_{n-1})$, where $P'_n = P'$ and $P'_{n-1} = H'_{n-2}$, is equal to the dimension of the space of P_{n-1} -invariant forms on ρ_1 . By induction this dimension is then equal to the dimension of the space of G_j -invariant forms on the irreducible G'_j -module ρ attached to ρ_1 by Lemma 1. In fact we shall work directly with ρ , instead of applying induction, although the reader can safely read our proofs assuming that j = n - 2. The twist by ν^s is introduced to guarantee that the only constituent ξ_i in $Res_{P'}\pi$ (see Lemma 3) which has a non-zero P-invariant form is the one indexed by $i = i_0$.

Let K, H be two closed subgroups of an ℓ -group G, and (ρ, V) a G-module. Choose a set of representatives g for $H \setminus G/K$, put $H_g = K \cap g^{-1}Hg$ and denote by ${}^{g}\rho$ the representation ${}^{g}\rho(g^{-1}hg) = \rho(h)$ of H_g on V. We shall use the following well-known result (we do not include a proof for it, although this is in fact implicit in the proof of the Main Lemma following Lemma 9 below; see also the functorial Theorem 5.2 of [BZ1] in the case of parabolic subgroups, and [S], §7.3, Proposition 22, in the case of finite groups).

Lemma 4. The restriction to K of $ind(\rho; G, H)$ has a composition series consisting of $ind({}^{g}\rho; K, H_{q})$, where g ranges over a set of representatives for $H \setminus G/K$.

This Lemma will be applied to each of the irreducible P'-modules $\xi = \xi_i$ of

Lemma 3. By Lemma 1 we have

 $\xi\otimes\nu^{s-1}=\nu^{s-1}\otimes ind(\rho\otimes\psi';P',H_j')=ind((\rho\otimes\nu^{s-1})\otimes\psi';P',H_j')$

for some $j(0 \le j < n)$ and irreducible G'_j -module ρ uniquely determined by ξ . Applying Lemma 4 with G = P', $H = H'_i$, K = P, we conclude:

Lemma 5. The restriction to P of the induced P'-module $\xi \otimes \nu^{s-1}$ has a composition series consisting of $ind({}^{g}[(\rho \otimes \nu^{s-1}) \otimes \psi']; P, P \cap g^{-1}H'_{j}g)$, where g ranges over $H'_{j} \setminus P'/P$.

The double coset space $H'_j \setminus P'/P$ is equal to $N'_{n-1} \cdot G'_j \setminus G'_{n-1}/G_{n-1}$. We have

Lemma 6. The group G' is the disjoint union of the double cosets $B'\eta G$ over all w in the Weyl group W(A', G') (= Normalizer (A')/A' of A' in G') with $w^2 = 1$. Here $\eta = \eta_w \in G'$ satisfies $\eta \overline{\eta}^{-1} = w$, where w is the representative whose entries are 0 and 1. The double coset is independent of the choice of the representative η .

Proof. As noted in [F2], Proposition 10(1), the map $G'/G \to S = \{g \in G'; g\overline{g} = 1\}$, by $g \mapsto g\overline{g}^{-1}$, is a bijection. Indeed, it is clearly well defined and injective, and the surjectivity follows at once from the triviality of $H^1(\text{Gal}(E/F), GL(n, E))$ (if $g\overline{g} = 1, a_{\sigma} = g$ defines a cocycle, which is then a coboundary, namely there is $x \in G'$ with $g = a_{\sigma} = x\overline{x}^{-1}$).

If $g \in G'$ maps to $s \in S$, then $bg \mapsto bs\overline{b}^{-1}$. By the Bruhat decomposition G' = B'WB' applied to S, varying g in its double coset B'gG we may assume that $g \mapsto wb \in S$, where $w \in W$ and $b \in B'$. Since wb lies in S, $1 = wbw\overline{b}$. Hence $w^{-1} = bw\overline{b}$, and the uniqueness of the Bruhat decomposition implies that $w^{-1} = w$. Write now b = an with $a \in A'$, $n \in N'$. Since $1 = wbw\overline{b}$, we have $1 = waw\overline{a}$. Define an action σ of $\operatorname{Gal}(E/F)$ on A' by $\sigma(a') = w\overline{a}'w^{-1}$. Since $a\sigma(a) = 1$, $\{\sigma \mapsto a\}$ defines an element of $H^1(\operatorname{Gal}(E/F), A')$. This last group is trivial, hence there exists some $c \in A'$ with $a = w\overline{c}^{-1}wc$. Since $\overline{c}wanc^{-1} = wcnc^{-1}$, replacing g by $\overline{c}g$ we may assume that $g \mapsto wn$. Again $wn \in S$ implies $1 = wnw\overline{n}$, so if we define a Galois action σ on $N' \cap wN'w$ by $\sigma(n') = w\overline{n}'w$, the map $\{\sigma \mapsto n\}$ defines an element of $H^1(\operatorname{Gal}(E/F), N' \cap wN'w)$. Since this last group is trivial, here exists an $m \in N'(\cap wN'w)$ with $n = w\overline{m}^{-1}wm$. Hence $\overline{m}wnm^{-1} = w$, and replacing g by $\overline{m}g$ we may assume that $g \mapsto g\overline{g}^{-1} = w$. Since $G'/G \simeq S$ the existence of g, and the independence of $B'\eta_w G$ of the choice of η_w , are clear. The lemma follows.

A set of representatives for $N'_{n-1} \cdot G'_j \setminus G'_{n-1}/G_{n-1}$ is then given by $g = g(\eta, a) = \eta a$, where $\eta = \eta_w$ satisfies $\eta \overline{\eta}^{-1} = w$, $w^2 = 1$, $w \in W(A', G'_{n-1})/W(A', G'_j)$, thus w is a product over i of disjoint transpositions (k_i, m_i) , $1 \leq k_i < m_i < n$ and $m_i > j$, and a ranges over $A'/\{a = w\overline{a}w^{-1} \in A'\}$ $G'_j \cap A'$. When j = n-2, the only $w \neq 1$ is represented by w = (k, m) = (n-2, n-1).

By Frobenius reciprocity ([BZ], Prop. 2.29), we have

$$Bil_P(ind(^g[(\rho \otimes \nu^{s-1}) \otimes \psi']; P, P \cap g^{-1}H'_jg), 1)$$

= $Bil_{P \cap g^{-1}H'_jg}(^g[(\rho \otimes \nu^{s-1}) \otimes \psi']\delta_P/\delta_{P \cap g^{-1}H'_jg}, 1).$

Lemma 7. If $g = g(\eta_w, a)$ and $w \neq 1$, then the last space is zero.

Proof. Denote by (k,m) the transposition in $w \neq 1$ with maximal m. Let u be the unipotent upper triangular matrix in H'_j whose only non-zero entries outside the diagonal are $x \in E$ at the place (row, column) = (m, m + 1), and y at (k, m + 1). We choose y to be $y = \overline{xa_{1+m}}a_k/a_{m+1}\overline{a}_m$ if $a = diag(a_1, \ldots, a_{n-1})$. Then $a^{-1}ua$ has the entry $x' = xa_{1+m}/a_m$ at (m, m + 1) and $\overline{x}' = ya_{m+1}/a_k = \overline{xa_{1+m}}/\overline{a}_m$ at (k, m + 1), hence $g^{-1}ug = \eta^{-1}a^{-1}ua\eta$ lies in $g^{-1}H'_jg \cap P$. This $g^{-1}ug$ acts on $g((\rho \otimes \nu^{s-1}) \otimes \psi')$ by multiplication by $\rho(I)\psi'(u) = \psi'(x)$, and trivially on $\mathbb{1}$. Since x is arbitrary in E, and $\psi' \neq 1$, the lemma follows.

Lemma 8. With the exception of at most finitely many values of $X = q^{-s}$, the conclusion of Lemma 7 holds when $j \ge 1$.

Proof. We may assume (by Lemma 7) that w = 1, and take $\eta_w = 1$. The element $h = diag(z, \ldots, z, 1, \ldots, 1)$ of H'_j (with $z \in F^{\times}$ and det $h = z^j$) commutes with any a in A', and it lies in P. It acts on $(\rho \otimes \nu^{s-1}) \otimes \psi$ by multiplication by $\omega_{\rho}(z)|z|^{j(s-1)}$, where ω_{ρ} is the central character of ρ , and trivially on $\mathbb{1}$. Hence if $j \neq 0$, with the exception of at most finitely many values of $X = q^{-s}$, our space is $\{0\}$.

We clearly have

Lemma 9. In the remaining case of j = 0, w = 1 (and $\eta_w = 1$), we have $H'_j = N'$, g = a ranges over A'/A, and $P \cap g^{-1}H'_jg = N$. Then $Hom_N({}^a\psi', \mathbb{1})$ is zero if $g = a \notin A$, for then ${}^a\psi'(u) = \psi'(aua^{-1})$ is non-trivial on $u \in N$. If g = a lies in A we may take a = 1, and then $Hom_N(\psi', \mathbb{1}) = \mathbb{C}$ since ψ' is trivial on N.

Proof of Main Lemma. Note that by Lemma 6 the homogeneous space $X' = H'_j \backslash P' = G'_j N' \backslash P'$ is the disjoint union of the cosets $G'_j N' \backslash G'_j N' A' \eta_w G_{n-1}$, where w ranges over the set of w in $W(A', G'_{n-1})$ with $w^2 = 1$, taken modulo $W(A', G'_j)$. Put X'_1 for the union over all such w with $w \neq 1$. It is an open subset of X'. The space of $ind((\rho \otimes \nu^{s-1}) \otimes \psi'; P', H'_j)$ consists of functions on X'. Lemma 7 implies that any P-invariant linear form on $ind((\rho \otimes \nu^{s-1}) \otimes \psi'; P', H'_j)$ - equivalently a form in $Bil_P(ind((\rho \otimes \nu^{s-1}) \otimes \psi'; P', H'_j), \mathbb{1})$, viewed as a function of its first variable - must vanish on the functions which are supported on X'_1 . Consequently its value depends only on the restriction of the functions in $ind((\rho \otimes \nu^{s-1}) \otimes \psi'; P', H'_j)$ to the closed subset $X' - X'_1 = NG_j \backslash A'G_{n-1}$ of X'. Lemma 8 shows that any such bilinear form is zero if $j \neq 0$, except for at most finitely many values of $X = q^{-s}$.

When j = 0, denote by A'_1 an open subset of A' which does not contain A. Lemma 9 implies that the P-invariant linear form must vanish on the functions which are supported on the open subset $N \setminus A'_1 G_{n-1}$ of $N \setminus A' G_{n-1}$. Hence its value at a function depends only on the restriction of the function to the closed subset $N \setminus (A' - A'_1)G_{n-1}$. In particular we may choose A'_1 to be the complement in A' of the closed subset A of A'.

In conclusion $Bil_P(\xi_i \otimes \nu^{s-1}, \mathbb{1})$ is zero for each ξ_i of Lemma 3, except for $i = i_0$ when $\xi_{i_0} = \tau(=ind(\psi'; P', N'))$, where $Bil_P(\tau \otimes \nu^{s-1}, \mathbb{1}) = Bil_P(\tau, \mathbb{1}) = \mathbb{C}$. The Main Lemma follows from this by virtue of Lemma 3.

Proof of Proposition. Put $S = C_c^{\infty}(F^n)$ and $S_0 = C_c^{\infty}(F^n - \{\underline{0}\})$. We conclude that any

$$H \in Hom_P(\pi \otimes \nu^{s-1}, \mathbb{1}) = Bil_G(\pi \otimes \nu^s, S_0)$$

restricts to zero on W_{i_0} (in the notations of Lemma 3), and it is uniquely determined by its restriction to W_{i_0+1} , and its quotient $\tau = \xi_{i_0} = W_{i_0+1}/W_{i_0}$. In other words, given non-zero H, H' in $Bil_G(\pi \otimes \nu^s, S_0)$ there is a scalar c such that $H_0 = H' - cH$ is zero (in $Hom_P(W_{i_0+1} \otimes \nu^{s-1}, \mathbb{1})$), hence also in $Hom_P(\pi \otimes \nu^{s-1}, \mathbb{1})$). Consequently, given non-zero H, H' in $Bil_G(\pi \otimes \nu^s, S)$, there is a scalar c such that the restriction of $H_0 = H' - cH$ to $W(\pi \otimes \nu^s, \psi') \times S_0$ is zero. Note that $W(\pi \otimes \nu^s, \psi') \simeq W(\pi, \psi')$ via $W \otimes \nu^s \leftrightarrow W$, $(W \otimes \nu^s)(g) = W(g)\nu(\det g)^s$ for $g \in G'$.

The map $\Phi \mapsto \Phi(\underline{0})$ is an isomorphism of S/S_0 with \mathbb{C} . Hence the *G*-invariant bilinear form H_0 on $W(\pi \otimes \nu^s, \psi') \times S$ is of the form $H_0(W, \Phi) = h(W)\Phi(\underline{0})$, where h is a *G*-invariant linear form on $\pi \otimes \nu^s$. If $h \neq 0$ then $\omega_{\pi}(z)|z|^{ns} = 1$ for all $z \in F^{\times}$, where ω_{π} is the central character of π . Hence $H_0 = H' - cH$ vanishes, except possibly for a finite number of values of $X = q^{-s}$. With the exception of these values of s, we then have that $Bil_G(\pi \otimes \nu^s, S)$ is at most one dimensional, and the proposition follows, as does ((iii) of) the Theorem.

Remark. Suppose that $\pi = I(\pi_1, \ldots, \pi_m)$ is a G'-module normalizedly induced from the following P'-module, where P' = M'N' is the standard parabolic subgroup of type (n_1, \ldots, n_m) . This representation is trivial on the unipotent radical N', and is given by the generic irreducible $GL(n_i, E)$ -modules π_i on the *i*th factor of the Levi factor M'. By [Ze], Theorem 9.7(b) in the non-archimedean case, and [V] in the archimedean case, every generic irreducible G'-module is of this form, with square- integrable π_i .

It is likely that one has

(*)
$$L(s, r(\pi)) = \prod_{i} L(s, r(\pi_i)) \prod_{j < k} L(s, \pi_j \times \pi_k),$$

and that the analogous relation holds for the ε -factors too. These relations are to be expected in analogy with standard properties of L and ε -functions of representations of Weil groups, and they are established in the split case where $E = F \oplus F$ in [JPS] for non-archimedean F, and in [JS] for archimedean F.

In fact the relation (*) is the basis of the proof of the analogue of our Theorem in the split archimedean case in [JS]. For this reason it will be worthwhile (but we do not plan on doing this, at least soon) to establish (*) in our non-split case, especially for $E/F = \mathbb{C}/\mathbb{R}$ (where the n_i are 1 or 2), for then an archimedean analogue of our Theorem is likely to follow, and the global results of [F1] and our paper above would extend to all separable quadratic extensions E/F, not only those where each real place of F splits in E.

References

- [BZ] J. Bernstein, A. Zelevinsky, Representation of the group GL(n, F) where F is a non-Archimedean local field, Uspekhi Mat. Nauk 31 (1976), 5-70;[BZ1] Induced representations of reductive p-adic groups. I, Ann. Sci. ENS 10 (1977), 441-472.
- [CF] J. W. S. Cassels, A. Frohlich, Algebraic number theory, Academic Press, 1967.
- [F] Y. Flicker, [F1] Twisted tensors and Euler products, Bull. Soc. Math. France 116 (1988), 295-313; [F2] On distinguished representations, J. reine angew. Math. 418 (1991), 139-172; [F3] Regular trace formula and base change for GL(n), Annales Inst. Fourier 40 (1990), 1-30; [F4] The adjoint representation L-function for GL(n), Pacific J. Math. 154 (1992), 231-244.
- [FK] Y. Flicker, D. Kazhdan, A simple trace formula, J. Analyse Math. 50 (1988), 189-200.
- [GK] I. Gelfand, D. Kazhdan, On representations of the group GL(n, K), where K is a local field, in *Lie groups and their representations*, John Wiley and Sons (1975), 95-118.
- [GoJ] R. Godement, H. Jacquet, Zeta function of simple algebras, SLN 260 (1972).
- [JPS] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464; [JPS1] Automorphic forms on GL(3), Annals of Math. 103 (1981), 169-212.
 - [JS] H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representation I, Amer. J. Math. 103 (1981), 499-558; [JS1] Rankin-Selberg convolutions: Archimedean theory, in Festschrift in Honor of I. I. Piatetski-Shapiro, IMCP 2 (1990), 125-207; [JS2] A non-vanishing theorem for zeta-functions of GL_n , Invent. Math. 38 (1976), 1-16.
 - [JZ] H. Jacquet, D. Zagier, Eisenstein series and the Selberg trace formula II, Trans. AMS 300 (1987), 1-48.
 - [K] D. Kazhdan, On lifting, in Lie Group Representations II, SLN 1041 (1984), 209-249.
 - [S] J.-P. Serre, *Linear representations of finite groups*, GTM 42, Springer Verlag (1977).
 - [V] D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48(1978), 75-98.
 - [W] R. van der Waall, Holomorphy of quotients of zeta functions, in Algebraic Number Fields, ed. A. Fröhlich, Academic Press (1977), 649-662.
 - [Z] D. Zagier, Eisenstein series and the Selberg trace formula I, in Automorphic forms, representation theory and arithmetic, Tata Inst., Bombay,

Springer-Verlag 1981.

[Ze] A. Zelevinsky, Induced representations of reducible *p*-adic groups. II. On irreducible representations of GL(n), Ann. Sci. ENS 13 (1980), 165-210.