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ABSTRACT 

We provide a purely local computa t ion  of the (elliptic) twisted (by 

"transpose-inverse") character  of the representat ion w = I (1)  of PGL(3)  

over a p-adic field induced from the trivial representat ion of the  maximal  

parabolic subgroup. This computa t ion  is independent  of the theory of 

the symmetr ic  square lifting of [IV] of automorphic  and admissible rep- 
resentat ions of SL(2) to PGL(3).  It leads - -  see [FK] - -  to a proof of 
the (unstable) fundamental  l emma in the theory of the symmetr ic  square 
lifting, namely tha t  corresponding spherical functions (on PGL(2)  and 
PGL(3))  are matching: they have matching orbital  integrals. The new 

case in [FK] is the  unstable one. A direct local proof of the fundamental  
lemma is given in [V]. 

This work continues the paper [FK], whose notations we use. Our aim is to 

prove Proposition 1 of [FK] without using Theorem 0 there. Namely we provide 

a purely local computation of the twisted character of ~r = I(1). Our model 

of ~r is that  of [FK], where the twisted character X, is computed directly and 

locally but only for the anisotropic twisted conjugacy class 5' (see [FK], proof of 
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Proposition 1). In [FK] the value on the isotropic twisted conjugacy class 5 is 

deduced from the global Proposition 2.4 of [IV] - -  recorded in [FK] as Theorem 

0 - -  which asserts that X.(5) = -X~ ((f'). 

While the proof of Proposition 2.4 of [IV] is independent of the results of [FK] 

(Theorems 1, 2, 3, 3 r, which follow from Proposition 1), it is global, and so might 

lead some readers to worry that a vicious circle is created. Moreover, the proof of 

this global result requires heavy machinery. Here we provide a purely local proof 

of Proposition 1 of [FK], and consequently make the results of [FK] independent 

of Proposition 2.4 of [IV] (= Theorem 0 of [FK]). 

Of course the conventional approach is to deduce the character computation of 

[FK], Proposition 1, on using the global trace formula comparison ([IV]) which 

is based on the fundamental lemma, proven purely locally in [V]. The novel 

approach of [FK] - -  which we complete here - -  is in reversing this perspective, 

and using the global trace formula to prove the (unstable) fundamental lemma 

from a purely local computation of the twisted character in a special case. 

Further, an independent, direct computation of the very precise character 

calculation gives another assurance of the validity of the trace formula approach 

to the lifting project. It will be interesting to develop this approach in other 

lifting situations, especially since our technique is different from the well-known, 

standard techniques of trace formulae and dual reductive pairs. A first step in 

this direction was taken in our work [FZ], where the twisted - -  by the transpose- 

inverse involution - -  character of a representation of PGL(4) analogous to the 

one considered here, is computed. The situation of [FZ] is new, dealing with 

the exterior product of two representations of GL(2) and the structure of repre- 

sentations of the rank two symplectic group. Such character computations are 

not yet available by any other technique. However, the computations of [FZ] - -  

although elementary - -  are involved, as they depend on the classification of IF] 

of the twisted conjugacy classes in GL(4). This is another reason for the present 

work, which considers the initial non trivial case of our technique - -  where the 

computations are still simple and can clarify the method. We believe that  our 

methods, pursued in [FZ] in a more complicated case, would apply in quite gen- 

eral lifting situations, in conjunction with, and as an alternative to the trace 

formula. 

Proposition 1 of [FK] asserts that if i is the trivial PGL(2,F)-module,  lr = I(1)  

is the PGL(3,F)-module normalizedly induced from the trivial representation of 

the maximal parabolic subgroup (whose Levi component is GL(2,F)) ,  and 5 is 

a a-regular element of PGL(3,F)  with elliptic regular norm ~l = N15, then 
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= 

The proof  of Proposi t ion 1 in [FK] reduces this to the claim tha t  the value at 

s = 0 o f  

14uOI1/21u(a2 - 0) 1-~/2 / v o  Ix2 ÷ uy2 - Oz213(~-l) /2dxdydz 

is -~(~)q-~ /2(1  + q-~/2  + q - l )  (see b o t t o m  of page 499, and Lemma 2, in [FK]). 

This equality is verified in [FK], p. 499, when the quadrat ic  form x 2 +  uy  2 - O z  2 

is anisotropic, in which case ~(5) = - 1  and the integral converges for all s. 

Here we deal with the case where the quadrat ic  form is i s o t r o p i c ,  in which 

case ~(5) = 1, the integral converges only in some half plane of s, and the value 

at s = 0 is obtained by analytic continuation. 

Recall tha t  F is a local non-archimedean field of odd residual characteristic; R 

denotes the (local) ring of integers of F ;  ~r signifies a generator  of the maximal  

ideal of R. Denote by q the number  of elements of the residue field R / ~ r R  of R. 

By F we mean a set of representatives in R for the finite field R / l r .  The absolute 

value on F is normalized by ]~r I = q-1.  

The case of interest is tha t  where K = F(V~)  is a quadrat ic  extension of F ,  

thus 0 C F x - F x2. Since the twisted character  depends only on the twisted 

conjugacy class, we may  assume tha t  ]01 and lul lie in {1, q - l } .  

0. LEMMA: W e  m a y  a s s u m e  tha t  the  quadra t ic  f o rm x 2 + uy  2 - Oz 2 takes  one 

o f  three avatars: x 2 - Oz 2 - y2, 0 E R - R2;  x 2 - rrz 2 + try2; or x 2 - 7rz 2 - y2. 

Proof." (1) If  K / F  is unramified, then 101 = 1, thus 0 E R x - R x2. The norm 

group N K / F K  x is 7r2ZRX. I f x  2 - 0 z  2 + u y  2 represents 0 then - u  E R x. If  

- 1  is not  a square, thus 0 = - 1 ,  then u is - 1  (get x 2 - z 2 - y2) or u = 1 (get 

x 2 _ z 2 + y2, equivalent case). I f  - 1  C R x2' the case of u = 0 (x  2 - Oz ~ + Oy 2 = 

O(y 2 + O - i x  e - z2))  is equivalent to the case of u = - 1 .  So wlog u = - 1  and the 

form is x 2 - Oz 2 - y2, luOi = 1. 

(2) If  K / F  is ramified, 101 = q-1 and N K / F K  x = ( - 0 ) Z R  x2. The form 

x 2 - Oz 2 + uy  2 represents zero when - u  E R x2 or - u  E - O R  x2. Then the form 

looks like x 2 - O z  2 + O y  2 with u = 0 and IOul = q-2,  or x 2 - O z  2 _ y 2  with u -- - 1  

and {Out = q -1 .  The L e m m a  follows. | 

We are interested in the value at s = - 3 / 2  of the integral I~(u,O) of ]x 2 + 

uy  e - Oz2] ~ over the set V ° = V/~ , , ,  where 

y = {v = (x, y, e R3; max{Lxl, lyl, Izl} = 1} 
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a nd  ~ is the  equivalence re la t ion  v ~ a v  for a E R x . 

T h e  set V ° is the  disjoint  un ion  of  the  subsets  

V :  = V2(u,O ) ~- Yn(u,O)/,"-% 
where  

Isr. J. Math .  

Vn = Vn(U, 0) = {V; max{lxl ,  lyl, Izl} = 1, Ix 2 + uy 2 - Oz21 = 1/qn}, 

over n >_ 0, and  of  {v; x 2 + uy 2 - 0z 2 = 0 } / ~ ,  a set of  measure  zero. 

Thus  we have 
c o  

Is(u, 0) = ~ q-'~8 Vol(V~° (u, 0)). 

T H E O R E M :  The value of  luOll/Zls(u, 0) a t  s = - 3 / 2  is - q - 1 / 2 ( 1  + q-1/2 + q- l ) .  

T he  p rob l em is s imply  to  c o m p u t e  the  volumes  

Vol(V°n(u,O)) = Vol(Vn(u,O))/(1 - 1/q) (n > 0). 

1. LEMMA: When 0 = rr and  u = - 1 ,  thus luOI = l /q ,  we have 

(1 - l /q) ,  i f n  = 0, 
Vol (V ° )  = 2q-1(1  - i /q)  + 1/q 2, i f  n = 1, 

2 q - n ( 1  - l / q ) ,  i f  n >_ 2. 

Proo~ Recall  t h a t  

Vo = Vo( -1 ,  rr) = { ( x , y , z ) ; m a x { I x  l, lyl,  Izl} = 1, Ix 2 - y2 - , z21 = 1}. 

Since Izl _< 1, we have [Irz2[ < 1, and  

1 = Ix 2 -  y2 _ lrz2l = ix 2 _  y21 = i x _  yll x +  Yl. 

Thus  Ix - Yl = I x + Yl = 1, and  if Ixl ¢ lYl, Ix + yl = max{Ixl ,  lyl}- We split  

Vo into three  dis t inct  subsets ,  co r respond ing  to the  cases Ixl = lyl -- 1; Ixl = 1, 

lyI < 1; and  Ix I < 1, lyl = 1. The  vo lume is t hen  

V°l(Y°)-~fzl<_lflx,=l [~lyl=l,lx_yl=lx+yl=l]dydxdz 

nt-~Zl(__l[~xl_=l~y,<l-~xl<lfy]_=l] dydxdZ 

= L l = , [ ~ l = l , l x - y l = l x + y l = l l d y d x + ~ ( i - ~ ) = ( i - ~  )2" 
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To cons ide r  t he  Vn w i t h  n > 1, whe re  Ix 2 - y2 _ rcz 2 ] = 1/qn, reca l l  t h a t  any  

p - a d i c  n u m b e r  a such  t h a t  ]a I _< 1 can  be  w r i t t e n  as a power  ser ies  in rr: 

oo 

a = E airri  = ao + a t r r  + a2rr ~ + . . .  (ai C Y). 
i = 0  

In  p a r t i c u l a r  lal --  1/q n impl i e s  t h a t  ao = a l  . . . . .  an-1 --  0, a n d  an :/: O. I f  

(Y3 O~ 

x=Zxirr z=Ez , i 
i = 0  i = 0  i = 0  

t h e n  

where  

x2 = E airri' y2 = birr i, z '  = E cirri, 
i = 0  i = 0  i = 0  

i i 

ai = E x j x i - j ,  bi = E y j Y i - j ,  ci = E z j z i - j  (ai,bi, ci E F).  
j=o  j=0  j=0 

W e  have  
oo 

x 2 _ y 2 _ r r z  2 _ _ E  firri ( f i e F ) ,  
i=O 

w h e r e  fo = ao - bo, f~ = ai - bi - ci-1 (i > 1). S ince  }x 2 - y2 _ r rz  2 ] = 1/q~, we 

have  t h a t  fo = f l  . . . . .  fn -1  = 0, a n d  f~  ¢ 0. T h u s  we o b t a i n  t he  r e l a t i ons  

(for a,  b, c in t he  set  F, which  ( m o d u l o  rr) is t he  field R/rr): 

a o - b o = 0 ,  a i - b i - c i _ l = 0  ( i = l , . . . , n - 1 ) ,  a n - b n - c n - 1  7 ~0.  

Reca l l  t h a t  t o g e t h e r  w i t h  max{Ix l ,  lYl, Izl} = 1, these  r e l a t i o n s  def ine t he  set  Vn. 

To c o m p u t e  t he  v o l u m e  of  V~ we i n t e g r a t e  in the  order :  . . .  dydzdx.  F r o m  

ao - bo = 0 i t  follows t h a t  Yo = + x o ,  a n d  f rom ai - bi - ci-1 (i > 1) i t  follows 

t h a t  
i - - 1  

2yoy~ = ai - ci-1 - E y j y i - j ,  
j=l 

where  in  t he  case  of  i = 1 t he  s u m  over  j is emp ty .  

Le t  n _ >  2. W h e n i  = 1 we have  2 x o x l - 2 y o y l - z ~  = O. So i f x o  = 0 ( in 

R/rr ,  i .e.,  Ixl < 1), i t  follows t h a t  Yo = 0 a n d  Zo = 0 (i.e.,  lYl < 1, Izl < 1). T h i s  

c o n t r a d i c t s  t he  fac t  t h a t  m a x ( I x ] ,  lYl, Izl} = 1. T h u s  Ixl = 1. In  th i s  case  yo 5£ 0 

a n d  (for n >_ 2) we have  

.o,I..>-- £, L, [/..]...., 
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where  the  variable y is such t h a t  once wr i t t en  as y = Yo + y o r  + y21r 2 + "- ' ,  

it has to sat isfy Yo -- ± x o ,  and  Yi (i --  1 , . . . ,  n -  1) is defined unique ly  f rom 

ai - bi - c~-1 = 0, and  yn 7£ some value defined by a n  - -  b n  - C a - 1  7 £ O. Thus  

when  n _> 2, 

VoI (Vn) - -  q 1 - q = q---y q 

Let  n = 1. W h e n  i = 1 we have 2 x o x l - 2 y o y l - z  2 ¢ O. So i f x o  = 0 

(i.e., ]x] < 1), it follows t h a t  Yo = 0 and  zo ¢ 0 (i.e., we have an  add i t iona l  

con t r ibu t ion  f rom Ix[ < 1, [Yl < 1, [z[ = 1). Thus ,  

+ q (1- 

The  L e m m a  follows. | 

2. LEMMA: When  u and 0 equal lr, thus [uO[ = 1 /q  2, we have 

1, i f  n = O, 
Vol(Vn °) = q - l ( 1  - 1/q), i f n  = 1, 

2 q - n ( 1 -  l / q ) ,  i f  n >_ 2. 

Proof: To c o m p u t e  Vol(Vo), recall  t h a t  

Vo = {(x, y, z);  max{Ix[ ,  [Yl, [z[} = 1, Ix 2 + l r (y  z - z2)] = 1}. 

Since [y[ _< 1, [z[ < 1, we have Ix 2 + ~.(y2 _ z2)] = ix21 = 1, an d  so 

V°l(V°) = I z  l u  f lx d x d y d z = l  l - -  - - o  

I<_1 [_<1 [=1 q 

To c o m p u t e  Vol(Vn), n _> 1, recall  t h a t  

Vn = {(x, y, z); max{Ix[ ,  [y[, [z[} = 1, [x 2 + 7r(y 2 - z2)[ = 1/qn}.  

Following the  no ta t ions  of L e m m a  1 we wri te  

oo 

x 2 + , ~ ( ~  - z 2) = ~ £~ (£ e F), 
i=0 

where  fo = ao and  f i  = ai + b~-i - ci-1 (i > 1). The  condi t ion  which defines Vn 

is t h a t  fo = fx . . . . .  f n - 1  = 0 and  fn  7£ 0. The  equa t ion  fo = 0 implies t h a t  

Xo = 0 (i.e., Ix I < 1). We ar range  the  order  of in tegra t ion  to be . . .  dydzdx.  
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When n > 2, since xo = 0, f l  = 0 implies tha t  yo 2 - %2 = 0. Using 

max{Ixl, lYl, [zl} = 1 we conclude tha t  Yo = ±zo ¢ 0 (i.e., Izl = 1, Iz 2 - y21 < 1). 

Thus we have 

V°l(Vn) = 9(~,<l flz,=1[ f dY] dzdx 

where the variable y is such tha t  once writ ten as y -- Yo + yl l r  + y2~ -2 + . .- ,  

it has to satisfy Yo = ±zo, and yi (i -- 1, ..., n - 2) is defined uniquely from 

ai + bi-1 - ci-1 = 0, and Yn-1 7 £ some value defined by an + bn-1 - Cn-1 ~ 0. 

Thus when n _> 2, 

1 2 ( ~ ) n - 2 ( 1 - 1 ) 2  2 ( 1 - ~ ) 2 .  
Vol(Vn) = ~ ~ = q-~ 

W h e n n  = l w e h a v e  fo = 0, f l  ~ 0. These amount  t o x o  = 0, Yo ¢ ±Zo. 
Separating the two cases zo = 0 and Zo ¢ 0, we obtain 

V°l(Yl)~-~j(~x]<:lj(~z],~lfy,=ldydzdx-r-fx,<lj~z]=l~y2_z2]=ldydzdx 
1(11 1(1_   (11 = ~  q )  + ~ ( 1 - q ) q ) = q  q)  

The Lemma follows. | 

3. LEMMA: When K / F  is unrami~ed, thus tu~[ = 1, we have 

Vol(VO ) = { 1, i fn  = O, 
q-n(1 -- l /q)(1 + l/q), if n >_ 1. 

Proof'. First we compute Vol(Vo). Recall tha t  

Vo = {(x,y,z);max{Ixl, lYl, Izl} = 1, Ix 2 - y2 _ 0z21 = 1}. 

Since Ix 2 - y2 _ t~z21 _< max{ixl, lYl, ]zl}, 

yo = { ( x , y ,  ~) e R3~ tx 2 - y2 _ ez21 = 1}.  

Making the change of variables u = x + y, v = x - y, we obtain 

Vo = {(u,v,z) e nS; luv -Oz  2] = 1}. 

Assume tha t  ]uv I < 1. Since ]uv - 0z2[ = 1, it follows tha t  Izl = 1. 

contribution from the set ]uv] < 1 is 

fz,=l [fu,<l~v,<_l~-f]u,=l~v,,~l] dttdvdz 
= ( 1 - ~ ) ( ~ + ( 1  - 1  1 1 ( 2 - 1  q )  q )  = ~ ( l - q )  q ) .  

The 
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A s s u m e  t h a t  luvl = 1, i.e., lul = Ivl = 1. W e  a r r a n g e  the  o r d e r  of  i n t e g r a t i o n  

as dudvdz. If  [z I < 1 t hen  l u v - O z  26 = luvl --  1. I f  Izl = 1 we i n t r o d u c e  

U(v,z)  = {u; HuH = 1, luv - 0z21 = 1}, a se t  of  v o l u m e  1 - 2/q, a n d  no t e  t h a t  

t he  c o n t r i b u t i o n  f rom the  se t  luvl --  1 is 

f l z i<]f lv ,=]f lu i=ldudvdZ+flz ,=l f lv i=l /u(~,~)dudvdz"  

T h e  s u m  of  the  two  in t eg ra l s  is 

(1 
A d d i n g  the  c o n t r i b u t i o n s  f rom ]uv] < 1 a n d  ]uv i = 1 we t h e n  o b t a i n  

q 

N e x t  we c o m p u t e  Vol(Vn),  n >_ 1. Reca l l  t h a t  

V n  ---- { (x ,Y ,z ) ;ma~{lx l ,  lYl, Izl} ---- 1, Ix 2 - y2 _ Oz21 = 1/qn}. 

M a k i n g  the  change  of  va r i ab l e s  u = x + y,  v = x - y, we o b t a i n  

V~ = {(u,  v, z); m a ~ { l u  + v I, lu - v I, Izl} = 1, luv - Oz21 = 1/q~}. 

Since the  set  {v = 0} is of m e a s u r e  zero,  we a s s u m e  t h a t  v ¢ 0. T h e n  luv-0z21 = 
1/q ~ impl i e s  t h a t  u = Oz2v -1 + tv-17r n, where  It[ = 1. T h e r e  are  two  cases.  

A s s u m e  t h a t  Ivl = 1. N o t e  t h a t  if Izl = 1, t h e n  m a x ( J u  + v I, lu - v l, N }  = 1 is 

sa t i s f ied ,  a n d  if  Iz] < 1, t h e n  ( recal l  t h a t  n _> 1) 

lul = iOz2v -1 + tv-17r n] <_ max{[z2],q -n}  < 1, 

a n d  l u +  v i = Iv I = 1. So Ivl = 1 impl i e s  m a x { l u +  vl, l u -  v h H }  = 1. F u r t h e r ,  

s ince  Ivl = 1, we have  du = q-~dt.  T h u s  the  c o n t r i b u t i o n  f rom the  set  w i t h  

Ivl = 1 i s  

j ( z l< l j~H=lJ~ tuv_Oz21=l /qndUdvdz=j~] z l< lJ (H=l f t i= ld tdvdz -~ l (1 -~ )  _ qn qn 

A s s u m e  t h a t  Iv I <: 1. N o t e  t h a t  if Izl = 1, s ince lul < 1 we have  q-n = 
luv - Oz2i = IOz 2] = 1, a c o n t r a d i c t i o n .  T h u s  ]z I < 1, a n d  in o rde r  to  sa t i s fy  

m a x { [ u  + vl, lu - v I, Izi} = 1, we shou ld  have  iul = 1. T h e  cont r ib~l t ion  f rom the  

se t  w i t h  Iv] < 1 is 



Vol. 134, 2003 ON THE SYMMETRIC SQUARE 315 

We write v = 022u -1 q- t u - l r r  ~, where It I = 1, and dv = q -~d t .  The integral 

equals 

I<l I=1 I=1 qq~ q 

Adding the contributions from I v] = 1 and Iv I < 1 we obtain 

__ ~)2 1 1 ( 1 _ 1  2 1 ~)2 1 
Vol(Vn)= 1 ( l -  + ) = - - ( 1 -  ( 1 + )  q~ q q n \  q q~ q " 

The Lemma follows. | 

This completes the proof of the theorem, so that we have provided a purely 

local proof of (the character relation of) Proposition 1 of [FK]. We believe that 

analogous computations can be carried out in other lifting situations, to provide 

direct and local computations of twisted characters. As noted in the introduction, 

a step in this direction is taken in [FZ]. 
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