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0. STATEMENT OF RESULTS

Let G be an algebraic group over a global field F with ring ! of adeles,
denote by Z the center of G and by C an algebraic subgroup of G over
F such that the cycle C!F"\C!!" has finite volume. Fix unitary characters
ω# Z!!"/Z!F" → "1 != unit circle in "×" and ξ# C!F"\C!!" → "1, and
denote by φ# G!F"\G!!" → " a cusp form in the cuspidal representation
π of G!!", whose central character is ωπ = ω. By a cuspidal representation
we mean an irreducible one. We say that π is C!!"-cyclic if it has a non-
zero C!!"-period PC!!"!φ" =

∫
C!F"\C!!" φ!c"ξ!c"dc. The overbar indicates

complex conjugation. Studies of cyclic automorphic forms have applications
to special values of L-functions (Waldspurger [W1,W2], Jacquet [J1, J2]),
lifting problems [F], and studies of cohomology of symmetric spaces, in
particular the Tate conjecture on algebraic cycles on some Shimura surfaces
[FH]. The purpose of this paper—inspired by the applications to the Tate
conjecture of [FH]—is to compare the notion of cyclicity by C!!", with
cyclicity by an inner form of C!!". We let G be the quasi-split unitary group
U!2% 1" = U!2% 1&E/F" in three variables defined by means of a quadratic
separable extension E/F of global fields. The subgroup C is taken to be the
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quasi-split unitary group U!1! 1" = U!1! 1#E/F" in two variables defined by
E/F (from Section 1 on—where more precise definitions are introduced—
C and ξ of this section will be denoted by C1

1 and ξ2).
The notation U!2! 1" and U!1! 1" is borrowed from the theory of real

groups, but we do not discuss that theory in this paper, and for us G =
U!2! 1" and C = U!1! 1" are the uniquely defined (up to isomorphism)
quasi-split E/F-unitary groups in three and two variables. The anisotropic
inner form of C over F will be denoted by U!2" = U!2#E/F". To be able
to concentrate on the aspects of the p-adic theory, we assume either that
F is a function field (of odd characteristic), or that at each place v of F
where Ev/Fv = !/" the group U!2"!"" (= the group of real points of
U!2!E/F"" is quasi-split (hence isomorphic to U!1! 1"!""". Then U!2" is
not isomorphic to U!1! 1" only at a finite set ∇ of finite places of F , which
stay prime in E. Indeed, at a place v which splits in E the anisotropic inner
form D!2!Fv" of U!1! 1#Fv" = GL!2!Fv" is not a subgroup of U!2! 1#Fv" =
GL!3!Fv". Moreover, neither GL!2!Fv" nor D!2!Fv" is a subgroup of the
anisotropic inner form D!3!Fv" of U!2! 1#Fv". Hence our question cannot
be asked with any inner form of U!2! 1" other than that which is split at
each place v of F which splits in E. So we stick to our group G. It is well
known that the cardinality %∇% of ∇ is even.

We shall also consider the local analogous question of cyclicity. At a
place v of F which splits in E we fix characters #v! ωv of F×

v , and say
that an admissible irreducible GL!3!Fv"-module πv with central charac-
ter ωv is GL!2!Fv"-cyclic if there is a non-zero linear form l' πv → !
with l!πv!h"w" = ξv!h"l!w" !h ∈ GL!2!Fv"!w ∈ πv", where ξv = #v ◦ det!
namely HomCv

!πv! ξv" += ,0- (we put Cv for C!Fv" = U!1! 1#Fv", which is
GL!2!Fv" in our case). If v is a place of F which stays prime in E then
we similarly say that the irreducible admissible representation πv of Gv =
G!Fv" = U!2! 1#Fv" is Cv-cyclic if HomCv

!πv! ξv" += ,0-. Here Cv can be
the quasi-split unitary group U!1! 1#Fv", or the anisotropic form U!2#Fv".
In all cases a result of the Appendix to [F6] asserts that dim!!πv! ξv" ≤ 1.
Moreover it is easy to see that all local components πv of a C!$"-cyclic
cuspidal representation π are Cv-cyclic (with C = U!1! 1" or U!2"". How-
ever, a cuspidal π all of whose components are Cv-cyclic, need not be
C!$"-cyclic. It is the global obstruction to the global cyclicity of an every-
where locally cyclic π, which is of interest. Thus our question is: When
HomC!$"!π! ξ" is non-zero, is it generated by PC!$"?

0.1. Theorem. (1) Every U!2#$"-cyclic cuspidal generic representation
of U!2! 1#$" is U!1! 1#$"-cyclic.

(2) If Ev/Fv is a local field extension, every U!2#Fv"-cyclic (irreducible
admissible) generic representation of U!2! 1#Fv" is U!1! 1#Fv"-cyclic.
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The identification of those U!1! 1"-cyclic generic U!2! 1"-modules which
are also U!2"-cyclic cannot be stated simply in terms of the representation
theory of the group U!2! 1", since this last theory is described by means
of liftings. Two important such liftings are introduced in [F1] and studied
in [F2,F3], namely the κ-endoscopic lifting from U!1! 1" to U!2! 1", which
depends on a choice of a character κ# !×

E /E
×NE/F!

×
E → "1 whose restric-

tion to !×/F×N!×
E is non-trivial, and the base-change lifting from U!2! 1"

to GL!3!E".
In [F6] the U!1! 1"-cyclic generic U!2! 1"-modules are identified as the

image of the κ-endoscopic lifting from U!1! 1". In fact [F4] establishes a
correspondence between the set of packets of U!1! 1&!"-cyclic generic cus-
pidal U!2! 1&!"-modules, and the set of generic GL!2!!E"-modules which
are cuspidal and GL!2!!"-cyclic (the adjective “distinguished”—instead of
“cyclic”—is used in [F4] and [F6] in this context, and with ξ = 1, and
so will it be here), or are normalizedly induced I ′!µ′

1!µ
′
2" from the char-

acter
( a ∗
0 b

)
)→ µ′

2!a"µ′
2!b" of the upper triangular subgroup B′!!E" of

GL!2!!E", where µ′
i# !×

E /!
×E× → "1 and µ′

1 *= µ′
2. In [F4] it is shown

that this last set of GL!2!!"-distinguished cuspidal GL!2!!E"-modules,
and the I ′!µ′

1!µ
′
2"! µ′

i# !×
E /!

×E× → "1!µ′
1 *= µ′

2, is the image of the
unstable base-change lifting (this lifting also depends on a choice of κ)
from U!1! 1&!" to GL!2!!E". The composition of the κ-base-change lift-
ing from U!1! 1" to GL!2!E", and the correspondence from (distinguished
generic representations on) GL!2!E" to (cyclic generic representations on)
U!2! 1", is the κ-endoscopic lifting. The analogous local results are also es-
tablished in [F6] (and [F4]).

We repeat that by a GL!2!!"-distinguished cuspidal representa-
tion of GL!2!!E" we mean one which is cyclic, with ξ = 1. Since
HomGL!2!!"!π! ξ" = HomGL!2!!"!π ⊗ ξ−1! 1", where ξ denotes also an ex-
tension of ξ from !×/F× to !×

E /E
×, there is no loss of generality in taking

ξ = 1. We denote -z ∈ E×
v & zz = 1/ by E1

v .

0.2. Theorem. (1) A U!1! 1&!"-cyclic generic cuspidal representa-
tion π of U!2! 1&!" is U!2&!"-cyclic precisely when for each v ∈ ∇
(= the set of finite F-places where U!2&Fv" is anisotropic) the component
πv of π does not correspond (in the sense of [F6]) to the GL!2!Ev"-
module I ′!µ′

1!µ
′
2"!µ′

i# E×
v /F

×
v → "1, namely πv is not the κv-endoscopic

lift of the U!1! 1&Fv"-packet π0!µ1!µ2" of [F2, Sections 3.7/8, page 49],
µi# E1

v → "1!µ′
i!z" = µi!z/z"!z ∈ E×

v " (where π0 is denoted by ρ).
(2) A U!1! 1&Fv"-cyclic generic admissible irreducible U!2! 1&Fv"-

module is U!2&Fv"-cyclic precisely when it does not correspond (à la [F6]) to
I ′!µ′

1!µ
′
2"!µ′

i# E×
v /F

×
v → "1!µ′

1 *= µ′
2, namely it is not the κv-endoscopic lift

of π0!µ1!µ2"! µi# E1
v → "1!µ1 *= µ2.
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Another way of stating these results is by means of the base change theory
of [F2], from U!2! 1" to GL!3!E". Thus [F6] asserts that a generic admissi-
ble irreducible U!2! 1#Fv"-module is U!1! 1#Fv"-cyclic when its base change
is generic but not discrete series (= square-integrable), and Theorem 0.2(2)
asserts that it is also U!2#Fv"-cyclic when its base-change is also not in-
duced of the form I!µ′

1!µ
′
2!µ

′
3"! µ′

i% E×
v /F

×
v → !1, with distinct µ′

i. Theo-
rem 0.2(1) asserts that the U!1! 1#""-cyclic π is also U!2#""-cyclic if each
πv!v ∈ ∇" is U!2#Fv"-cyclic and not of the form I!µ′

v"! µ′
v% E×

v /F
×
v → !1.

We denote by I!µv" the U!2! 1#Fv"-module with central character ωv nor-
malizedly induced from the character diag!a! b! 1/a" *→ µv!a"!ωv/µv"!b"
of the upper triangular subgroup B!Fv" of Gv = U!2! 1#Fv".

As a notational convention, representations of U!1! 1" will have an
index zero (e.g., π0, I0!µ"", those of GL!2" will carry a prime (e.g.,
π ′! I ′!µ1!µ2"", while those of U!2! 1" are denoted simply by π or I!µ".
Also by a U!1! 1"-cyclic generic U!2! 1"-module we mean the set of
U!1! 1"-cyclic generic elements in its packet (as defined in [F2]). It is ex-
pected that this set consists of a single element, but this has not been
shown as yet.

For an archimedean analogue of our local results the reader may like to
consult Oshima and Matsuki [OM] and Kobayashi [Ko].

The statement of Theorem 0.2 suggests that its proof would be related
to the variation of the notion of distinguishability (= cyclicity) of a generic
cuspidal GL!2!"E"-module, with respect to inner forms of GL!2!"". This
question is studied in [FH], whose result which is needed for the proof of
Theorem 0.2 (and Theorem 0.1) is reviewed next.

Denote by D the inner form of GL!2" over F which is ramified precisely
at the places of ∇. Then D!"" is a subgroup of D!"E" = GL!2!"E".

0.3. Theorem (0.2 of [FH]). A cuspidal (irreducible) representation π ′ of
GL!2!"E" is D!""-distinguished precisely when it is GL!2!""-distinguished
and its components π ′

v at v ∈ ∇ are not of the form I ′!µ′
1!µ

′
2" with µ′

i trivial
on F×

v .

Our proof of Theorems 0.1 and 0.2 consists of a comparison of U!2"-
cyclic U!2! 1"-modules with D-distinguished GL!2"-modules (same ∇ for
U!2" and D), and an application of Theorem 0.3. We then state this com-
parison next. For this purpose we recall that the correspondence of [F6] re-
lates almost everywhere locally distinguished automorphic representations
π ′ of GL!2!"E" with almost everywhere locally cyclic automorphic repre-
sentations π of U!2! 1#"", and the relation is that π ′ and π correspond if

(1) at almost all places v of F which split, the GL!2!Ev" =
GL!2!Fv" ×GL!2!Fv"-module π ′

v = π ′
1v ×π ′

2v is distinguished (has a non-
zero GL!2!Fv"-invariant form; then π ′

2v + π̌ ′
1v(= contragredient of π ′

1v)),
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and then πv is the GL!2"Fv"-cyclic GL!3"Fv"-module I!π ′
1v × ωv/ωπ ′

1v
"

normalizedly induced from the maximal parabolic of type (2,1) as indi-
cated, where ωv = ωπv

is the central character of πv and ωπ ′
1v

is that of
π ′
1v, and

(2) at almost all places v of F which stay prime in E, the GL!2"Fv"-
distinguished component π ′

v is of the form I ′!µv" = I ′!µv"µ
−1
v ", and the

corresponding U!1" 1&Fv"-cyclic component πv is I!µv".
Note that the central character of πv is ωv, and that of π ′

v is ω′
v/ξ

′
v,

where ξ′v!z" = ξv!z/z"!z ∈ E×
v " is well defined since ξv is a character of

E1
v = (z ∈ E×

v & zz = 1).

The theorems of [F6] establish that the correspondence relates cuspi-
dal distinguished π ′, or π ′ of the form I!µ′

1"µ
′
2""µ′

1 *= µ′
2, with cuspidal

cyclic π. Since the groups U!2&E/F" and D are not isomorphic over Fv to
U!1" 1&E/F" and GL!2" only for v in the finite set ∇, and the definition
of correspondence depends only on almost all places, the definition applies
with these anisotropic groups, and we can state the following.

0.4. Theorem. The correspondence is a bijection from the set of D!!"-
distinguished cuspidal GL!2"!E"-modules with central character ω′/ξ′, to
the set of packets of U!2&!"-cyclic generic cuspidal U!2" 1&!"-modules with
central character ω.

This global result permits extending the definition of the local correspon-
dence (the definition depends on a certain relation of Whittaker–Period dis-
tributions) in the case that Ev/Fv is a field to show that the correspondence
is a bijection from the set of Dv-distinguished generic GL!2"Ev"-modules
π ′
v to the set of packets of U!2&Fv"-cyclic generic U!2" 1&Fv"-modules πv

(with ωπ ′
v
= ω′

v/ξ
′
v if ωπv

= ωv", such that π ′
v is square-integrable precisely

when πv is, and π ′
v is supercuspidal precisely when πv is, and πv = I!µv"

when π ′
v = I ′!µv", as defined above.

Theorems 0.1 and 0.2 follow on combining the correspondence of Theo-
rem 0.4 with that of Theorem 0.3 ([FH]) and that of [F6]. This paper will
then be concerned with the proof of Theorem 0.4, which is an anisotropic
analogue of the work of [F6]. Most of the technical difficulties in our
present project have already been overcome in [F6], and those of the pas-
sage from an inner form to the quasi-split form, in [FH]. Theorem 0.1
is easy to prove by a direct comparison of U!1" 1"-cyclic and U!2"-cyclic
forms, but to prove Theorem 0.2 by such a direct comparison we would
need to compute directly the Whittaker–Period distributions of the local
representations mentioned in Theorem 0.2. We prefer to deduce these lo-
cal computations from the global comparisons; see Proposition 11 below.
Analogous local computations have been carried out for the comparison
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of GL!2!Fv"- and Dv-distinguished representations of GL!2!Ev", in [FH],
except that [FH] considers the bi-period distribution attached to a distin-
guished π ′ (and names it “relative”), and not our Whittaker–Period one,
which is attached to a generic distinguished π ′.

As in [F6] our work depends on a comparison of Fourier summation
formulae on U!2! 1$!" and GL!2!!E". However these formulae simplify in
our case as we take periods with respect to the anisotropic groups U!2$!"
and D!!", instead of U!1! 1$!" and GL!2!!" as in [F6]. The comparison
is based on a transfer of Fourier orbital integrals of general (and spherical)
functions between U!2! 1" and GL!2!E", and this was carried out in both
the split and non-split cases in [F6] (and [F7]). The required analysis in the
remaining finite number of places v in ∇ where U!2" and D ramify is carried
out here. It is easier than the analysis of [F6], since we deal with anisotropic
groups. We also explain the transfer from U!2!Fv" to U!1! 1$Fv", and from
Dv to GL!2!Fv"; these local transfers can be used in the corresponding
global comparisons (the one with Dv and GL!2!Fv" can replace C1 of
[FH], but only when V ′′ of [FH] is empty, that with U!2" and U!1! 1" can
be used to give an alternative proof of our Theorems 0.1 and 0.2, as noted
above).

Our usage of a “Fourier” summation formula, which involves Fourier co-
efficients of cusp forms, limits our discussion to the case of the generic
representations, those with a Whittaker model. It would be interesting
to study the notion of cyclicity for degenerate U!2! 1$Fv" and U!2! 1$!"-
modules (where a packet of representations is expected to contain only one
generic element), and perhaps a bi-period summation formula for U!2! 1"—
analogous to that of [FH] in the case of GL!2!E" and period GL!2!F"—
would be of use. But we have not done that.

As is well known, some of our results can be obtained by the theta cor-
respondence, but our interest is in the intrinsic approach of the summation
formula.

1. THE GROUPS

We shall now define the groups which are studied in this paper. Let E/F
be a quadratic extension of local or global fields of characteristic other than
2. Denote by an overbar the action of the non-trivial element of Gal!E/F",
and write g = !gij" for g = !gij" in GL!n!E". The unitary group in three
variables of interest to us here is

G = U!2! 1$E/F" =




g ∈ GL!3!E"$ gJtg = J =




0 1

−1
1 0








 #
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The quasi-split unitary group U!1! 1"E/F# in two variables which is consid-
ered in [F6] is related to the centralizer

C = U!1# ×U!1! 1# = ZG!J0# =
{
g ∈ G" gJ0 = J0g

}

of

J0 = diag!1!−1! 1#"

The anisotropic unitary group U!2!E/F# considered in this paper is related
to

Cθ = U!1# ×U!2# = ZG!Jθ#! Jθ =




0 1/2θ

1
2θ 0





In the local case we take θ ∈ F −NE/FE; here N = NE/F denotes the norm
map from E to F . In the global case we take θ ∈ F such that θ '∈ NEv/Fv

Ev

for all v ∈ ∇, and θ ∈ NEv/Fv
Ev for all v '∈ ∇. Then Cθ is anisotropic pre-

cisely at the places in ∇, a finite set of finite places with even cardinality.
Up to isomorphism over F , the group Cθ depends only on θNE×; indeed
Jθλλ is conjugate to Jθ by diag !λ! 1! 1/λ# ∈ G !λ ∈ E×#.

In [F6, Proposition 2], it was noted that J1 = g−1
0 J0g0, and

G = BC ∪ Bg0C = BC1 ∪ Bg−1
0 C1! g0 =





1 −1 1
2

1 0 − 1
2

1
2

1
2

1
4



 "

Here B denotes the upper triangular subgroup of G, and the index 1 in J1
and C1 indicates θ = 1. When θ '∈ NE× the group Cθ is anisotropic, and
we have a simpler decomposition.

1. Proposition. If θ ∈ F −NE, then G = BCθ.

Proof. The 3× 3 matrices which commute with Jθ have the form

g =




a d c/4θ2

b e b/2θ
c 2θd a



 "

Then

JtgJ =




a −b/2θ c/4θ2

−2θd e −d
c −b a



 !

and g ∈ Cθ = ZG!Jθ# if gJtgJ = I. Hence g ∈ ZGL!3!E#!Jθ# lies in Cθ

when there is η ∈ E1 (thus ηη = 1) with d = ηb/2θ! e = η!a + c/2θ#,
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with (1) !a− c/2θ#!a− c/2θ# = 1 and with (2) !a+ c/2θ#!a+ c/2θ# =
bb/θ + 1 (note that any two of (1), (2), and (3) ac + ac = bb, imply the
third).

Let Y be the subvariety of x = !x1"x2"x3# in the projective 2-space over
E with xJtx = 0. Then G acts transitively on Y by g$ x %→ xg−1. The
stabilizer of x0 = !0" 0" 1# is B = stabG x0. Given x = !c"−b" a# in Y we
have (3), hence a '= c/2θ (since θ ∈ F −NE#, and dividing its components
by a− c/2θ we may assume that x satisfies (1), whence (2). For any choice
of η ∈ E×" ηη = 1, define d = ηb/2θ" e = η!a + c/2θ#. We then define
g ∈ Cθ with x = x0g

−1, and the proposition follows.

Corollary. When θ ∈ F − NE, the group Cθ consists of h!"! =
diag!1" η" 1#" η ∈ E1, and

h =




a b/2θ c/4θ2

b a+ c/2θ b/2θ
c b a



 "

with a" b" c ∈ E satisfying (1) !a − c/2θ#!a − c/2θ# = 1, and (2) !a +
c/2θ#!a+ c/2θ# = bb/θ+ 1.

Remark. (1) Note that g0 satisfies a = c/2θ with θ = 1, where
!c"−b" a# = x = x0g0 = ! 12 "

1
2 "

1
4#, hence g−1

0 '∈ BC1.

(2) We have deth = a− c/2θ ∈ E1$
Any character ξ$ Cθ → "× of the group Cθ is of the form ξ!h!# =

ξ1!deth#ξ2!η#, where ξ1" ξ2 are characters of E1. Recall that the principal
series representation I!µνs# of G with central character ω$ E1 → "1, where
µ$ E× → "× and ν!x# = *x*E !x ∈ E×#, is defined on the space of smooth
functions ϕ on G which satisfy (for any upper triangular unipotent u)

ϕ
(
diag!α"β" α−1#ug

)
= µ!α#

(
ω

µ

)
!β#*α*s+1

E ϕ!g#
(
g ∈ G" α ∈ E×" β ∈ E1)$

2. Proposition. We have HomCθ
!I!µνs#" ξ# '= 0 precisely when µ =

ξ1ξ2 and ω = ξ1ξ
2
2 on E1.

Proof. (a) When θ ∈ F − NE the group Cθ is compact, and we claim
that there is a non-zero linear form L on π = I!µνs# which transforms
under Cθ by ξ, precisely when there is a non-zero vector u in π which
transforms under Cθ by ξ. Indeed, given L there is w in π with L!w# '= 0,
and u =

∫
Cθ

π!h#w · ξ!h#−1 dh satisfies π!t#u = ξ!t#u !t ∈ Cθ# and L!u# '=
0, hence u '= 0. In the opposite direction, let l be a linear form on π with
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l!u" #= 0, and define L by L!w" =
∫
Cθ

l!π!h"w"ξ!h"−1 dh. Then L!u" #= 0,
hence L has the required properties.

(b) If ϕ ∈ π = I!µνs" satisfies π!h"ϕ = ξ!h"ϕ !h ∈ Cθ", since G =
BCθ, ϕ is determined by its values on B ∩ Cθ = 'diag!a& ηa& a"; ηη = 1&
aa = 1(. There

µ!a"!ω/µ"!aη"ϕ!e" = ϕ
(
diag!a& ηa& a"

)
= ξ1!a"ξ2!η"ϕ!e")

If ϕ #= 0, then ξ2 = ω/µ and ξ1 = µ2/ω = µ/ξ2, so µ = ξ1ξ2 and ω = ξ1ξ
2
2

on E1. Conversely, if µ = ξ1ξ2 and ω = ξ1ξ
2
2 on E1, then I!µνs" contains

a one-dimensional space of ϕ0 with π!h"ϕ0 = ξ!h"ϕ0 !h ∈ Cθ", and the
linear form L!ϕ" =

∫
Cθ

ϕ!h"ξ!h"−1dh is non-zero on ϕ0 and transforms
under Cθ via ξ.

(c) When θ = 1, the proposition is proven [F6, Proposition 29(a)] for
ξ1 = 1 = ξ2. The extension to arbitrary ξi is immediate.

Notations. Denote by C1
θ the subgroup of h! in Cθ with deth = a −

c/2θ equals 1. Any h! ∈ Cθ can be written in the form zh′!z/z with
z = a− c/2θ, z = diag(1, z, 1), deth′ = 1. Hence for π with central char-
acter ω = ξ1ξ

2
2 , we have HomCθ

!π& ξ" = HomC1
θ
!π& ξ". On C1

θ we have
ξ!h!" = ξ2!η") Now J1 = g−1

0 J0g0, and g0C1g
−1
0 = C. Matrix multiplica-

tion shows that the (2,2) entry of g0!g
−1
0 is 1, while that of g0hg

−1
0 is deth.

The character ξ on C = 'g = !gij" ∈ G* gij = 0 if i + j is odd( takes then
the value ξ2!g11g33 − g13g31"ξ1!g22" at g. Note that g0C

1
1g

−1
0 = C1 is 'g ∈

G* g22 = 1(, and the restriction of ξ to C1 is ξ!g" = ξ2!det g". If ξ1 = ω/ξ22,
for π with central character ω we have HomC!π& ξ" = HomC1!π& ξ2". As in
[F6] to simplify the notations we shall often work with linear forms which
transform under the subgroup C1

θ or C1 by the character ξ2 ◦ det. This is
what we did in the Introduction (e.g., Theorem 0.4), where the cycle is
taken to be U!2" or U!1& 1", denoted C (instead of C1

θ as here), and the
character is denoted by ξ (instead of by ξ2 as here).

In view of these definitions, we restate Proposition 2 as follows.

2′. Proposition. The space HomC1
θ
!I!µνs"& ξ2" is non-zero precisely

when µ = ω/ξ2.

According to Keys [Ke] (as recorded in [F1, (3.1(3)), p. 558]), when ω =
β3 and µ!z" = β!z/z"!z ∈ E×" for a character β of E1, the induced I!µν"
has a square-integrable “Steinberg” subrepresentation denoted St!µν", and
a one-dimensional quotient π!µν"- g .→ β!det g". The space of St!µν"
consists of the ϕ in I!µν" with

∫
B\G ϕ!g"β!det g"−1 dg = 0, since I!µν" is

of length 2.

Corollary. We have HomCθ
!St!µν"& ξ" = '0()
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Proof. Suppose that θ ∈ F − NE. By (a) above we need to deter-
mine the ϕ in I#µν$ with (1) ϕ#gh$ = ξ2#h$ϕ#g$ #h ∈ C1

θ$ and (2)∫
C1
θ
ϕ#h$β#deth$−1 dh = 0. It was shown in (b) that up to a scalar there is

a (unique) ϕ satisfying (1), when ξ2 = ω/µ on E1. But St#µν$ exists only
when ω = β3 on E1 and #µ = β/β on E× hence) µ = β2 on E1, namely
ξ2 = β on E1. Consequently (2) implies that ϕ = 0, since ϕ#h$ = ξ2#deth$
on C1

θ .
The case of θ = 1 is proven in [F6, Proposition 29(c)].

Given θ ∈ F −NE, where E/F is a quadratic extension of local fields with
charF &= 2, the anisotropic quaternion (division of rank 2) algebra over F
can be realized as an algebra of 2 × 2 matrices over E, with multiplicative
group

Dθ =
{(

a bθ
b a

)
' a' b ∈ E' aa− bbθ &= 0

}
⊂ GL#2'E$(

This Dθ is an inner form of GL#2'F$: these two groups become isomorphic
over E. Put B′ = *

(
a b
0 d

)
; a' d ∈ E×' b ∈ E+. The group GL#2'E$ acts

transitively by g, x -→ xg−1 on the projective line over E, the stabilizer of
x0 = #0' 1$ is B′. Hence

GL#2'E$ = B′Dθ'

and

GL#2'E$ = B′GL#2'F$ ∪ B′η1GL#2'F$ = B′D1 ∪ B′ηD1(

Here η1 =
(
−1 i
1 i

)
' η =

(
−i i
1 1

)
, where E = F#i$ and i2 ∈ F . These decom-

positions hold also when E/F are global fields. Then Dθ splits precisely at
the v where θ ∈ NE×

v . It is anisotropic at the finite even set ∇ of F-places
where θ ∈ Fv −NEv.

In the local case these decompositions are used in [F4, page 169], and
[F6, Proposition 28], to show the following. Put µ#a$ = µ#a$ #a ∈ D×$ for
a character on E×.

3. Proposition. When θ ∈ F − NE we have HomDθ
#I#µ1'µ2$'!$ &=

*0+ precisely when µ2 = µ−1
1 , and HomDθ

#sp#µ$'!$ &= *0+ when the re-
striction of µ to F× is non-trivial, but µ 1 NE× = 1. Further, HomGL#2'F$
#I#µ1'µ2$'!$ &= *0+ precisely when µ2 = µ−1

1 or µi 1 F× = 1 #i = 1' 2$, and
HomGL#2'F$ #sp#µ$'!$ &= *0+ when µ 1 F× &= 1' µ 1 NE× = 1.

Here sp#µ$ is the unique (square-integrable) subrepresentation of
the induced I#µν1/2' µν−1/2$' ν#x$ = 1x1 #x ∈ E×$, and I#µ1'µ2$
is the GL#2'E$-module normalizedly induced from the character(
a b
0 d

)
-→ µ1#a$µ2#d$ of B′.
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2. FOURIER SUMMATION FORMULAE

The global tool used in our comparisons is a Fourier summation formula.
Such formulae were developed and used already in [J1, J2,F4,F6], with re-
spect to the quasi-split cycles GL!2!F" in GL!2!E" and U!1! 1" in U!2! 1".
Here we shall have a simpler variant of these formulae, with respect to the
anisotropic cycles Dθ and C1

θ = U!2", where θ ∈ F − NE. Fix characters
ω! ξ2 of !1

E/E
1, and as usual, put ω′!z" = ω!z/z" !z ∈ !×

E ".
We first describe the Fourier summation formula on "′ = D!!E"! D =

GL!2", for a test function f ′ =
⊗

f ′
v on "′ such that f ′

v is smooth and
compactly supported on D′

v = D!Ev" modulo the center Z′
v ' E×

v , trans-
forming under Z′

v via ω′
v/ξ

′
2v, with f ′

v = f ′
v
0 for almost all v. Here f ′

v
0 is the

unit element of the convolution algebra #′
v of K′

v = D!REv
"-biinvariant f ′

v;
a choice of a Haar measure is implicit. Let L!D′" be the space of smooth
functions φ( "′ → $ with φ!γzh" = !ω′/ξ′2"!z"φ!h" !h ∈ "′, z ∈ %′ ' !×

E !
γ ∈ D′ = D!E"" and

∫
%′D′\"′ *φ!h"*2 dh < ∞. The convolution operator

!r!f ′"φ"!g" =
∫

"′/%′
f ′!h"φ!gh"dh =

∫

%′D′\"′
Kf ′ !g!h"φ!h"dh

is an integral operator with kernel Kf ′ !g!h" =
∑

γ∈D′/Z′ f ′!g−1γh".
The space L!D′" decomposes as the direct sum of three mutually or-

thogonal invariant subspaces: the space L0!D′" of cusp forms with central
character ω′/ξ′2, the space L1!D′" of functions φ!g" = χ!det g", where
χ is a character of !1

E/E
1 with χ2 = ω′/ξ′2, and the continuous spectrum

Lc!D′". Denote the corresponding kernels by K0!K1!Kc . The Fourier sum-
mation formula is the equality obtained on integrating K!n!h"&!n" on
h ∈ %Dθ\"θ !Dθ = Dθ!F"! "θ = Dθ!!"! % ' !×" and on n =

(
1 x
0 1

)

in N ′\'′ (i.e., on x in !E/E". Here & is a fixed non-trivial character of
!/F , and ψ!n" = &!x+ x".

Using the disjoint decomposition D′ = ⋃
N ′

(
b 0
0 1

)
Dθ, union over b ∈

E×/E1, we note that the “geometric ” expression for the double integral∫∫
Kf ′ !n!h"ψ!n"dndh is

∑

b∈E×/E1

)!b! f ′! ψ"!

)!b! f ′! ψ" =
∫

'′

∫

%\"θ

f ′
(
n

(
b 0
0 1

)
h

)
ψ!n"dndh*

Since f ′ is compactly supported modulo the center, the Bruhat decompo-

sition (and an application of the map g ,→ g
((

0 θ
1 0

)
g
(
0 θ
1 0

)−1)−1
"! shows

that for a given f ′ the sum is finite, and the double integral ranges over a



automorphic forms with anisotropic periods 647

compact in !′ × "\#θ. In the isotropic case, where θ = 1, there is another
term, "#0# f ′# ψ$, in the geometric side; see [F4].

The integral of K1#n#h$ψ#n$ is zero since ψ is non-trivial. The cuspidal
kernel takes the form

K0#g#h$ =
∑

π ′

∑

φ∈π ′

(
π ′#f ′$φ

)
#g$φ#h$'

Here π ′ ranges over the set of cuspidal representations of #′ with central
character ω′/ξ′2, and φ over an orthonormal basis of smooth functions in
π ′. The integral of K0#n#h$ψ#h$ is equal to

∑

π ′
#WψPθ$π ′ #f ′$#

where

#WψPθ$π ′ #f ′$ =
∑

φ∈π ′
Wψ#π ′#f ′$φ$Pθ#φ$

is independent of the choice of the basis &φ' of π ′. Here Wψ#φ$ =∫
N ′\!′ φ#n$ψ#n$dn and Pθ#φ$ =

∫
"Dθ\#θ

φ#h$dh.
Next we record Kc#n#h$. Let µ1# µ2 be unitary characters of $×

E /E
×

with µ1µ2 = ω′/ξ′2. For any s ∈ % consider the Hilbert space H ′#µ1#µ2# s$
of φ( #′ → % with

φ

((
a ∗
0 b

)
g

)
=

∣∣a/b
∣∣s+1/2
E

µ1#a$µ2#b$φ#g$
(
a# b ∈ $×

E + g ∈ #′)

and
∫
&′ ,φ#k$,2 dk < ∞. Here &′ = *K′

v#K
′
v = standard maximal compact

subgroup in D′
v = GL#2#Ev$. The restriction to &′ map φ .→ φ,&′ de-

fines an isomorphism from H ′#µ1#µ2# s$ to H ′#µ1#µ2$ = H ′#µ1#µ2# 0$.
Identify H ′#µ1#µ2# s$ with H ′#µ1#µ2$. Denote by φ#µ1#µ2# s$ the ele-
ment of H ′#µ1#µ2# s$ corresponding to φ#µ1#µ2$ in H ′#µ1#µ2$. Denote
by I ′#µ1#µ2# s$ the representation of #′ on H ′#µ1#µ2# s$ by right transla-
tion, and

E#h# φ#µ1#µ2# s$ =
∑

γ∈B′\D′
φ#γh#µ1#µ2# s$

(
φ = φ#µ1#µ2$ ∈ H ′#µ1#µ2$

)

the associated Eisenstein series. The kernel on the continuous spectrum is
given by

Kc#g#h$ =
1
4π

∑∑

φ

∫ ∞

−∞
E
(
g# I ′#µ1#µ2# it+ f ′$φ#µ2#µ2# it

)

× E#h# φ#µ1#µ2# it$dt'
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Here φ ranges over an orthonormal basis of !′-finite functions in
H ′"µ1"µ2#. The first sum ranges over a set of representatives of the
classes of pairs "µ1"µ2# of unitary characters on "×

E /E
× under the equiva-

lence relation "µ′
1"µ

′
2# ∼ "µ1"µ2# if "µ′

1"µ
′
2# = "µ1ν

it"µ2ν
−it# "t ∈ ##.

Since N ′\$′ and %Dθ\&θ are compact, the integrals

Eψ"φ"µ1"µ2" s# =
∫

N ′\$′
E"n" φ"µ1"µ2" s#ψ"n#dn

and

Eθ"φ"µ1"µ2" s# =
∫

%Dθ\&θ

E"h" φ"µ1"µ2" s#dh

converge, and we conclude that
∫∫

Kc"n"h#ψ"n#dndh is equal to

1
4π

∑

("µ1"µ2#)

∑

φ

×
∫ ∞

−∞
Eψ

(
I ′"µ1"µ2" it+ f ′#φ"µ1"µ2" it

)
Eθ"φ"µ1"µ2" it#dt' (4.1)

For a given f ′ both sums are finite. In the quasi-split case, where θ = 1,
the computation of

∫∫
Kcψ is more involved; see [F4]. In summary, the

Fourier summation formula is the equality of the following.

4. Proposition. For every test function f ′ we have
∑

b∈E×/E1

("b" f ′" ψ# =
∑

π⊂L0"D′#
"WψPθ#π ′ "f ′#+ "4'1#'

Next we develop the analogous formula on G = U"2" 1# and Cθ = U"2#.
Let f =

⊗
fv be a smooth compactly supported function on ' = G""#

modulo % (= center of '" - "1
E#, which transforms under % via ω−1, with

fv = f 0
v for almost all v. Here f 0

v is the unit element in the convolution
algebra (v of the Kv = G"Rv#-biinvariant fv; Rv is the ring of integers
in Fv; a choice of a Haar measure is implicit. Let L"G# be the space of
smooth functions φ. ' → ) with φ"γzg# = ω"z#φ"g# "g ∈ '" z ∈ %"
γ ∈ G = G"F## and

∫
%G\' 0φ"g#02 dg < ∞. The convolution operator

"r"f #φ#"g# =
∫

'/%
f "h#φ"gh#dh =

∫

%G\'
Kf "g"h#φ"h#dh

is an integral operator with kernel Kf "g"h# =
∑

γ∈G/Z f "g−1γh#'
The space L"G# decomposes as the direct sum of three mutually orthog-

onal invariant spaces; the space L0"G# of cusp forms with central character
ω, the space L1"G# of discrete-series non-cuspidal (necessarily non-generic)
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representations, including the functions φ!g" = χ!det g", where χ is a char-
acter of !1

E/E
1 with χ3 = ω, and the continuous spectrum Lc!G". Cor-

respondingly, Kf = K0 +K1 +Kc . The Fourier summation formula is the
equality obtained on integrating K!n$h"ψ!n"ξ!h" on h ∈ "Cθ\#θ $ C1

θ\#1
θ

!#θ and #1
θ denote the groups of adele points on the algebraic groups Cθ

and C1
θ naturally defined to have Cθ and C1

θ as their groups of F-points)
and on

n =




1 x y
0 1 x
0 0 1





in N\$ !$ = N!!"$N = N!F"$ N is the upper unipotent subgroup in
B ⊂ G, thus x ranges over !E/E, and y over !E/E with y + y = xx". Also
we put ψ!n" = %!x+ x".

The “geometric” expression for the double integral
∫∫

Kf ′ !n$h"ψ!n" ·
ξ2!h" over n ∈ N\$ and h ∈ C1

θ\#1
θ is

∑

b∈E×/E1

(!b$ f$ ψ"$

where

(!b$ f$ ψ" =
∫

$

∫

#1
θ

f
(
n diag!b$ 1$ b−1"h

)
ψ!n"ξ2!h"dndh$

by virtue of the disjoint decomposition
⋃

b N diag!b$ 1$ b−1"Cθ = ⋃
b NZ

diag!b$ 1$ b−1"C1
θ of G. Since f is compactly supported modulo the center,

applying the map g )→ gJθg
−1 and using the Bruhat decomposition, we

conclude that for a given f the sum is finite, and the double integral ranges
over a compact in $ × #1

θ. In the isotropic case, where θ = 1, one more
term: (!0$ f$ ψ" of [F6], turns up.

The integral of K1!n$h"ψ!n"ξ2!h" over n is zero since ψ is non-trivial,
and the forms φ contributing to K1 are non-generic:

∫
φ!n"ψ!n"dn = 0

(see [F2]). We have
∫

N\$

∫

C1
θ\#1

θ

K0!n$h"ψ!n"ξ2!h"dndh =
∑

π

(
WψPθ$ ξ

)
!f "$

where

Wψ!φ" =
∫

N\$
φ!n"ψ!n"dn$ Pθ$ ξ!φ" =

∫

C1
θ\#1

θ

φ!h"ξ2!h"dh$

and
(
WψPθ$ ξ

)
π
!f " =

∑

φ∈π
Wψ!π!f "φ"Pθ$ ξ!φ"



650 yuval z. flicker

is independent of the choice of the orthonormal basis !φ" of π. The sum
over π ranges over all cuspidal cyclic #Pθ$ ξ#φ$ %= 0 for some φ ∈ π) generic
#Wψ#φ$ %= 0 for some φ ∈ π$ representations of !.

Finally we record Kc#n$h$. Let µ range over a set of representatives !µ"
of the classes #µ′ ∼ µ if µ′ = µνit #t ∈ "$$ of unitary characters of #×

E /E
×.

For any s ∈ $ consider the Hilbert space H#µ$ s$ of φ* ! → $ with (for
any upper triangular unipotent u)

φ
(
diag#a$ b$ a−1$g

)
= -a-s+1

E µ#a$#ω/µ$#b$φ#g$
(
a ∈ #×

E $ b ∈ #1
E$ g ∈ !

)

and
∫
% -φ#k$-2 dk < ∞. Here % = )Kv$Kv being the standard maximal

compact subgroup in Gv. As usual we use the map φ /→ φ-% to iden-
tify H#µ$ s$ with H#µ$ = H#µ$ 0$, and denote by φ#µ$ s$ the element of
H#µ$ s$ corresponding to φ#µ$ in H#µ$. The action of ! on H#µ$ s$ by
right translation is denoted by I#µ$ s$, and the associated Eisenstein se-
ries is

E#g$ φ$µ$ s$ =
∑

γ∈B\G
φ#γg$µ$ s$ #φ = φ#µ$ ∈ H#µ$$+

Then

Kc#g$h$ =
1
4π

∑

!µ"

∑

φ

∫ ∞

−∞
E
(
g$ I#µ$ it0 f $φ$µ$ it

)
E#h$ φ$µ$ it$dt+

Here φ ranges over an orthonormal basis of %-finite functions in H#µ$.
Since N\& and C1

θ\$1
θ are compact, the integrals

Eψ#φ$µ$ s$ =
∫

N\&
E#n$ φ$µ$ s$ψ#n$dn$

Eθ$ ξ#φ$µ$ s$ =
∫

C1
θ\$1

θ

E#h$ φ$µ$ s$ξ2#h$−1 dh

are convergent, and we conclude that
∫∫

Kc#n$h$ψ#n$ξ2#h$dndh is equal
to

1
4π

∑

!µ"

∑

φ

∫ ∞

−∞
Eψ

(
I#µ$ it0 f $φ$µ$ it

)
Eθ$ ξ#φ$µ$ it$dt+ #5+1$

For a given f , both sums are finite. In the quasi-split case where θ = 1 and
C1
θ = U#1$ 1$, the computation of

∫∫
Kcψξ2 is more involved; see [F6]. The

Fourier summation formula for the pair #G$Cθ$ is the equality in

5. Proposition. For every test function f we have
∑

b∈E×/E1

,#b$ f$ ψ$ =
∑

π⊂L0#G$
m#π$

(
WψPθ$ ξ

)
π
#f $+ #5+1$0

here m#π$ denotes the multiplicity of π in the space of cusp forms on G\!0
namely m#π$ = Hom!#π$L0#G$$+
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3. MATCHING FUNCTIONS

For f =
⊗

fv, the global integral !!b" f" ψ"" b = !bv" ∈ !×
E /!

1
E , is the

product over v of

!!bv" fv" ψv" =
∫

Nv

∫

C1
θ" v

fv
(
diag!bv" 1" b

−1
v "h

)
ψv!n"ξ2v!h"dndh&

ψv is the component of ψ at v" ξ2v is that of ξ2, and bv ranges over E×
v /E

1
v ,

in the local case. Similarly, for f ′ =
⊗

f ′
v on "′ = GL!2"!E" and b =

!bv" ∈ !×
E /!

1
E , the integral !!b" f ′" ψ" is the product, over all places v of

F , of

!!bv" f ′
v" ψv" =

∫

N ′
v

∫

Dθ" v

f ′
v

(
diag!bv" 1"h

)
ψv!n"dndh&

Definition. (1) We write !θ!bv" f ′
v" ψv" for !!bv" f ′

v" ψv", and
!θ!bv" fv" ψv" for !!bv" fv" ψv", when the dependence on θ needs to
be made explicit.

(2) Denote by Cv = C∞
c !Gv"ω

−1
v " the space of complex valued

smooth functions fv on Gv which transform via ω−1
v on Zv and are

compactly supported modulo Zv.

(3) Denote by C ′
v = C∞

c !D′
v" ξ

′
2v/ω

′
v" the space of complex valued

smooth functions f ′
v on D′

v which transform via ξ′2v/ω
′
v on Z′

v and are com-
pactly supported modulo Z′

v.

(4) The functions fv ∈ Cv and f ′
v ∈ C ′

v are called matching if for every
b in E×

v /E
1
v we have !!b" fv" ψv" = )b)1/2v !!b" f ′

v" ψv".

To relate the Fourier summation formulae we need to show that there
are sufficiently many matching functions.

6. Proposition. For every fv ∈ Cv there is a matching f ′
v ∈ C ′

v, and for
every f ′

v ∈ C ′
v there is a matching fv ∈ Cv.

Proof. Consider first the case of v such that Dθ" v and Cθ" v are
anisotropic. Fixing such v we pass to local notations (i.e., omit v). The
decomposition D′ = N ′A′Dθ implies that !!b" f ′" ψ" is locally constant
and compactly supported on E×/E1, and that given any locally con-
stant and compactly supported function !′!b" on E×/E1 there is such
f ′ with !!b" f ′" ψ" = !′!b" for all b ∈ E×. Similarly the decomposi-
tion G = NAC1

θ implies that !!b" f" ψ" is locally constant and compactly
supported on b ∈ E×/E1, and any compactly supported locally constant
function !!b" on E×/E1 is so obtained. Since b *→ )b)1/2 is locally constant,
the proposition follows for such v.
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For all other v the groups Dθ" v and Cθ" v are isotropic, and the proposi-
tion coincides with Proposition 7 of [F6]. Two cases are considered there,
depending on whether v splits in E, or not. In both cases it is shown that
there exists a function ϑψv

!b", and for each fv there is a complex num-
ber %!0" fv" ψv" (for each f ′

v there is %!0" f ′
v" ψv"", such that %!b" fv" ψv"

is locally constant on E×
v /E

1
v , it is 0 for sufficiently small %b%v, and equal to

%b%v%!0" fv" ψv"ϑψv
!b" for all %b%v ≥ B!fv". Moreover, all locally constant

functions %!b" on E×
v /E

1
v which vanish if %b%v is small and are equal to

%b%v%!0"ϑψv
!b" for all %b%v ≥ B!> 0", are of the form %!b" fv" ψv" for some

such fv (see [F6, Lemmas 8 and 10]). Also %!b" f ′
v" ψv" is locally constant on

E×
v /E

1
v , it is 0 if %b%v is small enough, and equal to %b%1/2v %!0" f ′

v" ψv"ϑψv
!b"

for all %b%v ≥ B!f ′
v". Moreover, all locally constant functions %′!b" on

E×
v /E

1
v which are zero if %b%v is small and are equal to %b%1/2v %′!0"ϑψv

!b" for
all %b%v ≥ B′ !> 0", are of the form %!b" f ′

v" ψv" for some such f ′
v (see [F6,

Lemmas 9 and 11]). These characterizations imply Proposition 7 of [F6],
which is our proposition, when v is a place of F such that θ ∈ NEv/Fv

E×
v (in

particular, if v splits in E).

The characterizations described in the proof of Proposition 6 permit re-
lating Fourier orbital integrals on Gv, with respect to different Cθ" v, and
those on D′

v, with respect to different Dθ" v.

Corollary. Let Ev/Fv be a quadratic extension of local fields, charFv (=
2. Fix θ ∈ Fv −NEv.

(1) For every f θ
v ∈ C∞

c !Gv"ω
−1
v " there is f 1

v ∈ C∞
c !Gv"ω

−1
v "; and for

every f 1
v ∈ C∞

c !Gv"ω
−1
v " such that %1!b" f 1

v " ψv" is compactly supported on
E×
v /E

1
v , namely it is 0 for all %b%v ≥ B!f 1

v ", there is f θ
v ∈ C∞

c !Gv"ω
−1
v "; such

that %θ!b" f θ
v " ψv" = %1!b" f 1

v " ψv" for all b ∈ E×
v /E

1
v .

(2) For every f ′
v
θ ∈ C∞

c !D′
v" ξ

′
2v/ω

′
v" there is f ′

v
1 ∈ C∞

c !D′
v" ξ

′
2v/ω

′
v",

and for every f ′
v
1 ∈ C∞

c !D′
v" ξ

′
2v/ω

′
v" such that %1!b" f ′

v
1" ψv" is com-

pactly supported on E×
v /E

1
v there is f ′

v
θ ∈ C∞

c !D′
v" ξ

′
2v/ω

′
v" such that

%θ!b" f ′
v
θ" ψv" = %1!b" f ′

v
1" ψv" for all b ∈ E×

v /E
1
v .

In other words, for θ ∈ Fv − NEv, the %θ!b" fv" ψv" and %θ!b" f ′
v" ψv"

are the compactly supported functions amongst the %1!b" fv" ψv" and
%1!b" f ′

v" ψv"; the latter functions—in general—will have a specific type of
asymptotic behaviour as %b%v → ∞.

The global test functions f and f ′, for which we need to relate the ge-
ometric sides of the Fourier summation formulae, have local components
which are the unit elements in the respective Hecke algebras of spherical
functions, for almost all v. For almost all v the groups Cθ and Dθ are quasi-
split over Fv since θ!∈ F −NE/FE" lies in NEv (for almost all v). Moreover
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Ev/Fv is unramified, v is finite, and !v is unramified (the maximal sub-
ring of Fv on which !v is 1 is the ring Rv of integers), for almost all v.
Propositions 14 and 16 of [F6] assert that these unit elements !f 0

v ∈ Cv and
f ′
v
0 ∈ C ′

v$ are matching. More generally, the correspondence of unramified
local representations stated in the introduction defines a homomorphism
of the convolution Hecke algebras "v ⊂ Cv and "′

v ⊂ C ′
v of spherical

!Kv = G!Rv$- and K′
v = GL!2!R′

v$-biinvariant) functions. The isolation
argument used to derive the representation theoretic applications from the
equality of the Fourier summation formulae is based on the fact (again
proven in [F6, Propositions 14 and 16]) that such corresponding spherical
functions are matching. Since these results are used here, we briefly recall
their statement.

In the case where v stays prime in E, and Ev/Fv! ψv! ωv! ξv are unram-
ified, we have ωv = ξv = 1, and the correspondence relates the unrami-
fied D′

v-module I ′!µ$!= I ′!µ!µ−1$$ with the unramified Gv-module I!µ$,
where µ is an unramified character of E×

v . The dual map D( "v → "′
v of

Hecke algebras is defined by f ′
v = D!fv$ if tr I ′!µ! f ′

v$ = tr I!µ! fv$ for all
unramified characters µ of E×

v . The theory of the Satake transform implies
that the function fv ∈ "v (resp. f ′

v ∈ "′
v$ is uniquely determined by the val-

ues of the traces tr I!µ! fv$ (resp. tr I ′!µ! f ′
v$$, where µ runs through the

variety of unramified characters of E×
v . Proposition 14 of [F6] asserts that

the corresponding fv ∈ "v and f ′
v = D!fv$ ∈ "′

v are matching.
In the case where v is a finite place which splits in E, we have Ev =

E ⊗F Fv = Fv ⊕ Fv, and E1
v = ,!z! z−1$- z ∈ F×

v ., since a = !a2! a1$ if a =
!a1! a2$ ∈ Ev. Put ω0v!z$ = ωv!!z! z−1$$ and ξ0v!z$ = ξ2v!!z! z−1$$. A char-
acter µ of E×

v is a pair !µ1!µ2$ of characters µi of F×
v . The correspondence

relates the unramified GL!2!Fv$-module π ′
v = I ′!µ$ = I ′!µ1!µ2$ (more

precisely the D′
v-module π ′

v × π̌ ′
v) with µ1µ2 = ω0v/ξ0v, to the unrami-

fied GL!2!Fv$ = Gv-module πv = I!µ1!µ2! ξ0v$, whose central character
is ω0v. Beware: not all principal series unramified Gv-modules with central
character ω0v are obtained by the correspondence, since one of the three in-
ducing characters is taken to be ξ0v. The dual map D( "v → "′

v of Hecke
algebras is defined by f ′

v = D!fv$ if tr I ′!µ1!µ2- f ′
v$ = tr I!µ1!µ2! ξ0v- fv$

for all unramified characters µ1!µ2 of F×
v with µ1µ2 = ω0v/ξ0v. The the-

ory of the Satake transform implies that the function f ′
v ∈ "′

v is uniquely
determined by the values of the traces tr I ′!µ1!µ2- f ′

v$ for all unramified
µ1!µ2 with µ1µ2 = ω0v/ξ0v. But the map D( "v → "′

v is not injective
since fv will be uniquely determined by the traces tr I!µ1!µ2!µ3- fv$ or all
triples of characters µi of F×

v , but not by the subset where µ3 is limited to
ω0v/ξ0v. Proposition 16 of [F6] asserts the following.

7. Proposition. Corresponding fv ∈ "v and f ′
v = D!fv$ ∈ "′

v are match-
ing.
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In fact the proof of [F6, Proposition 16] is carried out (1) only with
ω0v = ξ0v = 1, but this restriction was made there merely to simplify the
notations and is easily removable; and (2) only for fv ∈ !v with value zero
at diag"πv$ 1$ 1# and diag"π2

v $ πv$ 1#, but this restriction does not limit the
applicability of our formula, since all f ′

v ∈ !′
v are nevertheless obtained via

D from this set of fv’s.

4. GLOBAL CYCLICITY

We begin with the following separation argument.

8. Proposition. Let V be a finite set of F-places containing all v which
are ramified in E, those with θ ∈ Fv −NEv, and those where ω$ ξ or ψ are
ramified. For each v in V let fv ∈ Cv and f ′

v ∈ C ′
v be matching functions.

Put f = "
⊗

v∈V fv# ⊗ "
⊗

v '∈V f 0
v # and f ′ = "

⊗
v∈V f ′

v# ⊗ "
⊗

v '∈V f ′
v
0#' At each

v /∈ V fix corresponding unramified D′
v- and Gv-modules π̃ ′

v and π̃v. Then
∑

π ′⊂L0"D′#

(
WψPθ

)
π ′ "f ′# =

∑

π⊂L0"G#
m"π#

(
WψPθ$ ξ

)
π
"f #' "8'1#

Here π ′ ranges over all cuspidal representations of "′ whose component at
v '∈ V is π̃ ′

v, while π ranges over a set of representatives for the equivalence
classes of cuspidal representations of # whose component at v '∈ V is π̃v.

Proof. Consider f V =
⊗

v '∈V fv, where fv ∈ !v for all v '∈ V , and fv = f 0
v

for almost all v '∈ V , and f ′V =
⊗

v '∈V f ′
v, where f ′

v = D"fv# ∈ !′
v. Note

that f ′
v
0 = D"f 0

v #, and that fv and f ′
v are matching by Proposition 7. Note

that fv ∗ f 0
v = fv and f ′

v ∗ f ′
v
0 = f ′

v for all v '∈ V . Since ("b$ f ∗ f V $ ψ# =
("b$ f ′ ∗ f ′V $ ψ# for all b ∈ E×/E1 (since +b+ = 1 by the product formula
on a global field), Propositions 4 and 5 imply that

∑

π ′⊂L0"D′#

(
WψPθ

)
π ′

(
f ′ ∗ f ′V )+ "4'1#

=
∑

π⊂L0"G#
m"π#

(
WψPθ$ ξ

)
π
"f ∗ f V #+ "5'1#

For each v '∈ V , the operator π ′
v"f ′

v# acts on φ ∈ π ′ "⊂ L0"D′## as zero
unless φ is K′

v = GL"2$R′
v#-right invariant, and then it acts as the scalar

trπ ′
v"f ′

v#. Note that if π ′ contributes to the sum, then Pθ"φ# '= 0 for some
φ, namely π ′ is distinguished. Hence so is each component of π ′, and at
the split places we have that π ′

v = π ′′
v × π̌ ′′

v , and trπ ′
v"f ′

v# = trπ ′′
v "f1v ∗

f ∗
2v#, if f ′

v""g1$ g2## = f1v"g1#f2v"g2#, and f ∗
2v"g# = f2v"g−1#. To alleviate the

notations we take f2v = f 0
v and write π ′

v = π ′
v × π̌ ′

v and f ′
v = "f ′

v$ f
0
v #, so



automorphic forms with anisotropic periods 655

that π ′
v denotes also the underlying GL"2"Fv#-module, and f ′

v denotes the
underlying function on GL"2"Fv#. It then follows that

(
WψPθ

)
π ′ "f ′ ∗ f ′V # = trπ ′V "f ′V # ·

(
WψPθ

)
π ′ "f ′#"

where trπ ′V "f ′V # = ∏
v %∈V trπ ′

v"f ′
v#. This is zero unless π ′

v is unramified
"v %∈ V #.

Similarly we have
(
WψPθ" ξ

)
π
"f ∗ f V # = trπV "f V # ·

(
WψPθ" ξ

)
π
"f #"

and this is zero unless πv is unramified for all v %∈ V . At a place v %∈ V
which stays prime in E, the component πv is the unramified constituent of
I"µv#, for some µv' E×

v → !×, and trπv"fv# = trπ ′
v"D"fv## where π ′

v is
the unramified constituent of I ′"µv#.

Each π which contributes to the sum is cyclic (since Pθ" ξ"φ# %= 0 for
some φ in π), hence so is each of its components. It is also generic (since
Wπ"φ# %= 0#, and each component πv of an automorphic representation is
unitarizable. Consequently − by Proposition 0 of [F5]—if v splits in E then
the generic unitarizable cyclic unramified GL"3"Fv#-module πv is of the
form I"µ1"µ2" ξ0v#" µi' F×

v → !× (unramified with µ1µ2ξ0v = ω0v#, and
trπv"fv# = trπ ′

v"D"fv## where π ′
v = I ′"µ1"µ2#.

The difference of the sums over π and π ′ can be written then as
∑

π ′⊂L0"D′#

(
WψPθ

)
π ′ "f ′# · trπ ′V "f ′V #

=
∑

π⊂L0"G#
m"π#

(
WψPθ" ξ

)
π
"f # · trπ ′V "f ′V #,

the difference (5.1)–(4.1) of integrals can similarly be expressed as an in-
tegral over s ∈ "/"log qv1#

−1# involving tr I ′"µv1
νisv1" f

′
v1
# for some v1 %∈ V

which stays prime in E. A standard argument of “generalized linear inde-
pendence of characters” (on GL"2#; see, e.g., Theorem 2 of [FK]), based on
the absolute convergence of the two sums and two integrals here, the unitar-
ity of all automorphic representations present, and the Stone–Weierstrass
theorem, implies (that "4)1# = "5)1# and) the proposition as stated.

Remark. By the rigidity and the multiplicity one theorems for GL"2#,
the sum over π ′ consists of at most one term.

We need to relate the global distributions with products of local ones.
This is done next.

If πv is irreducible then the dimension of each of the complex spaces
HomNv

"πv" ψv# and HomCθ" v
"πv" ξv# is at most one (see the Remarks at

the end of the Appendix to [F6]). If the first space is non-zero we choose
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a generator Wψv
and say that πv is generic. If the second space is non-

zero we choose a generator Pθ$ ξv
and say that πv is Cθ$ v-cyclic. If πv is

unramified then its space contains a Kv-fixed vector φ0
v. When ψv and ξv

are unramified the linear forms Wψv
and Pθ$ ξv

are non-zero at φ0
v, and

they can be normalized to take the value 1 there. This φ0
v is used in the

presentation of a cuspidal π as a product
⊗

πv; its space is spanned by
local products

⊗
φv, with φv ∈ πv for all v and φv = φ0

v for almost all v.
The linear forms Wψ and Pθ$ ξ on π are scalar multiples of

⊗
Wψv

and⊗
Pθ$ ξv

.
Let "φ = φ#πv$% be a Kv-finite orthonormal basis of the space of πv.

Then
(
Wψv

Pθ$ ξv

)
πv
#fv$ =

∑

φ

Wψv
#πv#fv$φ$Pθ$ ξv

#φ$

defines a linear form on Cv = C∞
c #Gv$ω

−1
v $. This functional is independent

of the choice of the basis "φ%, it is zero unless πv is generic and cyclic, and
for inequivalent πvi #1 ≤ i ≤ k$ the #Wψv

Pθ$ ξv
$πvi

are linearly independent.
It transforms under left translations of fv by Nv via ψv, and under right
translations of fv by Cθ$ v via ξv.

For every cuspidal representation π, non-trivial character ψ, element θ ∈
F×$ and character ξ, there is a complex number c#π$ψ$ ξ$ θ$ such that

(
WψPθ$ ξ

)
π

(⊗
fv
)
= c#π$ψ$ ξ$ θ$

∏

v

(
Wψv

Pθ$ ξv

)
πv
#fv$(

Both sides are zero unless all πv are generic and cyclic. The cuspidal π is
(automorphically) cyclic precisely when all πv are cyclic, and c#π$ψ$ ξ$ θ$ *=
0. This constant depends on the various normalizations involved, but note
that when ξv$ ψv$ and πv are unramified, and πv is generic and cyclic, we
have that #Wψv

Pθ$ ξv
$πv

#fv$ = trπv#fv$ for spherical fv ∈ !v.

9. Proposition. Let π ′ be a "θ-distinguished cuspidal representation of
"′ = GL#2$#E$ with central character ω′/ξ′2. Then π ′ corresponds to a $θ-
cyclic generic cuspidal representations π of % = U#2$ 1,#$ with central char-
acter ω.

Proof. We choose V and π̃ ′
v = π ′

v for all v *∈ V so that π ′ parametrizes
the only term on the left of (8.1). We need to show for each v ∈ V that there
is f ′

v ∈ C ′
v = Cv#D′

v$ ξ
′
2v/ω

′
v$ (it matches some fv ∈ Cv by Proposition 6)

with #Wψv
Pθ$ v$π ′

v
#f ′

v$ *= 0, where this last distribution is defined in close
analogy to the one on Gv. Indeed, having shown this we would conclude
that the right side of (8.1) is not identically zero, and any π occurring
non-trivially on the right would be cuspidal generic $θ-cyclic with central
character ω, corresponding to π ′.



automorphic forms with anisotropic periods 657

So we fix v ∈ V , let φ1 be a smooth vector in π ′
v with Pθ$ v#φ1$ %= 0, and

φ2 a smooth vector in π ′
v with Wψv

#φ2$ %= 0. We may assume that either
φ1 = φ2 or that φ1 is orthogonal to φ2. Each of φ1$ φ2 can be multiplied by
a scalar to have length 1, and we extend &φ1$ φ2' to an orthonormal basis
&φi' of π ′

v. Since π ′
v is irreducible and admissible, the set &π ′

v#f ′
v$( f ′

v ∈ C ′
v'

spans the algebra of endomorphisms of π ′
v, and we may choose f ′

v such that
π ′
v#f ′

v$φi = δi$ 1φ2. Then
(
Wψv

Pθ$ v

)
π ′
v
#f ′

v$ = Wψv

(
π ′
v#f ′

v$φ1

)
Pθ$ v#φ1$ = Wψv

#φ2$Pθ$ v#φ1$ %= 0$

as required.

In the opposite direction, we have

10. Proposition. Let π be a !θ-cyclic cuspidal generic representation of
" = U#2$ 1(#$ with central character ω. Then π corresponds to a unique
$θ-distinguished cuspidal representation π ′ of $′ = GL#2$#E$ with central
character ω′/ξ′2.

Proof. We apply (8.1) with a suitable set V and with π̃v equals πv for
each v %∈ V . To distinguish π of the proposition from the other representa-
tions which index contributions to the right side of (8.1), we denote it by π̃.
As noted in the proof of Proposition 8, each component π̃v of π̃ is generic,
unitarizable, and cyclic, hence when v %∈ V it is unramified and it corre-
sponds to a generic unitarizable distinguished unramified representation π̃ ′

v
of D′

v = GL#2$Ev$. We need to show that for some choice of fv#v ∈ V $,
the right side of (8.1) is non-zero. Recall that #WψPθ$ ξ$π#f $ is the product
of a constant c#π$ψ$ ξ$ θ$, which is non-zero when π is π̃ since π̃ is cyclic
and generic, and

∏
v∈V #Wψv

Pθ$ ξv
$πv

#fv$, since #Wψv
Pθ$ ξv

$πv
#f 0

v $ = 1 for all
v %∈ V .

Consider a place v ∈ V such that π̃v is supercuspidal. Such v is finite
and it stays prime in E (since a supercuspidal GL#3$Fv$-module cannot be
cyclic, by Proposition 0 of [F5], whose proof relies heavily on Bernstein–
Zelevinsky [BZ2] and Gelfand–Kazhdan [GK]). Since π̃v is generic and
cyclic its space contains vectors φ1 and φ2 of length 1 with Pθ$ ξv

#φ1$ %= 0
and Wψv

#φ2$ %= 0. We may assume that φ1 = φ2 or that φ2 is orthog-
onal to φ1. Extend &φ1$ φ2' to an orthonormal basis of π̃v. The ma-
trix coefficient f̃v#x$ = #φ2$ ˇ̃π#x$φ1$ is a supercusp form which satisfies
π̃v#f̃v$φ = 0 for all φ orthogonal to φ1, and π̃v#f̃v$φ1 = φ2 (up to a non-
zero multiple). Consequently #Wψv

Pθ$ ξv
$πv

#f̃v$ = 0 for all πv inequivalent
to π̃v, and #Wψv

Pθ$ ξv
$π̃v

#f̃v$ %= 0. Using such f̃v at each place v ∈ V where
π̃v is supercuspidal, we conclude that the sum on the right of (8.1) ex-
tends only over the π whose components at these v ∈ V are the super-
cuspidal π̃v.
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Next we consider a place v ∈ V such that π̃v is not supercuspidal. Then
π̃v is the unique generic constituent in the composition series of an induced
representation I"µv# if v stays prime, or Iv × Ǐv" Iv = I"ρ2v × ω0v/ξ0v#
and ρ2v is a generic unitarizable irreducible representation of GL"2"Fv#
with central character ξ0v (if v splits in E). As usual, we choose a ba-
sis φ1" φ2" ' ' ' for π̃v, and f̃v ∈ C∞

c "Gv# with π̃v"f̃v#φi = δi" 1φ2 and
"Wψv

Pθ" ξv
#π̃v

"f̃v# &= 0' Applying Bernstein’s decomposition theorem (which
is based on Bernstein’s analysis of the Bernstein center, see [F4, pp. 165–
166]), we may replace here f̃v by its component f̃v"+ ∈ Cv , where +
is the connected component +"π̃v# of the infinitesimal character χ"π̃v#
of π̃v. Then πv"f̃v"+# acts as 0 on any πv with χ"πv# &∈ +"π̃v#, and
π̃v"f̃v"+# acts as π̃v"f̃v# on π̃v. Using this f̃v"+ for fv in (8.1) we con-
clude that the sum over π on the right of (8.1) ranges precisely over all
π whose components at the v &∈ V , or at the v ∈ V where π̃v is super-
cuspidal, are the same as that of π̃; but at the remaining finite set of
places where π̃v is the generic constituent of the full induced I"µv# (if
v stays prime), or I"µ1v"µ2v"ω0v/ξ0v# or I"ρ2v"ω0v/ξ0v#" ρ2v supercus-
pidal (if v splits), we only know that πv is a constituent of I"µvν

s
v# or

I"µ1vν
s
v"µ2v" ν

−s
v "ω0v/ξ0v# or I"χv ⊗ ρ2v"ω0v/ξ0v# (χv unramified with

χ2
v = 1) for some s ∈ ! (as usual νv"x# = )x)v#. So far it appears that

the sum over π on the right of (8.1) may range over a set larger than
π̃ alone, and cancellations may cause this sum on the right of (8.1) to
vanish.

At this stage we use the rigidity theorem for automorphic representations
of " = U"2" 1#"## from [F2] and [F3], which asserts, in particular, that:
there exists at most one (equivalence class of) cuspidal representation of "
whose components are specified at almost all places, and such that at the
remaining finite set of places the components are the generic constituents of
fully induced Gv-modules. Note that this is a weak form only, of the rigidity
theorems of [F2,F3]. We conclude that with our choice of fv"v ∈ V # there
is only one non-zero term in the sum of the right side of (8.1), it is indexed
by our π̃, and so the left side of (8.1) is non-zero. By the rigidity theorem
for GL"2# the cuspidal (hence generic) distinguished π ′ which parametrizes
the single term on the left of (8.1), is unique. It corresponds to our π̃, and
the proposition follows.

Propositions 9 and 10 imply that the correspondence is a bijection be-
tween the set of $θ-distinguished cuspidal representations π ′ of GL"2"#E#
with central character ω′/ξ′2, and the set of packets of generic cuspidal !1

θ-
cyclic representations π of " with central character ω.

Theorem 0.2 of [FH] (which is quoted as Theorem 0.3 in the Intro-
duction) asserts that a cuspidal representation π ′ of GL"2"#E# is $θ-
distinguished precisely when it is $1 + GL"2"##-distinguished, and its
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component π ′
v at each v in the set ∇ (of places where θ ∈ Fv − NEv% is

not of the form I ′&µ1#µ2% with µi trivial on F×
v .

The Main Global Theorem of [F4], which is the quasi-split (θ = 1%
analogue of our Propositions 9 and 10, asserts that the correspondence
establishes a bijection from the set of equivalence classes of automor-
phic representations of GL&2#!E% with central character ω′/ξ′2 which
are either cuspidal and GL&2#!%-distinguished, or induced of the form
I ′&µ′

1#µ
′
2%# µi( !1

E/E
1 → "×#µ1 *= µ2#µ

′
i&z% = µi&z/z% &z ∈ !×

E %, to the
set of packets of generic cuspidal "1

1 = U&1# 1+!%-cyclic representations of
# = U&2# 1+!% with central character ω. Consequently we have:

Corollary. The packets of the "1
θ-cyclic generic cuspidal #-modules are

precisely the packets of the "1
1-cyclic generic cuspidal #-modules which cor-

respond to the cuspidal $1 , GL&2#!%-distinguished GL&2#!E%-modules,
whose components at the v where θ ∈ Fv −NEv are not of the form I ′&µ′

1#µ
′
2%

with µ′
i trivial on F×

v .

This can also be stated in terms of the endoscopic κ-lifting of [F2] from
U&1# 1%. Here κ( !×

E /E
×N!×

E → "× is a character whose restriction to
!×/F×N!×

E is nontrivial. The Global Theorem of [F6] asserts that the
packets of the generic "1

1-cyclic cuspidal representations of # with central
character ω are the image under the κ-endoscopic lifting of the packets
of the cuspidal representation ρ of "1

1 = U&1# 1+!% with central character
ω/ξ2κ. The packets of the generic "θ-cyclic cuspidal representations of #
with central character ω are the κ-endo-lifts of those cuspidal represen-
tations π0 of "1

1 = U&1# 1+!% with central character ω/ξ2κ which are not
of the form π0&µ1#µ2%# µi( !×

E /E
×!× → "×# µ1 *= µ2 (those which base

change via the κ-unstable base change lifting to I ′&µ′
1#µ

′
2% on GL&2#!E%%,

and whose components at the v where θ ∈ Fv − NEv is not of the form
π0&µ1v#µ2v%# µi( E1

v → "×&i = 1# 2% (those which base-change (via the κv-
unstable base-change lifting) to I ′&µ′

1v#µ
′
2v% on GL&2#Ev%; see [F2, Sects.

3.7, 3.8, p. 49]).

5. LOCAL CYCLICITY

As in [F6], where the case of θ = 1 is considered, we define also a local
correspondence, by means of an identity of Whittaker–Period distributions
on the two groups in question. The case of θ = 1 considered in [F6], we
are mainly concerned here with θ ∈ F −NE, and v with θ ∈ Fv −NEv.

11. Proposition. For every component π̃v of a generic "1
θ-cyclic cuspidal

representation π̃ of # with central character ω, there exists a unique Dθ# v-
distinguished generic representation π̃ ′

v of GL&2#Ev% with central character
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ωv/ξ2v, which is a component of a cuspidal !θ-distinguished representation
π̃ ′ of GL"2%"E# with central character ω/ξ2; and for each such component
π̃ ′
v there exists a unique finite set $πv% of generic C1

θ% v-cyclic representations of
Gv, and constants c"πv% ψv% ξv% θ#, such that the πv lie in one packet (see [F2])
uniquely determined by π̃ ′

v and are components of #1
θ-cyclic generic cuspidal

representations π̃ of $; such that for all matching f ′
v ∈ C ′

v and fv ∈ Cv we have
(
Wψv

Pθ% v

)
π̃ ′
v
"f ′

v# =
∑

πv∈$πv%
c
(
πv% ψv% ξv% θ

)(
Wψv

Pθ% ξv

)
πv
"fv#' "11'1#

Proof. Given such global π̃ or the corresponding π̃ ′, we set up the iden-
tity (8.1) such that π̃ ′ parametrizes the only term on the left, and π̃ occurs
on the right. At each v1 '= v in V we choose fv2 as in the proof of Propo-
sition 10 to have that "Wψv1

Pθ% ξv1
#π̃v1

"fv1# '= 0, and that the π which occur
on the right of (8.1) will have the component π̃v1

(at each v1 ∈ V% v1 '= v#.
As in the proof of Proposition 10 we use here the rigidity theorem for
U"2% 1(E/F# of [F2]. Starting from π̃ ′

v we proceed as in Proposition 9. In
any case we obtain (11.1) for all matching f ′

v and fv, where the sum on
the right ranges over a subset of the packet of π̃v by virtue of the rigid-
ity theorem for U"2% 1(E/F# of [F2]. This subset consists only of generic
C1
θ% v-cyclic representations. The $πv% and π ′

v are uniquely determined by
each other since the packet of $πv% is determined by π ′

v via base-change
and endoscopic liftings and the Whittaker–Period distributions are linearly
independent.

Definition. A Dθ% v-distinguished generic representation π ′
v of

GL"2%Ev# and a C1
θ% v-cyclic generic representation πv of Gv = U"2% 1(Fv#

are said to correspond if they satisfy the relation (11.1) for all matching f ′
v

and fv.

We shall use this definition of correspondence only for representations
for which the identity of the Whittaker–Period distributions is established,
namely this is done below only for square-integrable π ′

v and πv. It is perhaps
best at this stage to define the local correspondence as the composition of
the (inverse of the) κv-unstable base change from Dθ% v = U"2%Fv# to D′

v =
GL"2%Ev#, and the κv-endoscopic lifting from Dθ% v to Gv = U"2% 1(Fv#.

Next we shall list the generic C1
θ% v-cyclic Gv-modules, and relate them to

the generic Dθ% v-distinguished D′
v-modules. This has already been done in

[F6] when θ = 1, hence we assume here that θ ∈ Fv − NEv, in particular
that Ev = E ⊗F Fv is a field. We also compare the notion of being C1

θ% v-
cyclic with being C1

1% v-cyclic, for a generic representation of Gv. To simplify
the notations, we use local notations (drop v) in the following.

Let E/F be a quadratic extension of non-archimedean local fields with
charF '= 2, and θ ∈ F −NE.
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12. Proposition. (a) The correspondence is a bijection relating the
generic Dθ-distinguished irreducible admissible representations π ′ of GL"2#E#
with the packets of the generic C1

θ-cyclic irreducible admissible representations
π of U"2# 1$F#.

(b) The packet of a generic C1
θ-cyclic π contains a C1

1 -cyclic generic π1.
The packet of a generic C1

1 -cyclic π1 contains a generic C1
θ-cyclic π precisely

when π1 does not correspond to any π ′ = I ′"µ′
1#µ

′
2## µ′

i"z# = µi"z/z#"z ∈
E×## µi' E1 → !×# µ1 )= µ2, namely π1 is not the κ-endoscopic lift of any
π0"µ1#µ2## µ1 )= µ2, on U"2#F#.

Remark. Here π = π1 when π1 is not supercuspidal, and perhaps also
for supercuspidal π1, but this is not shown here.

Proof. We shall go through the list of induced representations, their
constituents, and supercuspidals, to verify our claims.

(1) If π ′ is induced, then HomDθ
"π ′# 1# )= *0+ when π ′ = I ′"µ#µ−1#,

by Proposition 3. When µ = ω/ξ2 on E1 (equivalently µ′ = ω′/ξ′2 on E×#,
π ′ corresponds to π = I"µ#. All induced π with HomC"π# ξ2# )= 0 are
of the form π = I"µ## µ = ω/ξ2 on E1, if C = C1

θ and if C = C1
1 , by

Proposition 2′. Both (a) and (b) follow in this case.

(2) If π is the Steinberg St"µν#, then HomC"St"µν## ξ2# = *0+ by
the corollary to Proposition 2, where C = C1

θ or C = C1
1 .

(3) The reducible induced π = I"µ# are listed in [F1, (3.2), page 558].
There are three cases of reducibility. The third in that list is the Steinberg,
disposed of in (2) above. If µ is unitary, reducibility occurs precisely when
µ-F× = 1 and µ3 )= ω′. Since I"µ# is tempered, it is the direct sum of
its two irreducible constituents, denoted in [F1, (3.2(1))], by π+ and π−.
Then (1) above asserts that the packet *π+# π−+, which corresponds to
I ′"µ#µ−1##µ = ω/ξ2 on E1# µ )= ξ′2 on E×, contains a generic Ci-cyclic
representation, with i = 1 and with i = θ. Since only one of π+# π− is
generic, namely π+, it is both C1

θ-cyclic and C1
1 -cyclic.

(4) The square-integrable (“special” or “Steinberg”) subrepresenta-
tion sp"µκ# of I ′"µκν1/2# = I ′"µκν1/2#µκν−1/2#, where µ' E× → !× and
κ' E×/NE× → !× has κ-F× )= 1, is Dθ-distinguished (and GL"2#F#-
distinguished) precisely when µ-F× = 1, by Proposition 3. It is the κ-base-
change of a special representation of U"1# 1$F#, which corresponds to a
one-dimensional representation of the anisotropic inner form U"2$F#. Us-
ing the trace formula on an anisotropic group U"2$"# over a global field
whose component at some place is our local U"2$F#, we can view this spe-
cial representation as a component of a global cuspidal representation, then
lift the global representation via the κ-base-change map as in [F4] to a cus-
pidal representation of #′ which is #θ-distinguished, whose component at
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our local place is our sp!µκ". Proposition 11, together with the usage of
the rigidity theorem on U!2" 1#!" of [F2] explained in the proof of Propo-
sition 10, implies that sp!µκ" corresponds to the square-integrable subrep-
resentation π+

µ of the induced I!µκν1/2" of [F1, (3.2(2))]; this I!µκν1/2"
is reducible precisely when µ$F× = 1, and its quotient is non-tempered
and non-generic, denoted by π×

µ in [F1, (3.2(2))]. Moreover, this π+
µ is the

only term in the sum on the right of (11.1), and it is generic and C1
θ-cyclic

(and also C1
1 -cyclic). This completes the proof of (a) and (b) for the non-

supercuspidal π (and π ′). Note that the packet of sp!µκ" contains also a
supercuspidal which we expect to be neither generic nor cyclic but have
not shown this as yet. This supercuspidal is classified here according to its
packet, hence it does not appear in (5) below.

(5) Given a supercuspidal Dθ-distinguished representation π ′ of
GL!2"E" it is easy to construct a global cuspidal "θ-distinguished repre-
sentation of "′ whose component at some place (where the global θ is
not a norm) is our local one. Applying Proposition 11 we conclude that
the packet which corresponds to π ′ contains a generic C1

θ-cyclic π; the
packet of π consists of supercuspidals by [F2] (since our correspondence
is κ-base-change composed with κ-endoscopic lifting).

Conversely, given a generic supercuspidal Cθ-cyclic π (which is not in the
packet of sp!µκ") we may construct a global cuspidal #θ-cyclic represen-
tation whose component (at a place where the global θ is not a norm) is
our local π, as in [F4, Proposition 14] (as corrected in [FH, after Propo-
sition B17]). Applying Proposition 11, we conclude that π corresponds to
a generic Dθ-cyclic representations of GL!2"E", which is supercuspidal by
the results of [F2] on the κ-endo-lifting.

If π is a generic supercuspidal C1
1 -cyclic representation of G =

U!2" 1", then by [F6] it corresponds either to a supercuspidal GL!2"F"-
distinguished representation of GL!2"E", or to an induced I ′!µ′

1"µ
′
2""

µ′
i' E×/F× → #1" µ′

1 )= µ′
2. Theorem 0.1 of [FH] establishes that a su-

percuspidal representation of GL!2"E" is GL!2"F"-distinguished if and
only if it is Dθ-distinguished. This result was proven independently and
by purely local means by D. Prasad [P]. Hence the packets of the generic
supercuspidal C1

θ-cyclic π are the packets of the generic supercuspidal
C1
1 -cyclic π which correspond to the supercuspidal distinguished π ′, but

not to the induced I ′!µ′
1"µ

′
2"" µ′

1 )= µ′
2" µ

′
i' E×/F× → #1, as asserted.
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