EXPLICIT REALIZATION OF
A METAPLECTIC REPRESENTATION

By
Y. FLICKER.,! D. KAZHDAN" AND G. SAVIN?!

0. Let F #C be a local field with char F # 2. In [W] Weil explicitly con-
structed a model of a genuine unitary representation & of the two-fold covering
group Sp of the symplectic group Sp over F. In particular, the existence of the
covering group Sp was first proven in {[W]. It is now known (see, e.g., [M]) how to
construct r-fold covering groups of split semi-simple groups over a field F # C
containing a primitive rth root of unity. In particular, when r = 2, such F has
char F # 2. In the case of GL(n) the analogous genuine unitarizable represen-
tation © of a covering group is defined in [KP1] as a sub- or quotient of some
induced representation. This © corresponds to the trivial representation of
GL(n) by the metaplectic correspondence (see [KP2], [FK1]). The purpose of this
paper is to construct an explicit model of the representation © = 65 of a two-fold
covering group G of GL(3) over a local field F % C of characteristic # 2,
analogous to the explicit model of the representation of Weil [W]. We also
determine the unitary completion of the unitarizable ©;. The unitary completion
of our model coincides with the model of Torasso [T] when F = R. The existence
of our model has interesting applications in harmonic analysis. Some of these
applications are discussed in detail in §3. In a sequel [F1] the techniques of this
paper are generalized to construct an explicit model of 6, for any n = 3.

1. The representation

To state our Theorem and its Corollaries, we begin by specifying the represen-
tation O to be studied.

1.1. Let Fbe alocal field # C of characteristic # 2. For every integer n > 1
there exists (see {M]) a unique non-trivial topological central double covering
group p:S,— SL(n, F). Choose a section s : SL(n, F)— S, corresponding to a
choice of a two-cocycle B, : S, X S, — ker p which defines the group law on §,.
Embed G, = GL(n, F) in SL(n + 1, F) by
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1:g—>(g 0_).
0 detg!

Denote by G, the preimage p~'(1(G,)). Let (-, -): F2XF?*— {1, — 1} be the
Hilbert symbol. Identify {1, — 1} with the kernel of p. Put B(g,g)=
B'(g, g'\det g, det g) (g, g in G,). Lets : G, — G be the restriction of the section
used in the definition of S, , ;. Denote by G, the group which is equal to G, as a
set, whose product rule is given by s(g){ -s(g){’ =s(gg){{’F(g,.g)). Then G,is a
non-trivial topological double covering group of G,. Let A and B be the groups of
diagonal and upper-triangular matrices in G,, and 4 and B their preimages in G,.
Note that s is a homomorphism on the group N of upper-triangular unipotent
matrices, and put N = s(N). Let Z be the center of G, and Z the center of G,.

Lemma 1. Let A? be the group of squares in A, and put A* = p~'(4?). Then
(i) the group ZA* is the center of A,

(i) if n is even then Z = A> N p~(Z),

(iil) if'n is odd then Z = p~(Z), and p defines an isomorphism

D ZI(ZNAYN—~Z/Z*=F*/F*,
Proof. Sce [KP1], Prop. 0.1.1.
Define amap t =t,: A — A% by t(h) = s(h)*u(h), where
u(h) =T, zi<jzn (i, )

for a diagonal matrix # = diag(h;) with entries #; (1 =i = n). Note that ¢ is
independent of the choice of the section s. Using the product rule in G,
(see [KP1], p. 39), it is easy to check that our section s satisfies ¢{h) = s(h?) for
every hin 4.

Lemma 2. The map t is a group homomorphism.
Proof. This follows from the multiplication law on 4 C G,,.

Definition. Let J§=9,:A—C* be the character d(diag(h))=
T2, |h; %~ ~"2 A character § =J,: ZA*— C* whose restriction to ker p is
non-trivial is called exceptional if 6(¢(h)) = (h) for all Zin A.

Note that A2=t(4)-ker p is equal to ZA? if n is even. If n is odd then
ZAY A= F*/F*2 hence it is possible to extend J from 42 to ZA42, and there exist
exceptional characters for all n.

Lemma 3. (i) For any exceptional character & of ZA* there exists a unique
(up to isomorphism) irreducible representation p; of A whose restriction to ZA? is
0-1d.
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(ii) Extend p; to a representation of B trivial on N. Let (ns, V;) be the
representation of G, normalizedly (see [BZ2), (1.8)) induced from p;. Then (5, V;)
has a unique irreducible subrepresentation. When n = 2, (n;, V;) has a unique
proper non-zero subrepresentation.

(iii) The unique irreducible subrepresentation of (n;, V;) is unitarizable.

Proof. See [KP1], p. 72, for (i), (i1); and Theorem I1.2.1, p. 118, for (iii).

Definition. By the exceptional representation (x5, V;) of G, we mean the
unique irreducible subrepresentation of (w5, V).

1.2. Lemma 1(ii) implies that for an even » the group G, has a unique
exceptional representation, denoted (8, V) or (6,, V).

Lemma 4. Assume that nisodd. Then there existsamapv: Z — Z such that
pov =1d and v(z,\v(z3) = v(z,2,)(z1, 2,)" ~ 2. Moreover, such a map is unique up
to a composition with an involution of G,.

Proof. First note that the section s satisfies the required properties. To prove
the uniqueness, let v, and v, be two such maps. Then y =v,/v, defines a
homomorphism y: F* = Z —ker p. Let x be the involution of G, defined by
x(8) = x(det p(g))g. Then v, = x o v,, as required.

Definition. Fix a non-trivial additive character y : F — C* of F. Denote by
dx a Haar measure on F. Define a function y =y, : F*—C* by

a1 [ wiaxddx
f voddx

y(a)=

Clearly, we have y(a%) = 1. Moreover, we have

Lemma 5. For every a, b in F* the function y satisfies y(ab)=
7(a)y(b)a, b).
Proof. Let y, be the y defined in [W] by

la|"? f fO)w(axPdx = yp(ax?) f SO (— a='x)dx
F F

for integrable f and f ; here f is the y-Fourier transform with respect to the
self-dual Haar measure. Since yy, satisfies the relation

ywl(x? — ay* — bz? + abt*) = (a, b)

(see [W], p. 176, bottom line), and y(a) = yp(ax?)/yw(x?), the lemma follows.
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Definition. Let J, be the function of Z4? defined by
3, (Ls(2)t(h)) = Ly(2)d(h) ((Ekerp,zEZ=F*,h€EA)
if n=3(mod 4); if n = 1(mod 4) define §, by 6,({s(z)t(h)) = {o(h).

It is clear that J, is an exceptional character of Z42. Denote by (8, V), or
(8,, V), the corresponding representation of G = G,.

1.3. It is important for us to work with an extension of @ to a semi-direct
product G* = G X (o), where ¢ is an involution of G which we proceed to define.
Let w, be the anti-diagonal matrix (( — 1)'*'J, ,,,_;) in G,. Consider w, as an
element of SL(n + 1, F) viaj. Denote by & the involution 6(g) = w, ' - ‘g~ 1.-w,of
SL(n + 1, F). Since the Steinberg group St(n + 1, F) is generated by elementary
matrices (see [M], p. 39), & maps elementary matrices to elementary matrices,
and & preserves the relations which define St(rn + 1, F), then & lifts to an
involution of St(n + 1, F), hence to an involution & of G.

Suppose that 7 is odd. Then both s and s = & o s o & satisfy the conditions of
Lemma 4. Hence there exists a character y: F*— {1, — 1} such that §* =y os.
Define ¢ = y ©4; it is an inyolution of G. Since Gos=xodos=so0don ZA2
we have

d(o(s(z)s(h?)) = d(s(6z)s(6h?)) forallz€Z, hEA;

hence §(a(x)) = d(x) for all x in Z42 By Lemma 3(i) we have p; o ¢ = p;, where p;
is the unique extension of  to 4. Hence 75 - 0 = 75, and by Lemma 3(ii) we have
B0 =0. It follows that there exists a non-zero operator I: V' — V such that
O(g) = 16(o(g)) for all g in G. Since O is irreducible, by Schur’s lemma I is a
scalar, which we normalize to be 1. This determines I uniquely up to a sign.
The choice B(a) = I determines an extension of O to the semi-direct product
G*=GX (o).

Remark. (i) It is easy to check (consider first the case where h; = 1 for all
j # i) that

&(s(diag(h,))) = s(diag(hiy_)- 11 (hi, 1l h,.).

i=1 j=i+1
In particular
G(s(z)=s(z"Y)-(z,— )"*-»2  forzEF*=2Z,
Consequently
o(g) = (— 1, det p(g)"~"&(g) and x(x)=(—1,x)""12

(ii) Since (det 5(g), det 6(g’)) = (det g, det g’) (g, g’ € G), the formula in (i) for
the involution ¢ on G defines also an involution ¢’ on G’ which satisfies
ped’=aGoponG’'andgeos=sodon ZA4>%
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1.4. An explicit model for O, is easily obtained (see [F1], §1, Example, or
[FM], and the proof of Proposition 1, §5, below) from that of the even Weil
representation (see [F], p. 145). Indeed, this Weil representation is a represen-
tation of S,, which extends to a representation of s(Z)S, (by the character y = Yy
on s(Z)). The representation 6, is the G,-module induced from this extension to
s(Z2)S,.

In this paper we construct an explicit realization of the unitarizable G;-module
©,;. When F =R the unitary completion of ©;, or at least its restriction to
p~'(SL(3, R)), coincides with the unitary p~'(SL(3, R))-module constructed by
Torasso [T].

2. The realization

The representation © = 6, will be realized in a space of functions on a two-fold
covering space X of the punctured affine plane X = F X F — {(0, 0)}. Clearly

X =T\ GL(2, F), where
* %
r-{( 1)t
0 1

It is easy to see that the restriction of s to I' is a homomorphism. Hence we can
define the double cover X of X to be s(I') \ G,. Then X is a homogeneous space
under the action of G,. To be able to write explicit formulas for the action of G, on
X, recall the explicit construction of G,. Put

()
x =
¢ d d, ¢=0,

x(gg) x(gg) )
x(g) ~ x(g)detg)’

Then G, is the group of pairs (g,{) (g in GL(2, F), { in ker p) with the
multiplication law

and

Blg.g) = (

(&, {Ng’, £ =(gg’, (LB (g, &)

Given z = (x, y)in X, put x(2) = xif x # 0 and x(2) = yif x = 0. Identify X with
X X ker p by mapping the image in X of the element s(k){ of G, where

(2 )
X y
to the element (x, y; {(x(h), det h)) of X X ker p. Then the action of G, on
X X ker p implied by this identification is given by
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(+) @ O, {) = (z-g, @ (f-@ , "—@) (x(22). detg)) .
x(z2)  x(g)

Remark. Replacing (-, :) by the nth Hilbert symbol, () defines an n-fold
covering of the punctured plane X as the homogeneous space s(I') \ G,.

Definition. A function f: X —C is called genuine if f(z{) = { f(z) for { in
ker p, zin X. It has bounded support if there is a compact subset of F X F which
contains all Z in X with f(z; {) # 0. It is called homogeneous if f(£*x, 2y; ) =
[t~ flx, y; 0) (¢ in FX). Let L*(X) be the space of genuine, square-integrable,
complex-valued functions on X. Let C(X) be the space of smooth functions fin
L*(X). Denote by C,(X) the space of fin C(X) with bounded support. Denote by
C,(X) the space of homogeneous fin C(X).

Let P (D B) be the standard maximal parabolic subgroup of type (2, 1) of G,
and consider the subgroup P = p~!(P) of G. Define the action of P on L*(X) as
follows (we denote the action by ©):

m  |e(s(® ))f|@r= 1degrsesten  ginGLe Py

0 1
1 0 u)
) B|s|0 1 v||fl@=wux+v)f(z) (u,vinF);
0 0 1]
[ [ 0
(3) O (s a {1 | @=a)flz) (ainFX).
. L0 a

Under the action (1) the space C,(X) is a G,-module; it has a unique proper
non-zero Gy-submodule C,(X)° isomorphic to 8,8 |det | (see [F], p. 145).
Indeed, the space

w-procnb(; )

={la/b|"**5p(g),a EF*, bEF* [ Eker p}
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is a Gy-module under the action p(g)p(h) = |det g | p(hg). At s = —1} it is
reducible, of length two. Its unique proper non-zero submodule is 8, ® |det | V4.
The map ¢ — f, f((0, 1)g) = |det g|~"*~“p(g), establishes a G,-module isomor-
phism from I(s) to the space

JS)={: X=>C; flb(x,y) )= b} ""*f(x,y; 1), bEF*?},

with the G,-action p(g)f(z) = |det p(g){***f(zg) (z EX).

Definition. Denote by C,(X)° the space of fin C,(X) for which there exists
So in G(X)® and A4,>0 such that f(z) = f(z) for all z=(x,y;{) with
max(|x|, |y|) = 4.

In particular, for every fin C,(X)° there is 4,> 0 such that

fWx, ty; )= t|"flix,y; () ifmax(|x|,ly])=4, and |tf| =1

Theorem. (i) The genuine representation © of G* = G X (o) can berealized
in the space C,(X)° by the operators (1), (2), (3) and

4 B(o)f)x,y; C)=7(—1)"2?(X)"‘|XI"’2ff(—x,u;C)vl(uy/x)du~

(ii) The space C,(X)° is contained in LY X). There is a unique (up to a scalar
multiple) Hermitian scalar product on the unitarizable representation
(8, C,(X)). It is given by the L*-product.

Remark. (i) Since G* is generated by P and o, the action of G* is
completely defined by (1)-(4).

(ii) It follows from (ii) in the Theorem that the unitary completion of
(8, C,(X)% is (8, L*(X)). As noted in (1.4), when F =R the restriction to
P~ Y(SL(3, R)) of this realization of the unitary completion of © coincides with the
model constructed by Torasso [T].

(iii) Erasing the symbols s in (1), (2), (3), ¢ in (3), (4), y(a) in (3), and
y(— 1)"2p(x) " in (4), the (modified) operators (1)—(4) define an explicit realiza-
tion of the representation /(15; GL(3, F), P) of GL(3, F) normalizedly induced
from the trivial representation 1, of a maximal parabolic subgroup P. This model
is isomorphic to the model (7, V) in [FK2], middle of p. 497, by the map

(1.09 VO)3¢—’./;f(x’ y) =IF¢(xa y: Z)![-/(Z)dz.

3. Corollaries

The Theorem is proven in §§5-6. In this section we deduce three Corollaries,
assuming the Theorem.,
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3.1. Let Fbe alocal field as in (1.1), and ¥ an additive character as in (1.2).
The function

g(x) =7, (— Ux)|x| ™"
is locally integrable on F. Let

g(x) = f g — xp)dy
F

be its Fourier transform. Put
K(z, )= (x, — x’)-g'( — det (" y )) N%
X Yy

if z=0x,3;0), z/=,y50),
and for every fin L} X) write

(z)= f 2Kz, 2z
X

Denote the action of S, on L%(X) by p; thus (p(s)f)(z) = f(zs) for fin LX), s in
Sy, zin X.

Corollary 1. The map f— f " takes L¥(X) to LY(X) and C,(X)® to C,(X)°.
Moreover, we have (1) (f V)" = y(— 1)~ 'p(— 1)f, and (1) (p(s)f ¥ = p(s)f ¥ forall
sinS,.

Proof. Put
0 -1 0
a=s |1 0 0 and F = 6(0)6(0)0(0)B8(0)B(v).
0 0 1

Using (4) and (1), we have Ff = y( — 1)"2f ¥, Assuming the Theorem it is easy to
check that F2=p(— 1), and that F commutes with p(s) for every s in S,, as
required.

Remark. The transform f— fV is analogous to the Fourier transorm

7w = [ [ foc v (den( yy,))dx'dy'

on LX), which satisfies (f¥)" =f and (p(s)f)* =p(s)f " for every s in
SL(2, F); here we put (3(s)/)(2) = f(2s).
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3.2. Let Fbe alocal field as in (1.1), and ¥, g and £ as in (3.1).
Corollary 2. The support of § is contained in the set F* of squares of F.

Proof. Corollary 1(ii) with s = s(a), @ = (} ~}), asserts that
K(zs(a), 2’s(a)) = K(z, 2') forallz=(x,y;{) and z'=(x’,y"{).

Hence for all z, z’ we have

x/ y/ .
(*) gv(_det<x y))[l_(ys _X)(y’, _xl)(y: "‘y’)(-x; _xl)]=0’
Since (a + b, —b/a)=(a, b), we have

xy’, —xy)= ( — det ( Y ) , xx’yy’> .
Xy
Put

xl 4
a=—det( y), b=x'y.
x Yy

Then (x) implies that
g'(a)1 —(a,b(a+b))]=0

for all @, & in F with ab(a + b) # 0. Note that 1 + b/a EF*2if | b| is sufficiently
smaller than |a|. If follows that if a # 0 and g'(a)# 0, then a €EF*?, as
required.

Scholium. The following is a sketch of an alternative, elementary
proof of Corollary 2, communicated to us by J.L. Waldspurger. Recall that
F is a local non-archimedean field with char F +2, w:F—C* is a non-
trivial continuous character, and g: F—C is defined almost everywhere by
g(x) = w(— 1/x)a(x)/a(l), where o(x)=/{ry(xyddy. The Fourier trans-
form fV is defined by f¥(x)=[rw(— xy)f(y)dy, and we claim that g is
supported on F2,

Note that g(x) = a(1) ! {r w(xy* — x ~")dy. Making the change y —» y + x~,
we get

g(x)=a(1)"! f w(xy*+ 2y)dy.
F

For a function f: F — C supported on F?, the change z = y? of variables yields the
identity
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—-112 |2| 2
[ rnziiaz = [ pyday.
F F

For a fixed x € F, consider the function

Y wixz+2y), zEF?,

flz) = v;y'=1)
07 Z $F2.
Then
2
f f(Z)IZI“’ZdZ=-|2—I f wy)w(2y) + w(— )My
F F
=|2] f wlxy* + 2y)dy.
F
Hence
g0 =(121a()) " [ fi2)]z1"dz.
F
Now put

(12la(1)~H2)172 T w(2y), zEPF,
h(Z) — {(p:y*=z)
0, z @ F2.

Then g(x)= (rw(xz)h(z)dz, namely g(x)=h"(—x). The Fourier inversion
formula (2V)V(x) = h( — x) implies that g¥(x) = h(x). Hence g" is supported on
F? as required.

Remark. (i) Since SL(2, F) is generated by

u=(l b), beEFX,
0 1

and «, and since K(zu, z’u) = K(z, z’) is trivially true, Corollary 2 is equivalent
to (ii) of Corollary 1.

(ii) Denote by a'”? the non-negative square-root of a = 0, and by i the square
root of — 1 in the upper half-plane in C. Define a function \/)—c or R by

{|x|"2, if x =0,
x=

i|x|"2, ifx 0.
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Corollary 2 implies that: The Fourier transform gg (x) = {x ge(y)e~*dy of the
locally integrable function gg(x)=e ™ /\/;c on R is supported on the set of
non-negative real numbers. Indeed, this is the special case where F =R and
w(x)=e”; then y,(x)=1if x >0 and y,(x) = Vi if x <0 by [W], top of p. 174.
Hence 7, (x)| x| ™2 = 1//x, and ga(x) is g(x) of Corollary 2. However, it is easy
to see directly that gy is supported on R, since gg(x) extends to a function ge(z)
analytic in the upper half-plane and vanishing at infinity, and our assertion then
follows from the Paley-Wiener theorem,

(iii) In fact the Theorem can be reduced to Corollary 2. This observation is due
to Torasso [T]. He proved first that gg is supported on R, and this is the basis of
his proof of the Theorem when F =R,

(iv) Corollary 2 suggests the existence of a theory of “analytic” complex-valued
functions on a local field F, in which the space of “analytic functions on the upper
half-plan” is replaced by the space R, of functions fon F such that the support of. Vi
lies in the set of squares. However R, is not a ring, and we do not know how to
develop the theory of such “analytic” functions on F.

3.3. Suppose that Fis non-archimedean, denote by R its ring of integers, and
fix a generator ©t of the maximal ideal of R. Denote by val the additive, integer-
valued function on F* normalized by val(r) = 1. Put h(x) = |x |~ "? if val(x) is
even and non-negative, and A(x)=0 otherwise. Suppose that the residual
characteristic of F is odd. There exists a unique group-theoretic section of
p: p~'(SL(4, R))—>SL(4, R), denoted by «*;, sece [KP1], p. 43. Then K =
GL(3, R) embeds as a subgroup of G, via k*. An irreducible genuine G-module is
called unramified if it has a (necessarily unique up to a scalar multiple) non-zero
K-fixed vector.

Corollary 3. Iftheresidual characteristic of Fis odd, then the G-module © is
unramified. If v is trivial on R but not on =~ 'R, then the K-fixed vector in © is a
multiple of the vector

Ch(x), iflyl = ixl,
#x,y; )= 0, ¥)Eh(),  fO<|x|<|yl,
Ch(y), ifx=0.

Proof. The group K is generated by its upper-triangular matrices, by
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and gao. The sections x* and s coincide on these matrices (see [KP1], Prop.
0.1.3). Using the Theorem it is easy to check that ¢ is invariant under the image of
these matrices. Hence the corollary follows.

Remark. Note that the function ¢ of Corollary 3 is locally constant
at (0,y,{), y&EFX, since the limit of (x,y;(—x,y)) as x—=0 (x,y #0) 1is
0,y;1).

4. Preliminaries

Here we collect various facts used in the proof of the Theorem. Since the
Theorem is already proven in [T] when F = R, we restrict our attention to the
case when F is non-archimedean.

4.1. Given a group H and a smooth H-module V' = V(H), let V/(H) be the
Hermitian dual of V, namely the smooth H-module obtained on conjugating the
complex structure of the smooth dual of V. We write V* for V/(H) when the group
H is specified. Note that in general V'(H) # V'/(H’) when V is both H- and
H’-module. Observe that an H-invariant Hermitian form on Vis equivalent to an
H-invariant map from V to V’ (= V'(H)). Note that if c€E V', vEV and hEH,
then (4 - a)(v) = a(h ~'-v).

4.2. Let Q = SR be the semi-direct product of a group S and an abelian
normal subgroup R. The group @ acts on R by g:r—¢qrg~", hence also on the
group R of characters y; on R by wk(r) = yg (g ~'rg). For any character yg of R
we denote by Staby(yz) the stabilizer of yg in Q, and put Stabs(yz) =S N
Staby(yz). For any irreducible representation t of Stabs(yz) the tensor product
7 @ yg defines a representation of Stab,y(wr) = Stabs(wz)R. Denote by n(7 @ wy)
the Q-module ind(t @ wyx; O, Staby(yr)), where, as in [BZ1], (2.21) and (2.22),
Ind indicates the functor of (unnormalized) induction, and ind the functor of
induction with compact supports (we do not normalize these functors as in [BZ2],
p. 444). As in [BZ2], top of p. 444, define the positive-valued character Aq: Q—
RZ, by d(g7'qg) = Ay(g)dq (g €EQ), where dg is a Haar measure on Q.

Mackey’s Theorem. (i) The Q-module n(t @wy) is irreducible.

(ii) We have n(t @w)=n(t* Qwy}) if and only if there is s in S such that
i =vyi and ¥ = 1%,

(iii) Every irreducible Q-module is equivalent to n(t @ ywy) for some Tt and yy.

(iv) The Q-module n(t @) (see (4.1)) is equivalent to

Ind((Ag/A5)t" @wr; @, S),  where S = Staby(yr)-
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Proof. See [BZ1], (2.23) and (5.10), for (i)—(iii), and [BZ1], (2.25), for (iv);
when F = R see [K], §13.3, Theorem 1.

4.3. Let Qbe aparabolic subgroup of G, R its unipotent radical, M = Q/R its
Levi component, and y; a character of R. For any Q-module V, let V¢ ,, be the
Staby(yg)-module of (R, wg)-coinvariants in V (see [BZ1], (2.30)). Put V for
Vv« When g is trivial. In this paper the functor of coinvariants is not
normalized (as in [BZ1], in contrast with [BZ2], p. 444). For the reader’s
convenience, we record

Frobenius Reciprocity ((BZ2], (1.9(b)), p. 445). For any smooth Q-module
V, and any smooth Stab,,(wg)-module W, we have

Hoerab,,(v,)( V& we» W) = Homgy(V, Ind(W Q@ wy; Q, Sme(\l’R)))-

4.4. We use below the Geometric Lemma (2.12) of [BZ2], which we now
record (in the notations of [BZ2]). Let G be a covering group of a reductive
connected group G over a local field F, fix a minimal parabolic subgroup Pyand a
Levi subgroup thereof, and denote by M, N standard Levi subgroups of G
(notations: M, N < G). Denote by W, W), Wy the Weyl groups of G, M, N
(note that W; = Wy, ...). Each double coset W\ W;/W,, has a unique rep-
resentative of minimal length. The set of these representatives will be denoted by
WA-M_ For each win W¥* put

M,=MnNw (N)<M, N,=w(M,)=w(M)NN<N.

Denote by Alg M the category of smooth (= algebraic in [BZ2]) M -modules. Let P
be the parabolic subgroup of G which contains P, and whose Levi component is
M. Put 6x(p) for Ap(p) ™!, for pin P. Put igyV for ind(6}* ® V; G, M) and rygV
for &5 ' @ Vy; gy and ry are the functors of normalized (as in [BZ2]) induction
and coinvariants.

Composition Theorem. The functor¥ =ry; oigy,: Alg M — Alg N is glued
Sfrom the functors F,, = iy y, oW o Iy for win WM. More precisely, choose an
ordering {wy, ..., w,} of W&™ such that w; <w; implies i <j (<is the standard
partial order on W;). Then ¥ has a canonical filtration0=F,CF, C --- CF, =
F such that F,/F;_, is canonically isomorphic to F,,.

Proof. This is the Geometric Lemma (2.12) of [BZ2], which is stated there
only for the algebraic group G, but its proof is valid also in the context of the
covering group (.

4.5. In this subsection we summarize properties of © used in the proof of the
Theorem in §§5-6 below.
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The G,-module (8, V,)is defined in §1 as the unique irreducible submodule of
the induced G,-module (7;,, V,). Its character Xe, 1s computed in [KP2], Theorem
6.1, at least when n = 2, 3 (the computation for a general n is reduced to a certain
conjecture about orbital integrals). This character computation implies that €,
corresponds to the trivial GL(n, F)-module 1, by the metaplectic correspondence
(IKP2}, Conjecture, p. 208, and Prop. 5.6, p. 213; or [FK1], (26.1)). We shall
record here two applications of this character computation, to be used below.

For any diagonal matrix 4 = diag(h;) in 4 put
12
A(h) = H (hi - hj)zlhihj s

i<j
and for / in 4 put A(%) = A(p(h)). The character computation implies that there
is a > 0 (explicitly given in [KP2]) such that
At(h))xe,(t(h)) = BA(R)

for every h in A with |h;| # |h;| for all i #j. In particular, when n =3 and
h =diag(a, b, c¢) with |a| < |b| < |c|, we have A(h) = |c/a|, hence

&) (AxeXt(h))=Blclal.

To state the second application, denote by y, a non-degenerate character of the
unipotent upper-triangular subgroup N of G,. A Whittaker model of a G-module
(n, V)isaninjection/: V — Ind(yy; G,, N). The space of Whittaker functionals /
is then dual to the space

Vi.ww = VI{m(n)v —yy(n)v; vin ¥, nin N).
Corollary 6.2 of [KP2] asserts that (at least for n = 2, 3) we have

(n>r - 1)
n’

n 172

dimVyg=— 3 AM), a=

r'n e n-1 (n,r—1) F

In our case r = 2. Consequently we have the following

Lemma 6. (i) Whenn =2,dim(©,, V)y , = 1, and ©, has a unique (up to
a scalar multiple) Whittaker functional. (ii) When n = 3, dim(8,, V,)y.y, =0,
and ©,, has no Whittaker model.

Remark. The proof of the character relation [KR2], Theorem 6.1, is based
on the (global) trace formula. Hence the proof of (ii) is presently complete only for
n =13, For F with |2| =1 a purely local proof of Lemma 6 is given [KP1],
Theorem 1.3.5.

4.6. In (5.1) below we use a special case of the Theorem of [C], which we
record here in a form useful for (5.1), in the notations of (4.5).
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Theorem ([C]). Let m be an admissible G,-module, and h the matrix
diag(h;), with | h;| <|h; 1| (1 2i<n). Then (Ay, Xt(h)) = x;, ;2 (t(h)).

Here r, o7 is an A-module (see (4.4)). The center of 4 is ZAZ it is of finite index
in A. The irreducible constituents of the restriction of 7, g7 to ZA4? are characters.
We use this Theorem in two cases. First, the Theorem, together with (5), implies

Lemma 7. When n=3 and n =0, the restriction of r, ¢© to t(A) is a
multiple of the character which maps t(h), h = diag(a, b, c), to |c/a].

Note that a genuine character of Z42 which transforms on s(Z) according to y is
uniquely determined by its values on ¢(4).

Remark. Lemma 7 can be proven also using [KP1], Theorem 1.2.9(e),
instead of using [C] and the character relation (5).

The second application concerns the case n = 2. Let y;: F*—~C* (i =1, 2) be
two characters of F*. Extend the character (u;,u,): #(§J)—u(a)u(b) to a
genuine character x4 of a maximal abelian subgroup A, of A4,. Extend u to A,N
(trivially on N), and induce (normalizedly) to a G;-module 7(y,, u;). The char-
acter of @ = n(u,, it,) is computed in [F], p. 141: on ¢(4,) we have that Ay, is equal
to a scalar multiple of (u,, 4,) + (4,, #,)- Theorem [C] then implies

Lemma 8. Each irreducible constituent of the restriction of 1, ¢,[7t 1y, 4)] to
t(4,) is isomorphic to the character (u,, 1) or (s, 1,).

5. Restriction to P

Denote by P and P* (D B) the preimages in G of the standard maximal
parabolic subgroups of type (2, 1) and (1, 2) in GL(3, F), and by Uand U* (C N)
their unipotent radicals. Our construction of the explicit realization of © is
accomplished in two steps. In this section we study the restriction of © to P. In
the next section we construct the action of ¢. Since P and ¢ generates G* =
G A (o) we thus obtain the required explicit realization.

5.1. Let y: F—CX be a character as in (1.2), and define a character y, of N
by wy(n) = w(n,, ;). The restriction of yy to the subgroup U of N will again be
denoted by . Since yy is trivial on U™ it defines a character of N* = N/U*,
denoted again by yy.

Embed G, in P by

gO)
g(01'
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Put G,= p~(G,) C P. Since P = ZG,U, we identify below a P-module which
transforms trivially under U and by y under s(Z), with a G,-module. The
analogous convention is applied to P*-modules. Let V, be the P-module of
U-coinvariants of V (see (4.3)).

Proposition 1. (i) As a G,-module, Vy is isomorphic to ©,Q |det |'*. In
particular, s(¥ ) acts as multiplication by |h|.

(ii) As a Gy-module, V- is isomorphic to ©,& |det |~ 4,

(iii) The element s(¢ 9) acts on any Whittaker functional on Vy;as multiplication
by |h|"y(h) "

Proof. (i) By definition (see Lemma 3(ii) of §1), ©® = O; is the unique
irreducible submodule of the induced G;-module (7, 1753). Since the functor r of
coinvariants is exact (see [BZ1), Prop. 2.35), the P-module r,, ;© is a submodule
of ry g(ms,, V3), where M is the standard Levi subgroup of P. The Composition
Theorem (4.4) applies to 7y, ¢7;, with M = Band N = P, and W} ® consists of the
elements w; = id, w, = (23) and w; = (12)(13) = (132) of W;. It asserts that there
is a composition series 0 C ¥, C ¥, C V; = (V) of P-modules (i.e. G,-modules),
where V/V,_, = ip g(w; o s,) (s, 1s defined by Lemma 3(i); w; ° ps, is the B-module
extended trivially on N from A4). Now it follows from Lemma 8 that each
irreducible constituent of the normalized 4A-module of N-coinvariants 7, , °
ip. s(W;ops) (i =1,2,3) 1s acted upon by the element #(h) of the center of 4,
where h = diag(a, b, c)E A4, according to the characters: |c/a| or |¢/b]| ifw; = id
(i=3), |bla) or |b/c| if w,=(23) 1 =2), |a/b| or |a/c| if w;=(12) (13)
(i =1). On the other hand, Lemma 7 implies that ¢(4) acts according to the
character |c/a] on each irreducible constituent of the A-module r, ;0 =
4. m(ri, ¢0). Since the functor of coinvariants is exact, we thus obtain that
Homp(ry, 6O, V3) =0, and that the submodule ry, O of V; is a proper non-zero
P-submodule of the quotient V3/V, = i, 5(ps) (= 7, ® | det | ~V* as a G-module).
However, Lemma 3(ii) asserts that the G,-module 7; has a unique proper
non-zero submodule, which is ©,. Hence ry, ;0 = 0,® |det | =", and

Oy =02 Q@ry 0 =06, |det | <Sin0€5p(s(§ (1)>>=|detg|),

as required.

For the last claim in (i), note that s(* ) acts trivially on ©, by definition of 8,.

Part (ii) is of course analogous to ().

For (iii), note that the G,-module ©, has the following realization (see, e.g.,
[FM] or [F1], Sect. 1, Example). Its space V, consists of all locally constant
functions f: F* — C whose support is compact in F, for which there is 4(f) >0
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and f7: F* —C> satisfying f'(xa®) = |a |~ "f"(x)(x, a in F*) with f(x) = f"(x)
for | x| = A(f). On this space the group G, acts by

0(s(5 1)) 1aan, e:(s(: %)) = 2m@ o,

0., [)-veann.  eis(’ 7))

=cy(x) x| f |y 1" fxy Dy (2xy)dy,

F

for some ¢ in C*. By definition, a Whittaker functional on (8,, V;) is a linear form
L : V,— C which satisfies

L(Gz((l) ?)f— z//(b)f) =0 for all bin F and fin V..

By Lemma 6(i) this functional is unique up to a scalar. Hence it is a multiple of
L(f) = f(1), which is clearly a Whittaker functional. Now

(] 2)LU)=L(s(g 2) 1) = LG®) 1w, k)

= y(h)~ () =y(h)"'L(/)

for every fin V, and A in F*; this implies (iii) by virtue of (i).

Remark. Lemma 7 implies that (0, V) is a multiple of ©,® |det |". To
show that this multiple is one, we use in the proof above the Composition
Theorem (4.4). Alternatively, this can be proven on comparing the exact value of
the character of 6, with that of ©, on the 4 which appear in (5). In the proof
above this comparison is done only up to a scalar multiple.

5.2. Let V; be the kernel of the natural surjection of ¥V on V. Put P’ =
Staby(wy). Then Vy = ind(Vy, ,, ® wy; P, P’U) by [BZ1], Prop. 5.12(d), or [BZ2],
(3.5). Note that

a *
Jp(g ;)=|(detg)/b2| (¢€GL(2,F)) and Jp b = |a/b]|.
0 b

In particular
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Hence

(6) Vo=0}?Qind(Vy; P, P’U), where V, = 312 Q(Vy, ., @ wy).

Proposition 2. (i) The P-module V, is irreducible.
(11) The P’U-module V, is one-dimensional and unitary.

Proof. (i) It suffices to prove that ¥} ,, is one-dimensional, for then it is
irreducible and the proposition follows from Mackey’s theorem (4.2(1)) and (6).
To prove the one-dimensionality, note that Vy ,, = 0, where yy(n) = w(n, » + ny3),
by Lemma 6(ii). Hence U acts trivially on Vy, ,,, and so Vy ,, = Vy ,,. By the
transitivity property of the functor of coinvariants, we have Vy ,, = (Vy+)n*, yy»
where N* = N/U*. By Proposition 1(ii), V',+ is the Weil representation of G, (up
to a twist). Hence Lemma 6(i) implies that dim Vy ,, = 1, as required.

(ii) The one-dimensionality is proven in (i). Since N acts on V| via yy, it
suffices to show that the element

acts on Vy,,, =(Vy+)n+ y, as a/b|y(b/a). Since d4*(s)= |a/b|'?, and the
central character of © is y, the claim follows from

s b =s a s bla -(a, b/a).
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5.3. Let V"= V’(P) be the P-module defined in (4.1) using the P-module V,
and V) the P-module obtained from V. Mackey’s theorem (4.2(iv)) implies that
ind(VyY = Ind((Ap/Apy)V?). By Proposition 5.2(ii) we have V= V. Since
AplApy = A = 6p. = dp on P’, we have ind(V,Y = 6, @ Ind(V)). Hence

(7 V=0 QInd(Vy; P, P'U).

As noted in (4.1), the unitary structure of the P-module (8, V) yields the
following sequence of P-module morphisms:

Vo= V—=V'=V,.
Denote by ¢ the composite morphism from V'to V3.

Proposition 3. (i) The map ¢ is an injection.
(i) We have dim Homp(Vy, V) = 1. In particular, the restriction of g to Vyis a
multiple of the natural inclusion 6}? @ ind(V\) =6}* @ Ind(V,).

Proof. (i) The subspace ker ¢ is U-invariant since it is the orthogonal
complement of V,, and V, is spanned by the vectors v — &(u)v, vin V, u in U.
Hence the claim follows from

Theorem (Howe-Moore [HM], Prop. 5.5, p. 85). Let G be a covering group
of a simple reductive group , and V a non-trivial irreducible unitarizable G-module.
Then no one-parameter subgroup of G fixes a non-zero vector in V.

(i) By (7) and Frobenius reciprocity (see (4.3)), we have

Homp(Vo, Vi) = Hompd(Vo)y, y,» IR V)).

Since the functor of coinvariants is exact we have (Vo)y,,, = Vu,,,- Note that
oV, =Vy,,,. Hence Homp(V,, V5)=C and ¢: V,— V; is a multiple of the
natural inclusion.

Proposition 4. (i) The P-module V} is isomorphic to the space of genuine
functions on X smooth with respect to the action of P defined by (1), (2), (3) in §2.

(ii) The P-module V, can be realized by (1), (2), (3) on the space of smooth,
genuine, compactly-supported functions fon X.

Proof. This follows at once from (6) and (7) and the isomorphism of
X =s(ID\ G, with P’U\ P.

6. Restriction to B

It remains to determine V as a subspace of ¥, and to extend the action of Pto
an action of G* =G X (s) on V.
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Since
[0 -1 0
P=BUPUaB and a=s |1 0 0],
0 0 1

it follows that the action of Bon X = P’U \ Phastwo orbits, Y = {zin X; x # 0},
and X — Y = {zin X; x = 0}. Let Wbe the space of smooth, genuine, compactly-
supported, complex-valued functions on Y. It is a B-submodule of V. In fact Wis
an irreducible B-module, by Mackey’s theorem (4.2(1)), since

W =0\ Qind(V*; B,a-P'U-a-' N B)

and V, is irreducible (see Proposition 2(ii)).

Let W’ = W’(B) be the Hermitian dual (4.1) of the B-module . By Mackey’s
theorem (4.2(iv)), W’ is the space of genuine functions on Y smooth under the
action of B defined by (1), (2), (3); in particular, the support of any fin W is
bounded in the y-direction. We have the following inclusions of B-modules:

WcCcV,CcVCVi=VyP)C W = W/(B).

Fix a square root y( — 1)"? of y( — 1). For any fin W’ define Jf(x, y; {) by the
integral

®) P(— 1)"2p(x) | x|~ 2 f A= x, us Owluy/x)du.
F

It is clear that this integral converges, that J? = Id, and that f— Jf maps Wto W
and W’ to W"°.

As noted in (1.3), since @ is g-invariant there is an isomorphism 7/ : V' — ¥ such
that 16(g) = ©(og)I and I = Id. It is unique up to a sign. We claim that ] is given
on V by the integral (8). More precisely, we have

Proposition 5. (i) The operator J maps V to V. (ii) There is a choice of
I:V —V such that the restriction J | VofJtoVisequaltol.

Proof. The B-module W’ consists of functions on Y = {z€ X; x # 0}. The
subgroup N, ;= U N U* of N acts on W’ according to (2). Hence the only vector
in W fixed by N, ; is the zero vector. On the other hand, for every uin F, we have
that yw(ux) is 1 for a sufficiently small | x|. Hence f€ W’ and
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are equal on a sufficiently small neighborhood of X — Y = {z € X; x = 0}. Conse-
quently

e 1 f—few.

We conclude that N, ; acts trivially on W’/W . In particular, since (W C)V C W,
we have

Homg(VIW, W) =0, Homy((VIWY, W) =0.

Since for any H-modules A, B we have Homy(A, B)> Homy(B’, A’), we also
have that the submodule Homz(W, V/W) of the zero-module Homz((V/WY, W’)
is zero.

It follows that I maps W to W. Indeed, had this been false, the map [
would induce a non-trivial map W — V/W, contradicting the fact that
Homg(VIW, W) =0.

We claim that the restrictions 7 | W and J | W of I and J to W coincide. We
have (I | W)>=1d, and (I | W)B(b) = ©(ab)(I | W) for all bEB. By (1.3) we
have

gls b =s bt - (a, be)(b, ¢),
0 c 0 a!

and o(g)=(—1,det p(g))a(g) (gEQG).

Consequently, it is easy to check that (J | WB(b) = B(abX(J | W) forall bin B,
and that J2 = Id. Since W is an irreducible B-module, we have I | W =J | W, up
to a sign. Hence we can choose I such that I | W =J | W, as claimed.

It now follows that J | V — I defines a morphism V/W — W’, necessarily zero
since Homg(W, V/W) = 0, and the proposition follows.

Finally we prove the
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Theorem. (i) Thespace V isisomorphic to C,(X)°. The G*-module (8, V) is
equivalent to the G*-module defined by the operators (1)-(4) on the space C,(X)°.

(ii) Thereis a unique (up to scalar) Hermitian scalar product on the unitarizable
G-module (8, C,(X)°). It is given by the L*-product.

Proof. (i) The space V is realized in Proposition 3(i) as a subspace of V.
Moreover, we have the inclusions V,= ¥ < V. By Proposition 4(i), V}is the space
of genuine, smooth, complex-valued functions with bounded support on X. The
subspace ¥, of V consists, by Proposition 4(ii), of the compactly-supported fin
V4. By definition (in (5.2)) of V, as ker(V — Vy), the space V consists of the fin V3
such that f = fmod V,lies in V,. Proposition 1(i) asserts that V', = ©,® |det | .
In particular, for every fin ¥ and ¢ in F*, the vector

r? 0
[t]7'0 |s £ =1t
0 0 1

is zero in V/Vy=6,|det |

Hence for every f in V there is A,>0, and ¢ (0<c<}), such that
|t f(t2x, t?y; ) = fix, y; {) for max(|x|, |y|)=A;and ¢ = [t] =1 (note that
this domain of ¢ is compact, and fis locally constant). But then this relation holds
forall twithO < |¢| = 1. Define f; on X by fo(x, ¥; &) = |t | flt*x, t*y; {) for t such
that |£|2 max(|x|, |y |) £ Ay Then f; lies in C,(X).

We conclude so far that, for every fin V, there is f; in C,(X) and A;> 0 such
that f(x, y; {) = fo(x, y; {) for max(|x|, |y |) = A,. Proposition 1(i) then implies
that the function f; lies in the unique irreducible G,-submodule C,(X)°
(=6,Q |det |'*) of C,(X). This determines the space V of 8 to be C,(X)°, as
asserted. The action of P is described by Proposition 4(i), and that of ¢ by
Proposition 5. Since P and @ generate G *, (i) follows.

(i) By Proposition 3(ii), we have dim Homp(V,, V) = 1. Since V’= Vg, the
space Homp(V,, V") is a subspace of Homy(V,, V), necessarily one-dimensional.
Consider the map Homp(V, V')— Homp(V,, V), obtained by restriction from V
to V,. Its kernel is Homp(V/V,, V’). Now V/Vy= Vy, and U acts trivially on V.
On the other hand, the only vector in W’, and in particular in ¥/ (C W’), which is
fixed by U, is the zero vector. Hence Homy(V, V’) injects in Homp(V,, V?), and it
is one-dimensional. The L3-product on ¥ yields a P-invariant Hermitian form on
V, hence a non-zero P-module morphism i ;: ¥ — V’. The unitary structure on V
yields a non-zero morphism j: V— V’ of G-modules. In particular j is a P-
module morphism. Since dimt Homp(V, V') = 1, the morphism j is a multiple of
the morphism i, as required.
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