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General  introduction 

Suppose that n = ~nv and re' = Qn~ are discrete-series representations of  the 
adele group GL(n, A) over a number field F. The rigidity theorem for GL(n) of  
[JS] asserts that if n~ is equivalent to n'  for almost all places v o fF ( tha t  is, with at 
most finitely many exceptions), then nv is equivalent to n' for all v. For other 
reductive connected F-groups G such an assertion is often false, but one hopes 
that the following form of the global rigidity conjecture is correct: Given an 
automorphic n = @n~' and a finite set V of places of F, there are only finitely 
many automorphic n' = ~ n" with n~' equivalent to n~ for all v outside V. This is 
related to the notion of "packets", defined in Chapter IV in a special case. 

The trace formula suggests a possible proof  of  such a global rigidity conjecture, 
for a group G whose automorphic representations can be compared, by means of  
lifting, with those of  another group G', for which the rigidity theorem is known. 
Presently this implies that G' has to be GL(n), or a group which has already been 
compared with GL(n) by such a method. Our aim in this work is to establish in a 
general framework several tools required in such a proof, and employ these tools 
in two special cases. We obtain detailed information on the representation theory 
of  (1) inner, and (2) outer, forms of  GL(n), namely (1) multiplicative groups of  
simple algebras, and (2) unitary groups. 

Our plan is to obtain an identity of  trace formulae for matching functions on G 
and G', and by means of  a transfer of  spherical functions (established in [Sph] in 
the case considered in Chapter IV) to reduce the question to one in local 
harmonic analysis. Indeed, after a suitable reduction the identity of  trace 
formulae yields an identity of  traces of  representations of  the local groups G~ and 
G'. An important step towards the proof of  the global rigidity conjecture becomes 
the local rigidity conjecture: Suppose we are given a certain identity relating 
traces of  G~'-modules with traces of  G~-modules for matching functions, see 
Chapter II, w If on the side of  G' there occur only finitely many irreducible 
tempered local G'-modules, then on the side of  G there appear only tempered G- 
modules, and they are finite in number. 

There are four Chapters in this work, denoted by I, II, III and IV. In Chapter I 
we present adelic and local fundamental tools of  harmonic analysis on the group. 
This is given in a general twisted setting required for the applications of  Chapter 
IV. We omit the proofs of those twisted analogues which are immediate adap- 
tations of  proofs existing in the literature, and record only those proofs which are 
new. Some of these tools are: 

(i) The simple trace formula of Deligne-Kazhdan, for a wider class of  test 
funct ionsf  = ~)f~ than usual. We require f r o  have a discrete component (in A (G) 
of  [K]) in addition to a supercuspidal component, but we do not require f r o  have 
a component supported on the regular elliptic set. This is essential for the 
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applications of Chapter III concerning the Deligne-Kazhdan correspondence. 
The case of G = GL(n) is given in [FK]. 

(ii) Kazhdan's density theorem in the twisted case. The proof of [K, Appendix] 
is based on the simple trace formula. In the general twisted case we cannot use the 
simple trace formula since cr-invariant supercuspidal representations may not 
exist. For example, suppose that or(g)= tg-~ as in [Sym]. Then there are no 
tr-invariant supercuspidal PGL(3, Fv)-modules if Fv is a local field of odd residual 
characteristic, hence no cr-invariant automorphlc PGL(3, A)-modules with a 
supercuspidal component i f F  is a function field of odd characteristic. To extend 
the proof to the twisted case we use (a special case of) the general trace formula of  
Arthur [A] (and [CLL] in the twisted case). Lemma 4, which shows that a pair 
(T', G'), where T' is a torus in a local group G', can be "lifted" to a pair (T, G) 
consisting of a torus T in a group G over a global field, was suggested to me by D. 
Kazhdan. 

(iii) Lifting orbital integrals of a function on a Levi subgroup of  G to orbital 
integrals of  a function on G. This is a new result. Its proof is based on the trace 
Paley-Wiener theorem of [BDK] (the proof in the twisted case follows closely 
that of [BDK] in the connected case), and a suitable "representation theoretic" 
decomposition of the Hecke algebra, using (a twisted analogue of) the geometric 
lemma of [BZ; (2.12)]. 

(iv) The Howe [Ho], Harish-Chandra [H] theory of characters (in characteris- 
tic zero; detailed proofs of the Theorems of [HI are recorded in [C1] also in the 
twisted case). 

(v) Kazhdan's theory [K] relating characters and orbital integrals is recorded 
here in the twisted case. The only non-immediate change in the adaptation of the 
proof of [K] to the twisted case is that the density theorem of [K] has to be 
replaced by that of  (ii) here. 

(vi) The theory of  [BZ], [C], [S] concerning exponents of  modules of  coinvar- 
iants. 

In Chapter II, we use the tools of Chapter I and basic definitions of stable 
conjugacy to present a general technique which reduces the local rigidity conjec- 
ture' to several Assumptions, which amount to matching orbital integrals. The 
inductive arguments of Chapter III, w show that the crucial case is that of  
functions in the elliptic (or discrete) class A(G) of [K] (and [BDK]) (cf. (iii) 
above). The technique is suggested by our joint work with D. Kazhdan on the 
metaplectic correspondence [FK]. It replaces ad-hoc arguments which were used 
in the study of liftings in some low rank cases. 

The general approach which is espoused in Chapters I and II (as well as [K], 
[K"], [F], [FK], [Sph]) is that the study of orbital integrals - -  which has been hard 
so far when buildings' combinatorics or germ computations were used m can be 
reduced to the more accessible study of characters. This is the approach used in 
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Chapters III and IV. It is used, for example, also in our joint work [Sym; V] with 
D. Kazhdan to carry out the unstable transfer of  orbital integrals of  spherical 
functions in the case of the symmetric square lifting. 

In the second half (Chapters III and IV) of the work we use the techniques of 
Chapters I and II in two special cases, independent of each other, to obtain lifting 
theorems. In Chapter III we give a new proof of the Deligne-Kazhdan correspon- 
dence (cf. [DKV]) relating the local and adelic representation theories of  the 
multiplicative group of  a simple algebra of  rank n central over F o n  the one hand, 
and GL(n, F) on the other. In particular we verify in Chapter III all the 
Assumptions of Chapter II, in our case. The assumptions of  Chapter II, w on the 
elliptic set, are verified in Chapter I, w directly, using the relations between 
orbital integrals and characters. Then in Chapter III, w we match orbital 
integrals in general, proving in particular the assumptions of  Chapter II, w by an 
inductive argument, involving the main local lifting theorem of Chapter III, w 
and the trace Paley-Wiener theorem of [BDK]. 

In Chapter IV we consider a quadratic extension E/F and study the stable base- 
change lifting from a unitary group U(n) in n variables with respect to E/F, to 
GL(n, E). We define tempered packets, for U(n) locally, and also global packets 
for a compact form of the unitary group. We also establish the local and global 
rigidity theorems in these cases. Our only assumptions ar e those of Chapter II, w 
They can be checked for n = 3 by standard techniques (see, e.g., [Sym; I]). Our 
usage of the "regular" functions of [Sph] eliminates the need to study those terms 
in the trace formula attached to singular conjugacy classes. A detailed description 
of the results is given in w 1 of Chapter IV. 

I am deeply grateful to David Kazhdan for his constant interest, constructive 
criticism, and instructive conversation. Much of what is new here I learned from 
him. This work is based on a course at Harvard University, Fall 1985, where we 
first explained [BZ] and some of [BZ'], then [BD] and some of  [BDK], [HI and 
[K], terminating with the present work. This still seems to me to be a recommend- 
able path to the heart ofp-adic representation theory. Of  course, on first reading 
it is better to assume that G is connected. The non-connected generalization is 
required for Saito-Shintani base-change and other lifting problems, as in Chapter 
IV, [Sym], [U(3)], etc. 

Chapter I. Harmonic Analysis 

w Conventions 

Let F be a global field of characteristic zero with a ring A of  adeles; the 
completion o f F  at the place v is denoted by Fv. Let G be a reductive group over F; 
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this is often identified with its group of  F-points, where F is a fixed algebraic 
closure of F. Put G (K) for the group of  K-points of G, for any extension K of  F.  
We put G for G(F), Gv for the group G(Fv) of Fv-rational points on G, and G(A) 
for the group of adele points; these conventions apply to any F-subgroup of  G. 
We do not assume that G (by abuse of  language from now on we use the symbol 
G) is connected. Its connected component (of the identity) is denoted by G~ it is 
a normal subgroup, and the quotient G/G ~ is finite. The other connected 
components are denoted by G i (i >= 0). For example, i f Z  is the center of  G ~ we 
have Z, Zv and Z(A). 

An F-subgroup P of  G is called here parabolic i f P  ~ is an F-parabolic subgroup 
of  G ~ and p/po is isomorphic to G/G ~ Note the last condition, which is not 
standard. Denote by N the unipotent radical of  P. It is equal to the unipotent 
radical o f P  ~ Fix a minimal parabolic subgroup Po = MoN0, and its Levi subgroup 
M0. Unless otherwise specified, we consider only standard P, which contain P0. 
By a Levi subgroup M of P we mean the one which contains M0. Its connected 
component M ~ is a Levi subgroup of  pO, and M / M  ~ ~--p/po~ G/G o. Then 
P = MN, and N is normalized by M. 

It is illuminating to consider an example. Let G be the semi-direct product of  
G O = GL(3), and the group { 1, tr}, where tr is the automorphism o f G  ~ mapping g 
to f g - i  j ,  Here J = (&,,~_~), and 'g is the transpose of  g. If po is the upper 
triangular subgroup of  G ~ then P0 -- Po ~ • (or) is parabolic. But i fP  ~ is a parabolic 
subgroup o fG ~ of  type (2, l), then P = p0 X (tr) is not a parabolic subgroup of  G, 
since it is not a subgroup. 

Let Fbe  a local or global field of  characteristic zero, and L(G) the Lie algebra of  
G ~ For x in G O • ~r, consider the polynomial det[(t + 1 - Ad(x)) [ L(G)] in t. Let 
d be the degree of the first non-zero power of  t in this polynomial. It is called the 
rank of G o • o. Denote by D(x) the coefficient of  t d. Then x is called regular if 
D(x) ~ O. It is then semi-simple, and its centralizer Z(x) in G O is a toms. A 
semi-simple x is called elliptic if the center of Z ( x ) Z / Z  (if F is local), or Z(x,  A)/ 
Z(x)Z(A) (if F is global), is compact. Z is the center of G ~ I fx  is elliptic regular, 
then Z(x) is an elliptic torus of  G ~ 

Let Z0(A) be a closed subgroup of  Z(A) such that Z0(A)Z is closed and 
Z(A)/Zo(A)Z is compact. Suppose that Zo(A) = rL Zov, where the product extends 
over all places v of  F. Put Z0 = Z0(A) N G. 

Fix a character 09 of  Zo(A)/Zo; its local components are denoted by to~. We now 
fix a place v, and omit v from the notations until the end of  this w Let C(G) be the 
space of  complex-valued functions on G which transform under Z0 by to-  I, which 
are compactly-supported modulo Z0, smooth if v is archimedean and locally- 
constant if v is non-archimedean. 

Since our main interest is in orbital integrals, and the orbit under G O of an 
element x in a connected component G i of  G is contained in G ~, we restrict our 
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attention from now on to f i n  C(Gi). This entails no loss of generality, as any f i n  
C(G) is the sum over the connected components G ~ of G of the restriction of f to 
G ~. Recall that G is the semi-direct product of G o and the finite group G/G ~ Thus 
our G i is a coset G o • a. For our study it suffices to replace G by its subgroup 
G~ whose quotient by G o is the cyclic group (a) generated by a. Thus from 
now on we assume that G is of this form. In particular, its parabolic subgroups are 
of the form P = p0:~ (a),  where aP ~ = P~ Further, from now on the notation f i n  
C(G) will mean that f i s  supported on G~ o'; we deal below only with such f .  
Assume that Z0 contains the subgroup Zoo = {za(z -'); z in Z) ,  and that o3 attains 
the value one on Zoo. 

Fix a Haar measure dy on G~ For every x in G let ZG(x) be the centralizer of 
x in G ~ Fix a Haar measure dx on ZG(x)Z/Z such that if ZG(x) and Za(x') are 
isomorphic then dx and dx, are equal. The orbital integral of f a t  x is defined to be 
the integral 

= : f(yxy-L)dyldx. O(x, f) 

It is taken overy  in G~ it depends on the choice ofdy and dx. The orbit of 
a regular element x in G is closed; hence ~,(x, f )  converges for a regular x for a l l f  
in C(G). Moreover, ~ ( f )  converges for f i n  C(G) at any x in G by [Rao]. At a 
regular x in G we shall also consider the integral '~( f ) ,  defined on replacing Za(x) 
(in the definition of  ~(x,  f ) )  by the split component in the center of Za(x). 

Let F be local, x = su = us the Jordan decomposition of x in G into semi- 
simple and unipotent elements s and u, Z(s) the centralizer ofs  in G ~ L(Z(s)) its 
Lie algebra and L(G) the Lie algebra of G ~ Put 

A(x) = I det((1 - Ad(s))iL(G)IL(Z(s))}[ 112, 

and 

F(x, f )  = A(x)~(x, f ) ,  'F(x, f )  = A(x) 'O(x, f )  (for regular x). 

For example, if G = GL(n, F), and x~, x2 . . . .  are the distinct eigenvalues of x in 
G, then 

A(x)= ,~s(x,-xs)2 ,/2/ Idetxp "-~ 

If (1) E is a cyclic extension of F of  degree l and a is a generator of the galois 
group GaI(E/F); (2) G" is the semi-direct product G';~(a) of the group 
G ' =  Rese/rG obtained from G upon restricting scalars from E to F, and 
GaI(E/F); and (3) x lies in G'(F) ( ~-- G(E)), then A(x • a) (with respect to G") 
equals A(Nx) (with respect to G), where Nx is an element of G which has the same 
set of eigenvalues as xa(x) .   9  9 a I- '(x). 
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Let P = MN be an F-parabolic subgroup of  G, and K a maximal compact 
a-invariant subgroup of G o with G = K P .  For m in M put 6 e ( m ) =  
I det Ad(m)IL(N)I,  and for f i n  C(G) put 

fu(m)=c~P(m)l/2$ f f(k-~mnk)dkdn" 
N K 

fu depends on N, but its orbital integral at an element m of M regular in G 
depends only on M. Indeed, a standard computation (see, e.g., [FK], w shows 
that F(m, f )  = F*t(m, f~-) for such m, where F ~t is the orbital integral, multiplied 
by A~t-factor, with respect to M. Note that fu lies in C(M); in particular, it is 
supported on M ~ • a, s incef  lies in C(G). Denote by J(G) the space o f f  in C(G) 
such that F(g, f )  = 0 for every regular g in G. Put C(G) = C(G)/J(G). The image 
offN in C(M) will be denoted b y ~ t  since it depends on the Levi subgroup M but 
not on the unipotent radical N. 

w Automorphic forms 

Let F be a global field. At each non-archimedean place v o f F  denote by Rv the 
ring of integers in F,., and by K,. a special maximal compact subgroup of G ~ 
Suppose that K,. is a-invariant. At almost all v we take K~. = G~ Fix a product 
measure dx = 2 | dxv on G(A)/Zo(A), so that the product of  the volumes 
I1(,,/1(,, N Zo,. I converges. Let f = ~ f .  be the product o f f .  in C(Gv) over all v, 
where at almost all v the component f, is the function ~ which is supported on 
ZOO,, • a, and attains the value [K,./K,, n Z0,. [- 1 on Kv • a. Denote by C(G(A)) 
the space spanned by all such functions f.  

Denote by L(G) the space of  functions qJ on G \ G(A) which transform under 
Z0(A) by co, and are slowly increasing (see, e.g., [BJ]) on GZ0(A)\ G(A). Let r be 
the representation of  G(A) on L(G) by fight translates, The operator r ( f )  on 
L(G) which maps ~, to (r(f)~u)(x)~-ff(y)~u(xy)dx (y in G(A)/Zo(A)) is an 
in~tegral operator on G \ G(A)/Zo(A) with the kernel K(x, y) = Z f ( x -  17y) (? in 
a / Zo). 

An irreducible subspace V of L(G) is a unitary G~ n ~ which is 
called automorphic. It is the restricted direct product n o =  ~ n  ~ of  irreducible 
G~ n ~ which are almost all unramified, namely have a K~-fixed vector 
(which is unique up to scalar multiples). All n o are admissible and unitary. Recall 
that a G~ namely a representation n o. G O ~ Aut V of G O in a complex 
space V, is called smooth (or algebraic) if for every v in Vthe group o f x  in G O with 
n~ = v is open in G ~ and admissible if in addition for any open subgroup U o f  
G o the space V U of U-fixed vectors is finite-dimensional. Theorem 3.25 of  [BZ] 
asserts that a smooth G~ of finite length is admissible. 
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When G is Gv or G(A), a G~ n ~ is called tr-invariant i f ' n  ~ = n ~ where 
tr(x) = axa-~ and ~176 = n~ The restricion n o o f  a G-module n to G O is 
tr-invariant since on~ = n(a)n~ - i. On the other hand,  an irreducible 
tr-invariant G~ n ~ extends to a G-module by putting zt(a) = A; A is an 
interwining operator with ~n~ = An~ i (x in G ~ whose order is equal to 
the order I or tr (by Schur's lemma A; is a scalar which we normalize to be 1). 

For an automorphic  G(A)-module (n, II) we~define the operator n ( f ) =  
f f(x)n(x)dx on V, where dx is the Haar  measure on G(A)/Zo(A) fixed above. By 
definition the space V of  n is spanned by vectors ~ is a vector in the space of  
n~, which is K~-invariant for almost all v. Since n ~ is a-invariant ,  nv(tr)~v = ~v for 
almost all v. Hence for almost all v the operator n~(f~ ) is the projection on the 
one-dimensional subspace of  Kv-fixed vectors, and its trace tr zt~(3~~ ) is 1. Hence 
almost all factors in the product t r n ( f ) = I I ~ t r n v ( f ~ )  are equal to one. I f  
~ = r(a)Vis not equivalent to V, the operator n ( f )  = f f ( x  • a)n~ (x 
in G~ has trace equal to zero. 

A function V in L(G) is called cuspidal if  for any proper F-parabolic subgroup 
of  G O (not G) with unipotent  radical N, the integral f ~u(nx)dx over N \ N(A) is 0, 
for any x in G(A). Let ro be the restriction o f  r to the space Lo(G) of  cuspidal 
functions. The space Lo(G) is the direct sum of  irreducible spaces n ~ which occur 
with finite multiplicities m (n~ The operator  r0(f) is of  trace class, and 

(2.1) tr ro(f) = Y, m(n) t r  n ( f ) .  

The sum is over the equivalence classes of  the n o in Lo(G) which are a-invariant  
and extend to G(A)-modules n. Here we use the assumption that f lies in 
C(G(A)), namely it is supported on G~ X tr. The sum is absolutely convergent, 
and each n on the right is unitary. 

The elements x,  x '  of  G are called (stably) conjugate if  there is y in G O (resp. G ~ 
with x '  = Ad(y)x ( = yxy-~). Here F c a n  be local or global. The conjugacy classes 
within the stable conjugacy class o f x  in G are parametrized by the set B(x, F) = 
G O \A  (x/F)/Zao(X), where A (x/F) is the set o f  y in G o with [Ad(y)](x) in G, and 
Zc(x) is the centralizer o f x  in G ~ The map 

defines a bijection 

x ~ {r - - y ,  = y - I r ( y ) ;  ~ in GaI(F/F)} 

B(x/F) ~-- ker[Ht(F,  Z ~ ( x ) ) ~  HI(F, GO)]. 

Recall that Ht (F ,  A) means H~(Gal(zC/F), A(F)). Thus, given x,  any x '  stably 
conjugate to x determines an element in B(x/F), and x '  is actually conjugate to x 
i f  and only i f  it determines the identi ty in HZ(F, Zoo(x)). When F i s  global, we also 
define B(x, A) (resp. B(x/AW)) to be the pointed direct sum of B(x/Fv) over all v 
(resp. v ~ w). 
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w Trace formula 

Notations as in w Let u be a place of F. The function fu in C(Gu) is called 
supercuspidal if for any Fu-parabolic subgroup of G O (not G~) with unipotent 
radical N~, the integral f f~(xny)dn over N~ is 0 for any x, y in Gu. 

L e m m a .  I f  f has a supercuspidal component at u, then r 0 c) vanishes on the 
G(A)-invariant complement of Lo(G) in L(G). 

Proof.  Put N for N(A), PG for G(A)/Zo(A). Then 

f (r(f)9')(nx)dn = f f f(y)9'(nxy)dydn 
N\N N\N PG 

= f f [.~Nf(x-in-l'J2)~'g(Y)] dJ]dn 
N\N N\PG 

N\PG N\N 

N\PG N 

The order of integration can be changed since the second integral above is 
absolutely convegent: fhas  compact support on PG, and N \ N is compact. The 
lemma follows. 

Remark .  The Lemma implies that tr r0(f) = tr r(f)  for such f. 

Let F be a global field of characteristic zero. 

Proposi t ion.  Let C = 17 Cv be a compact subset of G(A) with Cv = G~ for 
almost all v. Then there are only finitely many regular conjugacy classes in G(A) 
wi(h a representative in G which intersect C non-trivially. 

Proof.  We deal only with the case of a connected G. Fix a faithful represen- 
tation of G in GL(n, F) for some n. Thus we can define a map G(A) -~ A"-l • A • 
by mapping x to the ordered set of coefficients in its characteristic polynomial. 
The image of C is compact; that of G is discrete; hence there are only finitely 
many semi-simple conjugacy classes in GL(n, A) with a representative in G which 
intersect C non-trivially. Now two semi-simple conjugacy classes in G which are 
conjugate in GL(n, A) are conjugate in GL(n, F). The Theorem of [St], p. 102, 
asserts that a conjugacy class of GL(n, F) intersects G in only finitely many 
conjugacy classes of G. However, by definition (see w a G-conjugacy class with 



144 Y U V A L  Z. FLICKER 

a representative in G is a stable conjugacy class. IfTa is a stable conjugacy class in 
G, then there exists a finite set V of  places of F such that 7~ intersects G~ at 
most at one conjugacy class for all v outside V. This 7a is contained in a stable 
conjugacy class 7A, and 7A is the product over all v of stable conjugacy classes ~,~ in 
G~. Since 7~ consists of  finitely many conjugacy classes for all v, 7~ consists of  only 
finitely many conjugacy classes in G which intersect C, as required. 

The non-connected case reduces to the connected case whenever there is an 
injective norm map, for example in the cases of  base-change and the symmetric- 
square. 

Suppose that f i s  as in the Lemma, and it vanishes on the conjugacy class in 
G~ of any 7 in G which is not elliptic regular. Then using the Lemma we have 
that r ( f )  is a trace class operator, whose trace is the integral of  its kernel over the 
diagonal, namely 

tr r( f )  = 
G(A)/Zo(A)G 

(3.1) = E f f(x?x-I)dx 
G~ ') 

= Z (I Z(7, A)Z(A)/Z(7)Zo(A)I/[Z(7)" Z(7)])O(7, f ) .  
{7) 

Z(?) (resp. Z,(7)) is the centralizer of  7 in G O (resp. G~ {7} is the set of 
conjugacy classes of  elliptic regular elements in G O • a/Z, due to our assumption 
on f .  Each of the integrals in (3. l) is absolutely convergent, and the sum is finite 
by the Proposition. We conclude 

Corollary. Suppose that u, u', u" are places of  F with u v~ u', f~ is a 
supercuspidal function, the orbital integral of  ~, vanishes on the regular non- 
elliptic set of  Gu,, and f~, vanishes on the singular set. Then (2.1) is equal to (3.1), 
where the sum of(3.1) is finite. 

Proof. The Proposition implies that iff(xTx- 1) ~: 0 for x in G0(A), then 7 lies 
in one of finitely many regular conjugacy classes ( -- orbits). Suppose that 7 lies in 
such a regular non-elliptic class. Then the invariant distribution (I)(7):h 
(I)(},, h) on C(Gu,) vanishes at f,,. Let Co(G.,) be the span of  the functions h - h g, h 
in C(Gu,), g in GO,. Denote by Co(G,,)~ (resp. C(G,,)~) the space of restrictions of  
the elements of  Co(Gu,) (resp. C(G.,)) to the orbit of  ~,. The uniqueness of  the 
G~ measure on the orbit of  7 means that any distribution on 
C(G,,)JCo(G.,)~ is a scalar multiple of  (I)(7). Thus C(G,,)JCo(Gu,)~ is one-dimen- 
sional, and Co(G,,) is the kernel of  (I)(?). Hence there are hi, gi as above (hi in 



RIGIDITY FOR AUTOMORPHIC FORMS 145 

C(Gu,), gi in GO,), so that f~, = 2 i (hi - h,~,) (finite sum over i) on the orbit of~,. We 
may choose hi to be zero outside a small neighborhood of  the orbit of  7. 

Replacing in f t h e  component fu, by f ~ , -  Zi (hi - h,g,) will not change the side 
(2.1) of  the trace formula, since t r z ~ ( h g ) = t r n ( h ) .  On the other hand, the 
function f n o w  vanishes on the orbit of  7, but its values on all other conjugacy 
classes with a rational representative do not change. Consequently we may 
assume that i f f ( xTx -~ )  ~ O, then 7 is elliptic regular. The corollary follows. 

R e m a r k  (1). The fact thatf,, is permitted to be any function whose orbital 
integrals vanish on the regular non-elliptic set of  Gu,, and it is not assumed that it 
is supported on the elliptic regular set, is fundamental for the applications of  
Chapter III. 

R e m a r k  (2). Supercuspidal functions are obtained as linear combinations 
of  matrix coefficients of  supercuspidal representations. In the twisted case, 
however, there may not exist tr-invariant supercuspidal G-modules; this is the 
case when the residual characteristic o f F  is odd, in the example of  the symmetric 
square specified in w 1. Then the condition at u cannot be made. However, for 
local applications such as those of  the next section, we use a different form of the 
Corollary, based on Arthur's work. By the rank of  G we mean the dimension of  
the quotient, by the split component of  a maximal tr-invariant torus in Z,  of  a 
maximal tr-invariant split torus in G. 

Corollary 1. Let  f =  Qfv  ( f  in C(Gv) for  all v) be a funct ion whose 
components at ui (0 < i <-_ r), where r > rk G, are supported on the elliptic regular 
set o f  Gu,, and 4~, is zero on the x in G ~ • tr for  which there are g in G ~ and  z ~ 1 in 
Zu, with g x g -  ~ = zx .  Then 

(3.2) Y, I Z(7, A ) Z ( A ) / Z ( 7  )Zo(A) I @(7, f )  = Y, c~ tr n ( f ) .  

The sum over {7} is finite. It ranges over the conjugacy classes o f  regular x in G 
which are elliptic at the ui. The sum over n is absolutely convergent. It  ranges over 
automorphic G(A)-modules.  The c, are complex numbers.  

P r o o f .  The assumption at u I alone implies that the sum Z Jr of  [A] is 
equal to our sum over {7}. It is finite by the Proposition. The sum Z Jx ( f )  of [A'] 
consists of  integrals of  logarithmic derivatives of  intertwining operators acting on 
induced representations. As the degrees of  the derivatives are at most rk(G), our 
r + 1 assumptions imply the vanishing of  all integrals. There remains a discrete 
sum of irreducible representations rt whose components at ui are elliptic. The c~ 
are integral and positive for cuspidal ft. 
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w Density 
Let Fbe  a local field of characteristic zero, and G = G~ a reductive group 

over F, as in w 1. The following is a twisted analogue of Kazhdan's [K, Appendix] 
density theorem. 

P r o p o s i t i o n .  Let f be a function in C(G) such that tr re(f) = 0 for all 
admissible irreducible G-modules ft. Then O(x, f )  = 0 for all regular x in G. 

R e m a r k .  Consequently J(G) (defined in w consists of  all f i n  C(G) such 
that tr rt(f) = 0 for every G-module zc. 

P roof .  In the proof, we denote F, G ~  by F', G '~  '. Due to the integration 
formula F(x,  f ' ) =  FM(x, f~) (w we may assume that there exists an elliptic 
regular element x0 • tr in G '~ • a with ~(x0 • tr, f ' )  ~ 0, and that its centralizer 
T' in G '~ is an elliptic torus over F' which splits over the galois extension F" ofF'.  

We first prove the following 

L e m m a .  Let F' be a local field, G' a reductive group over F', T' a (maximal) 
torus o f  G' over F', and F" a galois field extension o fF '  such that T' and G' split 
over F". Then there exists a galois extension E /F  o f  global fields such that at a set 
o f  places w o f f  o f  cardinality at least two we have Fw "" F', Ew = E | F~ "~ F", 
Gal(EJFw) ~ F, where F = Gal(E/F), and a pair ( T, G) consisting of  a reductive 
group G and a torus T over F with G(F~) ~-- G', T(Fw) "~ T' (all w), such that G(F) 
is dense in Gw = G(F~) and T(F) in Tw = T(F~). 

Proof .  It is clear that there exist E and F with the required properties. Once 
(T, G) is found, since the set of  w has cardinality at least two it follows from [CF], 
middle of page 361, that (T(F), G(F)) is dense in (T~, Gw). Now, it is well known 
(see [Se], p. III-1; also S6m. Grothendieck, Exp. VI, Cat~goriesfibr~es et descente, 
1961), that i f K / k  is a galois field extension, A is a torus in an algebraic group H, 
both defined over k, then the set of  K/k-forms of (A, H) is parametrized by the 
first cohomology group H~(Gal(K/k), AutK(A, H)) of Gal(K/k) in the group 
AutK(A, H) of  automorphisms of  the pair (A, H) over K (Autr(A, H) consists of  
automorphisms of H over K which map A to A). The group A (K) of K-points of  A 
injects as a normal subgroup of Autr(A, H); denote the quotient by Wr. 

Let (A, H) be a pair consisting of a reductive group H over F with H(Ew) ~-- 
G'(Ew) and a torus A of H over F with A (Ew) ~ T'(Ew). We have 

O - ' A ( E ) ~  Aute(A, H ) ~  We ~ 0  

0 --- A (E,) ~ Aute.(A, H ) - -  We. ~ 0 

Since A(E) is normal in Aute(A, H), by [Se], Prop. 38, p. 1-6, we have the 
associated commutative diagram 
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We r ---H'(F, A(E))-,H'(F, Aute(A, H)) ~ H'(F, We) 

W r. ~ H'(F, A (Ew)) -~ H'(F, Aute.(A, H)) L~ H,(F, We.). 

The Tate-Nakayama theory [Ta] implies that g is surjective. 
The pair (T', G') is determined by an element aw in H'(F,  AutE.(A, H)). To 

produce a pair ( T , G )  as required we have to find an element a in 
H~(F, Aute(A, H)) whose image under ~ is aw. Put fl = Pw(aw); it can be regarded 
as an element of H'(F,  We). As in [Se], denote by ~A the torus determined by the 
cocycle a~; since it depends only on fl, we denote ~A by ~4. For each 7 in 
H~(F, We) there exists an element A(7) in H2(F, r4(E)) (constucted in [Se], 
p. 1-70), such that 7 lies in the image ofp  if and only irA(7) -- 0 (see [Se], Prop. 4 l, 
p. 1-70). Also, for each 7, in H'(F,  We.) there is Aw(7~) in H2(F, y A (Ew)) such that 
~,w lies in the image of  p~ if and only if A~(7~) = 0. The Tate-Nakayama theory 
[Ta] implies that H2(F, ~A(E)) and HE(F, ~l(E~)) are isomorphic as groups. By 
their construction (in [Se], p. 1-70), A ----- Aw. Since fl = p~(a~), we have A~(fl) = 0, 
hence A(fl) = 0, and fl lies in the image o fp .  By [Se], Cor. 2, p. 1-67, the inverse 
image by pw o f f l  is the quotient of H~(F,~4(E~)) by Im w r ,  and p-~(fl) is 
H~(F, pA(E))/Im W r. The Tate-Nakayama theory [Ta] implies that the map 
HI(F, ~ (E)) -~ H'(F,  pA (E~)) is surjective. Hence there is ct in HI(F, Aute(A, H)) 
with ~(a) = a , .  The pair (T, G) determined by a has the required properties, and 
the lemma follows. 

Let E/F be a global field extension, and (T, G ~ a pair defined over F with the 
properties specified by the Lemma. In these notations T~ = T' is the centralizer 
Z~(xo • a) of x0 • a in G ~ T -- T(F) is dense in Tw, and G = G(F) is dense in 
G~. Hence the centralizer Za2xo(Tw) of  Tw in G o X a is equal to the centralizer 
Z ~  xo(T) of  T in G ~ • tr, and contains the centralizer Zcoxo(T) of T in G o X a as 
a dense subset. Choose x • tr in Z~oxa(T ) sufficiently near x0 X g so that T is 
Zoo(x X g) and ~(x  • a, f~) ~ 0. Here we denote our local func t ionf '  byf~. 

The Tate-Nakayama theory [Ta] implies that the natural homomorphism 
It'(F, T)~ H'(A ~, T) is an isomorphism, where T = Zco(x X a) is a torus and 
H'(A w, T) is the pointed direct sum of the groups H~(F,, T) over all places w § v. 
Ifx' X ~r is an element of  G which is stably conjugate to x X a in G, for some place 
v, namely x • g and x '  X g are conjugate in G ~ then they are conjugate in G~ ') 
where F '  is a finite extension o f F ,  and hence in G~ consequently they are stably 
conjugate in G ~ I fx '  • a is an element o fG  ~ X cr which is conjugate to x X g in G, 
for all v ~ w, then it determines the identity element in HX(A ~, T), hence in 
H'(F, T), and hence it is conjugate to x X g. 

Let V be a finite set of  places of  F where T is elliptic, of  cardinality larger than 
the rank of G, not including the place w of the proposition. At each v in Vchoosef~ 
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in C(Gv) which is supported on the elliptic regular set of G O • a, and with 
 9 (x X a, f~) ~ 0. Choose f i n  C(G(A)) (see w whose components at v in Vare 
those chosen above, and whose component at w is the function of the proposition. 
As noted in w there are only finitely many conjugacy classes in G(A) with 
representative x '  • a in G O • a, necessarily elliptic regular, with ~(x '  X a, f )  
0. We can replace finitely many of the components f~ (for v ~ w) of f by their 
product with the characteristic function of a small open closed neighbourhood of 
the orbit of x X a in G o • a, to assure that if ~ (x '  X a, f )  ~ 0 for x '  X a in G, 
then x '  • a is conjugate to x X a in G o for all v ~ w. Consequently, i f~(y ,  f )  ~ 0 
for y in G then it is conjugate to x X a. 

We can now apply the trace formula identity (3.1) of Corollary 3. l, since f i s  
chosen to satisfy the requirements of this Corollary. The assumption of the 
proposition implies that the right side of (3. l) is equal to zero, since tr rt(f) = 0 
for all zt, while the left side of (3.1) is a non-zero scalar multiple of ~(x  X a, f ) .  
Since ~(x • a, f~):~ 0 for all v v~ w by the choice of f~, we conclude that 
 9 (x X a, fw) = 0, as required. 

In the non-twisted case Kazhdan [K; Appendix] had proven the Proposition 
using the Deligne-Kazhdan trace formula, on producing a supercuspidal func- 
tion f~ with ~(x,  f )  ~ 0 for the given x in G o X a, so that tI)(x', f )  = 0, for any x '  
in Gv which is stably conjugated but not conjugate to x in G~. This construction 
holds also in the case of base-change, at a place which splits. However in other 
twisted cases it is more difficult to construct supercuspidal functions. For 
example, there are no a-invariant supercuspidal G~ if Fv has odd 
residual characteristic, and G O = PGL(3, Fv), a (x) = Jtx - i j  is the example of w 1. 

4.1. P r o p o s i t i o n .  For f in C(G) with tr n ( f ) =  0 for all tempered G- 
modules n, we have ~(x ,  f )  = 0 for all regular x in G. 

R e m a r k  1. Theorem 10 of [H] asserts that F ( f )  is uniquely determined by 
its values on the regular set. Using this, the Propositions imply that ~(x,  f )  = 0 
for all x in G. 

R e m a r k  2. The Propositions are proven for a local field F of  characteristic 
zero. They hold also for a local field F of positive characteristic by virtue of 
Theorem A of Kazhdan [K']. Moreover, Theorem B of [K'] implies that if 
tr n( f )  = 0 for all G-modules n t h e n f  lies in the linear span of the commutators 
~ ,  hd = f l  *hi -- hi *fl, where fl lies in C(G) and hi in C(G~ 

Proof .  As in w a minimal parabolic subgroup P0 = MoN0 is fixed, and 
P = M N  denotes a parabolic subgroup containing P0, such that M contains M0. 
Let A = AM be the split component in the center of M, 9/= 9/e = Hom(X(M)Q, R) 
where X(M)Q = X(A)e  is the group of characters of M defined over Q, and 
H:  M ~ 9/ the homomorphism defined by (H(m) ,  Z) = log I z(m) I for all )r in 
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X(M)Q. If p is an irreducible M-module with central character Ogp, define ;tp in 
9~* = X(M)e  | R by (2p, H ( m ) )  = log I COp(m)l (m in M). This p is called positive 
if (2p, a) is positive for every root a of A in N, and essentially tempered if p | Z is 
tempered for some Z in X(M)o .. The classification theorem of [BW], XI, (2.11), 
asserts that (i) ifp is essentially tempered and positive, then the unitarily induced 
G-module Ip(p) has a unique irreducible submodule Je(P), and (ii) any irreduc- 
ible G-module is so obtained, and (iii) Je(p) is equivalent to Je,(P') if and only if 
P = P '  and p is equivalent to p'. The proof in the twisted case follows closely that 
given in [BW] for the connected case. A G-module is called standard if it is 
equivalent to Ie(P) with a positive M-module p. By virtue of the relation 
tr(Ie(p))(f) = tr p(fN) (which follows from a standard computation of  a character 
of  an induced representation, easily adapted to the twisted case), the fact that 
tr p(fN) = 0 if and only if tr(p | x)(fN) = 0 for any Z in X(M)o,  and the relation 
F(m,  f )  = FM(m, fN) for m in M regular in G, the proposition follows at once 
from Proposition 4 and the following Lemma. Let Rz(G) be the ("Grothendieck") 
free abelian group generated by Irr G, where Irr G is the set of equivalence classes 
of  (admissible) irreducible G-modules. Put also R(G)  = Rz(G) | C. Then we 
have 

L e m m a .  The set o f  standard G-modules is a basis o f  R(G)  over Z. 

P r o o f .  Given an irreducible G-module n, it is equivalent to Je(P) for some 
pair (P, p). If n' is a submodule of Ie(p) inequivalent to n, and n' = Je,(P'), then 
2p, < 2p for the order < on 9~*, by [BW; XI, (2.13)]. By [BZ'] n' and n have the 
same cuspidal datum (L, e), consisting of  a Levi subgroup L and an irreducible 
L-module e whose modules ev = rL,~ of coinvariants (see w with respect to any 
parabolic subgroup L ' U  of L are zero in the Grothendieck group R(L ' )  of L'. 
Hence n' lies in a fixed finite set, and by induction on 2~ we may assume that each 
such n' is a linear combination over Z of  standard G-modules. Consequently 
n = Je(P) = Ie(P) -- E n'  also lies in the span of  the standard G-modules. 

It remains to show that standard modules are linearly independent. Fixing a 
cuspidal datum (M, p), it is shown above that all irreducible G-modules attached 
to' (M, p) are linear combinations of standard G-modules attached to (M, p), and 
we obtain a (finite, square) unipotent matrix. Since irreducible G-modules are 
linearly independent over C, the standard G-modules are linearly independent 
over C, and the lemma follows. 

This completes the proof of  the Proposition. 

w Charac ters  

Let F be a local non-archimedean field of  characteristic zero. We now recall 
some of the fundamental results of  Howe [Ho], Harish-Chandra [H] and Kazh- 
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dan [K] about Fourier transforms of invariant distributions, characters and 
orbital integrals. We state this theory in the twisted setting. Detailed proofs of the 
theorems of [H] are recorded in [Cl] also in the twisted case. The proofs of the 
twisted analogues of the theorems of  [K] follow closely the proofs in the 
connected case which are amply explained in [K] and will not be reproduced here. 
The proofs of [K] rely on the results recorded in w167 below. The statements of 
[K] are independent of w167 We prefer to record these fundamental statements 
first, as they clarify the relationship between characters and orbital integrals, and 
delay to w167 the study of induction and restriction which is independent of the 
work of this w 

Fix an F-valued symmetric non-degenerate G~ bilinear form B on the 
Lie algebra L(G) ofG ~ an additive character ~ § 1 o fF ,  and a Haar measure dX 
on L(G). The map ~--* ~, where 

~ (X)=  / ~+(B(X, Y))4>(Y)dY, 
L(G) 

is a linear bijection of the space C(L(G)) of locally-constant compactly-supported 
functions ~b on L(G), onto itself. A distribution T on L(G) is a linear complex- 
valued function on C(L(G)). Its Fourier transform/~ is defined by 7~(q~) = T(~). 
For x in G, put Ox(x) = 4~(Ad(x)X) and XT(~) = T(~bx). T is called invariant if 
XT = Tfor  all x in G. Given a set to in L(G), let J(to) be the space of  all invariant 
distributions Ton L (G) which are supported on the closure ofAd(G)to. Theorem 
3 of [H] asserts 

5.1. P r o p o s i t i o n .  I f  to is compact and T lies in J(to), then there exists a 
locally-integrable function F in L(G) with T(~) = fL<O~ Fr for all r in C(L(G)). 

Let Z(X) be the centralizer of  X in G ~ and dx the unique (up to scalar), 
G~ measure on the homogeneous space G~ By a theorem of 
Deligne and Rao [Rao], the integral 

It~(4a) = . f  ~(Ad(x)X)dx (q~ in C(L(G))) 
a~ 

is well-defined; it depends only on (dx and) the orb~ ~ = Ad(G)X of X. The 
Fourier t ransform/~ of the measure Ito is a function by Proposition 5.1. 

Let N be the set of  all nilpotent elements in L(G). It is a union of  finitely many 
("nilpotent') G~ Let to be a compact set in L(G). The local behaviour of 
the Fourier transform of T in J(to) is described by [H], Theorem 4: 

5.2. P r o p o s i t i o n .  There exists a G-domain D (open closed G~ 
subset) of L(G) which contains O, and a "nilpotent" distribution It (a finear 
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combination with complex coefficients, depending on T, of  the #~, where C are the 
nilpotent orbits), so that T = ft on D. 

Fix a Haar measure dx on G. For a smooth G-module n : G --- Aut Vwe defined 
in w the endomorphism n( f )  of V by n( f )= fGf (x )n (x )dx ;  clearly, n ( f )  
depends on dx. If  n is admissible then n ( f )  has finite rank, and its trace is denoted 
by tr n(f) .  It is easy to see that i fn  is admissible and irreducible then there exists a 
complex-valued conjugacy-invariant locally-constant function Z on the regular 
set of G such that tr n ( f )  -- fa f(x)z(x)dx for every f i n  C(G) which is supported 
on the regular set of  G. The function Z is called the character of n. Note that 
tr n ( f )  depends on dx, but Z(x) is independent of dx. Theorem 1 of  [HI asserts 

5.3. P r o p o s i t i o n .  The character Z of an admissible irreducible G-module n 
is a locally integrable function on G. In particular, tr n ( f ) =  f f (x)z(x)dx for 
every f i n  C(G). 

Theorem 5 of  [H] describes the local behaviour of the character Z at a semi- 
simple element g in G. 

5.4. P r o p o s i t i o n .  Suppose that g is a semi-simple element in G. Let M and 
L(M) be the centralizers of g in G O and L(G). Then there exists a neighborhood V 
of 0 in L(M), and an M-invariant "nilpotent" distribution It on L(M), so that 
z(g exp X) = ft(X) for all X in V. 

The above results ofHarish-Chandra [H] are based on the technique developed 
by Howe [Ho] in the case of  G = GL(n). Kazhdan [K] showed that the above 
local behaviour in fact characterizes the characters, and orbital integrals, at least 
on the elliptic set. This characterization extends to the entire (not necessarily 
elliptic) set G by Proposition 7 below. 

To describe Kazhdan's theory [K], let S be the space of  conjugation invariant 
functions s on G, such that for every semi-simple g in G there is a neighborhood V 
of 0 in the Lie algebra L(Z(g)) of the centralizer Z(g) of g in G ~ and a 
Z(g)-invariant distribution # on L(Z(g)) supported on the nilpotent set of  
L(Z(g)), so that s(gexp X)=/~(X)  for all regular X in V. Let q(X) be the 
coefficient of the smallest possible power of  t in the polynomial det(t - ad(X)) 
(X in L (G)). q is a non-zero polynomial function on L (G), and X is called regular 
if q (X) 4: 0. 

Let Se = Se(G) be the space of  functions on the elliptic subset of  G O • a in G 
obtained by restriction of the functions of  S. 

Let Irr G be the set of  equivalence classes of  admissible irreducible G-modules, 
Rz(G) the free abelian group generated by Irr G, and put R(G) = Rz(G) | C for 
the Grothendieck group of G. 
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5.4.1. R e m a r k .  The quotient of  R(G) by the equivalence relation tt-~ 
n | ( ,  where ( is a character of  G/G ~ is naturally isomorphic to the quotient of  
R(G ~ by the equivalence relation rr .~ 0 if 7t is an irreducible non-a-invariant 
G~ 

Let M be a Levi subgroup of a parabolic subgroup P - - M N  with unipotent 
radical N, and denote by ica~o the G-module unitarily induced from the M- 
module p, which is trivially extended across N. Then IaM extends to a functor 
from the category of  M-modules to the category of G-modules. Its restriction is a 
homomorphism from R (M) to R (G), and we denote by Rz(G) the span in R (G) of 
the images of iau over all M # G. Put/~ (G) for the quotient R (G)/R~(G). Denote 
by ;( the character of  a member n in R(G); it is a finite linear combination with 
complex coefficients of  characters of  irreducible G-modules. Theorem D of  
Kazhdan [K] asserts 

5.5. P r o p o s i t i o n .  The map I~(G)--" Se, n ~ g, is an isomorphism. 

In particular, any function on the elliptic set of  G O • a whose local behaviour is 
given by the defining property of S, is the restriction to the elliptic set of a 
character of  a virtual G-module. 

Theorem C of  [K] gives another characterization ofSe. Let A (G) be the space of 
f i n  C(G) whose orbital integrals vanish on the regular non-elliptic set. As in w 
let J(G) be the space of  f i n  C(G) whose orbital integrals vanish on the regular set 
of  G, and .4(G) the quotient space A (G)/J(G). Theorem C of [K] asserts 

5.6. P r o p o s i t i o n .  The map,4(G)--, S~,f---,'~(f), is an isomorphism. 

Recall that 'O(f)  is defined in w '~(x,  f )  is the product of  ~(x,  f )  by the 
volume [Zc(x)/Z I at a regular elliptic x in G. 

5.7. Co r o l l a r y .  The spaces ~4(G) and R(G) are isomorphic. 

The isomorphism is defined by Propositions 5.5 and 5.6. 
As an example, let G be the multiplicative group of a simple algebra A. Then A 

is a matrix algebra M(m, D) over a division algebra D of  rank d central over F, 
and G is an inner form of the split group G' = GL(n, F), where n = rod. 

5.8. P r o p o s i t i o n .  The space S~(G) consists of the locally constant functions 
on the elliptic set of G. 

Proof .  A stable conjugacy class in G consists of  a single conjugacy class. A 
semi-simple conjugacy class y in G is determined by its characteristic polynomial 
Pr (which has coefficients in F); and a unipotent conjugacy class determines a 
conjugacy class of  Levi subgroups, namely a partition a = (mi) of  m (here m~ are 
positive integers with Z,m~ = m and m~ _-__ m~+~ (all i)). There is a natural 
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injection of the set ofconjugacy classes in G into the set ofconjugacy classes in G', 
denoted by y -~ y' and defined bypy, = Pr and (mi) --" (dmi). This is an example of 
a norm map in the sense of Chapter II, w Similarly there is an injection of  the 
nilpotent classes in the Lie algebra M(m,  D) of  G into the set of  such classes in 
M(n, F). The nilpotent orbit (5 in M(m,  D) determines the partition a of  m, and 
the corresponding standard (upper triangular) parabolic subgroup of  G is denoted 
by P,. Put (~ = t~, and/~, for/~. Let 0, be the character of  the G-module unitarily 
induced from the trivial P,-module. Lemma 5 of  [Ho], which is stated only for 
G' = GL(n, F)  but its proof applies to any G as above, asserts that there is a small 
neighborhood Vofzero  in M(m, D) such that the Fourier transform/~, is equal to 
0,(exp X) at X for all X in V. This is zero on the set of elliptic regular exp X if a is 
not the trivial partition (m) of m. Moreover, the character 0(m) is identically one. 
Since the centralizer of  any elliptic element in G is of the form GL(m',  D'), where 
D' is a simple algebra central over a field extension F' of F,  the proposition 
follows. 

Combining this result (for G and for G') with Proposition 5.6, we obtain the 
following 

C o r o l l a r y .  For every f i n  A(G) there exists f '  in A(G'), and for every f '  in 
A (G') there exists f i n  A (G), such that '~(7, f )  = 'O(Y', f ' ) for  all regular 7 in G and 
7' in G' with py = py,. 

This proves the assumptions (5.1) and (5.2) in Chapter II below in the special 
case of  our G and G'. 

w Coinvariants 
Let F be a local non-archimedean field, G = G~ as in w and (n, V) an 

admissible G-module of  finite length. If P = MN is an F-parabolic subgroup with 
a Levi subgroup M and unipotent radical N (as in w 1), then the quotient of  V by 
{n(n)v - v; v in V, n in N} is an M-module 'nN, since Mnormalizes N. Denote by 
"ns the image of  'n:: in the Grothendieck group R(M). The (normalized) 
M-module nN ofN-eoinvariant o fn  is defined to be J7  i/~ "nN. It is shown in [BZ] 
that nN is admissible of  finite length. The functor ram : n --. nN, from the category 
K(G) of G-modules to the category K(M) of M-modules, is exact. Let Iu(p) be the 
G-module Indr~ induced from the P = MN-module 61/2p • 1. The functor 
iuo:P--" IM(P), from K(M) to K(G), is exact. Then by Frobenius reciprocity we 
have that Homc(Tr, IM(P)) = Homg(nN, p) for all irreducible M-modules p and 
G-modules n. Hence nN :~ 0 implies that zt is a subquotient Of Iu(nN). Note that 
since nN is an M-module, its restriction n ~ to M ~ = M N G O is a a-invariant 
M~ 

We shall use the following non-connected, or twisted, variant of  the theorem 
[C] of  Deligne-Casselman. Let A be a maximally split torus in G O which is 
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a-invariant (thus a(A) = A), B a a-invariant minimal parabolic subgroup of G O 
containing A, A the set of roots of A in B. Fix a a-invariant lattice L in A so that 
la(2)l -- 1 if and only if a(2) = 1 for all 2 in L and a in A, and so t h a t A / L  is 
compact. Put L -  for the set of ; t  in L with la(2)l < 1 for all a in A. For any 
semi-simple t = to • tr in G O X tr, there exists a positive integer m, and y in G ~ so 
that ytmty- ~ = 2s, where ,t lies in L - ,  and s is a compact element of G O (the closure 
of the group generated by s is compact). Let pO be the standard (containing B) 
parabolic subgroup of  G o whose Levi component M~ is the centralizer Z~o(2) of  2 
in G ~ and put po = A/~t N~t for y -  ~pOy. We shall be interested here only in a special 
case, where po is tr-invariant, and then we put Pt = P~  9 

Note that our definition of  the parabolic subgroup Pt is the same as in [C]. To 
recall the definition of [C], put A0 = A ker a (a in 0) for any subset 0 of A. 
Denote by A - the set o f x  in A with I a(x)l < 1 for all a in A. Given a semi-simple 
t = to X tr in G O X a with ytmty-I = as for a in A - and a compact element s, let 0 
be the set of a in A with la(a)l -- 1. Denote by Me the centralizer in G O of the 
torus A0. Then M0 = M~. 

Choosing the sequence {Ki} of open compact subgroups from [C], Lemma 2.1, 
to be a-invariant, the proof of  [C], Theorem 5.2, extends to the twisted case, and 
asserts 

6.1. P r o p o s i t i o n .  Let  t = to X tr be a regular element o f  G so that P = Pt = 
P~ • (a)  is a parabolic subgroup. Then X(n)(t)  = X('nlv)(t)( --- X("zt~)(t)). Since 
A(t) = AM(t)~e(t) -1,2, we have (Ax(zt))(t) = (AuX(rts))(t) for such t. 

Here X(zt) denotes the character of  ft. 
We now recall Lemma 5.1 of [C], in our non-connected, or twisted case. We 

consider only the case where to lies in A, in which case t t = toa(to).  9  9 a t-  ~(to) 
(where t = to X tr) is tr-invariant. We choose to so that t t lies in A -; then the 
associated ~ in L is tr-invariant and lies in L - .  Then MOt----M~a and POt are 
tr-invariant, and we put P = Pt, = M N .  Let C be an open compact a-invariant 
congruence subgroup of  G O with the properties of  K, in [C], Lemma 2.1, and in 
particular C = ( C N N)(  C • M)(  C tq N),  where N is the unipotent radical of the 
parabolic Pt-i ---/~ opposite to P. Let ft be the function in C(G) supported on 
Z C t C  which attains the value I Z C t C / Z  I- 1 on CtC. Let f f f  be the function on M 
which is supported on t (C  rq M )  and attains the value 5]J2(t)/I C tq M I there. The 
proof of [C], Lemma 5.1, extends to the twisted case, and implies the following 

6.2. P r o p o s i t i o n .  We have tr n(ft) --- tr rt~(ftU) for any G-module n. 

This Proposition is used below as follows. Let p be an irreducible constituent of  
the M-module ~ .  Denote the central character of its restriction p0 to M ~ by wp, 
and the character of p by Zp. Note that ogp is e-invariant, since so is p0. We are 
interested in the function f f f  on M ~ X e since 
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tr p~M) = f Xp(tx)fM(tx)dx = a~p (to)~/z (t)tr p~M) 

for t = to • a with to in the center of  34 ~ and t r p ( f  M) is the (non-negative 
integral) multiplicity of  the trivial representation of C N M in p. On the other 
hand, f is a C-biinvariant function, where C is independent of t. 

Let W(M, G)= N(M, G)/M ~ be the quotient by M ~ on the normalizer 
N(M, G) of M in G ~ where P = MN is a parabolic subgroup of G. 

6.3. P r o p o s i t i o n .  Let x =x0 • tr be a regular element in G. Then the 
orbital integral F(x, f )  vanishes unless x is conjugate to an element of  M. For x in 
M we have 

F(x, f )  = Y~ FM(wxw-', f~) ,  
IV 

where the sum extends over W(M, G). 

R e m a r k .  The proof of this Proposition relies on Corollary 7.5. It is given 
here since the functions f ,  fM do not appear in w and it is clear that the work of  
w does not depend on Proposition 6.3. 

P roof .  Corollary 7.5 implies that g iven f  M there exists a func t ionfon  G such 
that F(x, f )  = 0 unless x is conjugate in G to an element of  M, and when x lies in 
M then 

F(x, f )  = Y, F~t(wxw-I, fM) 
W 

(w in W(M, G)). 

The Weyl integration formula and Proposition 6.1 imply that tr r t(f)  -- tr n~(f~)  
for every G-module n, since the parabolic subgroup Px associated with any 
element x in the support o fF(x ,  f )  is Pt = P. On the other hand, Proposition 6.2 
implies that tr n ( f )  = tr nu(fM), hence tr n ( f )  = tr n(f) ,  for every G-module n. 
But then Proposition 4 implies that F(x, f )  = F(x, f )  for every regular x in G, 
and the proposition follows. 

w T r a c e  funct ions  

Let F be a local non-archimedean field, G = G~ C(G) the space of  
functions f o n  G as in w which are supported on G O X a, J(G) the space of f i n  
C(G) whose orbital integrals vanish at each regular element in G, A (G) the space 
of  f i n  C(G) whose orbital integrals vanish on every regular non-elliptic element 
in G, C'(G) -- C(G)/J(G) and A(G) = A (G)/J(G). Our final aim in this Section is 
to prove the following 
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Proposition. Let M be a Levi subgroup of G, and f M an element of C(M) 
with the property that for every m, m'  in M which are regular in G and conjugate to 
each other by G O we have 

(7.1) F~t(m, fM) = FM(m ,, fM). 

Then there exists f in  C( G) with fM = fM (f~ is defined at the end ofw 1) and fz = 0 
for every Levi subgroup L of G which does not contain any conjugate of M. 

This Proposition, which concerns "lifting" of orbital integrals from a Levi 
subgroup of  G to G itself, is proven below using representation theoretic 
techniques, in the spirit of  Corollary 5.7. Thus we are to use (the twisted analogue 
of) the trace Paley-Wiener theorem of  [BDK], and the geometric lemma of [BZ'; 
(2.12)], which we now proceed to state. The proof of  the Proposition is new also 
in the connected case. 

As in w let Rz(G) denote the integral Grothendieck group of  G-modules of  
finite length (Rz(G) is a free abelian group with basis Irr G), put R(G)= 
Rz(G) | C and let iM~ : R(M) --, R(G) be the induction homomorphism. As in w 
let ra~t: R ( G ) ~ R ( M )  denote the restriction homomorphism. Let X(G) be the 
group of unramified characters ~t of  G which are trivial on (a) ;  equivalently X(G) 
is the group of  a-invariant unramified characters of  G. X(G) acts naturally on 
I r rG and R(G) by ~u: n ~ n u  X(G) has a natural structure of a complex 
algebraic group, isomorphic to C • where d = d(G) = dim X(G). As usual, fix a 
Haar measure dx on G (equivalently on G ~ with the convention that measures on 
discrete sets assign volume 1 to each point). Our convention in this section is that 
C(G) consists of  compactly supported functions; the passage to the space of 
functions which are compactly supported modulo the center of  G o and transform 
under this center by a fixed character, is trivial, and left to the reader. Thus each 
function f i n  C(G) defines a linear form PI: R(G)---C by//Art) - tr rt(f). It is 
clear that the f o r m / / = / / I  satisfies the following conditions. 

(PW(i)) For any Levi subgroup M and irreducible M-module p, the function 
~'--'//(i~,ta(pu is a regular function on the complex algebraic variety 
X(M). 

(PW(ii)) There exists an open compact a-invariant subgroup K in G O which 
dominates/ / ,  in the sense that / /vanishes  on each G-module n which 
has no non-zero K-fixed vector. 

Let R*(G) -~ Homc(R(G), C) -- Hom(Irr G, C) be the space of all linear forms 
on R(G). A form/ / :  R(G) - ,  C is called good if it satisfies (PW(i)) and (PW(ii)), 
and it is called trace i f / / = / / i  for some f i n  C(G). The spaces of trace and good 
forms are denoted by Fir = Ft,(G) and Fgooa -- Fgooa(G). The trace Paley-Wiener 
theorem of Bernstein-Deligne-Kazhdan [BDK] is the following 
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P W - T h e o r e m .  For every p-adic reductive group G we have F~, = Fgood. 

This Theorem describes the image of the natural morphism tr : C(G)--" R*(G).  
As noted at the end of w Proposition 4 and Theorem B of [K'] imply that 
ker tr --- [C(G), G(G~ for every local non-archimedean field (of any characteris- 
tic). The PW-Theorem is proven in [BDK] when G is connected,. The proof for 
G = G~ follows closely that of  [BDK], with straightforward modifications. 
For example, in the proof [BDK; (5.3)] of  [BDK; (3.2)] one takes a a-invariant 
good K, and uses the twisted version of[C] given in w The proof [BDK; (5.5)] of  
the combinatorial lemma [BDK; (3.3)] relies on the geometric lemma of  [BZ; 
(2.12)] which we now recall, in the twisted case, as it is used below in the proof of 
the Proposition. 

Recall (w 1) that a Levi subgroup M of  G contains the fixed Levi component M0 
of  the minimal parabolic subgroup P0. Denote by WM the quotient by (the 
connected component) M~0 (of M0) of the normalizer N(M~0, M ~ of  M~0 in M ~ (Wu 
is the Weyl group of  M~0 in 34~ Then tr acts on Wu. Since po is tr-invariant we 
have l(aw) = l (w)  where l denotes the length function on Wa. Let L be a Levi 
subgroup of G, and let W(M ~ L ~ denote a set of  representatives in Wa, of 
minimal length, for Ws~\ W a / W z .  Then tr acts on W(M ~ L~ denote by 
W ( M ,  L )  the set of  o-invariant elements in W(M ~ L~ For every w in W ( M ,  L )  
put Mw = M N w L w -  ~ and Lw = w -  IMw N L .  For every w in W(M ~ L ~ put 
M~ = M ~ N wL~  -1 and L ~ = w - l M ~  tq L ~ 

G e o m e t r i c  L e m m a .  For every p in R ( L )  we have 

F(p ) dfo = ra~  ~ iL,a(P) = ~ i u , u  ~ W o r z ~ ( P )  
W 

(w in W ( M ,  L)) .  

Proof .  If G is connected ( ~ G~ this is [BZ; (2.12)], which asserts that 

F'(p) ~ raou 0o iLo, Go(p)Y. i ~ : o  W o rLo.t2(p) 
W 

(w in W(M ~ L~ 

for every p in R(L~ [BZ] choose an order wl, w2,.  9  9 Wk with l(w~) > l(w~+ I) on 
the elements of W(M ~ L~ and define a functorial filtration F~ c F~ c  9  9  9 c 
F:, -- F', with 

F ( p  ) /F :  + ,(p ) = o w, o (p ). 

Put P -- MPo, Q = LPo. If  Vis the space ofp  (in R(L) ) ,  then by definition iL.a(P) 
acts by fight translation on the space of  the locally constant functions u  G O --- V 
such that 9/(mng) = t~Q(m)l/2p(m)u (m in L ~ n in the unipotent radical of  Q, g 
in G~ Note that 

([( i(p))(o')] W')(g) -- (p(o)W)(o'- '(g)). 
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Denote by V, the space of g which are supported on Uj  Q~176 (union over 
j < i). Then V~ is P~ and F:(p) is defined in [BZ] to be the image of V~ 
under r~0.~. 

Denote by A I . . . . .  Ab the orbits under a in W(M ~ L~ The elements of an orbit 
have equal length, denoted l(Ai). We order the orbits such that I (A i )>  I(A~§ ,). 
Denote the cardinality of A~ by a~, and order the Wl . . . . .  Wk such that the first a~ 
elements lie inA~, the next a: elements are inA2, and so on. Put bi = al +  9  9  9 + ai 
and F~ = F~,. Then F: is tr-invariant, and extends to an M-module, and 
F~(p)/F~_~(p) is an M-module. The restiction of Fi(P) /F i_ l (p )  to  M 0 is a direct 
sum of ai MO-modules which are permuted under the action of a. If ai > 1 then 
Fi(p)/Fi-~(p) lies in the linear span of the irreducible non-a-invariant 
M~ hence corresponds to 0 in R (M) by Remark 5.4.1. This completes 
the proof of the geometric lemma. 

Coro l l a ry .  For each Levi subgroup M o f  G put  TM = iM.G ~ r ~  : R(G)---" 
R(G) .  Then 

(i) TL o iM,G = Zw iM,~G o rM,M., 
(ii) TL o TM = Z w TM., 

where Mw = M N w -  1Lw and w ranges over W ( L ,  M) .  

Proof .  (i) iL,G ~ ra,L ~ iM,G = Z w iL,G ~ iLL ~ W o rM~. = Z~ iL.6 ~ W o rM~. is 
equal to the required expression since i l ia  ~ W = iM=G by [BDK], Lemma 5.4(iii). 

(ii) TL ~ iM~ ~ rGY = Z~ iM, V o rM,M" o ra~  = Y~ iy.G ~ rGea. = Zw TM.. 
The proof of the PW-Theorem in the twisted case can be completed now 

as in [BDK], and we proceed to establish the Proposition. Denote the pairing 
R*(G)  X R(G)--- C by (fl, rt)--- (fl, rt). Let 

i % : R * ( G ) - , R * ( M )  and r S M : R * ( M ) - , R * ( G )  

be the morphisms adjoint to iMr and roM. Note that C(G) is a subspace of R*(G); 
the function f defines the form fl =fl : :  rr---(fl, i t ) = t r o t ( f ) .  Put (f ,  zt) for 
(fl, rt) in this case. 

7.2. L e m m a .  For every M ,  i*~ maps  C(G) to C(M) ,  and  r~M maps C ( M )  to 
r 

Proof .  For f i n  C'(G), fM (defined in w satisfies (fM, nta) = ( f ,  iMOnM) for 
every nM in R (M) by virtue of a standard formula for a character of  an induced 
representation. By virtue of  Proposition 4 we have i*c,f = fM, as required. For the 
second part of  the lemma, for every f M  in C'(M) define a form fl = rSM(f M) in 
R*(G)  by (fl, n)  = ( fM,  roMn) (n in R(G)) .  This is clearly a good form, hence a 
trace form by the PW-Theorem, namely r*M(f M) is a function in C(G),  and the 
(second part of  the) lemma follows. 
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C o r o l l a r y .  The homomorphisms iMO : R(M)--* R(G) and ROM : R(G)--* 
R(M)  admit adjoints i*o : C(G)--* C(M) and r'M: C(M) --" C(G). 

A function f in C(G) is called discrete if i*o f =  0 for all Levi M =~ G. By 
Proposition 4 the space of discrete functions in C(G) is A(G). 

C o m b i n a t o r i a l  L e m m a .  For each proper Levi subgroup M o f  G there is a 
rational number e M such that f a = f -  ZM ~C CMr~M o i*o(f) is discrete for every f 
in C(G). 

P r o o f .  This is an analogue of  Lemma 3.3 of  [BDK]. In [BDK] a form p in 
R*(G) is called discrete if i 'off = 0 for all M ~ G. Lemma 3.3 of  [BDK] asserts 
that there are CM such that for each fl in R*(G) the form 

~a = p _ y~ cMr.M o i.G(]3) 
MC=G 

is discrete. But Lemma 7.2 asserts that i f f  lies in C(G) t h e n f  d lies in C(G), not 
only in R*(G), hence it is in .4(G), as asserted. 

7.3.  T h e o r e m .  C( G) is the direct sum over a set o f  representatives N for the 
conjugacy classes o f  Levi subgroups in G, o f  r*M(A(M)). 

P r o o f .  To show that C(G) is the sum of r~M(A(M)), we assume by induction 
that this claim holds for every proper Levi subgroup M of G. Namely we assume 
that for each M ~ G, and for each L c M, there is a rational number CM,L with the 
following property. Given f M  in C(M), there are fM,Z in :[(L) for each L C M, 
such t h a t f  M = Y.L cM CM,t. r~t,t, fM,L. Hence, given f i n  C(G) there a r e f  M: in .4(L) 
for every M § G and L c G with i% f = ZL co CM,Lr*,~. fM,L. Using the Combina- 
torial Lemma we conclude that 

f = f d  + y~ CMr*M(i*o(f))=fd + y, CMr~ M y,, C M , L r ~ L f M , L  
M ~G M#G L c M  

r3L CMCML f M,L , 
L~G 

where M ranges over the M § G which contain L,  as required. 
To prove that the sum is direct, note that if fM lies in C'(M), then by the 

Geometric Lemma for each Levi subgroup L and p in R (L) we have 

(i.,or~,M f M , p  ) = ( fU,  ro,M ~ iL,o(P)) 

(7.4) = y~ ( fM,  iMaM ~ W o rL,L.(P)). 
wE W(M,L ) 

I f f  M lies in .4(M) and w contributes a non-zero term in the sum, then M .  = M, 
namely L D w-~Mw. Consequently (7.4) is zero i fL  contains no conjugate of  M; 
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and i f L  is conjugate to M, say L = s-~Ms for some s in W(M,L), then (7.4) is 
equal to ( f u ,  sp). Now, i f f  = ZM r~M f U  is zero, where t h e f  M lies in A(M), then 
choose L to be a minimal Levi subgroup (up to conjugation) for w h i c h f  z ~ 0 in 
this sum. Then i*,af = fL ,  and f =  0 implies that f L  = 0. This contradiction 
completes the proof of the theorem. 

Proof of Proposition. Given M ~ G and fM in C(M), since ~ ( M ) =  
~) r*L(A(L)) (sum over L in M) by Theorem 7.3, we may assume that fM = 
r * N f  N for some Levi N in M and f N  in A(N). We claim that the product of 
f =  r~,uf  u = r~,Nf N by a scalar which depends only on N, M and G, has the 
properties required by the proposition. Indeed, as in (7.4) for each p in R(N) we 
have 

"~ * N (tL,Or&N f , p) = y, ( fN, IN.N ~ W o rL,L.(p)) 
w E W ( N , L  ) 

and it suffices to consider w with L D w-INw, since f~r lies in A(N). Hence if L 
contains no conjugate of M then the sum is empty and iff, o f =  fL is zero, as 
required. If L = M, our sum becomes the sum over all w in W(N, M) with 
w-lNw c M of (f~r w o rM,M.(P)). The condition (7.1) implies that each of the 
summands is equal to ( f N, rM,N(P ) ) = ( r~,N f N, P ) = ( f M, p ) , hence i*,~ f is 
equal to fM up to a multiple by the cardinality of the set of  w in W(N, M) with 
w-  ~Nw c M. The proposition follows. 

The Proposition implies that a function fM in C(M) can be "lifted" to a 
function f i n  C(G) with the "same" orbital integrals on the regular conjugacy 
classes of G which intersect M. The orbital integrals of  f a r e  not necessarily zero 
on x in G whose conjugacy class does not intersect M. However, we have 

7.5. C o r o l l a r y .  Suppose that fM has the property that FM(m, fM) is sup- 
ported on the set o f  m in M with l a(m)l § 1 for every root o f  the split component 
A s  o f  the center o f  M in N. Then f can be chosen to have the property that F(x, f )  is 
zero unless x is conjugate in G to an element o f  M. 

Proo f .  Let SM denote the support of  FM(f u)  in M, and put S = (SM) a = 
{g-tsg; g in G, s in SM }. Then S is open and closed in G. Replace thefobtained in 
the Proposition by its product with the characteristic function of  S to obtain the 
function f o f  the corollary. 

Finally we recall the germ expansion of orbital integrals of  f i n  C(G). Let "O(x) 
be the closure of  the conjugacy class O(x) o f x  in G. It is the disjoint union of  the 
conjugacy classes O(sui) (1 _-< i =< r) of  elements sui with semi-simple part s, so 
that (1) u~ -- 1, (2) for each t (1 _-< t _--< r) the union Ot = U[_~O(sui) is closed, 
(3) O(sut) is open in Or. The (closed) set As of elements in G whose semi-simple 
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part is conjugate to s is of  the form O(x) for some x, and there a r e s  in C(G) with 
F(suj, f )  = Ju, a n d f  = 0 on O(suj) fo r j  < i. The germ expansion asserts 

7.6.  P r o p o s i t i o n .  (a) Given f i n  C( G) and a semi-simple s in G, there exists 
a neighborhood V I o fs  in G so that 

F(x, f )  = Y, F(x, f )F ( su ,  f )  (all x in Vf). 
i 

(b) Conversely, given a function F(x) on G such that for each semi-simple s in G 
there is a neighborhood V of  s in G with 

F(x) = Y~ F(x, f)F(sui) (x in V), 
i 

there exists f i n  C(G) with F(x) = F(x, f ) .  

We do not prove this result here, but simply note that it can be deduced from 
the uniqueness of  the Haar measure. A proof is given, e.g., in Vigneras [V]. 

Chapter II. Comparison 

Let F be a local non-archimedean field of  characteristic zero. Let G" be a quasi- 
split reductive group, defined over F,  of  the form G~ (it is denoted by G in 
Chapter I). 

w Stability 

The stable conjugacy class o f x  in G" is defined in Chapter I, w x '  is stably- 
conjugate to x if there is y in G O with x '  = Ad(y)x. Put Tfor the centralizer Z~o(x) 
o f x  in G ~ We shall be interested here only in regular x, and then Tis an F-torus. 
The conjugacy classes within the stable class o f x  are parametrized by the (finite) 
set~ 

B(T/F) = ker[Hl(F, T) --, HI(F, GO)]. 

If  x, x'  are stably-conjugate, then ZGo(x') = Ad(y)Zc~(x) is isomorphic to Zoo(x) 
over F. Hence a differential form of maximal degree on Z~o(x) can be transferred 
to Zco(x'), yielding compatible Haar measures on Z~o(x) and Z~o(x'). 

Let {Ad(b)x; b in B(T/F)} be a set of  representatives for the conjugacy classes 
within the stable conjugacy class of the regular element x of  G O • a. 

Definition. Let F b e  a function on the regular conjugacy classes in G" which 
intersect G o • a. The stable function F' associated with F is defined by 



162 YUVAL Z. FLICKER 

F'(x) = ~ F(Ad(b)x). 
b 

F'(x) depends only on the stable conjugacy class of the regular x. In particular, 
for any f i n  C(G") (notations ofw 1 ) we have the stable orbital integral F'(x, f )  of 
f ,  and the function O'(f). 

The stable orbital integrals are introduced for purposes of comparison between 
the group G", and a reductive connected F-group G, such that the following 
holds. Let G O = Zc0(a) denote the group of a-invariant elements in G ~ Let G and 
H be F-groups. An isomorphism ~u : G ~ H over F is called an inner twisting if for 
every z in Gal(F/F) there is g~ in G such that (z~)-  1 o ~, = ad(g~). If such ~ exists 
then G and H are called inner forms. Suppose that G is an inner form of G ~ and 
fix an inner twisting ~,. Fix a maximal split torus A in G. It can be identified with a 
torus A ~ of G ~ via ~. Each Levi subgroup M of G containing A corresponds by q/to 
a Levi subgroup M~ of G O containing A ~ We assume that ~ is the group of 
a-invariant elements in the tr-invariant Levi subgroup M ~ of G ~ obtained as the 
centralizer in G O of the center Z(M ~ of M~. Hence fix a maximally split 
tr-invariant torus A ~ (containing A ~ in G~ A ~ is denoted in w byA. Fix a lattice 
L as in w so that each 340 is of the form M~ = Zao(2) for 2 in L - .  

In every known comparison situation (base-change, symmetric-square, meta- 
plectic correspondence, inner-twists) there exists a map N which we call a norm 
map, with at least the following propeties. Nis a bijection from a subset 'S" of the 
set S" of  stable conjugacy classes of  regular elements in G" with representatives 
in G O • a, to a subset 'S of the set S of stable conjugacy classes of regular elements 
in G, such that (1) Zoo(x) and Z~(Nx) are inner forms, (2) N(x •  
V- l(x • a) z for x in A ~ (l is the order of a), (3) x has a representative in M ~ • a if 
and only ifNx has a representative in M, (4) at least one of the subsets 'S, 'S" is 
the entire set S, S". 

We use (1) to relate measures on the two groups of (1). Fix a norm map N. 
Let W(M, G) = N(M, G)/M be the quotient by M of the normalizer N(M, G) 

o t :M in G. If  M"  = M~ let W(M", G") be the quotient by 34 o of the 
normalizer of  M"  in G ~ Given fM in C(M), let MF(fM) be the conjugacy class 
function on the set of  regular x in G which attains the value 0 unless (a conjugate 
of) x lies in M when we put 

MF(x, fM) = y, FM(wxw-1 fM) 
W 

(w in W(M, G)). 

Similarly, for cM in C(M") we put MF(x, cM) = 0 for a regular x in G O • a unless 
(a conjugate of) x lies in 340 • a, when we put 

MF(x, cM) = y. Fm(wxw -l, cM) (W in W(M", G")). 
W 
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In particular OF is F = F ~ Recall that MF' indicates the stable funct ion on G 
associated with MF. 

D e f i n i t i o n .  The  functions ~M in C(M") a n d f  M in C(M) are called matching 
i f  (1) uf'(s, fM) is zero for any s in S - ' S ,  (2) MF'(s,q)u) is zero for any s in 
S "  - 'S" ,  (3) MF'(s, 0 M) is equal to MF'(Ns, fM)  for all s in 'S" .  

w B a s e  c h a n g e  

Here we describe a well-known example of  a norm map. Let  F b e  a perfect field, 
l a positive integer, E a cyclic extension of  F o f  degree 1, and Go a reduct ive 
connected group over  F whose der ived group is simply connected.  Let G o= 
ResE/~G~ be the F-group obtained f rom Go on restricting scalars f rom E to F .  It 
can be realized as G O = Go X  9  9  9 X Go (l copies), where Gal(F/F) acts as follows. 
Fix a generator  8 o f  GaI(E/F), and put  a(Xl, x2 . . . . .  xt) = (x2 . . . . .  x~, x0.  Then  
z(xl, x2 . . . .  ) = ai(zxl, zx2, . . .  ) i f  z I E = 8 / (0 < i < l), for  any z in GaI(~e/F). 
With this definition G~ is G~(E) X  9  9  9 X Go(E) (l copies), and G o = G~ is 
isomorphic  to Go(E). Put  G"  for the semi-direct product  o f  G o and the cyclic 
group ( a )  of  order  l generated by a. It is a non-connected reduct ive group defined 
over  F.  It is clear that  x0 = (y, fly . . . .  ) and x~ = (y', f l y ' , . . .  ) are a-conjugate  
elements of  G O (namely x = Xo X a and x '  = x~ X a are conjugate by an element  o f  
G ~ if  and only i f y  and y '  are 0-conjugate (namely there exists z in Go(E), with 
y'  = zy(7(z- l)) elements of  Go(E). 

To define a norm map take x = x0 X a,  :Co = (Y, fly . . . .  ) with y in G~(E), and 
consider z = yS(y ) -   9  9 d - l ( y ) .  Since 8(z)  = y -  tzy, the conjugacy class o f z  in Go 
is defined 'over F .  Let G be the quasi-split inner  form of  G~, and fix an inner  
twisting ~,: G~-~ G. It is an i somorphism defined over  a finite extension o f  F .  
Then  the conjugacy class of  ~,(z) in G is defined over  F ,  and contains an element  
Nx in G [Ko], Theo rem 4.4. Further,  the map  x ~ Nx induces an injection f rom 
the set o f  stable conjugacy classes in G"  with representat ives in G o X a,  into the 
set of  stable conjugacy classes in G ([Ko], Proposi t ion 5.7). Note  that  the 
cehtral izer  Zoo(x) o f  x = Xo X a in G o is i somorphic  over  F to the 0-central izer  
Z~0(y) = {g in G~ 0y(g) = g }, where ?ry(g) = y 0 ( g ) y -  ~, o f y  in G ~ This  is an inner  
form of  Zo(Nx), and in comparing orbital  integrals we take compat ible  Haar  
measures on Zoo(x) and Zo(Nx). 

In the special case l = 1 we obtain an injection N f rom the set o f  stable 
conjugacy classes in Go to the set o f  stable conjugacy classes in its quasi-split 
fo rm G. 

These definitions are particularly simple in the case o f  G = GL(n) ,  where the 
stable conjugacy class consists o f  a single conjugacy class. Other  no rm maps can 
be defined using the outer  au tomorph i sm a (x )  = . P x -  ~J o f  G; see [Sym]. 
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When G" is connected, and G~ is the simply-connected covering group of the 
derived group of G", we have H ~ (F, G~) = (0) when F is local non-archimedean. 
Hence if Tsc is the inverse image of T in Gsc, B(T/F) (see w is the image of 
H~(F, T~) in Hi(F, T). On the other hand, G O= Rese/eG, has HI(F, G ~ = 
HI(E, G~) and B(T/F) is H~(F, T) ifH~(E, G,) = {0}. 

w Discrete series 

Let F be a local non-archimedean field of  characteristic zero, G" = G~ a 
reductive F-group and G~ the centralizer ZGo(a) of a in G ~ Let 7t" be an 
admissible G"-module of finite length (see w By a central exponent of zt" with 
respect to a Levi subgroup M"  of G" (see w 1) we mean the central character of an 
irreducible constituent of the module zt~ of coinvariants (see w of re" with 
respect to any parabolic subgroup P"  = M " N  with Levi component M".  

Recall (w that A is a maximally split a-invariant torus in G ~ and L is a 
a-invariant cocompact lattice in A. B is a minimal tr-invariant parabolic sub- 
group of G O containing A, A - is the set of a in A with I a(a) I < 1 for any a in the 
set A of roots of A in B, L - = L n A -. To any semi-simple t = to • tr we associate 
a in A - (or 2 in L - ) ,  and a subset 0 of A, consisting of the a with a(2) = 1. Given a 
subgroup H of G O we denote by H,  the group H n G~ of a-invariant elements in 
H. 

Given a a-invariant 2 in L - ,  the centralizer M~ = Zo0(2) of  2 in G O is 
tr-invariant, and we denote by Pa = M~Na the standard a-invariant parabolic 
subgroup of G O with Levi component M~. The center A~ of Ma lies in A. We say 
that the central exponent o9 of n" with respect to M~ decays if  Iog(a)l < 1 for 
every a in (Aa)~ with (1) la(a)l < 1 for any root a of (Aa), in (N~),, and (2) 
I a(a) I < 1 for some such a. We say that n" is discrete-series if its central character 
is unitary, and its central exponents with respect to any proper Levi subgroup Ma, 
where ;t is any a-invariant element in L - ,  all decay. 

In the case where G " =  G O is connected, namely tr = 1, Harish-Chandra's 
criterion for square-integrability ([C'], Theorem 4.4.6; [S], Theorem 4.4.4) asserts 
that it" is a discrete-series in the above sense if and only if  it is square-integrable, 
in the sense that its matrix coefficients f (x)  = (rt"(x)v, v') are absolutely square- 
integrable functions of G/Z. 

Definition. We say that a discrete-series G"-module rt" satisfies a trace 
identity if there is (1) a set {n} of G-modules n, which, for each open compact 
subgroup C in G, contains only finitely many G-modules with a C-fixed vector, 
(2) positive integers m(lt) (depending on n'), and a complex number c, so that for 
all matching ~ in C(G") and f i n  C(G), we have 

(3.1) c t r  rt"(r = • rn(Tt) tr n(f) .  
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Assumption. For any proper Levi subgroup M,  and any open compact 
subgroup C as in Proposition 1.6.2, there exists ~M in C(M") matching the 
characteristic function o f  C N M in C(M). 

Our assumption is tantamount to the following. For any proper Levi subgroup 
M with center AM contained in A, and any to in An, which we also view as an 
element in the center of  M ~ we have: there exists a function cto M in C(M") 
matching the function f ~  in C(M) defined prior to Proposition 1.6.2. Here 
Nto = (to X tT) t -- tto, as a(to) = to. Indeed, the function f~o is obtained from the 
characteristic function of C N M on translating by the central element Nto, and 
multiplying by a scalar, so that ~ can be obtained from cM on translating by the 
tr-invariant central element to, and multiplying by the same scalar. 

w Decay 

Proposition. Suppose that the discrete-series G"-module 7t" satisfies a Trace 
Identity, and G satisfies Assumption 3. Then all rt in (3.1) are discrete-series G- 
modules. 

Proof. Let M be a proper Levi subgroup, C a compact open subgroup of G as 
in Proposition 1.6.2, to in AM such that l a(t0)l < 1 for all roots a of  AM in the 
unipotent radical of  the standard parabolic subgroup with Levi component M, 
and f ~  the function of Proposition 1.6.2, where t~ is Nto -- tlo. Proposition 1.6.2, 
and Proposition 1.6.3, imply that the function f6 on G defined in Proposition 
1.6.2, which is C-biinvariant, satisfies F(x,  fr) = MF( x ,  f~) ,  hence 

F'(x,  fir) -- MF'( x,  ft~), for all x regular in G. 

As noted following Proposition 1.6.2, the function ft6 is C-biinvariant. Hence 
tr n(fr) ~ 0 only for rt with a C-invariant vector. By definition of Trace Identity, 
there are only finitely many such zt in (3.1). On the other hand, if tOp is the central 
chhracter of the irreducible constituent p of the M-module rtN, then tr zt(ftr)= 
tr ztN(ft~ a) is a sum over p of t%(tr)~lE(tr)n(p, C), where n(p, C) is the non- 
negative integral multiplicity of the trivial representation of C in p (the dimen- 
sion of the space of C-fixed vectors in p). 

Assumption 3 asserts that there exists a function cg  in C(M") matching ft~. 
Proposition 6.3 asserts that there exists a function ~,o in C(G") with F'(x,  Cbto) = 
MF'(x, ck~) for all regular x = x0 • o in G". Hence the functionsft6 on G and ~to on 
G O • a are matching. Since n" appears in the Trace Identity, it is clear that its 
character Z(zt') is a stable function, depending only on the stable conjugacy class 
of x = x0 • tr in G". Using the Weyl integration formula we have 
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tr zc"(q~to) = Y/w(T)-1  f (Az(n"))(x)F'(x, r 
T 

T/Z 

The sum is over the stable conjugacy classes of F-tori T in G. w(T) is the 
cardinality of  the quotient W(T) = N(T) /Tby  Tof the  group N(T) o f x  in G such 
that ad(x) : T---, T, t---'xtx -~, is defined over F. Recall that 

F'(x, Ckto) = mF'(x, (~ = mF'( x, f t6 ).M 

Since t6 lies in the center of M, we have M C Mr6. As we assumed that 
I o~(t6) I < 1 for all roots a of  Am in ArM, we have M = Nt6. B u t f ~  is supported on a 
small neighborhood oft6. Hence i fF ' (x ,  4~to) ~ O, then M~ is conjugate to the Levi 
subgroup 34 o such that M~ matches M. Proposition 1.6.1 now implies that we 
have 

E w(T) -~ f (A~z(rr'~v))(x) MF'(x, Ckto M) d(Nx). 
T 

As to lies in the center of M~ changing variables x - - t 0 x ,  we obtain 

top,,(to) 2 w(T) -~ f (AMoz(rt'~))(x) MF'(x, ck~) d(Nx) = 2 tof(to) tr p"($1g). 
p" in n"N T p" 

p" ranges over the a-invariant irreducible subquotients of  n'~r top. is the central 
character ofp" .  

We conclude from the trace identity that for any to in the center of M~ 
with M ~ = M ~ in the notations of  w we have 

Y~ c(p")top.(to) = E n(P)top(tto)  9 
p" p 

The sum on the left ranges over the constituents p" of  n'~r hence it is finite. The 
c(p") are complex. On the right the sum is finite, depending on the compact open 
subgroup C, and the coefficients are positive, so that no cancellation may occur. 
Linear independence of  characters (on the set of  to in Au with I a(to) ] < 1 for the 
positive roots a) implies that for each p there exists p"  with top(t~) = top.(to). 
Consequently the character top decays, where p is any constituent of  rtu; here M is 
any proper Levi subgroup of  G, and zt is any G-module with a C-fixed vector. 
Since any zc has a C-fixed vector for a sufficiently small C, it follows that all zr are 
discrete-series, as required. 

R e m a r k .  It is clear that if n" is assumed to be only tempered, then the above 
proof implies that the n of(3.1) are tempered. 
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w Finiteness 

We now continue with the situation and Assumption of  w but make two 
additional assumptions. 

5.1. A s s u m p t i o n .  Suppose that ~'  is a stable function in Se(G") (see w 
Then there exists  9 on G in Se(G) matching ~'. 

Namely, we suppose that ~'(x • tr)= ~ ' (x ' •  a) for all stably conjugate 
regular x • a, x '  • a, and assume the existence of a function f i n  A(G) with 
'O'(Nx, f )  = ~ ' (x)  on the regular set. 

5.2.  A s s u m p t i o n .  For any f i n  A(G) there exists a matching function ck in 
A(G"). 

Using these Assumptions, we conclude 

Proposition. Suppose that the discrete series G"-module ~" satisfies a Trace 
Identity (3.1). Then the set of Tr is finite. 

P r o o f .  Note that Proposition 4 asserts that the n are all discrete-series. To 
prove our proposition, note that by the Trace Identity tr :r #(~) depends only on f ,  
namely on the stable orbital integral of  ~, hence the character Z(tt") of tt" on 
G o X ~ is a stable function. Assumption 5.1 implies that there exists a finite linear 
combination of G-modules n with complex coefficients c(rt), so that 

Y~ c(~z)[Z(Tr)](Nx) = Z(~z")(x • a) 
it 

for any elliptic regular x • a in G", and Y~it c(n)[Z(n)](y) = 0 for the elliptic 
regular y which are not norms. We may assume that all n here are tempered by 
[K], Proposition 1.1. 

Applying the Weyl integration formula we deduce that 

tr n"(0) = y s w(T)-t  f [A)~(Tr")](x)F'(x, ~)dx. 
T , J  

Only elliptic tori occur since we take ~ in A (G"). Further, we take ~ so that it has a 
matching f,  so that F'(x, ~) = F'(Nx, f) .  Replacing X(n") by our linear combi- 
nation Y~ c(Ir)X(rr), we obtain 

Y~" w(T)- '  f [Az(n)](x)F'(x, f )dx  = Y~ c(n) tr tt(f). 2 C(lt) 
it T . . I  It 

We deduce from (3.1) the identity Zit c(rQtr n ( f ) -  ~it m(n)tr  rt(f). On the left 
the sum is finite and consists of  tempered r~. On the right all n are discrete-series, 
The identity holds for all f i n  A (G) which have a matching function 4~. So fix no on 
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the right. By Kazhdan [K], Theorem K, there exists a pseudo-coefficient f0 in 
A(G) with tr no0c0)= 0 for any tempered irreducible n inequivalent to no. But 
Assumption 5.2 implies that f0 has a matching function 4). Using our identity with 
f =  )Co we conclude that re(n0) = 0 for all no on the right which are not equivalent 
to any of  the finitely many n on the left. Consequently, the set o f n  with re(n) v~ 0 
is finite, as asserted. 

Chapter IlI.  Representat ions of  S imple  Algebras  

w Introduction 

Let F be a local field, and G an inner form of GL(n) over F.  Thus G is the 
multiplicative group of a simple algebra A central over F. A is the m • m matrix 
algebra M(rn, D) over a division algebra D central over F o f r a n k  d, with n = md. 
Class field theory (see e.g., [W]; Ch. X) associates with A an invariant inv A of the 
form i/d (modulo 1), with i prime to d, and inv A = inv D is independent of  m. 
There exists a unique simple algebra A central of rank n over Fwi th  invariant i/d 
(modulo 1) (where (i, d) = 1 and d divides n). I f F  = C then d = 1, i f F  = Rthen  
d = 1 or 2; otherwise dis  any positive integer. Put G = G(F) and G' -- GL(n, F), 
and note that G(F)  = GL(n,/r  if ~r is an algebraic closure of  F. 

A conjugacy class y in G is called regular if its characteristic polynomial Pr is 
separable (has distinct roots). If y, J are regular and py = p~ then Y = J. There is an 
embedding Y -~ Y', defined by py, = p~, of  the set of  regular conjugacy classes y in G 
into the set of  regular conjugacy classes Y' in G'. 

Let C(G) denote the convolution algebra of  complex valued smooth compactly 
supported measures for t  G. Put R(G) = Rz(G) | C, where Rz(G) is the Grothen- 
dieck free abelian group generated by the set Irr G of  equivalence classes of  
smooth ( = algebraic) irreducible (hence admissible by [BZ]) G-modules. 

If  n is an admissible G-module then the convolution operator n ( f ) =  
fa f(g)n(g) is o f  finite rank and its trace is denoted by tr n0e). There exists a 
complex valued conjugacy invariant smooth function g = Z(n) on the regular set 
of  G with tr rt(f) = f z(g)f(g) for any f i n  C(G) which is supported on the regular 
set of  G. It is called the character of  n, it depends only on the image of  n in R (G), 
and characters of  inequivalent irreducible G-modules are linearly independent 
(namely Z ~ 0 if ~ ~ 0 in R(G)). 

Fix a minimal parabolic subgroup P0 together with its Levi decomposition 
MoN0 in G (and G"), and denote by iM~ (or IM, or I~)  the homomorphism 
R (M) -~ R (G) of  unitary induction, for any (standard) Levi subgroup M (thus M 
is a Levi subgroup, containing M0, of  a parabolic subgroup containing Po). 
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An irreducible G-module rt whose central character is unitary is called square- 
integrable, or discrete-series, if it has a matrix-coefficient which is square- 
integrable on G modulo its center. An irreducible G-module 7t is called tempered 
if  there exists a Levi subgroup M and a square-integrable ( = discrete-series) 
M-modules p, such that it is a subquotient (necessarily a direct summand) of  
iuao. Put v(x) = Ix I (x in F), where I  9 I is the normalized valuation on F,  and 
v(g) -- v(det g), where det g is the reduced norm o f g  in G. 

A G-module it is called relevant if there is a Levi subgroup of  G of the form 
M = IIF'_ ~ (M~ • ./14,-) or M0 • M, where M~ (0 < i < m) are multiplicative groups 
of  simple algebras central over F,  and tempered M~-modules p~ (0 _-< i < m), and 
distinct positive numbers s~ <  89 (1 < i < m), such that 7t is 

iu.~[~I(P~V',• or iM0•215 R(PiVs'• inR(G) .  
i--I i--I 

L o c a l  T h e o r e m .  (1) Relevant G-modules are unitary and irreducible; in 
particular, a G-module unitarily induced from a tempered one is irreducible. 

(2) The relation X'(7') = ( - 1)"-reX(7)for all matching (7 ~ 7') regular conju- 
gacy classes 7, 7' in G, G" defines a bijection between the set of  equivalence classes 
of  square-integrable (resp. tempered; relevant) G-modules it, and the set of  
equivalence classes of  square-integrable G'-modules n' (resp. tempered; relevant, 
G'-modules re' whose character x'  is non-zero on the set of  regular 7' obtained from 
7in G). 

The bijection of  (2) is called the Deligne-Kazhdan correspondence. 
Let F b e  a global field, and G an inner form of G' --- GL(n) over F.  Then G is the 

multiplicative group of  a simple algebra A central over F.  A is a matrix algebra 
M(m, D) of m • m matrices over a division algebra D central over F of  rank d 
with n = dm. Class field theory (see, e.g., [W]; Ch. XI) associates with A the 
sequence {inv~A = i n v A  | of rational numbers modulo one which are 
almost all zero and whose sum is zero modulo one. Each such sequence {i,/d,} 
determines, up to F-isomorphism, a unique division algebra D central over F,  
and a unique simple algebra A of rank n central over F with these invariants, for 
any n which is divisible by d, for all v. Let G(A) be the group of  A-points of  G, 
where A is the ring of  adeles of  F. Let Z (resp. Z')  dentlte the center of  G (resp. 
G'); then Z - - - Z '  is the multiplicative group. Fix a unitary character to of  
Z(A)/Z(F) -- AX/F x. For each place v o f F  denote by F~ the completion o f f  at v 
and by to, the restriction of  to to F x . 

Let L(G) denote the space of  slowly increasing (see, e.g., [BJ]) functions ~u on 
G(F)\G(A) with ~(zg)= to(z)~(g) (z in Z(A)). G(A) acts on L(G) by right 
translation, and any irreducible submodule is unitary and called an automorphic 
G(A)-module. L(G) is the direct sum of  the discrete spectrum Ld(G), which is the 
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direct sum of  irreducible G(A)-modules called "discrete-series" G(A)-modules, 
and the continuous spectrum Lc(G), which is a continuous sum. A cuspidal 
G(A)-module is an irreducible constituent of  the subspace Lo(G), which consists 
of the ~u in L(G) with fNte)XNtA) tu(nx)dn equals zero for every x in G(A), and for 
the unipotent radical N of any proper parabolic subgroup of  G over F.  Each 
cuspidal ~u is absolutely square-integrable on G(A)/Z(A)G. Lo(G) is a sub-G(A)- 
module of  Ld(G ). 

Any cuspidal G'(A)-module is non-degenerate, namely (each of  its local 
components) has a Whittaker model (see [BZ]), and it occurs with multiplicity 
one in Lo(G). An irreducible G(A)-module n decomposes as a restricted tensor 
product | vnv of  irreducible admissible Gv = G (F~)-modules n~, which are almost 
all unramified. If  n ' =  • n '  and n"  = ~zc"~ are cuspidal G'(A)-modules and 
n' -~ n" for almost all v, then n~ ~-- n"~ for all v. All components of  a cuspidal 
G'(A)-module are relevant (by [Z], (9.7)), and, as noted above,unitary. 

Given G, or D, there is a finite set S of  places v o f F  such that for every v outside 
S the division algebra D splits, namely D | F~ = M(d,  Fv). We say that n~ lifts to 
n~' if G~ ~ G~' (thus v ~ S) and n~ "" n', or, more generally for arbitrary v, if nv 
corresponds to n' by the local theorem. An irreducible G(A)-module n = t~nv 
lifts, or corresponds, to an irreducible G'(A)-module n = ~ n'~ if n~ lifts to n' for 
all v. An automorphic G(A)-module which lifts to a cuspidal G'(A)-module will 
be called non-degenerate. 

G l o b a l  T h e o r e m .  (I) All local components o f  a non-degenerate G(A)- 
module are relevant. 

(2) Each non-degenerate G(A)-module occurs in the discrete spectrum o f  L(G) 
with multiplicity one. 

(3) I f  n = Q~ n~ and'n  = ~v  'nv are non-degenerate G(A)-modules and n~ ~-- 'n~ 
for almost all v, then n = 'n. 

(4) Lifting defines a bijection from the set o f  non-degenerate G(A)-modules 
n = ~ n~ to the set ofcuspidal G'(A)-modules n' = ~ rt'~ such that n'~ is obtained by 
the local correspondence for all v (in S). 

R e m a r k .  (1) is motivation for the definition of  "relevant" representations. 
(2) is called "multiplicity one" theorem for the non-degenerate spectrum of G. 
(3) is called "rigidity" theorem for the non-degenerate spectrum. (4) is called the 
Deligne-Kazhdan correspondence. 

The local theorem is proven below for F of  characteristic zero, and the case 
where F has positive characteristic follows from the Theorem of  [K']. The Global 
Theorem is proven here only for the subset of  the cuspidal G'(A)-modules n' with 
two supercuspidal components, using the simple form of the trace formula 
proven in Chapter I, Corollary 3. This Corollary 1.3 applies to any test function 
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f =  Qf~ which has a supercuspidal component fu, and at a second place u' the 
component f~, is any function whose orbital integrals vanish on the regular 
non-elliptic set (thus fu, lies in the class A (G) of [K] (see Chapter I, w which is 
called the class of discrete functions in [BDK] (see Chapter I, w In particular, 
fu, can be taken to be a pseudo-coefficient of any square-integrable Gu,-module. 
Had we proved Corollary 1.3 only f o r f s u c h  that f~, is supported on the elliptic 
regular set, we would have not been able to prove our Global Theorem, except in 
the special, more elementary case where the simple algebra underlying G is a 
division algebra. 

The stronger form of the simple trace formula proven in [FK1] makes it 
possible to prove the global theorem for all n '  with at least one supercuspidal 
component (see [FK1]). In [FK1] we replace the condition at u' by the require- 
ment that fu, be a sufficiently admissible spherical function (a notion defined in 
[FK 1 ]), and show that this requirement does not restrict the applicability of that 
trace formula to lifting problems. The trace formula of [FK1 ] is analogous to m 
and motivated by - -  Deligne's conjecture on the Lefschetz fixed point formula 
(in 6tale topology) for finite fiat correspondences twisted by a sufficiently high 
power of the Frobenius. Similar ideas are used in our work with D. Kazhdan (see 
[FK2], [FK3]) concerning the geometric Ramanujan conjecture for GL(n). The 
global theorem can be proven for all rt' on using Arthur's recent proof of the 
required trace formulae identity for arbitrary test functions f =  Qf~ and f ' - -  

f~' on G (A) and G'(A), but we do not do it here. A simple proof of  this trace 
identity for a rb i t r a ry fand f '  can possibly be given on using the regular functions 
of [FK], [Sph], and Chapter IV below, but at the moment we carried it out only 
for groups of rank one (see [Sym; VI]). 

When n = 2 the theorem is due to Jacquet-Langlands [JL], when n = 3 Flath 
[F1] reduced it to the trace identity ([F1; (6.1)]) proven later in [GL(3); (2.7.3)], 
and the case of general n, d was treated by Deligne, Kazhdan and Vigneras in 
[DKV]. Our indebtedness to [DKV] is apparent. 

w Germs 

As an example of the theory of Chapter I, we consider here the case of 
comparison between G' = GL(n) and its inner forms G. Our exposition here will 
be more elementary, as suitable for this introductory case. In particular G and G' 
are connected, so that G " =  G ' =  G O and a = 1, and there is no difference 
between conjugacy and stable conjugacy. 

Let F be a local non-archimedean field of  characteristic zero, and put G ' - -  
GL(n, F), where n is a positive integer. Let G be an inner form of  G'. Fix Haar 
measures dx' on G' and dx on G. Write y ~ Y' if y, y' are semi-simple elements of 
G and G' with py = py,. If y, Y' are regular (have distinct eigenvalues), their 
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centralizers in G, G' are tori T, T'; Tis  isomorphic to T' i fy ~ 7'. Haar measures 
on isomorphic tori are always taken to be equal. The orbital integrals ~(x ,  f )  and 
r f ' )  of  f i n  C(G) a n d f '  in C(G') are defined in w 1. Proposition 1.5.8 implies 
the following 

C o r o l l a r y .  For every f i n  A(G) there exists f '  in A(G'), and for every such f '  
there is such f ,  so that 'dp( 7, f )  = 'r f ' )  for every elliptic regular 7 and 7' with 
py ~ pr,. 

This proves assumptions II.5.1, II.5.2, in our case. 

Definition. The functions f i n  C(G) a n d f '  in C(G') are called matching if 
tI~(x, f ) =  cb(x', f ' )  for all regular x '  in G' and x in G with Px = Px,, and 
 9 (x', f ' )  = 0 for all regular x '  in G' which do not come from G. 

We also state the following 

T h e o r e m .  For every f i n  C(G) there exists f '  in C(G'); and for every f" in 
C(G') so that dp(f,) is zero at any regular x in G' which does not come from G, 
there exists f i n  C(G); so that f and f '  are matching. 

This Theorem will be proven by induction on the Levi subgroup of G. Hence 
we now assume the validity of  the Theorem for every proper Levi subgroup M of 
G. Consequently we can use Assumption II.3 in our case. The proof is based on 
the lifting theorem of w for tempered local representations; it is completed in w 

w Comparison 

Let F b e  global, n - rod, G = GL(m, D) the multiplicative group of the m X m 
matrix algebra over the central division algebra D of  dimension d 2 o v e r  F,  and 
G' = GL(n). Put Gv = GL(m, D~), G' = GL(n, Fv) at any place v o f F .  Since G is 
an inner form of  G', the groups are isomorphic over an algebraic closure/e of  F ,  
and a differential form of maximal degree on G' rational over Fcan  be transferred 
to one on G. These define Haar measures dx~ and d'x~ on G~ and G' for all v, 
which we call compatible, and consequently we can choose compatible product 
measures dx -- Qdx~, d'x = ~d'x~ on G(A), G'(A). 

There is a bijection from the set of  conjugacy classes in D x (over a local or 
global field), to the set of  elliptic conjugacy classes in GL(d, F). Similarly, there is 
a bijection from the set of  semi-simple conjugacy classes in G = GL(m, D) to the 
set of semi-simple conjugacy classes in G' = GL(n, F), with an elliptic represen- 
tative in the Levi subgroup H~ GL(dai, F), Zi a~ -- m. Globally, i fG ramifies at the 
finite set Vof  places o f F ,  there is a bijection from the set of  conjugacy classes of  
tori T in G over F,  into the set of  conjugacy classes of  tori T' in G' such that at 
each v in V the torus T' of  G' is obtained from a C,-torus T,. We choose 
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compatible product measures dt = • dtv, d't = ~ d'tv on the matching tori T(A), 
T'(A), which are isomorphic over F. 

We choose functions f =  Qf~ on G(A) a n d f '  -- ~ f '  on G'(A) such thatf~ and 
f~' are matching for all v. In fact, for v outside V, the groups G~ and G' are 
isomorphic over Fv, and we take f~, f~' equal under this isomorphism. For almost 
all v, we takef~ = f f  = f'~. Corollary 1 and the inductive assumption of Theorem 
1 show that there exist sufficiently many matching pairs in C(G,), C(G') for our 
purposes. 

Proposition 1.3 now implies 

P r opos i t i on .  I f  f and f '  are matching and satisfy (each) the (three) require- 
ments o f  Proposition 1.3, then Y~ tr n'( f ' )  = Y~ m(n)tr  n(f) .  The sums range over 
the cuspidal spectra of L 2(G ') and L2(G). 

We used the multiplicity one theorem for L2(G ') to conclude that the multipli- 
cities m(n') on the left are equal to I. 

w E x i s t e n c e  

Let G be a reductive connected p-adic group, and n' a square-integrable G- 
module. A pseudo-coefficient of n' is a function f in A(G) (see w with 
tr n ' ( f )  = 1 and tr n ( f )  = 0 for every tempered (irreducible) G-module n inequi- 
valent to n'. If n' is supercuspidal then each of  its (normalized) matrix coeffi- 
cients is a pseudo-coefficient (in fact tr n ( f )  = 0 if n is irreducible and inequiva- 
lent to n'). In general, the existence of a pseudo-coefficient is proven in [K], 
Theorem K (cf. [BDK]). 

Let F be a global field, fix a finite set V of non-archimedean places, and three 
distinct non-archimedean places w, u and u' outside V. Although more general 
variants of  the following Proposition can be proven (cf. Theorem IV.3), for 
simplicity we now assume that G = GL(n). Fix a supercuspidal G,,-module n ' .  

P r o p o s i t i o n .  Let n" be a square-integrable Gw-module. Then there exists a 
cuspidal G(A)-module n = ~rt~ such that (i) nw --~ n ' ;  (ii) nu ~-- n" ; (iii) for each v 
in V the component n~ is Steinberg (see [C'; w (iv) nu, is square-integrable, (v) rt~ 
is unramified for each non-archimedean place v ~ u, u', w outside V. 

Proof .  We use Corollary 1.3 with a function f =  ~ f ~  chosen as follows: 
(i) f ,  is a pseudo-coefficient of  n ' ;  
(ii) f~ is a matrix coefficient of  n ' ;  
(iii) for each v in V the component f~ is a pseudo-coefficient of  the Steinberg 

G,-module; 
(iv) f~, is supported on the regular elliptic set in Gu,; 
(v) at each finite v # u, u', w outside V we take spherical (K~-biinvariant)f~; 

f~ = f0  for almost all v. 
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These components can be and are chosen so that ~(x ,  f )  ~ 0 for some elliptic 
regular x in G. Since the sum of I.3.1 is finite, we can reduce the support off~. so 
that the sum 1.3.1 consists of  a single entry, hence it is non-zero. Hence there is a 
cuspidal rt with tr rt(f) § 0. This 7t is non-degenerate, hence each of its local 
components rtv is non-degenerate. It is easy to check that 7t has the properties 
required by the proposition, using the following 

R e m a r k .  A Gv-module is called elliptic if its character is not identically zero 
on the regular elliptic set of  G,. Theorem 9.7(b) of  [Z] implies that every 
irreducible non-degenerate elliptic G~-module is square-integrable (in fact, of  a 
"generalized Steinberg" type). 

The proposition follows. 
In the next lemma, G is a locally compact unimodular topological group with 

center Z, co a character of  Z of absolute value one, and f* (g )  =f(g- i ) .  Let L(G) 
denote the convolution .-algebra of  complex valued functions on G withf(zg) = 
co(z) - ~ f(g) (g in G, z in Z) such that If(g)[2 is integrable on G/Z.  For a unitary 
irreducible G-module rt put ~t(f)--f~/zf(g)l t(g)dg.  Suppose B is a dense .-  
closed subalgebra ofL(G),  I is a set, {n, 7tr(i in I)} is a set of  irreducible unitary 
pairwise inequivalent G-modules such that n ( f ) ,  n r ( f )  (i in I) are Hilbert- 
Schmidt operators for all f i n  B, and l[ " 11 is the norm. Suppose that {cr (i in I)} is 
a set of  non-negative real numbers such that Zi ci ]] 7t~(f) 1] 2 is finite for all f i n  B. 
Then the remark on page 496 of  [JL] asserts that: for each positive e there existsf  
in B with II II 0 and Zr cr II rc,(f) II 2 __< 8 II II 2. W e  conclude that: 

L e m m a .  If{dr; i in I} are complex numbers such that Zi di tr rti(f , f * )  is 
absolutely convergent to zero for all f i n  B, then dr = O for all i. 

Proof .  Note that tr 7tr ( f , f* )  ---- II nr(f) II 2. If d0 § 0, there is f i n  B such that 
Y~i~o Idrl tr nr( f* f* )  is bounded by  89 tr r t0 ( f , f* ) (  ~ 0), and we arrive at a 
contradiction. 

w Isolation 

Let Fw be a local non-archimedean field of characteristic zero, and Gw the 
multiplicative group o fM(m,  D~), where D~ is a central division algebra over F~ 
or rank d and invariant i/d (modulo one). 

Propostion. For every square-integrable G'-module rt" there exist 
G,-modules rtw and positive integers m ( rtw), such that for all matching f "  and fw we 
have 

( - 1) ~-~ tr n ' ( f ' )  -- ~ m(n~) tr ~ ( f ~ ) .  
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I f  Cw is an open compact subgroup of  Gw, then the sum consists only of finitely 
many nw with a non-zero C~-invariant vector. 

P r o o f .  Let F be a totally imaginary number field whose completion at some 
place w is our local field F~. Choose a set Vofn - m + 1 non-archimedean places 
including w. We may assume that i is prime to n = md. Choose a division algebra 
D central over Fwi th  the following invariants: i/dat w; i/n at each v ~ w in V; 0 
outside V. Take G = D x. Then G~ is our GL(m, Dw), where invw D~ = i/d. Fix 
three distinct non-archimedean places u, u', u" of  F outside V, a supercuspidal 
G,-module ft,, and a matrix coefficient f ,  of  it,. I f S  is any finite set of  places o f F  
put tts = ~rtv and f s  = ~ f  (product over v outside S), and 7ts = ~ttv and 
fs = ~ f ~  (v in S). Denote by ~ the set of  archimedean places of  F.  Choose a 
unitary irreducible G~-module rt| Using Lemma 3 with B = C(G~) we conclude 
from Proposition 2 that i f f  '= = Qf~' a n d f  ~ = ~ f  (v outside oo) andf'~,f  are 
matching for all v, then 

(4.1) ~ tr rr'~(f '~) = ~ m(zt)tr i ts(f |  

Put A s for the ring of  adeles without archimedean components. On the left, the 
sum ranges over all G(Ai)-modules rr '~ such that n' = rt '~ | rr| is a cuspidal 
G'(A)-module; on the right the sum is over the G(Ai)-modules n | so that 
n = rt ~ | n~ appears with positive multiplicity m(n) in the (cuspidal) spectrum 
Lo(G) of G. 

Recall the following theorem of Harish-Chandra (see [BJ]). 

L e m m a .  Let C be an open compact subgroup of G(Ar). Then there are only 
finitely many automorphic G-modules rt with a non-zero C-fixed vector and a given 
infinitesimal character at each archimedean place (in particular with the fired 
component n~o at oo). 

Let II' be the union of  V and { u, u', u "}. Fix f~, f ;  for v in V', and let f~ = f~' be a 
variable spherical (Kv = G(Rv)-biinvariant) function for the finite v outside V'. 
Then the Lemma implies that the sums in (4.1) are both finite. It is clear from the 
theory of  the Satake transform that: given a finite set {rtiv; i >_- 0} of  irreducible 
unramified pairwise-inequivalent G,-modules, there exists a spherical function f, 
with tr ~r;v(f~) = 0 if i § 0, and tr n0~(f~) = 1. We conclude that given an irreduc- 
ible G(AV')-module n V', we have, for all matching f,, f~' (v in V'), 

(4.2) Y, tr lr~,,(f~,,) = Y, m(n) tr nv~fr,). 

On the left the sum is over the irreducible representations ~r~,, of  1I G~' (v in V') 
such that n '  = try,, | n v' is cuspidal; by the rigidity theorem of [JS] there exists at 
most one such ~t'. We choose n v' so that rt' of  Proposition 3 appears on the left. 
On the right the sum is over the equivalence classes of  irreducible try, such that 
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n = rtv, | n v' is cuspidal, with multiplicity re(n). The sum on the right is not 
finite, a priori. 

Sincef~ is a normalized matrix coefficient o f a  supercuspidal G~-module rt~, we 
have tr zc~(f~) = 1 and tr zt,',(f,',) = 1 for the n, :t' which appear in (4.2). At each 
v ~ w in V, l e t f  be the function 1, andf~' a matching function on G'~;f'~ exists by 
Corollary 1. At such v let nv be the trivial Gv-module, and zt; the Steinberg 
G~'-module. Then X~' (x ' )=(-1)"- lX~(x)  on the elliptic regular set, and 
tr n v' (f~') -- ( - 1 )" - ~. Moreover, if v v~ w in V and z~ appears on the right of  (4.2), 
then tr ~z~(f~) is 0 or 1. Since (n - 1)(n - m)-----~ - m (modulo 2) we conclude 
that for all matching fw, f~  and for all f~. which vanish on the singular set of G,., 
we have 

(4.3) ( - 1)"-"  tr n ' ( f ~ )  tr zC.(f~.) -- Y~ m(zt) tr ztw(fw) tr n~.(f~.). 

The sum is over an easily specified set of0tw, ~tu.). Note that G splits at u", hence 
f u . -  f~., moreover, the place u" is chosen so that 7ru. is unramified. The 7t' of  
Proposition 3 is cuspidal, hence it has a Whittaker model, and tr'. is non- 
degenerate. ,Consequently, 7r'. is equal to an irreducible representation which is 
induced from an unramified character of  the upper triangular subgroup, by [Z], 
Theorem 9.7(b). 

Let f ' .  be any function such that F(f~'.) is supported on the split regular set of  
Gu., and its restriction to A (Fu.) is A (R~.)-invariant. In [FK], [Sph], Chapter IV, 
[Sym; IV, VI], we call such a function "regular". It is clear that if F(t, f~.) ~ 0 
then the Levi subgroup Mt of w is A, so that tr 7r(f ' .) = tr ttN(f,',.s) for any 
G'.-module tt, where N is the upper triangular unipotent group. The support of  
F(f ' . )  is an open closed set; denote by 0 its characteristic function, and replace 
f ' .  by its product with 0. This does not change the value of  the orbital integral, 
but assures the vanishing of  the compactly (modulo center) suppor tedf ' ,  on the 
singular set. Note that Theorem 4.2 of  [BZ] implies that i f t r  rts(f'.N) ~ 0 then tt 
has a non-zero vector fixed by the first congruence subgroup. By virtue of  the 
Lemma, the sum of  (4.3) is finite, uniformly in thef'~, which are considered here. 
Hence we can apply linear independence of  (finitely many) characters on Au.. 
This, together with Frobenius reciprocity, implies that we may consider on the 
right only ltd. which are subquotients of, hence equal to, the irreducible :t,',.. The 
first claim of the proposition follows. The last assertion of  the proposition follows 
from the Lemma. 

w Lifting 
Let F be non-archimedean, G -- GL(m, D) and G' = GL(n, F). We have an 

injection x ~ x '  of  conjugacy classes from G to G', and we denote the characters 
of  the G-module n and G'-module n '  by X~ and Z~, (or X'). 
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T h e o r e m .  The relation Z~, (x ' )=(-  1)"-mX~(x)for all matching regular 
conjugacy classes x, x '  in G, G' defines a bijection between the set of  equivalence 
classes of  square-integrable (resp. tempered) G-modules ~, and the set of  equiva- 
lence classes of square-integrable (resp. tempered) G'-modules zt' (resp. whose 
character X' is non-zero on the set of  regular x '  obtained from x in G). 

P r o o f .  Let ~z' be a square-integrable G'-module. Proposition 4 (where we 
now omit the subscript w) establishes the existence of a Trace Identity II.3 for this 
~t'. By virtue of  Corollary 1 and the induction assumption of  Theorem 1 for 
M ~ G, the Assumptions II.3, II.5. l, II.5.2, are valid. By Proposition II.4 the x of 
Proposition 4 are square-integrable, and by Proposition II.5 there are only 
finitely many rt in the sum. Sincef is  an arbitrary function on G, we conclude an 
identity of  characters 

( -- 1)~-nZ~,(x') = 2 m(zt)Z~(x) 
/ t  

for regular matching classes x ---, x'. On the right the sum ranges over a finite set of  
square-integrable G-modules n. Applying the orthonormality relations for 
square-integrable G and G'-modules of  Kazhdan [K], Theorem K, we conclude 
from 1 -- ~ m(Tt) 2 that the sum consists of  a single n with a coefficient re(n) = 1. 

R e m a r k .  Another proof for the existence of  a square-integrable n to match 
such n', without using the finiteness result of  Proposition II.5, yet using Corollary 
1 or the Assumptions II.5.1, II.5.2, is as follows. It is clear that some n appears in 
the sum of Proposition 4, since we can t a k e f '  to be a pseudo-coefficient of  n' by 
Corollary 1. Fixing such n we take f i n  A(G) with ' ~ ( f ) =  Z(n) on the elliptic 
regular set; it exists by [K], Theorem K. Then the sum of Proposition 4 is equal to 
m(rt). On the other hand, i f f '  is a matching function (which exists by Corollary 
1), then 

Itr~'(f')J2= l f z'(x')'e~(x',f')dx'l:<= f ,z'(x')12dx' f [X(x)[2dx 

b)) Schwarz' inequality. The integrals are taken over the elliptic set of  G or G', and 
we use the fact that '@(x', f ' )  = 'q~(x, f )  = Z(x); Z, X' are the characters ofrt,  g'. 
By the orthonormality relations of  [K], Theorem K, we conclude that m(~t) =< 1. 
As mot)  is a positive integer, we conclude that mot )  = 1, and that the Schwarz 
inequality is an equality in our case, so that Z'(x') = c '~(x,  f )  = cx(x) on the 
elliptic regular set, where c is a constant with J c [ = 1. Hence 7t is the only term in 
the sum, and c = ( - -  1) m - n .  

In the opposite direction, given a square-integrable it we take a pseudo- 
coefficient f i n  A (G) of  7r, and a matching function f '  in A(G'). By Corollary 1.4 
and the orthonormality relations of  [K], there exists a tempered elliptic, hence by 
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[Z] square-integrable, G'-module n', with tr n ' ( f ' )  § O. By the orthonormality 
relations on G, the G-module matching n', whose existence was proven above, is 
our n. 

We have now completed the proof of  that part of the theorem which concerns 
square-integrable ~, ~'. The extension to the case of any tempered ~ and ~' 
follows once we establish in w below that any tempered G-module is equal to an 
induced G-module from a square-integrable module. This result is well known in 
the case of  the split group G'. In its proof we use that part of  the theorem proven 
above, for square-integrable modules. 

R e m a r k .  In particular, we completed the proof and hence can use the 
assertion of Theorem 5 in the case m = 1, namely when G is the multiplicative 
group D • of  a division algebra D central over F. Indeed, aU G- modules in this 
case are square-integrable and the image of the correspondence here is the set of  
elliptic tempered, hence square-integrable, G'-modules. 

w Relevance 

Proposition. Any elliptic tempered G-module is square-integrable. 

Proof. Suppose that the character Z of tt is non-zero on the elliptic regular 
element y. Let f be the characteristic function of a small neighborhood of y 
(modulo Z), where Z is constant. It is clear from the Weyl integration formula 
that 

= f )~(x)f(x)dx (x in the elliptic set of  G). (x, ' (I)(f) ) 
For o u r f a n d  Z, we have (Z, 'r ~ O. Sincef is  supported on the regular set, 
there is a matching f ' ,  with 'r f )  = '~(x ' ,  f ' )  on the elliptic set. As f '  lies in 
A(G'), there is a matching function f "  on the multiplicative group G" of  a 
division algebra of dimension n 2 central over F. Since G" is compact modulo its 
center Z,  there are finitely many G"-modules n'[ with characters Z'[, and complex 
numbers ci, so that 'r f")  = Y. c~z~(x") on the regular x"  in G". If Z/are the 
characters of  the G'-modules lt[ which correspond to the 7r'~, then '~(x ' ,  f ' ) =  
Y c~z[(x') on the elliptic regular set. Since the 7t[ are square-integrable, they 
correspond to square-integrable G-modules ~ti with characters Zi. Hence 
"r f )  = Z c~zi(x) on the regular elliptic set. Then (Z, 'tI~(f)) = Z c~ (Z, Zi ). 
Since this is non-zero, we have (Z, Z~) § 0 for some i. But the orthonormality 
relations for square-integrable G-modules of [K], Theorem K, imply that tr is 
equivalent to the square-integrable 7t~, as required. 

6.1. P r o p o s i t i o n .  Suppose I is a G-module unitarily induced from a square- 
integable M-module, where M is a Levi component of a proper parabolic subgroup. 
Then I is irreducible. 
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Proof .  This is the same as the proof of Proposition 27 of [FK], where the 
analogous result is proven for the metaplectic group G. To obtain a proof for our 
group G, each symbol :r in the proof of [FK], Proposition 27, has to be replaced by 
the symbol x. Note that this proof is based on Proposition 6, and so on the lifting 
Theorem 5 for the square-integrable G and G'-modules. 

This Proposition, together with parabolic induction, completes the proof of  
Theorem 5, assuming that Theorem 1 holds for all proper Levi subgroups M of G. 
In w below we use Theorem 5 to prove Theorem 1 by induction on M. 

To study lifting, or correspondence, of  automorphic G(A)-modules, we need an 
extension of Proposition 6.1, which we now state. Put v(x) = Ix I for x in F x, and 
v(g) = v(det g) for g in G, where det g is the reduced norm ofg.  Write ltv s for the 
G-module g ---, rt(g) | v(g) s, where s is a complex number. 

6.2. De f in i t i on .  A G-module rt is called relevant if there is (i) a Levi 
subgroup M of G of  the form M0• (Mi•  or of  the form 
1-Ip_ 1 (M~ • M~), where M, is a multiplicative group of a simple algebra for each i 
(0 < i < m), (ii) irreducible tempered Mrmodules  p~ (0 < i < m), and (iii) dis- 
tinct positive numbers s~ < ~ (1 _-__ i < m), such that rt is equivalent to I(p) or 
I(P0 • p), and p is the IIT~ ~ (Mi • M~)-module Final (p~v s, • p~v-S,). 

R e m a r k .  This definition is analogous to Definition 27.2 of  [FK] for the 
metaplectic group G. (Note that the word "Proposition" in [FK], Definition 27.2, 
should be "Theorem".) 

Proposition. A relevant G-module is irreducible and unitary. 

Proof .  This is the same as the proof of Theorem 27.2 in [FK], except that all 
references to the metaplectic group ought to be replaced by references to our 
multiplicative group G of a simple algebra. This proof is based on unitarity 
arguments. 

It is now clear that by parabolic induction Theorem 5 extends to hold also for 
relevant, not only tempered, G- and G '- modules. This completes the proof of the 
Local Theorem of the introduction. 

R e m a r k .  (1) The result of  Proposition 6.1 and Theorem 5 is due to [DKV], 
and that of  6.2 is new. (2) Theorem 5 and Propositions 6. I and 6.2 are proven 
here for a local field of  characteristic zero. The analogous results hold for local 
fields of positive characteristic on using the Theorem of [K']. 

w Induction 

It remains to complete the proof of Theorem 1, using Theorem 5. In the proof 
of  Theorem 5 we used the induction assumption of Theorem 1, namely the 
statement of Theorem 1 for all proper Levi subgroups. Our aim is to show that for 
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any f i n  C(G) there exists a matchingf '  in C(G'), and for any sui tablef '  in C(G') 
(thus ~(x', f ' ) - - 0  for any regular x '  not obtained from x in G) there is a 
matching f i n  C(G). We note: 

L e m m a .  For every f there exists f '  with tr zt(f) = tr zr'(f') for all correspond- 
ing tempered rt, It', and tr rt'(f') = O for the tempered rt' which are not obtained by 
the correspondence. 

P r o o f .  Given f w e  define the function F on the space of  tempered rr' by 
F(rt') = tr n ( f )  if  n corresponds to zt' by Theorem 5, and by F(zt') = 0 if the 
character of  zt' is zero on the set of  regular x'  obtained from x. Then F is in the 
space Fgooa in the terminology (1.2) of  [BDK] (see Chapter II; w hence a trace 
function by the Trace Paley-Wiener Theorem 1.3 of  [BDK]. Namely there is an 
f '  with F(rr') - tr zt'(f') for all tempered zt', as required. 

The same argument implies the existence o f f  for a given suitable f ' .  

P r o p o s i t i o n .  Suppose that f and f '  satisfy tr r t ( f )  = tr ~t ' ( f ' ) for  all corres- 
ponding tempered rr and it', and tr r t ' ( f ' )  = O for the tempered rt' not obtained by 
the correspondence. Then f ,  f '  are matching. 

P r o o f .  By induction on the Levi subgroup M of  the parabolic subgroup 
P = MN of G. Denote by P', M',  N' the corresponding parabolic, Levi, unipotent 
subgroups of  G'. Let Se be the modulus homomorphism on P. Thus d(ab) = 
t~e(a)db (a, b in P) for any right Haar measure db on P. For a in the center A of M 
we have $e(a) -- FI I a(a) I ; the product ranges over all roots of  A in N. As usual, we 
put 

fN(m)=~e(m)~/2 f f f(k-tmnk)dndk. 
K N 

Here K is a maximal compact subgroup of  G with G -- KP. For any m in M 
regular in G we have F(m, f )  = FU(m, f~r where F(x, f )  = A(x)tI)(x, f )  and 
A ( X )  = i i-ii<j ( x  i _ x j ) 2 / x i x j  [i/2 i fx  has distinct eigenvalues xi (see [FK], w F M is 
defined analogously, with respect to M. Analogous notations are employed in the 
case of  G'. Further, we note that if  zt -- I(p) is the G-module unitarily induced 
from the M-module p, then tr r t ( f )  -- trp(f~r by a standard evaluation of  the 
character of  an induced representation. Consequently, if p, p' are corresponding 
tempered M-  and M'-modules, we have tr p ( f s )  = tr p'(f~r and tr p'(f~r -- 0 for 
tempered p" not obtained from any p. By induction we have F(x', jr')= 
FM(X ', f'~) = FM(x, fly) = F(X, f )  for the regular x '  in M '  which come from x, 
and F(x', f ' )  = 0 for the regular x '  in M '  which do not come from G. It remains 
to show the proposition for elliptic regular x, x'. 
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Choose matching elliptic regular y, y'. Let U' be a sufficiently small compact 
neighbourhood ofy ' ,  and ' f '  a function on G', supported near y 'Z ,  whose orbital 
integral '~ ( ' f ' )  is the characteristic function of  ZU 'a'. Let ' f  be a matching 
function on G. Now, 'O( 'f ' )  is a finite linear combination of the characters 
of  square-integrable n[ with coefficients ci, by [K], Theorem K. Then ~ ' ( ' f )  
is the corresponding combination of the characters of  the ni which correspond 
to the hi. Since U' is small, the Weyl integration formula implies that 
fr/z F(t, "f')F(t, f ' )d t  is equal to Eci tr n ; ( f ' ) ;  T is the centralizer of  y" in G'. The 
assumption of our proposition implies that this is equal to Eci tr rt~(f). But this is 
fr/z F(t, ' f )F(t ,  f )d t .  We take U' to be so small that both F(t, ' f ' )  and F(t, ' f )  are 
constant on U'. The desired equality F(y,  f ) =  F(y' ,  f ' )  now follows from the 
choice of  ' f a n d  ' f ' ,  which guarantees that F(t, ' f )  = F(t, 'f '). 

w Global correspondence 

Let now F b e  a global field, and put G' = GL(n, A), G = GL(m, DA) , where DA 
denotes the adele points of  a division algebra D of dimension d 2 central over F, 
and n = md. Also we put G~' = GL(n, Fv), Gv = GL(rn, D J  at each place v o f F ,  
where D~ denotes the F,-points of D. Then G~ = G L ( m ,  D(v)), where D(v) is a 
division algebra of  dimension d 2 over Fv, and n = m~dv. Also G~ --~ G~' for all v 
outside a finite set V of places, and we have an injection x - - -x '  of  conjugacy 
classes from G to G', and from Gv to G~' for all v. It is a bijection for v outside V, 
but  it is not surjective for v in the set Vwhere D ramifies. 

Recall that an irreducible admissible G~-module ~tv is said to lift (or corres- 
pond) to a G~'-module rt~' if their characters Xv, X~' are related by ( - 1) n -'~,X~'(x') = 
Z,(x) for all regular matching x, x'. At v outside V we have rn~ = n and this 
relation amounts to zt~ "-- zt~. Our Local Theorem asserts that the map zt~ --- rt~' 
induces an embedding of  the set of (equivalence classes o f )  tempered (resp. 
relevant) G,-modules as a subset of  the set of tempered (resp. relevant) 
G~'-modules. 

A G-module n = Qnv is said to (quasi-) lift to a G'-module n' --- ~n~' if n, lifts 
tb n~' for (almost) all v. Results about global lifting depend on the form of trace 
formula which is available. Here we use only Proposition 1.3. It implies, on using 
transfer of  orbital integrals (Theorem 1), that any discrete-series (automorphic) 
G-module n whose components at two places u, u' lift to supercuspidal G~' and 
G'~-modules, quasi-lifts to an automorphic (necessarily cuspidal) G'-module with 
supercuspidal components at u, u'. Further, any automorphic G'-module n' with 
a supercuspidal component at u, an elliptic component at u', and components rt~' 
with characters X~' which are not identically 0 on the set of  regular classes x '  
obtained from x in G~ for all v in V, is a quasi-lift of  a discrete-series G-module. 
Note that u, u' are not required to be in or out of  V. 
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Using the stronger form of the simple trace formula established in [FKI] we 
show in [FK1 ] that all the assertions in this section hold also with no condition at 
the second place u ', namely for automorphic G'(A)-modules rt' with a supercuspi- 
dal component at one place u only, and the corresponding set of  G(A)-modules rr. 
It will be interesting to extend these results to all it by means of  a simple and short 
proof. This may be afforded by the usage of the regular functions of [FK] and 
[Sph], but at the moment we have developed this technique only in the case of  
groups of rank one in [Sym; VI]. 

Since an automorphic zt' with a supercuspidal component is cuspidal, multipli- 
city one and rigidity theorems for the cuspidal spectrum of  L(G') imply that the 
discrete-series quasi-lift it' of  n is unique if it exists. We shall now deal with the 
notion of  lifting, rather than quasMifting, and conclude the uniqueness of  zr too, 
thereby obtaining multiplicity one and rigidity type theorems for discrete-series 
G-modules. 

T h e o r e m .  Suppose that ~r' is an automorphic G'-module with supercuspidal 
components at two places u and u', and components zt~ whose characters are not 
identically zero on the set o f  the x '  which come from G~for all v in V. Then there 
exists a unique automorphic G-module rt which quasi-lifts to re'; moreover, rt lifts 
to n'. 

Proof .  The condition at u implies that n'  is cuspidal. Hence it has a 
Whittaker model, and its components are all non-degenerate and unitary. Hence, 
by [Z], Theorem 9.7(b), each n'  is relevant. The Local Theorem implies that it' is 
the lift of  a relevant G,-module ~ .  The identity of Proposition 2, say in the form 
(4.2) with ~r' as the only term on the left and with a sufficiently large but finite set S 
of  places of F (S depends on 7r'), implies that 

l-I tr ~(j~,) = I-I tr n'(f~') -- ~ m ( n )  II tr n ~ ( f )  
y E S  y E S  ~t y E S  

for all functions f,  on G~ (v in S). The "generalized linear independence" of  
characters in Lemma 4 implies that the sum on the right consists of  a single 
summand ~t with m(~z) = l, and the theorem follows. 

Partial results can be obtained also for non-cuspidal discrete-series tt', once a 
suitable form of  the traces identity, is available. But the conjectural description of  
such it' has not been proven as yet. Namely it is well known tht the non-cuspidal 
residual spectrum contains g'  whose components are all dual, in the sense of  [Z], 
to generalized Steinberg G,'-modules, but it has not been shown as yet that these 
n '  exhaust the residual spectrum, and they occur with multiplicity one. Yet, given 
the identity of trace formulae, the Theorem of [JS] permits working with these 
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exceptional 7t', and establishing lifting for them. These matters will not be 
discussed here, but see [FK], w 

Chapter IV. Automorphic Forms on Compact Unitary Groups 

w Introduction 

Let E/F be a quadratic extension of  local non-archimedean fields, G ' =  
GL(n, E), and G the associated quasi-split unitary group. We show that there is a 
partition of the set of  equivalence classes of irreducible tempered G-modules into 
finite sets, called packets, so that there is a bijcction, defined by means of 
character relations, from the set of  packets to the set of  equivalence classes of 
irreducible a-stable tempered G'-modules. This local result is obtained in w 
using global techniques, in a simple situation. 

Let E/Fbe a quadratic extension of number fields, fix a finite place u of Fwhich 
splits in E,  let G' be the multiplicative group of a division algebra of rank n 
central over E, ramified above u and split outside u, and G the unitary group 
associated with G' and an involution a of the second kind. The quotient 
G(F) \ G(A) is compact; its space of automorphic forms decomposes as a direct 
sum of irreducible G-modules, and its automorphic representations have a 
particularly simple, "stable", form in the following sense. We define non- 
degenerate (tr-invariant) automorphic G'-modules to be those which correspond 
to cuspidal GL(n, E)-modules by means of the correspondence of  Chapter III. 
We then show that an analogous definition can be made for the set of  automor- 
phic G-modules. In w we show that there is a partition of the set of  non- 
degenerate automorphic G-modules into packets, which are the restricted pro- 
ducts of  the local packets, so that there is a bijection from this set of  packets to the 
set of  automorphic non-degenerate o-invariant G'-modules 7t'. The components 
of such it' are all a-stable. In particular we obtain a global rigidity theorem for 
~ackets of non-degenerate G-modules. 

w Theorems 

Let E/F be a quadratic extension of number fields; u a finite place of F which 
splits in E; G' an inner form of GL(n) over E which is anisotropic at the two 
places above u, and splits outside u. G' is then the multiplicative group of a 
division algebra D of  rank n central over E.  Suppose that a is an involution of  the 
second kind on D. Namely, a is an anti-automorphism of order two whose 
restriction to the center E of D is the non-trivial element of the galois group 
GaI(E/F). Then the unitary group G defined by D and a consists of  the x in D with 
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a(x)x = 1. At the place u the completion Gu = G(Fu) is the multiplicative group 
of  a division algebra of rank n central over the completion Fu of  F a t  u. At a place 
v ~ u of Fwhich splits in E we have Gv = GL(n, Fv). At a finite non-split v the G~ 
is a quasi-split unitary group. At a non-split archimedean place v we have 
E~/F~ = C/R, and G~ = U(i,j) is a unitary group of signatures (i,j), where 
i + j -- n. Since our theory at the archimedean places is well known, and our 
main interest is in the non-archimedean cases, to simplify the exposition we 
assume that each archimedean place of F splits in E. 

Our aim is to describe the tempered and automorphic representations of G in 
terms of those of  G'. 

Let r be an algebraic closure o f F ,  G a reductive connected group defined over 
Fwith  G = G(F) and G' -- G(E). For any extension F '  of  Fwe  write G(F') for the 
group of F'-points of G. Identify G with G(F). Let G' be the group Rese/fl7 
obtained from G upon restricting scalars from E to F. Being the induced galois 
module Ind(G; Gal(/e/F), GaI(/e/E)), G'  can be realized as follows. As a group, 
G' = G • G. Denote by a the non-trivial element of Gal(E/F), and by # the 
automorphism #(x, y ) =  (y, x) of G'. r in GaI(F/F) maps (x, y) to (zx, zy) 
if its restriction to E is trivial, and to #(rx, ry) if r [ E  = a. Hence G'(E) = 
G(E) X G(E), and G' = G'(F) is the group of pairs (x, ax) with x in G(E). Let Z, 
Z '  be the center of G, G'; A, A • and Ae, A x the adeles, ideles of  F a n d  E; E ~ and 
A~r the kernel of  the norm map from E to F acting on E • and A x . Then 
Z'(A) = A~, Z '  = E x, Z(A) = A~, Z ---- E ~. Put C ~ = A~e/E ~ if  E is global, and 
C 1 = E ~ i f E  is local. Fix a unitary character o9 of C 1, and put og'(x) = og(x/X); to' 
is a character o f A ~ / A •  x or EX/F • 

Our objects of  study are (equivalence classes of) G-modules zt and G'-modules 
rt' with central character to and to', which are admissible of finite length if F is 
local, and automorphic i f F  is global. Let "zt' be the G'-module "rt'(x) = zc'(a(x)). 
We deal only with a-invariant ~t', those with zt'--~ "zt'. These extend to G'>4(e)- 
modules. If  F is local, we denote by Z' the restriction of the character of rt' to the 
coset G' • a (see Chapter I, w To simplify the notations, we write g'(x) for 
Z'(x X a), where x is in G'. Denote by Z the character of ~t. We say that x, x '  in G 
(or G') are [stably] (a-) conjugate if  there is y in G (or G') [resp. G (or 17')] with 
xy = yx' (or x#(y) = yx'). A function on G (or G') is called (a-)stable if it is 
constant on each stable (a-)conjugacy class. A a-invariant G'-module zt' is called 
a-stable if its character is a-stable. In fact, we are interested only in regularx in G, 
those with distinct eigenvalues, and a-regular x in G', those for which x#(x) has 
distinct eigenvalues. Given a a-regular x in G', the conjugacy class o fx#(x)  in G' 
is defined over F,  and contains an F-rational element, giving rise to a bijection N 
(see [Ko]) from the set of stable a-conjugacy classes of  a-regular elements in G', 
to the set of stable conjugacy classes of  regular elements in G. If  E/F is a local 
quadratic extension, we have 
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Loca l  T h e o r e m . *  For each tempered o-stable irreducible G'-module n' 
there exists a finite set (rc }, named packet, o f  tempered irreducible G-modules rt, 
and positive integers n(rO, so that Z. n(n)X is a stable function G and 

)if(x) = E n(lr)z(Nx) 

for all o-regular x in G'. Moreover, for each tempered irreducible ~ there exists a 
unique rt' as above for which the relation holds. I f  n" is square-integrable , then ( rt ) 
consists o f  a single element. 

Namely, there is a partition of the set of  equivalence classes of the set of  
irreducible tempered G-modules into disjoint finite sets { rc }, named packets, so 
that there is a bijection between the set of  packets and the set of  equivalence 
classes of tempered a-stable irreducible G'-modules, defined in terms of char- 
acters. Note that in particular we assert that the sum E n(n)X over (n}, which a 
priori depends on conjugacy classes, in fact depends only on the stable conjugacy 
class, so that its value at Nx is well-defined. Further, i f E / F i s  unramified, and rt is 
unramified, then so is rr'; i f n '  is unramified there is an unramified n in (rt} with 
n(Tt) = I. The last claim in the Local Theorem follows at once from the (twisted 
analogue of the) orthonormality relations ([K], Theorem K) for characters of  
square-integrable representations, since it follows from our proofs that if r~' is 
square-integrable then (rt } consists of  square-integrable G-modules, to which the 
orthonormality relations of [K] apply. 

Let F be global. Denote by L(G \ G(A)) the space of smooth functions on 
G \ G(A) which transform under Z(A) by to. G(A) acts by right translation. An 
irreducible constituent rc is called an automorphic G-module. It is a product 
7t = (~rt,, where almost all n~ are unramified. The space L(G' \G ' (A) ) ,  and 
automorphic G'-modules rt '--  ~ n '  which transform under Z'(A) by to', are 
defined analogously. If E,/F~, ~, and it' are unramified, then n,, rt~' are parame- 
trized by conjugacy classes t~, t' with representatives in the cosets GL(n, C) • a, 
[GL(n, C) • GL(n, C] X a of the dual groups G, and G' of  G~ and G' (see [Sph], 
w We say that rt quasi-lifts to rt', if for almost all v, t~ maps to t' by the 
base-change map 

G r o G ' ,  t •  i (i = 0 ,  1). 

We first show that each automorphic ~t quasi-lifts to a unique a-invariant n', and 
each such rt' is a quasi-lift of  a it. The correspondence of  Chapter III gives a 
bijection from the set of  (equivalence classes of) the automorphic G'-modules 7t' 
to the set of  automorphic GL(n, E)-modules it" whose two components above u 
are elliptic (their character is non-zero on the regular elliptic set). It is defined by 
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zt' --~ 7t~ for all v ~ u. We say that it' is non-degenerate if the corresponding zt" is 
cuspidal, and that 7t is non-degenerate if it quasi-lifts to a non-degenerate zt'. 

The packet {~z} of a non-degenerate 7t is defined to be the set of  irreducible 
G(A)-modules ~ v ,  where ~ lies in the packet {zt~} oflt~ for all v, and ~ is equal 
to zt~ for almost all v. Although zt~ is not yet known to be tempered, since it is 
non-degenerate the definition of local packets extends to this case (see w below). 

G l o b a l  T h e o r e m . *  Each irreducible G(A)-module in a packet o f  a non- 
degenerate 7t is automorphic. The packets define a partition o f  the set of  non- 
degenerate ft. Quasi-lifting defines a bijection from the set of  packets of  non- 
degenerate it to the set of  tx-invariant non-degenerate zt'. I f  {~t } quasi-lifts to it', 
then ( 7t~ } lifts to 7t" in the sense of  the Local Theorem,for all v, and all components 
of  ~t' are g-stable. 

* Our work consists of  reducing the above lifting results to the standard local 
assumptions of  Chapter II concerning stable base-change transfer of  orbital 
integrals, so that the rigidity arguments of Chapter II can be applied. These can be 
verified for n = 3 as in [Sym; I]. In particular our Local and Global Theorems are 
proven only for n = 3 (but not for n ->_ 4); however, the proofs apply with any n, 
to reduce the Theorems to a standard local assumption concerning matching 
stable orbital integrals, which we do not prove. 

Our Theorems generalize those of  [U(2)], where the case of n = 2 (and 
arbitrary tr-invadant central character to' on A x / E  • not necessarily of the form 
to'(x) = to(x/x)) was studied. 

We use the trace formula, in the case of compact quotient. The usage of this 
formula depends on the base-change transfer of  stable orbital integrals of  
spherical functions, proven in [Sph] in any stable base change situation. Namely, 
we use the main theorem of [Sph], which asserts that ifr andf~ are corresponding 
spherical functions on G~' and Gv, then they have matching stable orbital 
integrals. We also make an extensive use of the work of [BDK] and [K], and their 
twisted analogues (for the non-connected group G';~(tr)); see Chapter I; w167 

w Approximation 
Let E / F  be a quadratic extension of  global fields, u a finite place of F which 

splits in E, and G as in w The condition on G at u, namely that u splits in E / F  
and Gu is the multiplicative group of  a division algebra, is fundamental in our 
work. It implies, as we now show, that the part of  the trace formula for G (and the 
twisted trace formula for G') which is given by orbital integrals of  regular 
elements, is stable. This makes it possible to compare these parts of  the trace 
formulae for any functions f - -  Of~ and O -- OO, on G(A) and G'(A) of the usual 
kind which have matching stable orbital integrals. As usual, f~ (and 0r) is the unit 
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element f f  (and r in the Hecke algebra of  Kv- (and K~'-) biinvariant functions on 
G~ (and G~) for almost all v (K~ = G(R~), K'~ = G'(R,), and R~ is the ring of integers 
of  F~ when Fv is non-archimedean). Moreover, f(zg) = to(z) - i f (g)  (z in Z(A)) and 
$(zg) = to'(z) - lr (z in Z'(A) = Z(AE)), and f ,  r are smooth and compactly 
supported modulo the center. 

Next we state the stability property of the "geometric" part of  the trace formula 
of  G, which involves orbital integrals. Given a regular element ~, in G(F) denote 
by B(y/F) a set of  representatives for the conjugacy classes in G(F) within the 
stable conjugacy class of y. Denote by B(y/A) a set of  representatives for the 
conjugacy classes in G(A) within the stable conjugacy class of Y in G(A). Then the 
sum E(7, f )  = Y. ~(J ,  f )  (J in B(y/F)) appears in the elliptic part of  the trace 
formula of G a t f .  The sum tl~'(y, f )  = Y. ~(J ,  f )  ( j  in B(y/A)) in the product of  
{}'(J, f~) = X ~(J ,  f~) (J in B(y/F~)) over all places v ofF.  tlr(y, f )  and tI~'(~, f~) are 
the stable orbital integrals of  f (globally) and f~ (locally) in the notations of  
Chapter II; w 1. Then we have 

2.0. Proposition. E(y, f) is equal to tit(y, jr) 

Proof .  Denote by T the centralizer of  the regular element 7 in G. It is an 
elliptic torus. Let T~ be the image of the torus T in the derived group G~ = {g in 
G; det g = 1 } of G (note that this derived group is simply connected). Put 
C(T/F) = Im[H~(F, T~)~H~(F, T)] and C(T/A) = (])C(T/F~) (pointed sum), 
and X.(T)  = Horn(Gin, T) for the group of  F-morphisms from the multiplicative 
group Gm to the torus T. Then X.(T)--~ Z n and X.(T~) -- ((x~) in Zn; Xix~ -- 0). 
The Tate-Nakayama theory [Ta] implies that C(T/F) embeds in C(T/A), and the 
quotient C(T/A)/C(T/F) embeds in 

k(T) = (# in X.(T~); NK/Ffl = 0 } / ( / . t  - -  Z/Z, T in Gal(K/F), # in X.(T)) ,  

where K is a finite galois extension of F over which T splits, and N~/F is the norm 
map from Kto F. A standard (stabilization) argument (see, e.g., [Sph; w implies 
that in order to prove the proposition it suffices to show that k(T) is zero. 

For this, note that T~ = T(F,,) is the centralizer of  the regular element ~, in G,. 
hehce it is isomorphic to an elliptic torus in the split form GL(n, F~) of  G~. Let K,, 
be a finite galois extension ofF,. which splits 7",,. The galois group Gal(K,,/F.) acts 
on X.(T) = Z ~ by permutations. Each element of  the symmetric group can be 
expressed as a product of  disjoint cycles. Since T. is elliptic, for each i (1 < i _-< n) 
there exists zi in GaI(K,,/F~) which has a cycle ( J l , J 2  . . . . .  Jr) withjl ---- 1 andjs = i 
for some s (2_-<s _--<r). In particular, the set ( # -  zT-~#; 2_-<i <ffin, # in Z ~} 
contains all vectors of  the form xa~ (x in Z; 2 --<_ i < n), where a~ is the n-vector 
whose non-zero entries are one at the first place and - 1 at the ith place. The span 
of  (xa~; x in Z, 2 _-< i _-< n} is X.(T~). Hence k(T) = {0}, and the proposition 
follows. 
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For the twisted analogue of this result, given a or-regular element y in G'(F) = 
G(E), denote by i~(y/F) (resp. B(y/A)) a set of representatives for the or-conjugacy 
classes in G'(F) (res. G'(A)) within the stable or-conjugacy class ofy  in G'(F) (resp. 
G'(A)). The sum E(y, ~) -- E O(y, ~) (8 in B(y/F)) appears in the elliptic part of  
the twisted trace formula of G' at 4,, and ~'(y, r = Z ~(8, r (8 in/l(y/A)) is the 
product of  the local stable or-orbital integrals ~'(y, r over all v. Then we have 

Proposition. E(y, ~b) is equal to  89 r ~). 

Proof. Denote by T the or-centralizer of  y in G'(F); it is an elliptic torus in 
G(F) (up to isomorphism). Then HI(F, T) embeds in HI(A, T) = ~])HI(Fv, T), 
and with the definitions of [Sph; (5.1)], the quotient of  l~(y/A) by B(y/F) is 
isomorphic to the quotient of  lit(A, T) by Hm(F, T). By [Ta], this last quotient is 
isomorphic to 

k'(T) = {g in X.(T); Ntc/e# = 0}/(it - tit; ~ in Gal(K/F), It in X.(T)).  

As in the previous Proposition, since Tu is a torus in G,, (isomorphic to an elliptic 
torus in GL(n, F~)), the span of  I t - z  It (a in X , ( T ) =  Zn; r in Gal(Ku/F~)) 
contains X,(T~) = {(xi) in Zn; Xi xi = 0}. In addition, any element in Gal(K/F) 
whose restriction to E is or acts by (x~ ) - - - ( -x  e0)) for some permutation e of 
{ 1 . . . . .  n }. Hence k'(T)~--Z/2Z. This is in sharp contrast with the non-twisted 
case, where k (T )=  {0). However, if  Z is the center of  G, then X , ( Z ) =  
{g = (x . . . . .  x)  in X,(T))  --~ Z, and the quotient H~(A, Z)/HI(F, Z) is isomor- 
phic to k'(T), since it is 

k'(Z) = (it in X.(Z);  Ne/~u = 0)/(# - org; It in X. (Z) )  = Z/2Z. 

It can be seen (as in [U(2)], w that a set of  representatives for the quotient of  
B(y/A) by B(y/F) is given by {y, zy}, where z is any element o fA x - FXNe/eA ff . 
Since ~ transforms under the center by the character m', where to'(z) = to(z~2) (z 
in A~) is trivial on A • we have ~(y,  r = O(zy, r for any z in A x, and the 
proposition follows. 

R e m a r k  1. It is clear from the proof that on considering ~ with e~(zg)= 
to'(z) - ~x(z)~(g) (z in Z'(A)), where co' is as above and x is a fixed character of  
A x/E• x whose restriction to A • is non-trivial, an analogous result can be 
obtained. This point of  view is developed in [U(2)] to establish an unstable base- 
change lifting from U(2) to GL(2, E), in addition to the stable base-change lifting 
studied here. This unstable transfer can be developed also in our generality of  
U(n), but this will not be done here. 

R e m a r k  2. The assumption that f~ and ~ have matching orbital 
integrals means that ~'(y, ~) = tb'(N~,, f )  for every or-regular y in G'(F). Since 
(i) the norm map N from the set of  stable or-conjugacy classes in G'(F) to the 
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set of  stable conjugacy classes in G(F) is surjective, and (ii) the quotient of  the 
volumes which appear in the twisted trace formula by the corresponding volumes 
I T(A)/T(F)Z(A)I in the trace formula is equal to [AX/F• = 2, the 
elliptic parts of the trace formulae are equal for matching functions f a n d  ~. 

A standard approximation argument of linear independence of  characters of  
Hecke algebras, see Lemma 111.3, based on the main theorem of [Sph] (that 
corresponding spherical functions on G(F,) and G'(F~) are matching, namely 
have matching stable orbital integrals), implies the following. 

Suppose that Visa finite set of  finite places o fF ,  containing those which ramify 
in E. Each v outside V is either split in E, in which case we fix an irreducible 
G~-module rtv and the corresonding a-invariant G'-module n~' = (try, an,); or is 
unramified, in which case we fix an irreducible unramified Gv-module nv. Here rt, 
is the unique unramified constituent in the composition series of the unramified 
G~-module I ~ )  induced from the unramified character/A of the upper triangular 
subgroup B, = A,U, (which is trivial on the unipotent radical U,). Define the 
character #~' of  the corresponding subgroup B~' --- A[U" of G~' by #~'(b) -- lt,(btr(b)). 
The induced G~'-module I ~ ' )  is tr-invariant and unramified, and we let n" be its 
unique unramified irreducible constituent, rt~' is a-invariant. 

At each place v in Vsuppose that f~ and ~ are matching functions on G~ and G;, 
namely their stable orbital integrals are equal tie(x, ~ ) =  tl~'(Nx, f )  on the 
regular set. At one place u' in Vwe further assume that f,, and ~u, are supported on 
the regular and a-regular sets of  G,,, and G'~,. Hence, for the functions f = ~ f~ ,  

= ~ v  which appear in the trace formula it suffices to consider only orbital 
integrals at regular conjugacy classes. In these notations, we obtain 

2.1. L e m m a .  We have 

(2.1) Z m(n') II tr n ' ( ~ )  = Y~ m(rr) II tr n,(f~). 

The products range over v in V. The sum on the left (resp. right) ranges over the 
equivalence classes of irreducible automorphic tr-invariant G'-modules rt' (resp. G- 
modules rt) whose component at each v outside V is the above rt'~ (resp. rt,). 

The rigidity theorem for GL(n) of [JS], and the correspondence of  Chapter III, 
assert that on the left of(2.1) there is at most one term ~'. Its multiplicity m (re') is 
1 if re' is non-degenerate. On the right, m(n)  denotes the multiplicity of rc in 
L(G \ G(A)). It is a non-negative integer. We can clearly assume that Vdoes not 
contain any places which split in E, since at a split place v we have that roy lifts to 
n '  = (gv, any) and tr n~'(4~v)--tr n~(f~), and we can apply "generalized linear 
independence" for absolutely convergent sums of characters on the group G~ (see 
Lemma III.3). 
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Coro l l a ry .  I f  the sequence {nv; v outside V} is such that the sum on the left of  
(2.1) is non-empty, then there exists an automorphic rt which quasi-lifts to the rt' on 
the left. 

2.2. P r o p o s i t i o n .  Fix a place w in V, which stays prime in E. Fix a unitary 
character lt~ of  the upper triangular subgroup B,  = AwUw (which is trivial on the 
unipotent radical Uw of  B~). Define the corresponding character It" of  B~ = A ~U'~ 
by It'd(b) = ltw(ba(b)). Then (2.1) holds for arbitrary matching functions f~, ~bv, 
provided that the sums are taken over the subsets of  rl, ~' as in Lemma 2.1 whose 
component at w is a subquotient of  the induced modules 1(Its) and I(u~), 
respectively. 

Proof .  We use the regular functions of [Sph], w Thus, a vector 2 = 
(21 . . . . .  2,) in Z" is called regular if 2i >2i+1 (1 < i < n )  and 2i +2,+1_i = 0 
(1 < i < n). In particular, At, + 1)/2 is zero if n is odd. Fix a local uniformizer n of 
Ew. For such 2, denote by Sa the set of  g in G~ which are conjugate to 
diagonal elements of  the form a n  -a, where a is in A(R~) and ~r - a =  
diag(1t -a,, ~t -a, . . . . .  n a2, ha,). A function f~ is called regular and associated with/zw 
and 2 if it in supported on Sa and the value of  F(a ~t-a, fw ) is/z~ (a) (a in A (Rw)). A 
function ~ is called regular and associated with 2 and/zw ifCw is supported on the 
set o fg  in G~, with norm in Sa, and ~w matches a regularfw associated with 2 and/tw 
(thus F(x, 4~w) = F(Nx, fw) for all x in G~ with regular Nx). 

Let fw and 4,w be regular functions associated with/zw and 2. Then, it follows 
from the Weyl integration formula and the Theorem of  [C] ( -- Proposition 1.6.1), 
that for any irreducible Gw-module 7tw, we have that tr rt~ (fw) is zero unless 7tw is a 
subquotient ofl(r/~), where ~/w is a character of  Aw with ~/w =/z~ on A (Rw). In this 
case there is a character '~/~ in the module ZtwU ofcoinvariants ofrtw with respect to 
U, and a subset W(nwu) of  W(A), such that 

tr nw(f~) ffi Y~ 2(o9 'r/w) 
tO 

(to in W(nwu)). 

Here to 'qw(a) is defined to be 'qw(og(a)), and 

2 ( q ) =  f F(alt-a,f~)q(a~t-a)da -- f [q(a~t-a)/Izw(a)]da 
A (R.) A(R.) 

is an expression of  the form z~ a . . . .  Zr a,, where r = [n/2]. The analogous statement 
holds for Cw. For any irreducible G'-module 7t'~, we have tr n~(r = 0 unless ~t'~ 
is tr-invariant and there exists a character ~/w as above such that rt~ is a 
subquotient of  I(q'~), where ~/~(b) --- qw(btr(b)). In this case there is a tr-invariant 
character'r/~ in the character X(n'~u) ofn~v, and a subset W(n~u) of  W(A), so that 
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tr n'w(r = Y~ 2(o9 'r/'w) (to in W(n'u)). 
to 

Note that i f t r  rtw(fw) ~ 0, then there is an open compact congruence subgroup 
Cw of Gw such that I(rlw) has a non-zero vector fixed under the action of Cw. It 
depends only on Ftw (clearly). Hence rtw has a non-zero C~-fixed vector, by the 
"Iwahori" decomposition of Cw (see [BZ], (3.17)). 

Now we fix the components f,,, ~v for v ~ w in V. Then (2.1) attains the form 

(2.3) c E ).(to 'r/w) = E c('r/ ') E ).(to 'r/'~). 
to ' t / "  to 

Since we fixed the archimedean components, and the ramification at all finite 
places, a theorem of [BJ] (4.3(i), p. 195) asserts that the sum on the right of(2. l) is 
finite, uniformly in the regular functions fw, ~w. Namely the sum over 'r/" in (2.3) 
is taken over a finite set which is independent of the regular vector ). in Z ~. Hence 
we can apply linear independence of finitely many characters, and the proposi- 
tion follows. 

R e m a r k .  The regular functions fw, ~ vanish on the singular set. Hence the 
condition (of 2.1)) at u'( = w) is met. Since the components nw, rr~ lie in a finite 
set, and (2.1) holds for fw, ~w which vanish on the singular set, (2.1) holds for any 
matching fw, ew. 

Coro l l a ry .  Each rr quasi-lifts to a unique a-invariant n'. 

Proof .  If the left side of the Proposition is empty, it suffices to evaluate the 
right side at a characteristic function of an open compact congruence subgroup Cv 
for each v in V, to obtain a positive number, and a contradiction. The uniqueness 
follows from [JS] and Chapter III as noted after Lemma 2.1. 

{}3. E x i s t e n c e  

Let E/F  be a quadratic extension of  number fields, and G the group of w 

~ L e m m a .  Each component rc~ o f  a a-invariant automorphic G'-module rt~ 
with a central character to' is a-stable. 

Proof .  Note that Gu is anisotropic, hence the component rt~u is stable 
a-elliptic (each element of G~ is a-elliptic, and each a-stable conjugacy class 
consists of  a single a-conjugacy class). We take ~ with ~, supported on the 
a-regular set. By virtue of the second Proposition in 2.0, the twisted trace formula 
asserts: Z tr n ' (~ )=  E c(x)~'(x,  ~); on the right appear only stable a-orbital 
integrals of  a-regular elements x in G', and the c(x) are volume factors. Hence the 
right side vanishes if, at a fixed place w, the component ew has the property that 
tlY(~w) is zero on the a-regular set. The approximation argument used in Lemma 
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2.1 implies that for some finite set Vofplaces including w we have II tr n~v(r = 
0; the product is over v in V. Since for each v 4: w in V there exists ~v with 
tr rt~v(4~v) 4: 0, we conclude that tr n~w(r = 0 for any Cw with tl~'(r = 0 on the 
a-regular set. A simple application of the Weyl integration formula implies the 
lemma. 

R e m a r k .  If G is any (including the quasi-split) form of  the unitary group, a 
similar proof based on Arthur's computations of the trace formula, shows that if 
n '  is a a-invariant discrete-series automorphic G'-module with a central char- 
acter to ' (x)=  og(x/X), which has a stable a-elliptic component n~', then each 
component n~' of  n'  is a-stable. This statement is false if rt~ is not assumed to be 
a-elliptic. For simplicity, in the Lemma we proved this statement only in the case 
specified in w 1, which is the only case needed here. 

Recall (Chapter II; w that an irreducible a-invariant G~-module n~ is called 
a-discrete-series if each of its a-invariant exponents ( -- central characters of the 
a-invariant irreducibles in any non-trivial module of coinvariants of nv) decays. 

P r o p o s i t i o n .  Suppose that rt~ is a a-elliptic component of a a-invariant 
non-degenerate automorphic G'(A)-module n'. Then it is tempered. Moreover, it 
is a-discrete-series. 

Proof .  (i) As there is nothing to prove when w - u, we assume that w ~ u. 
By definition rt' lifts by Chapter III to a cuspidal, hence non-degenerate, 
GL(n, Ae)-module, hence each component n~' (for v 4: u) ofrt '  is non-degenerate. 
If v splits in E/F then n~' is a (generalized) Steinberg G~'-module by [BZ'], and the 
proposition follows. Hence we now assume that E~ is a field. Then Theorem 9.7 of 
[Z] implies that there is a Levi subgroup M'  = l'l;M'~ of G', where Mi'~ = 
GL(ni, Ev), a square-integrable M'-module p' = II Pi" and an unramified positive- 
valued character/~ = F/#iv of  M' ,  so that rc~' is equal to the G'-module I(p" @/A) 
unitarily induced from p' | on M' .  Since rt' is a-invariant, for each i there i s j  
with "(p', | |  jr, and in particular /ti~uj,--1. To show that n'  is 
tempered, we have to prove that/tiv = 1 for all i. 

Suppose that there is i for which/k~ ~ 1. Then the correspondingj is not equal 
to i. Let P denote the standard parabolic subgroup of type (ni, n - 2ni, ni). Then 

T----P~v| lI (p~ | | 
k~ i , j  

is a a-invariant P-module; it extends to a P:~ (a)-module. Hence the character of  
the induced representation n" = I(z; P, G') of  G" (or G ; ~ ( a  )) is supported on the 
conjugacy classes in G~:~(a) which intersect P:~(a).  In particular n'  is not 
a-elliptic, contrary to our assumption. Hence/ti~ -- 1 for all i, and 7t" is tempered, 
as required. 
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(ii) It remains to show that i t ' ,  which we now denote by it (we also write G for 
G ' ) ,  is a-discrete-series. Since tt is tempered, there is a parabolic subgroup P 
and discrete-series irreducible GL(n~, E)-modules 7,- (1 < i _-< c) such that 7 = 
71 X  9  9  9 • 7c is a P-module  and ~t = I(7; P,  G). We have to show that  for each 
(a-invariant,  standard) parabolic subgroup R ~ G, and each a- invariant  irreduc- 
ible MR- module z in the M R- module 7tR of  NR-coinvariants, where R -- MRN~, the 
central character o f  z decays. We may write z in the form z = zlv s, •  9  9  9 • z,v s,, 
where z~ are irreducible GL(rn~, E)-modules with unitary central characters, 
v (x )  = I det x 1, and s~ are real numbers whose sum is zero. Since z is tr-invariant 
we have si + s,+~-i = 0 for all i. Given an r-tuple (a~ . . . .  , a,) of  elements in E x 
with l all <  9 "- ----< l a~ I and l all < l a~ l, we put 

X - -  11 lail ~ '= [I l aJa ,+ l - i l  ~'. 
l < i < r  1< i<r /2  

Since :t is tempered, for each such r-tuple the positive number  Xis  bounded by 1. 
Hence sl >_- 0. We have to show that X < 1. 

We shall now assume that X = 1 for some (a~ . . . . .  at), and  derive a contradic- 
tion. This assumption implies that sl = 0. Let L be the s tandard parabolic 
subgroup of  type (m~, n -  2ml, rnl). Then I ( z ; R , L )  has an irreducible a- 
invariant constituent a = Zl X z'  • z, such that a is a subquotient o f  nL. Hence n 
is a subquotient of  I ( a ;  L ,  G). Since n is non-degenerate, so is a. Moreover, since 
7t is tempered and sl = 0, and the central exponents of  z'  are among those of  it, it 
follows that z'  is tempered. To complete the proof  it suffices to show that zl is 
tempered. Indeed, i f  Za is tempered, then I (a)  is irreducible (by [BZ']), and as 
explained at the end of  (i) the induced representation 7t = I (a)  is not  a-elliptic, 
contrary to our assumption. 

To show that  zl is tempered, note that  it is non-degenerate. Hence it follows 
from [Z; (9.7)] that  there are real numbers tj and square-integrable 
GL(mi, E)-modules pj, such that Za -- I((Pivt,)). Since the central character of  zl is 
unitary, we have Y-~ t~ = 0. I f  z~ is not tempered, then t~ # 0 for some i, and we 
may  assume that t~ < 0. Let S be the s tandard parabolic subgroup of  type 
(ram, ni - rnl, n - 2nl, nl - ml, ml). Then nshas  a subquotient fl (a-invariant  and 
irreducible), of  the form 

fl -- p,v', X I((p~vt,; i _-> 2)) X z' X I((~ i > 2)) X ~p~v -t,. 

The absolute value o f  the value o f  the central character off l  at (a~, a2, a3, a4, as) in 
E xs with la~l < la21 = la3l -- la4] < lasI is lal/as]t ,> 1. This contradicts the 
assumption that n is tempered. Hence tj -- 0, zt is tempered, and as explained 
above 7t is a-discrete-series, as required. The proposition follows. 
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Let Ew/Fw be a quadratic extension of  non-archimedean local fields. For the 
local theory, fix a quadratic extension E / F  of totally imaginary number fields such 
that at some non-split place w the extension Ew/F~ is as above. Fix a finite place u 
of  F which splits in E and consider the F-group G of w 1. 

T h e o r e m .  Suppose that n ~ is a square-integrable G~-moclule. Then there 
exists an automorphic G-module 7r whose component at w is n o , whose component 
at each place w' ~ w o f f  which ramifies in E is Steinberg, and which is unramified 
at all finite places other than u, w and the w'. 

P r o o f .  (i) Let f~ be a pseudo-coefficient ([K], Theorem K) of  no. As in [K], 
note that f~(e) § 0. Indeed, the Plancherel formula of Harish-Chandra expresses 
f , (e)  as an integral 

fw(e) = Y, CM f d(to).tr(I(to))(f~).lt(to)dto. 
M ,d 

E2(M) 

The sum ranges over conjugacy classes of  Levi subgroups; the integral is over the 
variety E2(M) of  square-integrable M-modules; 1(o9) is the G-module unitarily 
induced from to on M, d(to) is the Plancherel measure. Here CM is a constant 
which is equal to one if M = G; moreover, a(to) = 1 if  M = G. Since fw is a 
pseudo-coefficient of  rtw~ all terms associated with to :~ rt ~ are zero, hence 
fw(e) = d(n ~ is indeed non-zero, as claimed. 

Let rru be a G,-module with trivial central character which corresponds to a 
supercuspidal GL(n, F,)-module by the correspondence of  Chapter III, and f~ a 
matrix coefficient; then againfu(e) § 0. At each place w' of  Fwhich  ramifies in E 
let fw, be a pseudo-coefficient of  the Steinberg G,~-module n~ Then again 
f , ( e )  ~ O. At each finite v ,  u, w and the w' let f, be the characteristic functionJ~ ~ 
of  the standard maximal compact subgroup Kv of G~. At each archimedean place v 
we specify below a component f~ with f~(e) § 0. Let to be a unitary character of  
Ate/E l whose component at w is the central character of  n ~ , whose component at 
each w' is trivial, and its component at each other finite place is unramified. Since 
E l is discrete, hence closed, in A~r, and B -- EL IIw, E L, IL R~ (v ~ w, w', oo) is 
compact, E~B is closed in A~, and it is clear that to exists. Multiplying o9 by a 
global unitary unramified character we may assume that the component of  to at u 
is trivial. Note that as usual, our functions f~ are chosen to be smooth if v is 
archimedean, locally-constant if v is finite, complex-valued, transform under the 
center via the component to~-~ of  to-~ at v, and are compactly-supported on 
GflZ,. Put f =  ~ f~ .  G(A) acts by right translation r on L(G \ G(A)). Fix a Haar 
measure dx = ~ d x v  on G(A)/Z(A). 

Consider the operator r( f )  = f f (x )r (x)dx  (x in G(A)/Z(A)). It is an integral 
operator with kernel K(x,  y ) =  Zrf(x-~Ty) (~, in G/Z). Its trace is given by 
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f Zrf(xyx-~)dx; x ranges over the compact space G(A)/Z(A)G. Thenf(xTx-~) 
0 implies that the conjugacy class of 7 in G/Z intersects a compact of  G(A)/Z(A) 
depending only on the support o f f .  Choosing a galois extension K of E which 
splits G' we can view 7 as an element of  GL(n, K); the characteristic polynomial 
o f  y is defined over E. The set S of  characteristic polynomials of  y with 
f(xyx -~) ~ 0 lies in the intersection of  a compact (depending on f ) ,  and a 
discrete (since E x is discrete in A x )  subsets of (A~ -~ •  x 
((za,z2b . . . . .  znc)==--(a, b , . . . ,  c)). Hence S is ~nite. Consequently we can 
choose the archimedean components to have small support, so that only y = e 
would contribute a non-zero term to the sum. Hence the trace equals f f(e)dx = 
f ie)[  G(A)/Z(A)G ], and it is non-zero. 

(ii) On the other hand, the trace is equal to the sum Z tr n ( f )  of  the traces 
tr n ( f )  of the operators n(f) = f f(x)n(x)dx over all irreducible constituents n in 
L(G \ G(A)). For each n which appears in the sum we have that its component n,~ 
is unramified at v ~ u, w, w', since tr nv(J~~ ) = 1 ~ 0. Hence 

(.) Y ~ t r n ( f ) =  Y, [Y~m(n) l-[ trnv(f~)l. 
n {n,; v~V} v~.V 

Here we take V to consist of u, w, w' and the archimedean places. T]ae first 
sum on the right ranges over all sequences {n~; n ~ V} ofunramified G~-modules. 
The inner sum is over the set specified in Lemma 2.1. Proposition 2.2 asserts that 
for any choice of  componentsf~ (v in V), and matching 4~, our sum is equal to 

(**) ~ [Y~ m(n') Hv tr n'~(4~)] = ~, tr 

The first sum ranges over the same set as in (.). The inner sum is over the set 
specified in Lemma 2.1. The component of  4~ at v outside Vis the unit element 4~ ~ 
The n' range over all automorphic a-invariant G'(A)-modules. 

Consider any n'  which appears in (**). Since t rn~(~u)~ 0, n" lifts to a 
supercuspidal GL(n, Eu)-module by Chapter III due to the choice off~ and 4~u, 
hence n' is non-degenerate. Its components at v = w and the w' are a-elliptic 
sirtce tr n~(r ~ 0; recall that 4~ matchesf~, and the orbital integrals off~ vanish 
on the regular non-elliptic set. Hence the components n' (for v = w, w') are 
tempered, in fact a-discrete-series, by Proposition 3. Consider the identity (2.1) 
with Vbeing the set of  w and the w', where n' is any of the members in (**). We 
now apply Proposition 2.2 at each of  the w',where the character/tw, there is the 
trivial character. It is clear from the proof of  Proposition 2.2 that the components 
nv on the right of  (2.1) are square-integrable; indeed, their central exponents 
decay since re' is a-discrete-series. Moreover, the argument of  Chapter II, w 
shows that the component nw of any n which appears in (.) is also square- 
integrable. 
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We can now take any n which appears in (.). We have tr n ( f )  ~ 0 for thefof(i) .  
Hence the component at any finite v § u, w, w' is unramified (since 
tr nv(f~~ ) =  1 ~ 0). As nw, is tempered, and tr nw,(fw,)§ 0 where fw, is a pseudo- 
coefficient of  the Steinberg G~,-module, it follows from the orthogonality rela- 
tions of [K], Theorem K, that n~, is Steinberg. Similarly, we have tr n,(f~) § 0, 
where n~ is tempered and f~ is a pseudo-coefficient of  the square-integrable n~ 
hence nw is n o , and the theorem follows. 

Coro l l a ry .  Given a tempered irreducible G~-module n o there exists a tem- 
pered a-stable G'~-module n~, finitely many irreducible tempered G~-modules n~ 
(including n ~ and positive integers n(n~), so that 

(3.1) tr n(~(q~) = Y, n(n~)tr n~(fw) 
Xw 

for all matching functions ep~, f~. 

Proof .  (i) Suppose first that n o is square-integrable. Then the claim follows 
at once from the proof of the Theorem. Note that the sum is finite by Chapter II, 
w since n~, which is produced by the Theorem and its proof, is a-discrete-series. 

(ii) In the general case n o is tempered. Hence there is a Levi subgroup M of G 
(from now on we omit the index w), and a square-integrable M-module p0, such 
that n o is a direct summand of the G-module I(p ~ unitarily induced from p0 on 
M. By part (i) there exists a a-stable tempered M'-module p', which is a-square- 
integrable, finitely many square-integrable M-modules p, including p0, and 
positive integers n(p), so that t r p ' ( ~ ) =  Z n(p)trp(f) .  Here r f a r e  matching 
functions on M', M. A standard computation of characters of  induced represen- 
tations yields the identity of the corollary. The n are the ireducible summands in 
the composition series of the tempered I(p). The n' on the left is the GL(n, E)- 
module I(p'), which is unitarily induced from the irreducible tempered module 
p', hence it is irreducible (by [BZ']). 

Let E/F be a quadratic extension of  local fields. 

Definition. The packet (n } of  a tempered G-module n o is the set o fn  which 
appear in (3.1). 

To show that the packets are well-defined, we prove the following 

Proposition. The packets define a partition of the set of  tempered G- 
modules. 

Proof .  It suffices to show that if n '  and n"  are inequivalent a-discrete-series 
and satisfy (3.1), thus n' = Z n(n)n and n" = Z m(n)n, then there is no n which 
appears in both sums. Since all n here are square-integrable, the orthonormality 
relations of [K], Theorem K, imply that 
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E n(g)rt, Y~ m(n)@ = Y, n(n)m(n), 

in the inner product introduced in [K]. On the other hand, the twisted analogue of 
[K], Theorem G (we do not record here a proof as it follows closely that of [K] in 
the non-twisted case), asserts that the analogous inner product (zr', zr") vanishes 
unless n', n" are relatives in the terminology of [K]. Now n ' = I ( p ' )  and 
n"--I(p") ,  where p '=  ~p ' ,  p "=  (~p~ are square-integrable (with ~p'----p', 
~p'~ =p'~); these are relatives only if they are equivalent. But Z n(n)m(n)= 0 
implies n(zt)m(Tr) = 0 for all ~z, as required. 

w Twisted existence 

Let EwlF~ be a local quadratic extension. 

T h e o r e m .  Each tempered a-stable G'-module n" satisfies (3.1). 

P roof .  By parabolic induction it suffices to deal only with a-elliptic it ' .  It is 
of  the form I(p'), p' = (~p;, where the p 'are square-integrable, pairwise inequiva- 
lent, and a-invariant. Using the twisted analogue (Chapter I, w of  the trace 
Paley-Wiener theorem of [BDK], since a GL(n)-module which is unitarily 
induced from a square-integrable one is irreducible (by [BZ']), we have a function 
~w in C(G') with tr n'(~bw) = 1, and tr n"((~) = 0 for all tempered n"  inequiva- 
lent to n ' .  In particular, the orbital integral tl)(~w) vanishes on the a-regular 
non-a-elliptic subset of  G ' .  Since n" is a-stable by our assumption, there is some 
a-regular elliptic x~ with t~'(Xw, (~w) v~ O. Choose a global quadratic extension E/F 
of which E~/F~ is a completion, and let G be the quasi-split form of the unitary 
group, so that G' = GL(n, E). 

Let u be a place of F which splits in E. Let/~ ( l < i =<_ n) be n unitary characters 
of  F x such that for each i =~ j the quotient #illtj is ramified. As in the proof of  
Proposition 2.2, we now take a regular function fu in the sense of [Sph], w (see the 
proof of Proposition 2.2) associated with the character/t = ~/zi : (a o) ---. rI~ lZ~ (a,) 
of  the upper triangular subgroup Bu ofG.  = GL(n, F~), and a regular 2 in Z" (thus 
2 ~ a vector whose n entries are distinct integers in decreasing order). We have 
that for any Gu-module nu, the trace t rn . ( f . )  vanishes unless there is an 
unramified character ~v ' ,  such that n~ is a constituent of  the G.,-module 
I., -- i(~)#ys,) induced from the character ~l.ty s, of B~. By [BZ'], our choice of 
the #~ guarantees that I. is irreducible, hence n. - Iu. Similarly, if r is a function 
matching f .  then tr n~(r =~ 0 implies that n~ is the lift (n., "nu) of nu = I. as 
above. 

Now E/F is a quadratic extension of global fields whose completions at two 
places w and u are our Ew/F~ and E~ = F~  9 F~, and G is the quasi-split form of 
the unitary group, so that G'= GL(n, E). Since ~ ' ( ~ )  is a locally constant 
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function on the a-regular set, there exists a a-elliptic regular x in G ' =  G'(F) 
which is near xw in G'~ such that O'(x, q~w) ~ 0 and ~ ' (x,  r = O(x, ~u) ~ 0. 
Moreover, x can be chosen so that its a-centralier T in G' is related to the a- 
centralizer T~ ofxw in G'w as in the Lemma of Chapter I; w Let (u'} be a set of  
places u' of  F which stay prime in E, of  cardinality larger than the rank of G, 
excluding w, such that x is a-elliptic in G',. For each u'  let q~u, he a function 
supported on the a-regular elliptic set, with ~ '(x,  ~u) :~ 0, such that ~(y,  q~,) is a 
stable function in y. 

We now choose a global function q~ = ~q~,. whose components at w, u, u '  are as 
above, which satisfies ~ '(x,  r ~ 0. Our conditions at u' (we need only one such 
place) imply (see Corollary 1 in Chapter I; w that the side of  the trace formula 
involving a-conjugacy classes in the group G' takes the form Z c(y)~'(y,  q~), the 
sum ranges over all a-elliptic regular stable conjugacy classes in G', and c(y) are 
volume factors. The sum is finite, and we can reduce the support of  the 
components of  q~ (at v ~ w), to have that the sum over y consists of  x alone. 
Consequently this sum is equal to c(x)~'(x,  d~), which is non-zero. 

It follows that the representation theoretic side of  the trace formula is non-zero. 
Our (sufficiently many) conditions at the places u'  guarantee the vanishing of  all 
terms which involve integrals in the expression given by Arthur [A'] for this side 
of  the trace formula; in fact here we use the twisted analogue (Corollary 1 in 
Chapter I; w of Arthur's computations. The terms which are left are of  the form 
tr n'(d~), with complex coefficients. The construction of  the component q~u guaran- 
tees that if tr n'(q~) 4 0, then the component n~ at u of  n' is induced from the 
subgroup B' ,  of  the form I~ = (I~, ~Iu) described above. Now each n'  which 
appears in the trace formula is a quotient of a representation J ' =  I (Oai)  
induced from a cuspidal (not necessarily unitary) representation of  a Levi 
subgroup. But i fJ '  is reducible and n' is a proper quotient of  it, then ~" has to be a 
proper quotient of  the component J~ of  J '  at u. But zt~' = I~' is an irreducible 
induced from the upper triangular subgroup B~'. We conclude that J '  is irreduc- 
ible, hence n' is equal to J ' ,  and it is non-degenerate. 

We can choose the function ~ so that its component at a place u"( § w, u, u') is 
a pseudo-coefficient of  a Steinberg G' .-module n~,.. Thus tr n".(4~=.) is zero for 
any tempered G~.-module unless n'~. is n[,., in which case this trace is equal to 
one. In particular the orbital integral ~(~,,.) vanishes on the a-regular non-elliptic 
set. Since our global n' satisfies t r n ' ( r  0, its component at u" is non- 
degenerate and a-elliptic, hence it is tempered, and we conclude that the 
component of  n' at u" is the Steinberg n[,.. But this implies that n '  is cuspidal, 
namely that in J '  = I(~a~) there is only one a, which is equal to J ' .  

It remains to show that the component of  n' at w, which is a-elliptic and 
tempered, hence it is our n ' ,  satisfies the identity (3.1). For that we form the 
identity (2.1) where our n' is the only term on the left. The set Vranges over all 
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the finite places mentioned above, namely w, u, u', u", and the functions ~u, at 
the places u' have to be supported on the a-elliptic regular set. However we can 
take the place u" duplicated sufficiently many times, so that n' will have several 
Steinberg components, at the places u". Proposition 2.2 and its proof  imply that 
each nu, which occurs on the right of (2.1) is a Steinberg G,~-module. Conse- 
quently we can take in (2.1) the functions ~u,, f~. to be supported on the regular 
elliptic set, and obtain the identity (2.1), where V consists only of  the u' in 
addition to w, but the f~, ~v are arbitrary matching functions. Hence Chapter II, 
w implies that the sum on the right of  (2.1) is finite, consists of square- 
integrables, and on choosing the f~, to be pseudo-coefficients of square-integrables 
which occur we obtain the identity (3. l) where our n" is on the left, except that the 
left side of (3.1) takes the form ctrn ' (~w),  where c is a complex number, 
necessarily non-zero. Thus we obtain 

c tr n'~(q,w) = Y, m(n~)tr nw(f,). 

On the other hand, for some n o in this sum we have the identity (3. l), namely a 
a-discrete-series tempered irreducible G ' -module  n'~, with 

tr n"~(q~) = E n(n~)tr nw(f~). 

The m(n~), n(nw) are integers with n ( n ~  ~ # O. The sums are finite, range 
over square-integrables, and 4~w, f~ are arbitrary matching functions. We con- 
clude, using the Weyl integration formula and the orthogonality relations of [K] 
for characters, that n~, is nw," hence that c = 1. The theorem follows. 

w Minimality 

Let E / F  be a local quadratic extension, and n a square-integrable G-module. 
The packet { n } of  n consists of the n which occur in the sum on the right of (3.1), 
with integral multiplicities n (n). 

P r o p o s i t i o n .  Let  { n ) ' be a proper non-empty subset o f { x ) .  Then E' n ( n )n is 
not stable. By E' we mean the sum over {n}'. 

P r o o f .  Suppose that X' -- E' n(n)X(n),  where X(n) denotes the character of  n, 
is stable. Of  course X = E n(n)Z(n)  is stable, and so is X" - -X - X ' .  For some 
positive rational c we have that Z' - cg" is orthogonal to X, hence to the character 
of  every tempered packet. Let f be a function whose orbital integral ' ~ ( f )  
vanishes on the regular non-elliptic set, and equals X' - cg" on the regular elliptic 
set. Let ~ be a matching function. Then we obtain tr n'(~) = 0 for every tempered 
a-invariant G'-module n'. But by Proposition 4 of  Chapter I we conclude that all 
a-stable orbital integrals of ~ are zero. Thus the orbital integrals of  f vanish, and 



200 YUVAL Z. FLICKER 

Z' = cz", which contradicts the orthogonali ty relations for characters o f  square- 
integrable G-modules.  The proposi t ion follows. 

Let E/F be a global extension, and G, G' the group of  w 1. 
As in w we say that an automorphic  G'-module  ~z' is non-degenerate i f  it 

corresponds to a non-degenerate automorphic  GL(n,  AE)-module z~" by the 
correspondence o f  Chapter  III. We deal only with such a- invariant  7t' f rom now 
on. Each component  ~t~ of  zt'(v ~ u) is non-degenerate. By [Z], Theorem 9.7, it' is 
equal to the induced G~-module I(~m=lp'vvS'), where p'~ is a square-integrable 
M~ = GL(ri, E~)-module, and s~ is a real number  with Is,. [ <  89 since zt~' is unitary. 
We may assume that for some m' we have that ~p[~ - ' -Pm -~,~ and si = sm -i  for i in 
the interval A = [ 1, m'], but  s~ - 0 and ~p'~ = p;v r p~ for all i r j in the interval 
B = Ira' + 1, rn - m '  - 1]. Put  b = Z r, (i in B). Hence we write it' in the form 

Since 7t' is tT-stable, we have that I (~sp[~)  is a tT-stable elliptic 
GL(b, E~)-module. Theorem 4.2 asserts that we have the identi ty 

t r I ( ~  p'~)(~,)=~rn(p~,)trp~(f~). 

The pz~ are representations o f  the quasi-split  unitary group U(b) in b variables. 
Then 

defines an My-module pv, where 

M~ = H M;~ • e(b) X H M~v. 
iEA iEA 

By parabolic induction we conclude that tr g~'(4~) = tr I(p~; G~, Mv)(~), where on 
the right I(pv) is the G~-module induced from p~ on M~. Namely  g '  satisfies the 
identity (3.1), where on the right we have all irreducible subquotients  zc~ o f  I(pv). 

If  g~ occurs on the right of(3.1)  for some g~' as above we define its packet { g, } to 
be the set o f  irreducible zc~ which occur  on the right o f  (3.1). Also we say that g~, 
and its packet {g~}, lift to ~'  when (3.1) holds. We noted above that each 
component  z~' o f  a non-degenerate zt' is a lift o f  a packet, which is not necessarily 
tempered,  but  obtained from a tempered packet on tensoring each element in the 
packet by the same unramified character  and inducing. Note  that at u the 
component  g~ is a unitary representation of  an anisotropic group G~, hence 
tempered. 
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Using this generalized notion of a local packet, a global packet is defined as in 
w and we say that n lifts to ~z' if Try lifts to zc~ for all v. To complete the proof of the 
Global Theorem of  w l we show 

T h e o r e m .  I f  rc quasi-lifts to a non-degenerate re', then 7t lifts to ~'. 

Proof .  Proposition 2.2 implies the first equality in 

Y~ H tr n~(f,) = H tr rc'(4~,,) = l'I [Y~ n(nOtr n ~ ) ] .  

The second follows from (3.1). The products are over a finite set V, the sums on 
the right over nv are finite. As this holds for any { f~; v in V}, a standard argument 
using the absolute convergence of the sums, and the unitarity of  all represen- 
tations in the trace formula implies the claim. Note also that since 7t' is non- 
degenerate, it appears in the discrete spectrum of L(G \ G(A)) with multiplicity 
one. 

The proof has the following obvious 

Coro l l a ry .  Each irreducible G(A)-module in a packet o f  a non-degenerate n 
is automorphic. 

This completes the proof of  the Global Theorem of w I. 
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