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Stable Bi-Period Summation Formula
and Transfer Factors
Yuval Z. Flicker

Abstract. This paper starts by introducing a bi-periodic summation formula for automorphic forms on a
group G(E), with periods by a subgroup G(F), where E/F is a quadratic extension of number fields. The
split case, where E = F ⊕ F, is that of the standard trace formula. Then it introduces a notion of stable
bi-conjugacy, and stabilizes the geometric side of the bi-period summation formula. Thus weighted sums in
the stable bi-conjugacy class are expressed in terms of stable bi-orbital integrals. These stable integrals are on
the same endoscopic groups H which occur in the case of standard conjugacy.

The spectral side of the bi-period summation formula involves periods, namely integrals over the group of
F-adele points of G, of cusp forms on the group of E-adele points on the group G. Our stabilization suggests
that such cusp forms—with non vanishing periods—and the resulting bi-period distributions associated to
“periodic” automorphic forms, are related to analogous bi-period distributions associated to “periodic” au-
tomorphic forms on the endoscopic symmetric spaces H(E)/H(F). This offers a sharpening of the theory of
liftings, where periods play a key role.

The stabilization depends on the “fundamental lemma”, which conjectures that the unit elements of the
Hecke algebras on G and H have matching orbital integrals. Even in stating this conjecture, one needs to intro-
duce a “transfer factor”. A generalization of the standard transfer factor to the bi-periodic case is introduced.
The generalization depends on a new definition of the factors even in the standard case.

Finally, the fundamental lemma is verified for SL(2).

The geometric side of the trace formula for a test function f ′ on the group of adele
points of a reductive group G over a number field F, is a sum of orbital integrals of f ′

parametrized by rational conjugacy classes, in G(F). It is obtained on integrating over the
diagonal x = y the kernel K f ′(x, y) of a convolution operator r( f ′). Each such orbital
integral can be expressed as an average of weighted sums of such orbital integrals over the
stable conjugacy class, which is the set of rational points in the conjugacy class under the
points of the group over the algebraic closure. Each such weighted sum is conjecturally
related to a stable (a sum where all coefficients are equal to 1) such sum on an endoscopic
group H of the group G. This process of stabilization has been introduced by Langlands to
establish lifting of automorphic and admissible representations from the endoscopic groups
H to the original group G.

The purpose of this paper is to develop an analogue in the context of the symmetric
space G(E)/G(F), where E/F is a quadratic number field extension. Integrating the kernel
K f ′(x, y) of the convolution operator r( f ′) for the test function f ′ on the group of E-
adele points of the group G over two independent variables x and y in the subgroup of
F-adele points of G, we obtain a sum of bi-orbital integrals of f ′ over rational bi-conjugacy
classes. We introduce a notion of stable bi-conjugacy, and stabilize the geometric side of
the bi-period summation formula. Thus we express the weighted sums in the stable bi-
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conjugacy class in terms of stable bi-orbital integrals. These stable integrals are on the same
endoscopic groups H which occur in the case of standard conjugacy.

The spectral side of the bi-period summation formula involves periods, namely integrals
over the group of F-adele points of G, of cusp forms on the group of E-adele points on the
group G. Our stabilization suggests that such cusp forms—with non vanishing periods—
and the resulting bi-period distributions associated to “periodic” automorphic forms, are
related to analogous bi-period distributions associated to “periodic” automorphic forms
on the endoscopic symmetric spaces H(E)/H(F). This offers a sharpening of the theory of
liftings, where periods play a key role.

Our definitions and analysis closely follow those of Kottwitz [K2] (and [K1]), who dealt
with the case of standard conjugacy, which can be viewed as the split case (E = F ⊕ F,
G(F) \ G(E)/G(F) = Int

(
G(F)
)
\ G(F)) of our theory.

Our stabilization depends on the “fundamental lemma”, which conjectures that the unit
elements of the Hecke algebras on G and H have matching orbital integrals. Even in stating
this conjecture, one needs to introduce a “transfer factor”. For standard conjugacy, this
factor is introduced in Langlands-Shelstad [LS], as a product of the cohomological factor
∆1, corrected by ∆I ; a factor which depends only on stable conjugacy, not on conjugacy:
∆II , corrected by∆2; and a Jacobian∆IV .

In Section 10 we introduce a generalization of the transfer factor of [LS] to our bi-
periodic case. Our generalization depends on a new definition of the factors of [LS].
Thus we unite ∆II and ∆2 into a single factor χG/H which is obviously independent of
the choices [LS] use in their definition. Further we note that ∆1 and ∆I depend only on
the centralizers—not on the elements of the groups in question. This permits us to use
the united (“cohomological”) factor which we denote by∆coh in our generalization to the
bi-periodic case.

In Section 11 the fundamental lemma for SL(2) is verified.

Much of this work was carried out at Mannheim, Germany, where I was supported by
the Humboldt Stiftung and the hospitality of Rainer Weissauer.

1 Basic Sum

Let E/F be a quadratic extension of number fields. Denote by AE (resp. A) the ring of
adeles of E (resp. F). Let G be a connected reductive linear algebraic group over F. We
denote by G(D) the group of D-valued points of G, for any commutative F-algebra D.
Let Z be the center of G. We work with a compactly supported (subscript “c”) smooth
(superscript “∞”) complex valued function f ′ ∈ C∞c

(
Z(AE)\G(AE)

)
. Fix a Haar measure

on Z(AE) \ G(AE), and consider the convolution algebra L = L2
(
G(E)Z(AE) \ G(AE)

)
.

Then L is a G(AE)-module by
(
r(g)φ

)
(h) = φ(hg). The convolution operator r( f ′) =∫

Z(AE)\G(AE) f ′(g)r(g) dg is an integral operator with kernel K f ′(h, g) =
∑
γ f ′(h−1γg),

γ ∈ Z(E) \ G(E). Indeed

(
r( f ′)φ

)
(h) =

∫

Z(AE)\G(AE)
f ′(g)φ(hg) dg =

∫

G(E)Z(AE)\G(AE)
φ(g)K f ′(h, g) dg.
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The bi-period summation formula for ( f ′,G, E, F) is obtained on integrating K f ′(h, g)
over h, g in G(F)Z(A) \ G(A). We begin with

∫ ∫

(G(F)Z(A)\G(A))2

∑

γ∈Z(E)\G(E)

f ′(g−1γh) dg dh

=

∫

G(F)Z(A)\G(A)
dg

∑

γ∈Z(E)\G(E)/G(F)

∫

Z(A)\G(A)
f ′(g−1γh) dh

=

∫

G(F)Z(A)\G(A)
dg

∑

γ∈G(E)/G(F)Z(E)

f (g−1xg) dg,

where f (x) =
∫

Z(A)\G(A) f ′(γh) dh, x = γθ(γ)−1. Here θ denotes the action of Gal(E/F) on

E (and AE, and G(E) and G(AE)). We also write X(F) = {gθ(g)−1; g ∈ G(E)} ⊂ G(E) and
X(A) = {gθ(g)−1; g ∈ G(AE)}. Note that xθ(x) = 1 for any element x in X(F) and X(A).
The function f lies in C∞c

(
X(A)/ZX(A)

)
, where ZX(F) = {zθ(z)−1; z ∈ Z(E)} ⊂ Z(E)

and ZX(A) = {zθ(z)−1; z ∈ Z(AE)}.
An element x ∈ X(F) is called elliptic if it is elliptic semi-simple in G(E). Denote by

Xell the set of elliptic elements in X(F). Since x ∈ X(F) is an E-point of G, its centralizer
I = Ix = ZG(x) is defined over E. But I = ZG(x) = ZG(x−1) = ZG(θx) = θ(I) implies
that I is defined over F. Thus I = Ix is a reductive F-subgroup of G, and x is an E-point (in
ZI(E)) of its center ZI = Z(I).

We shall consider only the subsum over x in Xell/ZX(F), in our sum. It is denoted by
Te( f ). With Φ f (x) =

∫
G(A)/I0

X (A) f (gxg−1) dg, the integral Te( f ) is equal to

∫

G(A)/Z(A)G(F)

∑

x∈Xell/ZX (F)

∑

δ∈G(F)/ZG(x)(F)

f (gδxδ−1g−1) dg

=
∑

x

∫

G(A)/Z(A)ZG(x)(F)
f (gxg−1) dg

=
∑

x∈Xell/ZX (F)

[Ix(F) : I0
x (F)]−1τ (I0

x )Φ f (x).

The superscript 0 indicates the connected component of the identity, and we write τ (I0
x )

for the Tamagawa volume |I0
x (A)/Z(A)I0

x (F)| of I0
x over F. Our aim is to stabilize this sum.

2 Stable Conjugacy
Let F be any field of characteristic 0, E a quadratic field extension of F, θ the non-trivial
automorphism of E over F, X(F) = {x = gθ(g)−1; g ∈ G(E)}, and I = Ix = ZG(x). Since
θ(x) = x−1, I is an F-group, reductive when x is semi-simple, and connected when the
derived group Gss of G is simply connected. Note that Gss is semi-simple as G is connected
and reductive. The elements x, x ′ of X(F) are said to be stably conjugate if there is a g ∈
G(F̄), where F̄ is an algebraic closure of F, such that x ′ = Int(g)x(= gxg−1).
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We write inv(x, x ′) for the principal I-homogeneous space over F defined by Y = {g ∈
G(F̄); gxg−1 = x ′}. It lies in D(Ix/F) = ker[H1(F, Ix)→ H1(F,G)]. When Ix is connected,
D(Ix/F) is in bijection with the conjugacy classes (under G(F)) within the stable conjugacy
class of x.

As in [K2], we write A(G) for π0
(
Z(Ĝ)Γ

)D
, where π0( ) denotes the group of connected

components, (∗)D means the dual Hom(∗,Q/Z), ( )Γ means invariants under the action
of the absolute Galois group Γ = Gal(F̄/F), and Ĝ is a (unique up to a noncanonical
isomorphism) connected Langlands dual group for G. When F is local, define E(I/F) to
be the finite abelian group ker[A(I) → A(G)]. By [K2, 4.3], there is a canonical map
D(I/F)→ E(I/F), which is bijective in the p-adic case.

When F is global, put E(I/A) = ⊕vE(I/Fv), where v ranges over the places of F. By [K1,
2.3], the exact sequence

1→ Z(Ĝ)→ Z(Î)→ Z(Î)/Z(Ĝ)→ 1

yields a homomorphism π0
(
[Z(Î)/Z(Ĝ)]Γ

)
→ H1

(
F,Z(Ĝ)

)
. Define K(I/F) to be the sub-

group of π0
(
[Z(Î)/Z(Ĝ)]Γ

)
consisting of all elements whose image in H1

(
F,Z(Ĝ)

)
is triv-

ial if F is local, locally trivial if F is global. If F is local, then K(I/F) = coker[A(G)D →
A(I)D] = E(I/F)D.

3 (G,H)-Regular Elements
As in [K2], we need the notion of (G,H)-regular elements. Let F be a local or global field
of characteristic zero, E a quadratic field extension, G a connected reductive group over
F, (H, s, η) an endoscopic triple for G [K1, Section 7], and XH(F) = {xH = γHθ(γH)−1;
γH ∈ H(E)}. Here θ denotes again the non-trivial automorphism of E which fixes F.

Let xH ∈ XH(F) ⊂ H(E) be a semi-simple element of XH(F), by which we mean a
semi-simple element of H(E). Then IH = IH,xH = ZH(xH) is a reductive E-group, which
is defined over F since IH = ZH(xH) = ZH(x−1

H ) = ZH(θxH) = θ(IH). Moreover, xH ∈
Z(IH)(E). Let TH be a maximal F-torus in the group IH . Then it is a maximal F-torus
in H containing xH . There is a canonical G-conjugacy class of embeddings j : TH ↪→ G.
Choose one and let x = j(xH). The conjugacy class of x is independent of the choice of TH

and j. Thus xH &→ x induces a Γ-equivariant map from the set of semi-simple conjugacy
classes in H to the set of conjugacy classes in G. In particular, x = j(xH) = j

(
θ(xH)−1

)
=

θ
(

j(xH)
)−1
= θ(x)−1, for xH = γHθ(γ

−1
H ) ∈ XH(F). Then x ∈ H1

(
E/F,G(E)

)
. This

element represents the trivial class precisely when x = γθ(γ−1) ∈ X(F) for some γ ∈ G(E).
Identify TH and T = j(TH) via j. Let R be the set of roots of T in G, and RH the set

of roots of T in H. Then RH ⊂ R ⊂ X∗(T). We say that xH ∈ XH(F) is (G,H)-regular if
α(xH) '= 1 for all α ∈ R−RH . The (G,H)- regularity of xH depends only on xH , not on the
choice of TH and j. Put I = ZG(x), IH = ZH(xH). The set R(x) of roots of T in I is equal
to {α ∈ R;α(x) = 1}. The set RH(x) of roots of T in IH is equal to {α ∈ RH ;α(x) = 1}.
Hence RH(x) ⊂ R(x) and the two sets are equal iff xH is (G,H)-regular.

Assume that xH is (G,H)-regular. Then RH(x) = R(x), and j : TH→̃T extends to an
isomorphism j1 : IH→̃I, unique up to an inner automorphism coming from T. If xH ∈
XH(F) and x ∈ X(F), then IH , I are defined over F and j1 is an inner twisting. Then
Z(ÎH) = Z(Î). By [K2, 3.2], if I is connected, so is IH .
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4 Local Conjecture

Let E/F be a quadratic extension of local fields of characteristic 0, and G a connected re-
ductive F-group. Put X(F) = {gθ(g)−1; g ∈ G(E)}. Assume that the derived group Gss

is simply connected. Then Ix = ZG(x) is connected for all semi-simple x in G. For any
connected reductive F-group I, there is a sign e(I) = ±1 [K3]. Let x be a semi-simple
element of X(F), choose Haar measures dg, di on G(F), Ix(F), and consider the linear form
Φ f (x) =

∫
G(F)/I(F) f

(
Int(g)x

)
dg/di on f ∈ C∞c

(
X(F)
)

. If x ′ ∈ X(F) is stably conjugate

to x ∈ X(F), then I ′ = ZG(x ′) is an inner form of I, and the F̄-isomorphism I " I ′ trans-
fers the Haar measure di to di ′ on I ′(F). We use dg, di ′ to define Φ f (x ′), and the linear
formΦst

f (x) =
∑

x ′ e(I ′)Φ f (x ′) on C∞c
(
X(F)
)

, where x ′ ranges over a set of representatives
for the conjugacy classes within the stable conjugacy class of x in X(F). (For G such that
Gss is not simply connected, the factor |ker[H1(F, I0

x ′) → H1(F, Ix ′)]| should multiply the
summand indexed by x ′ in the definition of Φst

f (x)).

Let (H, s, η) be an endoscopic triple for G. Choose an extension of η : Ĥ → Ĝ to an
L-homomorphism η ′ : LH → LG.

Local Conjecture There are complex numbers ∆(xH , x) such that there is a correspon-
dence ( f , fH) between functions f ∈ C∞c

(
X(F)
)

and fH ∈ C∞c
(
XH(F)

)
, defined by

Φst
fH

(xH) =
∑

x∆(xH , x)Φ f (x) for every G-regular semi-simple element xH in XH(F).
The sum ranges over a set of representatives for the G(F)-conjugacy classes within the
stable conjugacy class of x in X(F). The sum is empty and Φst

fH
(xH) is zero if the G(F̄)-

conjugacy class of x contains no elements of X(F). Further, we conjecture that the function
∆(xH , x) can be extended (continuously?) to all pairs (xH , x) consisting of a (G,H)-regular
semi-simple element xH of XH(F) and a corresponding element x ∈ X(F), in such a way
that Φst

fH
(xH) =

∑
x∆(xH , x)e(Ix)Φ f (x). Here compatible measures on Ix = ZG(x) and

IxH = ZH(xH) are used, as the two groups are inner forms of each other, since xH is (G,H)-
regular.

Note that e(T) = 1 for any torus T, so that the (G,H)-regular case indeed extends the
G-regular case.

If x ′ is stably conjugate to x (x ′, x in X(F)), we denoted by inv(x, x ′) the image un-
der D(I/F) → E(I/F) of the element of D(I/F) which measures the difference between
x and x ′. Via Z(Ĥ) ↪→ Z(ÎH) " Z(Î), the element s ∈ Z(Ĥ) defines κ ∈
K(I/F) = E(I/F)D. The relation between ∆(xH , x) and ∆(xH , x ′) should be ∆(xH , x ′) =
∆(xH , x)κ

(
inv(x, x ′)

)
. Then putting Φκf (x) =

∑
x ′ κ
(
inv(x, x ′)

)
e(Ix ′)Φ f (x ′), our conjec-

ture states that Φst
fH

(xH) = ∆(xH , x)Φκf (x).

5 Global Obstruction

Let E/F be a quadratic extension of number fields and G a connected reductive group over
F. Assume that the derived group Gss is simply connected. Fix an inner twisting ψ : Gqs →
G with Gqs quasi-split. Let xqs be a semi-simple element of Xqs(F) = {γqsθ(γqs )−1; γqs ∈
Gqs(E)}, where θ is the non-trivial automorphism of E over F. The centralizer Iqs =
ZGqs (xqs ) of xqs in Gqs is connected. Let x be an element of X(A) = {gθ(g)−1; g ∈ G(AE)}
which is conjugate to ψ(xqs ) under G(Ā). We proceed to construct an element obs(x) ∈
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K(Iqs/F)D which is trivial precisely when the G(A)-conjugacy class of x contains an ele-
ment of X(F). First, we construct an element obs1(x) in A(I1) where I1 = ZGsc

qs
(xqs ) is

the centralizer of xqs in Gsc
qs , and A(I1) = π0

(
Z(Î1)Γ

)D
, which is trivial precisely when the

Gsc (A)-conjugacy class of x contains an element of X(F).
Let Yqs be the set of pairs (i, g), such that i : Iqs → G is conjugate to ψ|Iqs

under G(F̄), g ∈

Gsc (Ā), and i(xqs ) = gxg−1. Since there is g ∈ G(Ā) with ψ(xqs ) = gxg−1 by assumption,
G(F̄) = Z(F̄)Gsc (F̄), and Gqs(Ā) = Gsc

qs (Ā)Iqs (Ā), there is g ∈ Gsc (Ā) with (ψ|Iqs
, g) in

Yqs (thus Yqs is non-empty). The groups Γ = Gal(F̄/F), Gsc (F̄) and I1(Ā) act on Yqs as
follows: For (i, g) in Yqs , σ(i, g) = (σi,σg) (σ ∈ Γ), h(i, g) =

(
Int(h)i, hg

) (
h ∈ Gsc (F̄)

)
,

(i, g)t =
(
i, i(t−1)g

) (
t ∈ I1(Ā)

)
. Clearly σ(hyt) = σ(h)σ(y)σ(t), and the actions of

Gsc (F̄) and I1(Ā) commute (as
(
h(i, g)

)
t =

(
Int(h)i, hg

)
t =

(
Int(h)i, hi(t−1)h−1hg

)
=

h
(
i, i(t−1)g

)
= h
(
(i, g)t

)
). Put Y = Yx = Gsc (F̄) \ Yqs .

Lemma 5.1 The F-space Y = Yx is a principal homogeneous space of I1(Ā)/ZI1 (F̄).

Proof Since G(F̄) = Gsc (F̄)Z(F̄), we have Int
(
G(F̄)
)

(ψ|Iqs
) = Int

(
Gsc (F̄)

)
(ψ|Iqs

). Thus to

show that Y is a homogeneous space under I1(Ā) it suffices to take (i, g), (i, g1) in Yqs

(same i). They satisfy gxg−1 = i(xqs ) = g1xg−1
1 , thus g1g−1 ∈ Zi(Gsc

qs )
(
i(xqs )

)
(Ā) =

i(I1)(Ā). The stabilizer of (i, g) ∈ Y consists of t ∈ I1(Ā) with (i, g) =
(

i, i(t−1)g
)
=

i(t−1)
(

Int
(
i(t)
)

i, g
)

, where for the last equality i(t) ∈ Gsc (F̄), and i(t) has to centralize

the image of i, namely t ∈ ZI1 (Ā), and i(t) ∈ i(ZI1 )(Ā) ∩ Gsc (F̄) = i(ZI1 )(F̄).

Lemma 5.2 The class [Y ] of Y in H1
(
F, I1(Ā)/ZI1 (F̄)

)
lies in the image of H1

(
F, I1(F̄)/ZI1 (F̄)

)

precisely when
(
Y/I1(F̄)

)Γ
is non-empty.

Proof Consider the Γ-equivariant map A → B of Γ-modules A, B. Then b lies in
Im[H1(F,A) → H1(F,B)] precisely when the twist b(B/A) has Γ-invariant elements. Ap-
ply this observation with A = I1(F̄)/ZI1 (F̄) and B = I1(Ā)/ZI1 (F̄) and b with b(B/A) =
Y/I1(F̄).

Lemma 5.3 The element x ∈ X(A) is Gsc (A)-conjugate to an element of X(F) precisely when
Yx/I1(F̄) has a Γ-invariant element.

Proof If x ∈ X(A) is Gsc (A)-conjugate to an element of X(F), then we may assume that
x ∈ X(F) and that i = ψ, on changing g. Thus ψ(xqs ) = gxg−1 for g in Gsc (A), but since
ψ(xqs ) and x are in G(F̄), we may take g in Gsc (F̄). Since ψ : Gqs → G is an inner twist, for
each σ ∈ Γ there is a gσ ∈ Gsc (F̄) such that σψ = Int(gσ)ψ. Then

σ(ψ|Iqs
, g) =

(
Int(gσ)ψ|Iqs

,σg
)
= gσ(ψ|Iqs

, g−1
σ σg · g−1 · g).

But g−1
σ · σg · g−1 ∈ ψ(I1)(F̄) since

g−1ψ(xqs )g = x = σg−1 · σψ(xqs ) · σg = σg−1 · gσψ(xqs )g−1
σ σg.
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Hence σ(ψ|Iqs
, g) = gσ(ψ|Iqs

, g)tσ for tσ ∈ I1(F̄) defined by ψ(tσ) = g · σg−1 · gσ, and

(ψ|Iqs
, g) lies in

(
Y/I1(F̄)

)Γ
.

Conversely, if σ(ψ, g) =
(
Int(gσ)ψ,σg

)
= gσ(ψ, g−1

σ ·σg ·g−1g) is equal to gσ(ψ, g)tσ for
some tσ ∈ I1(F̄), then ψ(t−1

σ ) = g−1
σ · σg · g−1, and {σ "→ σg · g−1} lies in

ker
[
H1
(
F,Gsc (F̄)

)
→ H1

(
F,Gsc (Ā)

)]
. The Hasse principle for the simply connected group

Gsc implies that the kernel is trivial, namely g can be assumed to lie in Gsc (F̄). Hence
x = g−1i(xqs )g lies in G(F̄) and in X(A), namely in X(F).

Definition Let obs1(x) be the image of [Y ] under the map βI1 : H1
(

F, I1(Ā)/ZI1 (F̄)
)
→

A(I1) = π0
(
Z(Î1)Γ

)D
.

Since the kernel of βI1 is the image of H1
(
F, I1(F̄)/ZI1 (F̄)

)
→ H1

(
F, I1(Ā)/ZI1 (F̄)

)
by

[K2, 2.2], we conclude:

Lemma 5.4 The element x ∈ X(A) ∩ Int
(
G(Ā)

)
ψ(xqs ) is Gsc (A)-conjugate to an element of

X(F) precisely when obs1(x) is trivial.

Suppose that x ′ ∈ X(A) is G(Ā)-conjugate to x ∈ X(A). Since G(Ā) = Gsc (Ā)I(Ā), the
F-set S = {h ∈ Gsc (Ā); hxh−1 = x ′} is non-empty, hence it is a principal homogeneous
space under I1(Ā) = ZGsc (Ā)(x). Recall that Y = Yx and Y ′ = Yx ′ denote the I1(Ā)/ZI1 (F̄)-
principal homogeneous F-spaces associated to x and x ′. Using the map S × Y → Y ′,(
h, (i, g)

)
"→ (i, gh−1), we obtain obs1(x ′) = obs1(x) · inv(x, x ′), where inv1(x, x ′) is the

image of the class of S under the map H1
(
F, I1(Ā)

)
→ A(I1) of [K2, 2.3.1].

Following Borovoi [B], we put Gtor = G/Gss. Then we have exact sequences

1→ Gsc → G→ Gtor → 1 and 1→ Gsc
qs → Gqs → Gtor → 1.

Note that G = GssZ, Gqs = Gss
qsZqs and Zqs = Z. We also have an exact sequence

1→ I1 → Iqs → Gtor → 1.

As Z(Ĝ) = Hom
(
X∗(G),C×

)
and X∗(G) = X∗(Gtor ), the last exact sequence gives the

exact sequence
1→ Z(Ĝ)→ Z(Îqs )→ Z(Î1)→ 1.

Then K(Iqs/F) ⊂ π0
(
Z(Î1)Γ

)
and by duality we get a homomorphism A(I1)→ K(Iqs/F)D.

Define obs(x) to be the image of obs1(x).

Theorem 5.5 The element x of X(A) ∩ Int
(
G(Ā)

)
ψ(xqs ) is G(A)-conjugate to an element of

X(F) precisely when obs(x) is trivial.

Proof This is the same as that of [K2, 6.6].

With x, x ′, inv1(x, x ′) as above, let inv(x, x ′) be the image of inv1(x, x ′) under A(I1)→
K(Iqs/F)D. Then obs(x ′) = obs(x) inv(x, x ′). If x ′qs ∈ Xqs (F) is stably conjugate to xqs ,
using x ′qs instead of xqs in the definitions of Yx, obs1(x) and obs(x), we get obs(x)′ ∈
K(I ′qs/F)D, where I ′qs = ZGqs (x ′qs ). There is an inner twist I ′qs → Iqs , canonical up to conju-
gation by an element of Iqs (F̄). Identifying K(I ′qs/F)D with K(Iqs/F)D, we have obs(x)′ =
obs(x) by [K2, 2.8].
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6 Global Conjecture

Let (H, s, η) be an endoscopic triple for G. Choose an extension of η : Ĥ → Ĝ to an L-
homomorphism η ′ : LH → LG. Assume that the local conjecture holds at each place v of
F. Write∆v(xH , x) for the transfer factors at the place v; they can be multiplied by complex
scalars.

Global conjecture For a suitable normalization of the local transfer factors one has:
(a) For any (G,H)-regular semi-simple xH ∈ XH(F) and any x ∈ X(A) coming from xH ,

we conjecture that almost all factors∆v(xH , x) are equal to 1. Put∆(xH , x) =
∏

v∆v(xH , x).
(b) Choose an inner twisting ψ : Gqs → G. Choose xqs ∈ Xqs(F) such that xqs comes

from xH . Thus xH = γHθ(γH)−1 ∈ XH(F) (γH ∈ H(E)) lies in TH(E), where TH is an
F-torus in H, we fix a Γ-equivariant isomorphism j : TH → Tqs , where Tqs is an F-torus in
Gqs , and put xqs = j(xH); since Gqs is quasi-split over F, Tqs exists by Steinberg’s theorem;
see [K4, 4.4]). Then xqs ∈ Gqs (E) satisfies xqsθ(xqs ) = 1, namely it defines an element of
H1
(
E/F,Gqs (E)

)
, whose image in H1

(
Ev/Fv,Gqs (Ev)

)
is trivial if the local conjecture holds

at v and Φst
fHv

(xqs ) #= 0. To assure the existence of γqs ∈ Gqs (E) with xqs = γqsθ(γ−1
qs ),

we assume that ker
[
H1
(
E/F,Gqs (E)

)
→
∏

v H1
(
Ev/Fv,Gqs(Ev)

)]
is trivial. Note that at v

which splits E/F, we have that H1
(
Ev/Fv,Gqs(Ev)

)
= {1}. The last assumption is implied

for example by the assumption that H1
(
E/F,Gqs (E)

)
is trivial.

Now set Iqs = ZGqs (xqs ). Then we conjecture that ∆(xH , x) = κ
(
obs(x)

)
, where

κ ∈ K(Iqs/F) is obtained from s via Z(Ĥ) ↪→ Z(ÎH) $ Z(Îqs ) (where IH = ZH(xH) is
connected). Note that obs(x) = obs(x) ′ if xqs is replaced by a stably conjugate x ′qs in the
definition of obs. If x is replaced by a G(Ā)-conjugate x ′, then both κ

(
obs(x)

)
and∆(xH , x)

get multiplied by the same factor κ
(
inv(x, x ′)

)
(by the local conjectures in the case of∆).

7 Stabilization
We can now return to the stabilization of the elliptic semi-simple part of the bi-period
summation formula. All sums considered below are finite. But this we show only after we
formally discuss the stabilization.

For a quasi-split reductive connected F-group G, define the stable analogue

STe( f ) =
∑

x∈Est

|(Ix/I0
x )(F)|−1τ (G)Φst

f (x).

Here Est is a set of representatives for the elliptic semi-simple stable conjugacy classes in
X(F), andΦst

f (x) =
∑

i e(xi)Φ f (xi). Here i ranges over ker
[
H1
(
F, I0

X(Ā)
)
→ H1

(
F,G(Ā)

)]
,

and it determines a G(A)-conjugacy class xi in X(A), whose local components are all stably
conjugate to x. The number e(xi) is defined to be

∏
v e(I0

i,v), where Ii,v is the centralizer in
G(Fv) of the component xi,v of xi at the place v of F. The measures defining the orbital
integrals are chosen in a compatible way—this is used in the definition of the stable orbital
integrals. We show below that the sums which define Φst

f (x) and STe( f ) are finite, and the
integral which defines Φ f (xi) is convergent. As Φst

f (x) and |(Ix/I0
x )(F)| depend only on the

stable conjugacy class of x in X(F), STe(F) is well-defined.
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For simplicity, assume that the derived group Gss is simply connected. Choose an inner
twisting ψ : Gqs → G with Gqs quasi-split over F. Choose a set F of representatives for the
isomorphism classes of elliptic endoscopic triples (H, s, η) for G [K1]. For each (H, s, η) ∈
F choose an L-homomorphism η ′ : LH → LG extending η. Assume the local and global
conjectures, and the “fundamental lemma”, asserting that the unit elements ( f 0

H,v, f 0
v ) in the

Hecke algebras of Hv and Gv are matching. Then f ∈ C∞c
(
X(A)

)
defines fH ∈ C∞c

(
XH(A)

)

(depending on H, s, η ′), satisfying Φst
fH

(xH) =
∑

x κ
(
obs(x)

)
e(x)Φ f (x) for any (G,H)-

regular semi-simple xH ∈ XH(F). The sum ranges over x in a set of representatives for
the G(A)-conjugacy classes in X(A) which come from xH . The sign e(x) is the product∏

v e(Ix,v), where Ix,v is the (connected) centralizer in G(Fv) of the v component xv of x.
Define T∗e ( f ) to be the sum which defines Te( f ), omitting the terms indexed by the

central elements x of X(F). Define ST∗∗e ( fH) to be the sum which defines STe( fH), omitting
the central elements of XH(F) if H is a quasi-split inner form of G, and omitting all terms
indexed by the xH ∈ XH(F) which are not (G,H)-regular when H is not a quasi-split inner
form of G.

Theorem 7.1 Assuming the local and global conjectures for ( fH , f ), and the fundamental
lemma, we have

T∗e ( f ) =
∑

(H,s,η)∈F

(
τ (G)/τ (H)

)
[Aut(H, s, η)/Had (F)]−1 ST∗∗e ( fH).

(Aut(H, s, η) is defined in [K1, 7.5]).

Proof The assumption that Gss is simply connected implies that the centralizer I = ZG(x) is
connected, and by [K2, 3.2] that the centralizer IH = ZH(xH), of any (G,H)-regular semi-
simple xH in XH(F), is connected. Hence the numbers |(IH,x/I0

H,x)(F)| and |Ix(F)/I0
x (F)|

which appear in the definitions of STe( fH) and Te( f ) are 1.
Let E∗qs be a set of representatives for the non-central elliptic semi-simple stable conju-

gacy classes in Xqs(F). Put Iqs = ZGqs (xqs ). Then T∗e ( f ) =
∑

xqs∈E∗qs
τ (Iqs)

∑
x Φ f (x), where

x ranges over a set of representatives for the G(F)-conjugacy classes in X(F) contained in
the G(F̄)-conjugacy class of ψ(xqs ). The orbital integral Φ f (x) depends only on the G(A)-
conjugacy class of x in X(A). If x contributes to T∗e ( f ), put I = ZG(x), and note that the
number of terms in the second sum in T∗e ( f ) which are indexed by G(A)-conjugates of x is
equal to |ker[D(I/F) → D(I/A)]| = |ker[ker1(F, I) → ker1(F,G)]|. The equality follows
from the commutative diagram

1 1 1
'

'
'

1 −−−−→ ker −−−−→ ker1(F, I) −−−−→ ker1(F,G)
'

'
'

1 −−−−→ D(I/F) −−−−→ H1(F, I) −−−−→ H1(F,G)
'

'
'

1 −−−−→ D(I/A) −−−−→ H1
(
F, I(Ā)

)
−−−−→ H1

(
F,G(Ā)

)
,
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whose columns define ker1(F, I) and ker1(F,G).

Lemma 7.2 The diagram (see [K1, Section 4])

ker1(F, I) −−−−→ ker1(F,G)
∼

−−−−→ ker1(F,Gtor )
"

"
"

ker1(F,Z(Î)
)D
−−−−→ ker1(F,Z(Ĝ)

)D ∼
−−−−→ ker1(F, Ĝtor )D,

in which the vertical maps are bijections, and the bottom horizontal map is induced by the
natural injection Z(Ĝ) ↪→ Z(Î), is commutative.

Proof The horizontal maps on the right are isomorphisms by [K2, 4.3.1]. Hence the com-
mutativity follows form the functoriality of ker1(F,G) → ker1(F,Z(Ĝ)

)D
for the normal

homomorphisms G→ Gtor and I → Gtor .

Corollary 7.3 The number of terms in the second sum in T∗e ( f ) indexed by G(A)-conjugates
of x is equal to

|ker
[
ker1(F,Z(Îqs )

)D
→ ker1(F,Z(Ĝ)

)D]
| = |coker

[
ker1(F,Z(Ĝ)

)
→ ker1(F,Z(Îqs)

)]
|.

Lemma 7.4 The quotient of the last number, coker, by |K(Iqs/F)|, is equal to τ (G)/τ (Iqs ).

Proof Since τ (G) = |π0(Z(Ĝ)Γ)|/|ker1(F,Z(Ĝ)
)
|, this follows from the exact sequence

1→ π0
(

Z(Ĝ)Γ
)
→ π0

(
Z(Îqs )Γ

)
→ K(Iqs/F)→

ker1(F,Z(Ĝ)
)
→ ker1(F,Z(Îqs)

)
→ coker → 1

(see [K1, 2.3 and 8.3.3]), which starts with 1 since X∗
(
Z(Îqs )/Z(Ĝ)

)Γ
is trivial for ellip-

tic xqs .

Consider xqs ∈ E∗qs and x ∈ X(A) in the G(Ā)-conjugacy class of ψ(xqs ). We have
obs(x) ∈ K(Iqs/F)D, with the property that |K(Iqs/F)|−1∑

κ κ
(
obs(x)

)
, where κ ranges

over K(Iqs/F), is 1 if the G(A)-conjugacy class of x contains an element of G(F), and is
equal to 0 otherwise. Note that e(x) =

∏
v e(Ix,v) is 1 if x ∈ X(A) is G(A)-conjugate to an

element of X(F), by [K3]. Consequently, we can write

T∗e ( f ) =
∑

xqs∈E∗qs

τ (G)
∑

x

∑

κ

κ
(
obs(x)

)
e(x)Φ f (x).

Here x ranges over a set of representatives for the G(A)-conjugacy classes in X(A) contained
in the G(Ā)-conjugacy class of ψ(xqs ), and κ ranges over K(Iqs/F). We show below that the
triple sum has only finitely many non-zero terms, hence it can be rearranged at will.
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The right side of the equality of the theorem is

τ (G)
∑

F

[Aut(H, s, η)/Had (F)]−1
∑
Φst

fH
(xH),

where the inner sum ranges over xH in the set E∗∗H which is a set of representatives for:
(1) the non-central elliptic semi-simple stable conjugacy classes in XH(F) if H is a quasi-

split inner form of G, or
(2) the (G,H)-regular elliptic semi-simple stable conjugacy classes in XH(F) if H is not

a quasi-split inner form of G.
Writing out the definition of Φst

fH
(xH), the right side of the equality of the theorem be-

comes
τ (G)

∑

F

[Aut(H, s, η)/Had (F)]−1
∑

xH∈E∗∗H

∑

x

κ
(
obs(x)

)
e(x)Φ f (x).

Here x ranges over a set of representatives for the G(A)-conjugacy classes in X(A) which
come from xH .

Given (H, s, η) ∈ F and xH ∈ E∗∗H we get xqs ∈ Xqs (F) up to stable conjugacy, and
κ ∈ K(Iqs/F), where Iqs = ZGqs (xqs ). A simple adaptation of [K2, 9.7] asserts that if xqs

is an elliptic semi-simple element of Xqs(F), and κ ∈ K(Iqs/F) where Iqs = ZGqs (xqs ),
then there exist (H, s, η) ∈ F and a (G,H)-regular semi-simple xH in XH(F) such that
(H, s, η, xH) gives (xqs ,κ). Moreover, (H1, s1, η1, xH1 ) also gives (xqs ,κ) if and only if there
is an isomorphism (H, s, η) → (H1, s1, η1) taking xH to a stable conjugate of xH1 , and such
an isomorphism is unique up to composition with an element of Had (F). This shows that
T∗e ( f ) is indeed equal to the expression asserted in the theorem.

8 Local Finiteness
It remains to establish the finiteness results asserted above.

Let E/F be a quadratic unramified extension of p-adic fields, R (resp. RE) the ring of
integers of F (resp. E), k (resp. kE) the residue field of R (resp. RE), k̄ an algebraic closure
of k (containing the quadratic extension kE), and G an unramified connected reductive
group over F. Let xqs be a hyperspecial point in the building of G, and G the corresponding
extension of G to a group scheme over R (see [T]). Write K for the hyperspecial maximal
compact subgroup G(R) = StabG(F)(xqs ) of G(F), and KE = G(RE) = StabG(E)(xqs ). Put
X(R) = {gθ(g−1); g ∈ KE} ⊂ KE ⊂ G(E). Let F̄ be an algebraic closure of F, and RF̄ its
ring of integers.

Proposition 8.1 Let x be a semi-simple element of X(R) such that 1−α(x) ∈ RF̄ is 0 or a unit
for every root α of G. Put I = ZG(x). Then I0 is unramified, and I0(F) ∩ K is a hyperspecial
maximal compact subgroup of I0(F). Further, ker[H1(F, I0) → H1(F, I)] is trivial. Finally, if
x ′ ∈ X(R) is stably conjugate to x

(
∈ X(R)

)
, then x ′ is conjugate to x under K.

Proof Consider first the case where Gss is simply connected. Then I is connected.
In the first part of the proof we assume that G is split over F, that A is a split maximal

R-torus in G and x = γθ(γ)−1 ∈ A(RE) ∩ X(R) with γ ∈ G(RE), and that x ′ ∈ G(RE) is
conjugate to x under G(F).
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Define the subgroup scheme ZG(x) of G by ZG(x)(D) = {g ∈ G(D); gxg−1 = x} for any
commutative R-algebra D. It is closed. The image x̄ of x in X(k) = {gθ(g−1); g ∈ G(kE)}
is semi-simple, as it lies in A(kE). The derived group of Gk = G ×R k is simply connected.
Hence the special fiber ZG(x)k of ZG(x) is a connected reductive group. The assumption
that 1 − α(x) be 0 or a unit implies that the special and generic fibers of ZG(x) have the
same dimension. Hence ZG(x) is smooth over R [SGA3, VIB, 4.4], with connected reductive
fibers. In particular, ZG(x) is unramified, and ZG(x)(R) = K ∩ ZG(x)(F) is a hyperspecial
maximal compact subgroup of ZG(x)(F).

If x ′ ∈ G(RE) is conjugate to x
(
∈ X(R)

)
under G(F), choose a Borel subgroup B of G

over R which contains A. Let N be the unipotent radical of B. Then G(F) = KN(F)A(F),
and we may assume that x ′ = nxn−1 for some n ∈ N(F). It suffices to show that n lies in
N(R)ZN(x)(F), where ZN(x) = ZG(x) ∩ N.

Choose a total orderα1 < · · · < αr with αi < αi +α j on the set∆ of B-positive roots of
A. This order can be used to fix an isomorphism

∏
1≤i≤r Ga % N of varieties (not groups)

over R. Under this isomorphism,
∏

j≤i≤r Ga corresponds to a subgroup N j of N, and the
projection N j → Ga on the j-th factor is a homomorphism (with kernel N j+1). Write n as
(n1, . . . , nr) in

∏
1≤i≤r Ga. Then nxn−1x−1 = x ′x−1 lies in KE ∩ N(F) ⊂ N(RE), and its

first coordinate is
(
1−α1(X)

)
n1. If 1−α1(x) = 0, thenα1 is a root of ZG(x). Multiplying n

on the right by an element of ZN(x)(F), we may assume that n1 = 0. If 1−α1(x) (= 0, then
1 − α1(x) is a unit by assumption, hence n1 ∈ R. Multiplying n on the left by an element
of N(R), again we may assume that x1 = 0. Then n ∈ N2(F). The same argument can be
applied to n2. Using all positive roots, we conclude that n ∈ N(R)ZN (x)(F).

In the second part of the proof, we continue to assume that Gss is simply connected,
but drop the other assumptions. Choose a maximal F-torus T of G containing x (thus
x ∈ T(E)), and choose a finite Galois extension F ′/F which splits T and such that x and
x ′ are conjugate under G(F ′). Since G is split over F ′, we can choose a maximal split (over
R ′ = RF ′) torus A of G, and an element x ′ ′ ∈ A(R ′) which is conjugate under G(F ′) to
both x and x ′. By the first part of the proof, x, x ′, x ′ ′ are all conjugate under G(R ′), and
ZG(x ′ ′) is smooth over R ′. The group ZG(x) ×R R ′ is isomorphic over R ′ to ZG(x ′ ′), and
R ′ is faithfully flat over R. Hence ZG(x) is smooth over R, and its fibers are connected
reductive groups. In particular ZG(x) is unramified, and ZG(x)(R) = ZG(x)(F) ∩ G(R) is a
hyperspecial maximal compact subgroup of ZG(x)(F).

Let S be the closed subscheme of G with S(D) = {g ∈ G(D); gxg−1 = x ′} for any
R-algebra D. Since S is isomorphic to ZG(x) over R ′, it is smooth over R. Let x̄, x̄ ′ be
the images of x, x ′ in X(k) ⊂ G(kE). Since x, x ′ are conjugate under G(R ′), x̄ and x̄ ′ are
stably conjugate. The special fiber ZG(x)k is connected. By Lang’s lemma, H1

(
k,ZG(x)k

)
is

trivial. Hence x̄, x̄ ′ ∈ X(k) are conjugate under G(k). Hence S(k) is non-empty, and so the
smoothness of S over R implies that S(R) is non-empty. This completes the proof when the
derived group Gss is simply connected. The general case can be discussed along the lines of
[K2, end of 7.1].

Denote by fK the characteristic function of the set X(R) = {k · θ(k−1) · z · θ(z−1); k ∈
KE, z ∈ Z(E)} in X(F) ⊂ G(E). Fix Haar measures dg, di on G(F), I0(F) with |K| =
|I0(F) ∩ K|. Here we fix x ∈ X(R) satisfying the assumptions of the proposition, and put
I = ZG(x). Let x ′ ∈ X(R) be a stable conjugate of x, and define the orbital integral Φ fK (x ′)
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using dg/di ′, where di ′ is the measure on I ′0(F) obtained from di via the isomorphism of
I ′ = ZG(x ′) with I.

Corollary 8.2 The orbital integral Φ fK (x ′) is 0 unless x ′ is conjugate to x, where it is 1.

Proof If x ′ is not conjugate to x, then the orbit of x ′ under G(F) does not meet X(R), hence
Φ fK (x ′) = 0. On the other hand, Φ fK (x), for x ∈ X(R), is the volume of I0(F) \ Y , where
Y = {g ∈ G(F); g−1xg ∈ X(R)}. As Gss is simply connected, the proposition shows that
Y = I(F)K, and we are done.

Let (H, s, η) be an endoscopic triple for G, xH a semi-simple (G,H)-regular element
of XH(F), and x the corresponding element of X(F) (note that H1(E/F,KE) = 1). Put
I = ZG(x), assume that Gss is simply connected, and let κ be the element of K(I/F) obtained
from s. We have the κ-orbital integral Φκf (x). Note that for f ′ ∈ C∞c

(
KE \ G(E)/KE

)
,

f (y) =
∫

G(F) f ′(γh) dh, y = γθ(γ)−1, satisfies f
(
kyθ(k−1)

)
= f (y) for all k ∈ KE.

Proposition 8.3 Suppose that H is a ramified group, and f ∈ C∞c
(
X(F)
)

satisfies
f
(
kyθ(k−1)

)
= f (y) for all y ∈ X(F), k ∈ KE. Then Φκf (x) = 0.

Proof Denote by Γin = Gal(F̄/Fur) the inertia subgroup of Γ = Gal(F̄/F). Since G is
unramified, Γin acts trivially on X∗

(
Z(G)

)
. Hence Z(G) can be embedded in an unramified

F-torus C ′. Put C = C ′/Z(G). Embed Z(G) diagonally in G × C ′; the group G1 =
(G×C ′)/Z(G) is unramified. The center of G1 is C ′; it is connected. The exact sequence

1→ G→ G1 → C → 1

yields a dual exact sequence
1→ Ĉ → Ĝ1 → Ĝ→ 1.

Defining Ĥ1 to be the fiber product of Ĝ1(→ Ĝ) and Ĥ(
η
→ Ĝ) over Ĝ, we get a commutative

diagram with exact rows:

1 −−−−→ Ĉ −−−−→ Ĥ1 −−−−→ Ĥ −−−−→ 1
∥∥∥

&η1

&η

1 −−−−→ Ĉ −−−−→ Ĝ1 −−−−→ Ĝ −−−−→ 1.

Since η need not be a Γ-map, the fiber product construction does not immediately give
an action of Γ on Ĥ1. To define an action of Γ on Ĥ1, note that the Ĝ-conjugacy class of η
is fixed by Γ, namely for each σ ∈ Γ there exists gσ ∈ Ĝ such that η ◦ σ = Int(gσ) ◦ σ ◦ η.
For each σ ∈ Γ choose xσ ∈ Ĝ1 with xσ &→ gσ . The restriction of Int(xσ) to σ

(
η1(Ĥ1)

)

is independent of the choices of gσ and xσ . Let Γ act on Ĥ1 in the unique way for which
η1 ◦ σ = Int(xσ) ◦ σ ◦ η1.

Consider the commutative diagram with exact rows

1 −−−−→ Ĉ −−−−→ Z(Ĝ1) −−−−→ Z(Ĝ) −−−−→ 1
∥∥∥

&
&

1 −−−−→ Ĉ −−−−→ Z(Ĥ1) −−−−→ Z(Ĥ) −−−−→ 1.

Lemma 8.4 The element s ∈ Z(Ĥ) does not belong to the image of Z(Ĥ1)Γin .
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Proof Let s1 ∈ Z(Ĥ1) map to s. Since H is ramified, there is a σ ∈ Γin which acts non-
trivially on Ĥ. As G is unramified, σ acts trivially on Ĝ. Now η ◦σ = Int(gσ)◦σ ◦η implies
that gσ #∈ η(Ĥ), otherwise σ would act on Ĥ by an inner automorphism, which would be
trivial as σ preserves some splitting of Ĥ. But then xσ #∈ η1(Ĥ1). Now η1(Ĥ1) is the identity
component of ZĜ1

(s1). As Gss is simply connected, so is Gss
1 . Hence η1(Ĥ1) = ZĜ1

(s1).
Hence xσ does not centralize s1, and σs1 #= s1.

Since F is local, we may assume that s ∈ Z(Ĥ)Γ. From the exact sequence

1→ Ĉ → Z(Ĥ1)→ Z(Ĥ)→ 1

we get Z(Ĥ)Γ → H1(F, Ĉ) % Homcts
(
C(F),C×

)
, then s is mapped to α ∈ H1(F, Ĉ), which

is the Langlands parameter for a character χ of C(F). By Lemma 8.4, s does not lie in the
image of Z(Ĥ1)Γin . Hence α is a ramified Langlands parameter for the unramified torus C ,
so χ is non-trivial on C(R) for the unique extension C of C to a torus over R.

Let H1 be a quasi-split connected reductive group over F whose dual is Ĥ1. Choose an
embedding H ↪→ H1 over F, dual to Ĥ1 → Ĥ. Since s1 #∈ Z(Ĝ1)Z(Ĥ1)Γ, (H1, s1, η1) is
not an endoscopic triple for G1; yet the results of [K2, Section 3] extend to H1, G1. Put
I1 = ZG1 (x) and IH1 = ZH1 (xH); both are connected. Then xH is (G1,H1)-regular, and we
have Z(Ĥ1) ↪→ Z(ÎH1 ) % Z(Î1). We also have a commutative diagram with exact rows

1 −−−−→ Ĉ −−−−→ Z(Ĥ1) −−−−→ Z(Ĥ) −−−−→ 1
∥∥∥

%
%

1 −−−−→ Ĉ −−−−→ Z(Î1) −−−−→ Z(Î) −−−−→ 1,

where I = ZG(x). Let c ∈ C(F) be the image of g1 ∈ G1(F). Put x ′ = g1xg−1
1 . Since

G1/C ′ = G/Z(G), x ′ and x are conjugate under G(F̄). Since G is normal in G1, if x =
γθ(γ)−1 with γ ∈ G(E), g1γg−1

1 also lies in G(E), and from x ′ = g1γg−1
1 θ(g1γg−1

1 )−1 we
see that x ′ ∈ X(F). Then x ′, x ∈ X(F) are stably conjugate.

Lemma 8.5 We have κ
(
inv(x, x ′)

)
= χ(c)−1.

Proof Let κ0 ∈ Z(Î)Γ be the image of s ∈ Z(Ĥ)Γ. From the exact sequence

1→ Ĉ → Z(Î1)→ Z(Î)→ 1

we get Z(Î)Γ → H1(F, Ĉ), which—using the commutative diagram above—maps κ0 to α.
From the exact sequence 1 → I → I1 → C → 1 we get C(F) → H1(F, I). Denote by
d ∈ H1(F, I) the image of c−1 ∈ C(F). The commutative square

C(F) −−−−→ H1(F, I) c−1 '→ d
%

%

H1(F, Ĉ)D −−−−→ π0
(
Z(Î)Γ

)D
x '→ κ0



Stable Bi-Period Summation Formula and Transfer Factors 785

of [K2, 1.6] (with 1 → G → H → I → 1 of [K2] denoted by 1 → I → I1 → C → 1
here) implies that χ(c−1) = κ0(d). Hence it suffices to show that d = inv(x, x ′). Choose
g2 ∈ I1(F̄) with g2 #→ c−1. Since g1, g

−1
2 ∈ G1(F̄) have image c ∈ C(F̄), the exact sequence

1 → G → G1 → C → 1 produces g ∈ G(F̄) with g1 = gg−1
2 . Then g−1τ (g) = g−1

2 τ (g2)
(τ ∈ Γ) is a 1-cocycle which represents inv(x, x ′) (using the left side) and also d (using the
right side).

Using g1 ∈ G1(F) and f ∈ C∞c
(
X(F)
)

we define f1(y) = f (g1 yg−1
1 ). Then f1 ∈

C∞c
(
X(F)
)

, and Φκf1
(x) = χ(c)Φκf (x), where c ∈ C(F) is the image of g1, since χ(c−1) =

κ
(
inv(x, x ′)

)
. Note that e

(
ZG(x)

)
= e
(
ZG(g1xg−1

1 )
)
, since Int(g1) defines an F-isomorph-

ism of these two groups.
Choose a maximal F-torus T in G with maximal split component, whose apartment

contains xqs . If T1 is the centralizer of T in G, we have an exact sequence of unramified tori:

1→ T → T1 → C → 1.

Denote by T, T1 the unique extension of T, T1 to tori over R. Then

1→ T(R)→ T1(R)→ C(R)→ 1

is exact. Since χ is non-trivial on C(R), we may choose g1 ∈ T1(R) with image c in C(R)
such thatχ(c) $= 1. As above,Φκf1

(x) = χ(c)Φκf (x). This will be 0 once we show that f1 = f .

It suffices to consider f on X(F) defined by f
(

yθ(y−1)
)
=
∫

u(yh) dh (h ∈ G(F)/Z(F)),
where u is the characteristic function of Z(E)KEaKE, a ∈ T(E). Thus f is the characteristic
function of the set {zk1akθ(k1akz)−1; k, k1 ∈ KE, z ∈ Z(E)}. Since g1 ∈ T1(F) normalizes
KE and commutes with a, this set is the same as its conjugate under g1. Hence f1 = f and
the proposition follows.

9 Global Finiteness
Let E/F be a quadratic extension of number fields, G a connected reductive group over F,
and ψ : Gqs → G an inner twisting with a quasi-split Gqs over F. Under the assumption
that H1

(
Ev/Fv,Gqs (Ev)

)
is trivial for all v, the inner twistingψ induces maps from the stable

semi-simple classes in X(Fv) to the stable semi-simple classes in Xqs (Fv), for each place v.
Indeed, xv ∈ X(Fv) lies in an Fv-torus Tv in Gv, there is a unique (up to G(F̄v)-conjugacy)
Γv-equivariant embedding jv : Tv → Tqs,v ⊂ Gqs,v, thus xqs,v = jv(xv) = jv

(
θv(x−1

v )
)
=

θv(xqs,v)−1 ∈ Gqs (Ev) lies in Xqs(Fv) since H1
(
Ev/Fv,Gqs(Ev)

)
= {0}. We say that the

G(A)-conjugacy class of a semi-simple x ∈ X(A) comes from xqs ∈ Xqs(F) if every local
component of x maps to the stable class of xqs .

Proposition 9.1 Let C be a compact subset of X(A). Then there are only finitely many G(A)-
conjugacy classes in X(A) which intersect C non-trivially and come from some semi-simple
element of Xqs(F).

Proof Suppose that Gss is simply connected. Fix an injection G ↪→ GL(n). Hence X(F) ↪→
Xn(F) = {gθ(g)−1; g ∈ GL(n, E)} and X(A) ↪→ Xn(A) = {gθ(g)−1; g ∈ GL(n,AE)}.
Denote by An the set of (an−1, . . . , a0) in An−1

E × A×E with ai = θ(an−i)a0, a0 $= 0, an = 1



786 Yuval Z. Flicker

(0 ≤ i ≤ n). Similarly introduce Fn. Consider the natural continuous map Xn(A) → An

defined by the coefficients of the characteristic polynomial of an n×n matrix, x $→ px(t) =
det(t − x) = tn + an−1tn−1 + · · · + a0, a0 = det(−x), an = 1. If x = θ(x)−1, then
ai = θ(an−i)a0.

Lemma 9.2 It suffices to consider only those G(A)-conjugacy classes in X(A) which map to a
fixed element of An.

Proof Let C ′ be the image of C under the composite map X(A)→ Xn(A)→ An. Then C ′∩
Fn is both discrete and compact, hence finite. If x is a semi-simple element of X(A) whose
G(A)-conjugacy class intersects C and comes from some semisimple element of Xqs (F),
then the image of x in An lies in C ′ and in the image of G(F̄)∩X(A) = X(F), thus in C ′∩F.

Lemma 9.3 It suffices to consider G(A)-conjugacy classes in X(A) which come from a fixed
semisimple xqs ∈ Xqs(F).

Proof There are only finitely many semisimple Gqs (F̄)-conjugacy classes in Gqs(F̄) whose

image under the composition Gqs (F̄)
ψ
→ G(F̄) → GL(n, F̄) → F̄n is a fixed element of F̄n.

Assume now that there is x ∈ X(A) whose conjugacy class comes from xqs ; otherwise
there is nothing to prove. Choose a subset KX of X(A) of the form {kθ(k)−1; k ∈ K}, where
K is an open compact subgroup of G(AE, f ). Choose a finite set V of places of F, including
the infinite places such that:

(a) for all v (∈ V , the group G is unramified at v, and K can be written as KvKv, where Kv

is a hyperspecial maximal compact subgroup of G(Ev), and Kv is a compact open subgroup
of G(Av

E, f ), where Av
E, f denotes the ring of finite E adeles without v-component;

(b) for all v (∈ V the v-component xv of x lies in KX,v = {kθ(k−1); k ∈ Kv}, and 1−α(xv)
is zero or a unit in RF̄ for every root α of G;

(c) C is contained in
∏

v∈V X(Fv) ·
∏

v $∈V KX,v.
Note that x comes from xqs ∈ Xqs (F). Since 1 − α(xqs) ∈ F̄ is zero or a unit locally

almost everywhere, we have that 1 − α(x) ∈ F̄ is zero or a unit locally almost everywhere,
hence there is V for which (b) is satisfied.

Let Y denote the set of G(A)-conjugacy classes in X(A) which intersect C and come from
xqs ∈ Xqs(F). At each place v of F, the stable conjugacy class of xv contains only finitely
many conjugacy classes. Any conjugacy class in Y contains an element x ′ with x ′v = xv for
all v (∈ V , by Proposition 8.1. Hence Y is finite, as required.

10 Transfer Factors
We shall now define the transfer factors whose existence is conjectured in Section 4 (and
6). Our definition coincides with that of [LS] when E/F is split. However, to make our
generalized definition we have to redefine the transfer factor of [LS]. Our presentation of
the transfer factor of [LS] is new and makes it more transparent to see its independence of
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the various auxiliary data used in its definition in [LS]. In particular we combine the factors
∆II and∆2 of [LS] to a factor which we denote by χG/H , whose definition does not involve
the three choices (of TH → T, of a-data and of χ-data) made in [LS].

Further we observe that the cohomological factor ∆1, which is the only factor which
depends on the conjugacy class of x and not only on its stable conjugacy class as is the case
with all other factors, in fact depends on the centralizer T of x in G, and not on x itself. The
same is true for the factor ∆I of [LS], whose role is to make the product ∆coh

G/H = ∆1∆I

independent of the three choices, especially of TH → T.
Let F be a local or global field and E a quadratic separable extension of F. Denote by θ

a generator of Gal(E/F). Let G be a connected reductive F-group, and put X(F) = {x =
gθ(g)−1; g ∈ G(E)}. Let (H, s, η) be an endoscopic triple for G (see [LS, (1.2)]), and define
XH(F) using H instead of G. Let xH and !xH be strongly G-regular elements in XH(F) which
are images of the elements x and !x in X(F). Let TH and !TH be the centralizers of xH and
!xH in H; these are F-tori. Fix admissible embeddings TH → Tqs and !T → !Tqs in the
quasi-split form Gqs of G. Denote by xqs and !xqs the images of xH and !xH under these
embeddings. Notations for tori and elements in Gqs could include the subscript qs. But to
simplify the notations, in the definitions of ∆abs

G/H(xH , x) and χG/H(xH , x) below, T, x, etc.,

signify Tqs , xqs , etc., but in the definition of ∆coh
G/H(xH , x) we work with T, x, etc., and not

with the quasi-split image.
Denote by R the root system of T in G and choose a subset R+ of positive roots, denote

by R∨ the coroots, by Ω the Weyl group, by R∨H the subsystem of coroots from H, by RH

the subset of roots from H, by ΩH the Weyl group generated by RH and R∨H . The analogous
objects for !T will be denoted by !R, !R∨, !Ω, etc. Since x ∈ T(E)∩X(F) satisfies θ(x) = x−1,
the product

∏
α∈R(α(x)− 1) lies in F. We put

∆abs
G/H(xH , x) = ∆abs

G (x)/∆abs
H (xH), ∆abs

G (x) =
∣∣∣
∏

α∈R

(
α(x)− 1

)∣∣∣
1/2
.

Then∆abs
G (x) depends only on the stable conjugacy class of x (∆abs

G/H is∆IV of [LS]).

Let L be a Galois extension of F which contains E such that Gal(F̄/L) fixes each α in
R. Denote by Rsym the set of symmetric Γ = Gal(L/F)-orbits in R; a Γ-orbit O is called
symmetric if O = −O. Put O+ = O ∩ R+. The free abelian group XO = Z[O+] on O+ is a
Γ-module. Fix α ∈ O+ and put Γ+α = {σ ∈ Γ;σα = α} and Γ±α = {σ ∈ Γ;σα = ±α}.
Then [Γ±α : Γ+α] = 2, and [F+α : F±α] = 2, where F+α is the subfield of L fixed by Γ+α,
and F±α is the subfield of L fixed by Γ±α.

Let χα be a character of (EF±α)× whose restriction to the norm subgroup NF+α/F±αF×+α
is trivial, but its restriction to F×±α is not (in the global case, χα is a character of
A×EF±α/(EF±α)×NF+α/F±αA×+α which is non trivial on A×±α).

Define χσα = χα ◦ σ−1 on the orbit O = Γ · α of α. In particular, if σα ∈ Γ has
σαα = −α, then its restriction to F+α generates Gal(F+α/F±α), and hence χα(x)χσαα(x) =
χα
(
xσ−1
α (x)

)
= 1 on x ∈ (EF±α)×, thus χ−α = χ−1

α if E = F±α.

Put Xα = Z · α. It is a Γ±α-submodule of XO, and XO = IndΓΓ±α Xα. Define the torus
TO over F by X∗(TO) = XO, and the torus Tα over F±α by X∗(Tα) = Xα. Then Tα is a
one dimensional torus, anisotropic over F±α, split over Fα, and TO = ResF±α/F Tα.
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The inclusion XO → X∗(T) yields a homomorphism T → TO over F, hence a homo-
morphism T(F) → TO(F) = (ResF±α/F Tα)(F) " Tα(F±α) and T(E) → Tα(F±αE). If xα

is the image in Tα(F±αE) of x in T(E) then α(x) = α(xα).
Denote by τα conjugation in Tα(F+α) with respect to Tα(F±α). Since the norm map

Tα(F+α) → Tα(F±α) is onto, we may write xα = yατα(yα), where yα lies in Tα(F+αE).
If σα denotes conjugation of F+α over F±α, we have α(x) = α(xα) = α

(
yατα(yα)

)
=

α(yα)/σα
(
α(yα)

)
. Note that σαα = −α. If F+αE is a quadratic field extension of F+α

then θ is the automorphism of F+αE over F+α, hence θ fixes α, namely θα = α, and χα =
χθα = χα ◦ θ−1. If F±αE = F+α then θ = σα and χθα = χ−α = χ−1

α . Put χG/H(xH , x) =
χG(x)/χH(xH),

χG(x) =
∏

O⊂Rsym

χα
([
α(yα)− σα

(
α(yα)

)]/[
α(! yα)− σα

(
α(! yα)

)])
;

χH(xH) is defined similarly, with R replaced by RH and x by xH . The product ranges over
the symmetric Γ-orbits in R, and since χσα = χα ◦ σ−1, each factor χα(∗) is independent
of the choice of a representative α in O+ ⊂ O. Note that the fraction

[
α(yα)− σα

(
α(yα)

)]/[
α(! y

α)− σα
(
α(! y

α)
)]

is fixed by σα, hence it lies in F±αE, and χα can be evaluated at this element.
When E is contained in F+α the fraction lies in F×±α and χα is simply the non trivial

character on F×±α/NF+α/F±αF×+α. This is the case of [LS], where E splits over F (in which case
we take E to be F in our definitions above).

Let us consider a global situation, and a place where F+α/F±α splits. Dropping the place
from the notations, we have F+α = F±α ⊕ F±α, where F±α is a local field. The character
χα is trivial on NF+α/F±αF×+α, which is F×±α embedded diagonally in F×+α. Then χα(u, v) =
χ ′α(u)χ ′−α(v) (u, v ∈ F×±α), where χ ′−α = 1/χ ′α. The conjugation τα of Tα(F+α) over
Tα(F±α) takes y = (y1, y2) ∈ Tα(F±α)× Tα(F±α) to ταy = (τ ′αy2, τ ′αy1), where τ ′α is the
action of the Weyl group on Tα(F±α). The norm map Tα(F+α) → Tα(F±α) is onto and it
takes the form yα = (yα1 , y

α
2 ) *→ xα = (yα1 τ

′
αyα2 , y

α
2 τ
′
αyα1 ), with yαi ∈ Tα(F±α).

Recall that T(E)→ Tα(F±αE), x *→ xα = yατα(yα), has

α(x) = α(xα) = α
(

yατα(yα)
)
= α(yα)/σα

(
α(yα)

)
.

The factorχα
(
α(yα)−σα

(
α(yα)

))
is the product ofχ ′α

(
α(yα1 )−α(yα2 )

)
andχ ′−α

(
α(yα2 )−

α(yα1 )
)

, which is χ ′α(−1). It is equal of course to the same factor with yα replaced by ! yα.
For this reason only symmetric Γ-orbits occur in χG/H(xH , x). The term χG/H(xH , x) is the
product of the terms∆II and∆2 = ∆III2 of [LS].

The only term in∆ of [LS] which depends on the conjugacy class of x and not only on
its stable conjugacy class is∆1 = ∆III1 , but in fact this factor does not depend on x as much
as on its centralizer T. It is 〈inv(TH ,T; !TH , !T), sU 〉 in the notations of [LS, p. 246], where
we replace γ of [LS] by T, and γ̄ by !T. However, replacing TH → T and !TH → !T by
g and !g conjugates, this factor is multiplied by 〈gT, sT〉/〈g!T , s!T〉 (see [LS, Lemma 3.4.A]).
Consequently [LS] multiply ∆1 by ∆I , which is 〈λ{a}(Tsc ), sT〉/〈λ{a}(!Tsc ), s!T〉 (see [LS,
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(3.2)]); by [LS, Lemma 3.2.B] the product is independent of a replacement of TH → T by
a g-conjugate. Moreover, the definition of λ{a} depends on a choice of an “a-data” (see
[LS, line before (2.3.1)]), although {a} no longer appears in the notations of [LS, (3.2)].
However, [LS, Lemma 3.2.C] guarantees that the quotient 〈λ{a}(Tsc ), sT〉/〈λ{a}(!Tsc ), s!T〉
is independent of the choice of the a-data {a}. We put

∆coh
G/H(xH , x) = 〈inv(TH ,T; !TH , !T), sU 〉 · 〈λ{a}(Tsc ), sT〉/〈λ{a}(!Tsc ), s!T〉

for the cohomological transfer factor (∆1∆I in [LS]). It is obviously invariant under the
replacements (A), (B) of [LS, p. 241], but depends on the conjugacy class of T, not only on
its stable conjugacy class. Our transfer factor is then

∆G/H(xH , x) = ∆coh
G/H(xH , x)χG/H(xH , x)∆abs

G/H(xH , x).

11 Fundamental Lemma For SL(2)

Let us verify the fundamental lemma when G = SL(2). Put X(F) = {x = gθ(g)−1; g ∈
G(E)}, where θ is the non trivial automorphism of the two dimensional commutative semi
simple algebra E over the local field F. We consider an element x in T(E) ∩ X(F), where T
is an F-torus in G. Up to stable conjugacy, T is TD, where TD(A) =

{(
a bD
b a

)
∈ SL(2,A)

}

for any commutative F-algebra A, and D ∈ F× (the torus TD is split if D ∈ F×2, non split
otherwise). The torus TD splits over FD = F(

√
D). Then

x = gθ(g)−1 =

(
A BD
B A

)
=

(
θA −θBD
−θB θA

)
(A,B ∈ E; det x = 1)

has the eigenvalues x± = A± B
√

D. So x+ − x− = 2B
√

D, θB = −B, and

(x+ − x−)/(!x+ − !x−) = B/!B ∈ F×,

where !x is a fixed regular element, and

(
x+

x−
− 1

)
·

(
x−
x+
− 1

)
=

2B
√

D · (−2B
√

D)
x+x−

= −4B2D ∈ F×.

Let χD be the character of F× whose kernel is the norm subgroup NF×D = NFD/FF×D . Then
the transfer factor∆absχ is

χD

( x+ − x−
!x+ − !x−

)∣∣∣
( x+

x−
− 1
)
·
(x−

x+
− 1
)∣∣∣

1/2
= χD(B/!B)|4B2D|1/2.

The case where E = F ⊕ F reduces to that of standard conjugacy. Here g = (g1, g2), and

x = (g1g−1
2 , g2g−1

1 ) =

((
a1 b1D
b1 a1

)
,

(
a1 −b1D
−b1 a1

))
a1, b1 ∈ F,
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x± = a1 ± b1
√

D, and the transfer factor is χD(b1/!b1)|4b2
1D|1/2, since B = (b1,−b1),

B2 = (b2
1, b

2
1) ∈ F×, B/!B = (b1/!b1, b1/!b1) = b1/!b1 ∈ F×.

We then restrict attention to the case where E is a quadratic field extension of F. The
case where D ∈ F×2, namely the torus TD/F is split over F, has χD = 1, and the stable bi-
conjugacy class of x consists of a single bi-conjugacy class, which can in fact be represented
by a diagonal element. This case is easily handled by a standard change of variables.

Suppose then that both E and FD are fields, and E/F is an unramified quadratic ex-
tension. The field FD is a ramified quadratic extension of F, or FD = E. In both cases, the
κ-orbital integral is a weighted (by χD(ρ)) sum over {1, ρ} ∈ F×/NF×D (take ρ ∈ R×−R×2

if FD/F is ramified, ρ a uniformizer π of the maximal ideal in the ring R of integers of F if
FD = E), of the form

∫

TD(F)\G(F)
1KE (g−1xg) dg−

∫

TρD(F)\G(F)
1KE (g−1xρg) dg

=

∫

T ′D(F)\GL(2,F)
χD(det g)1K ′E (g−1xg) dg

where xρ =
(

A BDρ
B/ρ A

)
, T ′D =

{(
a bD
b a

)
∈ GL(2)

}
, KE = SL(2,RE), K ′E = GL(2,RE). The

last integral is clearly zero when FD/F is ramified, as χD(ρ) = −1 for a unit ρ. There
remains the case of FD = E, unramified over F.

Put r = rm = diag(1,πm). Then GL(2, F) = ∪m≥0TrmK, where T = T ′D(F). Further
K ∩ r−1Tr & RD(m)×, where RD(m) = {a + b

√
D; |a| ≤ 1, |b| ≤ |π|m}, RD = RD(0).

Putting qD = q2 in the unramified case, where q|π| = 1, we have

|T \ TrK| = |K ∩ r−1Tr \ K| = [R×D : RD(m)×] =
[R×D : 1 + πmRD]

[RD(m)× : 1 + πmRD]

=
(qD − 1)qm−1

D

(q− 1)qm−1
= (1 + q−1)qm

if m ≥ 1, and= 1 if m = 0. If B = uπβ , u ∈ R×D , then our integral is

∑

m≥0

[R×D : RD(m)×](−1)m1K

(
r−1

m

(
A BD
B A

)
rm

)

= 1 +
∑

1≤m≤β

(−1)m(1 + q−1)qm

= 1− (q + 1)
∑

0≤m<β

(−q)m(−q)β = χD(B)|B|−1,

and our verification of the fundamental lemma for SL(2, E)/ SL(2, F) is complete.
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