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0. Let F ~ C be a local field with char F + 2. In [W] Weil explicitly con- 
structed a model of  a genuine unitary representation 0 of  the two-fold covering 
group Sp of the symplectic group Sp over F. In particular, the existence of  the 
covering group Sp was first proven in [W]. It is now known (see, e.g., [M]) how to 
construct r-fold covering groups of split semi-simple groups over a field F ~ C 
containing a primitive rth root of  unity. In particular, when r = 2, such F has 
char F ~ 2. In the case of  GL(n) the analogous genuine unitarizable represen- 
tation O of a covering group is defined in [KP 1 ] as a sub- or quotient of  some 
induced representation. This O corresponds to the trivial representation of 
GL(n) by the metaplectic correspondence (see [KP2], [FK1 ]). The purpose of  this 
paper is to construct an explicit model of the representation O = 03 of  a two-fold 
covering group G of GL(3) over a local field F ~ C of characteristic ~ 2, 
analogous to the explicit model of  the representation of  Weil [W]. We also 
determine the unitary completion of the unitarizable 0 3. The unitary completion 
of  our model coincides with the model ofTorasso [T] when F = R. The existence 
of  our model has interesting applications in harmonic analysis. Some of  these 
applications are discussed in detail in w In a sequel IF1] the techniques of  this 
paper are generalized to construct an explicit model of  On for any n >_ 3. 

1. T h e  representat ion 

To state our Theorem and its Corollaries, we begin by specifying the represen- 
tation O to be studied. 

1.1. Let F be a local field ~ C of characteristic ~ 2. For every integer n > 1 
there exists (see [M]) a unique non-trivial topological central double covering 
group p : Sn --" SL(n, F). Choose a section s : SL(n, F)  ~ Sn corresponding to a 
choice of  a two-cocycle fl'~ : Sn • S~ ---" ker p which defines the group law on Sn. 
Embed Gn = GL(n, F)  in SL(n + 1, F)  by 
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o) 
t : g---" det g -1 . 

Denote by G" the preimage p-l(t(Gn)). Let (-, .)" F2•  F2---- {1, - 1 }  be the 
Hilbert symbol. Identify { 1 , -  1} with the kernel of  p. Put f l ( g , g ' ) =  
fl'(g, g')(det g, det g') (g, g' in G,). Let s : G, ~ G~' be the restriction of  the section 
used in the definition of  Sn +,. Denote by G, the group which is equal to G~ as a 
set, whose product rule is given by s(g)~  9 s(g')~' = s(gg ' )~ ' f l (g ,  g'). Then G, is a 
non-trivial topological double covering group of  0 , .  Let d and B be the groups of  
diagonal and upper-triangular matrices in G,, and A and B their preimages in G,. 
Note that s is a homomorphism on the group N of upper-triangular unipotent 
matrices, and put N = s(N). Let 2 be the center of  G, and Z the center of Gn. 

L e m m a  1. Let  A z be the group o f  squares in A,  and put A 2 = p-l(d2) .  Then 
(i) the group ZA 2 is the center o f  A ,  
(ii) i f  n is even then Z = A2 C~ p - ' ( Z ) ,  
(iii) i f  n is odd then Z = p-~(2) ,  and p defines an isomorphism 

p : Z I ( Z  r A 2) ~ ZIZ, 2 -~ F X l F  • 

P r o o f .  See [KP 1 ], Prop. 0.1.1. 

Define a map t = tn : A ~ A  2 by t (h) = s(h)2u(h), where 

u(h) = 1I, ~ i< j -~  ( h .  hi) 

for a diagonal matrix h -- diag(hi) with entries h~ (1 -_< i _-< n). Note that t is 
independent of  the choice of the section s. Using the product rule in G~ 
(see [KP1], p. 39), it is easy to check that our section s satisfies t(h) = s(h 2) for 
every h in A. 

L e m m a  2. The map t is a group homomorphism. 

P r o o f .  This follows from the multiplication law on A c G~. 

Def in i t ion .  Let 8 = 8. : A -~ C • be the character 8(diag (h~)) = 
IIf_i [ h~ ]t2;-,-~)/2. A character ~ = 3~" ZA 2---~ C X whose restriction to ker p is 
non-trivial is called exceptional if 3(t(h))  = 8(h) for all h in A. 

Note that A 2 = t ( A ) . k e r p  is equal to ZA 2 if n is even. If  n is odd then 
ZA~/A 2 ~ F X / F  x2, hence it is possible to extend ~ from A 2 to ZA 2, and there exist 
exceptional characters for all n. 

L e m m a  3. (i) For any exceptional character r~ o f  ZA 2 there exists a unique 
(up to isomorphism) irreducible representation P6 of  A whose restriction to ZA 2 is 
~-Id. 
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(ii) Extend P6 to a representation of  B trivial on N. Let (nr, I?6) be the 
representation of G, normalizedly (see [BZ2], (1.8)) induced from Pr. Then (rtr, 176) 
has a unique irreducible subrepresentation. When n = 2, (rtr, 176) has a unique 
proper non-zero subrepresentation. 

(iii) The unique irreducible subrepresentation of  (nr, 176) is unitarizable. 

Proof .  See [KP1], p. 72, for (i), (ii); and Theorem 11.2.1, p. 1 18, for (iii). 

De f in i t i on .  By the exceptional representation (rtr, I7"6) of G, we mean the 
unique irreducible subrepresentation of (~%, I76). 

1.2. Lemma l(ii) implies that for an even n the group G~ has a unique 
exceptional representation, denoted (O, V) or (O,, V). 

L e m m a  4. Assume that n is odd. Then there exists a map v : Z - ,  Z such that 
p o v = Id and v(zOv(z2) --- V ( Z l Z 2 ) ( z i ,  z 2 )  (n - 1)/2. Moreover, such a map is unique up 
to a composition with an involution of  G,. 

Proof .  First note that the section s satisfies the required properties. To prove 
the uniqueness, let v~ and v2 be two such maps. Then X = v~/v2 defines a 
homomorphism Z : F • ~ Z ~ ker p. Let Z be the involution of G, defined by 
z(g) = x(det p(g))g. Then v2 = )~ o vl, as required. 

De f in i t i on .  Fix a non-trivial additive character ~u: F ~ C x o fF .  Denote by 
dx a Haar measure on F. Define a function 7 = 7~,: F x ~ C  x by 

I ~/~ f ~u(ax2)dx l a 

~(a) = f ~(x2)dx 

Clearly, we have ?(a z) -- 1. Moreover, we have 

L e m m a  5. For every a, b in F • the function 7 satisfies 7(ab)--  
~,(a)y(b)(a, b). 

Proof .  Let ?w be the 7 defined in [W] by 

lal'/2 f f (x)~(ax2)dx--- ,w(ax 2) f f(x)~(-a-'x2) dx 
F F 

for integrable f and f ;  here f is the q/-Fourier transform with respect to the 
self-dual Haar measure. Since ?w satisfies the relation 

7 w ( X  2 - -  a y  2 - -  b z  2 + a b t  2) = (a, b) 

(see [W], p. 176, bottom line), and 7(a) = 7 w ( a x E ) ] T w ( X 2 ) ,  the lemma follows. 
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R e m a r k .  
j ~ i) that 

D e f i n i t i o n .  Let  ~ be the funct ion o f  ZA2 defined by 

O~((s(z) t (h))  = (7(z )~(h)  (~ C ker p, z C 2 -~ F • h cA) 
i f  n ~ 3(mod 4); i f  n ~ l ( m o d  4) define ~ by O~,(~s(z)t(h )) = (~(h ). 

It is clear that  J~, is an exceptional character  o f  ZA2. Denote  by (O, V), or 
(O,,  V), the corresponding representat ion o f  G = G,.  

1 .3 .  It is impor tan t  for  us to work with an extension o f  O to a semi-direct 
product  G # = G >r ( a ) ,  where a is an involut ion o f  G which we proceed to define. 
Let  w. be the anti-diagonal matr ix ( ( -  1)i+lJi , ,+l_j)  in G,.  Consider  w, as an 
element  o f  SL(n + 1, F )  v i a j .  Denote  by # t h e  involut ion #(g)  = w [ '   9 tg-~. w, o f  
SL(n + 1, F).  Since the Steinberg group St (n  + 1, F)  is generated by e lementary 
matrices (see [M], p. 39), # maps e lementary  matrices to e lementary  matrices, 
and # preserves the relations which define St(n + 1, F) ,  then # lifts to an 
involut ion o f  St(n + 1, F),  hence to an involut ion # o f  G. 

Suppose that  n is odd. Then  both  s and s ~ = # o s o # satisfy the condit ions o f  
L e m m a  4. Hence  there exists a character  X : FX ~ { 1, - 1 } such that s ~ -- ~ o s. 
Define a = ~ o 0; it is an inyolut ion o f  G. Since a o s = Z o # o s = s o # on ZA 2, 
we have 

~(a(s(z)s(h2))) = ~(s(#z)s(#h2)) for all z C Z,  h CA;  

hence ~(a(x) )  = J (x )  for  all x in ZA 2. By L e m m a  3(i) we have p~ o a mp t ,  where p~ 
is the unique extension o f  ~ to A. Hence  n6 ~ a ~ nr, and by L e m m a  3(ii) we have 
O o a ~ O. It follows that there exists a non-zero opera tor  I :  V ~  V such that 
O(g) l  = IO(a(g ) )  for  all g in G. Since O is irreducible, by Schur 's  l emma 12 is a 
scalar, which we normalize to be 1. This  determines  I uniquely  up to a sign. 
The  choice O(a)  = I determines an extension o f  O to the semi-direct  product  
G#=GM(a). 

(i) It is easy to check (consider first the case where h s = 1 for  all 

(r(s(diag(hi))) = s(diag(h~-+ll_i))  9 IX hi, 
i - ,  j - i + ,  

In  part icular  
~ ( s ( z ) )  = s ( z - ' ) .  ( z ,  - 1)"~"-w2 

Consequent ly  
a(g)  = ( - 1, det p (g ) ) ( " -  w2#(g) and 

for z C F  x ~ Z. 

Z(x)  ---- ( -- 1, x )  ("- w2. 

(ii) Since (det #(g),  det #(g'))  = (det g, det g ')  (g, g '  C d ) ,  the formula  in (i) for  
the involut ion a on  G defines also an involut ion a '  on  G '  which satisfies 
p * a ' =  # o p  on G '  and o ros - -  s o # o n  ZA 2. 
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1.4. An explicit model for O 2 is easily obtained (see [F1], w Example, or 
[FM], and the proof of Proposition l, w below) from that of  the even Weil 
representation (see [F], p. 145). Indeed, this Weil representation is a represen- 
tation of $2, which extends to a representation of s(Z)S2 (by the character y = 7~ 
on s(Z)). The representation 02 is the GE-module induced from this extension to 
s(z)&. 

In this paper we construct an explicit realization of the unitarizable G3-module 
03. When F = R the unitary completion of 03, or at least its restriction to 
p-~(SL(3, R)), coincides with the unitary p-~(SL(3, R))-module constructed by 
Torasso [T]. 

2. The  realization 

The representation O = O3 will be realized in a space of functions on a two-fold 
covering space X of the punctured affine plane X = F • F -  {(0, 0)}. Clearly 

-- F \ GL(2, F), where 

It is easy to see that the restriction of s to F is a homomorphism. Hence we can 
define the double cover X of X to be s(F) \ G2. Then X is a homogeneous space 
under the action of G2. To be able to write explicit formulas for the action of G2 on 
X, recall the explicit construction of G2. Put 

X = 

d, c = 0, 
and 

Then G 2 is the group 
multiplication law 

( x(gg') x(gg') ) 
fl(g' g') = \ x-~g) ' x(g')det g " 

of  pairs (g, ()  (g in GL(2, F), ( in ker p) with the 

(g, ()(g' ,  = (gg,, ( ( ' f l (g ,  g')). 

Given ~ = (x, y) in .g', put x(~) = x i fx  ~ 0 and x(~) = y i fx  = 0. Identify Xwith 
.g • ker p by mapping the image in X of  the element s(h)( of  G, where 

,) 
Y 

to the element (x, y; ((x(h),  det h)) of .~" X ker p. Then the action of G2 on 
,~ • ker p implied by this identification is given by 
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(,) 
/ x(zg) \ 

(~, ~)(g, ( ' ) =  {~g, ~(' det g)] .  
\ x(2,) ' x(g) / \ / 

R e m a r k .  Replacing (.,  .) by the nth Hilbert symbol, (.) defines an n-fold 
covering of the punctured plane X as the homogeneous space s(F) \ G2. 

Def in i t ion .  A function f :  X ~ C is called genuine i f f (z()  = ( f(z)  for ( in 
ker p, z in X. It has bounded support if there is a compact subset of F • F which 
contains all g in ,~ with f(g; () v~ 0. It is called homogeneous iff(t2x, t2y; ~) = 
It I-If(x, y; () (t in FX). Let LE(X) be the space of genuine, square-integrable, 
complex-valued functions on X. Let C(X) be the space of smooth functions f i n  
L2(X). Denote by Cb(X) the space of f i n  C(X) with bounded support. Denote by 
Ch (X) the space of homogeneous f i n  C(X). 

Let P (D B) be the standard maximal parabolic subgroup of type (2, l) of G, 
and consider the subgroup P = p-~(P) of G. Define the action of P on L2(X) as 
follows (we denote the action by O): 

(1) [ O ( S ( o ~ ) ) f ] ( z ) = l d e t g l U 2 f ( z s ( g ) )  (g in GL(2, F)); 

(2) 0 s 1 v 

0 1 

iI ( z )  =  ,(ux + (u,  v in F); 

(3) [[i o O s a 

a 

(z) = ~7(a)f(z) (a in FX). 

Under the action (1) the space Ch(X) is a G2-module; it has a unique proper 
non-zero G2-submodule Ch(X) ~ isomorphic to O2@ [det I TM (see [F], p. 145). 
Indeed, the space 

, , s ,  

= ~ l a/b I u2+~(g), a E F  x, b E F • ~ E ker p} 
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is a GE-module under the action p(g)r  [detg[1/4~(hg). At s = - ~  it is 
reducible, of length two. Its unique proper non-zero submodule is 02 @ [ det [u4. 
The map r  f((0, 1)g)= I det g l-'/E-s~(g), establishes a G:-module isomor- 
phism from I(s) to the space 

J(s) = { f :  X ~ C; f (b(x,  y); ()  = ( I b I-'-2~f(x, y; 1), b EFX2},  

with the G2-action p(g)f(z) = I det p(g)13/4+Sf(zg) (z ~X) .  

D e f i n i t i o n .  Denote by Cb(X) ~ the space of  f i n  Cb(X) for which there exists 
fo in Ch(X) ~ and A I > 0  such that f ( z ) = f o ( z )  for all z = ( x , y ; ( )  with 
m a x ( I x  l, lYl)_-<AI. 

In particular, for every f i n  Cb(X) ~ there is AS > 0 such that 

f(t2x, t ~ y ; ( ) = [ t [ - t f ( x , y ; ( )  i f m a x ( [ x l ,  lYl)<=Ai and [t[_-<l. 

T h e o r e m .  (i) The genuine representation 0 of  G* = G :~ ( a ) can be realized 
in the space Cb(X) ~ by the operators (1), (2), (3) and 

(4) (O(a)f)(x, y; ()  = 7( - 1)'/27(x)-' [x l -I/2 f f (  - x, u; ~)~v(uy/x)du. 
F 

(ii) 
multiple) Hermitian scalar product on 
(0, Cb(X)~ It is given by the L 2-product. 

R e m a r k .  (i) Since G # is generated by 
completely defined by (1)-(4). 

The space Cb(X) ~ is contained in L 2(X). There is a unique (up to a scalar 
the unitarizable representation 

P and a, the action of G # is 

(ii) It follows from (ii) in the Theorem that the unitary completion of 
(0,  Cb(X) ~ is (O, LE(X)). As noted in (1.4), when F = R the restriction to 
p -  ~(SL(3, R)) of this realization of the unitary completion of O coincides with the 
model  constructed by Torasso [T]. 

(iii) Erasing the symbols s in (1), (2), (3), ( in (3), (4), 7(a) in (3), and 
7( - 1)my(x)-  ~ in (4), the (modified) operators (1)-(4) define an explicit realiza- 
t ion of  the representation I(1~; GL(3, F),/~) of  GL(3, F)  normalizedly induced 
from the trivial representation 1~, of  a maximal parabolic subgroup P. This model 
is isomorphic to the model (%, I10) in [FK2], middle of p. 497, by the map 
(Zo, Vo)3q~-" f , f ( x ,  y) = Ieq)(x, Y, z)fv(z)dz. 

3. Corollaries 

The Theorem is proven in w167 In this section we deduce three Corollaries, 
assuming the Theorem. 
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3.1.  Let F b e  a local field as in (1.1), and ~uan additive character as in (1.2). 
The function 

g(x )  = "A,(x)~u( - 1 / x ) l x  I -i/z 

is locally integrable on F. Let 

~(x)  = f g ( y ) ~ ( -  xy )dy  
F 

be its Fourier transform. Put 

i f  z = (x,  y; () ,  z '  = (x',  y'; ~'), 

and for every f i n  L2(X)  write 

f~(z) = f f(z')h'(z, z')dz'. 
.g 

Denote the action o f &  on Lz(X)  by p; thus (p ( s ) f ) ( z )  = f ( z s )  for f i n  L2(X),  s in 
S2, z in X .  

C o r o l l a r y  1. The map f ~ f ~ takes L2(X) to L2(X)  and  Cb(X) ~ to Cb(X) ~ 
Moreover, we have (i) ( f  ~) v = ~,( - l) -~p( - 1 ) f  , and (ii) (p(s ) f  ~ = p(s ) f  ~ for  all 
s i n & .  

Proof .  Put 

i 0 0 0 

0 1 

and F = O(a)O(a)O(a)O(a)O(a) .  

Using (4) and (1), we have F f =  7( - 1)1/2f v. Assuming the Theorem it is easy to 
check that 172 = p ( -  1), and that F commutes with p(s)  for every s in $2, as 
required. 

R e m a r k .  The transform f - -  f v is analogous to the Fourier transorm 

f f 
on L2(X),  which satisfies ( fv )v  = f  and (p ( s ) f )  v = p ( s ) f  ~ for every s in 
SL(2, F); here we put (p(s)f)(~5) = f(72s). 
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3.2.  Let F b e  a local field as in (1.1), and ~, g and ~ as in (3.1). 

C o r o l l a r y  2. The support of ~, is contained in the set F 2 of squares ofF. 

P r o o f .  Corollary l(ii) with s = s(a), a = (0 -~), asserts that  

K(zs(a), z's(a)) = K(z, z') for all z = (x, y;  ()  and z '  -- (x' ,  y ' ;  ( '). 

Hence for all z, z '  we have 

(.) g~ - det x [1 - (3', - x)(y ' ,  - x ')(y,  - y ')(x,  - x ' ) l  = O. 

Since (a + b, - b/a) --- (a, b), we have 

(xy', - x'y) = ( - det ( X x" 

Put  

o ';), 

x. v) 
b = x t y .  

Then (.) implies that  

g~(a)[1 - (a, b(a + b))] = 0 

for all a,  b in F w i t h  ab(a + b) r O. Note that  1 + b/a ~ F  x2 if  I b I is sufficiently 
smaller than l a l .  I f  follows that  if  a ~ 0  and g V ( a ) ~ 0 ,  then a E F  x2, as 
required. 

S c h o l i u m .  The following is a sketch of  an alternative, elementary 
p roof  of  Corollary 2, communicated to us by J.L. Waldspurger. Recall that  
F is a local non-archimedean field with charF ~ 2, ~ :  F ~ C  x is a non- 
trivial continuous character, and g : F - ,  C is defined almost everywhere by 
g(x ) -~ ( -1 / x )a ( x ) / a (1 ) ,  where a(x)=SF~l(xy2)dy. The Fourier  trans- 
form f v is defined by f V ( x ) =  SF~'(- xy)f(y)dy, and we claim that gV is 
supported o n  F 2. 

Note that g(x) -- ct(1) -~ Seg(xy 2 - x-~)dy. Making the change y ~ y + x -~, 
we get 

-~ : ~(xy 2 q- 2y)dy. g(x) o~(1) 

F 

For  a function f :  F ~ C supported o n  F 2, the change z = y2 of  variables yields the 
identi ty 
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f f(z)lzl_,/2d z = 121 2 f f(y2)dy" 
F F 

For a fixed x E F, consider the function 

Then 

t g(xz + 2y), z ~ F 2, 
f(z) = {Y;Y~=~) 

O, Z q~ F 2. 

f f(z)lzl_,/Zdz= 121 f ~(xy2)[~,(2y)+ ~,(_ 2y)ldy 2 
F F 

= L2[ f u 2 + 2y)dy. 
F 

Hence 

N o w  put 

g(x) = (]2la(1)) -I f f(z)lzl-I/2dz. 
F 

h(z) = [(I 2lct(1))-llz ] -1/2 

[0, 

~g(2y), z ~ F  2, 
{y: ya=z} 

7, q~ F 2. 

Then g(x)= Sr~(xz)h(z)dz, namely g(x)= h v(-x).  The Fourier inversion 
formula (h v) V(x) -- h( - x) implies that gV(x) = h(x). Hence g~ is supported on 
F 2 as required. 

R e m a r k .  (i) Since SL(2, F) is generated by 

u--('0 
and a, and since K(zu, z'u) = K(z, z') is trivially true, Corollary 2 is equivalent 
to (ii) of Corollary 1. 

(ii) Denote by a 1/2 the non-negative square-root of  a > 0, and by i the square 
root o f  - 1 in the upper half-plane in C. Define a function v / x  or R by 

I Ix I "2, i fx  >_- 0, ,/;= 
[ i l x l  u2, ifx_-<0. 
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Corollary 2 implies that: The Fourier transform gg(x)= SRgR(y)e-~dy of the 
locally integrable function gR(x)= e-i/x/x~% on R is supported on the set of  
non-negative real numbers. Indeed, this is the special case where F = R and 
gt(x) = eiX; then 7~,(x) = 1 i fx  > 0 and 7,(x) = I/i i f x  < 0 by [W], top ofp. 174. 
Hence ~,,(x) ] x ] - 1/2 = 1/v/~, and gR(x) is g(x) of Corollary 2. However, it is easy 
to see directly that ~R is supported on R~0 since gR(x) extends to a function gc(Z) 
analytic in the upper half-plane and vanishing at infinity, and our assertion then 
follows from the Paley-Wiener theorem. 

(iii) In fact the Theorem can be reduced to Corollary 2. This observation is due 
to Torasso [T]. He proved first that g~ is supported on R~=0 and this is the basis of  
his proof of the Theorem when F = R. 

(iv) Corollary 2 suggests the existence of  a theory of"analytic" complex-valued 
functions on a local field F, in which the space of"analytic functions on the upper 
half-plan" is replaced by the space R,  of funct ionsfon F such that the support o f f  
lies in the set of  squares. However R v, is not a ring, and we do not know how to 
develop the theory of  such "analytic" functions on F. 

3.3. Suppose that F i s  non-archimedean, denote by R its ring of integers, and 
fix a generator n of the maximal ideal of  R. Denote by val the additive, integer- 
valued function on F x normalized by val(n) = 1. Put h(x) = Ix I-1/2 if val(x) is 
even and non-negative, and h ( x ) = 0  otherwise. Suppose that the residual 
characteristic of  F is odd. There exists a unique group-theoretic section of 
p:p-I(SL(4,  R))-~SL(4, R), denoted by ~c*; see [KP1], p. 43. Then K =  
GL(3, R) embeds as a subgroup of G3 via K*. An irreducible genuine G-module is 
called unramified if it has a (necessarily unique up to a scalar multiple) non-zero 
K-fixed vector. 

C o r o l l a r y  3. I f  the residual characteristic ofF is odd, then the G-module 0 is 
unramified. I f  g is trivial on R but not on n- 1R, then the K-fixed vector in 0 is a 
multiple of the vector 

(h(x), 
~ x ,  y; ()  --- l ( x ,  y)(h(y),  

/ 
l(hty), 

i f ly l  ~ Ix I, 

ifO< Ixl < ly l ,  

ifx=O. 

P r o o f .  The group K is generated by its upper-triangular matrices, by 

li 1~ a - -  0 0 

0 1 
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and aatr. The sections x* and s coincide on these matrices (see [KP1], Prop. 
0.1.3). Using the Theorem it is easy to check that ~ is invariant under the image of 
these matrices. Hence the corollary follows. 

Remark.  Note 
at (O,y,() ,  y ~ F  • 
(0, y; 1). 

that the function ~ of Corollary 3 is locally constant 
since the limit of  (x, y; ( -  x, y)) as x- - -0  (x, y § 0) is 

4. Prel iminaries  

Here we collect various facts used in the proof of  the Theorem. Since the 
Theorem is already proven in [T] when F = R, we restrict our attention to the 
case when F is non-archimedean. 

4.1. Given a group H and a smooth H-module V = V(H), let V'(H) be the 
Hermitian dual of  V, namely the smooth H-module obtained on conjugating the 
complex structure of the smooth dual of  V. We write V' for V'(H) when the group 
H is specified. Note that in general V'(H) § V'(H') when V is both H- and 
H'-module. Observe that an H-invariant Hermitian form on Vis equivalent to an 
H-invariant map from Vto V' (-- V'(H)). Note that i f a ~  V', vE Vand h ~ H ,  
then (h . a)(v) = a(h - 1. v). 

4.2. Let Q = SR be the semi-direct product of  a group S and an abelian 
normal subgroup R. The group Q acts on R by q : r - ,  q rq- t, hence also on the 
group/~ of  characters qR on R by W~ (r) = WR (q-~rq). For any character YR of R 
we denote by Stabe(wR) the stabilizer of  WR in Q, and put Stabs(WR) = S N 
Stabe(u ). For any irreducible representation r of  Stabs(u the tensor product 
z | WR defines a representation ofStabe(wR) = Stabs(qR)R. Denote by rt(z | YR) 
the Q-module ind(z ~ R ;  Q, Stabo(wR)), where, as in [BZ1], (2.21) and (2.22), 
Ind indicates the functor of (unnormalized) induction, and ind the functor of 
induction with compact supports (we do not normalize these functors as in [BZ2], 
p. 444). As in [BZ2], top of p. 444, define the positive-valued character AQ : Q --  
RX0 by d(g- tqg)  = Ao(g)dq (g EQ), where dq is a Haar measure on Q. 

M a c k e y ' s  T h e o r e m .  (i) The Q-module ~(z @Ws) is irreducible. 
(ii) We have r t ( z ~ u  n(z#~)W~) i f  and only i f  there is s in S such that 

W~R ~ W~ an d zs ~ z#. 
(iii) Every irreducible Q-module is equivalent to ~(r ~wR) for some z and YR. 
(iv) The Q-module n(T |165 (see (4.1)) is equivalent to 

Ind((Ae/As)z'@Ws; Q, ~), where ~ = StabQ(u 
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Proof .  See [BZI], (2.23) and (5.10), for (i)-(iii), and [BZ1], (2.25), for (iv); 
when F --- R see [K], w 13.3, Theorem 1. 

4.3.  Let Q be a parabolic subgroup of G, R its unipotent radical, M --- Q/R its 
Levi component, and ~R a character of R. For any Q-module V, let VR, v, be the 
Stabu(u of (R, ~R)-coinvariants in V (see [BZ1], (2.30)). Put VR for 
VR,V, when qR is trivial. In this paper the functor of coinvariants is not 
normalized (as in [BZ1], in contrast with [BZ2], p. 444). For the reader's 
convenience, we record 

F r o b e n i u s  R e c i p r o c i t y  ([BZ2], (1.9(b)), p, 445). For any smooth Q-module 
V, and any smooth Stab~t(u W, we have 

HomstabM(w)( VR, v~, W )  = Homo. ( V, Ind( W | WR; Q, Stabe(u 

4.4. We use below the Geometric Lemma (2.12) of [BZ2], which we now 
record (in the notations of [BZ2]). Let G be a covering group of a reductive 
connected group G over a local field F, fix a minimal parabolic subgroup P0 and a 
Levi subgroup thereof, and denote by M, N standard Levi subgroups of G 
(notations: M, N < G). Denote by WG, WM, Wu the Weyl groups of G, M, N 
(note that We = W~ . . . .  ). Each double coset WN\ We/WM has a unique rep- 
resentative of minimal length. The set of these representatives will be denoted by 
W~, M. For each w in W~, M put 

Mw = M N w-  ~(N) < M, Nw = w(Mw) --- w(M) N N < N. 

Denote by Alg Mthe  category of smooth (-- algebraic in [BZ2]) M-modules. Let P 
be the parabolic subgroup of G which contains P0 and whose Levi component is 
M. Put Jp(p) for Ap(p) -~, forp  in P. Put ieMVfor ind(J~/2 ~ V; G, M)  and rNeV 
for J i  ~a ~ VN; ieM and rNe are the functors of  normalized (as in [BZ2]) induction 
and coinvariants. 

C o m p o s i t i o n  T h e o r e m .  The functor F = rue ~ ieM : Alg M - "  Alg N is glued 
from the functors F~ = iN, N, ~ W o rM~M for W in W~ 'M. More precisely, choose an 
ordering {Wl . . . .  , wr} of  Wg ,M such that wj < wi implies i < j ( <  is the standard 
partial order on We). Then F has a canonicalfiltration 0 = F0 c F~ C  9  9  9 c Fr = 
F such that Fi/Fi_ ~ is canonically isomorphic to Fw,. 

P roo f .  This is the Geometric Lemma (2.12) of  [BZ2], which is stated there 
only for the algebraic group G, but its proof is valid also in the context of the 
covering group G. 

4.5. In this subsection we summarize properties of O used in the proof of the 
Theorem in w167 below. 
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The Gn-module (O,, 11,) is defined in w 1 as the unique irreducible submodule of 
the induced G,-module (n,,, l?,). Its character Xo. is computed in [KP2], Theorem 
6.1, at least when n = 2, 3 (the computation for a general n is reduced to a certain 
conjecture about orbital integrals). This character computation implies that O, 
corresponds to the trivial GL(n, F)-module 1, by the metaplectic correspondence 
([KP2], Conjecture, p. 208, and Prop. 5.6, p. 213; or [FK1], (26.1)). We shall 
record here two applications of this character computation, to be used below. 

For any diagonal matrix h -- diag(hi) in A put 

A(h)=  II (h , -h j )Z /h ,h j  , 
i < j  

and for/~ in A put A(/~) = A(p(/~)). The character computation implies that there 
is a fl > 0 (explicitly given in [KP2]) such that 

A(t(h)))Co.(t(h)) = flA(h) 

for every h in ,4 with ] h~ I ~ I hj I for all i ~ j .  In particular, when n = 3 and 
h = diag(a, b, c) with l a I < I b I < I c I, we have A(h) = I c/a I, hence 

(5) (AZo)(t(h)) = fl I c/a I. 

To state the second application, denote by u a non-degenerate character of  the 
unipotent upper-triangular subgroup N ofG, .  A Whittaker model of a G-module 
(n, V) is an injection l : V---, IndOgs; G,,  N). The space of Whittaker functionals / 
is then dual to the space 

Vu,,,, = V / (n (n )v  - ~g~(n)v; v in V, n in N).  

Corollary 6.2 of [KP2] asserts that (at least for n = 2, 3) we have 

n I ( n , r - 1 )  ;'2 
d im V~ ,~ = a ~ A(h), a = 

' r !n  h ~ , h ' - I  (n, r - -  1) n r 

In our case r = 2. Consequently we have the following 

L e m m a  a.  (i) When n = 2, d im(02,  V2)u,,N = 1, a n d 0 2  has a unique(up to 
a scalar multiple) Whittaker funct ional .  (ii) When n >-__ 3, d im(O. ,  V,)u, , ,  = O, 
and  O,  has no Whittaker model.  

R e m a r k .  The proof of the character relation [KR2], Theorem 6.1, is based 
on the (global) trace formula. Hence the proofof(ii)  is presently complete only for 
n = 3. For F with 12l -- 1 a purely local proof of Lemma 6 is given [KP1], 
Theorem 1.3.5. 

4.6. In (5.1) below we use a special case of the Theorem of [C], which we 
record here in a form useful for (5.1), in the notations of (4.5). 
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T h e o r e m  ([C]). Let rt be an admissible G,-module, and h the matrix 
diag(h~), with [h~l < Ihi+ll (1 < i < n ) .  Then (AX~)(t(h)) =y~,.~,(t(h)). 

Here r~, o~t is an A-module (see (4.4)). The center of  A is ZA 2; it is of  finite index 
in A. The irreducible constituents of  the restriction of  ra, og to ZA 2 are characters. 
We use this Theorem in two cases. First, the Theorem, together with (5), implies 

L e m m a  7. When n = 3  and n - -O,  the restriction of  rA, oO to t(A) is a 
multiple of  the character which maps t(h ), h = diag(a, b, c), to I c/al.  

Note that a genuine character of  ZA 2 which transforms on s(Z) according to 7 is 
uniquely determined by its values on t(A). 

R e m a r k .  Lemma 7 can be proven also using [KP1], Theorem 1.2.9(e), 
instead of  using [C] and the character relation (5). 

The second application concerns the case n = 2. Let/ti: F • ~ C x (i = 1, 2) be 
two characters of F x. Extend the character ~l ,  g2):t(8~ to a 
genuine character/t of  a maximal abelian subgroup A,  of A2. Extend/t  to A , N  
(trivially on N), and induce (normalizedly) to a G2-module rt(/t~,/~2). The char- 
acter ofrt = r t ~ ,  g2) is computed in [F], p. 141: on t (.42) we have that AX, is equal 
to a scalar multiple of  (/tl,/t2) + (/t2,/t~). Theorem [C] then implies 

L e m m a  8. Each irreducible constituent o f  the restriction of  ra2, o2[rt~, g2)] to 
t(.42) is isomorphic to the character (Its,/t2) or (,u2, lh). 

5. Res tr i c t ion  to P 

Denote by P and P+ (~  B) the preimages in G of the standard maximal 
parabolic subgroups of  type (2, 1) and (1, 2) in GL(3, F), and by Uand U + ( c  N) 
their unipotent radicals. Our construction of  the explicit realization of  O is 
accomplished in two steps. In this section we study the restriction of  O to P. In 
the next section we construct the action of  a. Since P and a generates G = = 
G )4 (a)  we thus obtain the required explicit realization. 

5.1.  Let u F - ~ C  x be a character as in (1.2), and define a character ~u of  N 
by ~v(n) ---- ~'(n2, 3)- The restriction of  qJv to the subgroup U of N will again be 
denoted by Yr. Since ~v is trivial on U + it defines a character o f N  + = N / U  +, 
denoted again by ~v. 

Embed G2 in P by 
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Put G2 = p - I ( G 2 )  C P. Since P = ZG2U, we identify below a P-module  which 
transforms trivially under  U and by y under  s(Z), with a G2-module. The 
analogous convent ion is applied to P+-modules.  Let Vv be the P-module  o f  
U-coinvariants o f  V(see (4.3)). 

Proposition 1. (i) As a G2-module, Vv is isomorphic to (92 ~ ldet l 1/4. In 
particular, s(0 h2 02) acts as multiplication by I h I. 

(ii) As a G2-module, Vv. is isomorphic to (92 | I det I - 1/4 
(iii) The element s(0 h o) acts on any Whittaker functional on Vv as multiplication 

by Ih 11/27(h) -1. 

Proof. (i) By definition (see Lemma  3(ii) of  w (9 = (93 is the unique 
irreducible submodule  o f  the induced G3-module (n~,, 1?~). Since the functor  r o f  
coinvariants is exact (see [BZ 1 ], Prop. 2.3 5), the P-module  rM, O0 is a submodule 
o f  r~t, a(n~,, 1?~), where M is the s tandard Levi subgroup of  P. The Composit ion 
Theorem (4.4) applies to ru, oft63 with M = B and N = P,  and W P, n consists of  the 
elements w3 --- id, w2 = (23) and wl = (12)(13) = (132) of  WG. It asserts that there 
is a composi t ion series 0 c 171 c 172 c 173 = (1?~)u o r e - m o d u l e s  (i.e. G2-modules), 
where ~ / ~ _  1 --~ ip, s(w~ o p~) (p~, is defined by Lemma 3(i); wi ~ P6, is the B-module  
extended trivially on N from A). Now it follows f rom L e m m a  8 that each 
irreducible const i tuent  of  the normal ized A-module  of  N-coinvariants  rA,M ~ 
ip, B(W~ ~ (i = 1, 2, 3) is acted upon by the element t(h) of  the center  of  A, 
where h -- diag(a, b, c ) E A ,  according to the characters: I c/a I or I c/b I ifw~ = id 
( i = 3 ) ,  Ib/al or Ib/cl if w ~ = ( 2 3 ) ( i = 2 ) ,  la/bl or la/cl if  w i = ( 1 2 ) ( 1 3 )  
(i = 1). On the other  hand, L e m m a  7 implies that t(h) acts according to the 
character  I c/al on each irreducible constituent of  the A-module  rA, aO = 
rA.M(r~,aO). Since the functor  of  coinvariants is exact, we thus obtain that 
HOmp(rM, oO, 172) = 0, and that the submodule  rM, GO of  I73 is a proper non-zero 
P-submodule  o f  the quotient  I? 3 / 172 ~ ie, B(P~,) ( ~ rt~ Q I det I - 1/4 as a G2-module). 
However,  L e m m a  3(ii) asserts that  the G2-module It~ has a unique proper 
non-zero submodule,  which is O2. Hence rM. cO = (92 | I det I - 114, and 

(gu = j]/2 ~ rM, GO = O 2 ~  I det I TM 0l)) "eta) 
as required. 

For  the last claim in (i), note that  s(0 h~ ~2) acts trivially on  (92 b y  definition o f  O2. 
Part (ii) is o f  course analogous to (i). 
For  (iii), note that the GE-mOdule (92 has the following realization (see, e.g., 

[FM] or [F1], Sect. l, Example). Its space V2 consists o f  all locally constant 
functions f :  F x --- C whose support is compact  in F,  for which there is A ( f )  > 0 
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and f '  : F x --- C x satisfying f ' (xa 2) = [a [ -1/2f'(x)(x, a in F x) with f ( x )  = f ' ( x )  
for Ix [ --< A (f).  On this space the group G2 acts by 

02(S(; O1))f(X)= ]alll2f((lX), 02($(; Oz))f(x)=(X,Z),(z)-lf(x); 

o2(; f ( x )  = r  o (s(0 
= CT(X )-1 Ix[ 1/2 f l ylU2f(xY2)~(2xyldy' 

F 
for some c in C x. By definition, a Whittaker functional on (02, V2) is a linear form 
L : V2 ~ C which satisfies 

for all b in F and f i n  I/2. 

By Lemma 6(i) this functional is unique up to a scalar. Hence it is a multiple of  
L ( f )  = f( l ) ,  which is clearly a Whittaker functional. Now 

s(,, ~ ~ 
= 7(h)-  ~f(1) = ~,(h)-lL(f) 

for every f i n  liE and h in FX; this implies (iii) by virtue of (i). 

R e m a r k .  Lemma 7 implies that (Or, Vv) is a multiple of 02 @ ] det [ 1/4. To 
show that this multiple is one, we use in the proof above the Composition 
Theorem (4.4). Alternatively, this can be proven on comparing the exact value of  
the character of  Ou with that of  02 on the h which appear in (5). In the proof 
above this comparison is done only up to a scalar multiple. 

5.2. Let V0 be the kernel of  the natural surjection of  V on Vv. Put P ' =  
StabM(~/v). Then V0 ---- ind(Vu, ~u ~ ~/u; P, P'U) by [BZ 1 ], Prop. 5.12(d), or [BZ2], 
(3.5). Note that 

l a " 0 b 

In particular 
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Hence 

(6) 
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on[  
Vo = j~/2 ~ ind( Vt, P, P'U), where Vl 1/2  9 

P r o p o s i t i o n  2. (i) The  P-modu le  Vo is irreducible. 
(ii) The  P ' U - m o d u l e  Vl is one-d imens iona l  and  uni tary .  

P r o o f .  (i) It suffices to prove that Vv, ~,u is one-dimensional, for then it is 
irreducible and the proposition follows from Mackey's theorem (4.20)) and (6). 
To prove the one-dimensionality, note that VN, ~,N = O, where ~N(n) = ~'(nl, 2 + n2, 3), 
by Lemma 6(ii). Hence U + acts trivially on Vv, v,u, and so Vv, ~,~ = VN, ~,~. By the 
transitivity property of the functor of  coinvariants, we have VN, V'~ = (Vv+)N+, ~,  
where N + = N~ U +. By. Proposition 1 (ii), Vv+ is the Weil representation of G2 (up 
to a twist). Hence Lemma 6(i) implies that d im  VN, ~u = 1, as required 9 

(ii) The one-dimensionality is proven in (i). Since N acts on Vl via ~v, it 
suffices to show that the element 

[i ~ s b 

b 

acts on VI as multiplication by 7(b). By Proposition l(iii), 

[i ~ s = s b /a  

b /a  

acts on Vv,~,~, = (Vv§ as l a /b  11/27(b/a). Since Jel!2(s) = la /b  I 1/2, and the 
central character of  O is 7, the claim follows from 

a b 

[0 

0 

= S  

b 

a s b /a  

b /a  

 9 (a,  b/a). 
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5.3. Let V' = V'(P) be the P-module defined in (4.1) using the P-module V, 
and V~ the P-module obtained from V0. Mackey's theorem (4.2(iv)) implies that 
ind(Vi)'=Ind((Av/Ae,v)V~). By Proposition 5.2(ii) we have V~ = V1. Since 
Ae/Ae, v = A~ 1 = 3e, = 3e on P', we have ind( VO' =- r | Ind( VO. Hence 

(7) V(~ = ~,2 @Ind(V~; P, P'U). 

As noted in (4.1), the unitary structure of the P-module (O, V) yields the 
following sequence of P-module morphisms: 

Vo~V~V'~V6. 

Denote by ~ the composite morphism from V to V~. 

Proposition 3. (i) The map ~ is an injection. 
(ii) We have dim Homr(Vo, V~) = 1. In particular, the restriction o f  ~ to Vo is a 

multiple o f  the natural inclusion ~]12 ~ ind(I t) ~ : 2  ~ Ind(VO. 

Proof .  (i) The subspace ker ~ is U-invariant since it is the orthogonal 
complement of V0, and V0 is spanned by the vectors v -  O(u)v, v in V, u in U. 
Hence the claim follows from 

Theorem (Howe-Moore [HM], Prop. 5.5, p. 85). Let G be a covering group 
o f  a simple reductive group , and V a non-trivial irreducible unitarizable G-module. 
Then no one-parameter subgroup o f  G fixes a non-zero vector in V. 

(ii) By (7) and Frobenius reciprocity (see (4.3)), we have 

Homp(Vo, V6) = Homv,((Vo)v,v,~, ~ ! 2 ~  Vl). 

Since the functor of coinvariants is exact we have (V0)v. ~, = Vv, ~,~. Note that 
d],/,2@ Vt = Vv,~,u. Hence Home(Vo, V~)= C and qT: V0--" V~ is a multiple of  the 
natural inclusion. 

Proposition 4. (i) The P-module V6 is isomorphic to the space o f  genuine 
functions on X smooth with respect to the action o f  P defined by (1), (2), (3) in w 

(ii) The P-module Vo can be realized by (1), (2), (3) on the space o f  smooth, 
genuine, compactly-supported functions f on X.  

Proof .  This follows at once from (6) and (7) and the isomorphism of  
X = s(F) \ G2 with P ' U \  P. 

6. Restriction to B 

It remains to determine V as a subspace of V6, and to extend the action of P to 
an action o f G  # = G>~ (a)  on V. 
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Since 

I O - 1  0 
/ 

P = B U P'UaB and a = s [ 1 0 0 , 

t 0 0 1 

it follows that the action of  B on X = P'U \ P has two orbits, Y = {z in X; x § 0}, 
and X - Y = {z in X; x = 0}. Let Wbe the space of  smooth, genuine, compactly- 
supported, complex-valued functions on Y. It is a B-submodule of  V0. In fact Wis 
an irreducible B-module, by Mackey's theorem (4.2(i)), since 

W = 5]/2 ~ind(V~; B, a . P ' U . a  -~ N B) 

and V~ is irreducible (see Proposition 2(ii)). 
Let W' = W'(B) be the Hermitian dual (4.1) of  the B-module W. By Mackey's 

theorem (4.2(iv)), W' is the space of  genuine functions on Y smooth under the 
action of  B defined by (1), (2), (3); in particular, the support of  any f i n  W' is 
bounded in the y-direction. We have the following inclusions of  B-modules: 

W C Vo C V C V6 = V6(P)C W ' =  W'(B). 

Fix a square root ?( - l) ~/2 of~,( - l). For any f i n  W' define Jf(x,  y; 0 by the 
integral 

-- 1)'/27(x)-11x1-1/2 f f (  -- x,  u; ()~u(uy/x)du. (8) 7( 
F 

It is clear that this integral converges, that j2 = Id, and that f----Jfmaps W to W 
and W' to W'. 

As noted in (1.3), since O is a-invariant there is an isomorphism I" V---- Vsuch 
that IO(g) = O(ag)I and 12 = Id. It is unique up to a sign. We claim that I is given 
on Vby the integral (8). More precisely, we have 

P r o p o s i t i o n  5. (i) The operator J maps V to V. (ii) There is a choice of  
I :  V---, V such that the restriction J ] V of  J to V is equal to I. 

P r o o f .  The B-module W' consists of  functions on Y = {z GX; x ~ 0}. The 
subgroup NI,3 = U N U § of  Nacts  on W' according to (2). Hence the only vector 
in W' fixed by Ni, 3 is the zero vector. On the other hand, for every u in F,  we have 
that r  is 1 for a sufficiently small Ix l. H e n c e f E  W' and 

I 1 u 
o 1 f 

0 1 
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are equal on a sufficiently small neighborhood o f X  - Y = {z E X; x = 0}. Conse- 
quently 

0 Ii iLii w 
We conclude that Nl, 3 acts trivially on W'/W.  In particular, since (W c )  V C W', 
we have 

Homn(V/W,  W') = O, Homn((V/W)' ,  W') = O. 

Since for any H-modules A, B we have Homn(A,  B)~Hornn(B ' ,A ' ) ,  we also 
have that the submodule Horns(W, V/W) of  the zero-module Horns((V/W)', W') 
is zero. 

It follows that I maps W to W. Indeed, had this been false, the map I 
would induce a non-trivial map W-~ V/W,  contradicting the fact that 
Horns(V~ W, W') = O. 

We claim that the restrictions I I W and J I W of I and J to W coincide. We 
have ( I I W )  2= Id, and ( I [ W ) O ( b ) = O ( a b ) ( I [ W )  for all b ~ B .  By (1.3) we 
have 

# [[i o s b 
C 

i l 0 = S  b - l  

a - I  

 9 (a, bc)(b, c), 

and a(g) = ( - 1, det p(g))&(g) (g E G). 

Consequently, it is easy to check that (J ] W)O(b) = O(ab)(J ] W) for all b in B, 
and that j2 = Id. Since W is an irreducible B-module, we have I [ W = J I W, up 
to a sign. Hence we can choose I such that I ] W = J I W, as claimed. 

It now follows that J I V - I defines a morphism 1I/W ~ W', necessarily zero 
since Horns(W, V~ W) = 0, and the proposition follows. 

Finally we prove the 
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T h e o r e m .  (i) The space V is isomorphic to Cb(X) ~ The G~*-module(O, V) is 
equivalent to the G #-module defined by the operators ( 1 )-(4) on the space Cb ( X) ~ 

(ii) There is a unique (up to scalar) Hermitian scalar product on the unitarizable 
G-module (0, Cb(X)~ It is given by the L 2-product. 

P r o o f .  (i) The space V is realized in Proposition 3(i) as a subspace of V~. 
Moreover, we have the inclusions V0 ~ V'-* V6. By Proposition 4(i), V6 is the space 
of  genuine, smooth, complex-valued functions with bounded support on X. The 
subspace Vo of  V consists, by Proposition 4(ii), of the compactly-supported f i n  
V~. By definition (in (5.2)) of V0 as ker( V--, Vv), the space Vconsists of the f i n  V6 
such that f--- f m o d  I1o lies in Vv. Proposition 1 (i) asserts that Vv -~ 02 | I det 1TM. 
In particular, for every f i n  V and t in F • the vector 

I t l - l O  

[Ii o 
s t 2 

0 1 

f - I t l - l f  

is zero in V~ Vo -~ 021 det 1 I/4. 
Hence for every f i n  V there is A I > 0 ,  and c ( 0 < c <  8 9  such that 

Itlf(t2x, t2y; r , )=f (x ,y ;  ~) for m a x ( I x l ,  l y l ) _-< Ai and c < ltE _-< 1 (note that 
this domain of t is compact, a n d f i s  locally constant). But then this relation holds 
for all t with 0 < [ t [ < 1. Define fo on Xbyfo(x, y; () = [ t J f(t2x, t2y; r) for t such 
that I t l2max(Ixl ,  lYl)_<Af. Thenfo lies in Ch(X). 

We conclude so far that, for every f i n  V, there isfo in Ch(X) and A I >  0 such 
that f (x ,  y; () ---- fo(x, y; () for max ( I x I, I Y I ) ---- AI. Proposition 1 (i) then implies 
that the function fo lies in the unique irreducible G2-submodule Ch(X) ~ 
(~--02| TM) of Ch(X). This determines the space V of  O to be Cb(X) ~ as 
asserted. The action of P is described by Proposition 4(i), and that of a by 
Proposition 5. Since P and tr generate G*, (i) follows. 

(ii) By Proposition 3(ii), we have dim Home(Vo, V~)= 1. Since V '~  V~, the 
space Home(Vo, V') is a subspace ofHome(Vo, V~), necessarily one-dimensional. 
Consider the map Home(V, V')---, Home(Vo, V'), obtained by restriction from V 
to V0. Its kernel is Home(V/Vo, V'). Now V/Vo-~ Vv, and Uacts  trivially on Vv. 
On the other hand, the only vector in W', and in particular in V' ( c  W'), which is 
fixed by U, is the zero vector. Hence Home(V, V') injects in Home(Vo, V'), and it 
is one-dimensional. The L2-product on Vyields a P-invariant Hermitian form on 
V, hence a non-zero P-module morphism i : V ~ V'. The unitary structure on V 
yields a non-zero morphism j : V ~  V' of  G-modules. In particular j is a P- 
module morphism. Since dim Home(V, V') = 1, the morphism j is a multiple of 
the morphism i, as required. 
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