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General introduction

Suppose that 7 = ®nr, and 7’ = Qx’ are discrete-series representations of the
adele group GL(»n, A) over a number field F. The rigidity theorem for GL(n) of
[JS] asserts that if z, 1s equivalent to 7, for almost all places v of F'(that is, with at
most finitely many exceptions), then x, is equivalent to z; for all v. For other
reductive connected F-groups G such an assertion is often false, but one hopes
that the following form of the global rigidity conjecture is correct: Given an
automorphic 7 = ®n’ and a finite set ¥ of places of F, there are only finitely
many automorphic 7’ = ® n with 71 equivalent to =, for all v outside V. This is
related to the notion of “packets”, defined in Chapter IV in a special case.

The trace formula suggests a possible proof of such a global rigidity conjecture,
for a group G whose automorphic representations can be compared, by means of
lifting, with those of another group G’, for which the rigidity theorem is known.
Presently this implies that G has to be GL(n), or a group which has already been
compared with GL(n) by such a methed. Our aim in this work is to establish in a
general framework several tools required in such a proof, and employ these tools
in two special cases. We obtain detailed information on the representation theory
of (1) inner, and (2) outer, forms of GL(n), namely (1) multiplicative groups of
simple algebras, and (2) unitary groups.

Our plan is to obtain an identity of trace formulae for matching functions on G
and G’, and by means of a transfer of spherical functions (established in [Sph] in
the case considered in Chapter IV) to reduce the question to one in local
harmonic analysis. Indeed, after a suitable reduction the identity of trace
formulae yields an identity of traces of representations of the local groups G, and
G}. An important Step towards the proof of the global rigidity conjecture becomes
the local rigidity conjecture: Suppose we are given a certain identity relating
traces of G)-modules with traces of G,-modules for matching functions, see
Chapter 11, §3. If on the side of G’ there occur only finitely many irreducible
tempered local G’-modules, then on the side of G there appear only tempered G-
modules, and they are finite in number.

There are four Chapters in this work, denoted by I, II, IIT and IV. In Chapter I
we present adelic and local fundamental tools of harmonic analysis on the group.
This is given in a general twisted setting required for the applications of Chapter
IV. We omit the proofs of those twisted analogues which are immediate adap-
tations of proofs existing in the literature, and record only those proofs which are
new. Some of these tools are:

(1) The simple trace formula of Deligne-Kazhdan, for a wider class of test
functions f = @, than usual. We require f'to have a discrete component (in A(G)
of [K]) in addition to a supercuspidal component, but we do not require fto have
a component supported on the regular elliptic set. This is essential for the
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applications of Chapter III concerning the Deligne-Kazhdan correspondence.
The case of G = GL(n) is given in [FK].

(ii) Kazhdan’s density theorem in the twisted case. The proof of [K, Appendix]
is based on the simple trace formula. In the general twisted case we cannot use the
simple trace formula since g-invariant supercuspidal representations may not
exist. For example, suppose that g(g) = 'g~! as in [Sym]. Then there are no
o-invariant supercuspidal PGL(3, F,)-modules if F, is a local field of odd residual
characteristic, hence no o-invariant automorphic PGL(3, A)}-modules with a
supercuspidal component if Fis a function field of odd characteristic. To extend
the proof to the twisted case we use (a special case of ) the general trace formula of
Arthur [A] (and [CLL] in the twisted case). Lemma 4, which shows that a pair
(T’, G"), where T’ 1s a torus in a local group G’, can be “lifted” to a pair (T, G)
consisting of a torus 7 in a group G over a global field, was suggested to me by D.
Kazhdan.

(iii) Lifting orbital integrals of a function on a Levi subgroup of G to orbital
integrals of a function on G. This is a new result. Its proof is based on the trace
Paley-Wiener theorem of [BDK] (the proof in the twisted case follows closely
that of [BDK] in the connected case), and a suitable “representation theoretic”
decomposition of the Hecke algebra, using (a twisted analogue of) the geometric
lemma of [BZ; (2.12)].

(iv) The Howe [Ho}, Harish-Chandra [H] theory of characters (in characteris-
tic zero; detailed proofs of the Theorems of [H] are recorded in [Cl] also in the
twisted case).

(v) Kazhdan’s theory [K] relating characters and orbital integrals is recorded
here in the twisted case. The only non-immediate change in the adaptation of the
proof of [K] to the twisted case is that the density theorem of [K] has to be
replaced by that of (i1) here,

(vi) The theory of {BZ], [C], [S] concerning exponents of modules of coinvar-
iants.

In Chapter I1, we use the tools of Chapter 1 and basic definitions of stable
conjugacy to present a general technique which reduces the local rigidity conjec-
ture to several Assumptions, which amount to matching orbital integrals. The
inductive arguments of Chapter III, §7, show that the crucial case is that of
functions in the elliptic (or discrete) class A(G) of [K] (and [BDK]) (cf. (iii)
above). The technique is suggested by our joint work with D. Kazhdan on the
metaplectic correspondence [FK]. It replaces ad-hoc arguments which were used
in the study of liftings in some low rank cases.

The general approach which is espoused in Chapters I and 1I (as well as [K],
[K”], [F], [FK], [Sph]) is that the study of orbital integrals — which has been hard
so far when buildings’ combinatorics or germ computations were used — can be
reduced to the more accessible study of characters. This is the approach used in
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Chapters III and IV. It is used, for example, also in our joint work [Sym; V] with
D. Kazhdan to carry out the unstable transfer of orbital integrals of spherical
functions in the case of the symmetric square lifting.

In the second half (Chapters III and IV) of the work we use the techniques of
Chapters I and II in two special cases, independent of each other, to obtain lifting
theorems. In Chapter III we give a new proof of the Deligne-Kazhdan correspon-
dence (cf. [DKV]) relating the local and adelic representation theories of the
multiplicative group of a simple algebra of rank 7 central over Fon the one hand,
and GL(n, F) on the other. In particular we verify in Chapter III all the
Assumptions of Chapter 11, in our case. The assumptions of Chapter II, §5, on the
elliptic set, are verified in Chapter 1, §5, directly, using the relations between
orbital integrals and characters. Then in Chapter III, §7, we match orbital
integrals in general, proving in particular the assumptions of Chapter I, §3, by an
inductive argument, involving the main local lifting theorem of Chapter III, §5,
and the trace Paley—-Wiener theorem of [BDK].

In Chapter IV we consider a quadratic extension E/F and study the stable base-
change lifting from a unitary group U(n) in n variables with respect to E/F, to
GL{n, E). We define tempered packets, for U(n) locally, and also global packets
for a compact form of the unitary group. We also establish the local and global
rigidity theorems in these cases. Our only assumptions are those of Chapter I, §5.
They can be checked for n = 3 by standard techniques (see, e.g., [Sym; I]). Our
usage of the “regular” functions of [Sph] eliminates the need to study those terms
in the trace formula attached to singular conjugacy classes. A detailed description
of the results is given in §1 of Chapter IV.

I am deeply grateful to David Kazhdan for his constant interest, constructive
criticism, and instructive conversation. Much of what is new here I learned from
him. This work is based on a course at Harvard University, Fall 1985, where we
first explained [BZ] and some of [BZ’], then [BD] and some of [BDK], [H] and
[K], terminating with the present work. This still seems to me to be a recommend-
able path to the heart of p-adic representation theory. Of course, on first reading
it is better to assume that G is connected. The non-connected generalization is
required for Saito-Shintani base-change and other lifting problems, as in Chapter
IV, [Sym], [U(3)], etc.

Chapter 1. Harmonic Analysis

§1. Conventions

Let F be a global field of characteristic zero with a ring A of adeles; the
completion of F at the place v is denoted by F,. Let G be a reductive group over F;
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this is often identified with its group of F-points, where F is a fixed algebraic
closure of F. Put G(K) for the group of K-points of G, for any extension K of F.
We put G for G(F), G, for the group G(F,) of F,-rational points on G, and G(A)
for the group of adele points; these conventions apply to any F-subgroup of G.
We do not assume that G (by abuse of language from now on we use the symbol
G) is connected. Its connected component (of the identity) is denoted by G°; it is
a normal subgroup, and the quotient G/G° is finite. The other connected
components are denoted by G' (i = 0). For example, if Z is the center of G°, we
have Z, Z,and Z(A).

An F-subgroup P of G is called here parabolic if P is an F-parabolic subgroup
of G° and P/P® is isomorphic to G/G°. Note the last condition, which is not
standard. Denote by N the unipotent radical of P. It is equal to the unipotent
radical of P°. Fix a minimal parabolic subgroup P, = M,N,, and its Levi subgroup
M,. Unless otherwise specified, we consider only standard P, which contain P,.
By a Levi subgroup M of P we mean the one which contains M,. Its connected
component M° is a Levi subgroup of P°, and M/M°=P/P®~ G/G°. Then
P = MN, and N is normalized by M.

It is illuminating to consider an example. Let G be the semi-direct product of
G°® = GL(3), and the group {1, 6}, where g is the automorphism of G° mapping g
to J'g~'J. Here J =(d,5_,), and 'g is the transpose of g. If P{ is the upper
triangular subgroup of G°, then P = P§ X (o) is parabolic. But if P? is a parabolic
subgroup of G® of type (2, 1), then P = P° X (o) is not a parabolic subgroup of G,
since it is not a subgroup.

Let Fbe a local or global field of characteristic zero, and L(G) the Lie algebra of
G°. For xin G° X g, consider the polynomial det[(t + 1 — Ad(x)) | L(G)}in¢t. Let
d be the degree of the first non-zero power of ¢ in this polynomial. It is called the
rank of G° X a. Denote by D(x) the coefficient of ¢¢. Then x is called regular if
D(x) # 0. It is then semi-simple, and its centralizer Z(x) in G° is a torus. A
semi-simple x is called elliptic if the center of Z(x)Z/Z (if F is local), or Z(x, A)/
Z(x)Z(A) (if Fis global), is compact. Z is the center of G°. If x is elliptic regular,
then Z(x) is an elliptic torus of G°.

Let Z,(A) be a closed subgroup of Z(A) such that Zy(A)Z is closed and
Z(A)/ Z(A)Z is compact. Suppose that Zy(A) =11, Z,,, where the product extends
over all places vof F. Put Z,=Z(A)N G.

Fix a character w of Zy(A)/Z,; its local components are denoted by w,. We now
fix a place v, and omit v from the notations until the end of this §. Let C(G) be the
space of complex-valued functions on G which transform under Z; by @ ~?, which
are compactly-supported modulo Z, smooth if v is archimedean and locally-
constant if v is non-archimedean.

Since our main interest is in orbital integrals, and the orbit under G° of an
element x in a connected component G’ of G is contained in G', we restrict our
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attention from now on to fin C(G*). This entails no loss of generality, as any fin
C(G) is the sum over the connected components G* of G of the restriction of fto
G'. Recall that G is the semi-direct product of G° and the finite group G/G°. Thus
our G’ is a coset G X ¢. For our study it suffices to replace G by its subgroup
G°9(c), whose quotient by G is the cyclic group (o) generated by o. Thus from
now on we assume that G is of this form. In particular, its parabolic subgroups are
of the form P = P%(a ), where oP° = P% . Further, from now on the notation fin
C(G) will mean that fis supported on G° X o; we deal below only with such f.
Assume that Z, contains the subgroup Z,, = {zo(z~'); zin Z}, and that w attains
the value one on Zy,.

Fix a Haar measure dy on G%Z. For every x in G let Z;(x) be the centralizer of
x in G° Fix a Haar measure d, on Z;(x)Z/Z such that if Z;(x) and Z;(x’) are
isomorphic then d, and d,. are equal. The orbital integral of fat x is defined to be
the integral

<D(x,f)=ff(yxy“)dy/dx-

It is taken over yin GYZ;(x)Z; it depends on the choice of dy and d, . The orbit of
a regular element x in G is closed; hence ®(x, f) converges for a regular x for all f
in C(G). Moreover, ®(f) converges for fin C(G) at any x in G by [Rao]. At a
regular x in G we shall also consider the integral "®(f), defined on replacing Z;(x)
(in the definition of ®(x, f)) by the split component in the center of Z;(x).

Let F be local, x = su = us the Jordan decomposition of x in G into semi-
simple and unipotent elements s and u, Z(s) the centralizer of s in G% L(Z(s)) its
Lie algebra and L(G) the Lie algebra of G°. Put

A(x) = |det{(1 — Ad(s)) | L(GYL(Z(s)}|"?,
and
F(x, /) =Ax)P(x, f), 'F(x,f)=AKx)®(x, f)  (for regular x).

For example, if G = GL(n, F), and x,, X, . . . are the distinct eigenvalues of x in

G, then
172
/ |det x |(n— 2

If (1) E is a cyclic extension of F of degree / and ¢ is a generator of the galois
group Gal(E/F), (2) G” is the semi-direct product G'X(o) of the group
G’ = ResgG obtained from G upon restricting scalars from E to F, and
Gal(E/F); and (3) x lies in G'(F) (=~ G(F)), then A(x X o) (with respect to G”)
equals A(Nx) (with respect to G), where Nx is an element of G which has the same
set of eigenvalues as xa(x)- - -a'~'(x).

Alx) =

H (x; — -xj)2

i<y
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Let P = MN be an F-parabolic subgroup of G, and K a maximal compact
g-invariant subgroup of G° with G=KP. For m in M put &(m)=
|det Ad(m)|L(N)|, and for fin C(G) put

fv(m) = dp(m)'* f j Stk 'mnk)dkdn.

N K

/v depends on N, but its orbital integral at an element m of M regular in G
depends only on M. Indeed, a standard computation (see, e.g., [FK], §7) shows
that F(m, f)= F¥(m, fy) for such m, where F* is the orbital integral, multiplied
by A,-factor, with respect to M. Note that fy lies in C(M); in particular, it is
supported on M? X g, since f lies in C(G). Denote by J(G) the space of f in C(G)
such that F(g, ) = 0 for every regular gin G. Put C(G) = C(G)/J(G). The image
of fyin C(M) will be denoted by f,, since it depends on the Levi subgroup M but
not on the unipotent radical N,

§2. Automorphic forms

Let F be a global field. At each non-archimedean place v of F denote by R, the
ring of integers in F,, and by K, a special maximal compact subgroup of G?.
Suppose that K, is o-invariant. At almost all v we take K, = G°(R,). Fix a product
measure dx =41 ® dx, on G(A)/ZyA), so that the product of the volumes
|K,/K, N Z,, | converges. Let f = &£ be the product of f, in C(G,) over all v,
where at almost all v the component £, is the function £ which is supported on
Z,,K, X g, and attains the value |K,/K, N Z,, |~' on K, X a. Denote by C(G(A))
the space spanned by all such functions f.

Denote by L(G) the space of functions  on G \ G(A) which transform under
Zy(A) by w, and are slowly increasing (see, €.g., [BJ]) on GZ(A)\ G(A). Let r be
the representation of G(A) on L(G) by right translates, The operator r(f) on
L(G) which maps ¥ to (r(f/)y)x) = [ fWw(xy)dx (v in G(A)Z(A)) is an
integral operator on G \ G(A)/Zy(A) with the kernel K(x,y)=72 f(x~'py) (y in
G/Zy).

An irreducible subspace V of L(G) is a unitary G°(A)-module #n°, which is
called automorphic. It is the restricted direct product z° = ®n? of irreducible
G%-modules 7%, which are almost all unramified, namely have a K, -fixed vector
(which is unique up to scalar muitiples). All z{ are admissible and unitary. Recall
that a G°-module, namely a representation #y : G — Aut V of G? in a complex
space V, is called smooth (or algebraic) if for every vin ¥V the group of x in G? with
n%x)v = vis open in G?, and admissible if in addition for any open subgroup U of
GV the space VY of U-fixed vectors is finite-dimensional. Theorem 3.25 of [BZ]
asserts that a smooth G°-module of finite length is admissible.
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When G is G, or G(A), a G°module #° is called o-invariant if °n°® ~ n° where
o(x) = gxo~" and "n%x) = %0 (x)). The restricion n° of a G-module 7 to G° is
g-invariant since °n%x) = n(c)n%x)7(c)~"'. On the other hand, an irreducible
o-invariant G%module 7n° extends to a G-module by putting n(c) =A4; 4 is an
interwining operator with °z%x) = An%x)4 ! (x in G°) whose order is equal to
the order / or o (by Schur’s lemma A’ is a scalar which we normalize to be 1).

For an automorphic G(A)-module (x, V) we " define the operator n(f)=
{ fix)r(x)dx on V, where dx is the Haar measure on G(A)/Z(A) fixed above. By
definition the space V of x is spanned by vectors ®iv is a vector in the space of
7,, which is K, -invariant for almost all v. Since 7° is g-invariant, 7,(c)&, = &, for
almost all v. Hence for almost all v the operator x,(f°) is the projection on the
one-dimensional subspace of K,-fixed vectors, and its trace tr z,(f°) is 1. Hence
almost all factors in the product tr n(f)=TII,tr z,(f,) are equal to one. If
7V = r(o)V is not equivalent to V, the operator n(f) = [ fix X a)x°(x)r(c)dx (x
in G%A)/Z(A)) has trace equal to zero.

A function y in L(G) is called cuspidal if for any proper F-parabolic subgroup
of G° (not G) with unipotent radical N, the integral [ w(nx)dx over N\ N(A)is 0,
for any x in G(A). Let r, be the restriction of r to the space Ly(G) of cuspidal
functions. The space Ly(G) is the direct sum of irreducible spaces n° which occur
with finite multiplicities m(n®). The operator ry(f) is of trace class, and

2.1) trro( ) =Y m(n)tr n(f).

The sum is over the equivalence classes of the 7’ in Ly(G) which are o-invariant
and extend to G(A)-modules 7. Here we use the assumption that f lies in
C(G(A)), namely it is supported on G%A) X ¢. The sum is absolutely convergent,
and each 7 on the right is unitary.

The elements x, x’ of G are called (stably) conjugate if there is y in G° (resp. G°)
with x’ = Ad(y)x ( = yxy ~"). Here F can be local or global. The conjugacy classes
within the stable conjugacy class of x in G are parametrized by the set B(x, F) =
G\ A(x/F)/Z¢g[x), where A(x/F) is the set of y in G° with [Ad(¥)](x) in G, and
Z(x) is the centralizer of x in G°. The map

x—{t—y, =y 't(y); 7in Gal(F/F)}
defines a bijection
B(x/F)=ker[H\(F, Zg(x))— H'(F, G%)].

Recall that H'(F, A) means H'(Gal(F/F), A(F)). Thus, given x, any x’ stably
conjugate to x determines an element in B(x/F), and x’ is actually conjugate to x
if and only if it determines the identity in H}(F, Z;«(x)). When F is global, we also
define B(x, A) (resp. B(x/A*)) to be the pointed direct sum of B(x/F,) over all v
(resp. v # w).
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§3. Trace formula

Notations as in §2. Let u be a place of F. The function f, in C(G,) is called
supercuspidal if for any F,-parabolic subgroup of G? (not G,) with unipotent
radical N,, the integral [ f,(xny)dn over N, is 0 for any x, y in G,.

Lemma. Iff has a supercuspidal component at u, then r (f) vanishes on the
G(A)-invariant complement of L(G) in L(G).

Proof. Put N for N(A), PG for G(AY Zy(A). Then

[ crwrman= [ [ foywnsy)dyan

N\N N\N PG
= f f [Z f(x“n“?y)w(y)]dydn
N\N MNM\PG Ty
- | sz<x-'n-'yy)dn]w(y)dy
NA\PG EN\N ™

=f :ff(«x“ny)dn}v/(y)dy=0.

NA\PG N

The order of integration can be changed since the second integral above is
absolutely convegent: f has compact support on PG, and N\N is compact. The
lemma follows.

Remark. The Lemma implies that tr r(f) = tr #(f) for such f.
Let F be a global field of characteristic zero.

Proposition. Let C =TI C, be a compact subset of G(A) with C, = GYR,) for
almost all v. Then there are only finitely many regular conjugacy classes in G(A)
with a representative in G which intersect C non-trivially.

Proof. We deal only with the case of a connected G. Fix a faithful represen-
tation of Gin GL(n, F) for some #. Thus we can define a map G(A) —> A" "' X A%
by mapping x to the ordered set of coefficients in its characteristic polynomial.
The image of C is compact; that of G is discrete; hence there are only finitely
many semi-simple conjugacy classes in GL(n, A) with a representative in G which
intersect C non-trivially. Now two semi-simple conjugacy classes in G which are
conjugate in GL(n, A) are conjugate in GL(n, F). The Theorem of [St], p. 102,
asserts that a conjugacy class of GL(n, F) intersects G in only finitely many
conjugacy classes of G. However, by definition (see §2), a G-conjugacy class with
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arepresentative in G is a stable conjugacy class. If 7, is a stable conjugacy class in
G, then there exists a finite set ¥ of places of F such that y; intersects G(R,) at
most at one conjugacy class for all v outside V. This 7, is contained in a stable
conjugacy class y,, and 7, is the product over all v of stable conjugacy classes 7, in
G,. Since y, consists of finitely many conjugacy classes for all v, y; consists of only
finitely many conjugacy classes in G which intersect C, as required.

The non-connected case reduces to the connected case whenever there is an
injective norm map, for example in the cases of base-change and the symmetric-
square.

Suppose that fis as in the Lemma, and it vanishes on the conjugacy class in
G°%A) of any y in G which is not elliptic regular. Then using the Lemma we have
that r(f) is a trace class operator, whose trace is the integral of its kernel over the
diagonal, namely

wr(H= [ [g f(xVX“)]dx
G(AYZKA)G ’ %

(3.1) =3 f Slxyx~Hdx
)
v GYAVZAAZ(y)

= 2) (1 Z@, AZAYZ)ZSAINNZ ) : Z@DD(, 1)
{r

Z(y) (resp. Z(7)) is the centralizer of y in G° (resp. G%Z). {y} is the set of
conjugacy classes of elliptic regular elements in G° X g/Z, due to our assumption
on f. Each of the integrals in (3.1) is absolutely convergent, and the sum is finite
by the Proposition. We conclude

Corollary. Suppose that u, u’, u” are places of F with u#u’, f, is a
supercuspidal function, the orbital integral of f,. vanishes on the regular non-
elliptic set of G, and f,. vanishes on the singular set. Then (2.1) is equal to (3.1),
where the sum of (3.1) is finite.

Proof. The Proposition implies that if f(xyx ') # 0 for x in G,(A), then y lies
in one of finitely many regular conjugacy classes ( = orbits). Suppose that y lies in
such a regular non-elliptic class. Then the invariant distribution ®(y):h —
®(y, h) on C(G,) vanishes at f,.. Let Cy(G,.) be the span of the functions 4 — k8, h
in C(G,), gin GY.. Denote by Cy(G,), (resp. C(G,),) the space of restrictions of
the elements of Cy(G,) (resp. C(G,)) to the orbit of y. The uniqueness of the
G?-invariant measure on the orbit of y means that any distribution on
C(G,),/ C(Gy), is a scalar multiple of ®(y). Thus C(G,),/C(Gy), is one-dimen-
sional, and Cy(G,) is the kernel of ®(y). Hence there are 4;, g; as above (A; in
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C(G,), g;in G, so that f,. = =, (h; — h%) (finite sum over i) on the orbit of y. We
may choose 4; to be zero outside a small neighborhood of the orbit of y.
Replacing in f'the component f,. by f,. — Z; (h; — h#) will not change the side
(2.1) of the trace formula, since tr m(4#f) =tr m(h). On the other hand, the
function f now vanishes on the orbit of y, but its values on all other conjugacy
classes with a rational representative do not change. Consequently we may
assume that if f(xyx~!) # 0, then v is elliptic regular. The corollary follows.

Remark (1). The fact that f,. is permitted to be any function whose orbital
integrals vanish on the regular non-elliptic set of G, and it is not assumed that it
is supported on the elliptic regular set, is fundamental for the applications of
Chapter II1.

Remark (2). Supercuspidal functions are obtained as linear combinations
of matrix coeflicients of supercuspidal representations. In the twisted case,
however, there may not exist g-invariant supercuspidal ¢G-modules; this is the
case when the residual characteristic of Fis odd, in the example of the symmetric
square specified in §1. Then the condition at # cannot be made. However, for
local applications such as those of the next section, we use a different form of the
Corollary, based on Arthur’s work. By the rank of G we mean the dimension of
the quotient, by the split component of a maximal g-invariant torus in Z, of a
maximal g-invariant split torus in G.

Corollary 1. Let f= QFf, (f, in C(G,) for all v) be a function whose
components at u; (0 < i =r), wherer = rk G, are supported on the elliptic regular
setof G, and ¢, is zero on the x in G, X o for which there are g in G} andz # 1 in
Z, with gxg~'=zx. Then

(3.2) 2 1 Z(y, AZAYZ()ZfA) | (7, [) =X . tr n( f).
{7} z

The sum over {y} is finite. It ranges over the conjugacy classes of regular x in G
which are elliptic at the u;. The sum over 7 is absolutely convergent . It ranges over
automorphic G(A)-modules. The c, are complex numbers.

Proof. The assumption at u, alone implies that the sum X J,(f) of [A] is
equal to our sum over {y}. It is finite by the Proposition. The sum X J,(f) of [A’]
consists of integrals of logarithmic derivatives of intertwining operators acting on
induced representations. As the degrees of the derivatives are at most rk(G), our
r + 1 assumptions imply the vanishing of all integrals. There remains a discrete
sum of irreducible representations 7 whose components at y; are elliptic. The ¢,
are integral and positive for cuspidal z.
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§4. Density

Let Fbe a local field of charac;eristic zero, and G = G%4(a) a reductive group
over F, as in §1. The following is a twisted analogue of Kazhdan’s [K, Appendix]
density theorem.

Proposition. Let f be a function in C(G) such that tr n(f)=0 for all
admissible irreducible G-modules n. Then ®(x, )= 0 for all regular x in G.

Remark. Consequently J(G) (defined in §1) consists of all fin C(G) such
that tr n(f) = 0 for every G-module x.

Proof. In the proof, we denote F, G, f by F’, G’°, f’. Due to the integration
formula F(x, /)= F*(x, f}) (§1) we may assume that there exists an elliptic
regular element x, X o in G’° X o with ®(x, X g, f’) # 0, and that its centralizer
T’ in G’°is an elliptic torus over F’ which splits over the galois extension F” of F”.

We first prove the following

Lemma. Let F’ be alocal field, G’ a reductive group over F’, T’ a (maximal)
torus of G’ over F’, and F” a galois field extension of F’ such that T' and G’ split
over F”. Then there exists a galois extension E/F of global fields such that at a set
of places w of F of cardinality at least two we have F, ~F',E, =E @ F, ~F”,
Gal(E,/F,) =T, where I = Gal(E/F), and a pair (T, G) consisting of a reductive
group G and a torus T over F with G(F,))= G’, T(F,) = T’ (all w), such that G(F)
is dense in G, = G(F,) and T(F) in T,, = T(F,).

Proof. Itis clear that there exist E and F with the required properties. Once
(T, G)is found, since the set of w has cardinality at least two it follows from [CF],
middle of page 361, that (T(F), G(F)) isdense in (T,,, G,,). Now, it is well known
(see [Se], p. ITI-1; also Sém. Grothendieck, Exp. VI, Catégories fibrées et descente,
1961), that if K/k is a galois field extension, A4 is a torus in an algebraic group H,
both defined over k, then the set of K/k-forms of (4, H) is parametrized by the
first cohomology group H'(Gal(K/k), Autg(4, H)) of Gal(K/k) in the group
Autg(4, H) of automorphisms of the pair (4, H) over K (Aut(4, H) consists of
automorphisms of H over K which map A4 to 4). The group 4(K) of K-points of 4
injects as a normal subgroup of Autx(4, H); denote the quotient by Wy.

Let (4, H) be a pair consisting of a reductive group H over F with H(E,) =
G’(E,) and a torus 4 of H over F with A(E,) =~ T’(E,). We have

0—A(E)—Autg(4, H)— Wy —0

{ Fh

0— A(E,)— Auty (4, H)—~ Wy —0

Since A(E) is normal in Autg(4, H), by [Se], Prop. 38, p. I-6, we have the
associated commutative diagram



RIGIDITY FOR AUTOMORPHIC FORMS 147

WL — H\T, A(E))— H'\(T, Autz(4, H)) &> H\T, W;)
W v Vo R

WE — H'(T, A(E,))—~ H\T, Aut; (4, H)) ™ H\T, Wp,).

The Tate-Nakayama theory [Ta] implies that  is surjective.

The pair (77, G’) is determined by an element «, in H'(I', Autg, (4, H)). To
produce a pair (7,G) as required we have to find an element a in
H\(T, Autg(4, H)) whose image under ¢ is a,,. Put § = p,(a,); it can be regarded
as an element of H'(I', Wg). As in [Se], denote by , 4 the torus determined by the
cocycle a,; since it depends only on S, we denote , A4 by 4. For each y in
H\(, W) there exists an element A(y) in H¥(I, ,A(E)) (constucted in [Se],
p. I-70), such that y lies in the image of p if and only if A(y) = 0 (see [Se], Prop. 41,
p. I-70). Also, for each y, in H'(T', W ) there is A, (3,,) in HXT, , A(E,)) such that
7, lies in the image of p, if and only if A, (y,) == 0. The Tate-Nakayama theory
[Ta)] implies that HXT, 44(E)) and HXT, s4(E,)) are isomorphic as groups. By
their construction (in [Se], p. I-70), A = A,,. Since § = p,(a,), we have A, (8) = 0,
hence A(B) = 0, and B lies in the image of p. By [Se], Cor. 2, p. I-67, the inverse
image by p, of B is the quotient of H'(T, j4(E,)) by Im Wi , and p~'(B) is
H'(T, A(E))/ Im WE. The Tate-Nakayama theory [Ta] implies that the map
HYT, y4(E))— H'(T, 44(E,)) is surjective. Hence there is a in H'(I', Aut.(4, H))
with ¢(a) = a,,. The pair (T, G) determined by « has the required properties, and
the lemma follows.

Let E/F be a global field extension, and (7', G a pair defined over F with the
properties specified by the Lemma. In these notations T,, = 7" is the centralizer
Zgp(xoX 6) of xo X ¢in Gu. T = T(F) is dense in T,,, and G = G(F) is dense in
G, . Hence the centralizer Zg,,(T,) of T, in G X & is equal to the centralizer
Zgwo(T)of Tin GS X o, and contains the centralizer Zgoy (T) of Tin G® X g as
a dense subset. Choose x X g in Zp, ,(T) sufficiently near x, X ¢ so that T is
Zg(x X o) and ®(x X g, f,) # 0. Here we denote our local function f” by f,.

The Tate-Nakayama theory [Ta] implies that the natural homomorphism
H\(F,T)— H'(A", T) is an isomorphism, where T = Z{(x X o) is a torus and
H'(A”, T)is the pointed direct sum of the groups H'(F,, T) over all places w # v.
If x’ X ois an element of G which is stably conjugate to x X ain G, for some place
v,namely x X ¢ and x” X o are conjugate in G?, then they are conjugate in G*(F”)
where F is a finite extension of F, and hence in G° consequently they are stably
conjugate in G°. If x” X ois an element of G° X ¢ which is conjugate to x X gin G,
for all v # w, then it determines the identity element in H'(A*, T), hence in
H'(F, T), and hence it is conjugate t0 x X 0.

Let V be a finite set of places of F where T is elliptic, of cardinality larger than
the rank of G, not including the place w of the proposition. At each vin V choose f,
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in C(G,) which is supported on the elliptic regular set of G? X g, and with
®d(x X g, f,) # 0. Choose fin C(G(A)) (see §2) whose components at v in V are
those chosen above, and whose component at w is the function of the proposition.
As noted in §3 there are only finitely many conjugacy classes in G(A) with
representative x’ X ¢ in G° X g, necessarily elliptic regular, with ®(x’ X o, f) #
0. We can replace finitely many of the components f, (for v # w) of f by their
product with the characteristic function of a small open closed neighbourhood of
the orbit of x X ¢ in G? X g, to assure that if ®(x’ X o, /) #0 for x’ X in G,
then x’ X o is conjugate to x X gin G? for all v # w. Consequently, if &(y, /) # 0
for y in G then 1t is conjugate to x X .

We can now apply the trace formula identity (3.1) of Corollary 3.1, since f'is
chosen to satisfy the requirements of this Corollary. The assumption of the
proposition implies that the right side of (3.1) is equal to zero, since tr 7(f) =0
for all z, while the left side of (3.1) is a non-zero scalar multiple of ®(x X g, f).
Since ®(x X g, f,) # 0 for all v # w by the choice of f,, we conclude that
d(x X g, f,) =0, as required.

In the non-twisted case Kazhdan [K; Appendix] had proven the Proposition
using the Deligne-Kazhdan trace formula, on producing a supercuspidal func-
tion f, with ®(x, f,) # 0 for the given x in G X o, so that ®(x’, £,) = 0, for any x’
in G, which is stably conjugated but not conjugate to x in G,. This construction
holds also in the case of base-change, at a place which splits. However in other
twisted cases it is more difficult to construct supercuspidal functions. For
example, there are no og-invariant supercuspidal G?-modules if F, has odd
residual characteristic, and G0 = PGL(3, F,), a(x) = J'x ~J is the example of §1.

4.1. Proposition. For f in C(G) with trn(f)=0 for all tempered G-
modules n, we have ®(x, f) =0 for all regular x in G.

Remark 1. Theorem 10 of [H] asserts that F(f) is uniquely determined by
its values on the regular set. Using this, the Propositions imply that ®(x, f)=0
forall xin G.

Remark 2. The Propositions are proven for a local field F of characteristic
zero. They hold also for a local field F of positive characteristic by virtue of
Theorem A of Kazhdan [K’]. Moreover, Theorem B of [K’] implies that if
tr n(f) = 0 for all G-modules 7 then f lies in the linear span of the commutators
Lfi, h] = f, xh, — h, = f,, where f] lies in C(G) and A, in C(G").

Proof. As in §1, a minimal parabolic subgroup P, = MyN, is fixed, and
P = MN denotes a parabolic subgroup containing Py, such that M contains M,
Let A = A,,be the split component in the center of M, & = A = Hom(X (M), R)
where X(M), = X(A4), is the group of characters of M defined over Q, and
H : M — 9 the homomorphism defined by (H(m), x) = log|x(m)| for all x in
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X(M),. If p is an irreducible M-module with central character w,, define 4, in
A* = X(M)o ® Rby (4,, H(m)) = log| w,(m)| (m in M). This p is called positive
if (4,, a) is positive for every root « of 4 in N, and essentially tempered if p ® y is
tempered for some x in X(M),. The classification theorem of [BW], XI, (2.11),
asserts that (1) if p is essentially tempered and positive, then the unitarily induced
G-module I(p) has a unique irreducible submodule J:(p), and (ii) any irreduc-
ible G-module is so obtained, and (iii) Jp(p) is equivalent to Jp{(p’) if and only if
P = P’ and pis equivalent to p’. The proof in the twisted case follows closely that
given in [BW] for the connected case. A G-module is called standard if it is
equivalent to Ip(p) with a positive M-module p. By virtue of the relation
tr(Ip(p))(f) = tr p( fy) (which follows from a standard computation of a character
of an induced representation, easily adapted to the twisted case), the fact that
tr p(fy) = 0 if and only if tr(p ® x)( fy) = 0 for any x in X(M),, and the relation
F(m, /)= F"(m, fy) for m in M regular in G, the proposition follows at once
from Proposition 4 and the following Lemma. Let R;(G) be the (“Grothendieck™)
free abelian group generated by Irr G, where Irr G is the set of equivalence classes
of (admissible) irreducible G-modules. Put also R(G) = Rz(G)® C. Then we
have

Lemma. The set of standard G-modules is a basis of R(G) over Z.

Proof. Given an irreducible G-module 7, it is equivalent to Jx(p) for some
pair (P, p). If n’ is a submodule of I,(p) inequivalent to 7, and n’ = Jp(p’), then
A, <4, for the order < on %*, by [BW; XI, (2.13)]. By [BZ’] #’ and = have the
same cuspidal datum (L, ¢), consisting of a Levi subgroup L and an irreducible
L-module ¢ whose modules g; = r;.,€ of coinvariants (see §6) with respect to any
parabolic subgroup L’U of L are zero in the Grothendieck group R(L’) of L’.
Hence 7’ lies in a fixed finite set, and by induction on 4, we may assume that each
such n’ is a linear combination over Z of standard G-modules. Consequently
n =Jp(p) = Ip(p) — Z 7’ also lies in the span of the standard G-modules.

It remains to show that standard modules are linearly independent. Fixing a
cuspidal datum (M, p), it is shown above that all irreducible G-modules attached
t(;‘(M , p) are linear combinations of standard G-modules attached to (M, p), and
we obtain a (finite, square) unipotent matrix. Since irreducible G-modules are
linearly independent over C, the standard G-modules are linearly independent
over C, and the lemma follows.

This completes the proof of the Proposition.

§5. Characters

Let F be a local non-archimedean field of characteristic zero. We now recall
some of the fundamental results of Howe [Ho], Harish-Chandra [H] and Kazh-
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dan [K] about Fourier transforms of invariant distributions, characters and
orbital integrals. We state this theory in the twisted setting. Detailed proofs of the
theorems of [H] are recorded in [CI] also in the twisted case. The proofs of the
twisted analogues of the theorems of [K] follow closely the proofs in the
connected case which are amply explained in [K] and will not be reproduced here.
The proofs of [K] rely on the results recorded in §§6-7 below. The statements of
[K] are independent of §§6-7. We prefer to record these fundamental statements
first, as they clarify the relationship between characters and orbital integrals, and
delay to §§6-7 the study of induction and restriction which is independent of the
work of this §5.

Fix an F-valued symmetric non-degenerate G%invariant bilinear form B on the
Lie algebra L(G) of G°, an additive character i # 1 of F, and a Haar measure dX
on L(G). The map ¢ — ¢, where

(X) = f W(BWX, Y)§(Y)dY,

L(G)

is a linear bijection of the space C(L(G)) of locally-constant compactly-supported
functions ¢ on L(G), onto itself. A distribution T on L(G) is a linear complex-
valued function on C(L(G)). Its Fourier transform T is defined by 7(¢) = 7($).
For x in G, put ¢*(X) = ¢(Ad(x)X) and *T(¢) = T(¢*). T is called invariant if
*T = Tforall xin G. Given a set win L((), let J(w) be the space of all invariant
distributions 7°on L() which are supported on the closure of Ad(G)w. Theorem
3 of [H] asserts

5.1. Proposition. If w is compact and T lies in J(w), then there exists a
locally-integrable function F in L(G) with T(¢) = [ FedX for all ¢ in C(L(G)).

Let Z(X) be the centralizer of X in G° and dx the unique (up to scalar),
Ginvariant measure on the homogeneous space G%Z(X). By a theorem of
Deligne and Rao [Rao], the integral

teld) = f HAdX)X)dx (¢ in C(L(G))

GUzx)

is well-defined; it depends only on (dx and) the orbit @ = Ad(G)X of X. The
Fourier transform ji, of the measure 4, is a function by Proposition 5.1.

Let N be the set of all nilpotent elements in L(G). It is a union of finitely many
(“nilpotent”) G%orbits. Let w be a compact set in L(G). The local behaviour of
the Fourier transform of T in J(w) is described by [H], Theorem 4:

5.2. Proposition. There exists a G-domain D (open closed G -invariant
subset) of L(G) which contains 0, and a “nilpotent” distribution u (a linear
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combination with complex coefficients, depending on T, of the u,, where O are the
nilpotent orbits), so that T =jion D.

Fix a Haar measure dx on G. For a smooth G-module 7 : G — Aut V'we defined
in §2 the endomorphism #n(f) of V by n(f)= [ f(x)n(x)dx; clearly, n(f)
depends on dx. If m is admissible then 7z (f) has finite rank, and its trace is denoted
by tr z(f). It is easy to see that if 7 is admissible and irreducible then there exists a
complex-valued conjugacy-invariant locally-constant function y on the regular
set of G such that tr n(f) = [ f(x)x(x)dx for every fin C(G) which is supported
on the regular set of G. The function x is called the character of n. Note that
tr n(f) depends on dx, but x(x) is independent of dx. Theorem 1 of [H] asserts

5.3. Proposition. The character x of an admissible irreducible G-module n
is a locally integrable function on G. In particular, tr n(f) = [ flx)x(x)dx for
every fin C(G).

Theorem 5 of [H] describes the local behaviour of the character x at a semi-
simple element g in G.

5.4. Proposition. Suppose that g is a semi-simple element in G. Let M and
L(M) be the centralizers of g in G® and L(G). Then there exists a neighborhood V
of 0 in L(M), and an M-invariant “nilpotent” distribution y on L(M), so that
x(gexp X)=p(X) forall X in V.

The above results of Harish-Chandra [H] are based on the technique developed
by Howe [Ho] in the case of G = GL(n). Kazhdan [K] showed that the above
local behaviour in fact characterizes the characters, and orbital integrals, at least
on the elliptic set. This characterization extends to the entire (not necessarily
elliptic) set G by Proposition 7 below.

To describe Kazhdan’s theory [K], let S be the space of conjugation invariant
functions s on G, such that for every semi-simple g in G there is a neighborhood V'
of 0 in the Lie algebra L(Z(g)) of the centralizer Z(g) of g in G°, and a
¥(g)-invariant distribution u on L(Z(g)) supported on the nilpotent set of
L(Z(g)), so that s(gexp X)=jt(X) for all regular X in V. Let n(X) be the
coefficient of the smallest possible power of ¢ in the polynomial det(t — ad(X))
(X in L(G)). n is a non-zero polynomial function on L(G), and X is called reguiar
if n(X) # 0.

Let S, = S,(G) be the space of functions on the elliptic subset of G° X g in G
obtained by restriction of the functions of S.

Let Irr G be the set of equivalence classes of admissible irreducible G-modules,
R,(G) the free abelian group generated by Irr G, and put R(G) = R(G) ®, C for
the Grothendieck group of G.
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S5.4.1. Remark. The quotient of R(G) by the equivalence relation m ~
7 ® {, where { is a character of G/G?, is naturally isomorphic to the quotient of
R(G") by the equivalence relation # ~ 0 if 7 is an irreducible non-g-invariant
G-module.

Let M be a Levi subgroup of a parabolic subgroup P = MN with unipotent
radical ¥, and denote by i;p the G-module unitarily induced from the M-
module p, which is trivially extended across N. Then I, extends to a functor
from the category of Af-modules to the category of G-modules. Its restriction is a
homomorphism from R (M) to R(G), and we denote by R,(G) the span in R(G) of
the images of igy, over all M # G. Put R(G) for the quotient R(G)/R,(G). Denote
by x the character of a member =z in R(G); it is a finite linear combination with
complex coefficients of characters of irreducible G-modules. Theorem D of
Kazhdan [K] asserts

5.5. Proposition. The map R(G)— S,, n — x, is an isomorphism.

In particular, any function on the elliptic set of G° X o whose local behaviour is
given by the defining property of .S, is the restriction to the elliptic set of a
character of a virtual G-module.

Theorem C of [K] gives another characterization of S,. Let 4(G) be the space of
fin C(G) whose orbital integrals vanish on the regular non-elliptic set. As in §1,
let J(G) be the space of fin C(G) whose orbital integrals vanish on the regular set
of G, and A(G) the quotient space 4(G)/J(G). Theorem C of [K] asserts

5.6. Proposition. The map A(G)—S., f—'®(f), is an isomorphism.

Recall that ‘®(f) is defined in §1; ‘®(x, f) is the product of ®(x, f) by the
volume | Z;(x)/Z | at a regular elliptic x in G.

5.7. Corollary. The spaces A(G) and R(G) are isomorphic.

The isomorphism is defined by Propositions 5.5 and 35.6.

As an example, let G be the multiplicative group of a simple algebra 4. Then 4
is a matrix algebra M (m, D) over a division algebra D of rank d central over F,
and G is an inner form of the split group G’ = GL(n, F), where n = md.

5.8. Proposition. The space S,(G) consists of the locally constant functions
on the elliptic set of G.

Proof. A stable conjugacy class in G consists of a single conjugacy class. A
semi-simple conjugacy class y in G is determined by its characteristic polynomial
D, (which has coefficients in F); and a unipotent conjugacy class determines a
conjugacy class of Levi subgroups, namely a partition « = (m,) of m (here m; are
positive integers with £, m; = m and m, = m,,, (all i)). There is a natural
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injection of the set of conjugacy classes in G into the set of conjugacy classes in G,
denoted by y — 7’ and defined by p, = p, and (m,)— (dm;). This is an example of
a norm map in the sense of Chapter II, §1. Similarly there is an injection of the
nilpotent classes in the Lie algebra M(m, D) of G into the set of such classes in
M(n, F). The nilpotent orbit € in M(m, D) determines the partition « of m, and
the corresponding standard (upper triangular) parabolic subgroup of G is denoted
by P,. Put O = 0, and j, for i,. Let 6, be the character of the G-module unitarily
induced from the trivial P,-module. Lemma 5 of [Ho], which is stated only for
G’ = GL(n, F) but its proof applies to any G as above, asserts that there is a small
neighborhood V of zero in M(m, D) such that the Fourier transform £, is equal to
6.(exp X) at X for all Xin V. This is zero on the set of elliptic regular exp X ifais
not the trivial partition (m) of m. Moreover, the character 6, is identically one.
Since the centralizer of any elliptic element in G is of the form GL(m’, D’), where
D’ is a simple algebra central over a field extension F’ of F, the proposition
follows.

Combining this result (for G and for G’) with Proposition 5.6, we obtain the
following

Corollary. For every f in A(G) there exists f' in A(G"), and for every f” in
A(G) there exists fin A(G), such that'®(y, ) ="®(y’, ) for all regularyin G and
¥’ in G’ with p, = p,.

This proves the assumptions (5.1) and (5.2) in Chapter II below in the special
case of our G and G'.

§6. Coinvariants

Let F be a local non-archimedean field, G = G°X(0) as in §1, and (xn, V) an
admissible G-module of finite length. If P = MN is an F-parabolic subgroup with
a Levi subgroup M and unipotent radical N (as in §1), then the quotient of Vby
{n(n)y —v;vin ¥V, nin N} is an M-module ‘zy, since M normalizes N. Denote by
"ny the image of ‘my in the Grothendieck group R(M). The {normalized)
M-module ny of N-coinvariant of n is defined to be 8 *”my. It is shown in [BZ]
that 7, is admissible of finite length. The functor rg,, : * — ny, from the category
K(G) of G-modules to the category K(M) of M-modules, is exact. Let Iy(p) be the
G-module Ind$(5)2%p) induced from the P = MN-module ;”p ® 1. The functor
ive: p — Lu(p), from K(M) to K(G), is exact. Then by Frobenius reciprocity we
have that Homg (7, I,,(p)) = Hom,,(7y, p) for all irreducible M-modules p and
G-modules 7. Hence 7y # 0 implies that 7 is a subquotient of I),(ry). Note that
since 7y is an M-module, its restriction nf to M®=M N G° is a o-invariant
MP°-module.

We shall use the following non-connected, or twisted, variant of the theorem
[C] of Deligne-Casselman. Let 4 be a maximally split torus in G° which is
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g-invariant (thus o(4) = 4), B a g-invariant minimal parabolic subgroup of G°
containing 4, A the set of roots of 4 in B. Fix a o-invariant lattice L in 4 so that
|a(A)] =1 if and only if a(A) =1 for all 4 in L and « in A, and so that A/L is
compact. Put L~ for the set of 4 in L with |[a(4)| =1 for all « in A. For any
semi-simple ¢ = £, X ¢ in G° X ¢, there exists a positive integer m, and y in G°, 50
that yt™y~! = is, where Aliesin L ~, and s is a compact element of G’ (the closure
of the group generated by s is compact). Let P{ be the standard (containing B)
parabolic subgroup of G° whose Levi component M7 is the centralizer Z«(4) of 4
in G° and put P? = MPN?for y ~'P{y. We shall be interested here only in a special
case, where PP is g-invariant, and then we put P, = P?X(0o).

Note that our definition of the parabolic subgroup P, is the same as in [C]. To
recall the definition of [C], put 4, = (M ker a (a in @) for any subset 8 of A.
Denote by 4~ the set of xin 4 with |a(x)| = 1 for all « in A. Given a semi-simple
t =ty X gin G° X ¢ with yt™y~! = as for ain A~ and a compact element s, let 6
be the set of « in A with |a(a)| = 1. Denote by M, the centralizer in G° of the
torus 4. Then My = M.

Choosing the sequence {K;} of open compact subgroups from [C], Lemma 2.1,
to be g-invariant, the proof of [C], Theorem 5.2, extends to the twisted case, and
asserts

6.1. Proposition. Lett =t, X o be a regular element of G so that P = P, =
P? X (o) is a parabolic subgroup. Then x(z)(t) = x(7x)(t) = x("nx)t)). Since
A(t) = Ay (1)0p(2) ~ 7, we have (Ax(m))(t) = (Apx(my)Nt) for such ¢.

Here x(n) denotes the character of =.

We now recall Lemma 5.1 of [C], in our non-connected, or twisted case. We
consider only the case where f, lies in 4, in which case t' = t,6(t,)- - - o' (1)
(where ¢ = t, X @) is o-invariant. We choose ¢, so that ¢’ lies in 4~; then the
associated A in L is g-invariant and lies in LZ~. Then M? =M? and P} are
g-invariant, and we put P =P, = MN. Let C be an open compact o-invariant
congruence subgroup of G° with the properties of X; in [C], Lemma 2.1, and in
particular C = (C N N)(C N M)C N N), where N is the unipotent radical of the
parabolic P,-1 = P opposite to P. Let f; be the function in C(G) supported on
ZCtC which attains the value | ZCtC/Z |~! on CiC. Let £ be the function on M
which is supported on #(C N M) and attains the value 6}2(t)/| C N M | there. The
proof of [C], Lemma 5.1, extends to the twisted case, and implies the following

6.2. Proposition. We have tr n(f) = tr ny(fM) for any G-module .

This Proposition is used below as follows. Let p be an irreducible constituent of
the M-module zy. Denote the central character of its restriction p° to M° by w,,
and the character of p by x,. Note that w, is g-invariant, since so is p°. We are
interested in the function /¥ on M° X ¢ since
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a0 = [ KM = o, (O pU

for t =ty X o with ¢, in the center of M, and tr p(f*) is the (non-negative
integral) multiplicity of the trivial representation of C N M in p. On the other
hand, f; is a C-biinvariant function, where C is independent of ¢.

Let W(M,G)=N(M, G)YM® be the quotient by M° on the normalizer
N(M, G) of M in G°, where P = MN is a parabolic subgroup of G.

6.3. Proposition. Let x =x,X o be a regular element in G. Then the
orbital integral F(x, f;) vanishes unless x is conjugate to an element of M. For x in
M we have

F(x, f)=X F¥mwxw™!, f¥),

where the sum extends over W(M, G).

Remark. The proof of this Proposition relies on Corollary 7.5. It is given
here since the functions f;, ¥ do not appear in §7, and it is clear that the work of
§7 does not depend on Proposition 6.3.

Proof. Corollary 7.5 implies that given £ there exists a function fon G such
that F(x, f) = 0 unless x is conjugate in G to an element of M, and when x lies in
M then

F(x, /)=Y FM(wxw™!, fM) (win W(M, G)).

The Weyl integration formula and Proposition 6.1 imply that tr z(f) = tr ny(f¥)
for every G-module n, since the parabolic subgroup P, associated with any
element x in the support of F(x, f)is P, = P. On the other hand, Proposition 6.2
implies that tr z(f;) = tr my(f¥), hence tr n(f}) = tr n(f), for every G-module 7.
But then Proposition 4 implies that F(x, f) = F(x, f;) for every regular x in G,
and the proposition follows.

§7. Trace functions

Let F be a local non-archimedean field, G = G®9{(g), C(G) the space of
functions fon G as in §1 which are supported on G° X o, J(G) the space of fin
C(G) whose orbital integrals vanish at each regular element in G, 4(G) the space
of fin C(G) whose orbital integrals vanish on every regular non-elliptic element
in G, C(G) = C(G)/J(G) and A(G) = A(G)/J(G). Our final aim in this Section is
to prove the following
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Proposition. Let M be a Levi subgroup of G, and f™ an element of C(M)
with the property that for every m, m’ in M which are regular in G and conjugate to
each other by G° we have '

(7.1) FM(m, fM) = FM(m’, f¥).

Then there exists fin C(G) with fi, = f™ (fu is defined at the end of § 1) and f; =0
Jfor every Levi subgroup L of G which does not contain any conjugate of M.

This Proposition, which concerns “lifting” of orbital integrals from a Levi
subgroup of G to G itself, is proven below using representation theoretic
techniques, in the spirit of Corollary 5.7. Thus we are to use (the twisted analogue
of ) the trace Paley-Wiener theorem of [BDK], and the geometric lemma of [BZ’;
(2.12)], which we now proceed to state. The proof of the Proposition is new also
in the connected case.

As in §5 let R,(G) denote the integral Grothendieck group of G-modules of
finite length (RL(G) is a free abelian group with basis Irr G), put R(G) =
R4(G) ® Cand let iy : R(M)— R(G)be the induction homomorphism. As in §6,
let 7y : R(G)— R(M) denote the restriction homomorphism. Let X(G) be the
group of unramified characters y of G which are trivial on (7); equivalently X(G)
is the group of g-invariant unramified characters of G. X(G) acts naturally on
Irr G and R(G) by w:n—ny. X(G) has a natural structure of a complex
algebraic group, isomorphic to C*?, where d = d(G) = dim X(G). As usual, fix a
Haar measure dx on G (equivalently on G°, with the convention that measures on
discrete sets assign volume 1 to each point). Our convention in this section is that
C(G) consists of compactly supported functions; the passage to the space of
functions which are compactly supported modulo the center of G° and transform
under this center by a fixed character, is trivial, and left to the reader. Thus each
function fin C(G) defines a linear form f;: R(G)— C by f(n) = tr n(f). It is
clear that the form f = f,satisfies the following conditions.

(PW(i)) For any Levi subgroup M and irreducible M-module p, the function
v — B(iye(py)) is a regular function on the complex algebraic variety
X(M).

(PW(ii)) There exists an open compact g-invariant subgroup K in G° which
dominates f, in the sense that f vanishes on each G-module 7 which
has no non-zero K-fixed vector.

Let R*(G) = Hom{R(G), C) = Hom(Irr G, C) be the space of all linear forms
on R(G). A form B: R(G)— C is called good if it satisfies (PW(i)) and (PW(ii)),
and it is called trace if § = B, for some fin C(G). The spaces of trace and good
forms are denoted by F,, = F,(G) and F,oy = F,0q(G). The trace Paley-Wiener
theorem of Bernstein-Deligne-Kazhdan [BDK] is the following
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PW-Theorem. For every p-adic reductive group G we have F,, = F,.

This Theorem describes the image of the natural morphism tr: C(G)— R*(G).
As noted at the end of §4, Proposition 4 and Theorem B of [K’] imply that
ker tr = [C(G), G(G)] for every local non-archimedean field (of any characteris-
tic). The PW-Theorem is proven in [BDK] when G is connected. The proof for
G = G°(o) follows closely that of [BDK], with straightforward modifications.
For example, in the proof [BDK; (5.3)] of [BDK; (3.2)] one takes a g-invariant
good K, and uses the twisted version of [C] given in §6. The proof [BDK; (5.5)] of
the combinatorial lemma [BDK; (3.3)] relies on the geometric lemma of [BZ;
(2.12)] which we now recall, in the twisted case, as it is used below in the proof of
the Proposition.

Recall (§1) that a Levi subgroup M of G contains the fixed Levi component M,
of the minimal parabolic subgroup P,. Denote by W,, the quotient by (the
connected component) M{ (of M) of the normalizer N(Mg, M®) of M{ in M° (W),
is the Weyl group of M in M°). Then ¢ acts on W),. Since P§ is o-invariant we
have /(ow) = I(w) where [ denotes the length function on W;. Let L be a Levi
subgroup of G, and let W(M?, L% denote a set of representatives in W, of
minimal length, for W, \ Ws/W,. Then o acts on W(M® L%; denote by
W(M, L) the set of g-invariant elements in W(M?®, L%, For every win W(M, L)
put M, =M NwLw~" and L, =w~'Mw N L. For every w in W(M’, L°) put
M =M°NwL'Ww 'and L} = w~'M°w N L".

Geometric Lemma. For every p in R(L) we have
F@) < roweinep)=iunow rsp)  (win WO, L)).
Proof. If G is connected ( = G°), this is [BZ; (2.12)], which asserts that
Fp) = rataeeiisg(p)L inepro W *riessp)  (win WM®, L)

f\qr every p in R(L®). [BZ] choose an order w;, w,, . .., w, with [(w;) Z I(w;;,)on
the elements of W(M?° L°), and define a functorial filtration F{ C F3C --- C
F}, = F’, with

Fl(p)YF{1(p) = isg 00 Wi o T2, (P)-

Put P = MP,, Q = LP,. If Vis the space of p (in R(L)), then by definition i, s(p)
acts by right translation on the space of the locally constant functions y : G-V
such that y(mng) = d,(m)"?p(m)y(g) (min L, nin the unipotent radical of 0, g
in G°). Note that

(G@N)y)E) = (p(o)wXa™'(g)).
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Denote by V; the space of y which are supported on U, Q°;P® (union over
j =i). Then V, is P’-invariant, and F/{p) is defined in [BZ)] to be the image of V;
under s 0.

Denoteby 4, . .., A, the orbits under gin W(M?, L?). The elements of an orbit
have equal length, denoted /(4;). We order the orbits such that /(4;) = I(4;,)).
Denote the cardinality of A4; by a;, and order the w,, . . ., w, such that the first a,
elements lie in 4,, the next a, elements are in 4,, and soon. Put b, =a, + - - - + q;
and F;=F}. Then F/ is o-invariant, and extends to an M-module, and
F(p)/F,_,(p) is an M-module. The restiction of F,(p)/F;_,(p) to M° is a direct
sum of a@; M°-modules which are permuted under the action of ¢. If a; > 1 then
Fi(p)/F;_,(p) lies in the linear span of the irreducible non-o-invariant
MP°-modules, hence corresponds to 0 in R(M) by Remark 5.4.1. This completes
the proof of the geometric lemma.

Corollary. For each Levi subgroup M of G put Ty, = iy o6 u: R(G)—
R(G). Then

) TLoiye =Zwine°rmm,

(i) T, o Ty =2, T,
where M,, = M N w~'Lw and w ranges over W(L, M).

Proof. (i) irgorgroive=2wiLcoir, i °Worym, =2Zwir,cOWoryy, IS
equal to the required expression since iy g ° W = iy by [BDK], Lemma 5.4(iii).

(1) Ty oipg ©tom = Zwirne ° Tum, ° Tor = Zw e ° Tom, = Zw Th,-

The proof of the PW-Theorem in the twisted case can be completed now
as in [BDK], and we proceed to establish the Proposition. Denote the pairing
R*(G)X R(G)—Cby (B, n)— (B, m). Let

i¥c: R*(G)—=R*(M) and r¥,:R*(M)—R*G)

be the morphisms adjoint 10 #,; and 7). Note that C(G) is a subspace of R*(G),
the function f defines the form g =f;: n — (B, n) = tr n(f). Put (f, n) for
(B, m) in this case.

7.2. Lemma. Forevery M, i¥; maps C(G) to C(M), and r¥, maps C(M) to
C(G).

Proof. For fin C(G), fi (defined in §1) satisfies {fyr, Tar) = (f, inaTas) for
every T,, in R(M) by virtue of a standard formula for a character of an induced
representation. By virtue of Proposition 4 we have i¥.f = f,, as required. For the
second part of the lemma, for every f* in C(M) define a form B = r¥,(f*) in
R*(G) by (B, n) = (f™, rguyn) (7 in R(G)). This is clearly a good form, hence a
trace form by the PW-Theorem, namely r%,(f*) is a function in C(G), and the
(second part of the) lemma follows.
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Corollary. The homomorphisms iye: R(M)—R(G) and Rgy:R(G)—
R(M) admit adjoints i¥: C(G)— C(M) and r&,: C(M)— C(G).

A function fin C(G) is called discrete if i%; f=0 for all Levi M # G. By
Proposition 4 the space of discrete functions in C(G) is A(G).

Combinatorial Lemma. For each proper, Levi subgroup M of G there is a
rational number cy such that 9 = f— Zp .6 Cut®y © 16 (f) is discrete for every f
in C(G).

Proof. This is an analogue of Lemma 3.3 of [BDK]. In [BDK] a form g in
R*(G) is called discrete if iz = 0 for all M # G. Lemma 3.3 of [BDK] asserts
that there are c,, such that for each g in R*(G) the form

ﬂd =B~ ¥ curducific(B)
M+G

is discrete. But Lemma 7.2 asserts that if f lies in C(G) then f?lies in C(G), not
only in R*(G), hence it is in A(G), as asserted.

7.3. Theorem. C(G) is the direct sum over a set of representatives N for the
conjugacy classes of Levi subgroups in G, of r&(A(M)).

Proof. To show that C(G) is the sum of r#,(4(M)), we assume by induction
that this claim holds for every proper Levi subgroup M of G. Namely we assume
that for each M # G, and for each L C M, there is a rational number ¢, ; with the
following property. Given f in C(M), there are f ™1 in A(L) for each L C M,
such that f¥ = 3, c, ¢y . 7% L f¥*. Hence, given fin C(G) there are f*~in A(L)
forevery M = Gand L C G with i = Z; e cunt L " Using the Combina-
torial Lemma we conclude that

f= i+ Y curdqlific(f)) =fi+ X CM”&'MLEM ey i SMF
C

M+G M+G

=f'+ ¥ r& (ECMCMLfM’L>,
L#G M
5

where M ranges over the M # G which contain L, as required.
To prove that the sum is direct, note that if /¥ lies in C(M), then by the
Geometric Lemma for each Levi subgroup L and p in R(L) we have

(if,G"aMfM,P) =(fM, rem°iLe(P))
= X (f¥, iypmowWers (p)).

wEW(M,L)

(7.4)

If /™ lies in A(M) and w contributes a non-zero term in the sum, then M, = M,
namely L D w~'Mw. Consequently (7.4) is zero if L contains no conjugate of M
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and if L is conjugate to M, say L = s~ !'Ms for some s in W(M,L), then (7.4) is
equalto ( /¥, sp). Now, if f = Z,, r¥, /™ is zero, where the /¥ lies in A(M), then
choose L to be a minimal Levi subgroup (up to conjugation) for which /£ # 0 in
this sum. Then i¥;f = f*, and f=0 implies that f~ = 0. This contradiction
completes the proof of the theorem.

Proof of Proposition. Given M # G and f¥ in C(M), since C(M)=
(3] r¥ (A(L)) (sum over L in M) by Theorem 7.3, we may assume that f* =
rg v /¥ for some Levi N in M and f¥ in A(N). We claim. that the product of
S=r&yf™=r¥y f" by a scalar which depends only on N, M and G, has the
properties required by the proposition. Indeed, as in (7.4) for each p in R(N) we
have

(if,crg,NfNap) = X invewerp, (p))

wEW(N,L)

and it suffices to consider w with L D w~'Nw, since /¥ lies in A(N). Hence if L
contains no conjugate of A/ then the sum is empty and i*; f= f; is zero, as
required. If L = M, our sum becomes the sum over all w in W(N, M) with
w™INw C M of ( /%, wery, (p)). The condition (7.1) implies that each of the
summands is equal to { f¥, ryx(p)) = (rknfY,p) =(f¥,p), hence i¥%.; fis
equal to /¥ up to a multiple by the cardinality of the set of w in W(N, M) with
w~INw C M. The proposition follows.

The Proposition implies that a function f¥ in C(M) can be “lifted” to a
function fin C(G) with the “same” orbital integrals on the regular conjugacy
classes of G which intersect M. The orbital integrals of fare not necessarily zero
on x in G whose conjugacy class does not intersect M. However, we have

7.5. Corollary. Suppose that f™ has the property that FM(m, f*) is sup-
ported on the set of m in M with |a(m)| # 1 for every root of the split component
Ay of the center of Min N. Then fcan be chosen to have the property that F(x, f) is
zero unless x is conjugate in G to an element of M.

Proof. Let S,, denote the support of F¥(f*) in M, and put S = (Sy)¢ =
{g " 'sg; gin G, sin Sy }. Then Sis open and closed in G. Replace the fobtained in
the Proposition by its product with the characteristic function of S to obtain the
function fof the corollary.

Finally we recall the germ expansion of orbital integrals of fin C(G). Let O(x)
be the closure of the conjugacy class O(x) of x in G. It is the disjoint union of the
conjugacy classes O(su;) (1 =i =r) of elements su; with semi-simple part s, so
that (1) 4, =1, (2) for each ¢ (1 < ¢ <r) the union O, = U}_,0(sy;) is closed,
(3) O(su,) is open in O,. The (closed) set A, of elements in G whose semi-simple
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part is conjugate to s is of the form O(x) for some x, and there are f in C(G) with
F(su;, f;) = d;, and f; = 0 on O(sy;) for j <i. The germ expansion asserts

7.6. Proposition. (a) Given fin C(G) and a semi-simple s in G, there exists
a neighborhood V;of s in G so that

F(x, )= ZF(x,ﬁ)F(sui,f) (all x in V)).

(b) Conversely, given a function F(x) on G such that for each semi-simple s in G
there is a neighborhood V of s in G with

F(x)=XF(x, )F(sw) (xinV),

there exists fin C(G) with F(x) = F(x, f).

We do not prove this result here, but simply note that it can be deduced from
the uniqueness of the Haar measure. A proof is given, e.g., in Vigneras [V].

Chapter II. Comparison

Let Fbe alocal non-archimedean field of characteristic zero. Let G” be a quasi-
split reductive group, defined over F, of the form G°4(a) (it is denoted by G in
Chapter I).

§1. Stability

The stable conjugacy class of x in G” is defined in Chapter I, §1.2: x’ is stably-
conjugate to x if there is y in G° with x” = Ad(y)x. Put T for the centralizer Zo(x)
of x in G° We shall be interested here only in regular x, and then T'is an F-torus.
The conjugacy classes within the stable class of x are parametrized by the (finite)

set \

B(T/F) = ketf[H\(F, T)— H\(F, GY)).

If x, x’ are stably-conjugate, then Z;«(x’) = Ad(y)Zs+(x) is isomorphic to Z(x)
over F. Hence a differential form of maximal degree on Z;(x) can be transferred
to Zg{x"), yielding compatible Haar measures on Z;«{(x) and Zg(x’).

Let {Ad(b)x; bin B(T/F)} be a set of representatives for the conjugacy classes
within the stable conjugacy class of the regular element x of G° X a.

Definition. Let Fbe a function on the regular conjugacy classes in G ” which
intersect G° X a. The stable function F’ associated with F is defined by
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F'(x) =3 F(Ad(b)x).
)

F’(x) depends only on the stable conjugacy class of the regular x. In particular,
for any fin C(G”) (notations of §1.1) we have the stable orbital integral F’(x, f) of
f, and the function ¥'(f).

The stable orbital integrals are introduced for purposgs of comparison between
the group G”, and a reductive connected F-group G, such that the following
holds. Let G? = Z«(o) denote the group of g-invariant elements in G°. Let G and
H be F-groups. An isomorphism y : G — H over F is called an inner twisting if for
every 7 in Gal(F/F) there is g, in G such that (1) ~! o y = ad(g,). If such y exists
then G and H are called inner forms. Suppose that G is an inner form of G, and
fix an inner twisting . Fix a maximal split torus 4 in G. It can be identified witha
torus A2 of G via y. Each Levi subgroup M of G containing A corresponds by ¥ to
a Levi subgroup M? of G? containing 40, We assume that M7 is the group of
g-invariant elements in the g-invariant Levi subgroup M° of G°, obtained as the
centralizer in G° of the center Z(M?) of M?. Hence fix a maximally split
o-invariant torus A° (containing A%) in G 4°is denoted in §1.6 by 4. Fix a lattice
L as in §1.6, so that each M? is of the form M, = Z(A) for Ain L.

In every known comparison situation (base-change, symmetric-square, meta-
plectic correspondence, inner-twists) there exists a map N which we call a norm
map, with at least the following propeties. N is a bijection from a subset 'S” of the
set S” of stable conjugacy classes of regular elements in G” with representatives
in G° X 0, to a subset "S of the set S of stable conjugacy classes of regular elements
in G, such that (1) Z,{x) and Z;(Nx) are inner forms, (2) N(x X o) =
w~Yx X o) for xin A2 (/ is the order of ¢), (3) x has a representative in M° X g if
and only if Nx has a representative in M, (4) at least one of the subsets 'S, 'S” is
the entire set S, S”.

We use (1) to relate measures on the two groups of (1). Fix a norm map N.

Let W(M, G)= N(M, G)/M be the quotient by M of the normalizer N(M, G)
of M in G. If M” = M®}(c), let W(M”,G") be the quotient by M° of the
normalizer of M” in G° Given f* in C(M), let MF(f™) be the conjugacy class
function on the set of regular x in G which attains the value 0 unless (a conjugate
of) x lies in M when we put

MF(x, fM)=2Z FMwxw™!, f¥)  (win W(M, G)).

Similarly, for ¢™ in C(M”) we put MF(x, ") = 0 for a regular x in G° X ¢ unless
(a conjugate of) x lies in M° X o, when we put

ME(x, ") =T FM(wxw™', ¢¥)  (win W(M”, G")).
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In particular °F is F = F°. Recall that F’ indicates the stable function on G
associated with ¥F.

Definition. The functions ¢* in C(M”) and /¥ in C(M) are called matching
if (1) Mf*(s, f™) is zero for any s in .S — 'S, (2) F/(s,¢™) is zero for any s in
S” —'S”, (3) MF'(s, oM) is equal to YF’(Ns, f¥) for all s in ’S”.

§2. Base change

Here we describe a well-known example of a norm map. Let F be a perfect field,
[ a positive integer, E a cyclic extension of F of degree /, and G, a reductive
connected group over F whose derived group is simply connected. Let G° =
Resg, G, be the F-group obtained from G, on restricting scalars from E to F. It
can be realized as G° = G, X - - - X G, (/ copies), where Gal(F/F) acts as follows.
Fix a generator & of Gal(E/F), and put a(x;, X,, ..., %) =(X;, ..., X;, x;). Then
T(Xp X35 .. . ) =0 (X}, Ty, ... ) if T| E =6 (0 =i <), for any 7 in Gal(F/F).
With this definition GX(E) is G,(E) X - -+ X G,(E) (I copies), and G° = G%(F) is
isomorphic to G,(E). Put G” for the semi-direct product of G° and the cyclic
group (o) of order / generated by o. It is a non-connected reductive group defined
over F. It is clear that x, = (y, y,...) and x{=(y’, 6y, ... ) are o-conjugate
elements of G° (namely x = x, X oand x’ = x{, X o are conjugate by an element of
G°) if and only if y and y’ are §-conjugate (namely there exists z in Gy(E), with
y’ = zy&(z~ ")) elements of G,(E).

To define a norm map take x = x, X 7, x, = (y, 6y, ...) with y in G,(E), and
consider z = y&(y)- - - &~ '(»). Since 6(z) = y~'zy, the conjugacy class of zin G,
1s defined ‘over F. Let G be the quasi-split inner form of G,, and fix an inner
twisting ¥ : G, — G. It is an 1somorphism defined over a finite extension of F.
Then the conjugacy class of w(z) in G is defined over F, and contains an element
Nx in G [Ko}, Theorem 4.4. Further, the map x — Nx induces an injection from
the set of stable conjugacy classes in G” with representatives in G° X g, into the
set of stable conjugacy classes in G ([Ko], Proposition 5.7). Note that the
centralizer Zso(x) of x = x;, X ¢ in G° is isomorphic over F to the G-centralizer
Z&(y) = {gin G% &,(g) = g}, where &,(g) = y&(g)y~", of y in G°. This is an inner
form of Z;(Nx), and in comparing orbital integrals we take compatible Haar
measures on Zo(x) and Z;(Nx).

In the special case / =1 we obtain an injection N from the set of stable
conjugacy classes in G, to the set of stable conjugacy classes in its quasi-split
form G,

These definitions are particularly simple in the case of G = GL(n), where the
stable conjugacy class consists of a single conjugacy class. Other norm maps can
be defined using the outer automorphism o(x) =J'x~'J of G; see [Sym)].
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When G” is connected, and G, is the simply-connected covering group of the
derived group of G”, we have H'(F, G,;) = {0} when F is local non-archimedean.
Hence if T, is the inverse image of 7 in G, B(T/F) (see §1) is the image of
H\F,T,) in HY(F,T). On the other hand, G°=Res; G, has H'(F, G°) =
H\E, G,)and B(T/F)is H(F, T) if H\(E, G,) = {0}.

§3. Discrete series

Let F be a local non-archimedean field of characteristic zero, G” = G®°X(o) a
reductive F-group and G, the centralizer Zy(o) of ¢ in G° Let n” be an
admissible G ”-module of finite length (see §1.2). By a central exponent of n” with
respect to a Levi subgroup M” of G” (see §1.1) we mean the central character of an
irreducible constituent of the module 7% of coinvariants (see §1.6) of n” with
respect to any parabolic subgroup P” = M”N with Levi component M”.

Recall (§1.6) that A is a maximally split o-invariant torus in G° and L is a
o-invariant cocompact lattice in 4. B is a minimal ¢-invariant parabolic sub-
group of G° containing 4, A~ is the set of a in 4 with |«(a)| = 1 for any « in the
setAofrootsof 4in B, L~ = L N A~. To any semi-simple ¢t = £, X o we associate
ainA~ (orAin L ™), and a subset 6 of A, consisting of the a« with (A1) = 1. Givena
subgroup H of G° we denote by H, the group H N G, of o-invariant elements in
H.

Given a co-invariant A in L~, the centralizer M, = Zs(A) of 4 in G° is
o-invariant, and we denote by P, = M N, the standard c-invariant parabolic
subgroup of G° with Levi component M;. The center 4, of M, lies in A. We say
that the central exponent w of n” with respect to M, decays if |w(a)| <1 for
every a in (4,), with (1) |a{a)] =1 for any root « of (4,), in (V,),, and (2)
|a(a)| < 1 for some such a. We say that n” is discrete-series if its central character
is unitary, and its central exponents with respect to any proper Levi subgroup M,
where 1 is any g-invariant element in L, all decay.

In the case where G” = G° is connected, namely ¢ = 1, Harish-Chandra’s
criterion for square-integrability ([C’], Theorem 4.4.6; [S], Theorem 4.4.4) asserts
that n” is a discrete-series in the above sense if and only if it is square-integrable,
in the sense that its matrix coeflicients f(x) = (n”(x)v, v’) are absolutely square-
integrable functions of G/Z.

Definition. We say that a discrete-series G”-module #n” satisfies a trace
identity if there is (1) a set {n} of G-modules n, which, for each open compact
subgroup C in G, contains only finitely many G-modules with a C-fixed vector,
(2) positive integers m(n) (depending on #’), and a complex number c, so that for
all matching ¢ in C(G”) and fin C(G), we have

3.1 ctran”(¢) =Y m(n)tr n(f).
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Assumption. For any proper Levi subgroup M, and any open compact
subgroup C as in Proposition 1.6.2, there exists ¢ in C(M”") maitching the
characteristic function of C N M in C(M).

Our assumption is tantamount to the following. For any proper Levi subgroup
M with center 4,, contained in A, and any ¢, in A4,,, which we also view as an
element in the center of M°, we have: there exists a function ¢} in C(M")
matching the function fJf in C(M) defined prior to Proposition 1.6.2. Here
Nty = (t, X 6)' = 1}, as o(t,) = t,. Indeed, the function f# is obtained from the
characteristic function of C N M on translating by the central element N, and
multiplying by a scalar, so that ¢ can be obtained from ¢* on translating by the
g-invariant central element ¢, and multiplying by the same scalar.

§4. Decay

Proposition. Suppose that the discrete-series G”-module n” satisfies a Trace
Identity, and G satisfies Assumption 3. Then all n in (3.1) are discrete-series G-
modules.

Proof. Let M be a proper Levi subgroup, C a compact open subgroup of G as
in Proposition 1.6.2, 1, in A, such that |a(f))| =1 for all roots a of A,, in the
unipotent radical of the standard parabolic subgroup with Levi component M,
and 1 the function of Proposition 1.6.2, where ¢4 is Nt, = ;. Proposition 1.6.2,
and Proposition 1.6.3, imply that the function f, on G defined in Proposition
1.6.2, which is C-biinvariant, satisfies F(x, f,) = ¥F(x, fM), hence

F'(x, f) =¥F'(x, f¥), forall x regular in G.

As noted following Proposition 1.6.2, the function f; is C-biinvariant. Hence
tr n(f;,) # 0 only for # with a C-invariant vector. By definition of Trace Identity,
there are only finitely many such 7 in (3.1). On the other hand, if w, is the central
character of the irreducible constituent p of the M-module my, then tr z( f,) =
tr my( £} is a sum over p of w,(tpd}2(t5)n(p, C), where n(p, C) is the non-
negative integral multiplicity of the trivial representation of C in p (the dimen-
sion of the space of C-fixed vectors in p).

Assumption 3 asserts that there exists a function ¢ in C(M”) matching f.
Proposition 6.3 asserts that there exists a function ¢, in C(G”) with F'(x, ¢,) =
MFYx, ¢¥) for all regular x = x, X gin G”. Hence the functions f; on G and ¢, on
G° X ¢ are matching. Since n” appears in the Trace Identity, it is clear that its
character y(n’) is a stable function, depending only on the stable conjugacy class
of x = xy X g in G”. Using the Weyl integration formula we have
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trn”(e,) =2 w(T)™! f (Ax (")) F'(x, ¢,)d(NX).
T

Ti1Z

The sum is over the stable conjugacy classes of F-tori 7 in G. w(T7) is the
cardinality of the quotient W(T) = N(T)/T by T of the group N(T) of x in G such
that ad(x): T — T, t — xtx ", is defined over F. Recall that

F'(x, ¢,) = MF'(x, i) = MF'(x, f ).

Since ¢} lies in the center of M, we have M C M, As we assumed that
la(tg)| < 1 for all roots a of A, in N,,, we have M = N, But f/ is supported on a
small neighborhood of #4. Hence if F’(x, ¢,) # 0, then M? is conjugate to the Levi
subgroup M° such that M? matches M. Proposition 1.6.1 now implies that we
have

EwT) ™ [ Q@A) M (x, 82 d(Nx),
T
As 1, lies in the center of M®X(c ), changing variables x — #,x, we obtain

T wp(t) Iw(T)™! f Aaex (m30))x) MF'(x, ¢tf) d(Nx) = X w,(to) tr p”(¢1).
e

plinny T

p” ranges over the g-invariant irreducible subquotients of n%; w,. is the central
character of p”.

We conclude from the trace identity that for any f, in the center of M°X(a)
with M? = M? in the notations of §1.6, we have

Y c(p”)w,Ato) = T n(p)w,(£).
p” p

The sum on the left ranges over the constituents p” of n’y; hence it is finite. The
c(p”) are complex. On the right the sum is finite, depending on the compact open
subgroup C, and the coefficients are positive, so that no cancellation may occur.
Linear independence of characters (on the set of ¢, in A,, with |a(t,)| < 1 for the
positive roots a) implies that for each p there exists p” with w,(f;) = w,.(1).
Consequently the character w, decays, where p is any constituent of 7y; here M is
any proper Levi subgroup of GG, and = is any G-module with a C-fixed vector.
Since any 7 has a C-fixed vector for a sufficiently small C, it follows that all 7 are
discrete-series, as required.

Remark. Itisclearthatif #” is assumed to be only tempered, then the above
proof implies that the « of (3.1) are tempered.
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§5. Finiteness

We now continue with the situation and Assumption of §3, but make two
additional assumptions.

5.1. Assumption. Suppose that &’ is a stable function in S,(G”) (see §1.5).
Then there exists ® on G in S,(G) matching @'.

Namely, we suppose that ®'(x X g)=®’'(x’ X g) for all stably conjugate
regular x X g, X’ X g, and assume the existence of a function fin A(G) with
'®'(Nx, )= D'(x) on the regular set.

5.2. Assumption. For any fin A(G) there exists a matching function ¢ in
A(G”).

Using these Assumptions, we conclude

Proposition. Suppose that the discrete series G”-module n” satisfies a Trace
Identity (3.1). Then the set of © is finite.

Proof. Note that Proposition 4 asserts that the = are all discrete-series. To
prove our proposition, note that by the Trace Identity tr 7”(¢) depends only on f,
namely on the stable orbital integral of ¢, hence the character x(n”) of #” on
G° X gis a stable function. Assumption 5.1 implies that there exists a finite linear
combination of G-modules n with complex coefficients c(x), so that

2 c(m)x(m)(Nx) = x(z")(x X 7)

for any elliptic regular x X g in G”, and Z, c(n)[x(n)}(y) =0 for the elliptic
regular y which are not norms. We may assume that all 7 here are tempered by
[K], Proposition 1.1.

Applying the Weyl integration formula we deduce that

(o) = L) [ r@ e i, e)dx.
T
Only elliptic tori occur since we take ¢ in A(G”). Further, we take ¢ so thatithasa
matching £, so that F’(x, ¢) = F'(Nx, f). Replacing y(n”) by our linear combi-
nation 2 c(x)y (), we obtain

L e(m) 3*w(T) " f [Ax()Ix) F'x, f)dx = 3 e(m) tr 2 (f).

We deduce from (3.1) the identity 2, c(z)tr n(f) = Z, m(z)tr z(f). On the left
the sum is finite and consists of tempered 7. On the right all 7 are discrete-series.
The identity holds for all fin 4(G) which have a matching function ¢. So fix n, on
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the right. By Kazhdan [K], Theorem K, there exists a pseudo-coefficient f, in
A(G) with tr np(fy) = O for any tempered irreducible z inequivalent to =, But
Assumption 5.2 implies that f;, has a matching function ¢. Using our identity with
S = fy we conclude that m(mn,) = 0 for all 7, on the right which are not equivalent
to any of the finitely many z on the left. Consequently, the set of = with m(x) # 0
is finite, as asserted.

Chapter II1. Representations of Simple Algebras

§0. Introduction

Let F be a local field, and G an inner form of GL(n) over F. Thus G is the
multiplicative group of a simple algebra A4 central over F. A4 is the m X m matrix
algebra M (m, D) over a division algebra D central over F of rank d, with n = md.
Class field theory (see e.g., [W]; Ch. X) associates with 4 an invariant inv 4 of the
form i/d (modulo 1), with i prime to d, and inv 4 = inv D is independent of m.
There exists a unique simple algebra A central of rank » over F with invariant i/d
(modulo 1) (where (i, d) = 1 and d divides n). If F = C thend = 1, if F = R then
d = 1 or 2; otherwise d is any positive integer. Put G = G(F)and G’ = GL(n, F),
and note that G(F) = GL(n, F) if F is an algebraic closure of F.

A conjugacy class y in G is called regular if its characteristic polynomial p, is
separable (has distinct roots). If y, d are regular and p, = p;then y = 4. There is an
embedding y — y’, defined by p,. = p,, of the set of regular conjugacy classes yin G
into the set of regular conjugacy classes y’ in G”.

Let C(G) denote the convolution algebra of complex valued smooth compactly
supported measures fon G. Put R(G) = R,(G) ® C, where R;(G) is the Grothen-
dieck free abelian group generated by the set Irr G of equivalence classes of
smooth ( = algebraic) irreducible (hence admissible by {[BZ]) G-modules.

If n is an admissible G-module then the convolution operator z(f)=
fo fig)n(g) is of finite rank and its trace is denoted by tr z(f). There exists a
complex valued conjugacy invariant smooth function y = x(x) on the regular set
of G with tr n(f) = [ x(g)f(g) for any fin C(G) which is supported on the regular
set of G. It is called the character of n, it depends only on the image of z in R(G),
and characters of inequivalent irreducible G-modules are linearly independent
(namely ¥ # 0 if # # 0 in R(G)).

Fix a minimal parabolic subgroup P, together with its Levi decomposition
MyN, in G (and G”), and denote by i, (or I, or I$) the homomorphism
R(M)— R(G) of unitary induction, for any (standard) Levi subgroup M (thus M
is a Levi subgroup, containing M|, of a parabolic subgroup containing 7).
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An irreducible G-module 7 whose central character is unitary is called square-
integrable, or discrete-series, if it has a matrix-coefficient which is square-
integrable on G modulo its center. An irreducible G-module 7 is called tempered
if there exists a Levi subgroup M and a square-integrable ( = discrete-series)
M-modules p, such that z is a subquotient (necessarily a direct summand) of
iyep. Put v(x) = | x| (xin F), where | - | is the normalized valuation on F, and
v(g) = v(det g), where det g is the reduced norm of gin G.

A G-module r is called relevant if there is a Levi subgroup of G of the form
M =T11", (M; X M;) or My X M, where M,(0 =i = m) are multiplicative groups
of simple algebras central over F, and tempered M;-modules p; (0 =i = m), and
distinct positive numbers 5; < 4 (1 =i =< m), such that = is

ing [Hl (piv* X l’i\’_s‘)] O lIyxmG [Po X ‘Hl (' X PiV_s")] in R(G).

Local Theorem. (1) Relevant G-modules are unitary and irreducible; in
particular, a G-module unitarily induced from a tempered one is irreducible.

(2) The relation x'(y") = (— 1)"~"x(y) for all matching (y —y’) regular conju-
gacy classes y, v’ in G, G’ defines a bijection between the set of equivalence classes
of square-integrable (resp. tempered; relevant) G-modules n, and the set of
equivalence classes of square-integrable G’-modules n’ (resp. tempered, relevant,
G’-modules n’ whose character x’ is non-zero on the set of regular y’ obtained from
yinG).

The bijection of (2) is called the Deligne~Kazhdan correspondence.

Let Fbe a global field, and G an inner form of G’ = GL(n) over F. Then G is the
multiplicative group of a simple algebra A4 central over F. A4 is a matrix algebra
M(m, D) of m X m matrices over a division algebra D central over F of rank d
with n =dm. Class field theory (see, e.g., [W]; Ch. XI) associates with 4 the
sequence {inv,4 =invA4 ®;F,} of rational numbers modulo one which are
almost all zero and whose sum is zero modulo one. Each such sequence {i,/d,}
determines, up to F-isomorphism, a unique division algebra D central over F,
and a unique simple algebra 4 of rank n central over F with these invariants, for
any n which is divisible by d, for all v. Let G(A) be the group of A-points of G,
where A is the ring of adeles of F. Let Z (resp. Z’) dendte the center of G (resp.
G’); then Z = Z’ is the multiplicative group. Fix a unitary character o of
Z(A)Z(F)= A*/F*. For each place v of F denote by F, the completion of F at v
and by w, the restriction of @ to F*.

Let L(G) denote the space of slowly increasing (see, e.g., [BJ]) functions y on
G(F)\G(A) with w(zg) = w(2)y(g) (z in Z(A)). G(A) acts on L(G) by right
translation, and any irreducible submodule is unitary and called an automorphic
G(A)-module. L(G) is the direct sum of the discrete spectrum L,(G), which is the
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direct sum of irreducible G(A)-modules called “discrete-series” G(A)-modules,
and the continuous spectrum L.{G), which is a continuous sum. A cuspidal
G(A)-module is an irreducible constituent of the subspace Ly(G), which consists
of the y in L(G) with [y wa) W(nx)dn equals zero for every x in G(A), and for
the unipotent radical N of any proper parabolic subgroup of G over F. Each
cuspidal y is absolutely square-integrable on G(A) Z(A)G. Ly(G) is a sub-G(A)-
module of L (G).

Any cuspidal G’(A)-module is non-degencrate, namely (each of its local
components) has a Whittaker model (see [BZ]), and it occurs with multiplicity
one in Ly(G). An irreducible G(A)-module # decomposes as a restricted tensor
product ®,x, of irreducible admissible G, = G(F,)-modules 7,, which are almost
all unramified. If 7’ = ®n’ and 7”7 = ®x” are cuspidal G’(A)-modules and
7, =~ n” for almost all v, then n] =~ x* for all v. All components of a cuspidal
G’(A)-module are relevant (by [Z], (9.7)), and, as noted above,unitary.

Given G, or D, there is a finite set S of places v of F such that for every v outside
S the division algebra D splits, namely D ® - F, = M(d, F,). We say that =, lifts to
n, if G, = G} (thus v &S) and 7, =~ n;, or, more generally for arbitrary v, if «,
corresponds to 7 by the local theorem. An irreducible G(A)-module 7 = ®,x,
lifts, or corresponds, to an irreducible G'(A)-module n = ®, n’ if =, lifts to x’ for
all v. An automorphic G(A)-module which lifts to a cuspidal G’(A)-module will
be called non-degenerate.

Global Theorem. (1) All local components of a non-degenerate G(A)-
module are relevant.

(2) Each non-degenerate G(A)-module occurs in the discrete spectrum of L(G)
with multiplicity one.

B) Ifn = ®, n,and’'n = @, 'n, are non-degenerate G(A)-modules and n, ~ ',
for almost all v, then n =",

(4) Lifting defines a bijection from the set of non-degenerate G(A)-modules
n = @, to the set of cuspidal G'(A)-modules n’ = Q rl such that n! is obtained by
the local correspondence for all v (in S).

Remark. (1) is motivation for the definition of “relevant” representations.
(2) is called “multiplicity one” theorem for the non-degenerate spectrum of G.
(3) is called “rigidity” theorem for the non-degenerate spectrum. (4) is called the
Deligne-Kazhdan correspondence.

The local theorem is proven below for F of characteristic zero, and the case
where F has positive characteristic follows from the Theorem of [K’]. The Global
Theorem is proven here only for the subset of the cuspidal G’(A)-modules n’ with
two supercuspidal components, using the simple form of the trace formula
proven in Chapter I, Corollary 3. This Corollary 1.3 applies to any test function
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f= ® f, which has a supercuspidal component f;, and at a second place u’ the
component f,. is any function whose orbital integrals vanish on the regular
non-elliptic set (thus /. lies in the class A(G) of [K] (see Chapter I, §5.6), which is
called the class of discrete functions in [BDK] (see Chapter I, §7)). In particular,
f. can be taken to be a pseudo-coefficient of any square-integrable G,~-module.
Had we proved Corollary 1.3 only for fsuch that f, is supported on the elliptic
regular set, we would have not been able to prove our Global Theorem, except in
the special, more elementary case where the simple algebra underlying G is a
division algebra.

The stronger form of the simple trace formula proven in [FK1] makes it
possible to prove the global theorem for all #” with at least one supercuspidal
component (see [FK1]). In [FK1] we replace the condition at ¥’ by the require-
ment that £, be a sufficiently admissible spherical function (a notion defined in
[FK1]), and show that this requirement does not restrict the applicability of that
trace formula to lifting problems. The trace formula of [FK1] is analogous to —
and motivated by — Deligne’s conjecture on the Lefschetz fixed point formula
(in étale topology) for finite flat correspondences twisted by a sufficiently high
power of the Frobenius. Similar ideas are used in our work with D. Kazhdan (see
[FK2], [FK3]) concerning the geometric Ramanujan conjecture for GL(rn). The
global theorem can be proven for all z’ on using Arthur’s recent proof of the
required trace formulae identity for arbitrary test functions f= &£, and f' =
® f7on G(A) and G’(A), but we do not do it here. A simple proof of this trace
identity for arbitrary fand f’ can possibly be given on using the regular functions
of [FK], [Sph], and Chapter IV below, but at the moment we carried it out only
for groups of rank one (see [Sym; VI]).

When n = 2 the theorem is due to Jacquet-Langlands [JL], when n = 3 Flath
[F1] reduced it to the trace identity ([F1; (6.1)]) proven later in [GL(3); (2.7.3)],
and the case of general n, d was treated by Deligne, Kazhdan and Vigneras in
[DKV]. Our indebtedness to [DKV] is apparent.

§1. Germs

As an example of the theory of Chapter I, we consider here the case of
comparison between G’ = GL(n) and its inner forms G. Our exposition here will
be more elementary, as suitable for this introductory case. In particular ¢ and G’
are connected, so that G”=G’=G" and o =1, and there is no difference
between conjugacy and stable conjugacy.

Let F be a local non-archimedean field of characteristic zero, and put G’ =
GL(n, F), where n is a positive integer. Let G be an inner form of G’. Fix Haar
measures dx’ on G’ and dx on G. Write y — ' if , y’ are semi-simple elements of
G and G’ with p,= p,. If y, y’ are regular (have distinct eigenvalues), their
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centralizers in G, G’ are tori T, T”; T is isomorphic to 7" if y — y’. Haar measures
on isomorphic tori are always taken to be equal. The orbital integrals ®(x, /) and
O(x’, fYof fin C(G) and f” in C(G’) are defined in §1.1. Proposition I.5.8 implies
the following

Corollary. For every fin A(G) there exists f* in A(G’), and for every such f’
there is such f, so that '®(y, f)="'®(y’, f) for every elliptic regular y and y’ with

py = py’-
This proves assumptions I1.5.1, I1.5.2, in our case.

Definition. The functions fin C(G) and f* in C(G”’) are called matching if
D(x, f)=D(x’, ) for all regular x’ in G’ and x in G with p, = p,, and
d(x’, f7) = 0 for all regular x’ in G’ which do not come from G.

We also state the following

Theorem. For every f in C(G) there exists f* in C(G’); and for every f in
C(G’) so that ©(f") is zero at any regular x in G’ which does not come from G,
there exists fin C(G);, so that fand f’ are matching.

This Theorem will be proven by induction on the Levi subgroup of G. Hence
we now assume the validity of the Theorem for every proper Levi subgroup M of
G. Consequently we can use Assumption I1.3 in our case. The proof is based on
the lifting theorem of §5 for tempered local representations; it is completed in §7.

§2. Comparison

Let Fbe global, n = md, G = GL(m, D) the multiplicative group of the m X m
matrix algebra over the central division algebra D of dimension d? over F, and
G’ = GL(n). Put G, = GL(m, D,), G, = GL(n, F,) at any place v of F. Since G is
an inner form of G’, the groups are isomorphic over an algebraic closure F of F,
and a differential form of maximal degree on G’ rational over F can be transferred
to one on G. These define Haar measures dx, and d’x, on G, and G! for all v,
which we call compatible, and consequently we can choose compatible product
measures dx = Qdx,, d'x = ®d’x, on G(A), G'(A).

There 1s a bijection from the set of conjugacy classes in D* (over a local or
global field), to the set of elliptic conjugacy classes in GL(d, F). Similarly, there is
a bijection from the set of semi-simple conjugacy classes in G = GL{m, D) to the
set of semi-simple conjugacy classes in G’ = GL(n, F), with an elliptic represen-
tative in the Levi subgroup I, GL(da;,, F), Z; a; = m. Globally, if G ramifies at the
finite set V of places of F, there is a bijection from the set of conjugacy classes of
tori T in G over F, into the set of conjugacy classes of tori 77 in G’ such that at
each v in V the torus T of G, is obtained from a C,-torus T,. We choose
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compatible product measures dt = Qdt,, d’t = @ d’t, on the matching tori T(A),
T’(A), which are isomorphic over F.

We choose functions f = ® £, on G(A) and f = @ f? on G’(A) such that £, and
f4 are matching for all v. In fact, for v outside V, the groups G, and G, are
isomorphic over F,, and we take f;, f; equal under this isomorphism. For almost
all v, we take f, = f? = f*. Corollary 1 and the inductive assumption of Theorem
1 show that there exist sufficiently many matching pairs in C(G,), C(G}) for our
purposes.

Proposition 1.3 now implies

Proposition. Iffand f’ are matching and satisfy (each) the (three) require-
ments of Proposition 1.3, then Z tr n’(f’) = Z m(n)tr a(f). The sums range over
the cuspidal spectra of LXG’) and L*(G).

We used the multiplicity one theorem for L3(G’) to conclude that the multipli-
cities m(n’) on the left arc equal to 1.

§3. Existence

Let G be a reductive connected p-adic group, and n’ a square-integrable G-
module. A pseudo-coefficient of n’ is a function f in A(G) (see §1.5) with
tr ’(f) = 1 and tr (/) = 0 for every tempered (irreducible) G-module 7 inequi-
valent to n’. If &’ is supercuspidal then each of its (normalized) matrix coefhi-
cients is a pseudo-coefficient (in fact tr n(f) = 0 if x is irreducible and inequiva-
lent to n’). In general, the existence of a pseudo-coefficient is proven in [K],
Theorem K (cf. [BDK]).

Let F be a global field, fix a finite set V" of non-archimedean places, and three
distinct non-archimedean places w, u and u’ outside V. Although more general
variants of the following Proposition can be proven (cf. Theorem IV.3), for
simplicity we now assume that G = GL(n). Fix a supercuspidal G,-module n/.

Proposition. Let n/, be a square-integrable G,-module. Then there exists a
cuspidal G(A)-module n = Qn, such that (i) &, = n,; (ii) 7, =~ n.; (iii) for each v
in V the component n, is Steinberg (see [C'; §8)); (iv) =, is square-integrable, (V) =,
is unramified for each non-archimedean place v # u, u’, w outside V.

Proof. We use Corollary 1.3 with a function f = ® f, chosen as follows:

(i) f, is a pseudo-coeflicient of n},;

(i) f, is a matrix coefficient of n.;

(iii) for each v in V the component f, is a pseudo-coefficient of the Steinberg
G,-module;

(iv) f. is supported on the regular elliptic set in G,,.;

(v) at each finite v # u, u’, w outside V we take spherical (K,-biinvariant) f;;
f, = f9 for almost all v.
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These components can be and are chosen so that ®(x, f) > 0 for some elliptic
regular x in G. Since the sum of I.3.1 is finite, we can reduce the support of f. so
that the sum 1.3.1 consists of a single entry, hence it is non-zero. Hence there is a
cuspidal 7 with tr n(f) # 0. This 7 is non-degenerate, hence each of its local
components 7, is non-degenerate. It is easy to check that n has the properties
required by the proposition, using the following

Remark. A G,-module is called elliptic if its character is not identically zero
on the regular elliptic set of G,. Theorem 9.7(b) of [Z] implies that every
irreducible non-degenerate elliptic G,-module is square-integrable (in fact, of a
“generalized Steinberg” type).

The proposition follows.

In the next lemma, G is a locally compact unimodular topological group with
center Z, w a character of Z of absolute value one, and /*(g) = f(g~'). Let L(G)
denote the convolution =-algebra of complex valued functions on G with f(zg) =
o(z) "' f(g) (gin G, zin Z) such that | f(g)|? is integrable on G/Z. For a unitary
irreducible G-module n put n(f) = [¢z f(g)n(g)dg. Suppose B is a dense *-
closed subalgebra of L(G), I is a set, {n, ;(i in I)} is a set of irreducible unitary
pairwise inequivalent G-modules such that n(f), n;(f) (i in I) are Hilbert-
Schmidt operators forall fin B,and || - || is the norm. Suppose that {c; (iin 1)} is
a set of non-negative real numbers such that Z; ¢; | 7;(f) ||? is finite for all fin B.
Then the remark on page 496 of [JL] asserts that: for each positive ¢ there exists f
in Bwith [[n(f) || #0and Z, ¢, | m(f) |*=¢ || =(f) || >. We conclude that:

Lemma. If{d;; iin I} are complex numbers such that Z,d;tr m,( f»f*) is
absolutely convergent to zero for all fin B, then d; =0 for all i.

Proof. Note that tr 7;( = f*) = || m;(f) ||>. If dp # 0, there is fin B such that
Zivo0 |d;] tr T, (f* f*) is bounded by 1|d,| tr ng( f* £ *)  0), and we arrive at a
contradiction.

§4. Isolation

Let F, be a local non-archimedean field of characteristic zero, and G, the
multiplicative group of M(m, D, ), where D,, is a central division algebra over F,,
or rank 4 and invariant i/d (modulo one).

Propostion. For every square-integrable G.-module r! there exist
G,-modules n, and positive integers m(n, ), such that for all matching f’, and f, we
have

(= D" " m(fi) =L mm) tr o, (f)
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If C, is an open compact subgroup of G,,, then the sum consists only of finitely
many n, with a non-zero C,-invariant vector.

Proof. Let F be a totally imaginary number field whose completion at some
place wis our local field F,,. Choose a set V of n — m + 1 non-archimedean places
including w. We may assume that i is prime to n = md. Choose a division algebra
D central over F with the following invariants: i/d at w; i/nateach v # win V; 0
outside V. Take G = D*. Then G, is our GL(m, D,), where inv,, D, = i/d. Fix
three distinct non-archimedean places u, ¥/, u” of F outside V, a supercuspidal
G,-module r,, and a matrix coefficient f, of n,. If §'is any finite set of places of F
put ¥ = Qn, and f5 = @, (product over v outside S), and 75 = ® =z, and
fi =®f, (vin S). Denote by o the set of archimedean places of F. Choose a
unitary irreducible G -module 7. Using Lemma 3 with B = C(G,,) we conclude
from Proposition 2 that if /7 = & f and £ = @, (v outside ) and f?, f; are
matching for all v, then

4.1) Yira’2(f'®) =Y m(z)r a=(f ).

Put A, for the ring of adeles without archimedean components. On the left, the
sum ranges over all G(A,)-modules n’® such that n’=7n'® n_, is a cuspidal
G'(A)-module; on the right the sum is over the G(A,)-modules n* so that
7 = n® @ 1, appears with positive multiplicity m(x) in the (cuspidal) spectrum
Ly(G)of G.

Recall the following theorem of Harish-Chandra (see [BJ]).

Lemma. Let C be an open compact subgroup of G(Ay). Then there are only
finitely many automorphic G-modules n with a non-zero C-fixed vector and a given
infinitesimal character at each archimedean place (in particular with the fixed
component T, at o).

Let ¥’ be the union of Vand {u, u’, u”}. Fix f,, f,forvin V’,and let f, = f/bea
variable spherical (K, = G(R,)-biinvariant) function for the finite v outside V.
Then the Lemma implies that the sums in (4.1) are both finite. It is clear from the
theory of the Satake transform that: given a finite set {n;,; i = 0} of irreducible
unramified pairwise-inequivalent G,-modules, there exists a spherical function f,
with tr 7, (f,) = 0 if i # 0, and tr 7, (f,) = 1. We conclude that given an irreduc-
ible G(A"")-module n"", we have, for all matching f,, f; (vin V"),

4.2) Strapfi) =X m@) tr mpd f)-

On the left the sum is over the irreducible representations z}. of 1 G/ (v in V7)
such that n’ = 7}, ® 1" is cuspidal; by the rigidity theorem of [JS] there exists at
most one such 7’. We choose 7¥" so that 7 of Proposition 3 appears on the left.
On the right the sum is over the equivalence classes of irreducible #;, such that
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n =mn,®n" is cuspidal, with multiplicity m(n). The sum on the right is not
finite, a priori.

Since f, is a normalized matrix coefficient of a supercuspidal G,-module z,, we
have tr 7, ( f,) = 1 and tr z/( f,) = 1 for the n, n’ which appear in (4.2). At each
v # win V, let f, be the function 1, and f; a matching function on G; f’ exists by
Corollary 1. At such v let n, be the trivial G,-module, and =z, the Steinberg
G;-module. Then xj(x)=(—1)""!x,(x) on the elliptic regular set, and
tr z;(f7) = (— 1)"~ 1. Moreover, if v # win V and #, appears on the right of (4.2),
then tr z,(f,) is 0 or 1. Since (n — 1)(n — m)=% — m (modulo 2) we conclude
that for all matching f,, % and for all .. which vanish on the singular set of G,-,
we have

(4.3) (= D" "t (fo) e all fo) = X m(m) tr () tr 7w, fr)-

The sum is over an easily specified set of (n,,, ,.). Note that G splits at ¥”, hence
f1.= f,.; moreover, the place #” is chosen so that z. is unramified. The n’ of
Proposition 3 is cuspidal, hence it has a Whittaker model, and =.. is non-
degenerate. Consequently, n. is equal to an irreducible representation which is
induced from an unramified character of the upper triangular subgroup, by [Z],
Theorem 9.7(b).

Let /. be any function such that F( f}.) is supported on the split regular set of
G, and its restriction to A(F,,) is A(R,)-invariant. In [FK], [Sph], Chapter IV,
[Sym; IV, VI], we call such a function “regular”. It is clear that if F(¢, f7.)#0
then the Levi subgroup M, of §1.6 is 4, so that tr #( f}.) = tr ay( f.y) for any
G/ ~module n, where N is the upper triangular unipotent group. The support of
F(f}.) is an open closed set; denote by @ its characteristic function, and replace
fi~ by its product with 8. This does not change the value of the orbital integral,
but assures the vanishing of the compactly (modulo center) supported /... on the
singular set. Note that Theorem 4.2 of [BZ] implies that if tr my( f7.y) # O then 7
has a non-zero vector fixed by the first congruence subgroup. By virtue of the
Lemma, the sum of (4.3) is finite, uniformly in the /. which are considered here.
Hence we can apply linear independence of (finitely many) characters on A,..
This, together with Frobenius reciprocity, implies that we may consider on the
right only =,. which are subquotients of, hence equal to, the irreducible n;.. The
first claim of the proposition follows. The last assertion of the proposition follows
from the Lemma.

§S. Lifting

Let F be non-archimedean, G = GL(m, D) and G’ = GL(n, F). We have an
injection x — x’ of conjugacy classes from G to G’, and we denote the characters
of the G-module z and G’-module #n’ by x, and y, (or x’).
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Theorem. The relation y,{x’)=(— 1)"""x.(x) for all matching regular
conjugacy classes x, x’ in G, G’ defines a bijection between the set of equivalence
classes of square-integrable (resp. tempered) G-modules n, and the set of equiva-
lence classes of square-integrable (resp. tempered) G’-modules n’ (resp. whose
character y’ is non-zero on the set of regular x’ obtained from x in G).

Proof. Let 7’ be a square-integrable G’-module. Proposition 4 (where we
now omit the subscript w) establishes the existence of a Trace Identity I1.3 for this
n’. By virtue of Corollary 1 and the induction assumption of Theorem 1 for
M # G, the Assumptions I1.3, I1.5.1, I1.5.2, are valid. By Proposition I1.4 the 7 of
Proposition 4 are square-integrable, and by Proposition IL.5 there are only
finitely many 7 in the sum. Since fis an arbitrary function on G, we conclude an
identity of characters

(— D™ lx’) = 3 m(7) 1z (x)

for regular matching classes x — x’. On the right the sum ranges over a finite set of
square-integrable G-modules 7. Applying the orthonormality relations for
square-integrable G and G’-modules of Kazhdan [K], Theorem K, we conclude
from 1 = Z, m(n)® that the sum consists of a single 7 with a coefficient m(n) = 1.

Remark. Another proof for the existence of a square-integrable # to maich
such 7/, without using the finiteness result of Proposition I1.5, yet using Corollary
1 or the Assumptions I1.5.1, I1.5.2, is as follows. It is clear that some 7 appears in
the sum of Proposition 4, since we can take f” to be a pseudo-coefficient of n’ by
Corollary 1. Fixing such n we take fin A(G) with ‘®(f) = x(x) on the elliptic
regular set; it exists by [K], Theorem K. Then the sum of Proposition 4 is equal to
m(n). On the other hand, if f” is a matching function (which exists by Corollary
1), then

[tr 2’(f")|* = ! f 2 (x) ’<I>(x’,f’)dx’lzé f |/ (x")Pdx’ f [ x(x)dx

bi} Schwarz’ inequality. The integrals are taken over the elliptic set of G or G’, and
we use the fact that ‘®(x’, f’) ="®(x, f) = x(x); x, x’ are the characters of n, n’.
By the orthonormality relations of [K], Theorem K, we conclude that m(z) = 1.
As m(m) is a positive integer, we conclude that m(x) = 1, and that the Schwarz
inequality is an equality in our case, so that x’(x") = ¢ "®(x, f) = cx(x) on the
elliptic regular set, where c is a constant with |¢ | = 1. Hence n is the only term in
the sum,andc=(— 1)"~".

In the opposite direction, given a square-integrable n we take a pseudo-
coefficient fin A(G) of =, and a matching function f* in 4(G’). By Corollary 1.4
and the orthonormality relations of [K], there exists a tempered elliptic, hence by
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[Z] square-integrable, G’-module n’, with tr z’( f’) # 0. By the orthonormality
relations on G, the G-module matching n’, whose existence was proven above, is
our 7.

We have now completed the proof of that part of the theorem which concerns
square-integrable z, n’. The extension to the case of any tempered n and n’
follows once we establish in §6 below that any tempered G-module is equal to an
induced G -module from a square-integrable module. This result is well known in
the case of the split group G”. In its proof we use that part of the theorem proven
above, for square-integrable modules.

Remark. In particular, we completed the proof and hence can use the
assertion of Theorem 5 in the case m = 1, namely when G is the multiplicative
group DX of a division algebra D central over F. Indeed, all G-modules in this
case are square-integrable and the image of the correspondence here is the set of
elliptic tempered, hence square-integrable, G’-modules.

§6. Relevance
Proposition. Any elliptic tempered G-module is square-integrable.

Proof. Suppose that the character y of 7 is non-zero on the elliptic regular
element y. Let f be the characteristic function of a small neighborhood of y
(modulo Z), where x is constant. It is clear from the Weyl integration formula
that

(x,®(f)) = f x(x) fix)dx  (xin the elliptic set of G).

For our fand x, we have (x, '®(f)) # 0. Since fis supported on the regular set,
there is a matching f”, with ‘®(x, f) = '®(x’, f’) on the elliptic set. As f” lies in
A(G"), there is a matching function f” on the multiplicative group G” of a
division algebra of dimension n? central over F. Since G” is compact modulo its
center Z, there are finitely many G ”-modules 7 with characters x4, and complex
numbers ¢;, so that ‘®(x”, f”) = Z ¢; x"(x”) on the regular x” in G”. If x/are the
characters of the G’-modules n; which correspond to the 7%, then ‘®(x’, ') =
= ¢; x/(x") on the elliptic regular set. Since the n! are square-integrable, they
correspond to square-integrable G-modules =z; with characters y,. Hence
‘D(x, f) = Z ¢;x;(x) on the regular elliptic set. Then {x, ' ®(f)) =Z c;{ X, X:)-
Since this is non-zero, we have ( x, x;) # 0 for some i. But the orthonormality
relations for square-integrable G-modules of [K], Theorem K, imply that x is
equivalent to the square-integrable =;, as required.

6.1. Proposition. Suppose I is a G-module unitarily induced from a square-
integable M-module, where M is a Levi component of a proper parabolic subgroup .
Then I is irreducible.
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Proof. This is the same as the proof of Proposition 27 of [FK], where the
analogous result is proven for the metaplectic group G. To obtain a proof for our
group G, each symbol X in the proof of [FK], Proposition 27, has to be replaced by
the symbol x. Note that this proof is based on Proposition 6, and so on the lifting
Theorem 5 for the square-integrable G and G’-modules.

This Proposition, together with parabolic induction, completes the proof of
Theorem 5, assuming that Theorem 1 holds for all proper Levi subgroups M of G.
In §7 below we use Theorem 5 to prove Theorem 1 by induction on M.

To study lifting, or correspondence, of automorphic G(A)-modules, we need an
extension of Proposition 6.1, which we now state. Put v(x) = | x| for xin F*, and
v(g) = v(det g) for g in G, where det g is the reduced norm of g. Write mv* for the
G-module g — n(g) ® v(g)*, where s is a complex number.

6.2. Definition. A G-module 7 is called relevant if there is (i) a Levi
subgroup M of G of the form M,XII., (M;X M), or of the form
M1, (M; X M), where M, is a multiplicative group of a simple algebra for each i
(0 =i = m), (ii) irreducible tempered M;-modules p; (0 =i = m), and (iii) dis-
tinct positive numbers s; <1 (1 =i = m), such that z is equivalent to I(p) or
I(py X p), and p is the I, (M; X M;)-module IT%, (pv% X py~*).

Remark. This definition is analogous to Definition 27.2 of [FK] for the
metaplectic group G. (Note that the word “Proposition” in [FK], Definition 27.2,
should be “Theorem™.)

Proposition. A relevant G-module is irreducible and unitary.

Proof. This is the same as the proof of Theorem 27.2 in [FK], except that all
references to the metaplectic group ought to be replaced by references to our
multiplicative group G of a simple algebra. This proof is based on unitarity
arguments.

It is now clear that by parabolic induction Theorem $ extends to hold also for
relevant, not only tempered, G- and G’-modules. This completes the proof of the
Local Theorem of the introduction.

X

Remark. (1) The result of Proposition 6.1 and Theorem 5 is due to [DKV],
and that of 6.2 is new. (2) Theorem 5 and Propositions 6.1 and 6.2 are proven
here for a local field of characteristic zero. The analogous results hold for local
fields of positive characteristic on using the Theorem of [K’].

§7. Induction

It remains to complete the proof of Theorem 1, using Theorem 5. In the proof
of Theorem 5 we used the induction assumption of Theorem 1, namely the
statement of Theorem 1 for all proper Levi subgroups. Our aim is to show that for
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any fin C(G) there exists a matching f” in C(G’), and for any suitable f* in C(G")
(thus ®(x’, f)=0 for any regular x’ not obtained from x in G) there is a
matching fin C(G). We note:

Lemma. For every fthere exists f’ with tr n(f) = tr n’(f”) for all correspond-
ing tempered nt, n’, andtr n’(f*) = 0 for the tempered n’ which are not obtained by
the correspondence.

Proof. Given f we define the function F on the space of tempered n’ by
F(z’)y=tr n(f) if n corresponds to n’ by Theorem 5, and by F(n’) =0 if the
character of n’ is zero on the set of regular x’ obtained from x. Then F is in the
space F,,.4 in the terminology (1.2) of [BDK] (see Chapter II; §7), hence a trace
function by the Trace Paley-Wiener Theorem 1.3 of [BDK]. Namely there is an
f" with F(n’) = tr z’(f") for all tempered n’, as required.

The same argument implies the existence of ffor a given suitable f”.

Proposition. Suppose that f and [’ satisfy tr n( f) = tr n’( f7) for all corres-
ponding tempered n and n’, and tr n'( f*) = 0 for the tempered n’ not obtained by
the correspondence. Then f, f' are matching.

Proof. By induction on the Levi subgroup M of the parabolic subgroup
P = MN of G. Denote by P’, M’, N’ the corresponding parabolic, Levi, unipotent
subgroups of G’. Let &, be the modulus homomorphism on P. Thus d(ab) =
dp(a)db (a, b in P) for any right Haar measure db on P. For a in the center 4 of M
we have dp(a) = IT| a{a) | ; the product ranges over all roots of 4 in N. As usual, we
put

fulm) = 8p(m)"2 f f ftk—\mnk)dndk.

X N

Here K is a maximal compact subgroup of G with G = KP. For any m in M
regular in G we have F(m, f) = F*(m, fy), where F(x, f) = A(x)®(x, /) and
A(x) = |TL ¢, (x; — x;)%/xx; | V2 if x has distinct eigenvalues x; (see [FK], §7). F™ is
defined analogously, with respect to M. Analogous notations are employed in the
case of G’. Further, we note that if 7 = I(p) is the G-module unitarily induced
from the M-module p, then tr n(f) = tr p(fy) by a standard evaluation of the
character of an induced representation. Consequently, if p, p’ are corresponding
tempered M- and AM/’-modules, we have tr p( fy) = tr p’( f4), and tr p’( f}) = O for
tempered p’ not obtained from any p. By induction we have F(x/, f')=
FM(x’, f1)= FM(x, fy) = F(x, f) for the regular x’ in M’ which come from x,
and F(x’, f*) = 0 for the regular x’ in M’ which do not come from G. It remains
to show the proposition for elliptic regular x, x’.
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Choose matching elliptic regular y, y’. Let U’ be a sufficiently small compact
neighbourhood of y’, and’f” a function on G’, supported near y’Z, whose orbital
integral ‘®(’f”) is the characteristic function of ZU’?". Let ’f be a matching
function on G. Now, ‘®('f’) is a finite linear combination of the characters
of square-integrable n;/ with coefficients ¢;, by [K], Theorem K. Then ®(’f)
is the corresponding combination of the characters of the n; which correspond
to the =n/. Since U’ is small, the Weyl integration formula implies that
7z F(t,"fF(t, f)dtisequal to 2 ¢; tr w/( f'); T is the centralizer of ¥’ in G'. The
assumption of our proposition implies that this is equal to Z ¢, tr m;(f). But this is
[z F(t,’))F(t, f)dt. We take U’ to be so small that both F(¢,’f’) and F(t, 'f) are
constant on U’. The desired equality F(y, /)= F(y’, f’) now follows from the
choice of “fand ’f”, which guarantees that F(¢, ' f) = F(¢t, 'f").

§8. Global correspondence

Let now F be a global field, and put G’ = GL(n, A), G = GL(m, D,), where D,
denotes the adele points of a division algebra D of dimension d? central over F,
and n = md. Also we put G, = GL(n, F,), G, = GL(m, D,) at each place v of F,
where D, denotes the F,-points of D. Then G, = GL(m,, D(v)), where D(v) is a
division algebra of dimension d? over F,, and n = md,. Also G, = G/ for all v
outside a finite set V of places, and we have an injection x — x’ of conjugacy
classes from G to G’, and from G, to G for all v. It is a bijection for v outside V,
but it is not surjective for v in the set V" where D ramifies.

Recall that an irreducible admissible G,-module =, is said to lift (or corres-
pond) to a G;-module =z} if their characters y,, x; are related by ( — 1)" ™y (x") =
x,(x) for all regular matching x, x’. At v outside ¥ we have m, = n and this
relation amounts to 7, = n/. Our Local Theorem asserts that the map n, = n,
induces an embedding of the set of (equivalence classes of ) tempered (resp.
relevant) G,-modules as a subset of the set of tempered (resp. relevant)
G.-modules.

A G-module 7 = ®r, is said to (quasi-) lift to a G’-module 7’ = Qn:if x, lifts
to = for (almost) all v. Results about global lifting depend on the form of trace
formula which is available. Here we use only Proposition 1.3. It implies, on using
transfer of orbital integrals (Theorem 1), that any discrete-series (automorphic)
G-module © whose components at two places u, «’ lift to supercuspidal G and
G'.~modules, quasi-lifts to an automorphic (necessarily cuspidal) G’-module with
supercuspidal components at u, u’. Further, any automorphic G’-module #’ with
a supercuspidal component at u, an elliptic component at #’, and components 7,
with characters y/ which are not identically O on the set of regular classes x’
obtained from x in G, for all vin V, is a quasi-lift of a discrete-series G-module.
Note that u, u’ are not required to be in or out of V.
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Using the stronger form of the simple trace formula established in [FK1] we
show in [FK 1] that all the assertions in this section hold also with no condition at
the second place u’, namely for automorphic G’(A)-modules 7’ with a supercuspi-
dal component at one place u only, and the corresponding set of G(A)-modules 7.
It will be interesting to extend these results to all 7 by means of a simple and short
proof. This may be afforded by the usage of the regular functions of [FK] and
[Sph], but at the moment we have developed this technique only in the case of
groups of rank one in [Sym; VI].

Since an automorphic z’ with a supercuspidal component is cuspidal, multipli-
city one and rigidity theorems for the cuspidal spectrum of L(G’) imply that the
discrete-series quasi-lift 7”7 of z is unique if it exists. We shall now deal with the
notion of lifting, rather than quasi-lifting, and conclude the uniqueness of 7 too,
thereby obtaining multiplicity one and rigidity type theorems for discrete-series
G-modules.

Theorem. Suppose that nt’ is an automorphic G’-module with supercuspidal
components at two places u and u’, and components n, whose characters are not
identically zero on the set of the x’ which come from G, for all v in V. Then there
exists a unique automorphic G-module n which quasi-lifts to n’; moreover, n lifts
ton’'.

Proof. The condition at # implies that #n’ is cuspidal. Hence it has a
Whittaker model, and its components are all non-degenerate and unitary. Hence,
by [Z], Theorem 9.7(b), each =, is relevant. The Local Theorem implies that z, is
the lift of a relevant G,-module 7,. The identity of Proposition 2, say in the form
(4.2) with n” as the only term on the left and with a sufficiently large but finite set S
of places of F (S depends on #’), implies that

I wr&()=I vm(f})=Zmn) ]l tra,(f)

vVES vES n vES

for all functions f, on G, (v in §). The “generalized linear independence™ of
characters in Lemma 4 implies that the sum on the right consists of a single
summand z with m(x) = 1, and the theorem follows.

Partial results can be obtained also for non-cuspidal discrete-series n’, once a
suitable form of the traces identity is available. But the conjectural description of
such n’ has not been proven as yet. Namely it is well known tht the non-cuspidal
residual spectrum contains 7’ whose components are all dual, in the sense of [Z],
to generalized Steinberg G,-modules, but it has not been shown as yet that these
n’ exhaust the residual spectrum, and they occur with multiplicity one. Yet, given
the identity of trace formulae, the Theorem of [JS] permits working with these
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exceptional 7’, and establishing lifting for them. These matters will not be
discussed here, but see [FK], §28.

Chapter I'V. Automorphic Forms on Compact Unitary Groups

§0. Introduction

Let E/F be a quadratic extension of local non-archimedean fields, G’ =
GL(n, F), and G the associated quasi-split unitary group. We show that there isa
partition of the set of equivalence classes of irreducible tempered G-modules into
finite sets, called packets, so that there is a bijection, defined by means of
character relations, from the set of packets to the set of equivalence classes of
irreducible o-stable tempered G’-modules. This local result is obtained in §4
using global techniques, in a simple situation.

Let E/Fbe a quadratic extension of number fields, fix a finite place u of F which
splits in E, let G’ be the multiplicative group of a division algebra of rank n
central over E, ramified above u and split outside #, and G the unitary group
associated with G’ and an involution o of the second kind. The quotient
G(F)\ G(A) is compact; its space of automorphic forms decomposes as a direct
sum of irreducible G-modules, and its automorphic representations have a
particularly simple, “stable”, form in the following sense. We define non-
degenerate (o-invariant) automorphic G’-modules to be those which correspond
to cuspidal GL(n, E)-modules by means of the correspondence of Chapter III.
We then show that an analogous definition can be made for the set of automor-
phic G-modules. In §5 we show that there is a partition of the set of non-
degenerate automorphic G-modules into packets, which are the restricted pro-
ducts of the local packets, so that there is a bijection from this set of packets to the
set of automorphic non-degenerate o-invariant G’-modules #’. The components
of such =’ are all o-stable. In particular we obtain a global rigidity theorem for
packets of non-degenerate G-modules.

§1. Theorems

Let E/F be a quadratic extension of number fields; « a finite place of F which
splits in E; G’ an inner form of GL(n) over E which is anisotropic at the two
places above u, and splits outside u. G’ is then the multiplicative group of a
division algebra D of rank n central over E. Suppose that o1s an involution of the
second kind on D. Namely, ¢ is an anti-automorphism of order two whose
restriction to the center E of D is the non-trivial element of the galois group
Gal(E/F). Then the unitary group G defined by D and ¢ consists of the x in D with
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o(x)x = 1. At the place u the completion G, = G(F,) is the multiplicative group
of a division algebra of rank » central over the completion F, of Fat u. At a place
v # u of F which splits in E we have G, = GL(n, F,). At a finite non-split v the G,
is a quasi-split unitary group. At a non-split archimedean place v we have
E,/F,=C/R, and G, = U(i,j) is a unitary group of signatures (i,j), where
i +j = n. Since our theory at the archimedean places is well known, and our
main interest is in the non-archimedean cases, to simplify the exposition we
assume that each archimedean place of F splits in E.

Our aim is to describe the tempered and automorphic representations of G in
terms of those of G".

Let F be an algebraic closure of F, G a reductive connected group defined over
Fwith G = G(F)and G’ = G(E). For any extension F’ of F we write G(F”) for the
group of F’-points of G. Identify G with G(F). Let G’ be the group Resg G
obtained from G upon restricting scalars from E to F. Being the induced galois
module Ind(G; Gal(F/F), Gal(F/E)), G’ can be realized as follows. As a group,
G’ = G X G. Denote by ¢ the non-trivial element of Gal(E/F), and by & the
automorphism &(x,y)=(y, x) of G’. 7 in Gal(¥/F) maps (x,y) to (tx, 1y)
if its restriction to E is trivial, and to &(tx, ty) if 7 IE =g¢. Hence G'(E) =
G(E) X G(E), and G’ = G'(F) is the group of pairs (x, ox) with x in G(E). Let Z,
Z’ be the center of G, G’; A, A* and Ag, AF the adeles, ideles of Fand E; E' and
Al the kernel of the norm map from E to F acting on EX and AZ. Then
Z'(A)=A}f, 2Z’=E*, Z(A)=AL, Z=F' Put C'=AL/E' if E is global, and
C' = E'if E is local. Fix a unitary character @ of C’, and put w’(x) = w(x/X); w’
is a character of A¥ /AXE> or EX/FX,

Our objects of study are (equivalence classes of ) G-modules 7 and G’-modules
n’ with central character @ and w’, which are admissible of finite length if F is
local, and automorphic if F is global. Let °z’ be the G’-module ‘n’(x) = n’(d(x)).
We deal only with g-invariant n’, those with n’ = °n’. These extend to G'X(o)-
modules. If Fis local, we denote by x’ the restriction of the character of n” to the
coset G’ X o (see Chapter I, §5). To simplify the notations, we write x’(x) for
X'(x X o), where x is in G’. Denote by yx the character of 7. We say that x, x’in G
(or G”) are [stably] (6-) conjugate if there is y in G (or G’) [resp. G (or G”)] with
xy = yx’ (or xé(y) = yx’). A function on G (or G”) is called (o-)stable if it is
constant on each stable (6-)conjugacy class. A g-invariant G’-module 7’ is called
o-stable if its character is o-stable. In fact, we are interested only in regular xin G,
those with distinct eigenvalues, and g-regular x in G’, those for which x&(x) has
distinct eigenvalues. Given a g-regular x in G’, the conjugacy class of x&(x)in G’
is defined over F, and contains an F-rational element, giving rise to a bijection N
(see [Ko]) from the set of stable o-conjugacy classes of g-regular elements in G”,
to the set of stable conjugacy classes of regular elements in G. If E/F is a local
quadratic extension, we have
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Local Theorem.* For each tempered o-stable irreducible G’-module n’
there exists a finite set {n}, named packet, of tempered irreducible G-modules n,
and positive integers n(n), so that Z, n(n)y is a stable function G and

X'(x) =2 n(n)x(Nx)

for all o-regular x in G’. Moreover, for each tempered irreducible n there exists a
unique n’ as above for which the relation holds. If n’ is square-integrable, then {n}
consists of a single element.

Namely, there is a partition of the set of equivalence classes of the set of
irreducible tempered G-modules into disjoint finite sets {x }, named packets, so
that there is a bijection between the set of packets and the set of equivalence
classes of tempered o-stable irreducible G’-modules, defined in terms of char-
acters. Note that in particular we assert that the sum 2 n(m)x over {n}, which a
priori depends on conjugacy classes, in fact depends only on the stable conjugacy
class, so that its value at Nx is well-defined. Further, if E/F is unramified, and 7 is
unramified, then so is n’; if n” is unramified there is an unramified 7 in {# } with
n(n) = 1. The last claim in the Local Theorem follows at once from the (twisted
analogue of the) orthonormality relations ([K], Theorem K) for characters of
square-integrable representations, since it follows from our proofs that if n’ is
square-integrable then {7} consists of square-integrable G-modules, to which the
orthonormality relations of [K] apply.

Let F be global. Denote by L(G \ G(A)) the space of smooth functions on
G \ G(A) which transform under Z(A) by w. G(A) acts by right translation. An
irreducible constituent 7 is called an automorphic G-module. It is a product
n = @un,, where almost all n, are unramified. The space L(G’\ G’(A)), and
automorphic G’-modules n’ = ®x, which transform under Z’(A) by w’, are
defined analogously. If E,/F,, n, and n; are unramified, then x,, n] are parame-
trized by conjugacy classes ¢,, ¢, with representatives in the cosets GL(n, C) X o,
[GL(n, C) X GL(n, C] X o of the dual groups G, and G’ of G, and G/ (see [Sph],
§2)“. We say that n quasi-lifts to n’, if for almost all v, ¢, maps to ¢, by the
base-change map

G,—~G:, tXdo—=@t)xXda (i=001.

We first show that each automorphic z quasi-lifts to a unique g-invariant 7/, and
each such n’ is a quasi-lift of a #. The correspondence of Chapter III gives a
bijection from the set of (equivalence classes of ) the automorphic G’-modules 7’
to the set of automorphic GL(n, E)-modules n” whose two components above u
are elliptic (their character is non-zero on the regular elliptic set). It is defined by
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7, = n’ for all v # u. We say that n’ is non-degenerate if the corresponding n” is
cuspidal, and that x is non-degenerate if it quasi-lifts to a non-degenerate n’.
The packet {n} of a non-degenerate n is defined to be the set of irreducible
G(A)-modules ® #,, where 7, lies in the packet {m,} of =, for all v, and #, is equal
to =, for almost all v. Although =, is not yet known to be tempered, since 7 is
non-degenerate the definition of local packets extends to this case (see §5 below).

Global Theorem.* Each irreducible G(A)-module in a packet of a non-
degenerate n is automorphic. The packets define a partition of the set of non-
degenerate n. Quasi-lifting defines a bijection from the set of packets of non-
degenerate n to the set of o-invariant non-degenerate n’. If {n} quasi-lifts to n’,
then {m,} lifts to m; in the sense of the Local Theorem, for all v, and all components
of n’ are o-stable.

* Our work consists of reducing the above lifting results to the standard local
assumptions of Chapter II concerning stable base-change transfer of orbital
integrals, so that the rigidity arguments of Chapter II can be applied. These can be
verified for n = 3 as in [Sym; I]. In particular our Local and Global Theorems are
proven only for n = 3 (but not for n = 4); however, the proofs apply with any n,
to reduce the Theorems to a standard local assumption concerning matching
stable orbital integrals, which we do not prove.

Our Theorems generalize those of [U(2)], where the case of n =2 (and
arbitrary o-invariant central character w’ on A7 /E*, not necessarily of the form
w'(x) = w(x/x)) was studied.

We use the trace formula, in the case of compact quotient. The usage of this
formula depends on the base-change transfer of stable orbital integrals of
spherical functions, proven in [Sph] in any stable base change situation. Namely,
we use the main theorem of [Sph], which asserts that if ¢, and f, are corresponding
spherical functions on G, and G,, then they have matching stable orbital
integrals, We also make an extensive use of the work of [BDK] and [K], and their
twisted analogues (for the non-connected group G’X(o)); see Chapter I; §§6-7.

§2. Approximation

Let E/F be a quadratic extension of global fields, u a finite place of F which
splits in E, and G as in §1. The condition on G at u, namely that u splits in E/F
and G, is the multiplicative group of a division algebra, is fundamental in our
work. It implies, as we now show, that the part of the trace formula for G (and the
twisted trace formula for G’) which is given by orbital integrals of regular
elements, is stable. This makes it possible to compare these parts of the trace
formulae for any functions f = ® f,and ¢ = ®¢, on G(A) and G’(A) of the usual
kind which have matching stable orbital integrals. As usual, f, (and ¢,) is the unit
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element f? (and ¢°) in the Hecke algebra of K,- (and K-) biinvariant functions on
G,(and G}) for almost all v(K, = G(R,), K} = G'(R,), and R, is the ring of integers
of F, when F, is non-archimedean). Moreover, f(zg) = w(z) "' f(g) (zin Z(A)) and
#(zg) = w'(z) " '¢(g) (z in Z/(A) = Z(Ag)), and f, ¢ are smooth and compactly
supported modulo the center.

Next we state the stability property of the “geometric” part of the trace formula
of G, which involves orbital integrals. Given a regular element y in G(F) denote
by B(y/F) a set of representatives for the conjugacy classes in G(F) within the
stable conjugacy class of y. Denote by B(y/A) a set of representatives for the
conjugacy classes in G(A) within the stable conjugacy class of yin G(A). Then the
sum E(y, f)=Z ®(F, f) (¢ in B(y/F)) appears in the elliptic part of the trace
formula of G at f. The sum ®(y, /) = Z ®(3, f) (6 in B(y/A)) in the product of
(S, f,) =2 ®, f,)(din B(y/F,)) over all places vof F. ®'(y, /) and ¥'(y, f,) are
the stable orbital integrals of f (globally) and f, (locally) in the notations of
Chapter II; §1. Then we have

2.0. Proposition. E(y, f) is equal to '(y, f)

Proof. Denote by T the centralizer of the regular element y in G. It is an
elliptic torus. Let T, be the image of the torus 7" in the derived group G, = {gin
G; detg =1} of G (note that this derived group is simply connected). Put
C(T/F)=Im[H\(F, T,)— H'(F, T)] and C(T/A)= @©C(T/F,) (pointed sum),
and X,(T) = Hom(G,,, T) for the group of F-morphisms from the multiplicative
group G, to the torus T. Then X (T)=~Z" and X (T,) = {(x;) in Z*; Z, x; = 0}.
The Tate~Nakayama theory [Ta] implies that C(7T/F) embeds in C(T/A), and the
quotient C(T/A)/C(T/F) embeds in

k(T)={uin X (T); Nyt =0}/ {(u — tu; 7in Gal(K/F), uin X (T)),

where K is a finite galois extension of F over which 7 splits, and Ny, is the norm
map from K'to F. A standard (stabilization) argument (see, e.g., [Sph; §5]) implies
that in order to prove the proposition it suffices to show that k(T is zero.

For this, note that T,, = T(F,) is the centralizer of the regular element yin G,,
hence it is isomorphic to an elliptic torus in the split form GL{(n, F,) of G,. Let K,
be a finite galois extension of F, which splits T,,. The galois group Gal(X,/F,) acts
on X,(T)=Z" by permutations. Each element of the symmetric group can be
expressed as a product of disjoint cycles. Since T, is elliptic, foreach i (1 =i = n)
there exists 7; in Gal(K,/F,) which has a cycle (j,, j», . .., J,) with j; =1 and j;, =i
for some s (2=<s =r). In particular, the set {u — 7/ 'y; 2<i=n, pin Z"}
contains all vectors of the form xe¢; (x in Z; 2 =i = n), where «; is the n-vector
whose non-zero entries are one at the first place and — 1 at the ith place. The span
of {xe;; xin Z, 2 =i =n} is X (T,). Hence k(T) = {0}, and the proposition
follows.
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For the twisted analogue of this result, given a o-regular element y in G’'(F) =
G(E), denote by B(y/F) (resp. B(y/A)) a set of representatives for the o-conjugacy
classes in G’(F) (res. G’(A)) within the stable a-conjugacy class of y in G’(F) (resp.
G'(A)). The sum E(7, ¢) = = ®(y, ¢) (6 in B(y/F)) appears in the elliptic part of
the twisted trace formula of G” at ¢, and ¥/(y, ¢) = = ®(6, ¢) (d in B(y/A)) is the
product of the local stable -orbital integrals ®’(y, ¢,) over all v. Then we have

Proposition. E(y, ¢) is equal to 3 D'(y, ¢).

Proof. Denote by T the o-centralizer of y in G’(F); it is an elliptic torus in
G(F) (up to isomorphism). Then H\(F, T) embeds in H'(A, T) = ®H\(F,, T),
and with the definitions of [Sph; (5.1)], the quotient of B(y/A) by B(y/F) is
isomorphic to the quotient of H'(A, 7) by H'(F, T). By [Ta], this last quotient is
isomorphic to

k'(T) = {pin X (T); Ny;eu = 0} (u — tu; 7in Gal(K/F), uin X (T)).

As in the previous Proposition, since T, is a torus in G, (isomorphic to an elliptic
torus in GL(n, F,)), the span of u —tu (u in X(T)=7Z"; v in Gal(K,/F,))
contains X (T,) = {(x;) in Z*; %, x; = 0}. In addition, any element in Gal(K/F)
whose restriction to E is ¢ acts by (x;)—( — x,;) for some permutation ¢ of
{1,...,n}. Hence k’(T) = Z/2Z. This is in sharp contrast with the non-twisted
case, where k(7T)={0}. However, if Z is the center of G, then X (Z)=
{u=(x,...,x)in X(T)}=Z, and the quotient H'(A, Z)/H'(F, Z) is isomor-
phic to k’(T), since it is

K(Z)={pin X (Z); Ngpu =0}/ (1 —ou; pin X (Z)) = Z/2Z.

It can be seen (as in [U(2)], §2) that a set of representatives for the quotient of
B(y/A) by B(y/F) is given by {y, zy}, where z is any element of AX — F*Ng,-A¥.
Since ¢ transforms under the center by the character w’, where 0’(z) = w(z/2)(z
in AZ) is trivial on A*, we have ®(y, ¢) = D(zy, ¢) for any z in A%, and the
proposition follows.

Remark 1. It is clear from the proof that on considering ¢ with ¢(zg) =
w'(z) " 'x(z)¢(g) (z in Z’(A)), where w’ is as above and x is a fixed character of
AF/E*NgrAF whose restriction to A* is non-trivial, an analogous result can be
obtained. This point of view is developed in [U(2)] to establish an unstable base-
change lifting from U(2) to GL(2, E), in addition to the stable base-change lifting
studied here. This unstable transfer can be developed also in our generality of
U(n), but this will not be done here.

Remark 2. The assumption that f, and ¢, have matching orbital
integrals means that ®'(y, ¢) = ®'(Ny, f) for every o-regular y in G'(F). Since
(1) the norm map N from the set of stable o-conjugacy classes in G'(F) to the
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set of stable conjugacy classes in G(F) is surjective, and (ii) the quotient of the
volumes which appear in the twisted trace formula by the corresponding volumes
| T(AYT(F)Z(A)| in the trace formula is equal to [AX/F*NgrAf]=2, the
elliptic parts of the trace formulae are equal for matching functions fand ¢.

A standard approximation argument of linear independence of characters of
Hecke algebras, see Lemma III.3, based on the main theorem of [Sph] (that
corresponding spherical functions on G(F,) and G’(F,) are matching, namely
have matching stable orbital integrals), implies the following.

Suppose that Vis a finite set of finite places of F, containing those which ramify
in E£. Each v outside V is either split in E, in which case we fix an irreducible
G,-module =, and the corresonding o-invariant G;-module n; = (n,, °%,); or is
unramified, in which case we fix an irreducible unramified G,-module z,. Here 7,
is the unique unramified constituent in the composition series of the unramified
G,-module I(i,) induced from the unramified character 4, of the upper triangular
subgroup B, = 4,U, (which is trivial on the unipotent radical U,). Define the
character u. of the corresponding subgroup B, = A,U; of G, by u)(b) = u,(ba(b)).
The induced G.-module I{x’) is g-invariant and unramified, and we let n; be ifs
unique unramified irreducible constituent. z, is g-invariant.

At each place v in V suppose that f, and ¢, are matching functions on G, and G,
namely their stable orbital integrals are equal ®'(x, ¢,) = ®'(Nx, f,) on the
regular set. At one place u’ in V we further assume that f,, and ¢, are supported on
the regular and o-regular sets of G, and GZ. Hence, for the functions /= @ f,,
¢ = ®¢, which appear in the trace formula it suffices to consider only orbital
integrals at regular conjugacy classes. In these notations, we obtain

2.1. Lemma. We have

2.1 Tmn) I traye,) =T mx) II trm, ().

The products range over v in V. The sum on the lefi (resp. right) ranges over the
equivalence classes of irreducible automorphic o-invariant G’-modules n’ (resp . G-
modules ) whose component at each v outside V is the above | (resp. n,).

The rigidity theorem for GL(n) of [JS}, and the correspondence of Chapter III,
assert that on the left of (2.1) there is at most one term =n’. Its multiplicity m(n’) is
1 if n’ is non-degenerate. On the right, m(n) denotes the multiplicity of n in
L(G\ G(A)). It is a non-negative integer. We can clearly assume that V" does not
contain any places which split in E, since at a split place v we have that =z, lifts to
n, =(m,, °n,) and tr ni(¢,) =tr n,(f,), and we can apply “generalized linear
independence” for absolutely convergent sums of characters on the group G, (see
Lemma II1.3).
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Corollary. Ifthe sequence {n,; v outside V'} is such that the sum on the lefi of
(2.1) is non-empty, then there exists an automorphic . which quasi-lifts to the n’ on
the left.

2.2. Proposition. Fixaplace win V, which stays prime in E. Fix a unitary
character u,, of the upper triangular subgroup B, = A,U, (wWhich is trivial on the
unipotent radical U, of B,). Define the corresponding character u,, of Bl, = A},U],
by ul(b) = u,(ba(b)). Then (2.1) holds for arbitrary matching functions f,, ¢,,
provided that the sums are taken over the subsets of n, n’ as in Lemma 2.1 whose
component at w is a subquotient of the induced modules I(u,) and I(u,),
respectively.

Proof. We use the regular functions of [Sph], §4. Thus, a vector 4 =
(A, ..., A,) in Z" is called regular if ,, >4, (1=i<n)and 4, +4,,,_,=0
(1 =i < n). In particular, 4, is zero if n is odd. Fix a local uniformizer # of
E,. For such A, denote by S, the set of g in G, which are conjugate to
diagonal elements of the form am~*, where a is in A(R,) and n~* =
diag(n~%, &%, ..., 74, o). A function f; is called regular and associated with y,,
and A if it in supported on S; and the value of F(an™?, f,) is u,(a) (ain A(R,)). A
function ¢, is called regular and associated with 4 and ,, if ¢,, is supported on the
set of gin G/, with norm in S, and ¢, matches a regular f;, associated with A and x,,
(thus F(x, ¢,) = F(Nx, f,) for all x in G, with regular Nx).

Let £, and ¢, be regular functions associated with u, and A. Then, it follows
from the Weyl integration formula and the Theorem of [C] ( = Proposition 1.6.1),
that for any irreducible G,-module r,,, we have that tr z,,(f,) is zero unless 7, isa
subquotient of I(7, ), where #, is a character of 4,, with »,, = u,, on A(R,). In this
case there is a character ‘7, in the module 7, of coinvariants of x,, with respect to
U, and a subset W (z,y) of W(A), such that

tro,(f,)=LA(wn,) (win W(ny)).
Here w’n,(a) is defined to be 'n,(w(a)), and

) = f Fan, f,)n(am*)da = f [n(amYu(a))da

AR A(Rw)

is an expression of the form z}i. . . z%, where r = [n/2]. The analogous statement
holds for ¢,,.. For any irreducible G/,-module z},, we have tr n/,(¢,) = 0 unless 7,
is o-invariant and there exists a character 7, as above such that @}, is a
subquotient of I(#?,), where n,(b) = 7,(ba(b)). In this case there is a ¢-invariant
character ‘n/, in the character x(n,;) of 7.y, and a subset W(x},) of W(4), so that
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tra(¢,)=2A(@n,) (win W(n,y)).
w

Note that if tr z,,(f,,) # 0, then there is an open compact congruence subgroup
C, of G, such that I(#,) has a non-zero vector fixed under the action of C,,. It
depends only on u, (clearly). Hence =, has a non-zero C,-fixed vector, by the
“Iwahori” decomposition of C, (see [BZ], (3.17)).

Now we fix the components f,, ¢, for v # w in V. Then (2.1) attains the form

(2.3) c X Mew'n,)= 2 c(n) 2 Aw'n).

Since we fixed the archimedean components, and the ramification at all finite
places, a theorem of [BJ] (4.3(i), p. 195) asserts that the sum on the right of (2.1) is
finite, uniformly in the regular functions f,, ¢,. Namely the sum over ’n;, in (2.3)
is taken over a finite set which is independent of the regular vector 4 in Z". Hence
we can apply linear independence of finitely many characters, and the proposi-
tion follows.

Remark. The regular functions f,,, ¢,, vanish on the singular set. Hence the
condition (of 2.1)) at u’( = w) is met. Since the components 7, 7, lie in a finite
set, and (2.1) holds for f,,, ¢, which vanish on the singular set, (2.1) holds for any
matching f,, ¢,.

Corollary. FEach n quasi-lifts to a unique o-invariant n’.

Proof. If the left side of the Proposition is empty, it suffices to evaluate the
right side at a characteristic function of an open compact congruence subgroup C,
for each vin V, to obtain a positive number, and a contradiction. The uniqueness
follows from [JS] and Chapter III as noted after Lemma 2.1.

§3. Existence
Let E/F be a quadratic extension of number fields, and G the group of §1.

. Lemma. Each component |, of a o-invariant automorphic G'-module n}
with a central character w’ is a-stable.

Proof. Note that G, is anisotropic, hence the component xj, is stable
o-elliptic (each element of G} is o-elliptic, and each o-stable conjugacy class
consists of a single o-conjugacy class). We take ¢ with ¢, supported on the
o-regular set. By virtue of the second Proposition in 2.0, the twisted trace formula
asserts: = tr z’(¢) = £ c(x)P'(x, ¢); on the right appear only stable o-orbital
integrals of g-regular elements x in G, and the c(x) are volume factors. Hence the
right side vanishes if, at a fixed place w, the component ¢, has the property that
@(¢,,) is zero on the #-regular set. The approximation argument used in Lemma
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2.1 implies that for some finite set V" of places including w we have IT tr n{,(¢,) =
0; the product is over v in V. Since for each v # w in V there exists ¢, with
tr n1,(¢,) # 0, we conclude that tr n{,(¢,) = O for any ¢, with ®'(¢,) = 0 on the
o-regular set. A simple application of the Weyl integration formula implies the
lemma.

Remark. If G is any (including the quasi-split) form of the unitary group, a
similar proof based on Arthur’s computations of the trace formula, shows that if
7’ is a g-invariant discrete-series automorphic G’-module with a central char-
acter w’(x) = w(x/x), which has a stable og-elliptic component =, then each
component r, of #’ is o-stable. This statement is false if 7/, is not assumed to be
a-elliptic. For simplicity, in the Lemma we proved this statement only in the case
specified in §1, which is the only case needed here.

Recall (Chapter II; §3) that an irreducible o-invariant G,-module =, is called
o-discrete-series if each of its g-invariant exponents ( = central characters of the
g-invariant irreducibles in any non-trivial module of coinvariants of #,) decays.

Proposition. Suppose that n), is a o-elliptic component of a a-invariant
non-degenerate automorphic G'(A)-module n’. Then it is tempered. Moreover, it
is a-discrete-series.

Proof. (i) As there is nothing to prove when w = u, we assume that w # u.
By definition 7z’ lifts by Chapter III to a cuspidal, hence non-degenerate,
GL(rn, Ag)-module, hence each component z/ (for v # u) of n’ is non-degenerate.
If v splits in E/F then 7, is a (generalized) Steinberg G;-module by [BZ'], and the
proposition follows. Hence we now assume that E, is a ficld. Then Theorem 9.7 of
[Z] implies that there is a Levi subgroup M, =1II; M}, of G|, where M}, =
GL(n,, E,), a square-integrable M/-module p; = I1 p/, and an unramified positive-
valued character u, = I i, of M}, so that z} is equal to the G}-module I(p] ® u,)
unitarily induced from p; ® u, on M. Since 7, is o-invariant, for each i there is j
with ’(p/, ® u;,) = p), ® w;,, and in particular u,u;, = 1. To show that =] is
tempered, we have to prove that u,, = 1 for all ;.

Suppose that there is i for which y;, # 1. Then the corresponding j is not equal
to i. Let P denote the standard parabolic subgroup of type (n;, n — 2n;, n;). Then

T=p} ® U, Xl(kll 0k ®ukv)) X Py ® Hy
i)

is a o-invariant P-module; it extends to a PX(o )-module. Hence the character of

the induced representation n; = I(t; P, G}) of G, (or G;X4{0o)) is supported on the

conjugacy classes in G;X(g) which intersect PX(o). In particular 7; is not

o-elliptic, contrary to our assumption. Hence y,, = 1 for all 7, and =} is tempered,

as required.
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(ii) It remains to show that z/,, which we now denote by 7 (we also write G for
G), is o-discrete-series. Since 7 is tempered, there is a parabolic subgroup P
and discrete-series irreducible GL(n;, E)-modules y; (1 =i =c¢) such that y =
P X -+« X7.1s a P-module and n = I(y; P, G). We have to show that for each
(o-invariant, standard) parabolic subgroup R # G, and each g-invariant irreduc-
ible Mg-module 7 in the Mz-module 7y of Ny-coinvariants, where R = MyN,, the
central character of 7 decays. We may write 7 in the form 7 = 7,y X « . « X t,v%,
where 1, are irreducible GL(m;, E)-modules with unitary central characters,
v(x) = |det x|, and s; are real numbers whose sum is zero. Since 7 is g-invariant
we have s; +5,,,_; = 0 for all ;. Given an r-tuple (a,, .. ., a,) of elements in E*
with |g;| = --- = |a,| and |a,| < la,|, we put

X=11 lal= 11 lala,ei-;l*

l=i=r 1=<i=r2

Since 7 is tempered, for each such r-tuple the positive number X is bounded by 1.
Hence 5, = 0. We have to show that X < 1.

We shall now assume that X = 1 for some (a,, . . ., a,), and derive a contradic-
tion. This assumption implies that s, =0. Let L be the standard parabolic
subgroup of type (m,,n —2m,;, m;). Then I(7; R,L) has an irreducible o-
invariant constituent a« = 7, X 7/ X 7, such that « is a subquotient of 7, . Hence n
is a subquotient of I(a; L, G). Since 7 is non-degenerate, so is a. Moreover, since
7 is tempered and s, = 0, and the central exponents of 7/ are among those of 7, it
follows that 7’ is tempered. To complete the proof it suffices to show that 7, is
tempered, Indeed, if 7, is tempered, then I(«) is irreducible (by [BZ’]), and as
explained at the end of (i) the induced representation m = I(«) is not g-elliptic,
contrary to our assumption.

To show that 7, is tempered, note that it is non-degenerate. Hence it follows
from [Z; (9.7)] that there are real numbers # and square-integrable
GL(m;, E)-modules p;, such that 7, = I((p,v%)). Since the central character of 7, is
unitary, we have Z,t; = 0. If 7, is not tempered, then ¢ # 0 for some #, and we
may assume that ¢, <0. Let S be the standard parabolic subgroup of type
(my, n, — my, n — 2ny, n, — m,;, m,). Then nghas a subquotient § (¢-invariant and
irreducible), of the form

B=pv: XI((pv"; i 2 2) X X I(pv~ "5 i 2 2)) X pv 0

The absolute value of the value of the central character of § at (a,, a,, a5, a4, a5) 1n
E>3 with |a,) < |a;| = |a;| = |as| < |as| is |a,/as|"> 1. This contradicts the
assumption that = is tempered. Hence ¢, =0, 7, is tempered, and as explained
above 7 is g-discrete-series, as required. The proposition follows.
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Let E,/F, be a quadratic extension of non-archimedean local fields. For the
local theory, fix a quadratic extension E/F of totally imaginary number fields such
that at some non-split place w the extension E, /F,, is as above. Fix a finite place u
of F which splits in E and consider the F-group G of §1.

Theorem. Suppose that nl is a square-integrable G,-module. Then there
exists an automorphic G-module n whose component at w is 3, whose component
at each place w’ # w of F which ramifies in E is Steinberg, and which is unramified
at all finite places other than u, w and the w’.

Proof. (i) Letf, bea pseudo-coeﬂiciént ([K], Theorem K) of #5. As in (K],
note that f,(e) # 0. Indeed, the Plancherel formula of Harish-Chandra expresses
f(e) as an integral

SHe)y=2cy f d(w)-trd ()£ p(w)dw.
M

EM)

The sum ranges over conjugacy classes of Levi subgroups; the integral is over the
variety E,(M) of square-integrable M-modules; I(w) is the G-module unitarily
induced from @ on M, d(w) is the Plancherel measure. Here ¢, is a constant
which is equal to one if M = G; moreover, u(w)=1if M =G. Since f, is a
pseudo-coefficient of 2, all terms associated with w # mp are zero, hence
f.(e) =d(n?) is indeed non-zero, as claimed.

Let n, be a G,-module with trivial central character which corresponds to a
supercuspidal GL(n, F,)-module by the correspondence of Chapter III, and f, a
matrix coefficient; then again f,(e) # 0. At each place w’ of F which ramifies in E
let f,. be a pseudo-coefficient of the Steinberg G,-module 7J.. Then again
f.(e) # 0. At each finite v # «, w and the w”’ let f, be the characteristic function f
of the standard maximal compact subgroup K, of G,. At each archimedean place v
we specify below a component f, with f,(e) # 0. Let w be a unitary character of
AL/E' whose component at w is the central character of #) , whose component at
each w’ is trivial, and its component at each other finite place is unramified. Since
E! is discrete, hence closed, in AL, and B=E. I, EL. TI, R} (v # w, w’, o0) is
compact, E'B is closed in AL, and it is clear that @ exists. Multiplying w by a
global unitary unramified character we may assume that the component of w at u
is trivial. Note that as usual, our functions f, are chosen to be smooth if v is
archimedean, locally-constant if v is finite, complex-valued, transform under the
center via the component w,”! of w~! at v, and are compactly-supported on
G,/Z,. Put f = Q. G(A) acts by right translation r on L(G \ G(A)). Fix a Haar
measure dx = @dx, on G(AYZ(A).

Consider the operator r(f) = [ fix)r(x)dx (x in G(A)/Z(A)). It is an integral
operator with kernel K(x, y)=Z, f(x 'yy) (7 in G/Z). Its trace is given by
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[ Z, fixyx ~Ydx; x ranges over the compact space G(A)/Z(A)G. Then fxyx~') #
0 implies that the conjugacy class of y in G/Z intersects a compact of G(A)/Z(A)
depending only on the support of f. Choosing a galois extension K of E which
splits G’ we can view y as an element of GL(n, K); the characteristic polynomial
of y is defined over E. The set S of characteristic polynomials of y with
flxyx~')# 0 lies in the intersection of a compact (depending on f), and a
discrete (since E™ is discrete in Af) subsets of (A}~ X AF)Af
((za, 2%, ..., z"¢)=(a, b, ...,c)). Hence S is finite. Consequently we can
choose the archimedean components to have small support, so that only y = ¢
would contribute a non-zero term to the sum. Hence the trace equals [ f(e)dx =
fe)|G(A) Z(A)G |, and it is non-zero.

(ii) On the other hand, the trace is equal to the sum X tr #(f) of the traces
tr #(f) of the operators n(f) = [ f(x)n(x)dx over all irreducible constituents 7 in
L(G \ G(A)). For each n which appears in the sum we have that its component 7,
is unramified at v # u, w, w’, since tr z,(f’) = 1 # 0. Hence

) Sun()= 3 |Tme I um)

n (n,; ve V) vev
Here we take V to consist of #, w, w’ and the archimedean places. The first
sum on the right ranges over all sequences {7,; n € V'} of unramified G,-modules.
The inner sum is over the set specified in Lemma 2. 1. Proposition 2.2 asserts that
for any choice of components £, (v in V), and matching ¢,, our sum is equal to

vEV

(#%) b [E m(n’) Il ur n£(¢v)]=2 tr n'(¢).

The first sum ranges over the same set as in (). The inner sum is over the set
specified in Lemma 2.1. The component of ¢ at v outside V is the unit element ¢°.
The 7’ range over all automorphic g-invariant G’(A)-modules.

Consider any n’ which appears in (). Since trz,(¢,) #* 0, n, lifts to a
supercuspidal GL(n, E,)-module by Chapter III due to the choice of f, and ¢,,
hence 7’ is non-degenerate. Its components at v = w and the w’ are o-elliptic
sifice tr t;(¢,) # 0; recall that ¢, matches f,, and the orbital integrals of f, vanish
on the regular non-elliptic set. Hence the components 7, (for v = w, w’) are
tempered, in fact g-discrete-series, by Proposition 3. Consider the identity (2.1)
with V being the set of w and the w’, where @’ 1s any of the members in (xx). We
now apply Proposition 2.2 at each of the w’,where the character u, there is the
trivial character. It is clear from the proof of Proposition 2.2 that the components
7, on the right of (2.1) are square-integrable; indeed, their central exponents
decay since 7; is g-discrete-series. Moreover, the argument of Chapter 11, §3,
shows that the component n, of any n which appears in (x) is also square-
integrable.
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We can now take any n which appears in (x). We have tr z(f) * 0 for the fof (i).
Hence the component at any finite v #u%, w, w’ is unramified (since
tr 7,(f°) =1 # 0). As &, is tempered, and tr n,(f,,) # O where f,, is a pseudo-
coefficient of the Steinberg G,-module, it follows from the orthogonality rela-
tions of [K], Theorem K, that =z, is Steinberg. Similarly, we have tr z,(f,) # 0,
where 7, is tempered and f,, is a pseudo-coefficient of the square-integrable n ;
hence =, is %, and the theorem follows.

Corollary. Given a tempered irreducible G,-module nl there exists a tem-
pered o-stable G|-module =, finitely many irreducible tempered G,-modules =,
(including %), and positive integers n(n,), so that

(3.1 tr m,(¢y) = X n(m,)tr m,(f,)

Sor all matching functions ¢, f, .

Proof. (i) Suppose first that z2 is square-integrable. Then the claim follows
at once from the proof of the Theorem. Note that the sum is finite by Chapter I,
§3, since 7;,, which is produced by the Theorem and its proof, is g-discrete-series.

(i1) In the general case x¥ is tempered. Hence there is a Levi subgroup M of G
(from now on we omit the index w), and a square-integrable M-module p°, such
that n° is a direct summand of the G-module /(p°) unitarily induced from p° on
M. By part (i) there exists a g-stable tempered M’-module p’, which is o-square-
integrable, finitely many square-integrable M-modules p, including p° and
positive integers n(p), so that tr p’(¢) = Z n(p)tr p(f). Here ¢, f are matching
functions on M’, M. A standard computation of characters of induced represen-
tations yields the identity of the corollary. The z are the ireducible summands in
the composition series of the tempered I(p). The n’ on the left is the GL(n, E)-
module I(p’), which is unitarily induced from the irreducible tempered module
p’, hence it is irreducible (by [BZ']).

Let E/F be a quadratic extension of local fields.

Definition. The packet {n} of a tempered G-module 7° is the set of 7 which
appear in (3.1).

To show that the packets are well-defined, we prove the following

Proposition. The packets define a partition of the set of tempered G-
modules.

Proof. It suffices to show that if #” and n” are inequivalent o-discrete-series
and satisfy (3.1), thus n’ = Z n(z)n and n” = Z m(n)n, then there is no z which
appears in both sums. Since all 7 here are square-integrable, the orthonormality
relations of [K], Theorem K, imply that
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<E n(mm, ¥ m(n)n> = Y n(n)m(n),

in the inner product introduced in [K]. On the other hand, the twisted analogue of
[K], Theorem G (we do not record here a proof as it follows closely that of [K] in
the non-twisted case), asserts that the analogous inner product (n’, ) vanishes
unless n’, n” are relatives in the terminology of [K]. Now n’=I(p’) and
n”=1I(p”), where p’'= @p{, p” = ®p’; are square-integrable (with %/ =p/,
°p” = p"), these are relatives only if they are equivalent. But Z n(n)m(n)=0
implies n(m)m(n) = 0 for all m, as required.

§4. Twisted existence
Let E,/F, be a local quadratic extension.
Theorem. Each tempered o-stable G.-module ), satisfies (3.1).

Proof. By parabolic induction it suffices to deal only with g-elliptic z,,. It is
of the form I'{(p"), p’ = ® p!, where the p/ are square-integrable, pairwise inequiva-
lent, and o-invariant. Using the twisted analogue {(Chapter 1, §7) of the trace
Paley-Wiener theorem of [BDK], since a GL(n)-module which is unitarily
induced from a square-integrable one is irreducible (by [BZ']), we have a function
¢, in C(GJ) with tr m,(¢,) = 1, and tr n%,(¢,) = O for all tempered n’, inequiva-
lent to 7. In particular, the orbital integral ®(¢,) vanishes on the o-regular
non-o-¢elliptic subset of G/,. Since 7/, is o-stable by our assumption, there is some
g-regular elliptic x,, with '(x,,, ¢,,) # 0. Choose a global quadratic extension E/F
of which E,/F, is a completion, and let G be the quasi-split form of the unitary
group, so that G’ = GL(n, E).

Let u be a place of F which splits in E. Let i, (1 =i = n) be n unitary characters
of F} such that for each i # j the quotient y,/y; is ramified. As in the proof of
Proposition 2.2, we now take a regular function f, in the sense of [Sph], §4 (see the
proof of Proposition 2.2) associated with the character u = Qu;: (a;)— 11 pi(a;)
of the upper triangular subgroup B, of G, = GL(n, F,), and a regular A in Z" (thus
A 1s a vector whose n entries are distinct integers in decreasing order). We have
that for any G,-module 7z, the trace trz,(f,) vanishes unless there is an
unramified character ®@v* such that m, is a constituent of the G,-module
I, = I(®uyv*) induced from the character ®uv* of B,. By [BZ'), our choice of
the y, guarantees that /, is irreducible, hence n, = I,. Similarly, if ¢, is a function
matching f, then tr 7/(¢,) # 0 implies that x; is the lift (n,, °n,) of n, = I, as
above.

Now E/F is a quadratic extension of global fields whose completions at two
places w and u are our E,/F, and E, = F, ® F,, and G is the quasi-split form of
the unitary group, so that G’ = GL(n, E). Since ®'(¢,) is a locally constant
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function on the o-regular set, there exists a o-elliptic regular x in G’ = G’(F)
which is near x, in G}, such that ®’(x, ¢,) # 0 and '(x, ¢,) = D(x, ¢,) # 0.
Moreover, x can be chosen so that its o-centralier 7 in G’ is related to the o-
centralizer T,, of x,, in G/, as in the Lemma of Chapter I; §4. Let {1’} be a set of
places u’ of F which stay prime in E, of cardinality larger than the rank of G,
excluding w, such that x is g-elliptic in G,.. For each u’ let ¢, be a function
supported on the g-regular elliptic set, with ®(x, ¢,.) # 0, such that ®(y, ¢,) is a
stable function in y.

We now choose a global function ¢ = ®¢,. whose components at w, u, 4’ are as
above, which satisfies @'(x, ¢) # 0. Our conditions at 1’ (we need only one such
place) imply (see Corollary 1 in Chapter I; §3) that the side of the trace formula
involving o-conjugacy classes in the group G’ takes the form Z c(y)®’(y, ¢), the
sum ranges over all o-elliptic regular stable conjugacy classes in G’, and c(y) are
volume factors. The sum is finite, and we can reduce the support of the
components of ¢ (at v # w), to have that the sum over y consists of x alone.
Consequently this sum is equal to ¢(x)®’(x, ¢), which is non-zero.

It follows that the representation theoretic side of the trace formula is non-zero.
Our (sufficiently many) conditions at the places u’ guarantee the vanishing of all
terms which involve integrals in the expression given by Arthur [A’] for this side
of the trace formula; in fact here we use the twisted analogue (Corollary 1 in
Chapter I; §3) of Arthur’s computations. The terms which are left are of the form
tr n’(¢), with complex coefficients. The construction of the component ¢, guaran-
tees that if tr 7’(¢) +# 0, then the component 7z at ¥ of n’ is induced from the
subgroup B, of the form [, =(I,, °1,) described above. Now each n’ which
appears in the trace formula is a quotient of a representation J’ = I(®a,)
induced from a cuspidal (not necessarily unitary) representation of a Levi
subgroup. But if J/ is reducible and z’ is a proper quotient of it, then z; hastobe a
proper quotient of the component J, of J’ at 4. But n, = I is an irreducible
induced from the upper triangular subgroup B;. We conclude that J’ is irreduc-
ible, hence n’ is equal to J’, and it i1s non-degenerate.

We can choose the function ¢ so that its component at a place u”( # w, u, u’) is
a pseudo-coefficient of a Steinberg G/.,-module n;.. Thus tr n”.(¢,.) is zero for
any tempered G,-module unless % is n}., in which case this trace is equal to
one. In particular the orbital integral ®(¢,-) vanishes on the g-regular non-elliptic
set. Since our global n’ satisfies tr z7/(¢) # 0, its component at #” is non-
degencrate and o-elliptic, hence it is tempered, and we conclude that the
component of n’ at u” is the Steinberg 7... But this implies that n’ is cuspidal,
namely that in J’ = I(®g,) there is only one o, which is equal to J".

It remains to show that the component of n’ at w, which is g-elliptic and
tempered, hence it is our 7, satisfies the identity (3.1). For that we form the
identity (2.1) where our z’ is the only term on the left. The set V' ranges over all
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the finite places mentioned above, namely w, u, ¥’, u”, and the functions ¢, at
the places #’ have to be supported on the g-elliptic regular set. However we can
take the place u” duplicated sufficiently many times, so that z’ will have several
Steinberg components, at the places u”. Proposition 2.2 and its proof imply that
each m,,» which occurs on the right of (2.1) is a Steinberg G,-module. Conse-
quently we can take in (2.1) the functions ¢,., f,- to be supported on the regular
elliptic set, and obtain the identity (2.1), where V consists only of the u’ in
addition to w, but the f,, ¢, are arbitrary matching functions. Hence Chapter I,
§3, implies that the sum on the right of (2.1) is finite, consists of square-
integrables, and on choosing the f,, to be pseudo-coefficients of square-integrables
which occur we obtain the identity (3.1) where our 7,, is on the left, except that the
left side of (3.1) takes the form ctr n/(¢,), where ¢ is a complex number,
necessarily non-zero. Thus we obtain

ctr mi(¢,) = X, m(mw,)tr T, (f,).

On the other hand, for some 70 in this sum we have the identity (3.1), namely a
o-discrete-series tempered irreducible G, -module n7%,, with

tr n/,(¢y) = X n(n )tr m, (1)

The m(n,), n(n,) are integers with n(nd)m(xd) # 0. The sums are finite, range
over square-integrables, and ¢,, f, are arbitrary matching functions. We con-
clude, using the Weyl integration formula and the orthogonality relations of [K]
for characters, that n}, is n”,, hence that ¢ = 1. The theorem follows.

§5. Minimality

Let E/F be a local quadratic extension, and z a square-integrable G-module.
The packet {n } of n consists of the # which occur in the sum on the right of (3.1),
with integral multiplicities n(x).

_Proposition. Ler {n}’ be a proper non-empty subset of {n}. Then Z' n(n)n is
not stable. By Z’ we mean the sum over {n}’.

Proof. Suppose that y’ = 3’ n(xn)x(rn), where x(r) denotes the character of «,
1s stable. Of course y = Z n(x)x(rn) is stable, and so is y” = y — x’. For some
positive rational ¢ we have that y’ — cx” is orthogonal to x, hence to the character
of every tempered packet. Let f be a function whose orbital integral ‘®(f)
vanishes on the regular non-elliptic set, and equals ¥’ — ¢x” on the regular elliptic
set. Let ¢ be a matching function. Then we obtain tr n’(¢) = 0 for every tempered
o-invariant G’-module 7’. But by Proposition 4 of Chapter I we conclude that all
o-stable orbital integrals of ¢ are zero. Thus the orbital integrals of f vanish, and
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x’ =cy”, which contradicts the orthogonality relations for characters of square-
integrable G-modules. The proposition follows.

Let E/F be a global extension, and G, G’ the group of §1.

As in §1 we say that an automorphic G’-module 7’ is non-degenerate if it
corresponds to a non-degenerate automorphic GL(n, Az)-module n” by the
correspondence of Chapter III. We deal only with such o-invariant 7’ from now
on, Each component 7/ of n’(v # u) is non-degenerate. By [Z], Theorem 9.7, ] 1s
equal to the induced G,-module I( r, piyv'), where pf, is a square-integrable
M}, = GL(r;, E,)-module, and s, is a real number with |s; | < 4, since 7, is unitary.
We may assume that for some m’ we have that %/, = p,_,,and 5; = s,,_; for i in
the interval 4 = [1, m’], but 5; = 0 and %}, = p}, # p}, for all i # j in the interval
B=[m'+1,m—m’—1]. Put b = Z r, (i in B). Hence we write x, in the form

(@ rr)o (@ o) o r))

Since 7! is o-stable, we have that I(®,c,p,) is a o-stable elliptic
GL(b, E,)-module. Theorem 4.2 asserts that we have the identity

tr I( ® p:,v) (¢v) = E m(piv)trpiv(ﬁ)-

i€B i

The p,, are representations of the quasi-split unitary group U(b) in b variables.
Then

(® o) © (Zmun)

i€EA

defines an M,-module p,, where

M, =TI M, XxU®b) X ] M},
€A €A

By parabolic induction we conclude that tr n/(¢,) = tr I(p,; G,, M, )(f,), where on
the right I(p,) is the G,-module induced from p, on M,. Namely z; satisfies the
identity (3.1), where on the right we have all irreducible subquotients x, of I(p,).

If 7, occurs on the right of (3.1) for some = as above we define its packet {r,} to
be the set of irreducible @, which occur on the right of (3.1). Also we say that =,,
and its packet {=,}, lift to m; when (3.1) holds. We noted above that each
component 7 of a non-degenerate z’ is a lift of a packet, which is not necessarily
tempered, but obtained from a tempered packet on tensoring each element in the
packet by the same unramified character and inducing. Note that at u the
component 7 is a unitary representation of an anisotropic group G/, hence
tempered.
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Using this generalized notion of a local packet, a global packet is defined as in
§1, and we say that z lifts to n’ if #, lifts to =} for all v. To complete the proof of the
Global Theorem of §1 we show

Theorem. If m quasi-lifts to a non-degenerate n’, then n lifts to n’.

Proof. Proposition 2.2 implies the first equality in
I o (f)=11 trmi(e) =11 [2 n(m,)tr nv(ﬂ)] :

The second follows from (3.1). The products are over a finite set V, the sums on
the right over =, are finite. As this holds for any { f;; vin V'}, a standard argument
using the absolute convergence of the sums, and the unitarity of all represen-
tations in the trace formula implies the claim. Note also that since n’ is non-
degenerate, it appears in the discrete spectrum of L(G \ G(A)) with multiplicity
one.

The proof has the following obvious

Corollary. Each irreducible G(A)-module in a packet of a non-degenerate
is automorphic.

This completes the proof of the Global Theorem of §1.
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