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1. Introduction. The purpose of this note is to propose a new technique in the

theory of automorphic forms which will potentially characterize those cusp forms

on the general linear group whose symmetric square lifting has a one dimensional

constituent. In principle, a cuspidal representation � of G n = GL(n; A ), where A

is the ring of adeles of a global �eld F , is parametrized by a complex irreducible

representation � of dimension n of a form of the Weil group, and the symmetric

square lifting Sym2� of � is cuspidal precisely when Sym2� is irreducible. A char-

acterization of the � such that Sym2� is reducible would suggest a parametrization

of the cuspidal � whose symmetric square is expected not to be cuspidal, and in

particular of the � whose symmetric square L-function L(s; �; Sym2) { or a twist

of it { will not be entire, if Sym2� has a one-dimensional constituent.

An illuminating example is that of a three dimensional � with determinant 1.

Its symmetric square is reducible precisely when � preserves a quadratic form, and

� factorizes through the subgroup (PGL(2; C ) ')SO(3; C ) of SL(3; C ), namely

� is the symmetric square of some two-dimensional projective representation �0.

This suggests that for a cuspidal representation � of PGL(3; A ), the L-function

L(s; �; Sym2) has a pole precisely when � is the symmetric square lifting ([F1],

or Gelbart-Jacquet [GJ]) of an automorphic representation of SL(2; A ). Patterson

and Piatetski-Shapiro [PPS] have shown that the residue of L(s; '; Sym2), ' 2 �, is
R3(') =

R
Z23G3nG3

'(g)�(g)�(g)dg (here G3 = GL(3; F ), Zn =center of G n), where

� are certain \theta" functions on a two-fold covering group of G 3 . It is then natural

to conjecture that the linear form R is non-zero on the cuspidal representation � of

PGL(3; A ) precisely when it is the symmetric square of a cuspidal representation

of SL(2; A ). A local analogue of the linear form R3 has been studied by Savin [S] in

the unrami�ed case, using the explicit model of the theta representation of [FKS].

Analogous conjectures can be made for all n, describing the cuspidal � on which

R does not vanish (Such � might be lifts from Spm if n = 2m + 1, or SO2m if

n = 2m). Here we propose a technique to prove these conjectures, by working out

the case of n = 2. This technique is based on applying the theta-kernel to the

spectral decomposition of L2(Z2G2nG 2). It is likely to generalize to the higher n,

and in particular to give a new proof of the symmetric square lifting of automorphic

forms from SL(2; A ) to PGL(3; A ), and a new characterization (R3 6= 0 on �3 =
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Sym2�2) of the image of the lifting, as well as an extension of the local work of

[S] to the rami�ed case. But this generalization will require further technical work.

We decided to write up the case of n = 2 to expose our ideas, in the simplest { least

technical { case. Our main technical tool, a new type of a summation formula, is

described in Proposition 5. Lemmas 2 and 3 deal with the accompanying transfer

of orbital integrals.

Consider then a cuspidal representation � of G = GL(2; A ). Its symmetric square

lifting is an automorphic representation Sym2� of PGL(3; A ), whose existence is

proven in [GJ] by means of the converse theorem, and in [F1] by means of the

trace formula. The L-function L(s; �; Sym2) = L(s; Sym2�) is entire, but given a

character � of order two of A �=F�, the twisted L-function L(s; �; � 
 Sym2) =

L(s; �
Sym2�) will have a pole precisely when � is associated with a character � of

A
�
E=E

�, where E is the quadratic separable extension of F de�ned by � using class

�eld theory. It can be shown that the residue of this twisted-by-� L-function is

proportional to R�(') =
R
Z2GnG

'(g)�(g)�
�
(g)dg; ' 2 �, for suitable �-functions

on a two-fold covering group of G = GL(2; A ). In fact a similar linear form on

' 2 � appears in [GJ], where G is replaced by SL(2; A ). We use the linear form

R� to characterize the image of the lifting � 7! �(�).

Theorem. Let A � be the group of ideles of a global �eld F , and � 6= 1 a quadratic

character of A �=F�, associated with a quadratic separable �eld extension E of F .

Given a character � of A �E=E
� whose restriction to A �=F� coincides with �, there

exists a unique automorphic representation �(= �(�)) of PGL(2; A ), determined

as follows. At a place v of F which splits in E, there is a character �1v of F
�
v such

that �v((a; b)) = �1v(a=b)((a; b) 2 E�v = F�v �F�v ). Then the local component �v =

�(�v) of � = �(�) is de�ned to be the PGL(2; Fv)-module I(�1v; �
�1
1v ) normalizedly

induced from the character

�
a �
0 b

�
7! �1v(a=b). At a non-split unrami�ed place v

of F , where �v is unrami�ed, there is a character �1v of F
�
v with �v(z) = �1v(zz).

De�ne �(�v) to be I(�1v; �
�1
1v ). The automorphic representation �(�) is cuspidal

unless � = �2 for some character � of A �=F�, and � = �. In this case �(�)

= I(�; 1=�) is a principal series representation. A cuspidal representation � of

PGL(2; A ) is of the form �(�) precisely when R�(') =
R
Z2GnG

'(g)�(g)�
�
(g)dg is

non-zero on ' 2 �. In this case, if � is a square then � 6= �.

The existence of the lifting � 7! �(�) is well-known. It was proven using the

oscillator representation (see Howe [H], or [MVW]) in Shalika-Tanaka [ST], the

converse theorem in Jacquet-Langlands [JL], by stabilizing the trace formula on

SL(2) in Labesse-Langlands [LL], by twisting the trace formula by � in Kazhdan

[K], by quadratic base-change for GL(2) in Langlands [L] (see [F2] for a simpler

proof). In all of these works the image of the lifting was characterized by the

requirement that � 
 � ' �. Our characterization of the image, by the non-

vanishing of the form R� on �, is di�erent, and is at the core of our proof. Note
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that if exists, �(�) is uniquely determined by almost all of its components { as

speci�ed in the statement of the Theorem { by virtue of the rigidity theorem for

GL(2) (see Jacquet-Shalika [JS]).

As noted above, the virtue of the present work is not in proving a new re-

sult, or supplying a new proof for an old result. It is in exposing a new method

which may extend from the case of GL(2) to the higher rank groups GL(n),

n > 2. In comparison, the method of [ST] { which we proceed to sketch {

has no known projected extension to GL(n). For simplicity, let us describe the

method of [ST] in the case of SL(2). Let �1 and �2 be two theta-functions on

the two-fold topological central extension S of SL(2; A ). It su�ces to show that

(�) �1(g)�2(g) = ����(g)(g 2 SL(2; A )), where �� 2 �(�). Let V be a vec-

tor space over F with a quadratic form q. Put V = V (A ). Then by [H] or

[MVW], the Schwartz space C1c (V) of functions on V admits commuting repre-

sentations of S and the orthogonal group O(q;V) of q on V. If V = V (F ) is F ,

and q(x) = ax2(a 2 F�), one obtains the theta representation of S on C1c (A ).

If V = V (F ) is E, and q(x) = xx is the norm form on E, then one has a direct

sum decomposition C1c (A E ) = ���(�). Since E = F (�1=2) ' F � F with the

quadratic form q(x; y) = x2 � �y2, one has an isomorphism of SL(2; A )-modules

C1c (A )
C1c (A ) ' C1c (A E ), and (�) follows (for a complete proof see [ST], or [H],

[MVW]). To repeat, this method is not known to extend to GL(n), n > 2.

Our technique might be considered to be conceptually simpler. We consider the

well-known spectral and geometric expressions for the kernel of the convolution

operator r(f) on L2(GnG ) for a Schwartz function f on G = PGL(2; A ), multiply

by �1(g)�2(g), and by a character  (n) 6= 1 of the upper unipotent subgroup NnN ,
and integrate over g 2 GnG and over n 2 NnN . On the spectral side we get

essentially a sum over the cusp forms (� 2)� of G of the R�(�(f)�), multiplied by

the value at the identity of the Whittaker function of �. The geometric sum is easily

transformed to a sum over  2 E� (rather than PGL(2; F )!) of the values fE()

of a function fE in the Schwartz space on A E , transferred from f compatibly with

the lifting �! �(�) in the unrami�ed case. The Poisson summation formula on E

permits writing �fE() as a sum ���(fE), and a standard separation argument of

"linear independence of characters" establishes the lifting �! �(�). This approach

extends in principle to GL(n); n > 2. This we considered interesting, so we thought

it was worthwhile to work out carefully the technical details in the test case of

GL(2), as a prototype for the general case. This is what we do in this paper.

Let us dispose at once of the degenerate case where there exists a character � of

A
�=F� such that � = �2, equivalently �v(�1) = 1 for every place v of F , and the

character � of A �E=E
� is equal to �, where �(x) = �(x), x 2 A

�
E . Since � = �, there

is a character �1 of A
�=F� such that � = �1 �N , where Nx = xx is the norm map

from E to F . The restriction of � to A � is �, hence �2
1
= �. Namely � is a square

when � = �, and we may choose � to be �1. At a place v which splits in E, we have

�2v = �v = 1, hence �v = �(�v) is by de�nition the induced PGL(2; Fv)-module
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I(�v; �
�1
v ) = I(�v; �v�v) (as �v = 1). At a non-split place v, by de�nition �(�v) is

I(�v; �
�1
v ) = I(�v; �v�v). Hence when � = �2 and � = � = ��N , the character � of

A
�
E=E

� lifts to the principal series (normalizedly induced) representation I(�; ��)

of PGL(2; A ).

2. Theta Kernel. Our argument uses the theta-representation of the two-fold

cover of the group. For GL(2), an explicit model of this representation is described

in [FM]. Let v be a place of F , and �v : F
�
v ! C

� a unitary character ([FM] takes

�v = 1, but the general case is similar). Let C�v (F
�
v ) denote the space of smooth

functions uv : F
�
v ! C , supported in a compact of Fv (if v is �nite; having rapid

decay at 1 if v is archimedean), which vanish near 0 if �v(�1) = �1, while if

�v(�1) = 1 they have the property that uv0(x) = �v(t)jtj1=2v uv(t
2x) is independent

of t if jxjv � 1 and jtjv is su�ciently small (if v is �nite; t 7! �v(t)jtj1=2v uv(t
2x)

is smooth at t = 0, and uv0(x) is de�ned to be its limit at t = 0, when v is

archimedean). Note that if �v(�1) = 1 then there is a character �1v of F�v with

�2
1v = �v, and then �1v�

1=4
v uv0 extends to a function on F�v =F

�2
v .

The Weil- or �-representation of the 2-fold cover eGv of Gv = GL(2; Fv) consid-

ered in [FM] acts on C�v (F
�
v ) as follows.�

�v

�
s

�
z 0

0 z

��
uv

�
(�) = (�; z)vv(z)�v(z)uv(�) (z; � 2 F�v )�

�v

�
s

�
a 0

0 1

��
uv

�
(�) = �v(a)jaj1=2v uv(a�)�

�v

�
s

�
1 b

0 1

��
uv

�
(�) =  v(

1

2
b�)uv(�) (b 2 Fv)�

�v

�
s

�
0 �1
1 0

��
uv

�
(�) = cvv(�)j�j1=2v

Z
Fv

�v(t)jtj1=2uv(�t2) v(��t)dt = (Fuv)(�):

Here  v is a non-trivial character of Fv, and cv = v(�1)�1=2 is an eighth root

of unity in C . Denote by Rv the ring of integers in Fv, and by �v a uniformizer.

When v is �nite and odd,  v has conductor Rv, �v unrami�ed, u0v is supported on

the set of "t2, " 2 R�v , t 2 Rv, and is given there by u0v("�
2n) = �v(�)

nj�j�n=2v

(j"jv = 1; n � 0), then �v(s(k))u
0

v = u0v for k 2 Kv = GL(2; Rv).

If u = 
uv, then [FM] shows that the function

��u(g) = 2
X
�2F�

(�(g)u)(�) +
X

�2F�=F�2

(�(g)u)0(�)

on eG(A ) is automorphic, namely left-invariant under the discrete subgroup G =

GL(2; F ) of eG(A ) ([FM] consider only � = 1; if �v(�1) = �1 for some v then

(�(g)u)0 � 0). Write �u for ��u when � = 1. From now on we take a non-trivial

character � of A �=F� of order two, as in the Theorem.
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The linear form R�(') =
R

Z2GnG

'(g)�u(g)�
�

w(g)dg (u 2 C(A � ); w 2 C�(A
�))

appears in the following \spectral" expression on the space L2
0
(ZGnG ) of cusp forms

on G = GL(2; A ) which transform trivially under the center:

X
�

cuspidal

X
'2�

orthonormal
basis

Z
Z2GnG

(�(f)')(g)�u(g)�
�

w(g)dg �
Z
NnN

'(n) (
1

2
n)dn;(1)

where N =

��
1 �
0 1

��
and the second integral is the value at e of the Whittaker

function W'; .

We want to show that � ranges here over the � = �(�), � : A �E =E
� ! C

� ,

with � 6= � if � is a square, and each such �(�) contributes. For this end note

that there are two expressions for the kernel of the convolution operator r(f) on

L2(ZGnG ). The geometric expression is
P

2ZnG

f(g�1n). The spectral expression

is the sum of the contribution
P
�

P
'2�

(�(f)')(g)'(n) from the cuspidal spectrum,

whose integral against �u(g)�
�

w(g)dg � (12n)dn is (1), and a contribution from the

continuous spectrum.

3. Eisenstein Series. The kernel of the operator r(f) on the continuous { non-

discrete { spectrum, takes the form

1

�

X
�

X
�

Z
iR

E(g; �s(f)�; �; s)E(h;�; �; s)ds:

The �rst sum ranges over a set of representatives of the classes of characters � of

A
�=F� up to multiplication with �is, s 2 R, where �(x) = jxj. The second sum

ranges over an orthonormal basis of the space of right smooth functions � : K ! C ,

with �

��
a b

0 c

�
k

�
= �(a=c)�(k), where k and

�
a b

0 c

�
lie in K =

Q
Kv, Kv is

the standard maximal compact subgroup in PGL(2; Fv). We trivialize the vector

bundle

I(��s; ��1��s) =

�
�s : G ! C ; �s

��
a b

0 c

�
g

�

= �(a=c)ja=cjs+1=2�s(g); a; c 2 A
� ; b 2 A

o
via the restriction map �s ! � = �sjK . The Eisenstein series are de�ned by the

sum

E(g;�; �; s) =
X

2BnG

�(g; �; s);

if Re (s) is large enough, and by analytic continuation for other s in C . We write

�(g; �; s) for �s(g), to emphasize also the dependence on �.
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To compute the integral, I, of this kernel against �u(g)�
�

w(g)dg �  (12n)dn, we
need to recall { and use { the truncation operator �T , where T > 0 is su�ciently

large. If g = nak, k 2 K , n 2 N , a =

�
a 0

0 b

�
, then dg = ja=bj�1(d�ad�b)dn dk,

and we put H(g) = ja=bj. Denote by �(H(g) > T ) the characteristic function of

the g 2 G with H(g) > T , and similarly with < replacing >. The truncation of �

on G is

�T�(g) = �(g)�
X

�2BnG

�N (�g)�(H(�g) > T );

where

�N (g) =

Z
NnN

�(ng)dn:

The truncation maps slowly increasing to rapidly decreasing functions, and stan-

dard arguments imply the following. We have that

I =
1

�

Z
ZGnG

Z
NnN

X
�

X
�

Z
iR

E(g; �s(f)�; �; s)E(n;�; �; s)ds�u(g)�
�

w(g)dg (
1

2
n)dn

is equal to

I 0 =
1

�

X
�

X
�

lim
T!1

Z
iR

Z
Z2GnG

�TE(g; �s(f)�; �; s)�u(g)�
�

w(g)dg �E (�; �; s)ds;

where

E (�; �; s) =

Z
NnN

E(n;�; �; s) (
1

2
n)dn:

Our aim is to show the following.

1. Lemma. The integral I of the contribution from the continuous spectrum is the

sum over the characters � of A �=F� which satisfy �2 = �, of I�, de�ned to be the

sum over � of

1

4

Z
K

Z
A�=F�A�2

[�(a)(�0(f)�(k) + �(1=a)(�0(f)M�)(k)]E (�; �; 0)

�
X

�2F�=F�2

(�(k)u)0(a�)�(k)w)0(a��)jaj1=2d�adk:

Proof. To compute the inner integral, over g, in I 0, note that

EN (g;�; �; s) = �(g; �; s) + (M�)(g; ��1;�s);
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whereM is the standard intertwining operator from I(��s; ��1��s) to I(��1��s; ��s).

Hence

�TE(g;�; �; s) =
X

�2BnG

[�(�g; �; s)�(H(�g)< T )�(M�)(�g; ��1;�s)�(H(�g) > T )];

and the inner integral, of �TE ��u ���w over g, is the di�erence, which we denote

by J = J(f;�; �; s),Z
ZNBnG

(�s(f)�)(g; �; s)�(H(g)< T )Adg�
Z

ZNBnG

(M�s(f)�)(g; �
�1;�s)�(H(g) > T )Adg:

Here

A =

Z
ZZ2nZ

Z
NnN

�u(nzg)�
�

w(nzg)dn dz:

Substituting the two sums, over F� and over F�=F�2, which de�ne each of �u and

��w, into A, we get the sum of 4 expressions. Note that we may change the order of

the summations and the integrations over the compact sets, since for any compact

subset C of eG(A ), and u, there exists a function u1 with properties analogous to

those of u, such that j(�(g)u)(x)j � ju1(x)j for all x 2 A
� and g in C. The same

remark applies to the function w. In any case, the �rst term, integrated over the

compact NnN, is equal toZ
NnN

4
X

�;�2F�

 (
1

2
n(�� �))(�(zg)u)(�)(�(zg)w)(�)dn

= 4
X
�2F�

(�(zg)u)(�)(�(zg)w)(�) = 4
X
�2F�

(�(g)u)(�)(�(g)w)(�)�(z):

Integrating this over the compact ZZ2nZ we obtain 0, since � 6= 1 (is of order two).

The second and third terms are similarly shown to be 0. The fourth term is 0 if

there is a place v with �v(�1) = �1, as then (�(g)w)0 � 0. Suppose then that

�v(�1) = 1 for all v.

To compute the fourth term in A, recall the following action of � on w.�
�

�
s

�
1 b

0 1

��
w

�
0

(�) = w0(�);

�
�

�
s

�
z 0

0 z

��
w

�
0

(�) = (�; z)(z)�(z)w0(�);�
�

�
s

�
a 0

0 1

��
w

�
0

(�) = �(a)jaj1=2w0(a�);�
�

�
s

�
a2 0

0 1

��
w

�
0

(�) = jajw0(a2�) = �(a)jaj1=2w0(�);

since w0(�t
2) = �(t)jtj�1=2w0(�). The integrand is invariant under N . Its integral

overNnN is its product with vol (NnN) = 1. Now, if ker� = NE=FE
�, E = F (

p
�),
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then �(z) = (�; z). Indeed, the Hilbert symbol satis�es (�a
b
; a+ b) = (a; b), hence

( a
2

�b2
; a2 � �b2) = (a2;��b2) = 1, and so (�; a2 � �b2) = 1. Carrying out the

integration over z in ZZ2nZ of the fourth term, we obtain that A isZ
ZZ2nZ

X
�;�2F�=F�2

(�; z)(z)(�; z)(z)�(z)(�(g)u)0(�)(�(g)w)0(�)dz

=
X

�2F�=F�2

(�(g)u)0(�)(�(g)w)0(��):

We are now in a position to compute the two terms in J . Writing g = n

�
at2 0

0 1

�
k,

the �rst term isZ
K

Z
A�=F�A�2

(�s(f)�)

��
a 0

0 1

�
k; �; s

� Z
t2F�nA�

jt2j<T

�(t2)jtj2s+1�(t)jtj1=2 � jtj1=2
X

�2F�=F�2

�
�

�
s

�
a 0

0 1

�
k

�
u

�
0

(�)

 
�

�
s

�
a 0

0 1

�
k

�
w

!
0

(��)jtj�2jaj�1d�ad�t dk:

The inner integral
R
(�2�)(t)jtj2sd�t over t 2 F�nA � , jt2j < T , is zero unless �2�

is �� for some � 2 iR. Replacing � by ����=2 we may assume that �2 = ��1 = �,

in this case, and then the value of the integral is 1

2s
T s.

The second term in J is similarly computed, and we conclude that J vanishes

unless �2 = �, in which case we obtain that J is equal to

1

2s
T s
Z
K

Z
A�=F�A�2

(�s(f)�)

��
a 0

0 1

�
k; �; s

�

�
X

�2F�=F�2

�
�

�
s

�
a 0

0 1

�
k

�
u

�
0

(�)

 
�

�
s

�
a 0

0 1

�
k

�
w

!
0

(��)jaj�s�1d�a dk

� 1

2s
T�s

Z
K

Z
A�=F�A�2

(M�s(f)�)

��
a 0

0 1

�
k; ��1;�s

�

�
X

�2F�=F�2

�
�

�
s

�
a 0

0 1

�
k

�
u

�
0

(�)

 
�

�
s

�
a 0

0 1

�
k

�
w

!
0

(��)jajs�1d�a dk:

For a given f , the sums over � and � in I 0 (or I) are �nite. The matrix coe�-

cients (�s(f)�;�
0) are rapidly decreasing holomorphic functions of s 2 iR. HenceP

�

P
�
J(f;�; �; s) has the form 1

2s
T sh1(s) � 1

2s
T�sh2(s), where h1; h2 are holo-

morphic on iR, with h1(0) = h2(0). Our lemma now follows from the limit formula

1

2�
lim
T!1

Z
iR

f1
s
T sh1(s)�

1

s
T�sh2(s)gds = h1(0)
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for such functions h1; h2. (The left side is lim
y!1

(2�i)�1
1R
�1

[eixyh1(ix)�e�ixyh2(ix)]x�1dx.

Since lim
y!1

R
jxj>1

eixyh(ix)x�1dx = 0 and lim
y!1

R
jxj<1

eixy [h(ix)� h(0)]x�1dx = 0, we

are left with (2�i)�1
R

jxj<1

[eixyh1(0)�e�ixyh2(0)]x�1dx = (h1(0)=�)
R

jxj<1

(sinxy=x)dx

= (h1(0)=�)
R

jxj<y

(sinx=x)dx, which has the limit h1(0) as y !1.) �

Remark. It is clear that the integral over NnN of the kernel of r(f) on the discrete

non-cuspidal (one-dimensional) spectrum, multiplied by  (1
2
n), is 0. Hence the

one-dimensional automorphic representations do not contribute to our formulae.

4. Geometric Side. We conclude that (1) +
P

�2=� I� is equal to the \geometric

sum": Z
Z2GnG

Z
NnN

X
2ZnG

f(g�1n)�u(g)�
�

w(g) (
1

2
n)dn dg

=

Z
ZZ2NnG

f (g
�1)

Z
NnN

�u(ng)�
�

w(ng) (
1

2
n)dn dg;

where

f (g
�1) =

Z
N

f(g�1m) (
1

2
m)dm:

The inner integral gives

Z
NnN

�u(ng)�
�

w(ng) (
1

2
n)dn =

Z
NnN

4
X

�;�2F�

 (
1

2
n(�� � � 1))(�(g)u)(�)(�(g)w)(�)dn

+

Z
NnN

2
X

�2F�=F�2

X
�2F�

 (
1

2
n(� + 1))(�(g)u)0(�)(�(g)w)(�)dn

+

Z
NnN

2
X

�2F�=F�2

X
�2F�

 (
1

2
n(�� 1))(�(g)u)(�)(�(g)w)0(�)dn

= 4
X

�16=�2F�

(�(g)u)(� + 1)(�(g)w)(�) + 2(�(g)w)(�1)
X

�2F�=F�2

(�(g)u)0(�)

+ 2(�(g)u)(1)
X

�2F�=F�2

(�(g)w)0(�):

Here we used the fact that

�
�

�
1 b

0 1

�
u

�
0

(�) = u0(�). Consequently, taking
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z 2 Z, we getZ
NnN

�u(nzg)�
�

w(nzg) (
1

2
n)dn

= 4
X

�2F��f�1g

(� + 1; z)(z)(�(g)u)(� + 1)(�; z)(z)�(z)(�(g)w)(�)

+ 2(�1; z)(z)�(z)(�(g)w)(�1)
X

�2F�=F�2

(�; z)(z)(�(g)u)0(�)

+ 2(z)(�(g)u)(1)
X

�2F�=F�2

(�; z)(z)�(z)(�(g)w)0(�):

Integrating over Z=ZZ2 (of course Z = Z(A ); Z = Z(F )) we then getZ
Z2ZnZ

Z
NnN

�u(nzg)�
�

w(nzg) (
1

2
n)dn dz = 4

X
�2F��f�1g
�+1
�

2�F
�2

(�(g)u)(� + 1)(�(g)w)(�)(2)

+ 2(�(g)u)0(��)(�(g)w)(�1) + 2(�(g)u)(1)(�(g)w)0(�):

The sum here can be expressed as

4
X

�; � 2 F�
��� 2 F�2
�� � = 1

(�(g)u)(�)(�(g)w)(�) =
X

� 2 F�=F�2
�; � 2 F�

�(�2 � ��2) = 1

(�(g)u)(��2)(�(g)w)(���2);

on replacing � by ��2 and � by ���2. Assuming that w = 
wv 2 C�(A �), de�ne
a function on A

� � A by w(t; x) =
Q
wv(tv; xv), where

wv(tv; xv) = �v(xv)jxvj1=2wv(tvx2v) if xv 6= 0;

and

wv(tv; 0) = lim
xv!0

wv(tv; xv)(= wv0(tv)):

Then x 7! w(t; x) is a Schwartz function on A for every t in A
� , and

w(t; x) = �(z)jzj1=2w(z2t; z�1x) (t; z 2 A
� ;x 2 A ):

The analogous de�nitions { with � = 1 { apply to u = 
uv 2 C(A �). Then

u(t; x) = jzj1=2u(z2t; x=z). If �; � 2 F�, then w(��2) = w(�; �), and u(��2) =

u(�; �). In these notations our sum takes the formX
� 2 F�=F�2
�; � 2 F�

�(�2 � ��2) = 1

(�(g)u)(�; �)(�(g)w)(��; �):
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Note that when � = 0 we can take � = 1 (and � = �1), hence the missing term

in the last sum is 2(�(g)u)(1)(�(g)w)0(�). When � = 0 we can take � = ���1
and � = �1, hence the corresponding missing term is 2(�(g)u)0(��)(�(g)w)(�1).
These are terms in our integral

RR
�u�

�

w dn dz. We conclude that (2) equalsX
� 2 F�=F�2
�; � 2 F

�(�2 � ��2) = 1

(�(g)u)(�; �)(�(g)w)(��; �) =
X

�2F�=F�2

X
 2 E�
�N = 1

(�(g)F )(�; ;u;w);

where we put (�(g)F )(t; z;u;w) =
Q
v

(�v(gv)Fv)(tv; zv;uv; wv) and

(�v(gv)Fv)(tv; zv;uv; wv) = (�v(gv)uv)(tv; xv)(�v(gv)wv)(�tv; yv)

(tv 2 F�v ; zv = xv +
p
�yv 2 Ev). Note that if  = � +

p
��, then N = �2 � ��2.

Note also that for t 2 Fv, z 2 Ev, we have�
�v

�
s

�
1 b

0 1

��
Fv

�
(t; z) =  v

�
1

2
btNz

�
Fv(t; z); b 2 Fv;�

�v

�
s

�
a 0

0 1

��
Fv

�
(t; z) = jajv�v(a)Fv(at; z); a 2 F�v ;�

�v

�
s

�
0 �1
1 0

��
Fv

�
(t; z) = v(�)�v(t)jtjv

Z
E

Fv(t; �) v

�
1

2
ttr(z�)

�
d�;

and

�v

�
s

�
a 0

0 a

��
Fv = Fv; a 2 F�v :

Moreover

F (t; z) = jsj�(s)F (s2t; z=s) (s; t 2 A
� ; z 2 A E ):

Note that �v is a representation of the group GL(2; Fv) itself (even of PGL(2; Fv))

on the space of the functions Fv(tv; zv), which are smooth on F�v �Ev. Hence (2)

can be written as

2
X

2E�=F�

(�(g)F )(N�1; ;u;w);

and the total \geometric sum" is equal to

2
X

2E�=F�

Z
ZNnG

f (g
�1)(�(g)F )(N�1; ;u;w)dg:

For z 2 E�v , de�ne

fEv (z) = jzzj�1=2Fv

Z
ZvNvnGv

fv; (g
�1)(�v(g)Fv)(Nz

�1; z;uv; wv)dg:

The function fEv on E�v satis�es fEv (az) = �v(a)fEv(z) (a 2 F�v ; z 2 E�v ), and

fEv (z) = �v(�1)fEv(z).
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5. Transfer of Functions.

2. Lemma. The function fEv () extends to a smooth function on E�v .

Proof. This is clear, since the function Fv is smooth on F�v �Ev, and the integration
ranges over a compact set of g, depending on fv. Alternatively stated, let us pass

to local notations { drop v { to simplify the notations. Write  = x+
p
�y. Then

up to a factor which is smooth in , our expression is the integral over k in K of

�(y)jxyj1=2
Z
F�

�(a)f 

�
k�1

�
a�1 0

0 1

��
(�(k)u)

�
ax2



�
(�(k)w)

�
�ay2



�
d�a;

at  with xy 6= 0. The only possible points where this may not be smooth are at

x = 0 or y = 0. But at these points we have that

(�(k)u)

�
ax2



�
= jxj�1=2(�(k)u)0(a=) (jxj small)

and

(�(k)w)

�
�ay2



�
= �(y)jyj�1=2(�(k)w)0(�a=) (jyj small);

hence the lemma again follows. �

Consider next the case of a spherical function, �rst at a place v which splits in

E.

3. Lemma. If v splits in E,  v has conductor Rv, uv = u0v, wv = w0

v, and fv is

spherical, then fEv ((a; b)) = Ffv

��
a 0

0 b

��
; a; b 2 F�v .

Corollary. A character �v of E
�
v =F

�
v is of the form �v((a; b)) = �1v(a=b) for some

character �1v of F�v , and we have �v(fEv ) = tr I(�1v; �
�1
1v ; fv) for every spherical

function fv on PGL(2; Fv).

Proof. Note that

�v(fEv ) =

Z
E�v =F

�
v

�v((a; b))fEv((a; b))d
�(a=b)

is equal toZ
F
�
v

�1v(a=b)Ffv

��
a 0

0 b

��
d�(a=b) = tr I(�1v; �

�1
1v ; fv): �

Proof of Lemma. Suppose that v splits in E, thus Ev = Fv�Fv and  = (d; c) if  =

(c; d), and assume that  v has conductor Rv, uv = u0v, wv = w0

v, and fv is spherical.
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Note that �v = 1. Then using the Iwasawa decomposition dg = dnd�a=jajdk, and
noting that �(k)u0v = u0v, and �(k)w

0

v = w0

v, we obtain the following expression for

fEv ((c; d)):

jcdj�1=2v

Z
F�v

fv; 

��
a�1 0

0 1

��
u0v((a=cd;

1

2
(c+ d)))w0

v((�a=cd; (c� d)=2
p
�))d�a:

Here  = (c; d) in E�v can be expressed as xv +
p
�yv, where

p
� = (

p
� ;�p�) and

xv =
1

2
( + ) = 1

2
(c + d), and yv = ( � )=2

p
� = (c � d)=2

p
� . At  6= � in

E�v , we obtain����c2 � d2

cd

����
1=2

v

Z
F�v

fv; 

��
a�1 0

0 1

��
u0v

�
a(c+ d)2

4cd

�
w0

v

�
a(c� d)2

4cd

�
d�a:

This expression is not changed if (c; d) is replaced by (d; c) or (�c; d), and (c; d)

is taken modulo F�v . We may take then d = 1 and jcj � 1. Consider �rst the case

that jcj = 1, c 6= �1. We may assume that jc+ 1j = 1, and jc � 1j � 1. Then our

expression is

jc� 1j1=2v

Z
F
�
v

fv; 

��
a�1 0

0 1

��
u0v(a)w

0

v(a(c� 1)2)d�a

=

Z
F�v

fv; 

��
a�1 0

0 1

��
u0v(a)w

0

v(a)d
�a:

If jcj = j�nj < 1, our expression is

j�nj�1=2
Z
F
�
v

fv; 

��
a�1 0

0 1

��
u0v(a�

�n)w0

v(a�
�n)d�a;

this last expression is then valid for n = 0 too. The integrand is non-zero only

when a 2 �n+2mR�v , m � 0, and we get

j�nj�1=2
X
m�0

fv; 

��
�
�n�2m 0

0 1

��
j�j�m

=
X
m�0

qm+
1
2
n

�
fv

��
�
�n�2m 0

0 1

��
� fv

��
�
�n�2m�2 0

0 1

���

= q
1
2
n

2
4fv

��
�
�n 0

0 1

��
+
X
m�1

�
1� 1

q

�
qmfv

��
�
�n�2m 0

0 1

��35 :
Note that

Ffv

��
a 0

0 b

��
=
ja� bjv
jabj1=2v

Z
Fv

fv

��
1 �x
0 1

��
a 0

0 b

��
1 x

0 1

��
dx

= ja=bj1=2v

Z
Fv

fv

��
a 0

0 b

��
1 x

0 1

��
dx;
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and so, for our spherical fv, we have

Ffv

��
�
�n 0

0 1

��
= j��nj1=2v

Z
fv

��
�
�n 0

0 1

��
1 x

0 1

��
dx

= j��nj1=2
2
64fv

��
�
�n 0

0 1

��
+

Z
jxj>1

fv

��
�
�nx2 0

0 1

��
dx

3
75

= qn=2

2
4fv

��
�
�n 0

0 1

��
+

�
1� 1

q

�X
m�1

qmfv

��
�
�n�2m 0

0 1

��35 :
Here we used the decomposition

�
1 0

0 �
�n

��
1 0

x 1

�
=

�
1 0

0 �
�n

��
1 1

x

0 1

��
x�1 0

0 x

��
0 �1
1 0

��
1 1=x

0 1

�

=

�
1 �

n=x

0 1

��
x�1 0

0 x��n

��
0 �1
1 0

��
1 1=x

0 1

�
�
�
x�1 0

0 x��n

�
if jxj � 1:

The lemma follows. �

6. Non-split Case. Suppose now that Ev=Fv is an unrami�ed �eld extension, the

conductor of  v is Rv (thus  v = 1 on Rv but  v(�
�1
v Rv) 6= 1), j2jv = 1, fv is

spherical (Kv = GL(2; Rv)-biinvariant), and uv = u0v, wv = w0

v, the Kv-invariant

elements in C(F�v ) and C�v (F
�
v ). Then dg = dn � jaj�1d�a � dk if g = n

�
a 0

0 1

�
k

in ZvnGv = NvAvKv. Hence

fEv () = jj�1=2v

Z
F�v

fv; 

��
a�1 0

0 1

��

� �v(a)u0v(a=;
1

2
( + ))w0

v

�
�a=;

 � 

2
p
�

�
d�a:

This is a function on E�v which transforms under F�v according to �v. Hence we

may assume that  and � are units in F�v . At  with  6= �, we put x = (+)=2,

y = ( � )=2
p
� , and then

fEv () = jxyj1=2Fv
�v(y)

Z
F
�
v

fv; 

��
a�1 0

0 1

��
�v(a)u

0

v(ax
2)w0

v(ay
2)d�a

=

Z
F
�
v

fv; 

��
a�1 0

0 1

��
u0v(a)w

0

v(a)d
�a:

The last integral ranges over R�v �
2m, m � 0, where �v(a) = 1, and we used

u0v(ax
2) = u0v(a)jxj�1=2v and w0

v(ay
2) = jyj�1=2v �v(y)w

0

v(a) for the last equality. It

follows that in the unrami�ed-spherical case, fEv () depends only on the parity of



15

the valuation of . If { moreover { fv is the unit element f0v of the Hecke algebra,

and jajv � 1, then

f0v; 

��
a�1 0

0 1

��
=

Z
Fv

f0v

��
a�1 0

0 1

��
1 x

0 1

��
 (

1

2
x)dx

= f0v

��
a�1 0

0 1

��
� f0v

��
a�1��2 0

0 1

��

is equal to f0v (I) = 1 if jajv = 1. Hence f0Ev () � (�1)valEv ().

4. Lemma. When Ev=Fv is an unrami�ed �eld extension, fv is spherical,  v has

conductor Rv, j2jv = 1, uv = u0v, wv = w0

v, and �1v is the unrami�ed character of

F�v whose value at the uniformizer �v of Rv is i =
p�1, then

�v(fEv) = trI(�1v; �
�1
1v ; fv);

where �v denotes the unrami�ed \sign" character of E�v , whose value at a uni-

formizer �v of REv is �1. Here �v(fEv ) =
R
E�v =F

�
v
�v()fEv()d

� is the value of

fEv at a  in R�Ev .

Proof. We drop the index v to simplify the notations, and recall that fE(),  2 R�E ,
is independent of , and is given by

fE() =

Z
F�

�
f

��
a�1 0

0 1

��
� f

��
a�1��2 0

0 1

���
u0(a)w0(a)d�a

=
X
n�0

�
f

��
�
�2n 0

0 1

��
� f

��
�
�2n�2 0

0 1n

���
j�j�n�(�n)

= f(I) + (1 +
1

q
)
X
n�1

f

��
�
�2n 0

0 1

��
(�q)n; q = j�j�1:

On the other hand, since �1(�) = i, we have

tr I(�1; �
�1
1
; f) =

X
n2Z

Ff

��
�
�n 0

0 1

��
in = Ff (I) +

X
n�1

Ff

��
�
�n 0

0 1

��
(in + i�n)

= Ff (I) + 2
X
n�1

(�1)nFf
��

�
�2n 0

0 1

��
:

But

Ff

��
�
�n 0

0 1

��
= qn=2

2
4f ����n 0

0 1

��
+ (1� 1

q
)
X
m�1

qmf

��
�
�n�2m 0

0 1

��35 :
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So we get

= Ff (I) + 2
X
n�1

(�1)nFf
��

�
�2n 0

0 1

��
= f(I) + (1� 1

q
)
X
m�1

qmf

��
�
�2m 0

0 1

��

+ 2
X
k�1

(�q)k
2
4f ����2k 0

0 1

��
+ (1� 1

q
)
X
m�1

qmf

��
�
�2k�2m 0

0 1

��35

= f(I) +
X
n�1

f

��
�
�2n 0

0 1

��24(1� 1

q
)qn + 2(�q)n + 2(1� 1

q
)qn

X
1�k<n

(�1)k
3
5

= f(I) +
X
n�1

(1 +
1

q
)(�q)nf

��
�
�2n 0

0 1

��
= fE();

as asserted. �

7. Conclusion. So far we have shown the following.

5. Proposition. Given a �nite set V of places of F containing the archimedean

places and those which ramify in E, and those where the conductor of  is not

Rv, and those where uv 6= u0v, or wv 6= w0

v, for any test function f = 
fv, fv 2
C1c (ZvnGv), fv is spherical (Kv = GL(2; Rv)-biinvariant) for all v 62 V , and

fv = f0v (= characteristic function of ZvKv) for almost all v, we have the equality

(1) +
X
�2=�

I� = 2
X

2E�=F�

fE() =
X
�

�(fE):

Here I� is de�ned in Lemma 1. Moreover, fE(a) =
Q
v

fEv (av) for a = (av) 2 A
�
E ,

where fEv is a smooth function on E�v (by Lemma 2) with fEv (a) = �v(a)fEv()

(a 2 F�v ;  2 E�v ), which is spherical (R�Ev -invariant) for v 62 V , and for almost all

v it is the unit element: f0Ev () = �v(�v)
valEv () (if v is non-split), and f0Ev ((a; b))

equals 1 if jajv = jbjv, and zero otherwise (if v splits). The sum over � ranges over

all characters of A �E =E
� whose restriction to A

�=F� is �, and

�(fE) =

Z
A
�
E
=A�E�

�(a)fE(a)da:

The measure da is such that
R
A
�
E
=A�E�

da = 2, the Tamagawa number of ResE=F G m=G m .

�

Note that the sums over  and � are equal by the Poisson summation formula.

Since fE(a) = fE(a), we have �(fE) = �(fE), where �(a) = �(a).

Lemmas 3 and 4 assert that at v 62 V , we have �v(fEv) = tr I(�1v; �
�1
1v ; fv), where

�1v is related to �v as in the Theorem. On the other hand, in (1), �v(fv) acts as
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zero on ' 2 � unless ' is Kv-invariant on the right, in which case �v(fv) acts as

multiplication by the scalar tr�v(fv). A standard argument of \generalized linear

independence of characters" (see, e.g., [F2], p. 758), using the absolute convergence

of our sums, simple unitarity estimates, and the Stone-Weierstrass theorem, implies

the following. Put K (V ) =
Q
v 62V

Kv, and let �K(V ) be the space of K (V )-invariant

vectors in the space of �.

6. Proposition. Fix an unrami�ed Gv-module �
�
v for each v 62 V . For any fv 2

C1c (Gv), v 2 V , put f = (
N
v2V

fv) 
 (
N
v 62V

f0v ). Then (1) +
P
�2=� I� =

P
�

�(fE),

where in (1) the �rst sum ranges over the cuspidal representations � of PGL(2; A )

with �v ' ��v for all v 62 V , and the second sum is over a smooth orthonormal basis

f'g for the spaces �K(V ). The sum over �, �2 = �, ranges over those characters �

with I(�v; 1=�v) ' ��v for all v 62 V . The sum over � ranges over those characters

of A �E=E
� such that for v 62 V the component �v is unrami�ed, and de�nes the

representation I(�1v; �
�1
1v ), which is required to be equivalent to ��v . �

By the Chebotarev density theorem the sum over � consists of at most one

pair f�; �g of non-zero contributions. Since every smooth function on E�v which

transforms under F�v according to �v and whose values at  2 E�v and  defer by

a multiple of �v(�1), is obtained as fEv from some fv, for some uv and wv, we

conclude, on choosing ��v = I(�1v; �
�1
1v ) (v 62 V ), that for each � as in the Theorem

there exists (a unique) �(�), as in the Theorem; it is the unique � which occurs in

(1), unless � = �2 and � = �, since the sum
P
�

�(fE) of Proposition 6 is non-zero.

This � = �(�) has the property that R�(') 6= 0 for some ' 2 �.
On the other hand, by the rigidity theorem for GL(2) (see [JS]), at most one �

can contribute to the sum (1) of Proposition 6. Let � be a cuspidal representation of

PGL(2; A ) such that
R
Z2GnG

'1(g)�u(g)�
�

w(g)dg is non-zero for some u and w, and

�, and a smooth form '1 in the space of �. We can choose a su�ciently large �nite

set V , and ��v = �v for v 62 V , such that the equality (1) =
P
�

�(fE) of Proposition

6 holds. The I� vanish again by [JS]. We may assume that the orthonormal basis

of �K(V ) in (1) contains '1. Since � is cuspidal, it is generic, namely there exists a

form '2 in its space such that W'2; (e) 6= 0. We may assume that either '2 is '1,

or '2 is orthogonal to '1. In any case, the space of endomorphisms of �v is spanned

by the operators �v(fv), fv 2 C1c (ZvnGv). Hence we can choose fv(v 2 V ) such

that
Q
v2V

�v(fv) maps '2 to '1, and any vector in �K(V ) which is orthogonal to '2,

to 0. With this choice of f in Proposition 6, the two sums of (1) consist of one term

each. Our �, and '2, index the only possibly non-zero term:

Z
Z2GnG

(�(f)'2)(g)�u(g)�
�

w(g)dg �W'2; (e);
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which is non-zero by our choice of '2 and �(f)'2 = '1. Since the sum (1) is non-

zero, there is � such that �(fE) 6= 0, by the equality of Proposition 6, and if � is

a square, � satis�es � 6= �. This proves that � with R�(') 6= 0 for some ' 2 � is

necessarily of the form �(�), and the Theorem follows.

References

[F] Y. Flicker, [F1] On the symmetric square: Applications of a trace for-

mula, Trans AMS 330 (1992), 125-152; [F2] Regular trace formula and

base-change lifting, Amer. J. Math. 110 (1988), 739-764.

[FK] Y. Flicker, D. Kazhdan, A simple trace formula, J. Analyse Math. 50

(1988), 189-200.

[FKS] Y. Flicker, D. Kazhdan, G. Savin, Explicit realization of a metaplectic

representation, J. Analyse Math. 55 (1991), 17-39.

[FM] Y. Flicker, J. G. M. Mars, Summation formulae, automorphic realiza-

tions, and a special value of Eisenstein series, J. Math. Kyoto Univ. 32

(1992), 715-729.

[GJ] S. Gelbart, H. Jacquet, A relation between automorphic representations

of GL(2) and GL(3), Ann. Sci. ENS 11 (1978), 471-541.

[H] R. Howe, Theta series and invariant theory, Proc. Sympos. Pure Math.

33I (1979), 275-286.

[JL] H. Jacquet, R. Langlands, Automorphic forms on GL(2), Lecture Notes

in Math. 114 (1970); Springer Verlag.

[JS] H. Jacquet, J. Shalika, On Euler products and the classi�cation of au-

tomorphic representations, Amer. J. Math. 103 (1981), I: 499-558, II:

777-815.

[K] D. Kazhdan, On Lifting, in Lie group representations II, Lecture Notes

in Math. 1041 (1984), 209-249; Springer Verlag.

[LL] J.-P. Labesse, R. Langlands, L-indistinguishability for SL(2), Canad.

J. Math. 31 (1979), 726 -785.

[L] R. Langlands, Base change forGL(2), Annals of Math. Study 96 (1980).

[MVW] C. Moeglin, M.-F. Vigneras, J.-L. Waldspurger, Correspondences de

Howe sur un corps p-adique, Lecture Notes in Math. 1291 (1987),

Springer Verlag.



19

[PPS] S. J. Patterson, I. Piatetski-Shapiro, The symmetric-Square L-function

attached to a cuspidal automorphic representation of GL3, Math. Ann.

283 (1989), 551-572.

[S] G. Savin, On the tensor product of theta representations of GL3, Paci�c

J. Math. 154 (1992), 369-380.

[ST] J. Shalika, S. Tanaka, On an explicit construction of a certain class of

automorphic forms, Amer. J. Math. 91 (1969), 1049-1076.


