PRODUCTS OF THETA SERIES AND SPECTRAL ANALYSIS

Dedicated to the memory of Professor Hans Zassenhaus
Yuval Z. Flicker and J. G. M. Mars

1. Introduction. The purpose of this note is to propose a new technique in the theory of automorphic forms which will potentially characterize those cusp forms on the general linear group whose symmetric square lifting has a one dimensional constituent. In principle, a cuspidal representation π of $\mathbb{G}_{n}=G L(n, \mathbb{A})$, where \mathbb{A} is the ring of adeles of a global field F, is parametrized by a complex irreducible representation ρ of dimension n of a form of the Weil group, and the symmetric square lifting $\operatorname{Sym}^{2} \pi$ of π is cuspidal precisely when $\operatorname{Sym}^{2} \rho$ is irreducible. A characterization of the ρ such that $\operatorname{Sym}^{2} \rho$ is reducible would suggest a parametrization of the cuspidal π whose symmetric square is expected not to be cuspidal, and in particular of the π whose symmetric square L-function $L\left(s, \pi, S y m^{2}\right)$ - or a twist of it - will not be entire, if $\operatorname{Sym}^{2} \rho$ has a one-dimensional constituent.

An illuminating example is that of a three dimensional ρ with determinant 1 . Its symmetric square is reducible precisely when ρ preserves a quadratic form, and ρ factorizes through the subgroup $(P G L(2, \mathbb{C}) \simeq) S O(3, \mathbb{C})$ of $S L(3, \mathbb{C})$, namely ρ is the symmetric square of some two-dimensional projective representation ρ_{0}. This suggests that for a cuspidal representation π of $P G L(3, \mathbb{A})$, the L-function $L\left(s, \pi, \mathrm{Sym}^{2}\right)$ has a pole precisely when π is the symmetric square lifting ([F1], or Gelbart-Jacquet [GJ]) of an automorphic representation of $S L(2, \mathbb{A})$. Patterson and Piatetski-Shapiro [PPS] have shown that the residue of $L\left(s, \varphi, \operatorname{Sym}^{2}\right), \varphi \in \pi$, is $R_{3}(\varphi)=\int_{\mathbb{Z}_{3}^{2} G_{3} \backslash G_{3}} \varphi(g) \Theta(g) \bar{\Theta}(g) d g$ (here $G_{3}=G L(3, F), \mathbb{Z}_{n}=$ center of \mathbb{G}_{n}), where Θ are certain "theta" functions on a two-fold covering group of \mathbb{G}_{3}. It is then natural to conjecture that the linear form R is non-zero on the cuspidal representation π of $\operatorname{PGL}(3, \mathbb{A})$ precisely when it is the symmetric square of a cuspidal representation of $S L(2, \mathbb{A})$. A local analogue of the linear form R_{3} has been studied by Savin $[\mathrm{S}]$ in the unramified case, using the explicit model of the theta representation of [FKS].

Analogous conjectures can be made for all n, describing the cuspidal π on which R does not vanish (Such π might be lifts from $S p_{m}$ if $n=2 m+1$, or $S O_{2 m}$ if $n=2 m$). Here we propose a technique to prove these conjectures, by working out the case of $n=2$. This technique is based on applying the theta-kernel to the spectral decomposition of $L^{2}\left(\mathbb{Z}_{2} G_{2} \backslash \mathbb{G}_{2}\right)$. It is likely to generalize to the higher n, and in particular to give a new proof of the symmetric square lifting of automorphic forms from $S L(2, \mathbb{A})$ to $\operatorname{PGL}(3, \mathbb{A})$, and a new characterization $\left(R_{3} \neq 0\right.$ on $\pi_{3}=$

[^0]Sym ${ }^{2} \pi_{2}$) of the image of the lifting, as well as an extension of the local work of $[\mathrm{S}]$ to the ramified case. But this generalization will require further technical work. We decided to write up the case of $n=2$ to expose our ideas, in the simplest - least technical - case. Our main technical tool, a new type of a summation formula, is described in Proposition 5. Lemmas 2 and 3 deal with the accompanying transfer of orbital integrals.

Consider then a cuspidal representation π of $\mathbb{G}=G L(2, \mathbb{A})$. Its symmetric square lifting is an automorphic representation $\operatorname{Sym}^{2} \pi$ of $P G L(3, \mathbb{A})$, whose existence is proven in [GJ] by means of the converse theorem, and in [F1] by means of the trace formula. The L-function $L\left(s, \pi, \operatorname{Sym}^{2}\right)=L\left(s, \operatorname{Sym}^{2} \pi\right)$ is entire, but given a character χ of order two of $\mathbb{A}^{\times} / F^{\times}$, the twisted L-function $L\left(s, \pi, \chi \otimes \operatorname{Sym}^{2}\right)=$ $L\left(s, \chi \otimes \operatorname{Sym}^{2} \pi\right)$ will have a pole precisely when π is associated with a character μ of $\mathbb{A}_{E}^{\times} / E^{\times}$, where E is the quadratic separable extension of F defined by χ using class field theory. It can be shown that the residue of this twisted-by- χL-function is proportional to $R^{\chi}(\varphi)=\int_{\mathbb{Z}^{2} G \backslash \mathbb{G}} \varphi(g) \Theta(g) \bar{\Theta}^{\chi}(g) d g, \varphi \in \pi$, for suitable Θ-functions on a two-fold covering group of $\mathbb{G}=G L(2, \mathbb{A})$. In fact a similar linear form on $\varphi \in \pi$ appears in [GJ], where \mathbb{G} is replaced by $S L(2, \mathbb{A})$. We use the linear form R^{χ} to characterize the image of the lifting $\mu \mapsto \pi(\mu)$.

Theorem. Let \mathbb{A}^{\times}be the group of ideles of a global field F, and $\chi \neq 1$ a quadratic character of $\mathbb{A}^{\times} / F^{\times}$, associated with a quadratic separable field extension E of F. Given a character μ of $\mathbb{A}_{E}^{\times} / E^{\times}$whose restriction to $\mathbb{A}^{\times} / F^{\times}$coincides with χ, there exists a unique automorphic representation $\pi(=\pi(\mu))$ of $P G L(2, \mathbb{A})$, determined as follows. At a place v of F which splits in E, there is a character $\mu_{1 v}$ of F_{v}^{\times}such that $\mu_{v}((a, b))=\mu_{1 v}(a / b)\left((a, b) \in E_{v}^{\times}=F_{v}^{\times} \times F_{v}^{\times}\right)$. Then the local component $\pi_{v}=$ $\pi\left(\mu_{v}\right)$ of $\pi=\pi(\mu)$ is defined to be the $P G L\left(2, F_{v}\right)$-module $I\left(\mu_{1 v}, \mu_{1 v}^{-1}\right)$ normalizedly induced from the character $\left(\begin{array}{cc}a & * \\ 0 & b\end{array}\right) \mapsto \mu_{1 v}(a / b)$. At a non-split unramified place v of F, where μ_{v} is unramified, there is a character $\mu_{1 v}$ of F_{v}^{\times}with $\mu_{v}(z)=\mu_{1 v}(z \bar{z})$. Define $\pi\left(\mu_{v}\right)$ to be $I\left(\mu_{1 v}, \mu_{1 v}^{-1}\right)$. The automorphic representation $\pi(\mu)$ is cuspidal unless $\chi=\eta^{2}$ for some character η of $\mathbb{A}^{\times} / F^{\times}$, and $\mu=\bar{\mu}$. In this case $\pi(\mu)$ $=I(\eta, 1 / \eta)$ is a principal series representation. A cuspidal representation π of $\operatorname{PGL}(2, \mathbb{A})$ is of the form $\pi(\mu)$ precisely when $R^{\chi}(\varphi)=\int_{\mathbb{Z}^{2} G \backslash \mathbb{G}} \varphi(g) \Theta(g) \bar{\Theta}^{\chi}(g) d g$ is non-zero on $\varphi \in \pi$. In this case, if χ is a square then $\mu \neq \bar{\mu}$.

The existence of the lifting $\mu \mapsto \pi(\mu)$ is well-known. It was proven using the oscillator representation (see Howe [H], or [MVW]) in Shalika-Tanaka [ST], the converse theorem in Jacquet-Langlands [JL], by stabilizing the trace formula on $S L(2)$ in Labesse-Langlands [LL], by twisting the trace formula by χ in Kazhdan [K], by quadratic base-change for $G L(2)$ in Langlands [L] (see [F2] for a simpler proof). In all of these works the image of the lifting was characterized by the requirement that $\pi \otimes \chi \simeq \pi$. Our characterization of the image, by the nonvanishing of the form R^{χ} on π, is different, and is at the core of our proof. Note
that if exists, $\pi(\mu)$ is uniquely determined by almost all of its components - as specified in the statement of the Theorem - by virtue of the rigidity theorem for $G L(2)$ (see Jacquet-Shalika [JS]).

As noted above, the virtue of the present work is not in proving a new result, or supplying a new proof for an old result. It is in exposing a new method which may extend from the case of $G L(2)$ to the higher rank groups $G L(n)$, $n>2$. In comparison, the method of [ST] - which we proceed to sketch has no known projected extension to $G L(n)$. For simplicity, let us describe the method of [ST] in the case of $S L(2)$. Let θ_{1} and θ_{2} be two theta-functions on the two-fold topological central extension \mathbb{S} of $S L(2, \mathbb{A})$. It suffices to show that $(*) \theta_{1}(g) \theta_{2}(g)=\Sigma_{\mu} \phi_{\mu}(g)(g \in S L(2, \mathbb{A}))$, where $\phi_{\mu} \in \pi(\mu)$. Let \boldsymbol{V} be a vector space over F with a quadratic form q. Put $\mathbb{V}=\boldsymbol{V}(\mathbb{A})$. Then by $[\mathrm{H}]$ or [MVW], the Schwartz space $C_{c}^{\infty}(\mathbb{V})$ of functions on \mathbb{V} admits commuting representations of \mathbb{S} and the orthogonal group $O(q, \mathbb{V})$ of q on \mathbb{V}. If $V=\boldsymbol{V}(F)$ is F, and $q(x)=a x^{2}\left(a \in F^{\times}\right)$, one obtains the theta representation of \mathbb{S} on $C_{c}^{\infty}(\mathbb{A})$. If $V=\boldsymbol{V}(F)$ is E, and $q(x)=x \bar{x}$ is the norm form on E, then one has a direct sum decomposition $C_{c}^{\infty}\left(\mathbb{A}_{E}\right)=\oplus_{\mu} \pi(\mu)$. Since $E=F\left(\tau^{1 / 2}\right) \simeq F \oplus F$ with the quadratic form $q(x, y)=x^{2}-\tau y^{2}$, one has an isomorphism of $S L(2, \mathbb{A})$-modules $C_{c}^{\infty}(\mathbb{A}) \otimes C_{c}^{\infty}(\mathbb{A}) \simeq C_{c}^{\infty}\left(\mathbb{A}_{E}\right)$, and $(*)$ follows (for a complete proof see $[\mathrm{ST}]$, or $[\mathrm{H}]$, [MVW]). To repeat, this method is not known to extend to $G L(n), n>2$.

Our technique might be considered to be conceptually simpler. We consider the well-known spectral and geometric expressions for the kernel of the convolution operator $r(f)$ on $L^{2}(G \backslash \mathbb{G})$ for a Schwartz function f on $\mathbb{G}=P G L(2, \mathbb{A})$, multiply by $\theta_{1}(g) \theta_{2}(g)$, and by a character $\psi(n) \neq 1$ of the upper unipotent subgroup $N \backslash \mathbb{N}$, and integrate over $g \in G \backslash \mathbb{G}$ and over $n \in N \backslash \mathbb{N}$. On the spectral side we get essentially a sum over the cusp forms $(\phi \in) \pi$ of \mathbb{G} of the $R^{\chi}(\pi(f) \phi)$, multiplied by the value at the identity of the Whittaker function of ϕ. The geometric sum is easily transformed to a sum over $\gamma \in E^{\times}$(rather than $P G L(2, F)!$) of the values $f_{E}(\gamma)$ of a function f_{E} in the Schwartz space on \mathbb{A}_{E}, transferred from f compatibly with the lifting $\mu \rightarrow \pi(\mu)$ in the unramified case. The Poisson summation formula on E permits writing $\Sigma_{\gamma} f_{E}(\gamma)$ as a sum $\Sigma_{\mu} \mu\left(f_{E}\right)$, and a standard separation argument of "linear independence of characters" establishes the lifting $\mu \rightarrow \pi(\mu)$. This approach extends in principle to $G L(n), n>2$. This we considered interesting, so we thought it was worthwhile to work out carefully the technical details in the test case of $G L(2)$, as a prototype for the general case. This is what we do in this paper.

Let us dispose at once of the degenerate case where there exists a character η of $\mathbb{A}^{\times} / F^{\times}$such that $\chi=\eta^{2}$, equivalently $\chi_{v}(-1)=1$ for every place v of F, and the character μ of $\mathbb{A}_{E}^{\times} / E^{\times}$is equal to $\bar{\mu}$, where $\bar{\mu}(x)=\mu(\bar{x}), x \in \mathbb{A}_{E}^{\times}$. Since $\mu=\bar{\mu}$, there is a character μ_{1} of $\mathbb{A}^{\times} / F^{\times}$such that $\mu=\mu_{1} \circ N$, where $N x=x \bar{x}$ is the norm map from E to F. The restriction of μ to \mathbb{A}^{\times}is χ, hence $\mu_{1}^{2}=\chi$. Namely χ is a square when $\bar{\mu}=\mu$, and we may choose η to be μ_{1}. At a place v which splits in E, we have $\eta_{v}^{2}=\chi_{v}=1$, hence $\pi_{v}=\pi\left(\mu_{v}\right)$ is by definition the induced $P G L\left(2, F_{v}\right)$-module
$I\left(\eta_{v}, \eta_{v}^{-1}\right)=I\left(\eta_{v}, \eta_{v} \chi_{v}\right)$ (as $\left.\chi_{v}=1\right)$. At a non-split place v, by definition $\pi\left(\mu_{v}\right)$ is $I\left(\eta_{v}, \eta_{v}^{-1}\right)=I\left(\eta_{v}, \eta_{v} \chi_{v}\right)$. Hence when $\chi=\eta^{2}$ and $\mu=\bar{\mu}=\eta \circ N$, the character μ of $\mathbb{A}_{E}^{\times} / E^{\times}$lifts to the principal series (normalizedly induced) representation $I(\eta, \eta \chi)$ of $\operatorname{PGL}(2, \mathbb{A})$.
2. Theta Kernel. Our argument uses the theta-representation of the two-fold cover of the group. For $G L(2)$, an explicit model of this representation is described in $[\mathrm{FM}]$. Let v be a place of F, and $\chi_{v}: F_{v}^{\times} \rightarrow \mathbb{C}^{\times}$a unitary character ($[\mathrm{FM}]$ takes $\chi_{v}=1$, but the general case is similar). Let $C_{\chi_{v}}\left(F_{v}^{\times}\right)$denote the space of smooth functions $u_{v}: F_{v}^{\times} \rightarrow \mathbb{C}$, supported in a compact of F_{v} (if v is finite; having rapid decay at ∞ if v is archimedean), which vanish near 0 if $\chi_{v}(-1)=-1$, while if $\chi_{v}(-1)=1$ they have the property that $u_{v 0}(x)=\chi_{v}(t)|t|_{v}^{1 / 2} u_{v}\left(t^{2} x\right)$ is independent of t if $|x|_{v} \leq 1$ and $|t|_{v}$ is sufficiently small (if v is finite; $t \mapsto \chi_{v}(t)|t|_{v}^{1 / 2} u_{v}\left(t^{2} x\right)$ is smooth at $t=0$, and $u_{v 0}(x)$ is defined to be its limit at $t=0$, when v is archimedean). Note that if $\chi_{v}(-1)=1$ then there is a character $\chi_{1 v}$ of F_{v}^{\times}with $\chi_{1 v}^{2}=\chi_{v}$, and then $\chi_{1 v} \nu_{v}^{1 / 4} u_{v 0}$ extends to a function on $F_{v}^{\times} / F_{v}^{\times 2}$.

The Weil- or θ-representation of the 2-fold cover \widetilde{G}_{v} of $G_{v}=G L\left(2, F_{v}\right)$ considered in $[\mathrm{FM}]$ acts on $C_{\chi_{v}}\left(F_{v}^{\times}\right)$as follows.

$$
\begin{aligned}
& \left(\theta_{v}\left(s\left(\begin{array}{cc}
z & 0 \\
0 & z
\end{array}\right)\right) u_{v}\right)(\alpha)=(\alpha, z)_{v} \gamma_{v}(z) \chi_{v}(z) u_{v}(\alpha) \quad\left(z, \alpha \in F_{v}^{\times}\right) \\
& \left(\theta_{v}\left(s\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\right) u_{v}\right)(\alpha)=\chi_{v}(a)|a|_{v}^{1 / 2} u_{v}(a \alpha) \\
& \left(\theta_{v}\left(s\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\right) u_{v}\right)(\alpha)=\psi_{v}\left(\frac{1}{2} b \alpha\right) u_{v}(\alpha) \quad\left(b \in F_{v}\right) \\
& \left(\theta_{v}\left(s\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) u_{v}\right)(\alpha)=c_{v} \gamma_{v}(\alpha)|\alpha|_{v}^{1 / 2} \int_{F_{v}} \chi_{v}(t)|t|^{1 / 2} u_{v}\left(\alpha t^{2}\right) \psi_{v}(-\alpha t) d t=\left(\mathcal{F} u_{v}\right)(\alpha) .
\end{aligned}
$$

Here ψ_{v} is a non-trivial character of F_{v}, and $c_{v}=\gamma_{v}(-1)^{-1 / 2}$ is an eighth root of unity in \mathbb{C}. Denote by R_{v} the ring of integers in F_{v}, and by $\boldsymbol{\pi}_{v}$ a uniformizer. When v is finite and odd, ψ_{v} has conductor R_{v}, χ_{v} unramified, u_{v}^{0} is supported on the set of $\varepsilon t^{2}, \varepsilon \in R_{v}^{\times}, t \in R_{v}$, and is given there by $u_{v}^{0}\left(\varepsilon \boldsymbol{\pi}^{2 n}\right)=\chi_{v}(\boldsymbol{\pi})^{n}|\boldsymbol{\pi}|_{v}^{-n / 2}$ $\left(|\varepsilon|_{v}=1, n \geq 0\right)$, then $\theta_{v}(s(k)) u_{v}^{0}=u_{v}^{0}$ for $k \in K_{v}=G L\left(2, R_{v}\right)$.

If $u=\otimes u_{v}$, then [FM] shows that the function

$$
\Theta_{u}^{\chi}(g)=2 \sum_{\alpha \in F^{\times}}(\theta(g) u)(\alpha)+\sum_{\alpha \in F^{\times} / F^{\times 2}}(\theta(g) u)_{0}(\alpha)
$$

on $\widetilde{G}(\mathbb{A})$ is automorphic, namely left-invariant under the discrete subgroup $G=$ $G L(2, F)$ of $\widetilde{G}(\mathbb{A})\left([\mathrm{FM}]\right.$ consider only $\chi=1$; if $\chi_{v}(-1)=-1$ for some v then $\left.(\theta(g) u)_{0} \equiv 0\right)$. Write Θ_{u} for Θ_{u}^{χ} when $\chi=1$. From now on we take a non-trivial character χ of $\mathbb{A}^{\times} / F^{\times}$of order two, as in the Theorem.

The linear form $R^{\chi}(\varphi)=\int_{\mathbb{Z}^{2} G \backslash \mathbb{G}} \varphi(g) \Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g\left(u \in C\left(\mathbb{A}^{\times}\right), w \in C_{\chi}\left(\mathbb{A}^{\times}\right)\right)$ appears in the following "spectral" expression on the space $L_{0}^{2}(\mathbb{Z} G \backslash \mathbb{G})$ of cusp forms on $\mathbb{G}=G L(2, \mathbb{A})$ which transform trivially under the center:

$$
\begin{equation*}
\sum_{\substack{\pi \\ \text { cuspidal }}} \sum_{\substack{f \in \operatorname{con} \pi \\ \text { bosimal } \\ \text { basis }}} \int_{\mathbb{Z}^{2} G \backslash \mathbb{G}}(\pi(f) \varphi)(g) \Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g \cdot \int_{N \backslash \mathbb{N}} \bar{\varphi}(n) \bar{\psi}\left(\frac{1}{2} n\right) d n, \tag{1}
\end{equation*}
$$

where $N=\left\{\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)\right\}$ and the second integral is the value at e of the Whittaker function $\bar{W}_{\varphi, \psi}$.

We want to show that π ranges here over the $\pi=\pi(\mu), \mu: \mathbb{A}_{E}^{\times} / E^{\times} \rightarrow \mathbb{C}^{\times}$, with $\mu \neq \bar{\mu}$ if χ is a square, and each such $\pi(\mu)$ contributes. For this end note that there are two expressions for the kernel of the convolution operator $r(f)$ on $L^{2}(\mathbb{Z} G \backslash \mathbb{G})$. The geometric expression is $\sum_{\gamma \in Z \backslash G} f\left(g^{-1} \gamma n\right)$. The spectral expression is the sum of the contribution $\sum_{\pi} \sum_{\varphi \in \pi}(\pi(f) \varphi)(g) \bar{\varphi}(n)$ from the cuspidal spectrum, whose integral against $\Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g \cdot \bar{\psi}\left(\frac{1}{2} n\right) d n$ is (1), and a contribution from the continuous spectrum.
3. Eisenstein Series. The kernel of the operator $r(f)$ on the continuous - nondiscrete - spectrum, takes the form

$$
\frac{1}{\pi} \sum_{\eta} \sum_{\Phi} \int_{i \mathbb{R}} E\left(g, \pi_{s}(f) \Phi, \eta, s\right) \bar{E}(h, \Phi, \eta, s) d s
$$

The first sum ranges over a set of representatives of the classes of characters η of $\mathbb{A}^{\times} / F^{\times}$up to multiplication with $\nu^{i s}, s \in \mathbb{R}$, where $\nu(x)=|x|$. The second sum ranges over an orthonormal basis of the space of right smooth functions $\Phi: \mathbb{K} \rightarrow \mathbb{C}$, with $\Phi\left(\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) k\right)=\eta(a / c) \Phi(k)$, where k and $\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$ lie in $\mathbb{K}=\Pi K_{v}, K_{v}$ is the standard maximal compact subgroup in $\operatorname{PGL}\left(2, F_{v}\right)$. We trivialize the vector bundle

$$
\begin{aligned}
& I\left(\eta \nu^{s}, \eta^{-1} \nu^{-s}\right)=\left\{\Phi_{s}: \mathbb{G} \rightarrow \mathbb{C} ; \Phi_{s}\left(\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right) g\right)\right. \\
& \left.=\eta(a / c)|a / c|^{s+1 / 2} \Phi_{s}(g) ; \quad a, c \in \mathbb{A}^{\times}, b \in \mathbb{A}\right\}
\end{aligned}
$$

via the restriction map $\Phi_{s} \rightarrow \Phi=\Phi_{s} \mid \mathbb{K}$. The Eisenstein series are defined by the sum

$$
E(g, \Phi, \eta, s)=\sum_{\gamma \in B \backslash G} \Phi(\gamma g ; \eta, s),
$$

if $\operatorname{Re}(s)$ is large enough, and by analytic continuation for other s in \mathbb{C}. We write $\Phi(g ; \eta, s)$ for $\Phi_{s}(g)$, to emphasize also the dependence on η.

To compute the integral, I, of this kernel against $\Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g \cdot \bar{\psi}\left(\frac{1}{2} n\right) d n$, we need to recall - and use - the truncation operator Λ^{T}, where $T>0$ is sufficiently large. If $g=n a k, k \in \mathbb{K}, n \in \mathbb{N}, a=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$, then $d g=|a / b|^{-1}\left(d^{\times} a d^{\times} b\right) d n d k$, and we put $H(g)=|a / b|$. Denote by $\chi(H(g)>T)$ the characteristic function of the $g \in G$ with $H(g)>T$, and similarly with $<$ replacing $>$. The truncation of ϕ on \mathbb{G} is

$$
\Lambda^{T} \phi(g)=\phi(g)-\sum_{\delta \in B \backslash G} \phi_{N}(\delta g) \chi(H(\delta g)>T),
$$

where

$$
\phi_{N}(g)=\int_{N \backslash \mathbb{N}} \phi(n g) d n .
$$

The truncation maps slowly increasing to rapidly decreasing functions, and standard arguments imply the following. We have that

$$
I=\frac{1}{\pi} \int_{\mathbb{Z} G \backslash \mathbb{G} N \backslash \mathbb{N}} \int_{\eta} \sum_{\Phi} \sum_{\Phi} \int_{i \mathbb{R}} E\left(g, \pi_{s}(f) \Phi, \eta, s\right) \bar{E}(n, \Phi, \eta, s) d s \Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g \bar{\psi}\left(\frac{1}{2} n\right) d n
$$

is equal to

$$
I^{\prime}=\frac{1}{\pi} \sum_{\eta} \sum_{\Phi} \lim _{T \rightarrow \infty} \int_{i \mathbb{R}} \int_{\mathbb{Z}^{2} G \backslash \mathbb{G}} \Lambda^{T} E\left(g, \pi_{s}(f) \Phi, \eta, s\right) \Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g \cdot \bar{E}_{\psi}(\Phi, \eta, s) d s
$$

where

$$
E_{\psi}(\Phi, \eta, s)=\int_{N \backslash \mathbb{N}} E(n, \Phi, \eta, s) \psi\left(\frac{1}{2} n\right) d n
$$

Our aim is to show the following.

1. Lemma. The integral I of the contribution from the continuous spectrum is the sum over the characters η of $\mathbb{A}^{\times} / F^{\times}$which satisfy $\eta^{2}=\chi$, of I_{η}, defined to be the sum over Φ of

$$
\begin{aligned}
& \frac{1}{4} \int_{\mathbb{K}} \int_{\mathbb{A}^{\times}}\left[F _ { F ^ { \times } } \left[\eta(a)\left(\pi_{0}(f) \Phi(k)+\eta(1 / a)\left(\pi_{0}(f) M \Phi\right)(k)\right] \bar{E}_{\psi}(\Phi, \eta, 0)\right.\right. \\
& \quad \cdot \sum_{\alpha \in F^{\times} / F^{\times 2}}(\theta(k) u)_{0}(a \alpha) \overline{\theta(k) w)_{0}(a \alpha \tau)}|a|^{1 / 2} d^{\times} a d k .
\end{aligned}
$$

Proof. To compute the inner integral, over g, in I^{\prime}, note that

$$
E_{N}(g, \Phi, \eta, s)=\Phi(g, \eta, s)+(M \Phi)\left(g, \eta^{-1},-s\right)
$$

where M is the standard intertwining operator from $I\left(\eta \nu^{s}, \eta^{-1} \nu^{-s}\right)$ to $I\left(\eta^{-1} \nu^{-s}, \eta \nu^{s}\right)$. Hence

$$
\Lambda^{T} E(g, \Phi, \eta, s)=\sum_{\delta \in B \backslash G}\left[\Phi(\delta g, \eta, s) \chi(H(\delta g)<T)-(M \Phi)\left(\delta g, \eta^{-1},-s\right) \chi(H(\delta g)>T)\right]
$$

and the inner integral, of $\Lambda^{T} E \cdot \Theta_{u} \cdot \bar{\Theta}_{w}^{\chi}$ over g, is the difference, which we denote by $J=J(f, \Phi, \eta, s)$,
$\int_{\mathbb{Z} \mathbb{N} B \backslash \mathbb{G}}\left(\pi_{s}(f) \Phi\right)(g, \eta, s) \chi(H(g)<T) A d g-\int_{\mathbb{Z} \mathbb{N} B \backslash \mathbb{G}}\left(M \pi_{s}(f) \Phi\right)\left(g, \eta^{-1},-s\right) \chi(H(g)>T) A d g$.
Here

$$
A=\int_{z \mathbb{Z}^{2} \backslash \mathbb{Z}} \int_{N \backslash \mathbb{N}} \Theta_{u}(n z g) \bar{\Theta}_{w}^{\chi}(n z g) d n d z
$$

Substituting the two sums, over F^{\times}and over $F^{\times} / F^{\times 2}$, which define each of Θ_{u} and Θ_{w}^{χ}, into A, we get the sum of 4 expressions. Note that we may change the order of the summations and the integrations over the compact sets, since for any compact subset C of $\widetilde{G}(\mathbb{A})$, and u, there exists a function u_{1} with properties analogous to those of u, such that $|(\theta(g) u)(x)| \leq\left|u_{1}(x)\right|$ for all $x \in \mathbb{A}^{\times}$and g in C. The same remark applies to the function w. In any case, the first term, integrated over the compact $N \backslash \mathbb{N}$, is equal to

$$
\begin{aligned}
& \int_{N \backslash \mathbb{N}} 4 \sum_{\alpha, \beta \in F^{\times}} \psi\left(\frac{1}{2} n(\alpha-\beta)\right)(\theta(z g) u)(\alpha)(\overline{\theta(z g) w})(\beta) d n \\
& =4 \sum_{\alpha \in F^{\times}}(\theta(z g) u)(\alpha)(\overline{\theta(z g) w})(\alpha)=4 \sum_{\alpha \in F^{\times}}(\theta(g) u)(\alpha)(\overline{\theta(g) w})(\alpha) \chi(z) .
\end{aligned}
$$

Integrating this over the compact $Z \mathbb{Z}^{2} \backslash \mathbb{Z}$ we obtain 0 , since $\chi \neq 1$ (is of order two). The second and third terms are similarly shown to be 0 . The fourth term is 0 if there is a place v with $\chi_{v}(-1)=-1$, as then $(\theta(g) w)_{0} \equiv 0$. Suppose then that $\chi_{v}(-1)=1$ for all v.

To compute the fourth term in A, recall the following action of θ on w.

$$
\begin{aligned}
& \left(\theta\left(s\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right) w\right)_{0}(\alpha)=w_{0}(\alpha), \quad\left(\theta\left(s\left(\begin{array}{cc}
z & 0 \\
0 & z
\end{array}\right)\right) w\right)_{0}(\alpha)=(\alpha, z) \gamma(z) \chi(z) w_{0}(\alpha), \\
& \left(\theta\left(s\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\right) w\right)_{0}(\alpha)=\chi(a)|a|^{1 / 2} w_{0}(a \alpha) \\
& \left(\theta\left(s\left(\begin{array}{cc}
a^{2} & 0 \\
0 & 1
\end{array}\right)\right) w\right)_{0}(\alpha)=|a| w_{0}\left(a^{2} \alpha\right)=\chi(a)|a|^{1 / 2} w_{0}(\alpha)
\end{aligned}
$$

since $w_{0}\left(\alpha t^{2}\right)=\chi(t)|t|^{-1 / 2} w_{0}(\alpha)$. The integrand is invariant under \mathbb{N}. Its integral over $N \backslash \mathbb{N}$ is its product with $\operatorname{vol}(N \backslash \mathbb{N})=1$. Now, if $\operatorname{ker} \chi=N_{E / F} E^{\times}, E=F(\sqrt{\tau})$,
then $\chi(z)=(\tau, z)$. Indeed, the Hilbert symbol satisfies $\left(-\frac{a}{b}, a+b\right)=(a, b)$, hence $\left(\frac{a^{2}}{\tau b^{2}}, a^{2}-\tau b^{2}\right)=\left(a^{2},-\tau b^{2}\right)=1$, and so $\left(\tau, a^{2}-\theta b^{2}\right)=1$. Carrying out the integration over z in $Z \mathbb{Z}^{2} \backslash \mathbb{Z}$ of the fourth term, we obtain that A is

$$
\begin{aligned}
& \int_{Z \mathbb{Z}^{2} \backslash \mathbb{Z}} \sum_{\alpha, \beta \in F^{\times} / F^{\times 2}}(\alpha, z) \gamma(z)(\beta, z) \bar{\gamma}(z) \chi(z)(\theta(g) u)_{0}(\alpha)(\overline{\theta(g) w})_{0}(\beta) d z \\
= & \sum_{\alpha \in F^{\times} / F^{\times 2}}(\theta(g) u)_{0}(\alpha)\left(\overline{\theta(g) w)_{0}}(\alpha \tau) .\right.
\end{aligned}
$$

We are now in a position to compute the two terms in J. Writing $g=n\left(\begin{array}{cc}a t^{2} & 0 \\ 0 & 1\end{array}\right) k$, the first term is

$$
\begin{aligned}
& \int_{\mathbb{K}} \int_{\mathbb{A}^{\times} / F^{\times} \times \mathbb{A}^{\times 2}}\left(\pi_{s}(f) \Phi\right)\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) k, \eta, s\right) \int_{\substack{t \in F^{\times} \backslash \mathbb{A}^{\times} \times \\
\left|t^{2}\right|<T}} \eta\left(t^{2}\right)|t|^{2 s+1} \chi(t)|t|^{1 / 2} \cdot|t|^{1 / 2} \sum_{\alpha \in F^{\times} / F^{\times 2}} \\
& \left(\theta\left(s\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) k\right) u\right)_{0}(\alpha)\left(\theta\left(s\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) k\right) w\right)_{0}(\alpha \tau)|t|^{-2}|a|^{-1} d^{\times} a d^{\times} t d k .
\end{aligned}
$$

The inner integral $\int\left(\eta^{2} \chi\right)(t)|t|^{2 s} d^{\times} t$ over $t \in F^{\times} \backslash \mathbb{A}^{\times},\left|t^{2}\right|<T$, is zero unless $\eta^{2} \chi$ is ν^{λ} for some $\lambda \in i \mathbb{R}$. Replacing η by $\eta \nu^{-\lambda / 2}$ we may assume that $\eta^{2}=\chi^{-1}=\chi$, in this case, and then the value of the integral is $\frac{1}{2 s} T^{s}$.

The second term in J is similarly computed, and we conclude that J vanishes unless $\eta^{2}=\chi$, in which case we obtain that J is equal to

$$
\begin{aligned}
& \frac{1}{2 s} T^{s} \int_{\mathbb{K}} \int_{\mathbb{A} \times / F^{\times} \mathbb{A}^{\times 2}}\left(\pi_{s}(f) \Phi\right)\left(\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) k, \eta, s\right) \\
& \quad \sum_{\alpha \in F^{\times} / F^{\times 2}}\left(\theta\left(s\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) k\right) u\right)_{0}(\alpha)\left(\overline{\theta\left(s\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) k\right) w}\right)_{0}(\alpha \tau)|a|^{-s-1} d^{\times} a d k \\
& -\frac{1}{2 s} T^{-s} \int_{\mathbb{K}} \int_{\mathbb{A} \times / F^{\times}}\left(M \pi_{s}(f) \Phi\right)\left(\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) k, \eta^{-1},-s\right) \\
& \quad \sum_{\alpha \in F^{\times} / F^{\times 2}}\left(\theta\left(s\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) k\right) u\right)_{0}(\alpha)\left(\overline{\theta\left(s\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) k\right) w}\right)_{0}(\alpha \tau)|a|^{s-1} d^{\times} a d k .
\end{aligned}
$$

For a given f, the sums over η and Φ in I^{\prime} (or I) are finite. The matrix coefficients $\left(\pi_{s}(f) \Phi, \Phi^{\prime}\right)$ are rapidly decreasing holomorphic functions of $s \in i \mathbb{R}$. Hence $\sum_{\eta} \sum_{\Phi} J(f, \Phi, \eta, s)$ has the form $\frac{1}{2 s} T^{s} h_{1}(s)-\frac{1}{2 s} T^{-s} h_{2}(s)$, where h_{1}, h_{2} are holomorphic on $i \mathbb{R}$, with $h_{1}(0)=h_{2}(0)$. Our lemma now follows from the limit formula

$$
\frac{1}{2 \pi} \lim _{T \rightarrow \infty} \int_{i \mathbb{R}}\left\{\frac{1}{s} T^{s} h_{1}(s)-\frac{1}{s} T^{-s} h_{2}(s)\right\} d s=h_{1}(0)
$$

for such functions h_{1}, h_{2}. (The left side is $\lim _{y \rightarrow \infty}(2 \pi i)^{-1} \int_{-\infty}^{\infty}\left[e^{i x y} h_{1}(i x)-e^{-i x y} h_{2}(i x)\right] x^{-1} d x$. Since $\lim _{y \rightarrow \infty} \int_{|x|>1} e^{i x y} h(i x) x^{-1} d x=0$ and $\lim _{y \rightarrow \infty} \int_{|x|<1} e^{i x y}[h(i x)-h(0)] x^{-1} d x=0$, we are left with $(2 \pi i)^{-1} \int_{|x|<1}\left[e^{i x y} h_{1}(0)-e^{-i x y} h_{2}(0)\right] x^{-1} d x=\left(h_{1}(0) / \pi\right) \int_{|x|<1}(\sin x y / x) d x$ $=\left(h_{1}(0) / \pi\right) \underset{|x|<y}{ }(\sin x / x) d x$, which has the limit $h_{1}(0)$ as $y \rightarrow \infty$.)

Remark. It is clear that the integral over $N \backslash \mathbb{N}$ of the kernel of $r(f)$ on the discrete non-cuspidal (one-dimensional) spectrum, multiplied by $\psi\left(\frac{1}{2} n\right)$, is 0 . Hence the one-dimensional automorphic representations do not contribute to our formulae.
4. Geometric Side. We conclude that (1) $+\sum_{\eta^{2}=\chi} I_{\eta}$ is equal to the "geometric sum":

$$
\begin{aligned}
& \int_{\mathbb{Z}^{2} G \backslash \mathbb{G}} \int_{N \backslash \mathbb{N}} \sum_{\gamma \in Z \backslash G} f\left(g^{-1} \gamma n\right) \Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) \bar{\psi}\left(\frac{1}{2} n\right) d n d g \\
= & \int_{Z \mathbb{Z}^{2} \mathbb{N} \backslash \mathbb{G}} f_{\psi}\left(g^{-1}\right) \int_{N \backslash \mathbb{N}} \Theta_{u}(n g) \bar{\Theta}_{w}^{\chi}(n g) \bar{\psi}\left(\frac{1}{2} n\right) d n d g,
\end{aligned}
$$

where

$$
f_{\psi}\left(g^{-1}\right)=\int_{\mathbb{N}} f\left(g^{-1} m\right) \bar{\psi}\left(\frac{1}{2} m\right) d m
$$

The inner integral gives

$$
\begin{aligned}
& \int_{N \backslash \mathbb{N}} \Theta_{u}(n g) \bar{\Theta}_{w}^{\chi}(n g) \bar{\psi}\left(\frac{1}{2} n\right) d n=\int_{N \backslash \mathbb{N}} 4 \sum_{\alpha, \beta \in F^{\times}} \psi\left(\frac{1}{2} n(\alpha-\beta-1)\right)(\theta(g) u)(\alpha) \overline{\theta(g) w)}(\beta) d n \\
& \quad+\int_{N \backslash \mathbb{N}} 2 \sum_{\alpha \in F^{\times} / F^{\times 2}} \sum_{\beta \in F^{\times}} \bar{\psi}\left(\frac{1}{2} n(\beta+1)\right)(\theta(g) u)_{0}(\alpha)(\overline{\theta(g) w})(\beta) d n \\
& +\int_{N \backslash \mathbb{N}} 2 \sum_{\beta \in F^{\times} / F^{\times 2}} \sum_{\alpha \in F^{\times}} \psi\left(\frac{1}{2} n(\alpha-1)\right)(\theta(g) u)(\alpha)(\overline{\theta(g) w})_{0}(\beta) d n \\
& =4 \sum_{-1 \neq \beta \in F^{\times}}(\theta(g) u)(\beta+1)(\overline{\theta(g) w})(\beta)+2(\overline{\theta(g) w})(-1) \sum_{\alpha \in F^{\times} / F^{\times 2}}(\theta(g) u)_{0}(\alpha) \\
& \quad+2(\theta(g) u)(1) \sum_{\beta \in F^{\times} / F^{\times 2}}(\overline{\theta(g) w})_{0}(\beta) .
\end{aligned}
$$

Here we used the fact that $\left(\theta\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) u\right)_{0}(\alpha)=u_{0}(\alpha)$. Consequently, taking
$z \in \mathbb{Z}$, we get

$$
\begin{aligned}
& \int_{N \backslash \mathbb{N}} \Theta_{u}(n z g) \bar{\Theta}_{w}^{\chi}(n z g) \bar{\psi}\left(\frac{1}{2} n\right) d n \\
& =4 \sum_{\beta \in F^{\times}-\{-1\}}(\beta+1, z) \gamma(z)(\theta(g) u)(\beta+1)(\beta, z) \bar{\gamma}(z) \bar{\chi}(z)(\overline{\theta(g) w})(\beta) \\
& \quad+2(-1, z) \bar{\gamma}(z) \bar{\chi}(z)(\overline{\theta(g) w})(-1) \sum_{\alpha \in F^{\times} / F \times 2}(\alpha, z) \gamma(z)(\theta(g) u)_{0}(\alpha) \\
& \quad+2 \gamma(z)(\theta(g) u)(1) \sum_{\beta \in F^{\times} / F^{\times 2}}(\beta, z) \bar{\gamma}(z) \bar{\chi}(z)(\overline{\theta(g) w})_{0}(\beta) .
\end{aligned}
$$

Integrating over $\mathbb{Z} / Z \mathbb{Z}^{2}$ (of course $\left.\mathbb{Z}=\boldsymbol{Z}(\mathbb{A}), Z=\boldsymbol{Z}(F)\right)$ we then get

$$
\begin{aligned}
& (2) \int_{\mathbb{Z}^{2} Z \backslash \mathbb{Z}} \int_{N \backslash \mathbb{N}} \Theta_{u}(n z g) \bar{\Theta}_{w}^{\chi}(n z g) \bar{\psi}\left(\frac{1}{2} n\right) d n d z=4 \sum_{\substack{\beta \in F \times-\{-1\} \\
\frac{\beta+1}{\beta} \in \tau F^{\times 2}}}(\theta(g) u)(\beta+1)(\overline{\theta(g) w})(\beta) \\
& \quad+2(\theta(g) u)_{0}(-\tau)(\overline{\theta(g) w})(-1)+2(\theta(g) u)(1)(\overline{\theta(g) w})_{0}(\tau) .
\end{aligned}
$$

The sum here can be expressed as

$$
\begin{array}{cc}
4 \sum_{\substack{\alpha, \beta \in F^{\times} \\
\alpha \beta \tau \in F^{\times 2}}}(\theta(g) u)(\alpha)(\overline{\theta(g) w})(\beta)=\sum_{\substack{\alpha \in F^{\times} / F^{\times 2} \\
\xi, \eta \in F^{\times} \\
\alpha-\beta=1}}(\theta(g) u)\left(\alpha \xi^{2}\right)(\overline{\theta(g) w})\left(\tau \alpha \eta^{2}\right), \\
& \alpha\left(\xi^{2}-\tau \eta^{2}\right)=1
\end{array}
$$

on replacing α by $\alpha \xi^{2}$ and β by $\alpha \tau \eta^{2}$. Assuming that $w=\otimes w_{v} \in C_{\chi}\left(\mathbb{A}^{\times}\right)$, define a function on $\mathbb{A}^{\times} \times \mathbb{A}$ by $w(t, x)=\prod w_{v}\left(t_{v}, x_{v}\right)$, where

$$
w_{v}\left(t_{v}, x_{v}\right)=\chi_{v}\left(x_{v}\right)\left|x_{v}\right|^{1 / 2} w_{v}\left(t_{v} x_{v}^{2}\right) \quad \text { if } x_{v} \neq 0
$$

and

$$
w_{v}\left(t_{v}, 0\right)=\lim _{x_{v} \rightarrow 0} w_{v}\left(t_{v}, x_{v}\right)\left(=w_{v 0}\left(t_{v}\right)\right)
$$

Then $x \mapsto w(t, x)$ is a Schwartz function on \mathbb{A} for every t in \mathbb{A}^{\times}, and

$$
w(t, x)=\chi(z)|z|^{1 / 2} w\left(z^{2} t, z^{-1} x\right) \quad\left(t, z \in \mathbb{A}^{\times} ; x \in \mathbb{A}\right)
$$

The analogous definitions - with $\chi=1$ - apply to $u=\otimes u_{v} \in C\left(\mathbb{A}^{\times}\right)$. Then $u(t, x)=|z|^{1 / 2} u\left(z^{2} t, x / z\right)$. If $\alpha, \xi \in F^{\times}$, then $w\left(\alpha \xi^{2}\right)=w(\alpha, \xi)$, and $u\left(\alpha \xi^{2}\right)=$ $u(\alpha, \xi)$. In these notations our sum takes the form

$$
\begin{aligned}
& \sum_{\substack{\alpha \in F^{\times} / F^{\times 2} \\
\xi, \eta \in F^{\times} \\
\alpha\left(\xi^{2}-\tau \eta^{2}\right)=1}}(\theta(g) u)(\alpha, \xi)(\overline{\theta(g) w})(\tau \alpha, \eta) . \\
&
\end{aligned}
$$

Note that when $\eta=0$ we can take $\alpha=1$ (and $\xi= \pm 1$), hence the missing term in the last sum is $2(\theta(g) u)(1)(\overline{\theta(g) w})_{0}(\tau)$. When $\xi=0$ we can take $\alpha=-\tau^{-1}$ and $\eta= \pm 1$, hence the corresponding missing term is $2(\theta(g) u)_{0}(-\tau)(\overline{\theta(g) w})(-1)$. These are terms in our integral $\iint \Theta_{u} \bar{\Theta}_{w}^{\chi} \bar{\psi} d n d z$. We conclude that (2) equals

$$
\sum_{\substack{\alpha \in F^{\times} / F^{\times 2} \\ \xi, \eta \in F}}(\theta(g) u)(\alpha, \xi)(\overline{\theta(g) w})(\tau \alpha, \eta)=\sum_{\alpha \in F^{\times} / F^{\times 2}} \sum_{\substack{\gamma \in E^{\times} \\ \alpha N \gamma=1}}(\theta(g) F)(\alpha, \gamma ; u, w)
$$

$$
\alpha\left(\xi^{2}-\tau \eta^{2}\right)=1
$$

where we put $(\theta(g) F)(t, z ; u, w)=\prod_{v}\left(\theta_{v}\left(g_{v}\right) F_{v}\right)\left(t_{v}, z_{v} ; u_{v}, w_{v}\right)$ and

$$
\left(\theta_{v}\left(g_{v}\right) F_{v}\right)\left(t_{v}, z_{v} ; u_{v}, w_{v}\right)=\left(\theta_{v}\left(g_{v}\right) u_{v}\right)\left(t_{v}, x_{v}\right)\left(\overline{\theta_{v}\left(g_{v}\right) w_{v}}\right)\left(\tau t_{v}, y_{v}\right)
$$

$\left(t_{v} \in F_{v}^{\times}, z_{v}=x_{v}+\sqrt{\tau} y_{v} \in E_{v}\right)$. Note that if $\gamma=\xi+\sqrt{\tau} \eta$, then $N \gamma=\xi^{2}-\tau \eta^{2}$. Note also that for $t \in F_{v}, z \in E_{v}$, we have

$$
\begin{aligned}
& \left(\theta_{v}\left(s\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\right) F_{v}\right)(t, z)=\psi_{v}\left(\frac{1}{2} b t N z\right) F_{v}(t, z), \quad b \in F_{v} \\
& \left(\theta_{v}\left(s\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)\right) F_{v}\right)(t, z)=|a|_{v} \chi_{v}(a) F_{v}(a t, z), \quad a \in F_{v}^{\times} \\
& \left(\theta_{v}\left(s\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right) F_{v}\right)(t, z)=\bar{\gamma}_{v}(\tau) \chi_{v}(t)|t|_{v} \int_{E} F_{v}(t, \zeta) \bar{\psi}_{v}\left(\frac{1}{2} t \operatorname{tr}(z \bar{\zeta})\right) d \zeta,
\end{aligned}
$$

and

$$
\theta_{v}\left(s\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)\right) F_{v}=F_{v}, \quad a \in F_{v}^{\times} .
$$

Moreover

$$
F(t, z)=|s| \chi(s) F\left(s^{2} t, z / s\right) \quad\left(s, t \in \mathbb{A}^{\times} ; z \in \mathbb{A}_{E}\right)
$$

Note that θ_{v} is a representation of the group $G L\left(2, F_{v}\right)$ itself (even of $P G L\left(2, F_{v}\right)$) on the space of the functions $F_{v}\left(t_{v}, z_{v}\right)$, which are smooth on $F_{v}^{\times} \times E_{v}$. Hence (2) can be written as

$$
2 \sum_{\gamma \in E^{\times} / F^{\times}}(\theta(g) F)\left(N \gamma^{-1}, \gamma ; u, w\right)
$$

and the total "geometric sum" is equal to

$$
2 \sum_{\gamma \in E^{\times} / F^{\times}} \int_{\mathbb{Z} \mathbb{N} \backslash \mathbb{G}} f_{\psi}\left(g^{-1}\right)(\theta(g) F)\left(N \gamma^{-1}, \gamma ; u, w\right) d g
$$

For $z \in E_{v}^{\times}$, define

$$
f_{E_{v}}(z)=|z \bar{z}|_{F_{v}}^{-1 / 2} \int_{Z_{v} N_{v} \backslash G_{v}} f_{v, \psi}\left(g^{-1}\right)\left(\theta_{v}(g) F_{v}\right)\left(N z^{-1}, z ; u_{v}, w_{v}\right) d g
$$

The function $f_{E_{v}}$ on E_{v}^{\times}satisfies $f_{E_{v}}(a z)=\chi_{v}(a) f_{E_{v}}(z)\left(a \in F_{v}^{\times}, z \in E_{v}^{\times}\right)$, and $f_{E_{v}}(\bar{z})=\chi_{v}(-1) f_{E_{v}}(z)$.

5. Transfer of Functions.

2. Lemma. The function $f_{E_{v}}(\gamma)$ extends to a smooth function on E_{v}^{\times}.

Proof. This is clear, since the function F_{v} is smooth on $F_{v}^{\times} \times E_{v}$, and the integration ranges over a compact set of g, depending on f_{v}. Alternatively stated, let us pass to local notations - drop v - to simplify the notations. Write $\gamma=x+\sqrt{\tau} y$. Then up to a factor which is smooth in γ, our expression is the integral over k in K of

$$
\chi(y)|x y|^{1 / 2} \int_{F^{\times}} \chi(a) f_{\psi}\left(k^{-1}\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right)(\theta(k) u)\left(\frac{a x^{2}}{\gamma \bar{\gamma}}\right)(\overline{\theta(k) w})\left(\frac{\tau a y^{2}}{\gamma \bar{\gamma}}\right) d^{\times} a
$$

at γ with $x y \neq 0$. The only possible points where this may not be smooth are at $x=0$ or $y=0$. But at these points we have that

$$
(\theta(k) u)\left(\frac{a x^{2}}{\gamma \bar{\gamma}}\right)=|x|^{-1 / 2}(\theta(k) u)_{0}(a / \gamma \bar{\gamma}) \quad(|x| \text { small })
$$

and

$$
(\theta(k) w)\left(\frac{\tau a y^{2}}{\gamma \bar{\gamma}}\right)=\chi(y)|y|^{-1 / 2}(\theta(k) w)_{0}(\tau a / \gamma \bar{\gamma}) \quad(|y| \text { small })
$$

hence the lemma again follows.
Consider next the case of a spherical function, first at a place v which splits in E.
3. Lemma. If v splits in E, ψ_{v} has conductor $R_{v}, u_{v}=u_{v}^{0}, w_{v}=w_{v}^{0}$, and f_{v} is spherical, then $f_{E_{v}}((a, b))=F_{f_{v}}\left(\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)\right) ; a, b \in F_{v}^{\times}$.

Corollary. A character μ_{v} of $E_{v}^{\times} / F_{v}^{\times}$is of the form $\mu_{v}((a, b))=\mu_{1 v}(a / b)$ for some character $\mu_{1 v}$ of F_{v}^{\times}, and we have $\mu_{v}\left(f_{E_{v}}\right)=\operatorname{tr} I\left(\mu_{1 v}, \mu_{1 v}^{-1} ; f_{v}\right)$ for every spherical function f_{v} on $\operatorname{PGL}\left(2, F_{v}\right)$.

Proof. Note that

$$
\mu_{v}\left(f_{E_{v}}\right)=\int_{E_{v}^{\times} / F_{v}^{\times}} \mu_{v}((a, b)) f_{E_{v}}((a, b)) d^{\times}(a / b)
$$

is equal to

$$
\int_{F_{v}^{\times}} \mu_{1 v}(a / b) F_{f_{v}}\left(\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\right) d^{\times}(a / b)=\operatorname{tr} I\left(\mu_{1 v}, \mu_{1 v}^{-1} ; f_{v}\right) .
$$

Proof of Lemma. Suppose that v splits in E, thus $E_{v}=F_{v} \oplus F_{v}$ and $\bar{\gamma}=(d, c)$ if $\gamma=$ (c, d), and assume that ψ_{v} has conductor $R_{v}, u_{v}=u_{v}^{0}, w_{v}=w_{v}^{0}$, and f_{v} is spherical.

Note that $\chi_{v}=1$. Then using the Iwasawa decomposition $d g=d n d^{\times} a /|a| d k$, and noting that $\theta(k) u_{v}^{0}=u_{v}^{0}$, and $\theta(k) w_{v}^{0}=w_{v}^{0}$, we obtain the following expression for $f_{E_{v}}((c, d))$:

$$
|c d|_{v}^{-1 / 2} \int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) u_{v}^{0}\left(\left(a / c d, \frac{1}{2}(c+d)\right)\right) \bar{w}_{v}^{0}((\tau a / c d,(c-d) / 2 \sqrt{\tau})) d^{\times} a .
$$

Here $\gamma=(c, d)$ in E_{v}^{\times}can be expressed as $x_{v}+\sqrt{\tau} y_{v}$, where $\sqrt{\tau}=(\sqrt{\tau},-\sqrt{\tau})$ and $x_{v}=\frac{1}{2}(\gamma+\bar{\gamma})=\frac{1}{2}(c+d)$, and $y_{v}=(\gamma-\bar{\gamma}) / 2 \sqrt{\tau}=(c-d) / 2 \sqrt{\tau}$. At $\gamma \neq \pm \bar{\gamma}$ in E_{v}^{\times}, we obtain

$$
\left|\frac{c^{2}-d^{2}}{c d}\right|_{v}^{1 / 2} \int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) u_{v}^{0}\left(\frac{a(c+d)^{2}}{4 c d}\right) \bar{w}_{v}^{0}\left(\frac{a(c-d)^{2}}{4 c d}\right) d^{\times} a .
$$

This expression is not changed if (c, d) is replaced by (d, c) or $(-c, d)$, and (c, d) is taken modulo F_{v}^{\times}. We may take then $d=1$ and $|c| \leq 1$. Consider first the case that $|c|=1, c \neq \pm 1$. We may assume that $|c+1|=1$, and $|c-1| \leq 1$. Then our expression is

$$
\begin{aligned}
& |c-1|_{v}^{1 / 2} \int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) u_{v}^{0}(a) \bar{w}_{v}^{0}\left(a(c-1)^{2}\right) d^{\times} a \\
& =\int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) u_{v}^{0}(a) \bar{w}_{v}^{0}(a) d^{\times} a .
\end{aligned}
$$

If $|c|=\left|\boldsymbol{\pi}^{n}\right|<1$, our expression is

$$
\left|\boldsymbol{\pi}^{n}\right|^{-1 / 2} \int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) u_{v}^{0}\left(a \boldsymbol{\pi}^{-n}\right) \bar{w}_{v}^{0}\left(a \boldsymbol{\pi}^{-n}\right) d^{\times} a
$$

this last expression is then valid for $n=0$ too. The integrand is non-zero only when $a \in \pi^{n+2 m} R_{v}^{\times}, m \geq 0$, and we get

$$
\begin{aligned}
& \left|\boldsymbol{\pi}^{n}\right|^{-1 / 2} \sum_{m \geq 0} f_{v, \psi}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n-2 m} & 0 \\
0 & 1
\end{array}\right)\right)|\boldsymbol{\pi}|^{-m} \\
& =\sum_{m \geq 0} q^{m+\frac{1}{2} n}\left[f_{v}\left(\left(\begin{array}{cc}
\pi^{-n-2 m} & 0 \\
0 & 1
\end{array}\right)\right)-f_{v}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n-2 m-2} & 0 \\
0 & 1
\end{array}\right)\right)\right] \\
& =q^{\frac{1}{2} n}\left[f_{v}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} & 0 \\
0 & 1
\end{array}\right)\right)+\sum_{m \geq 1}\left(1-\frac{1}{q}\right) q^{m} f_{v}\left(\left(\begin{array}{cc}
\pi^{-n-2 m} & 0 \\
0 & 1
\end{array}\right)\right)\right] .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& F_{f_{v}}\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\right)=\frac{|a-b|_{v}}{|a b|_{v}^{1 / 2}} \int_{F_{v}} f_{v}\left(\left(\begin{array}{cc}
1 & -x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) d x \\
& =|a / b|_{v}^{1 / 2} \int_{F_{v}} f_{v}\left(\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\right) d x
\end{aligned}
$$

and so, for our spherical f_{v}, we have

$$
\begin{aligned}
& F_{f_{v}}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} & 0 \\
0 & 1
\end{array}\right)\right)=\left|\boldsymbol{\pi}^{-n}\right|_{v}^{1 / 2} \int f_{v}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) d x \\
& =\left|\boldsymbol{\pi}^{-n}\right|^{1 / 2}\left[f_{v}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} & 0 \\
0 & 1
\end{array}\right)\right)+\int_{|x|>1} f_{v}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} x^{2} & 0 \\
0 & 1
\end{array}\right)\right) d x\right] \\
& =q^{n / 2}\left[f_{v}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} & 0 \\
0 & 1
\end{array}\right)\right)+\left(1-\frac{1}{q}\right) \sum_{m \geq 1} q^{m} f_{v}\left(\left(\begin{array}{cc}
\pi^{-n-2 m} & 0 \\
0 & 1
\end{array}\right)\right)\right]
\end{aligned}
$$

Here we used the decomposition

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & \pi^{-n}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \pi^{-n}
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{1}{x} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & 0 \\
0 & x
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 / x \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \boldsymbol{\pi}^{n} / x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & 0 \\
0 & x \boldsymbol{\pi}^{-n}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 / x \\
0 & 1
\end{array}\right) \equiv\left(\begin{array}{cc}
x^{-1} & 0 \\
0 & x \boldsymbol{\pi}^{-n}
\end{array}\right) \quad \text { if }|x| \geq 1
\end{aligned}
$$

The lemma follows.
6. Non-split Case. Suppose now that E_{v} / F_{v} is an unramified field extension, the conductor of ψ_{v} is R_{v} (thus $\psi_{v}=1$ on R_{v} but $\left.\psi_{v}\left(\boldsymbol{\pi}_{v}^{-1} R_{v}\right) \neq 1\right),|2|_{v}=1, f_{v}$ is spherical ($K_{v}=G L\left(2, R_{v}\right)$-biinvariant), and $u_{v}=u_{v}^{0}, w_{v}=w_{v}^{0}$, the K_{v}-invariant elements in $C\left(F_{v}^{\times}\right)$and $C_{\chi_{v}}\left(F_{v}^{\times}\right)$. Then $d g=d n \cdot|a|^{-1} d^{\times} a \cdot d k$ if $g=n\left(\begin{array}{cc}a & 0 \\ 0 & 1\end{array}\right) k$ in $Z_{v} \backslash G_{v}=N_{v} A_{v} K_{v}$. Hence

$$
\begin{aligned}
& f_{E_{v}}(\gamma)=|\gamma \bar{\gamma}|_{v}^{-1 / 2} \int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) \\
& \cdot \chi_{v}(a) u_{v}^{0}\left(a / \gamma \bar{\gamma}, \frac{1}{2}(\gamma+\bar{\gamma})\right) \bar{w}_{v}^{0}\left(\tau a / \gamma \bar{\gamma}, \frac{\gamma-\bar{\gamma}}{2 \sqrt{\tau}}\right) d^{\times} a .
\end{aligned}
$$

This is a function on E_{v}^{\times}which transforms under F_{v}^{\times}according to χ_{v}. Hence we may assume that $\gamma \bar{\gamma}$ and τ are units in F_{v}^{\times}. At γ with $\bar{\gamma} \neq \pm \gamma$, we put $x=(\gamma+\bar{\gamma}) / 2$, $y=(\gamma-\bar{\gamma}) / 2 \sqrt{\tau}$, and then

$$
\begin{aligned}
f_{E_{v}}(\gamma) & =|x y|_{F_{v}}^{1 / 2} \chi_{v}(y) \int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) \chi_{v}(a) u_{v}^{0}\left(a x^{2}\right) \bar{w}_{v}^{0}\left(a y^{2}\right) d^{\times} a \\
& =\int_{F_{v}^{\times}} f_{v, \psi}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right) u_{v}^{0}(a) \bar{w}_{v}^{0}(a) d^{\times} a .
\end{aligned}
$$

The last integral ranges over $R_{v}^{\times} \pi^{2 m}, m \geq 0$, where $\chi_{v}(a)=1$, and we used $u_{v}^{0}\left(a x^{2}\right)=u_{v}^{0}(a)|x|_{v}^{-1 / 2}$ and $w_{v}^{0}\left(a y^{2}\right)=|y|_{v}^{-1 / 2} \chi_{v}(y) w_{v}^{0}(a)$ for the last equality. It follows that in the unramified-spherical case, $f_{E_{v}}(\gamma)$ depends only on the parity of
the valuation of γ. If - moreover $-f_{v}$ is the unit element f_{v}^{0} of the Hecke algebra, and $|a|_{v} \leq 1$, then

$$
\begin{aligned}
& f_{v, \psi}^{0}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right)=\int_{F_{v}} f_{v}^{0}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) \bar{\psi}\left(\frac{1}{2} x\right) d x \\
& =f_{v}^{0}\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right)-f_{v}^{0}\left(\left(\begin{array}{cc}
a^{-1} \pi^{-2} & 0 \\
0 & 1
\end{array}\right)\right)
\end{aligned}
$$

is equal to $f_{v}^{0}(I)=1$ if $|a|_{v}=1$. Hence $f_{E_{v}}^{0}(\gamma) \equiv(-1)^{v^{\text {al }}{ }_{E_{v}}(\gamma)}$.
4. Lemma. When E_{v} / F_{v} is an unramified field extension, f_{v} is spherical, ψ_{v} has conductor $R_{v},|2|_{v}=1, u_{v}=u_{v}^{0}, w_{v}=w_{v}^{0}$, and $\mu_{1 v}$ is the unramified character of F_{v}^{\times}whose value at the uniformizer $\boldsymbol{\pi}_{v}$ of R_{v} is $i=\sqrt{-1}$, then

$$
\mu_{v}\left(f_{E_{v}}\right)=\operatorname{trI}\left(\mu_{1 v}, \mu_{1 v}^{-1} ; f_{v}\right)
$$

where μ_{v} denotes the unramified "sign" character of E_{v}^{\times}, whose value at a uniformizer $\boldsymbol{\pi}_{v}$ of $R_{E_{v}}$ is -1 . Here $\mu_{v}\left(f_{E_{v}}\right)=\int_{E_{v}^{\times} / F_{v}^{\times}} \mu_{v}(\gamma) f_{E_{v}}(\gamma) d^{\times} \gamma$ is the value of $f_{E_{v}}$ at a γ in $R_{E_{v}}^{\times}$.

Proof. We drop the index v to simplify the notations, and recall that $f_{E}(\gamma), \gamma \in R_{E}^{\times}$, is independent of γ, and is given by

$$
\begin{aligned}
f_{E}(\gamma) & =\int_{F \times}\left[f\left(\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & 1
\end{array}\right)\right)-f\left(\left(\begin{array}{cc}
a^{-1} \boldsymbol{\pi}^{-2} & 0 \\
0 & 1
\end{array}\right)\right)\right] u^{0}(a) \bar{w}^{0}(a) d^{\times} a \\
& =\sum_{n \geq 0}\left[f\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-2 n} & 0 \\
0 & 1
\end{array}\right)\right)-f\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-2 n-2} & 0 \\
0 & 1 n
\end{array}\right)\right)\right]|\boldsymbol{\pi}|^{-n} \chi\left(\boldsymbol{\pi}^{n}\right) \\
& =f(I)+\left(1+\frac{1}{q}\right) \sum_{n \geq 1} f\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-2 n} & 0 \\
0 & 1
\end{array}\right)\right)(-q)^{n}, \quad q=|\boldsymbol{\pi}|^{-1} .
\end{aligned}
$$

On the other hand, since $\mu_{1}(\boldsymbol{\pi})=i$, we have

$$
\begin{aligned}
& \operatorname{tr} I\left(\mu_{1}, \mu_{1}^{-1} ; f\right)=\sum_{n \in \mathbb{Z}} F_{f}\left(\left(\begin{array}{cc}
\pi^{-n} & 0 \\
0 & 1
\end{array}\right)\right) i^{n}=F_{f}(I)+\sum_{n \geq 1} F_{f}\left(\left(\begin{array}{cc}
\pi^{-n} & 0 \\
0 & 1
\end{array}\right)\right)\left(i^{n}+i^{-n}\right) \\
& =F_{f}(I)+2 \sum_{n \geq 1}(-1)^{n} F_{f}\left(\left(\begin{array}{cc}
\pi^{-2 n} & 0 \\
0 & 1
\end{array}\right)\right)
\end{aligned}
$$

But

$$
F_{f}\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} & 0 \\
0 & 1
\end{array}\right)\right)=q^{n / 2}\left[f\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-n} & 0 \\
0 & 1
\end{array}\right)\right)+\left(1-\frac{1}{q}\right) \sum_{m \geq 1} q^{m} f\left(\left(\begin{array}{cc}
\pi^{-n-2 m} & 0 \\
0 & 1
\end{array}\right)\right)\right]
$$

So we get

$$
\begin{aligned}
& =F_{f}(I)+2 \sum_{n \geq 1}(-1)^{n} F_{f}\left(\left(\begin{array}{cc}
\pi^{-2 n} & 0 \\
0 & 1
\end{array}\right)\right)=f(I)+\left(1-\frac{1}{q}\right) \sum_{m \geq 1} q^{m} f\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{-2 m} & 0 \\
0 & 1
\end{array}\right)\right) \\
& +2 \sum_{k \geq 1}(-q)^{k}\left[f\left(\left(\begin{array}{cc}
\pi^{-2 k} & 0 \\
0 & 1
\end{array}\right)\right)+\left(1-\frac{1}{q}\right) \sum_{m \geq 1} q^{m} f\left(\left(\begin{array}{cc}
\pi^{-2 k-2 m} & 0 \\
0 & 1
\end{array}\right)\right)\right] \\
& =f(I)+\sum_{n \geq 1} f\left(\left(\begin{array}{cc}
\pi^{-2 n} & 0 \\
0 & 1
\end{array}\right)\right)\left[\left(1-\frac{1}{q}\right) q^{n}+2(-q)^{n}+2\left(1-\frac{1}{q}\right) q^{n} \sum_{1 \leq k<n}(-1)^{k}\right] \\
& =f(I)+\sum_{n \geq 1}\left(1+\frac{1}{q}\right)(-q)^{n} f\left(\left(\begin{array}{cc}
\pi^{-2 n} & 0 \\
0 & 1
\end{array}\right)\right)=f_{E}(\gamma),
\end{aligned}
$$

as asserted.
7. Conclusion. So far we have shown the following.
5. Proposition. Given a finite set V of places of F containing the archimedean places and those which ramify in E, and those where the conductor of ψ is not R_{v}, and those where $u_{v} \neq u_{v}^{0}$, or $w_{v} \neq w_{v}^{0}$, for any test function $f=\otimes f_{v}, f_{v} \in$ $C_{c}^{\infty}\left(Z_{v} \backslash G_{v}\right), f_{v}$ is spherical $\left(K_{v}=G L\left(2, R_{v}\right)\right.$-biinvariant) for all $v \notin V$, and $f_{v}=f_{v}^{0}\left(=\right.$ characteristic function of $\left.Z_{v} K_{v}\right)$ for almost all v, we have the equality

$$
(1)+\sum_{\eta^{2}=\chi} I_{\eta}=2 \sum_{\gamma \in E^{\times} / F^{\times}} f_{E}(\gamma)=\sum_{\mu} \mu\left(f_{E}\right) .
$$

Here I_{η} is defined in Lemma 1. Moreover, $f_{E}(a)=\prod_{v} f_{E_{v}}\left(a_{v}\right)$ for $a=\left(a_{v}\right) \in \mathbb{A}_{E}^{\times}$, where $f_{E_{v}}$ is a smooth function on E_{v}^{\times}(by Lemma 2) with $f_{E_{v}}(a \gamma)=\chi_{v}(a) f_{E_{v}}(\gamma)$ $\left(a \in F_{v}^{\times}, \gamma \in E_{v}^{\times}\right)$, which is spherical ($R_{E_{v}}^{\times}$-invariant) for $v \notin V$, and for almost all v it is the unit element: $f_{E_{v}}^{0}(\gamma)=\chi_{v}\left(\boldsymbol{\pi}_{v}\right)^{v a l_{E_{v}}(\gamma)}$ (if v is non-split), and $f_{E_{v}}^{0}((a, b)$) equals 1 if $|a|_{v}=|b|_{v}$, and zero otherwise (if v splits). The sum over μ ranges over all characters of $\mathbb{A}_{E}^{\times} / E^{\times}$whose restriction to $\mathbb{A}^{\times} / F^{\times}$is χ, and

$$
\mu\left(f_{E}\right)=\int_{\mathbb{A}_{E}^{\times} / \mathbb{A}^{\times}} \mu(a) f_{E}(a) d a
$$

The measure da is such that $\int_{\mathbb{A}_{E}^{\times} / \mathbb{A}^{\times} E^{\times}} d a=2$, the Tamagawa number of $\operatorname{Res}_{E / F} \mathbb{G}_{m} / \mathbb{G}_{m}$.

Note that the sums over γ and μ are equal by the Poisson summation formula. Since $f_{E}(\bar{a})=f_{E}(a)$, we have $\bar{\mu}\left(f_{E}\right)=\mu\left(f_{E}\right)$, where $\bar{\mu}(a)=\mu(\bar{a})$.

Lemmas 3 and 4 assert that at $v \notin V$, we have $\mu_{v}\left(f_{E_{v}}\right)=\operatorname{tr} I\left(\mu_{1 v}, \mu_{1 v}^{-1} ; f_{v}\right)$, where $\mu_{1 v}$ is related to μ_{v} as in the Theorem. On the other hand, in (1), $\pi_{v}\left(f_{v}\right)$ acts as
zero on $\varphi \in \pi$ unless φ is K_{v}-invariant on the right, in which case $\pi_{v}\left(f_{v}\right)$ acts as multiplication by the scalar $\operatorname{tr} \pi_{v}\left(f_{v}\right)$. A standard argument of "generalized linear independence of characters" (see, e.g., [F2], p. 758), using the absolute convergence of our sums, simple unitarity estimates, and the Stone-Weierstrass theorem, implies the following. Put $\mathbb{K}(V)=\prod_{v \notin V} K_{v}$, and let $\pi^{\mathbb{K}(V)}$ be the space of $\mathbb{K}(V)$-invariant vectors in the space of π.
6. Proposition. Fix an unramified G_{v}-module π_{v}^{*} for each $v \notin V$. For any $f_{v} \in$ $C_{c}^{\infty}\left(G_{v}\right), v \in V$, put $f=\left(\bigotimes_{v \in V} f_{v}\right) \otimes\left(\bigotimes_{v \notin V} f_{v}^{0}\right)$. Then $(1)+\sum_{\eta^{2}=\chi} I_{\eta}=\sum_{\mu} \mu\left(f_{E}\right)$, where in (1) the first sum ranges over the cuspidal representations π of $\operatorname{PGL}(2, \mathbb{A})$ with $\pi_{v} \simeq \pi_{v}^{*}$ for all $v \notin V$, and the second sum is over a smooth orthonormal basis $\{\varphi\}$ for the spaces $\pi^{\mathbb{K}(V)}$. The sum over $\eta, \eta^{2}=\chi$, ranges over those characters η with $I\left(\eta_{v}, 1 / \eta_{v}\right) \simeq \pi_{v}^{*}$ for all $v \notin V$. The sum over μ ranges over those characters of $\mathbb{A}_{E}^{\times} / E^{\times}$such that for $v \notin V$ the component μ_{v} is unramified, and defines the representation $I\left(\mu_{1 v}, \mu_{1 v}^{-1}\right)$, which is required to be equivalent to π_{v}^{*}.

By the Chebotarev density theorem the sum over μ consists of at most one pair $\{\mu, \bar{\mu}\}$ of non-zero contributions. Since every smooth function on E_{v}^{\times}which transforms under F_{v}^{\times}according to χ_{v} and whose values at $\gamma \in E_{v}^{\times}$and $\bar{\gamma}$ defer by a multiple of $\chi_{v}(-1)$, is obtained as $f_{E_{v}}$ from some f_{v}, for some u_{v} and w_{v}, we conclude, on choosing $\pi_{v}^{*}=I\left(\mu_{1 v}, \mu_{1 v}^{-1}\right)(v \notin V)$, that for each μ as in the Theorem there exists (a unique) $\pi(\mu)$, as in the Theorem; it is the unique π which occurs in (1), unless $\chi=\eta^{2}$ and $\mu=\bar{\mu}$, since the sum $\sum_{\mu} \mu\left(f_{E}\right)$ of Proposition 6 is non-zero. This $\pi=\pi(\mu)$ has the property that $R^{\chi}(\varphi) \neq 0$ for some $\varphi \in \pi$.

On the other hand, by the rigidity theorem for $G L(2)$ (see [JS]), at most one π can contribute to the sum (1) of Proposition 6. Let π be a cuspidal representation of $P G L(2, \mathbb{A})$ such that $\int_{\mathbb{Z}^{2} G \backslash G} \varphi_{1}(g) \Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g$ is non-zero for some u and w, and χ, and a smooth form φ_{1} in the space of π. We can choose a sufficiently large finite set V, and $\pi_{v}^{*}=\pi_{v}$ for $v \notin V$, such that the equality $(1)=\sum_{\mu} \mu\left(f_{E}\right)$ of Proposition 6 holds. The I_{η} vanish again by [JS]. We may assume that the orthonormal basis of $\pi^{\mathbb{K}(V)}$ in (1) contains φ_{1}. Since π is cuspidal, it is generic, namely there exists a form φ_{2} in its space such that $W_{\varphi_{2}, \psi}(e) \neq 0$. We may assume that either φ_{2} is φ_{1}, or φ_{2} is orthogonal to φ_{1}. In any case, the space of endomorphisms of π_{v} is spanned by the operators $\pi_{v}\left(f_{v}\right), f_{v} \in C_{c}^{\infty}\left(Z_{v} \backslash G_{v}\right)$. Hence we can choose $f_{v}(v \in V)$ such that $\prod_{v \in V} \pi_{v}\left(f_{v}\right)$ maps φ_{2} to φ_{1}, and any vector in $\pi^{\mathbb{K}(V)}$ which is orthogonal to φ_{2}, to 0 . With this choice of f in Proposition 6, the two sums of (1) consist of one term each. Our π, and φ_{2}, index the only possibly non-zero term:

$$
\int_{\mathbb{Z}^{2} G \backslash \mathbb{G}}\left(\pi(f) \varphi_{2}\right)(g) \Theta_{u}(g) \bar{\Theta}_{w}^{\chi}(g) d g \cdot \bar{W}_{\varphi_{2}, \psi}(e),
$$

which is non-zero by our choice of φ_{2} and $\pi(f) \varphi_{2}=\varphi_{1}$. Since the sum (1) is nonzero, there is μ such that $\mu\left(f_{E}\right) \neq 0$, by the equality of Proposition 6 , and if χ is a square, μ satisfies $\mu \neq \bar{\mu}$. This proves that π with $R^{\chi}(\varphi) \neq 0$ for some $\varphi \in \pi$ is necessarily of the form $\pi(\mu)$, and the Theorem follows.

References

[F] Y. Flicker, [F1] On the symmetric square: Applications of a trace formula, Trans AMS 330 (1992), 125-152; [F2] Regular trace formula and base-change lifting, Amer. J. Math. 110 (1988), 739-764.
[FK] Y. Flicker, D. Kazhdan, A simple trace formula, J. Analyse Math. 50 (1988), 189-200.
[FKS] Y. Flicker, D. Kazhdan, G. Savin, Explicit realization of a metaplectic representation, J. Analyse Math. 55 (1991), 17-39.
[FM] Y. Flicker, J. G. M. Mars, Summation formulae, automorphic realizations, and a special value of Eisenstein series, J. Math. Kyoto Univ. 32 (1992), 715-729.
[GJ] S. Gelbart, H. Jacquet, A relation between automorphic representations of $G L(2)$ and $G L(3)$, Ann. Sci. ENS 11 (1978), 471-541.
[H] R. Howe, Theta series and invariant theory, Proc. Sympos. Pure Math. 33 I (1979), 275-286.
[JL] H. Jacquet, R. Langlands, Automorphic forms on $G L(2)$, Lecture Notes in Math. 114 (1970); Springer Verlag.
[JS] H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations, Amer. J. Math. 103 (1981), I: 499-558, II: 777-815.
[K] D. Kazhdan, On Lifting, in Lie group representations II, Lecture Notes in Math. 1041 (1984), 209-249; Springer Verlag.
[LL] J.-P. Labesse, R. Langlands, L-indistinguishability for SL(2), Canad. J. Math. 31 (1979), 726-785.
[L] R. Langlands, Base change for GL(2), Annals of Math. Study 96 (1980).
[MVW] C. Moeglin, M.-F. Vigneras, J.-L. Waldspurger, Correspondences de Howe sur un corps p-adique, Lecture Notes in Math. 1291 (1987), Springer Verlag.
[PPS] S. J. Patterson, I. Piatetski-Shapiro, The symmetric-Square L-function attached to a cuspidal automorphic representation of $G L_{3}$, Math. Ann. 283 (1989), 551-572.
[S] G. Savin, On the tensor product of theta representations of $G L_{3}$, Pacific J. Math. 154 (1992), 369-380.
[ST] J. Shalika, S. Tanaka, On an explicit construction of a certain class of automorphic forms, Amer. J. Math. 91 (1969), 1049-1076.

[^0]: Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, OH 43210-1174;
 email: flicker@math.ohio-state.edu.
 Mathematisch instituut, Rijksuniversiteit Utrecht, Budapestlaan 6, Postbus 80.010, 3508 TA Utrecht, The Netherlands; email: mars@math.ruu.nl.

 Nato-grant CRG-921232 is greatfully acknowledged.
 1991 Mathematics Subject Classification: 11F27, 11R42, 11S40.

