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Summary. We prove the "fundamental  lemma" for spherical functions with 
respect to the natural (induction) lifting from PGL(2) to PGL(3) which 
appears as the unstable counterpart  of the stable symmetric-square lifting 
from SL(2) to PGL(3) (see I-IV] for an introduction to this project, and 
[VI] for the final results). Thus spherical functions on PGL(2) and PGL(3) 
which correspond to each other by satisfying an elementary representation 
theoretic relation are shown to have matching orbital integrals. The proof 
of this local statement is based on an application of the global trace formula. 

Let F be a local field. Put (~ G=PGL(3), H I =PGL(2), J =  1 , 
1 

and o~=Jt(}-xJ for 6 in G(F). Fix an algebraic closure F of F. The elements 
6,3' of G(F) are called (stably) o-conjugate if there is g in G(F) (resp. G(F)) 
with (Y=g-l(~a(g). To state our theorems, we first recall the results of [1], 
w167 1.2-1.6, concerning these classes. For  any 6 in GL(3, F), 6a(6) lies in SL(3, F) 
and depends only on the image of 6 in G(F). The eigenvalues of 3a(6) are 
2,1,2 -~ (see [I], w 1.4), with [ -F(2) :F]<2;  6 is called a-regular if 2 +  +_1. In 
this case we write (as in [I], w 1.5) 7t=N16 for the conjugacy class in Hi(F) 
which corresponds to the conjugacy class with eigenvalues 2, 1, 2-1 in S0(3, F) 
under the isomorphism HI(F)=SO(3, F ) (i.e.,),1 is the image in H~(F) of a 
conjugacy class in GL(2, F) with eigenvalues a, b with a/b=2). It is shown in 
[I], w 1.5, that the map  Na is a bijection from the set of stable regular a-conjugacy 
classes in G(F) to the set of regular conjugacy classes in HI(F)  (clearly, we 
say that a conjugacy class 7~ in HI(F) is regular if 2=a/b+ +l ) .  The set of 
a-conjugacy classes in the stable a-conjugacy class of a a-regular 3 is (shown 
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in [-I], w 1.5, to be) parametrized by F• • where K is the field extension 
F(2) of F, and N is the norm from K to F. Explicitly, if the quotients of the 
eigenvalues of the regular element ?'1 are 2 and 2 -1, choose ~,fl in K with 
2 = - ~ / f l  (for example with f l = l  if K=F, and with fl=c~ if K~F);  let a be 
an element of GL(2, F) with eigenvalues c~,/3; put (!0!) 

e = \ - - I  / ( 0 ) 0  , and h i =  01 i f h =  

then 6u=(uae)l is a complete set of representatives for the a-conjugacy classes 
within the stable a-conjugacy class of the 6 with N16 equals 71, as u varies 
over F• • (a set of cardinality one or two). In addition we associate (in 
[I], w 1.6) to 6 a sign to(6), as follows: ~c(6) is 1 if the quadratic form x (in 
F3)~-*'x 6Jx (equivalently x~--* 89 [6J + t(6J)] x) represents zero, and tr = - 1 
if this quadratic form is anisotropic. It is clear that x(6) depends only on the 
a-conjugacy class of 6, but it is not constant on the stable a-conjugacy class 
of 6. 

Denote by f (resp. f 0  a complex-valued compactly-supported smooth (thus 
locally-constant if F is non-archimedean) function on G(F) (resp. Hi(F)). Fix 
Haar measures on G(F) and on HI(F ). Write q~(fi,f) for the twisted orbital 
integral 

~f(g6 a(g- 1)) dg 

(here g ranges over G(F)/G](F), where Gg(F)={g in G(F); g6o (g - l )=6} )  of 
f at 6, and put 

cb"~(6, f )=  ~ K(6 ') cb(6',f); 
5' 

here 6' ranges over a set of representatives for the a-conjugacy classes within 
the stable a-conjugacy class of 6. As usual, 6 is a-regular. If 71 is regular, we 
also put 

 9 (71,fl) =~f~ (g 171g)dg 
(g in HI,~,(F)\HI(F ), where HI,v,(F ) is the centralizer of 7l in Hi(F)). Note 
that when ?,1 = N16 the groups Gg(F), Gg,(F), H I,~, (F) are isomorphic tori, and 
we transfer Haar measures on them using these isomorphisms. 

Definition. The functions f and f l  are called matching if they have matching 
orbital integrals, namely if A(6)q~"s(6,f)= A 1(?'1) q~(71,fl) for all 6 with regular 
71=N16. 

Here we put A l(?, 1)= [ (a -  b)Z/a b[ 1/2 if a, b are the eigenvalues of a representa- 
tive in GL(2, F) of 71, and A(6)= ](1-22) ( 1 - 2  2)11/2 if2=a/b. Thus 

A1(?,0=1(1-2)(I-2-1)11/2, and A(6)/A1(?,O=](l+2)(l+2 1)11/2. 

Suppose that F is non-archimedean; denote by R its ring of integers. Put 
K= G(R), K 1 = H i (R). Let l-I (resp. N1) denote the convolution algebra of com- 
plex-valued compactly-supported K- (resp. K1-)biinvariant functions on G(F) 
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(resp. Ht (F)). The Haar measures are the same as those used in the definition 
of the orbital integrals. Denote by f0  (resp. fo) the unit element in M (resp. 
IH0, namely the quotient by the volume IKI (resp. IKII ) of K (resp. KI) of 
the characteristic function of K (resp. K1). We prove below the following 

Theorem 1. The functions fo and fo are matching. 
This result is used in [VI] to complete the study of the symmetric square 

lifting, for all automorphic representations of H = SL(2). 
By a G-module n (resp. HI-module nt) we mean an admissible representation 

of G(F) (resp. H i (F)) in a complex space. An irreducible G-module z is called 
o-invariant if it is equivalent to the G-module ~n, defned by ~n(g)=n(ag).  In 
this case there is an intertwining operator A on the space of z with 
n ( g ) A = A n ( a g )  for all g. Since a 2 = l  we have n(g)AZ=A27r(g) for all g, and 
since n is irreducible A 2 is a scalar by Schur's lemma. We choose A with A 2 = 1. 
This determines A up to a sign, and when n has a Whittaker model, [IV, 
w l(t .l .1)] specifies a normalization of A which is compatible with a global 
normalization. A G-module n is called unramified if the space of ~r contains 
a non-zero K-fixed vector. The dimension of the space of K-fixed vectors is 
bounded by one if n is irreducible. If n is o-invariant and unramified, and 
v04:0 is a K-fixed vector in the space of z, then Avo is a multiple of v0 (since 
oK=K), namely Avo=CVo, with c=_+ l .  Replace A by cA to have Avo=V o, 
and put n (o )=  A. As verifed in [-IV, w 1 (1.1.1)], when n is (irreducible) unramified 
and has a Whittaker model, both normalizations of the intertwining operator 
are equal. 

For  any n and f the convolution operator n ( f ) =  S f(g)  z(g)dg has finite 
GtF) 

rank. If~ is ~-invariant put ~ ( f x  a )=  S f(g)  ~(g) ~(a) dg. Denote by tr 7r(fx or) 
G(F) 

the trace of the operator n ( f  x a). It depends on the choice of the Haar measure 
dg, but the (twisted) character ;(~ o f n  does not;  ;(~ is a locally-integrable complex- 
valued function on G(F) (see [C], [H]) which is o-conjugacy invariant and 
locally-constant on the a-regular set, with tr n ( f x  a )=  ~ f(g) x~(g)dg for all f 

G(F) 

I f f  is spherical, namely it lies in R-I, and n is ~-invariant, then n ( f )  (hence 
also n ( f  x a)) factorizes through the projection on the subspace of K-fixed vectors 
in n; thus t r n ( f x  o)4:0 for f in I-I implies that n is unramified. Similarly we 
introduce 7r t ( f l )  and tr g t (fl), and conclude that n I is unramified if t r  g l ( f l ) : :~  0 
for fl in N1. 

A Levi subgroup of a maximal parabolic subgroup P of G(F) is isomorphic 
to GL(2, F). Hence an Hx(F)-module gl extends to a P-module trivial on the 
unipotent radical N of P. Let 6 denote the character of P which is trivial on 
N and whose value at p=mn is [det h[ ifm corresponds to h in GL(2, F). Explicit- 
ly, if P is the upper triangular parabolic subgroup of type (2, l), and m in M 

is represented in GL(3, F ) b y -  - (n~' 0 )  then 6(m)=,(detm')/m ''2, (m' lies in 
mtt 

GL(2, F), m" in GL(1, F)). Denote by I(nl)  the G-module n=Ind(Jl/2n1; P, G) 
unitarily induced from nt on P to G. It is clear from [-BZ] that when I(nl) 
is irreducible then it is o-invariant, and it is unramified if and only if n~ is 
unramified. 
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Definition. The functions f l  in R-I 1 and f in ~-I are called corresponding if 
t r n l ( f l ) = t r ( I ( n O ) ( f x  a) for all unramified Hi-modules nl, equivalently: for 
all Hi-modules n 1. 

Example. The spherical functions fo and fo  are corresponding. 
It is shown in [IV, w 2] that Theorem 1 implies 

Theorem 2. I f  the spherical functions f, f l are corresponding, then they are match- 
ing. 

However the argument given below establishes Theorem 2 directly, and The- 
orem 1 will follow as the special case o f f = f  ~ fl =fo .  

In [-IV, w 2] the following is proven: 

Theorem 0. Suppose that zt= I (1tl) where 7t a is an irreducible Hl  (F)-module, and 
6, 6' are e-regular stably e-conjugate but not a-conjugate elements of G(F). Then 
X~(6') = -Z~(6). 

Of course 6+-6' as in Theorem0 exist only when F(2)+-F, namely when 
NI 6 is elliptic regular. Let Z.I be the character of 7tl; it is a locally-integrable 
complex-valued conjugacy-invariant function on H1 (F) which is smooth on the 
regular set and satisfies 

trrt ,(f~)= ~ f~(g)z~l(g)dg 
H 1 (F) 

for all f~ on H~ (F). It is shown in [IV, w 2] that Theorem 2 implies the following. 

Theorem 3. I f  ~ = 1(~1) then K (6) A (6) ~ ( 6 ) =  A1( 71) Z~, (~1) for all 6 with regular 
71=N16. 

In view of Theorem 0, it suffices to prove Theorem 3 only for one a-conjugacy 
class within each stable a-conjugacy class. It is clear that Theorem 3 implies 
Theorem 2 (see, e.g., proof of Proposition 27.3 in [FK]). 

It is shown in [II, w 2] that Theorem 3 is equivalent to the following 

Theorem 3'. For any Hl(F)-module nl we have tr(I(n0) ( f x  ~ )= t rn~( f0  for 
all pairs f, f l  o f  matching functions on G(F) and H1 (F). 

Our plan is to prove Theorem 3 directly only in the easiest case of the 
trivial representation nl, and then use the global trace formula to deduce Theo- 
rem 2, hence also 1 and 3, 3'. We emphasize that our method is to compare 
the representation theoretic sides of the trace formula in order to derive a compari- 
son of  orbital integrals. This is a new type of application of the trace formula. 

To simplify our proof we now assume that F has characteristic zero and 
odd residual characteristic. We shall prove Theorem 2 for any such F. Then 
Theorem 3 follows for every local F with characteristic zero by [IV, w 2]. Our 
proof here then establishes Theorem 2 when F has residual characteristic two, 
and characteristic zero. By virtue of [K']  each of Theorems 2 and 3 holds also 
when F is local of positive characteristic. For example, Theorem 2 follows at 
once from a statement which we proceed to state; it is a corollary to [K'], 
Theorem A. Suppose that G is a group as in [-K'], w 1, F is a local field, f 
is a locally constant measure on G(F), and U is a compact subset of G(F) 
consisting of regular elements. Clearly there exists a positive integer 1 such that 
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the function f, and the restriction cbv(x,f) to U of the orbital integral ~(x,f) 
of f both lie in the Hecke algebra ~t(G,  F) of K~(F)-biinvariant measures on 
G(F). Theorem A of [K']  asserts that there exists re>t, such that for every 
local field F' which is m-close to F, the morphism qS: ~-It(G , F) ~ n-Iz(G, F') (defined 
in [K'])  is an algebra isomorphism. The statement which we require is that 
 9 v,(x',f')=(o(qgv(x,f) ) for every x in XI(F)=KI(F)\G(F)/KI(F), where 
x' =q~(x),f'=O(f), and U'=~b(U). The analogous statement for twisted orbital 
integrals is equally valid. To deduce Theorem 2 for F of positive characteristic 
we take F'  of characteristic zero. 

We begin with the proof of 

Proposition 1. If nl is the trivial Hl(F)-module, n=l(n O, and 6 a a-regular 
element of G(F) with elliptic regular norm 71 = N16, then (A (6)/A 1 (71)) Z~(6) = to(f). 

Proof To compute the character of 7t we shall express 7t as an integral operator 
in a convenient model, and integrate the kernel over the diagonal. Denote by 
/~=/~ the character #(x)=lx t  <~+t~/2 of F • It defines a character # p = ~ . p  of 

P, trivial on N, by #e(p)=l~((detm')/m ''2) if p=mn and m=(n'-- 0,)- with m' 
0 m' 1 

in GL(2, F), m" in GL(1, F). If s = 0, then/ze = 61/2. Let Vr be the space of complex- 
valued smooth functions ~ on G(F) with qt(pg)=l~p(p)q/(g) for all p in P and 
g in G(F). The group G(F) acts on W~ by right translation: (ns(g)r (h) = q/ (h g). 
By definition, l (n l )  is the G-module W~ with s =  0. The parameter s is introduced 
for purposes of analytic continuation. 

We prefer to work in another model V~ of the G-module W~. Let V denote 
the space of column 3-vectors over F. Let V~ be the space of smooth complex- 
valued functions q5 on V-{0}  with ~(,~/))=]2(/~)-3q~(V). The expression 
#(det g)~b(tgv), which is initially defined for g in GL(3, F), depends only on the 
image of g in G(F). The group G(F) acts on V~ by (z~(g)~b)(v)=#(det g) q~('gv). 
Let Vo#0 be a vector of V such that the line {2%; 2 in F} is fixed under 
the action of tp. Explicitly, we take Vo = ~(0, 0, 1). It is clear that the map V~ ~ W~, 
~b ~ ~ = if , ,  where ~O (g) = (z~(g) ~b) (vo) = # (det g) q~ (tg Vo), is a G-module isomorph- 
ism, with inverse ~, ~ q~ = ~bo, ~b(v) = #(det g)- 1 q/(g) if v = 'gvo (G acts transitively 
on V -  {0}). 

For  v=~(x,y,z) in V put Ilvll =max(Ixl,  lY], Izl). Let V ~ be the quotient of 
the set of v in V with IIv/[=l by the equivalence relation v ~ v  if ~ is a unit  
in R. Denote by F V the projective space of lines in V -  {0}. If q~ is a function 
on V--{0} with q~(2v)=12]-3~(v) and dv=dx dy dz, then cb(v)dv is homoge- 
neous of degree zero. Define 

q~(v)dv t obe  I ~(v)dv. 
F V  Vo 

Clearly we have 

q~(v)dv= ~ cb(gv)d(gv)=ldetgl ~ ~(gv)dv. 
IPV I~V F V  

Put v(x)=lxl and  m= 3(s-1)/2. Note that v/l~,=l~-~. Put (v,w>='vJw. Then 
(gv, a(g)w> = <v, w>. 
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Lemma 1. The operator T~ : ~ ~ V-s ,  

(~r ~ r v)[mdw, 
FV 

converges when Re s > 2/3 and satisfies T~ zs(g)= z _, (a g) T~ Jbr all g in G (F) where 
it converges. 

Proof. We have 

(T~(zs(g)r (v)= ~ (z~(g)r [tw Jr[ m dw=l~(de t  g) ~ r [tw Jv[ m dw  
= ]det g[ -  1 #(det g) S 4,(w) [~(tg- 1 w) Jv[ m dw  
=(p/v) (det g) ~ c~(w) [twJ. J g -  t j v[m dw  
=(p/v)  (det g) ~ qS(w) [(w, tr(tg)v)[ m dw  = [(v/p)(det ag)]  [-(T~ r (a (*g) v)] 
= E(~_Aog))(T~ r (v), 

as required. 
The spaces Vs are isomorphic to the space W of locally-constant complex- 

valued functions on V ~ and T~ is equivalent to an operator  Tf  on W. The 
proof  of Lemma 1 implies also 

Corollary 1. The operator Tfozs(g 1) is an integral operator with kernel 

(p / v) (det a g ) ] ( w , a (t g - 1) v)[" ( v, w in V ~ 

and trace 

tr [ T~~ zs (g-  1)] = (v/p) (det g) ~ ]tv g J v[" d v. 
V o 

Remark.  (1) In the domain  where the integral converges, it is clear that 
t r [ T f o  r ag -1 ) ]  depends only on the o-conjugacy class of g if (and only if) s =0.  
(2) We evaluate below this integral at s = 0  in a case where it converges for 
all s, and no analytic difficulties occur. However, in the context of the Remark  
following the proof  of our  proposit ion,  we claim that  to compute the trace 
of the analytic cont inuat ion of Tfoz~(g-~)  it suffices to compute this trace for 
s in the domain of convergence, and then evaluate the resulting expression 
at the desired s. Indeed, for each compact  open a-invariant  subgroup K of 
G the space WK of K-biinvariant  functions on W is finite dimensional. Denote 
by PK: W ~  W K the natural  projection. Then T~~ acts on WK, and 
the trace of the analytic cont inuat ion of Tf  ozAg-X)~ is the analytic continua- 
t ion of the trace of Tfoz~(g-l)opK. Since K can be taken to be arbitrari ly 
small the claim follows. 

Next we normalize the opera tor  T =  T~ so that it acts trivially on the one- 
dimensional space of K-fixed vectors in V~. This space is spanned by the function 
4, o in V~ with ~bo(V)= 1 for all v in V ~ Fix a local uniformizer ~ in R. Let 
q be the cardinali ty of the quotient field of R. Normalize the valuation 1-1 by 
] n l = q - l .  Normal i z e  the measure  d x  by ~ d x = l ,  s o t h a t  ~ d x = l - q - k  

Ixl=<l I:,1= 1 
In particular,  the volume of V ~ is (1 - - q -  3)/(1 - q -  1)= 1 q-q-  1 + q - 2 .  

Lemma 2. We have (Tq~o)(Vo)=(1 _q-3(s+l)/2)  (1 _ q ( l -  3s)/z)-1 q~o(Vo). When s = 0  
the constant is - q - 1/2 (1 + q - a /2 + q -  1). 
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Proof 

~qSo(V)l'vJv01 mdv=  ~ [ x l " d x d y d z = ( 1 - q  -3(~+')/2) I Ixlmdx/ I dx, 
vo Ixl_<l [xl=l 

as required. 
To complete the p roof  of the propos i t ion  we have to compute  tr  [To r,(8-~)], 

T=T~ ~  a = (  ~ 1) with 0~=l=Oin F i n d  O in  F - - F  2 with IOl=l  or  IO[=q -~ 
Put  -0 - -  

6 = 6 , = u ( u -  l ae)l = u , 
- -  0 

where u ranges over a set of representat ives in F • for F •  • where K 
= F (01/2). Then det 8 = u (0 - cd). The eigenvalues of ,5 a (6) = ( - (det a) 1 a2)1 are 
2, l, 2 1 where 2 =  -(~+01/2)/(c~-01/z). We have 

hence 

( ct+O1/Z~[ 1 ct-O'/Z_~_ - 4 0  
( 1 + 2 ) ( 1 + 2 - 1 ) =  1 ~_O~/2]k ~-t-01/2] cd--O' 

(v/#) (det 8) A (8)/A ~ (7~) = lu(~ 2 - 0)1" -~)/214 0/(cd - 0)11/2 = 14u 01 t/2 lu(~2 _ 0)1-5/2 

 urther (!000) 
8 J =  u , 

0 - 

hence 'v 8 J v = x 2 + u y2 _ 0 z z. Consequent ly  

A(b) tr[Toz~(b_l)]=14uO[t/2lu(o~2_O)l_,/2 ~ luy2 + x2 0z213~s_l)/Zdxdydz" 
A1(71) vo 

We are interested in the value of this expression at s = 0 .  When  K(8)= 1 
the quadra t ic  form u y 2 + x  2 -  O z z represents zero. Then  the integral converges 
only for s with Re s > 2 / 3 ,  bu t  no t  at  s = 0 .  At  s = 0  the integral can be evaluated 
by analyt ic  cont inuat ion .  However  when x ( 8 ) = - - i  the quadra t ic  form uy 2 
+x  2 -  Oz ~ is anisotropic,  hence reaches a non-zero  m i n i m u m  (in valuat ion)  on  
the compact  set I[ v II = I. Consequent ly  the integral converges for all values of 
s, and  we may restrict our  a t ten t ion  to the case of s = 0 .  Here the character  
depends only on the a-conjugacy class of 8, and  we may take lul = 1 if 101 = q - a  
and l u l = q  -1 i f ] 0 l = l .  Then  luOll/2=q -1/2 and 

l u y 2 + x 2 - - O z 2 l - a / 2 d x d y d z = ( l + q - l / 2 + q - 1  ) ~ dx. 
Ilvll=l Ixl=l  

We conclude tha t  

A (6) tr  [%(8)~ T] = K(6) (T~bo) (Vo) 
A1(~'1) 
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when x ( 6 ) = -  1, hence for all a-regular 6 with elliptic 71 =N~ 6, by Theorem 0, 
Since ;~(6) = tr [r~(6) o T]/(TdPo ) (Vo), the proposition follows. 

Remark. It is clear that when •(6)= 1 the proof of Proposition 1 can be completed 
without using Theorem 0 on computing tr[T~~ - 1)] by analytic continua- 
tion, namely first for large Re s and then on evaluating the resulting expression 
at s=0.  

To prove Theorem 2 we have to take corresponding spherical functions f 
and ./'1, and show that A(6)cb"s(6,f)=Al(71)q~(71,fl) for all o-regular 6 with 
71 = N16. When 71 is split (its centralizer in H l (F) is conjugate to the diagonal 
torus), then the stable a-conjugacy class of 6 consists of a single a-conjugacy 
class, K(6)=l  and the required relation follows formally from the definition 
of f f l  being corresponding (see [II, w I]). Hence we have to prove the equality 
when 71 is elliptic regular (the quotient 2 of its eigenvalues generates a quadratic 
extension of F). 

The proof of Theorem 2 which is now to follow is global and uses the trace 
formula. We shall use the notations of [IV, w 1] without much ado. That is, 
we fix a totally imaginary global field F such that its completion at a place 
u is our local field, which is now denoted by F.. Let q51. be a pseudo-coefficient 
of the Steinberg Hl(F.)-module Stlu. Here Stlu is the complement of the trivial 
H1 (F.)-module in the H1 (Fu)-module 11 .(v]/2) unitarily induced from the charac- 

ter (o ~)-*.a/c,1./2 of the upper triangular subgroup of Hl(F,). By definition, 
tr Stl.(q~l.)= 1 and trn1,(q~l,)=0 for any tempered irreducible Hl(F,,)-module 
n l ,  inequivalent to Stlu. By I-K], Theorem K, the orbital integral ~(71, ~bl,) 
is zero if the quotients of the eigenvalues of 71 lie in F. • but are different from 
1 or - 1 ,  and ~(7~,q~lu) is equal to - 1  if the quotients of the eigenvalues 
of 71 do not lie in F, • Note that t r n l . ( ~ b l . ) = - I  if n l .  is the trivial 
H1 (F.)-module, and tr n l.(~b ~.)= 0 for any other non-tempered representation. 

Let q~. be a function on G(F.) matching q~l. such that 4~(6, q~,)=-q~(6', 
~b,) if 6, 6' are a-regular stably a-conjugate but not a-conjugate elements. The 
existence of such a function is proven in [I, w 3] by a local elementary proof. 
If n l .  is induced then the (twisted) character ~(,, of Tt,=I(nl ,)  is supported 
on the a-split set (see [II], w 1), hence trn.(q~, x a)=0.  By Proposition 1 for 
a-elliptic regular 6 we have 

/s A (6) (ZI(st, u)) ( 6 )=  A 1 (71) (~(s,l u) (71) = A 1 (~1) (~)(71, ~blu) 
= A (6) ~"~(6, ~b,)= 2A (6) ~(6, ~b.)/s 

hence 2q,(6, q~.)= gl~st~.)(b), and by [II, w 3] we conclude that tr(l(Stl .))  (q~. • tr) 
= 1, hence tr(I(nl.)) (~b.• a ) = - 1  if n l .  is the trivial Hl(F.)-module. If g l .  is 
a square-integrable H l(F.)-module inequivalent to St 1. then I0rl .)  and I(Stl ,)  
are not relatives in the terminology of I-K], hence their characters are orthogonal 
by [K], Theorem G, as stated in [II, w Note that although the work of 
I-K] is formulated in the non-twisted case only, the twisted analogue follows 
by the same proof on noting that the twisted analogue of [K], Theorem 0, 
is available (in our case it is given in [IV, w 1]). In particular we have tr(l(~l,)) 
(q~. x a )=0  for all tempered n l .  inequivalent to St1.. Moreover, since the residual 
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characteristic of F, is odd, all a-invariant  elliptic G (F.)-modules not mentioned 
above are of the form l(n,(OfiT), g.) by [IV, w 1] and in the notations of [-IV, 
w 1] (thus ;G is a quadratic character and 0 is a character of the quadratic 
extension of F, determined by ~, and class field theory). Their characters are 
a-stable by [IV, w 2], hence tr n(~b, x a ) = 0  for such n. In summary we have 

Proposition 2. There exist matching functions c~ u and (~l~ on G(Fu) and HI(F.) 
with (1) tr(I(nl .))  (q6~• all nlu; (2) t r n ~ . ( ~ b l . ) = - I  /f ha. 
is trivial, trnau(qblu)=l if  n l . = S t l u  and trnlu((Olu)=O otherwise; (3) trnu(dPu 
x a ) = O  unless nu is l(Stlu) or IOrau) with trivial nlu; (4) ~(71, qSlu) is - I  on 
the regular elliptic set and zero on the regular split set; (5) 4(6, qSu)=-~(6 ' ,  
dpu ) i f  O, (5' are a-elliptic regular stably a-conjugate non-a-conjugate elements of  
G(F). 

For  any place v of F, let #v be a character of Fv • and nlv the Hl(Fv)-module 

l(gv) nnitarily induced from the character ( ;  ~)~#v(a /c )  of the upper triangular 

subgroup. Then the character of 7~ a v is supported on the split set, the character 
of l(na ~) is supported on the a-split set, they are easily computable and compara- 
ble (see [-II, w 1]), and we have tr(l(na~)(f ,  x a ) = t r n l ~ ( f l ~ )  for all matching 
f~ and fa~. When v is an archimedean place of F then the completion F~ is 
C since F is totally imaginary. Since any unitary non-induced H~ (C)-module 
is one-dimensional, and its character is the difference of the characters of two 
induced H 1 (~)-modules, we conclude 

Proposition 3. I f  F,~=~ and f , , f  l~ are matching functions then tr(l(nl~)) (f~ x (7) 
= tr n i ~ (fl ~) for  all H a (F~)-modules n ~ .  

This is a trivial case of Theorem 3', where F~ = (1;. 
Let Uo, u~ be two finite distinct places of F, different from u, of odd residual 

characteristic. Denote by & the ring of adeles of F. Let fa = |  ~ be a function 
on H~(Z~) with fa~=f~ for almost all (finite) v, with f ~  in the Hecke algebra 
Hlo for all finite v#:u, Uo, Ul, and with flu=(~lu,fluo=(91uo, and f ~ , , = r  
Let f = |  be a function on G(&) such that (1)f.=~b,,f ,o=q~.o and f .  =~b,,, 
(2) at each finite v+u,  Uo, u 1 the component f ,  lies in H~ and f , , f l ,  are corre- 
sponding (in particular, f~ is f o  for almost all v), (3) at each archimedean place 
v the functions f~ and fl~ are matching. Then tr nav(f~o)=tr(I(na,)) (f~ • a) for 
every Ha(F~)-module nao, for every place v, and therefore t r n l ( f 0 = t r ( l ( n 0 )  
( f x  a) for every H~ (~,)-module nl- In particular, we obviously have the following 

Proposition 4. We have 

~ t r  nl ( f0  = ~ t r ( l (n l ) ) ( f  x a). 

Here both sums range over all discrete-series (cuspidal or one-dimensional) 
automorphic H a(&)-modules ha. Of course the n~ which contribute a non-zero 
term have a Steinberg or trivial component  at the places u, Uo, ua, while all 
of their other finite components are unramified. 

Choose a component f~  at an archimedean place oo to vanish on the set 
of non-a-regular  elements 6 in G(F~). Since at V=Uo, Ua the components f~ 
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(resp. f~ ~) have orbital integrals which vanish on the o-regular-split (resp. regular 
split) sets, the trace formula for H~ asserts the following 

Proposition 5. We have 

~c(7~) A a (70 q~(~a, fa) = ~ t r  gl (f0. 

Here 7~ ranges over the set of regular elliptic conjugacy classes in Ha(F), c(TJ 
is a volume factor, and 

Aa(yO~(?~,f~)=~(?a,fD is the product HAI~(yJ  .~(?a,f~,). 
v 

Since the stable twisted orbital integrals of f.o (and f.l) are zero, the twisted 
trace formula for G in its stabilized form (see [III, w 3]), asserts the following 

Proposition 6. We have 

~c(7~) A(6) ~"~(6,f)=~tr(l(~O)(i x o). 

The sum over 7, and the volume factors c(7,) are the same as above (as noted 
in [ I I I ,w  1]), 6 signifies (a representative of) the stable a-conjugacy class in 
G(F) with ~)a "~- N1 ~, and A (6) #'u'~(6,f)= q'"~(6,f) the product l~ A,(6) q,"~(6,f,). 

v 

We briefly sketch the stabilization argument on which the proof of Proposi- 
tion 6 is based. The sum over o-conjugacy classes in the twisted trace formula 
can be expressed as a sum over the set of stable o-conjugacy classes 6o in 
G(F), of the sums S~(6, f ) ,  where here 6 ranges over the set D(6o/F) of o- 
eonjugacy classes in G(F) within the stable o-conjugacy class of 60. Since 6o 
is a-regular elliptic for our f the set D(6o/F) is isomorphic to F• • where 
K = F (N16). D (6o/F) has index two in D (60/~) ~- & •  Hence 

q)(b , f ) -  89 ~ 4~(5,f) +  89 ~ ~c(6) ~(6,f). 
6 i n  D(Jo/F) 6 i n  D (6o/1~) 5 i n  D ( 5 o / • )  

Since the stable orbital integral q~t(b,f,,o ) = (P(b,fuo)+ ~(6',f.o) is assumed to be 
zero, we have that 

o(6, f ) =  H ,os'(bo,f~)= dp~t(bo,f) 
6 i n  D ( 6 o / • )  v 

is zero, implying the desired equality 

(P(6,f) =  89 4~"~(6o,f) 
~ i n  D((~o/F) 

for our f, from which Proposition 6 follows. 
Combining Propositions 4, 5 and 6 we obtain 

Proposition 7. We have 

~c(? , )  A,(?,) O(yt,f~)=~c(~' ,)A(g) q)"~(6,f). (7) 
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Lemma. Both sums in (7) are finite. 

Proof Identifying PGL(2) with the subgroup SO(3) of GL(3), we note that Y~ 
is determined by the coefficients in its characteristic polynomial. These coeffi- 
cients are rational (in F), and f~ (or f )  is compactly supported, whence the 
sums are finite. 

Let 7~ be a regular elliptic element of H~ (F.). Then there exists an element 
7 o of HI(F) which is elliptic regular in H~(F.o ) and Ht(F.,), and whose orbit 
in HI(F~) is as close to that of 7~ as desired. At each v#:u, Uo, u~ choose 
f1~ with 4~(7~ such that f~ = f o  for almost all v; this is clearly possible, 
since 7 o is a rational element, in Ha(F). For  our f l ,  which depends on 7 ~ the 
sum on the left of (7) is finite, and includes 3, ~ We now replace f l  ~ by its 
product with a smooth function which takes the value one on the orbit of 
7 o in H1 (F,o) and vanishes outside of a small neighbourhood of this orbit;  choos- 
ing a suitable replacement we may assume that 7 o is the only class which contrib- 
utes a non-zero term on the left of (7). 

Next we denote by 6 ~ the stable ~-conjugacy class in G(F) with N1 6o=7 ~ 
The sum on the right of (7) is also finite. We can replace the component  foo, 
as above, by another function with the property that ~"~(6~ will not  change, 
yet ~"s(6,f~,) be zero at each of the finitely many (stable) classes 6 + 6  o which 
appear on the right of (7). We conclude that f~ ~o (and .f~) can be chosen so 
that we obtain the following 

Proposition 8. We have 

H A, ~(7 ~ ~(7~ ~)= I ]  A~(6~ as"~(6~  9 (8) 
v~-u v~-u  

In particular the right side here is non-zero. 

Proof It is clear that we have (8) where the product ranges over all places 
v. Since 7 o is elliptic regular in HI(Fu) and f t ,  is a pseudo-coefficient of the 
Steinberg H1 (F,)-module, we have ~(7~ = - l. Further we have 

A, .(7 ~ ~(7~ .)= A.(6 ~ ,~"~(~~ 
since .f~u and f ,  are matching (by definition of f . ,  which uses Proposition 2: 
here f i . =  q~lu and f . =  c~.). Hence we can take the product to range only over 
v + u, as asserted. 

We can now complete the proof of Theorem 2. Let ~b and q~l be correspond- 
ing elements of ~I, and ~-I 1,,. We have to show that 

1,(7%) a~(7%, 4 ' , )= A.(6~ a~(6  ~ 4') 

for any regular elliptic 7~ in HI(F,) and 6 ~ with 7~ 6 ~ Since 4~,q51 are 
locally constant  it suffices to show the following 

Proposition 9. We have 

A1 ,(7 ~ ~(7 ~ , qS~)= A,(6 ~ ) q~"~(6 ~ , +) (9) 
for 7 o as above. 



504 Y.Z. Flicker and D.A. Kazhdan 

Proof. Let  f; = | and  f ' =  | be the  func t ions  o b t a i n e d  f rom f l  = |  
a n d  f =  |  on  replac ing the  c o m p o n e n t s  f l ,  and  f~ by q~l a n d  4, ( thus f;~=flv 
and  f '=f~ for veeu). R e p e a t i n g  the  d iscuss ion  leading  to (8) wi th  f ; , f '  ins tead  
off1, f we ob ta in  

0 t 0 u s  0 t I~A,~(~ ~ O(y,~,flv)=I~A~(6 ) q~ (6 ,fl). 
v v 

Since b o t h  sides of  (8) are non-ze ro ,  (9) follows, and  T h e o r e m  2 is proven .  
As  expla ined  above ,  th is  comple tes  the  p r o o f  of  T h e o r e m s  1, 3 a n d  3' as 

well. 

Remark. (1) The  p r o o f  given above  can be a d a p t e d  to  es tabl ish  the a n a l o g o u s  
uns tab le  twis ted  t ransfer  o f  spher ical  func t ions  f r o m  GL(3, E) to U(2), wh ich  
is s ta ted  (but  ne i the r  used n o r  p roved)  in L e m m a  3.4 in [ U  1]; howeve r  we 
do  no t  discuss  th is  here. (2) The  same m e t h o d  appl ies  a lso  in the  s tudy  of  
the  endo- l i f t ing  f rom GL(m, E) to GL(n, F), where  E/F is a cyclic ex tens ion  of  
degree  n/m; see IF ] .  
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