BERNSTEIN'S ISOMORPHISM AND GOOD FORMS

Yuval Z. Flicker

A. Statement of Main Result.

Let G be a p-adic reductive group, and σ an automorphism of G of finite order ℓ. A G-module is a representation $\pi: G \rightarrow$ Aut V of the group G on a complex vector space V, which is smooth (terminology of Bernstein-Deligne-Kazhdan [BDK]; in Bernstein-Zelevinski [BZ1] this is termed algebraic): the stabilizer of any vector in V is an open subgroup of G. It will be denoted by (π, V), or simply π, or V. Put ${ }^{\sigma} \pi(g)=\pi\left(\sigma^{-1} g\right)$. Then $\left({ }^{\sigma} \pi, V\right)$ is a G-module. A G-module (π, V) is called σ-invariant if it is equivalent to $\left({ }^{\sigma} \pi, V\right)$. Denote by Aut $_{G}^{\sigma} \pi$ the set of vector space automorphisms $S: V \xrightarrow{\sim} V$ with $S \pi(g)=\pi(\sigma g) S$ for all $g \in G$ and $S^{\ell}=1$. Then π is σ-invariant if and only if Aut ${ }_{G}^{\sigma} \pi$ is non-empty. In this case π extends to a $G^{\#}$-module by $\pi(\sigma)=S$, where $G^{\#}$ is the semi-direct product $G \rtimes\langle\sigma\rangle$ of G with the group $\langle\sigma\rangle$ generated by σ. When π is irreducible then S is uniquely determined up to an ℓ th root ζ of unity in \mathbb{C}.

Let $\mathbb{M}(G)$ be the category of G-modules. An element E of $\mathbb{M}(G)$ is called finitely generated if for any filtered system of proper subobjects E_{i} in E, the subobject $\Sigma_{i} E_{i}$ is proper in E. Let $K(G)$ be the Grothendieck group of finitely generated G-modules, and $R(G)$ the Grothendieck group of G-modules of finite length. The group $K(G)$ coincides with the Grothendieck group of projective (i.e. the functor $E \mapsto \operatorname{Hom}(P, E)$ is exact) finitely generated G-modules P. Indeed, each finitely generated G-module has a projective resolution consisting of finitely generated G-modules, and this resolution is finite by virtue of the Theorem of Bernstein [B] recorded in the Appendix. This Theorem asserts that the category $\mathbb{M}(G)$ has finite cohomological dimension.

The group $R(G)$ is the free abelian group generated by the set $\operatorname{Irr} G$ of equivalence classes of irreducible G-modules. Denote by $\operatorname{Irr}^{\sigma}(G)$ the subset of σ-invariant elements in $\operatorname{Irr} G$. Let $R^{\sigma}(G)$ (resp. $K^{\sigma}(G)$) be the quotient of the free abelian group generated by the pairs (π, S) where π is a G-module of finite length (resp. projective finitely generated) and $S \in \operatorname{Aut}{ }_{G}^{\sigma} \pi$, by the following relations.
$\left(\mathrm{R}_{1}\right)$ If $0 \rightarrow\left(\pi^{\prime}, S^{\prime}\right) \rightarrow(\pi, S) \rightarrow\left(\pi^{\prime \prime}, S^{\prime \prime}\right) \rightarrow 0$ is exact then $(\pi, S) \sim\left(\pi^{\prime}, S^{\prime}\right)+\left(\pi^{\prime \prime}, S^{\prime \prime}\right)$.
$\left(\mathrm{R}_{2}\right)$ If $\pi=\oplus_{i} \pi_{i}$ and for each i there is j such that $S \pi_{i}=\pi_{j}$, then $(\pi, S) \sim \Sigma_{i}\left(\pi_{i}, S_{i}\right)$, where the sum ranges over all i such that $S \pi_{i}=\pi_{i}$, and $S_{i}=S \mid \pi_{i}$ for such i.

The abelian group $R^{\sigma}(G)$ is generated by the pairs $(\pi, S), \pi \in \operatorname{Irr}{ }^{\sigma} G$ and $S \in \operatorname{Aut}_{G}^{\sigma} \pi$ with $S^{\ell}=1$. For any \mathbb{Z}-modules R and T put R_{T} for $R \otimes_{\mathbb{Z}} T$. The quotient of $R^{\sigma}(G)_{\mathbb{C}}$ by the relations $(\pi, \zeta S) \sim \zeta(\pi, S)$ for all $\pi \in \operatorname{Irr}^{\sigma}(G), S \in \operatorname{Aut}_{G}^{\sigma} \pi, \zeta \in \mathbb{C}$ with $\zeta^{\ell}=1$, is the free \mathbb{C}-module $\widetilde{R}^{\sigma}(G)_{\mathbb{C}}$ generated by $\operatorname{Irr}^{\sigma}(G)$.

[^0]Fix a minimal parabolic subgroup P_{0} of G. Suppose that $\sigma P_{0}=P_{0}$. If $P_{0}=M_{0} U_{0}$ is a Levi decomposition, then $\sigma M_{0}=u^{-1} M_{0} u$ for some u in (the unipotent radical) U_{0} with $u \sigma(u) \cdots \sigma^{\ell-1}(u)=1$. Since U_{0} is an extension of additive groups, its first galois cohomology group is trivial, and there is $u^{\prime} \in U_{0}$ with $u=u^{\prime} \sigma\left(u^{\prime}\right)^{-1}$. Replacing M_{0} by its conjugate by u^{\prime} we may assume that the Levi subgroup M_{0} is σ-invariant: $\sigma M_{0}=M_{0}$. A standard Levi subgroup is a subgroup $M \supseteq M_{0}$ of G which is a Levi component of a parabolic subgroup $P=P_{0} M$; such P is called a standard parabolic subgroup. Notations: $M<G, P<G$. Since P has a unique Levi subgroup containing a fixed minimal one, if $\sigma P=P$ then $\sigma M=M$ for $M<G$.

For $M<G$, let $i_{G M}: \mathbb{M}(M) \rightarrow \mathbb{M}(G)$ be the functor of normalized induction. Given an M-module (ρ, E), the space $V=i_{G M} E$ consists of all smooth maps f : $G \rightarrow E$ with $f(m u g)=\delta_{P}^{\frac{1}{2}}(m) \rho(m) f(g)(m \in M, g \in G, u \in U(=$ unipotent radical of $\left.P=M P_{0}\right)$), where $\delta_{P}(m)=\left|\left(\operatorname{det}: N \rightarrow N, n \mapsto m^{-1} n m\right)\right|$, and $\pi=i_{G M} \rho$ acts on $i_{G M} E$ by $(\pi(x) f)(g)=f(g x)$. If $M<N<G$ and $M=\sigma M, N=\sigma N$, and (ρ, E) is σ-invariant, then $\left(\pi=i_{N M} \rho, V=i_{N M} E\right)$ is σ-invariant: define $\pi(\sigma)$ by $(\pi(\sigma) f)(g)=(\rho(\sigma) f)\left(\sigma^{-1} g\right)$. Denote by $J H(E)$ the subset of Irr G consisting of all irreducible constituents of the G-module E. The automorphism σ of G defines a functor $\mathbb{M}(G) \rightarrow \mathbb{M}(G)$. It is easy to see that ${ }^{\sigma} i_{G M}(\rho)=i_{G, \sigma M}\left({ }^{\sigma} \rho\right)$, hence that $\pi \in J H\left(i_{G M} \rho\right)$ if and only if ${ }^{\sigma} \pi \in J H\left(i_{G, \sigma M}\left({ }^{\sigma} \rho\right)\right)$.

Let $r_{M G}: \mathbb{M}(G) \rightarrow \mathbb{M}(M)$ be the normalized functor of coinvariants. If (π, V) is a G-module, then the space $V_{U}=r_{M G} V$ is the quotient of V by the span $V(U)$ of $\pi(u) v-v, v \in V, u \in U\left(=\right.$ unipotent radical of $\left.P=M P_{0}\right)$. The action $r_{M G} \pi$ of M on $r_{M G} V$ is by $m: v+V(U) \mapsto \delta_{U}^{-1 / 2}(m) \pi(m) v+V(U)$ (note that $\pi(M)$ stabilizes $V(U)$). If $M<N<G, \sigma N=N, \sigma M=M$, and (π, V) is a σ-invariant N-module, then $r_{M N} \pi$ is σ-invariant, since $\pi(\sigma)(V(U))=V(U)$. The functors $i_{G M}$ and $r_{M G}$ define homomorphisms $i_{G M}: R(M) \rightarrow R(G)$ and $r_{M G}: R(G) \rightarrow R(M)$, and $i_{G M}: R^{\sigma}(M) \rightarrow$ $R^{\sigma}(G), r_{M G}: R^{\sigma}(G) \rightarrow R^{\sigma}(M)$, when $M=\sigma M$. Let \bar{P} be the parabolic subgroup of G opposite to P (then $M=P \cap \bar{P}$), and let $\bar{r}_{M G}$ be the normalized functor of invariants defined using \bar{P} instead of P. If $P=\sigma P$ then $\bar{P}=\sigma \bar{P}$.

The group $X(G)$ of complex-valued unramified characters of G is naturally isomorphic to $\mathbb{C}^{\times d}$ for some $d=d(G) \geq 0$, hence has a natural structure of a complex algebraic group. It acts on $\operatorname{Irr} G$ and $R(G)$ by $\psi: \pi \mapsto \psi \pi$. Let $X^{\sigma}(G)$ be the group of ψ in $X(G)$ which are fixed by σ. It is a subvariety of $X(G)$ which acts on $\operatorname{Irr}^{\sigma}(G)$ and $R^{\sigma}(G)$.

Let \mathbb{H}_{G} be the Hecke algebra of (locally-constant complex-valued compactly-supported measures on) G. Then $\mathbb{H}_{G}=C_{c}^{\infty}(G) d g$, where $d g$ is a Haar measure. The automorphism σ acts on \mathbb{H}_{G} by $\sigma(h d g)={ }^{\sigma} h d g$, where ${ }^{\sigma} h(g)=h\left(\sigma^{-1} g\right)$. Put $\mathbb{H}_{G}^{\#}$ for the semi-direct product $\mathbb{H}_{G} \rtimes<\sigma>$. A measure h in \mathbb{H}_{G} defines a linear form $F_{h}: R(G) \rightarrow \mathbb{C}$ by $F_{h}(\pi)=\operatorname{tr} \pi(h)$, and $F_{h}^{\sigma}: R^{\sigma}(G) \rightarrow \mathbb{C}$ by $F_{h}^{\sigma}((\pi, S))=\operatorname{tr} \pi(h \sigma)$; here $\pi(h \sigma)=\pi(h) S$, and $\pi(h)$ is the convolution operator $\int_{G} h(g) \pi(g)$. This $\pi(h)$ is of finite rank on $V=V_{\pi}$ since π is admissible (smooth of finite length, see [BZ1]), hence $\pi(h \sigma)$ is of trace class. Note that $F_{h}^{\sigma}((\pi, \zeta S))=\zeta F_{h}^{\sigma}((\pi, S))$ if $\zeta^{\ell}=1$. It is useful to note that \mathbb{H}_{G} is the tensor
product with \mathbb{C} over Q of the rational Hecke algebra of Q-valued measures with the above properties. A similar comment applies to \mathbb{H}_{K} of $\S \mathbf{B}$ below.

Let $R_{\sigma}^{*}(G)=\operatorname{Hom}_{\mathbb{Z}, \zeta}\left(R^{\sigma}(G), \mathbb{C}\right) \quad\left(=\operatorname{Hom}_{\mathbb{C}}\left(\widetilde{R}^{\sigma}(G)_{\mathbb{C}}, \mathbb{C}\right)\right)$ be the space of \mathbb{C}-valued linear forms F on $R^{\sigma}(G)$ which are "genuine", namely satisfy $F((\pi, \zeta S))=\zeta F((\pi, S))$ for all $\zeta \in \mathbb{C}$ with $\zeta^{\ell}=1$. Let $R_{\sigma}^{*}(G)_{\operatorname{tr}}$ be the subspace of the forms $F_{h}^{\sigma}, h \in \mathbb{H}_{G}$. A form in this subspace is called a trace form. Any trace form F is genuine and it satisfies:
(i) There exists a σ-invariant open compact subgroup K of G which dominates F. Namely $F((\pi, S))=0$ if π is a G-module which has no non-zero K-fixed vector, or alternatively $F((\pi, S))$ depends only on the space π^{K} of K-fixed vectors in π, and the restriction of S to π^{K}.
(ii) For any standard Levi subgroup $M=\sigma M<G$ and $\rho \in \operatorname{Irr}^{\sigma}(M)$, the function $\psi \mapsto$ $F\left(\left(i_{G M}(\psi \rho), i_{G M}(\rho(\sigma))\right)\right)$ is a regular function on the complex algebraic variety $X^{\sigma}(M)$.

Denote by $R_{\sigma}^{*}(G)_{\text {good }}$ the space of F in $R_{\sigma}^{*}(G)$ which satisfy (i), (ii); such forms will be called good.

Let $\tau_{\sigma}\left(\mathbb{H}_{G}\right)$ be the quotient of \mathbb{H}_{G} by the linear span $\left[\mathbb{H}_{G} \sigma, \mathbb{H}_{G}\right] \sigma^{-1}$ of the commutators $f \sigma(h)-h f$ in \mathbb{H}_{G}. Then $\tau_{\sigma}\left(\mathbb{H}_{G}\right) \simeq \mathbb{H}_{G} \sigma /\left[\mathbb{H}_{G} \sigma, \mathbb{H}_{G}\right]$, where $\left[\mathbb{H}_{G} \sigma, \mathbb{H}_{G}\right]$ is the linear span (in $\mathbb{H}_{G}^{\#}$) of all commutators $f \sigma \cdot h-h \cdot f \sigma ; f, h \in \mathbb{H}_{G}$. Note that $\left[\mathbb{H}_{G} \sigma, \mathbb{H}_{G}\right]=$ $\mathbb{H}_{G} \sigma \cap\left[\mathbb{H}_{G}^{\#}, \mathbb{H}_{G}^{\#}\right]$.

Main Theorem. The map $\Psi: \mathbb{H}_{G} \rightarrow R_{\sigma}^{*}(G), h \mapsto F_{h}^{\sigma}$, yields an isomorphism $\tau_{\sigma}\left(\mathbb{H}_{G}\right) \xrightarrow{\sim}$ $R_{\sigma}^{*}(G)_{\text {good }}$.

In the special case where $\ell=1$ and $\sigma=$ identity, one has $R^{*}(G)=\operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{C})=$ $\operatorname{Map}(\operatorname{Irr} G, \mathbb{C})$ and its subspaces $R^{*}(G)_{\text {good }} \supset R^{*}(G)_{\operatorname{tr}}$. Put $\tau\left(\mathbb{H}_{G}\right)=\mathbb{H}_{G} /\left[\mathbb{H}_{G}, \mathbb{H}_{G}\right]$. The assertion that the map $\mathbb{H}_{G} \rightarrow R^{*}(G)_{\text {good }}$ is surjective, namely that $R^{*}(G)_{\operatorname{tr}}=$ $R^{*}(G)_{\text {good }}$, is called the trace Paley-Wiener theorem; it is the main result of [BDK]. It is an analogue of the classical Paley-Wiener theorem which characterizes the image of the Fourier transform. The main ingredients in extending the proof of [BDK] to the twisted case, where σ is non-trivial, are explained in [F; I, $\S 7]$. As the twisted analogue requires only minor changes to the exposition of [BDK], it is noted in [F] that there is no need to reproduce the entire proof of $[\mathrm{BDK}]$ in the twisted setting.

The injectivity of the map $\tau\left(\mathbb{H}_{G}\right) \rightarrow R^{*}(G)$ implies the following density theorem. If $h \in \mathbb{H}_{G}$ satisfies $\operatorname{tr} \pi(h)=0$ for all π in $R(G)$ then all orbital integrals $\Phi_{h}(\gamma)=$ $\int h\left(g^{-1} \gamma g\right)\left(g \in Z_{G}(\gamma) \backslash G\right)$ of h at the regular elements γ, are zero. The density theorem is proven in Kazhdan [K1; Appendix] in characteristic zero, and subsequently in [K2; Theorem B], in positive characteristics. The proof of [K1] is global (it uses the trace formula) and requires non-trivial galois-cohomological constructions. The main ingredients in establishing a twisted analogue of the density theorem along the lines of the proof of [K1; Appendix], are explained in [F; I, §4].

The assertion of isomorphism in the Main Theorem above combines surjectivity (trace Paley-Wiener theorem) and injectivity (density theorem). The proof given here is due to J. Bernstein (in the case of $\sigma=$ identity). Its advantage over that of $[\mathrm{BDK}]$ is in proving
injectivity simultaneously to surjectivity. The proof is purely local, using neither the trace formula nor galois cohomology, and it applies with any characteristic. The new tool is the theory of "dévissage (unscrewing)" which is applied to a certain generalization (σ-cocenter of the category $\mathbb{M}(G)$) of the Grothendieck group $K^{\sigma}(G)$. Thus we work with finitely generated G-modules which are not necessarily of finite length, and study their support on the variety $\Theta(G)$ of infinitesimal characters. For completeness we reproduce here those parts of $[\mathrm{BDK}]$ which we need.

I wish to express my very deep gratitude to Joseph Bernstein for explaining his proof to me. My minor contribution is in carrying out the generalization to the twisted case, where σ is arbitrary. Since the present proof seems to be quite satisfactory, it is attempted here to supply all details, also in the twisted case. Further, we refer to Bernstein's fundamental lecture notes $[B]$. However, those results of $[B]$ which we use can be found already in the preliminary work [BD], with the exception of the "second adjointness theorem": i is left adjoint to \bar{r}; see $\S \mathbf{F}$.

I wish to thank J.-L. Colliot-Thélène, Bill Jacob, Wayne Raskind and Alex Rosenberg, for an instructive and enjoyable summer school. Nato-grant CRG-921232 is gratefully acknowledged.

B. Categorical center.

A cuspidal pair is a pair (M, ρ) consisting of a standard Levi subgroup $M<G$ and the equivalence class $\rho \in \operatorname{Irr} M$ of a supercuspidal irreducible M-module. Denote by $\Theta(G)$ the set of all cuspidal pairs up to conjugation by G. It is the disjoint union of infinitely many sets $\Theta=\Theta(M, \rho)$, each of which is the image of the map $X(M) \rightarrow \Theta(G), \psi \mapsto(M, \psi \rho) / G$, for some cuspidal pair (M, ρ). Each such Θ is called a connected component of $\Theta(G)$ and has the natural structure of a complex affine algebraic variety as the quotient of $X(M)$ by a finite group. Then $\Theta(G)=\cup \Theta$ has the structure of a complex algebraic variety consisting of infinitely many connected components.

For any $\pi \in \operatorname{Irr} G$ there is a unique up to conjugation by G cuspidal pair (M, ρ) such that π is a constituent of $i_{G M}(\rho)$. The image θ of (M, ρ) in $\Theta(G)$ is called the infinitesimal character of π, and the map $\chi: \operatorname{Irr} G \rightarrow \Theta(G), \chi(\pi)=\theta$, is onto and finite to one (see [BZ1]). Note that χ is $X(G)$-equivariant, where $X(G)$ acts on $\Theta(G)$ by $\psi:(M, \rho) \mapsto(M, \psi \mid M \cdot \rho)$.

For each connected component Θ in $\Theta(G)$ consider the set $\chi^{-1}(\Theta) \subset \operatorname{Irr} G$, and the corresponding abelian subcategory

$$
\mathbb{M}(\Theta)=\left\{E \in \mathbb{M}(G) ; J H(E) \subset \chi^{-1}(\Theta)\right\} \text { of } \mathbb{M}(G)
$$

The Decomposition Theorem of $[B]$ asserts that for $\Theta \neq \Theta^{\prime}$ the categories $\mathbb{M}(\Theta)$ and $\mathbb{M}\left(\Theta^{\prime}\right)$ are orthogonal, namely $\operatorname{Hom}\left(E, E^{\prime}\right)=0$ for $E \in \mathbb{M}(\Theta), E^{\prime} \in \mathbb{M}\left(\Theta^{\prime}\right)$. Moreover, we have $\mathbb{M}(G)=\Pi_{\Theta} \mathbb{M}(\Theta)$, where the product ranges over all connected components Θ in $\Theta(G)$. Thus each G-module E has a unique decomposition $E=\oplus_{\Theta} E_{\Theta}=\Pi_{\Theta} E_{\Theta}$ with $E_{\Theta} \in \mathbb{M}(\Theta)$. In particular \mathbb{H}_{G} is a G-module under the left action of G, and so
\mathbb{H}_{G} decomposes as a direct sum $\oplus_{\Theta} \mathbb{H}_{\Theta}$ of two sided ideals \mathbb{H}_{Θ}, and $E_{\Theta}=\mathbb{H}_{\Theta} E$ for any G-module E.

The central algebra $\mathcal{Z}(\mathbb{M})$ of an abelian category \mathbb{M} is the algebra $\operatorname{End}\left(I d_{\mathbb{M}}\right)$ of endomorphisms of the identity functor $I d_{\mathbb{M}}: \mathbb{M} \rightarrow \mathbb{M}$. Thus $z \in \mathcal{Z}(\mathbb{M})$ is a set of endomorphisms $\left\{z_{E}: E \rightarrow E ; E \in \mathbb{M}\right\}$ such that for any morphism $\alpha: E \rightarrow F$ in \mathbb{M} we have $z_{F} \circ \alpha=\alpha \circ z_{E}$. Put $\mathcal{Z}(G)$ for $\mathcal{Z}(\mathbb{M}(G))$.

A ring \mathbb{H} is called an $i d$-ring if for any finite set h_{1}, \cdots, h_{n} in \mathbb{H} there is an idempotent e in \mathbb{H} with $e h_{i}=h_{i}=h_{i} e$. Any id-ring can be presented as $\lim _{\rightarrow} \mathbf{I} \mathbb{H}_{i}$, where \mathbf{I} is an ordered filtered set (for any i, j in \mathbf{I} there is k in \mathbf{I} with $i<k, j<k$), and where $\left\{\mathbb{H}_{i}(i \in \mathbf{I})\right\}$ is a directed system of rings with identity, but the morphisms $\mathbb{H}_{i} \rightarrow \mathbb{H}_{j}(i<j)$ are not assumed to map the identity of \mathbb{H}_{i} to that of \mathbb{H}_{j}. For example, \mathbb{H}_{G} is an idalgebra (algebra which is an id-ring), \mathbf{I} is the set of compact open subgroups K of G, and \mathbb{H}_{K} the convolution algebra of K-biinvariant measures in \mathbb{H}_{G}. Note that the subset \mathbf{I}^{σ} of σ-invariant K in \mathbf{I} is cofinal in \mathbf{I}, hence $\mathbb{H}_{G}=\lim _{\rightarrow} \mathbb{H}_{K}\left(K \in \mathbf{I}^{\sigma}\right)$.

A module E over an id-ring \mathbb{H} is called non-degenerate if $\mathbb{H} E=E$, equivalently if $E=\lim e E$, where the limit ranges over the set of idempotents in \mathbb{H}. From now on by an \mathbb{H}-module we shall mean a non-degenerate \mathbb{H}-module. Denote by $\mathbb{M}(\mathbb{H})$ the category of (non-degenerate) \mathbb{H}-modules. Note that $\mathbb{M}\left(\mathbb{H}_{G}\right)=\mathbb{M}(G)$, and $\mathbb{M}\left(\mathbb{H}_{\Theta}\right)=\mathbb{M}(\Theta)$ for each connected component Θ of $\Theta(G)$. Write $\mathcal{Z}(\mathbb{H})$ for $\mathcal{Z}(\mathbb{M}(\mathbb{H}))$. If \mathbb{H} is an id-ring, the morphism $z \mapsto z_{\mathbb{H}}$ identifies $\mathcal{Z}(\mathbb{H})$ with the algebra $\operatorname{End}_{\mathbb{H} \times \mathbb{H} \not{ }^{\circ} p p}(\mathbb{H})$ of endomorphisms of \mathbb{H} which commute with right and left multiplication. In particular, if \mathbb{H} has an identity then $\mathcal{Z}(\mathbb{H})$ is isomorphic to the center of \mathbb{H}. For example, $\mathcal{Z}\left(\mathbb{H}_{K}\right)$ is the center of \mathbb{H}_{K}.

The orthogonal decomposition $\mathbb{M}(G)=\Pi_{\Theta} \mathbb{M}(\Theta)$ implies that $\mathcal{Z}(G)=\Pi_{\Theta} \mathcal{Z}(\Theta)$, where $\mathcal{Z}(\Theta)$ is the center of $\mathbb{M}(\Theta)$. A theorem of $[\mathrm{B}]$ asserts that $\mathcal{Z}(\Theta)$ is naturally isomorphic to the algebra ofregular (polynomial) functions on the variety Θ. Hence $\mathcal{Z}(G)=\mathcal{Z}\left(\mathbb{H}_{G}\right)$ is the algebra of regular functions on $\Theta(G)$. In particular $z \in \mathcal{Z}(G)$ acts on $\pi \in \operatorname{Irr}(G)$ by multiplication by the scalar $z(\theta)$, where $\theta=\chi(\pi)$.

For any compact open subgroup K of G put $\operatorname{Irr}^{K}(G)=\left\{E \in \operatorname{Irr} G ; E^{K} \neq 0\right\} ; E^{K}$ is the space of K-fixed vectors in $E \in \mathbb{M}(G)$. By a Proposition of [B] the subset $\chi\left(\operatorname{Irr}^{K}(G)\right)$ of $\Theta(G)$ is a union of finitely many components, and for any component Θ of $\Theta(G)$ there is $K=K_{\Theta}$ such that $\chi^{-1}(\Theta) \subset \operatorname{Irr}^{K}(G)$. The open compact subgroup K of G is called special if $\operatorname{Irr}^{K}(G)$ is equal to a union of pullbacks $\chi^{-1}(\Theta)$ of components Θ. Put $\mathbb{M}_{K}(G)=\left\{E \in \mathbb{M}(G) ; E\right.$ is generated by $\left.E^{K}\right\}$, and $\mathbb{M}_{K}^{\perp}(G)=\left\{E \in \mathbb{M}(G) ; E^{K}=0\right\}$. If K is special then $\mathbb{M}(G)$ is the direct sum of the abelian subcategories $\mathbb{M}_{K}(G)$ and $\mathbb{M}_{K}^{\perp}(G)$, and $\mathbb{M}_{K}(G)=\mathbb{M}\left(\mathbb{H}_{K}\right)$, by a theorem of $[\mathrm{B}]$. Consequently $\mathcal{Z}\left(\mathbb{M}_{K}(G)\right)=\mathcal{Z}\left(\mathbb{H}_{K}\right)$ is the ring of regular functions on the union Θ_{K} of finitely many connected components Θ of $\Theta(G)$ with $\chi^{-1}(\Theta) \subset \operatorname{Irr}^{K}(G)$. Moreover, the algebra \mathbb{H}_{K} decomposes as $\oplus_{\Theta \subset \Theta_{K}} \mathbb{H}_{\Theta}$. By [B] the algebra \mathbb{H}_{Θ} is finitely generated $\mathcal{Z}(\Theta)$-module, and \mathbb{H}_{K} is a finitely generated $\mathcal{Z}\left(\Theta_{K}\right)$-module (and $\mathcal{Z}(G)$-module). Finally, it is shown in $[\mathrm{B}]$ that K is special if it has an Iwahori decomposition for each $M<G$ (thus $K=K \cap \bar{U} \cdot K \cap M \cdot K \cap U$ where $M=P \cap \bar{P}$ is the intersection of the standard parabolic subgroup $P=M_{0}=M U$ and its
opposite parabolic $\bar{P}=M \bar{U}$), and there exists a compact subgroup K_{0} which normalizes K and satisfies $G=K_{0} P_{0}$. Congruence subgroups and Iwahori subgroups are special.

For any standard Levi subgroup $M<G$ the morphism $i_{G M}: \Theta(M) \rightarrow \Theta(G)$ defined by $(N, \rho) \mapsto(N, \rho)$ is finite. It is not injective since cuspidal pairs conjugate under G may be non-conjugate under M. Denote the adjoint morphism by $i_{G M}^{*}: \mathcal{Z}(G) \rightarrow \mathcal{Z}(M)$. Then $\mathcal{Z}(M)$ is a finitely generated $\mathcal{Z}(G)$-module. Put $z_{M}=i_{G M}^{*} z \in \mathcal{Z}(M)$ for $z \in \mathcal{Z}(G)$. Then by a Propoposition of [B], for each M-module ρ we have $i_{G M}\left(z_{M}\right)=z$ on $i_{G M} \rho$, and for each G-module π we have $r_{M G} z=z_{M}$ on $r_{M G} \pi$.

Recall that $\pi \in J H\left(i_{G N} \rho\right)$ if and only if ${ }^{\sigma} \pi \in J H\left(i_{G, \sigma N}\left({ }^{\sigma} \rho\right)\right)$. Hence the morphism $\sigma: \Theta(G) \rightarrow \Theta(G)$ defined by $(N, \rho) \mapsto\left(\sigma N,{ }^{\sigma} \rho\right)$ satisfies $\sigma(\chi(\pi))=\chi\left({ }^{\sigma} \pi\right)$. Denote by σ also the dual map $\sigma: \mathcal{Z}(G) \rightarrow \mathcal{Z}(G), \sigma z(\theta)=z\left(\sigma^{-1} \theta\right)$.

Remark. Denote by Θ^{σ}, where Θ is a component of $\Theta(G)$, the subset of σ-fixed points of Θ. The subset Θ^{σ} is empty unless $\sigma \Theta=\Theta$, and it contains the infinitesimal characters of all σ-invariant G-modules π with $\chi(\pi) \in \Theta$ (however $\sigma \theta=\theta$ does not imply the existence of $\pi \in \operatorname{Irr} G$ with $\theta=\chi(\pi)$ and $\left.\pi \simeq{ }^{\sigma} \pi\right)$. The set Θ^{σ} is a (closed) subvariety of Θ. Indeed, if Θ^{σ} is not empty then it contains a point represented by a cuspidal pair (M, ρ). Let $W_{G}=W\left(M_{0}, G\right)=\operatorname{Norm}\left(M_{0}, G\right) / M_{0}$ be the Weyl group of G. Then there is $s \in W_{G}$ with $(\sigma N, \sigma \rho)=(s N, s \rho)$. If $(N, \psi \rho), \psi \in X(N)$, represents any other point in Θ^{σ}, then there is s_{ψ} in W_{G} with $(\sigma N, \sigma(\psi \rho))=\left(s_{\psi} N, s_{\psi}(\psi) s_{\psi}(\rho)\right)$. Since we have $s N=s_{\psi} N$, there is $w_{\psi} \in W(N, G)=\operatorname{Norm}(N, G) / N$ such that $s_{\psi}=s w_{\psi}$. Hence $s w_{\psi}(\psi) \cdot s \rho \simeq \sigma \psi \cdot s \rho$, or $\left(\left(s w_{\psi}\right)(\psi) / \sigma(\psi)\right) \otimes s \rho \simeq s \rho$, and $s w_{\psi}(\psi) / \sigma(\psi)$ lies in a fixed finite group depending only on ρ (and σ). Consequently Θ^{σ} is (Zariski) closed in Θ.

C. Discrete modules.

Put $R_{I}^{\sigma}(G)=\sum_{M=\sigma M \nsubseteq G} i_{G M}\left(R^{\sigma}(M)\right)$. A G-module $\pi \in \operatorname{Irr}^{\sigma}(G)$ is called σ-discrete
if it does not lie in $R_{I}^{\sigma}(G)$. An element θ of $\Theta(G)$ is called σ-discrete if it is equal to $\chi(\pi)$ for a σ-discrete $\pi \in \operatorname{Irr}^{\sigma}(G)$. Denote by $R_{\theta}^{\sigma}(G)$ the subgroup of $R^{\sigma}(G)$ generated by the G-modules with infinitesimal character θ. Denote by $\Theta_{\text {disc }}^{\sigma}(G)$ the subset of σ-discrete θ in $\Theta(G)$, and for each connected component Θ of $\Theta(G)$ put $\Theta_{\text {disc }}^{\sigma}=\Theta \cap \Theta_{\text {disc }}^{\sigma}(G)$.

Theorem 1. For each connected component Θ of $\Theta(G)$, the set $\Theta_{\text {disc }}^{\sigma}$ is a union of finitely many $X^{\sigma}(G)$-orbits (and in particular is a subvariety of Θ).

A main step in the proof of this Theorem is the following
Proposition 1.1. For each Θ the set $\Theta_{\text {disc }}^{\sigma}$ is constructible (a finite union of locally closed, in the Zariski topology, subsets) in Θ.

Proof. We begin with some preliminaries. Let \mathbb{B} be a commutative algebra over \mathbb{C}. A $G \times \mathbb{B}$-module is a G-module E equipped with a homomorphism $\mathbb{B} \rightarrow$ End ${ }_{G} E$. Such E is called a \mathbb{B}-family of G-modules if E is finitely generated as a $G \times \mathbb{B}$-module, and for each open compact subgroup K of G the \mathbb{B}-module E^{K} is finitely generated and
projective. For any homomorphism $\mathbb{B} \rightarrow \mathbb{B}^{\prime}$ of algebras write $E_{\mathbb{B}^{\prime}}=\mathbb{B}^{\prime} \otimes_{\mathbb{B}} E$ for the induced \mathbb{B}^{\prime}-family of G-modules. If \mathbb{B} is the algebra $k[X]$ of regular functions on a variety X, call E an X-family of G-modules. Given a morphism $X^{\prime} \rightarrow X$, denote by $E_{X^{\prime}}$ the induced X^{\prime}-family of G-modules. In particular for any point s in X (thus $s:$ Spec $\mathbb{C} \rightarrow X)$ the corresponding G-module $E_{s}=\mathbb{C} \otimes_{k[X]} E$ is called the specialization of the X-family E at s.

Given an X-family of G-modules E define a function $\nu_{E}: X \rightarrow R(G)$ by $\nu_{E}(s)=E_{s}$, and a function $\bar{\nu}_{E}: X \rightarrow \bar{R}^{\sigma}(G)$ by $\bar{\nu}_{E}(s)=\bar{E}_{s}$, where \bar{E}_{s} is the image of $E_{s} \in R(G)$ in the quotient $\bar{R}^{\sigma}(G)$ of $R^{\sigma}(G)$ by the relation $(\pi, \zeta S) \sim(\pi, S)$ if $\zeta^{\ell}=1 ; \bar{R}^{\sigma}(G)$ is the free abelian group generated by $\operatorname{Irr}^{\sigma}(G)$. A function $\nu: X \rightarrow \bar{R}^{\sigma}(G)$ is called regular if $\nu=\bar{\nu}_{E}$ for some X-family E of G-modules. A regular function $\nu: X \rightarrow \bar{R}^{\sigma}(G)$ is called irreducible if $\nu(X) \subset \operatorname{Irr}^{\sigma}(G)$. Two irreducible functions ν, ν^{\prime} are called disjoint if $\nu(s) \neq \nu\left(s^{\prime}\right)$ for every $s \neq s^{\prime}$ in X.

Lemma 1.1.1. Given a regular function $\nu: X \rightarrow \bar{R}^{\sigma}(G)$ there exists a dominant étale morphism $\phi: X_{1} \rightarrow X$, finitely many irreducible disjoint regular functions $\lambda_{j}: X_{1} \rightarrow$ $\bar{R}^{\sigma}(G)$, and positive integers n_{j}, such that $\nu \circ \phi=\Sigma_{j} n_{j} \lambda_{j}$.

Proof. Let E be an X-family of G-modules such that $\nu=\bar{\nu}_{E}$. Then there is an open compact σ-invariant subgroup K of G such that E is generated by E^{K} as a G-module. The subgroup K can be chosen to be special, and then any non-zero subquotient E^{\prime} of E is generated by its subspace $E^{\prime K}$ (which is non-zero) by a theorem of [B]. Consequently it suffices to prove the lemma with finitely generated $k[X]$-families of \mathbb{H}_{K}-modules E^{K}, instead of finitely generated $k[X]$-families of G-modules E.

It suffices to prove the lemma with X replaced by an irreducible component. Hence we assume that X is irreducible. Write $k(X)$ for the fraction field of $k[X]$. The $\mathbb{H}_{K} \times$ $k[X]$-module E^{K} is finitely generated as a $k[X]$-module; hence $k(X) \otimes_{k[X]} E^{K}$ is a finite dimensional vector space over the field $k(X)$. Over an algebraic closure $\overline{k(X)}$ of $k(X)$ there is an \mathbb{H}_{K}-stable flag $0=\bar{E}_{0}^{\prime} \subsetneq \bar{E}_{1}^{\prime} \subsetneq \cdots \not{ }_{\neq} \bar{E}_{r}^{\prime}$ of $\overline{k(X)}$-vector spaces in $\bar{E}_{r}^{\prime}=$ $\overline{k(X)} \otimes_{k[X]} E^{K}$, such that each $\bar{E}_{j}=\bar{E}_{j}^{\prime} / \bar{E}_{j-1}^{\prime}$ is an irreducible \mathbb{H}_{K}-module over $\overline{k(X)}$. Since $k(X) \otimes_{k[X]} E^{K}$ is finite dimensional over $k(X)$, there exists a finite extension $k(X)^{\prime}$ of $k(X)$ in $\overline{k(X)}$, namely a finite étale dominant morphism $X^{\prime} \rightarrow X$, such that the $\mathbb{H}_{K}-$ module $k\left(X^{\prime}\right) \otimes_{k[X]} E^{K}$ is completely reducible. Thus there is an \mathbb{H}_{K}-stable flag $0=$ $E_{0}^{\prime} \subsetneq E_{1}^{\prime} \subsetneq \cdots \underset{\neq}{\subsetneq} E_{r}^{\prime}$ of $k\left(X^{\prime}\right)$-vector spaces in $E_{r}^{\prime}=k\left(X^{\prime}\right) \otimes_{k[X]} E^{K}$, such that each $\tilde{E}_{j}=$ $E_{j}^{\prime} / E_{j-1}^{\prime}$ is an irreducible \mathbb{H}_{K}-module over $k\left(X^{\prime}\right)$. In particular \mathbb{H}_{K} spans $\operatorname{End}{ }_{k\left(X^{\prime}\right)} \tilde{E}_{j}$ over $k\left(X^{\prime}\right)$.

Choose a basis B_{j} of \tilde{E}_{j} over $k\left(X^{\prime}\right)$. Then $L_{j}^{\prime}=\left(\mathbb{H}_{K} \times k\left[X^{\prime}\right]\right) B_{j}$ is a finitely generated projective $\mathbb{H}_{K} \times k\left[X^{\prime}\right]$-module, and $k\left(X^{\prime}\right) \otimes_{k\left[X^{\prime}\right]} L_{j}^{\prime}=\tilde{E}_{j}$. Hence $\operatorname{End}_{k\left[X^{\prime}\right]} L_{j}^{\prime}$ is a ring of matrices over $k\left[X^{\prime}\right]$ of size $\left|B_{j}\right|$. Since $\operatorname{End}_{k\left(X^{\prime}\right)} \tilde{E}_{j}$ is $\mathbb{H}_{K} \times k\left(X^{\prime}\right)$, there exists an open subset $X^{\prime \prime}$ of X^{\prime} such that $\operatorname{End}_{k\left[X^{\prime \prime}\right]} L_{j}^{\prime \prime}$, where $L_{j}^{\prime \prime}=k\left[X^{\prime \prime}\right] \otimes_{k\left[X^{\prime}\right]} L_{j}^{\prime}$, is equal to $\mathbb{H}_{K} \times k\left[X^{\prime \prime}\right]$. Hence $L_{j}^{\prime \prime}$ is an irreducible $\mathbb{H}_{K} \times k\left[X^{\prime \prime}\right]$-module, and $L_{j, s}^{\prime \prime}=\mathbb{C} \otimes_{k\left[X^{\prime \prime}\right]} L_{j}^{\prime \prime}$ is
an irreducible \mathbb{H}_{K} - module for every s in $X^{\prime \prime}$. In $R(G)$ we then have $E_{s}=\sum_{j} L_{j, s}^{\prime \prime}$ for all $s \in X^{\prime \prime}$, and so $\nu_{E} \circ \phi=\sum_{j} \nu_{L_{j}^{\prime \prime}}$ on $X^{\prime \prime}$, where ϕ is the morphism $X^{\prime \prime} \rightarrow X$. The regular functions $\nu_{L_{j}^{\prime \prime}}$ are irreducible.

Write λ_{j} for the distinct functions among the $\nu_{L_{j}^{\prime \prime}}$; then $\nu=\sum_{j} n_{j} \lambda_{j}$ for some $n_{j} \geq 1$. Replacing $X^{\prime \prime}$ by an open subset we may assume that the λ_{j} are disjoint; indeed, the set of $s \in X^{\prime \prime}$ with $\lambda_{j}(s)=\lambda_{j^{\prime}}(s)$ is closed in the Zariski topology.

Denote by J the set of j such that the irreducible $\mathbb{H}_{K} \times k\left[X^{\prime \prime}\right]$-module \tilde{E}_{j} is σ invariant. Then for each $b_{i} \in B_{j}$ there are $f_{i k}=f_{i k}^{\prime} / f_{i k}^{\prime \prime}$ with $f_{i k}^{\prime}$, $f_{i k}^{\prime \prime}$ in $k\left[X^{\prime \prime}\right]$ such that $\sigma b_{i}=\sum_{k} f_{i k} b_{k}$. Replacing $X^{\prime \prime}$ by its open subset which is defined by $f_{i k}^{\prime \prime} \neq 0$ for all i, k, we conclude that $L_{j}^{\prime \prime}$ is σ-invariant for each j in J. The functions $\nu_{L_{j}^{\prime \prime}}$ and $\nu_{\sigma L_{j}^{\prime \prime}}$ are equal or disjoint. Hence, if $L_{j, s}^{\prime \prime} \simeq \sigma L_{j, s}^{\prime \prime}$ for some s in $X^{\prime \prime}$ then $L_{j}^{\prime \prime} \simeq \sigma L_{j}^{\prime \prime}$, and \tilde{E}_{j} is σ-invariant (j lies in J). It follows that for $j \notin J$, the image of $L_{j, s}^{\prime \prime}$ in $\bar{R}^{\sigma}(G)$ is zero for every s in $X^{\prime \prime}$. This completes the proof of the lemma.

Corollary 1.1.2. Let $\lambda, \nu_{1}, \cdots, \nu_{n}: X \rightarrow \bar{R}^{\sigma}(G)$ be regular functions, and λ irreducible. Denote by X_{I} the set of s in X such that $\lambda(s)$ lies in the subgroup of $\bar{R}^{\sigma}(G)$ generated by $\nu_{1}(s), \cdots, \nu_{n}(s)$. Then there is an étale dominant morphism $\phi: X^{\prime} \rightarrow X$ such that $\phi^{-1} X_{I}$ is empty or is X^{\prime}.

Proof. There are irreducible disjoint regular functions $\lambda_{1}, \cdots, \lambda_{n}: X \rightarrow \bar{R}^{\sigma}(G)$ and positive integers $a_{i j}$ such that $\nu_{i}=\sum_{j} a_{i j} \lambda_{j}$. We may assume that $\lambda=\lambda_{1}$. It remains to solve in integers b_{1}, \cdots, b_{n} the equation $\sum_{i=1}^{n} b_{i} a_{i j}=\delta_{1, j}$.

Remark. A subset A of Θ is constructible if and only if it satisfies the condition:
(C) For any locally closed subvariety X of Θ there exists a dominant étale morphism $\phi: X^{\prime} \rightarrow X$ such that $\phi^{-1}\left(X_{I}\right), X_{I}=X-X \cap A$, is either empty or X^{\prime}.

Proof of Proposition. To show that $\Theta_{\text {disc }}^{\sigma}$ is constructible we shall verify (C) for $A=$ $\Theta_{\text {disc }}^{\sigma}$. Suppose that (N, ρ) is a cuspidal pair which defines Θ, and let $\nu_{\rho}: X(N) \rightarrow \Theta$ be the morphism defined by $\psi \mapsto(N, \psi \rho)$. For each standard Levi subgroup $M<G$ with $M=\sigma M>N$, denote by ν_{M} the regular function $X(N) \rightarrow \bar{R}^{\sigma}(M)$ defined by $\psi \mapsto i_{N M}(\psi \rho)$. Let X be a locally closed subvariety of Θ. Then by Lemma 1.1.1 there is a dominant étale morphism $\phi: X_{1} \rightarrow X$ such that $\nu_{M} \circ \phi=\sum_{j} n_{M, j} \lambda_{M, j}, n_{M, j}>0$ and $\lambda_{M, j}: X_{1} \rightarrow \bar{R}^{\sigma}(M)$ are irreducible disjoint regular functions, for each such $M=\sigma M<G$. The set X_{2} of points $s \in X_{1}$ where each $\lambda_{G, j}(s)$ lies in the subgroup of $\bar{R}^{\sigma}(G)$ generated by the regular functions $i_{G M}\left(\lambda_{M, k}(s)\right)$, is $\phi^{-1}\left(X_{I}\right), X_{I}=X-X \cap \Theta_{\text {disc }}^{\sigma}$. But then Corollary 1.1.2 implies that $\phi^{-1}\left(X_{I}\right)$ is empty or is X_{1}. Hence X satisfies (C) and the proposition follows.

The following Lemma will be used in the proof below of Theorem 1.

Lemma 1.2. Given an irreducible σ-discrete G-module π there exists a tempered σ discrete G-module π^{\prime} and $\psi \in X^{\sigma}(G)$ with $\chi(\pi)=\chi\left(\psi \pi^{\prime}\right)$.

Proof. Langlands' classification [BW; §XI] implies that any π in $\operatorname{Irr} G$ determines a unique triple $\left(P, \rho, \psi_{M}\right)$ consisting of a standard parabolic subgroup $P=M U$ of G, a tempered (irreducible) M-module ρ, and $\psi_{M} \in X(M)$ which is positive with respect to U (see [BW]), such that π is the unique irreducible quotient of $i_{G M}\left(\psi_{M} \rho\right)$. The triple of ${ }^{\sigma} \pi$ is $\left(\sigma P,{ }^{\sigma} \rho,{ }^{\sigma} \psi_{M}\right)$, and so if $\pi \simeq{ }^{\sigma} \pi$ then $\sigma P=P,{ }^{\sigma} \rho \simeq \rho,{ }^{\sigma} \psi_{M}=\psi_{M}$. If the infinitesimal character of the M-module $\psi_{M} \rho$ is represented by the cuspidal pair $(N, \tau), N<M$, then each constituent of the G-module $i_{G M}\left(\psi_{M} \rho\right)$ is also a constituent of the G-module $i_{G N}(\tau)$, hence has the same infinitesimal character θ as π.

In $\bar{R}^{\sigma}(G)$ we have $\pi=i_{G M}\left(\psi_{M} \rho\right)-\sum_{j} \pi_{j}$, where π_{j} are the irreducible σ-invariant constituents of $i_{G M}\left(\psi_{M} \rho\right)$ other than π. Moreover, if $\left(P_{j}, \rho_{j}, \psi_{j}\right)$ is the triple determined by π_{j}, then $\psi_{j}<\psi_{M}$ in the order < introduced in [BW; XI, (2.13)]. Since the map $\chi: \operatorname{Irr} G \rightarrow \Theta(G)$ is finite to one, π_{j} lies in a fixed finite set determined by $\theta=\chi(\pi)$. By induction on the parameter ψ we may assume that each π_{j} is a \mathbb{Z}-linear combination of G-modules of the form $i_{G M^{\prime}}\left(\psi^{\prime} \rho^{\prime}\right)$, where $M^{\prime}=\sigma M^{\prime}<G, \psi^{\prime} \in X^{\sigma}\left(M^{\prime}\right)$, and ${ }^{\sigma} \rho^{\prime} \simeq \rho^{\prime}$ is tempered. Hence $\pi=\Sigma i_{G M^{\prime}}\left(\psi^{\prime} \rho^{\prime}\right)$ for some $M^{\prime}=\sigma M^{\prime}<G, \psi^{\prime} \in X^{\sigma}\left(M^{\prime}\right)$, and tempered σ-invariant M^{\prime}-modules ρ^{\prime}. Since π is σ-discrete, at least one M^{\prime} in the sum equals G, and the corresponding ρ^{\prime} is σ-discrete. The lemma follows.

Proof of Theorem 1. The involution $+: R(G) \rightarrow R(G)$ which assigns to each G-module π its Hermitian contragredient π^{+}, maps $\operatorname{Irr} G$ to $\operatorname{Irr} G$ and $\operatorname{Irr}^{\sigma}(G)$ to $\operatorname{Irr}^{\sigma}(G)$. It commutes with $i_{G M}$ for each $M<G$, acts on $X(M)$ and on the set of cuspidal pairs (M, ρ), and consequently defines an involution + on the complex algebraic variety $\Theta(G)$ which commutes with χ : $\operatorname{Irr} G \rightarrow \Theta(G)$. It is clear that the action of + on the algebraic varieties $X(M)$ and $\Theta(G)$ is anti-holomorphic and in particular anti-algebraic.

By Lemma 1.2 each $\theta \in \Theta_{\text {disc }}^{\sigma}$ is of the form $\chi(\psi \pi)$ where $\psi \in X^{\sigma}(G)$ and π is an irreducible tempered σ-invariant G-module. Since π is tempered it is unitary, and so $\pi^{+}=\pi$. Hence $\theta^{+} \in X^{\sigma}(G) \theta$. Consequently the subset $\bar{\Theta}_{\text {disc }}^{\sigma}=\Theta_{\text {disc }}^{\sigma} / X^{\sigma}(G)$ of the algebraic quotient variety $\bar{\Theta}=\Theta / X^{\sigma}(G)$, which is constructible by Proposition 1.1, is pointwise fixed by the anti-algebraic involution + . It follows that $\bar{\Theta}_{\text {disc }}^{\sigma}$ is finite, namely $\Theta_{\text {disc }}^{\sigma}$ consists of finitely many $X^{\sigma}(G)$-orbits, as asserted.

D. Induction.

Let L be a field of characteristic zero. A G-module over L is a smooth representation $\pi: G \rightarrow$ Aut V of the group G on a vector space V over L. Denote by $R(G ; L)$ the Grothendieck group of G-modules over L of finite length, and by $R^{\sigma}(G ; L)$ the free abelian group generated by the pairs (π, S), where π is a G-module over L of finite length and $S \in \operatorname{Aut}{ }_{G}^{\sigma} \pi$, subject to the relations $\left(R_{i}\right)$ in $\S \mathbf{A}$. Note that $R^{\sigma}(G ; \mathbb{C})=R^{\sigma}(G)$.

Let $\mathbf{c}=\left(c_{M} ; M=\sigma M \varsubsetneqq G\right)$ be a sequence of rational numbers. Then the operator $A_{\sigma}^{\mathbf{c}}=1+\sum_{M=\sigma M \varsubsetneqq G} c_{M} i_{G M} r_{M G}$ maps $R^{\sigma}(G ; L)_{Q}$ to itself, and it is clear that for any π in $R^{\sigma}(G ; L)_{Q}$ we have $A_{\sigma}^{\mathbf{c}} \pi \equiv \pi \bmod R_{I}^{\sigma}(G ; L)_{Q}$, where $R_{I}^{\sigma}(G ; L)=\sum_{M=\sigma M \nsubseteq G} i_{G M}\left(R^{\sigma}(M ; L)\right)$. We shall now show that the sequence \mathbf{c} can be chosen so that $A_{\sigma}^{\mathbf{c}}$ distinguishes between induced and non-induced modules, in the following sense.

Theorem 2. There exists a sequence $\mathbf{c}=\left(c_{M} \in Q ; M=\sigma M \lessgtr G\right)$ such that the endomorphism $A_{\sigma}^{\mathbf{c}}$ of $R^{\sigma}(G ; L)_{Q}$ has the following property. Given π in $R^{\sigma}(G ; L)_{Q}$ we have $A_{\sigma}^{\mathbf{c}} \pi=0$ if and only if π lies in $R_{I}^{\sigma}(G ; L)_{Q}$.

Thus we need to find $\mathbf{c}=\left(c_{M}\right)$ such that $A_{\sigma}^{\mathbf{c}}\left(R_{I}^{\sigma}(G ; L)_{Q}\right)=0$.
Recall that the Weyl group W_{G} of G is $\operatorname{Norm}\left(M_{0}, G\right) / M_{0}$. For $M<G$ consider W_{M} as a subgroup of W_{G}. The standard Levi subgroups $M, N<G$ are called associate if there is w in W_{G} with $N=w M w^{-1}$. Each such w defines an isomorphism w : $R(M ; L) \rightarrow R(N ; L)$ which depends only on the double class of w in $W_{M} \backslash W_{G} / W_{N}$. If $w^{\prime}: R\left(N^{\prime} ; L\right) \rightarrow R(M ; L)$ is defined, denote by $w \circ w^{\prime}$ the composition $R\left(N^{\prime} ; L\right) \rightarrow$ $R(N ; L)$.

Lemma 2.1. (i) For $N^{\prime}<N<M<G$ we have $i_{M N^{\prime}}=i_{M N} \circ i_{N N^{\prime}}, r_{N^{\prime} M}=r_{N^{\prime} N} \circ r_{N M}$.
(ii) If $N=w M w^{-1}$ then $i_{G N} \circ w(\rho)=i_{G M}(\rho)$ for all ρ in $R^{\sigma}(M ; L)$.
(iii) For $M, N<G$, let $W_{G}^{N M}$ be the set of representatives of $W_{N} \backslash W_{G} / W_{M}$ of minimal length. Then we have the following equality of functors from $\mathbb{M}(M ; L)$ to $\mathbb{M}(N ; L)$:

$$
r_{N G} \circ i_{G M}=\sum_{w \in W_{G}^{N M}} i_{N N_{w}} \circ w \circ r_{M_{w} M},
$$

where

$$
M_{w}=w^{-1} N w \cap M, N_{w}=w M_{w} w^{-1}=N \cap w M w^{-1} .
$$

Proof. (i) follows from the definitions, (ii) is proven in [BDK], p. 189, and (iii) is [BZ2], (2.12).

Suppose that $M=\sigma M<G$. Then σ acts on W_{M} (and W_{G}). Since P_{0} is σ invariant we have $\ell(\sigma w)=\ell(w)$ where ℓ is the length function on W_{G}. If $N=\sigma N<G$ then σ acts on $W_{G}^{N M}$. Denote by $W_{G}^{N M}(\sigma)$ the subset of σ-fixed elements in $W_{G}^{N M}$.

Lemma 2.1. (iv). For $M=\sigma M, N=\sigma N<G$, the homomorphism $r_{N G} \circ i_{G M}$: $R^{\sigma}(M ; L) \rightarrow R^{\sigma}(N ; L)$ is equal to

$$
\sum_{w \in W_{G}^{N M}(\sigma)} i_{N N_{w}} \circ w \circ r_{M_{w} M}
$$

Proof. The case of $\sigma=i d$ follows at once from (iii). Denote by $\Sigma_{1}, \Sigma_{2}, \cdots$, the σ orbits in $W_{G}^{N M}$. The length function is constant on each orbit Σ_{i}, and we index the Σ_{i}
to satisfy $\ell\left(\Sigma_{i}\right) \geq \ell\left(\Sigma_{i+1}\right)$. Then $\ell\left(\Sigma_{i}\right)=1$ if and only if $\Sigma_{i} \subset W_{G}^{N M}(\sigma)$. Index the elements w of $W_{G}^{N M}$ as $w_{1}, w_{2}, \cdots, w_{t}$ such that if $s_{i}=\left|\Sigma_{i}\right|$, and $t_{i}=s_{1}+\cdots+s_{i}$, then $\Sigma_{i}=\left\{w_{t_{i-1}+1}, \cdots, w_{t_{i}}\right\}$. Put $P=M P_{0}=M U_{M}, Q=N P_{0}=N U_{N}\left(U_{M}, U_{N}\right.$ are the unipotent radicals of the standards parabolic subgroups $P, Q<G$ with Levi components $M, N)$.

Given an M-module (ρ, E), the space of $i_{G M} \rho$ consists of the functions $f: G \rightarrow E$ with $f(m u g)=\delta_{P}(m)^{\frac{1}{2}} \rho(m) f(g)\left(m \in M, u \in U_{M}\right)$. Let E_{k} be the subspace of the f which are supported on $\bigcup_{1 \leq i \leq k} P w_{i} Q$. Then E_{k} is Q-invariant, and [BZ2] define $F_{k}^{\prime}(\rho)$ to be the image of E_{k} under $r_{N G}$. Moreover, [BZ2] show that $F_{1}^{\prime} \subset F_{2}^{\prime} \subset \cdots \subset F_{t}^{\prime}$ is a functorial filtration of the functor $F_{t}^{\prime}=F=r_{N G} \circ i_{G M}: \mathbb{M}(M ; L) \rightarrow \mathbb{M}(N ; L)$, such that $F_{i}^{\prime} / F_{i+1}^{\prime}=i_{N N_{w_{i}}} \circ w_{i} \circ r_{M_{w_{i}} M}$. Put $F_{i}=F_{t_{i}}^{\prime}$. For any $\rho \in \operatorname{Irr}^{\sigma}(M) \cap R^{\sigma}(M ; L)$, the N-module $F_{i}(\rho) / F_{i-1}(\rho)$ is the direct sum of $s_{i} N$-modules over L which are permuted by the action of σ. If $s_{i}>1$, the image of $F_{i}(\rho) / F_{i-1}(\rho)$ in $R^{\sigma}(N ; L)$ is then zero. Since $s_{i}=1$ precisely for the elements of $W_{G}^{N M}(\sigma)$, the lemma follows.
Corollary 2.2. For each $M=\sigma M<G$, the operator $T_{M}=i_{G M} \circ r_{M G}: R^{\sigma}(G ; L) \rightarrow$ $R^{\sigma}(G ; L)$ satisfies
(a) $\quad T_{N} \circ i_{G M}=\sum_{w \in W_{G}^{N M}(\sigma)} i_{G M_{w}} \circ r_{M_{w} M}$, where $M_{w}=M \cap w^{-1} N w ;$

$$
\begin{equation*}
T_{N} \circ T_{M}=\sum_{w \in W_{G}^{N M}(\sigma)} T_{M_{w}} \tag{b}
\end{equation*}
$$

Proof. (a) $T_{N} \circ i_{G M}=i_{G N} \circ r_{N G} \circ i_{G M} \stackrel{(i v)}{=} \sum_{w} i_{G N} \circ i_{N N_{w}} \circ w \circ r_{M_{w} M}$ $\stackrel{(i)}{=} \sum_{w} i_{G N_{w}} \circ w \circ r_{M_{w} M} \stackrel{(i i)}{=} \sum_{w} i_{G M_{w}} \circ r_{M_{w} M}$.
(b) $T_{N} \circ T_{M}=T_{N} \circ i_{G M} \circ r_{M G}=\sum_{w} i_{G M_{w}} \circ r_{M_{w} M} \circ r_{M G}=\sum_{w} i_{G M_{w}} \circ r_{M_{w} G}=\sum_{w} T_{M_{w}}$.

Proof of Theorem 2. For $M=\sigma M<G$ put $d(M)=\operatorname{dim} X(M)$, and define a decreasing filtration R_{σ}^{i} on $R^{\sigma}(G ; L)$ by $R_{\sigma}^{i}=\sum_{\{M=\sigma M<G ; d(M) \geq i\}} i_{G M}\left(R^{\sigma}(M ; L)\right)$. Then $R_{\sigma}^{i}=R^{\sigma}(G ; L)$ for $i \leq d(G), R_{\sigma}^{d(G)+1}=R_{I}^{\sigma}(G ; L)$, and $R_{\sigma}^{i}=0$ for $i>d\left(M_{0}\right)$. Corollary 2.2 (a) implies that the operator T_{N} for $N=\sigma N<G$ preserves the filtration $\left\{R_{\sigma}^{i}\right\}$. Put $\left[W_{N}^{\sigma}\right]$ for the cardinality of the set W_{N}^{σ} of σ-invariant elements in W_{N}. Put $d=d(N)$. The action of T_{N} on $R_{\sigma}^{d} / R_{\sigma}^{d+1}$ is given by
$T_{N}\left(i_{G M} \rho\right)= \begin{cases}{\left[W_{N}^{\sigma}\right] i_{G M}(\rho),} & \text { if } M=\sigma M \text { is conjugate to } N, \rho \in R^{\sigma}(M ; L), \\ 0, & \text { if } M=\sigma M \text { is not conjugate to } N, \text { and } d(N)=d, \rho \in R^{\sigma}(M ; L) .\end{cases}$
It follows that the operator $A_{d}=\prod_{\{N=\sigma N ; d(N)=d\}}\left(T_{N}-\left[W_{N}^{\sigma}\right]\right)$ preserves the filtration $\left\{R_{\sigma}^{i}\right\}$ and annihilates $R_{\sigma}^{d} / R_{\sigma}^{d+1}$. Put $A_{\sigma}^{\prime}=A_{d\left(M_{0}\right)} \circ A_{d\left(M_{0}\right)-1} \circ \cdots \circ A_{d(G)+1}$. Then
$A_{\sigma}^{\prime}\left(R_{I}^{\sigma}(G ; L)\right)=0$, and by Corollary $2.2(\mathrm{~b})$ the operator A_{σ}^{\prime} takes the form $A_{\sigma}^{\prime}=$ $a\left(1+\sum_{M=\sigma M \nsubseteq G} c_{M} T_{M}\right)$ with $c_{M} \in Q, a \in \mathbb{Z}, a \neq 0$, and $a c_{M} \in \mathbb{Z}$. The operator $A_{\sigma}^{\mathbf{c}}=a^{-1} A_{\sigma}^{\prime}$, where $\mathbf{c}=\left(c_{M}\right)$, has the properties asserted in the theorem.

For $M=\sigma M \leq G$, denote by $i_{G M}^{*}: R_{\sigma}^{*}(G ; L) \rightarrow R_{\sigma}^{*}(M ; L)$ and $r_{M G}^{*}: R_{\sigma}^{*}(M ; L) \rightarrow$ $R_{\sigma}^{*}(G ; L)$ the homomorphisms adjoint to $i_{G M}$ and $r_{M G}$. A form F in $R_{\sigma}^{*}(G ; L)$ is called σ-discrete if $F\left(R_{I}^{\sigma}(G ; L)\right)=0$. Denote by $R_{\sigma}^{*}(G ; L)$ disc the space of σ-discrete forms. Note that $R_{\sigma}^{*}(G ; L)=\operatorname{Hom}_{\mathbb{Z}, \zeta}\left(R^{\sigma}(G ; L), \mathbb{C}\right)$ is denoted by $R_{\sigma}^{*}(G)$ when $L=\mathbb{C}$.

Corollary 2.3. Given F in $R_{\sigma}^{*}(G ; L)$, the form $F^{d}=F+\underset{M=\sigma M \nsubseteq G}{ } c_{M} r_{M G}^{*} i_{G M}^{*} F$ is σ-discrete.

Proof. For π in $R^{\sigma}(G ; L), F^{d}(\pi)=a^{-1} F\left(A_{\sigma}^{\prime} \pi\right)$ vanishes if $\pi \in R_{I}^{\sigma}(G ; L)$.

E. Dévissage.

Given a G-module π there is a special compact open σ-invariant subgroup K of G such that π^{K} generates π. Each subquotient π^{\prime} of π is generated by $\pi^{\prime K}$. The map $\pi \rightarrow \pi^{K}$ is an equivalence from the category $\mathbb{M}_{K}(G)$ of G-modules π generated by π^{K}, to the category $\mathbb{M}\left(\mathbb{H}_{K}\right)$ of (nondegenerate) \mathbb{H}_{K}-modules. Since $\mathbb{M}\left(\mathbb{H}_{K}\right)$ has finite cohomological dimension ([B], see Appendix), the Grothendieck group $K\left(\mathbb{H}_{K}\right)$ of finitely generated \mathbb{H}_{K}-modules coincides with the Grothendieck group of finitely generated projective (and even free) \mathbb{H}_{K}-modules. The center $\mathcal{Z}_{K}=\mathcal{Z}\left(\mathbb{H}_{K}\right)$ of the algebra \mathbb{H}_{K} is (equal to the center $\mathcal{Z}\left(\mathbb{M}\left(\mathbb{H}_{K}\right)\right)$ of the category $\mathbb{M}\left(\mathbb{H}_{K}\right)$ and to) the ring $k\left[\Theta_{K}\right]$ of regular functions on the variety $\Theta_{K} ; \Theta_{K}$ is a finite union of connected components Θ of $\Theta(G)$ with $\chi^{-1}(\Theta) \subset \operatorname{Irr}^{K}(G)$.

Denote by $\operatorname{Ann}\left(\pi, \mathcal{Z}_{K}\right)$ the annihilator of the \mathbb{H}_{K}-module π in the ring \mathcal{Z}_{K}. This is an ideal in \mathcal{Z}_{K}. The corresponding subvariety $\operatorname{supp} \pi$ of $\Theta_{K} \subset \Theta(G)$ is called the support of π. If the distinct irreducible components of $\operatorname{supp} \pi$ are denoted by Y then supp $\pi=\cup Y$.

Let A be a \mathbb{C}-algebra and denote by σ an automorphism of A of finite order ℓ.
Definition. The σ-cocenter $\tau_{\sigma}(\mathbb{M}(A))$ of the category $\mathbb{M}(A)$ of (non-degenerate) A modules is defined to be the quotient of the free abelian group generated over \mathbb{C} by the triples (P, S, α), where P is a projective finitely generated A-module, $S \in$ Aut ${ }_{A}^{\sigma} P$ (thus $S: P \xrightarrow{\sim} P$ is a vector space automorphism with $S(h p)=\sigma(h)^{-1} S(p)$ for $p \in P, h \in A$, and $S^{\ell}=1$), and $\alpha \in \operatorname{End}_{A} P$, subject to the following relations:
(1) $(P, S, \alpha) \sim\left(P^{\prime}, S^{\prime}, \alpha^{\prime}\right)+\left(P^{\prime \prime}, S^{\prime \prime}, \alpha^{\prime \prime}\right)$ if $0 \rightarrow\left(P^{\prime}, S^{\prime}, \alpha^{\prime}\right) \rightarrow(P, S, \alpha) \rightarrow\left(P^{\prime \prime}, S^{\prime \prime}, \alpha^{\prime \prime}\right) \rightarrow 0$ is exact;
(2) $(P, S, \alpha+\beta) \sim(P, S, \alpha)+(P, S, \beta),(P, S, \alpha \sigma(\beta)-\beta \alpha) \sim 0,(P, \zeta S, t \alpha) \sim \zeta t(P, S, \alpha)$, $\left(\alpha, \beta \in \operatorname{End}_{A} P, \zeta^{\ell}=1, t \in \mathbb{C}\right) ;$
(3) If $P=\oplus_{i} P_{i}, \alpha\left(P_{i}\right) \subset P_{i}$ and for each i there is j such that $S P_{i}=P_{j}$, then $(P, S, \alpha) \sim$ $\Sigma_{i}\left(P_{i}, S_{i}, \alpha_{i}\right)$, where the sum ranges over the i with $j(i)=i$, and $\alpha_{i}=\alpha\left|P_{i}, S_{i}=S\right| P_{i}$.

Write $\tau_{\sigma}(G)$ for $\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{G}\right)\right)$. Write $\tau_{\sigma}(\Theta)$ for $\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{\Theta}\right)\right)$; it is a direct summand of $\tau_{\sigma}(G)$. When K is σ-invariant and special, $\tau_{\sigma}\left(\Theta_{K}\right)=\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{K}\right)\right)$ is also a direct summand of $\tau_{\sigma}(G)$, being the direct sum of $\tau_{\sigma}(\Theta)$ over the $\Theta \subset \Theta_{K}$. Put $\tau_{\sigma, I}(G)=$ $\Sigma_{M=\sigma M \nsubseteq G} i_{G M}\left(\tau_{\sigma}(M)\right)$.

Define $\tau_{\sigma, i}(\Theta)$ to be the quotient by the relations (1), (2), (3) of the free abelian group generated over \mathbb{C} by the triples (P, S, α) (P : projective finitely generated \mathbb{H}_{Θ}-module, $S \in \operatorname{Aut}_{\mathbb{H}_{G}}^{\sigma} P, \alpha \in \operatorname{End}_{\mathbb{H}_{G}} P$) such that P is supported on a subvariety Y of Θ whose image \bar{Y} in the quotient variety $\bar{\Theta}=\Theta / X^{\sigma}(G)$ is of dimension at most i. Recall that the dimension of a subvariety Y of Θ, corresponding to a prime ideal I in the ring $k[\Theta]$, is defined to be the supremum of the lengths n of all finite strictly increasing chains $P_{0} \subset$ $P_{1} \subset \cdots \subset P_{n}$ of prime ideals P_{i} in $k[\Theta]$, with $P_{n}=I$. The identity induces a natural map $\tau_{\sigma, i}(\Theta) \rightarrow \tau_{\sigma, i+1}(\Theta)$, and for all sufficiently large i we have $\tau_{\sigma, i}(\Theta)=\tau_{\sigma, i+1}(\Theta)$. Define $\tau_{\sigma, i}(G)$ similarly, and note that $\tau_{\sigma, i}(G)=\oplus_{\Theta} \tau_{\sigma, i}(\Theta)$. Note that $\tau_{\sigma, 0}(\Theta) \subset \widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}$ and $\tau_{\sigma, 0}(G) \subset \widetilde{R}^{\sigma}(G)_{\mathbb{C}}$, where $R^{\sigma}(\Theta)$ is the subgroup of $R^{\sigma}(G)$ generated by the pairs (π, S) with $\operatorname{supp} \pi \subset \Theta$. As usual, $R_{T}=R \otimes_{\mathbb{Z}} T$ for any \mathbb{Z}-modules R and T, and \widetilde{R}^{σ} indicates the quotient of R^{σ} by the relations $(P, \zeta S) \sim \zeta(P, S), \zeta \in \mathbb{C}, \zeta^{\ell}=1$. Note that $\tau_{\sigma, 0}(G)$ is generated by the (P, S, α) where P is projective of finite length.

The triple (π, S, α) represents an element of $\tau_{\sigma, i}(\Theta)$ if $\operatorname{supp} \pi=\cup Y, Y \subset \Theta, \operatorname{dim} \bar{Y} \leq i$ for all $i, \alpha \in \operatorname{End}_{\mathbb{H}_{G}} \pi$ and $S \in \operatorname{Aut}_{\mathbb{H}_{G}}^{\sigma} \pi$. The automorphism S satisfies $S(h p)=$ $\sigma(h)^{-1} S(p)\left(h \in \mathbb{H}_{\Theta}, p \in \pi\right)$. In particular $S(z p)=\sigma(z)^{-1} S(p)$ for all $z \in \mathcal{Z}_{\Theta}=\mathcal{Z}\left(\mathbb{H}_{\Theta}\right) \subset$ \mathbb{H}_{Θ}, and so $\operatorname{Ann}\left({ }^{\sigma} \pi, \mathcal{Z}_{\Theta}\right)$ is an ideal in \mathcal{Z}_{Θ} which corresponds to $\cup_{Y} \sigma Y$.

For any subvariety Y of Θ_{K} (or Θ) put $J_{Y}=\operatorname{Ann}\left(Y, \mathcal{Z}_{K}\right)$. It is an ideal in the ring $k\left[\Theta_{K}\right]$, which is prime if and only if Y is irreducible.

For any subfield L of \mathbb{C} and algebra homomorphism $\theta: \mathcal{Z}_{K} \rightarrow L$, denote by $R_{\theta}(L)$ the Grothendieck group of (non-degenerate) \mathbb{H}_{K}-modules of finite length over L on which \mathcal{Z}_{K} acts via θ. Let $R_{\theta}^{\sigma}(L)$ be the quotient of the free abelian group generated by the pairs (π, S) where π is an \mathbb{H}_{K}-module over L on which \mathcal{Z}_{K} acts via θ, and $S \in \operatorname{Aut}_{\mathbb{H}_{K}}^{\sigma} \pi$, by the relations $\left(R_{i}\right)$ in $\S \mathbf{A}$.

Theorem 3. For every connected component Θ of $\Theta(G)$, and $i \geq 0$, the map

$$
(\pi, S, \alpha) \mapsto \sum_{Y} \sum_{j \geq 0}\left(\left(J_{Y}^{j} \pi / J_{Y}^{j+1} \pi\right) \otimes_{k[Y]} k(Y), S, \alpha\right),
$$

where Y ranges over all irreducible subvarieties of $(\operatorname{supp} \pi \subset) \Theta$ with $\operatorname{dim} \bar{Y}=i$ and $\sigma Y=Y$, yields an isomorphism

$$
\tau_{\sigma, i}(\Theta) / \operatorname{Im} \tau_{\sigma, i-1}(\Theta) \xrightarrow[\rightarrow]{\sim} \oplus_{Y} \widetilde{R}_{\theta}^{\sigma}(k(Y))_{\mathbb{C}}
$$

Here $k(Y)$ is the field of rational functions on the variety Y, and $\theta=\theta_{Y}$ is the generic point $\theta:\left(\mathcal{Z}_{K} \rightarrow\right) k[\Theta] \rightarrow k[Y]$ of Y (corresponding to $\left.Y \hookrightarrow \Theta\right)$. We fix an embedding of $k(Y)$ in \mathbb{C}.

Remark. For each z in \mathcal{Z}_{K} we have $z \alpha=\alpha z$ and $S z=\sigma^{-1}(z) S$. If $Y \neq \sigma Y$ then $\theta_{Y} \neq \theta_{\sigma Y}={ }^{\sigma} \theta_{Y}$, and $R_{\theta}^{\sigma}(k(Y))=\{0\}$. If $Y=\sigma Y$ then S induces an automorphism of $J_{Y}^{j} \pi / J_{Y}^{j+1} \pi$, and so does α.
Proof. (i) It suffices to show that the map of the theorem defines an isomorphism $\tau_{\sigma, i}(\Theta)_{Q} / \operatorname{Im} \tau_{\sigma, i-1}(\Theta)_{Q} \stackrel{\sim}{\rightarrow} \oplus_{Y} R_{\theta}^{\sigma}(k(Y))_{Q}$, where $\tau_{\sigma, i}(\Theta)_{Q}$ is defined to be the quotient of the free abelian group generated by the (P, S, α) over Q, rather than \mathbb{C}, by the relations (1) - (3), where in (2) we take $t \in Q$ and $\zeta=1$. In the course of this proof only we denote $\tau_{\sigma, i}(\Theta)_{Q}$ by $\tau_{\sigma, i}(\Theta)$.
(ii) The map is well-defined. Indeed, $X=\operatorname{supp} \pi$ is a subvariety of Θ corresponding to the ideal $I=$ Ann π in the noetherian ring $A=k[\Theta]$. Let $I=\cap_{k} I_{k}$ be a minimal primary decomposition of I. The radical $J_{k}=r\left(I_{k}\right)$ is a prime ideal. It is finitely generated since A is noetherian. Hence there is $h_{k} \geq 1$ such that $J_{k}^{h_{k}} \subset I_{k}$, for each k. Let Y_{k} be the subvariety of Θ corresponding to J_{k}. Then $J_{Y_{k}}=$ Ann Y_{k} is J_{k}. Now $X=\cup_{k} Y_{k}$ has only finitely many connected components Y (in particular with $\operatorname{dim} \bar{Y}=i$, and $\sigma Y=Y$). Each $J_{Y}^{j} \pi / J_{Y}^{j+1} \pi$ is annihilated by J_{Y}, hence is supported on $Y \subset \operatorname{supp} \pi$. Put $h(Y)$ for h_{k} if Y is Y_{k}.

To show that for each (π, S, α) the sum over j is finite, note that for each variety Y in the first sum, the module $J_{Y}^{h} \pi$ is annihilated by $\prod_{Y^{\prime} \neq Y} J_{Y^{\prime}}^{h\left(Y^{\prime}\right)}$; here we put $h=h(Y)$, and Y^{\prime} ranges over the connected components of $\operatorname{supp} \pi$ other than Y. Hence $J_{Y}^{h} \pi$ is supported on $\bigcup_{Y^{\prime} \neq Y} Y^{\prime}$, and $J_{Y}^{h} \pi / J_{Y}^{h+1} \pi$ on $Y \cap \bigcup_{Y^{\prime} \neq Y} Y^{\prime}$, a proper subvariety of Y (in particular, of lower dimension). Hence

$$
\left(J_{Y}^{j} \pi / J_{Y}^{j+1} \pi\right) \otimes_{k[Y]} k(Y)=0 \text { for } j \geq h
$$

(iii) The map is surjective. Let $\theta: \mathcal{Z}_{K} \rightarrow k(Y)$ (i.e. $Y \hookrightarrow \Theta \hookrightarrow \Theta_{K}$) be a generic point of an irreducible subvariety $Y=\sigma Y$ of Θ with $\operatorname{dim} \bar{Y}=i$. An irreducible π_{1} in a pair $\left(\pi_{1}, S_{1}\right)$ in $R_{\theta}^{\sigma}(k(Y))$ is a finite dimensional vector space over the field $k(Y), \sigma$-invariant and irreducible as an \mathbb{H}_{K}-module, on which \mathcal{Z}_{K} acts by multiplication by θ. Let B be a σ-invariant finite set which spans π_{1} over $k(Y)$. Then $\pi=\mathbb{H}_{K} B$ is a finitely generated σ -invariant \mathbb{H}_{K}-module on which \mathcal{Z}_{K} acts by multiplication via θ. It is therefore supported on $Y(\subset \Theta, \operatorname{dim} \bar{Y}=i, Y=\sigma Y)$, and so $(\pi, S, i d)$ defines an element in $\tau_{\sigma, i}(\Theta)$, where $S \in$ Aut $_{\mathbb{H}_{K}}^{\sigma} \pi$ exists since π is σ-invariant. Note that S is unique up to an ℓ th root of unity, since π is irreducible. Choose S to coincide with S_{1} on π_{1}. Note that since π is irreducible, any $\alpha \in \operatorname{End}_{\mathbb{H}_{K}} \pi$ is a scalar by Schur's lemma. Then $J_{Y} \pi=0$, and since $\pi \otimes_{\mathcal{Z}_{K \vec{\theta}}} k(Y)=\pi_{1}$, our $\left(\pi_{1}, S_{1}\right)$ is the image of $(\pi, S, i d)$.
(iv) The map is injective. To show this, note that any element of $\tau_{\sigma, i}(\Theta)$ can be represented as a difference $n_{1}\left(\pi_{1}, S_{1}, \alpha_{1}\right)-n_{2}\left(\pi_{2}, S_{2}, \alpha_{2}\right)$, where $n_{k} \geq 0$ are rational, π_{k} are projective
finitely generated \mathbb{H}_{Θ}-modules, $S_{k} \in \operatorname{Aut}{\underset{\mathbb{H}}{G}}_{\sigma}^{\sigma} \pi_{k}$ and $\alpha_{k} \in \operatorname{End}_{\mathbb{H}_{G}} \pi_{k}$. Suppose this difference maps to zero by the map of the theorem. Multiplying by the denominators of n_{k} we may assume that the n_{k} are non-negative integers. Moreover, replacing α_{k} by $n_{k} \alpha_{k}$, or π_{k} by 0 , we may assume that $n_{k}=1$.

To simplify the notations, fix $k(=1$ or 2$)$, and delete it from the notations. In the notations of (ii), we may replace (π, S, α) by $\Sigma_{Y} \Sigma_{0 \leq j \leq h}\left(J_{Y}^{j} \pi / J_{Y}^{j+1} \pi, S, \alpha\right)$ in $\tau_{\sigma, i}(\Theta) / \operatorname{Im} \tau_{\sigma, i-1}$ To prove injectivity it suffices to assume that the sum ranges over a single Y. Namely we may assume that π is a sum of finitely many modules, denoted again by π to simplify the notations, and these are supported on $Y=\sigma Y$ with $\operatorname{dim} \bar{Y}=i$, and $J_{Y} \pi=0$.

As in the proof of Lemma 1.1.1, we fix a special open compact σ-invariant subgroup K of G such that π is generated by π^{K} as a G-module, and we work with the \mathbb{H}_{K}-module π^{K}. As there, there is a finite étale dominant morphism $Y^{\prime} \rightarrow Y$ such that the $\mathbb{H}_{K} \times k\left(Y^{\prime}\right)$ module $k\left(Y^{\prime}\right) \otimes_{k[Y]} \pi^{K}$ is completely reducible. Let $0=E_{0}^{\prime} \subset E_{1}^{\prime} \subset \cdots \subset E_{r}^{\prime}$ be a composition series; the quotients $E_{\ell}=E_{\ell}^{\prime} / E_{\ell-1}^{\prime}$ are irreducible \mathbb{H}_{K}-modules over $k\left(Y^{\prime}\right)$. In each E_{ℓ} we can find a lattice L_{ℓ} (finitely generated projective $\mathbb{H}_{K} \times k[Y]$-module with $\left.k\left(Y^{\prime}\right) \otimes_{k[Y]} L_{\ell}=E_{\ell}\right)$ which is generically irreducible. Since the endomorphism α commutes with \mathbb{H}_{K}, it maps each E_{ℓ}^{\prime} to itself, and induces an endomorphism, denoted α_{ℓ}, on E_{ℓ}. The lattice L_{ℓ} can, and will, be chosen to satisfy $\alpha_{\ell} L_{\ell} \subset L_{\ell}$. By induction we may (and will) choose the E_{ℓ}^{\prime} to have the property that there are $1 \leq \ell_{1}<\ell_{2}<\cdots<\ell_{t}=r$ such that $S E_{\ell_{s}}^{\prime}=E_{\ell_{s}}^{\prime}$ and $E_{\ell_{s+1}}=E_{\ell_{s+1}}^{\prime} / E_{\ell_{s}}^{\prime}$ is the direct sum of the orbit of $E_{\ell_{s}+1}=E_{\ell_{s}+1}^{\prime} / E_{\ell_{s}}^{\prime}$ under the action of S, and $\ell_{s+1}-\ell_{s}$ is the length of the orbit. Denote by $S_{\ell_{s+1}}$ the restriction of S to $E_{\ell_{s+1}}$ when $\ell_{s+1}=\ell_{s}+1$ (i.e. $E_{\ell_{s}+1}^{\prime}$ is invariant under S). We may and will choose the lattice L_{ℓ} to be invariant under S_{ℓ} if S_{ℓ} is defined $\left(\ell=\ell_{s+1}=\ell_{s}+1\right)$.

Returning to the original notations (undeleting k), we conclude that there are finitely many generically irreducible \mathbb{H}_{K}-modules $L_{k \ell}$, suppported on $Y(=\sigma Y$, $\operatorname{dim} \bar{Y}=i)$ with $J_{Y}=\operatorname{Ann}\left(L_{k \ell}, k[\Theta]\right)$, and $S_{k \ell} \in \operatorname{Aut}_{\mathbb{H}_{K}}^{\sigma} L_{k \ell}$, and $\alpha_{k \ell} \in \operatorname{End}_{\mathbb{H}_{K}} L_{k \ell}$, such that

$$
\left(\pi_{k}, S_{k}, \alpha_{k}\right) \equiv \Sigma_{\ell}\left(L_{k \ell}, S_{k \ell}, \alpha_{k \ell}\right) \text { in } \tau_{\sigma, i}(\Theta) / \operatorname{Im} \tau_{\sigma, i+1}(\Theta)(k=1,2)
$$

This is a "pre-semi-simplification" of π_{k}. The "semi-simplification" of $k(Y) \otimes_{k[Y]} \pi_{k}$ is $\oplus_{\ell}\left(k(Y) \otimes_{k[Y]} L_{k \ell}\right)$.

To prove injectivity we assume that $\Sigma_{\ell}\left(E_{1 \ell}, S_{1 \ell}, \alpha_{1 \ell}\right)=\Sigma_{\ell}\left(E_{2 \ell}, S_{2 \ell}, \alpha_{2 \ell}\right)$, where $E_{k \ell}=$ $k(Y) \otimes_{k[Y]} L_{k \ell}$. Since the $E_{k \ell}$ are all irreducible, the existence and uniqueness of the Jordan-Holder composition series implies that up to reordering indices we have ($E_{1 \ell}, S_{1 \ell}, \alpha_{1 \ell}$) $=\left(E_{2 \ell}, S_{2 \ell}, \alpha_{2 \ell}\right)$ for all ℓ. But $L_{1 \ell}$ and $L_{2 \ell}$ are both lattices in the same vector space $E_{k \ell}$. Their intersection $L_{1 \ell} \cap L_{2 \ell}$ is a lattice, and the quotient $L_{k \ell} / L_{1 \ell} \cap L_{2 \ell}$ is supported on a lower dimensional variety. Hence in $\tau_{\sigma, i}(\Theta) / \operatorname{Im} \tau_{\sigma, i-1}(\Theta)$ we have $\left(\pi_{k}, S_{k}, \alpha_{k}\right)=\Sigma_{\ell}\left(L_{1 \ell} \cap L_{2 \ell}, S_{1 \ell}, \alpha_{1 \ell}\right)$ for both $k=1$ and $k=2$, as required.
Corollary 3.1. The map $\widetilde{R}^{\sigma}(G)_{\mathbb{C}} \rightarrow \tau_{\sigma}(G) / \operatorname{Im} \tau_{\sigma, I}(G)$, induced by the natural map $R^{\sigma}(G) \rightarrow K^{\sigma}(G)$ and $K^{\sigma}(G) \rightarrow \tau_{\sigma}(G)$ by $(P, S) \mapsto(P, S$, id $)$, is surjective.

Proof. Let Y be an irreducible subvariety of $\Theta \subset \Theta_{K}$ as in Theorem 3, and $\theta: \mathcal{Z}_{K} \rightarrow$ $k[Y]$ its generic point, corresponding to $Y \hookrightarrow \Theta \hookrightarrow \Theta_{K}$. Denote by $\overline{k(Y)}$ an algebraic
closure of the field $k(Y)$ of rational functions on Y, and fix an embedding $\overline{k(Y)} \hookrightarrow \mathbb{C} ; k[Y]$ is naturally embedded in its fraction field $k(Y)$, and so in $\overline{k(Y)}$. Then θ defines also maps $\mathcal{Z}_{K} \rightarrow \overline{k(Y)}$ and $\mathcal{Z}_{K} \rightarrow \mathbb{C}$, denoted again by θ.

If L^{\prime} / L is a finite field extension, $\theta: \mathcal{Z}_{K} \rightarrow L$ a homomorphism, and θ^{\prime} is its composition with the embedding $L \hookrightarrow L^{\prime}$, then $R_{\theta}^{\sigma}(L)$ embeds in $R_{\theta^{\prime}}^{\sigma}\left(L^{\prime}\right)$ via $j^{\prime}=j /\left[L^{\prime}: L^{\prime}\right]$. Here j maps $V_{L} \in R_{\theta}^{\sigma}(L)$ to $V_{L^{\prime}}=V_{L} \otimes_{L} L^{\prime} \in R_{\theta^{\prime}}^{\sigma}\left(L^{\prime}\right)$. Indeed, the restriction of the L^{\prime} module $j^{\prime}\left(V_{L}\right)$ to L is V_{L}. Let \bar{L} denote an algebraic closure of L, and $\bar{\theta}: \mathcal{Z}_{K} \rightarrow \bar{L}$ the composition of θ with $L \hookrightarrow \bar{L}$. We conclude that $R_{\theta}^{\sigma}(L)$ embeds in $R_{\bar{\theta}}^{\sigma}(\bar{L})=\lim _{\rightarrow} R_{\theta^{\prime}}^{\sigma}\left(L^{\prime}\right)$ (limit over $L^{\prime}, L \subset L^{\prime} \subset \bar{L}$).

If $\bar{L} \subset \bar{E}$ are algebraically closed, and $\theta: \mathcal{Z}_{K} \rightarrow \bar{E}$ is the composition of $\theta: \mathcal{Z}_{K} \rightarrow$ \bar{L} and $\bar{L} \hookrightarrow \bar{E}$, then $R_{\theta}^{\sigma}(\bar{L}) \stackrel{\sim}{\rightarrow} R_{\theta}^{\sigma}(\bar{E})$. Indeed, any irreducible \mathbb{H}_{K}-module over \bar{L} is absolutely irreducible, namely it stays irreducible after tensorring with \bar{E} over \bar{L}. On the other hand, given an irreducible in $R_{\theta}^{\sigma}(\bar{E})$ with a basis B as a vector space over \bar{E}, it is obtained from $\mathbb{H}_{K} B \otimes_{Q} \bar{L}$ in $R_{\theta}^{\sigma}(\bar{L})$ on tensorring with \bar{E} over \bar{L}. Here \mathbb{H}_{K} is the Hecke algebra over Q associated with K. Note that any element of $R_{\bar{\theta}}^{\sigma}(\bar{L})$ lies in $R_{\theta^{\prime}}^{\sigma}\left(L^{\prime}\right)$ for some finite extension L^{\prime} of L in \bar{L}.

In view of these commments we have the natural inclusions

$$
R_{\theta}^{\sigma}(k(Y)) \hookrightarrow R_{\theta}^{\sigma}(\overline{k(Y)}) \hookrightarrow R_{\theta}^{\sigma}(\mathbb{C})
$$

Theorem 1 implies that if θ is σ-discrete, namely $\theta \in \Theta_{\text {disc }}^{\sigma}(G)$, then $\operatorname{dim} \bar{\theta}(=$ $\operatorname{dim} \bar{Y})=0$. In particular $R_{\theta}^{\sigma}(\mathbb{C}) \subset R_{I}^{\sigma}(G)_{\mathbb{C}}$ if $\operatorname{dim} \bar{\theta}>0$. Theorem 2 asserts the existence of an operator $A_{\sigma}=A_{\sigma}^{\mathbf{c}}$ on $\widetilde{R}^{\sigma}(G)_{\mathbb{C}}$ such that for any field L of characteristic zero and $\pi \in \widetilde{R}^{\sigma}(G ; L)_{\mathbb{C}}$ we have $A_{\sigma} \pi=0$ iff $\pi \in \widetilde{R}_{I}^{\sigma}(G ; L)_{\mathbb{C}}$. Consequently $\pi \in \widetilde{R}_{\theta}^{\sigma}(k(Y))_{\mathbb{C}} \subset \widetilde{R}_{\theta}^{\sigma}(\mathbb{C})_{\mathbb{C}}$ lies in $\widetilde{R}_{\theta, I}^{\sigma}(k(Y))_{\mathbb{C}}$ iff $A_{\sigma} \pi=0$, namely iff $\pi \in \widetilde{R}_{\theta, I}^{\sigma}(\mathbb{C})_{\mathbb{C}}$ (by a double application of Theorem 2), and if $\operatorname{dim} \bar{\theta}>0$, by Theorem 1.

Theorem 3 provides an isomorphism

$$
\tau_{\sigma, i}(\Theta) / \operatorname{Im} \tau_{\sigma, i-1}(\Theta) \simeq \oplus_{Y \subset \Theta} \widetilde{R}_{\theta}^{\sigma}(k(Y))_{\mathbb{C}}(\text { irreducible } Y=\sigma Y, \operatorname{dim} \bar{Y}=i)
$$

If $i>0$ then $\widetilde{R}_{\theta}^{\sigma}(k(Y))_{\mathbb{C}} \subset \widetilde{R}_{I}^{\sigma}(G)_{\mathbb{C}}$ as was just observed. Hence by Theorem 2 we have that $A_{\sigma}\left[\tau_{\sigma, i}(\Theta) / \operatorname{Im} \tau_{\sigma, i-1}(\Theta)\right]=0$. It follow that for some $j \geq 0$ we have $A_{\sigma}^{j}\left(\tau_{\sigma}(G)\right)=$ $\tau_{\sigma, 0}(G) \subset \widetilde{R}^{\sigma}(G)_{\mathbb{C}}$. In other words, given (π, S, α) in $\tau_{\sigma}(G)$, it is equal to $A_{\sigma}^{j}(\pi, S, \alpha) \in$ $\widetilde{R}^{\sigma}(G)_{\mathbb{C}}$ up to $(\pi, S, \alpha)-A_{\sigma}^{j}(\pi, S, \alpha) \in \tau_{\sigma, I}(G)$. Hence the map $\widetilde{R}^{\sigma}(G)_{\mathbb{C}} \rightarrow \tau_{\sigma}(G) / \operatorname{Im} \tau_{\sigma, I}(G)$ is surjective.

F. Categorical cocenter.

We need to relate the categorical σ-cocenter $\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{K}\right)\right)$ of $\S \mathbf{E}$ with the algebra σ cocenter $\tau_{\sigma}\left(\mathbb{H}_{K}\right)$ which occurs in the statement of the Main Theorem. Instead of \mathbb{H}_{K} we
shall work with a \mathbb{C}-algebra A with identity, and denote by σ an automorphism of A of finite order ℓ. The semi-direct product $A^{\#}=A \rtimes<\sigma>$ contains the coset $A \sigma$. Put

$$
\tau A=A /[A, A], \tau A^{\#}=A^{\#} /\left[A^{\#}, A^{\#}\right]
$$

and

$$
\tau_{\sigma} A=A /<a \sigma(b)-b a ; a, b \in A>\simeq A \sigma /[A \sigma, A]=A \sigma / A \sigma \cap\left[A^{\#}, A^{\#}\right]
$$

Let $\mathbb{M}(A)$ (resp. $\mathbb{M}\left(A^{\#}\right)$) be the category of (non-degenerate) A-modules (resp. $A^{\#}$ modules). An $A^{\#}$-module is a pair (P, S) consisting of an A-module P and an element S in the set Aut ${ }_{A}^{\sigma} P$ of vector space automorphisms $S: P \xrightarrow{\sim} P$ of order ℓ which satisfy $S(a p)=\sigma^{-1}(a) S(p)(a \in A, p \in P) ; \sigma$ acts on P via S.

The cocenter $\tau(\mathbb{M}(A))$ of the category $\mathbb{M}(A)$ is the quotient of the free abelian group generated over \mathbb{C} by the pairs (P, α) consisting of a projective finitely generated A-module P and $\alpha \in \operatorname{End}_{A} P$, by the relations
(1) $(P, \alpha) \sim\left(P^{\prime}, \alpha^{\prime}\right)+\left(P^{\prime \prime}, \alpha^{\prime \prime}\right)$ if $0 \rightarrow\left(P^{\prime}, \alpha^{\prime}\right) \rightarrow(P, \alpha) \rightarrow\left(P^{\prime \prime}, \alpha^{\prime \prime}\right) \rightarrow 0$ is exact;
(2) $(P, \alpha+\beta) \sim(P, \alpha)+(P, \beta),(P, \alpha \beta) \sim(P, \beta \alpha),(P, t \alpha) \sim t(P, \alpha)(t \in \mathbb{C} ; \alpha, \beta \in$ End $\left.{ }_{A} P\right)$.

Similarly $\tau\left(\mathbb{M}\left(A^{\#}\right)\right)$ is the quotient of the Grothendieck group of pairs (P, α) of a projective finitely generated $A^{\#}$-module P and $\alpha \in \operatorname{End}_{A^{\#}} P$, by the analogous relations. The σ-cocenter $\tau_{\sigma}(\mathbb{M}(A))$ has already been defined in $\S \mathbf{E}$; it coincides with $\tau(\mathbb{M}(A))$ when $\sigma=$ identity.

Theorem 4. We have $\tau_{\sigma}(\mathbb{M}(A)) \simeq \tau_{\sigma} A$; in particular $\tau(\mathbb{M}(A)) \simeq \tau A$.
Proof. Let P be a free finitely-generated A-module, and e_{1}, \cdots, e_{k} a basis of P over A. Fix S in Aut ${ }_{A}^{\sigma} P$; then P extends to an $A^{\#}$ _module by $\sigma(p)=S(p)$. Given $\alpha \in$ End $_{A} P$ we shall associate to (P, S, α) an element in $\tau_{\sigma} A$ as follows. Since $\alpha \sigma$ is an endomorphism of P there are $\bar{\alpha}_{i j}$ in A such that

$$
\alpha \sigma e_{i}=\sum_{j} \bar{\alpha}_{i j} e_{j} . \text { Define } \operatorname{tr}_{P}(\alpha \sigma) \text { to be } \sum_{i} \bar{\alpha}_{i i}(\in A) .
$$

We claim that $\operatorname{tr}_{P}(\alpha \sigma)$ is a well-defined element of $A /<a \sigma(b)-b a>$. We need to show that $\operatorname{tr}_{P}(\alpha \sigma)$ is independent of the choice of the basis $\left\{e_{i}\right\}$. If f_{1}, \cdots, f_{k} is another basis of P over A then $\alpha \sigma f_{i}=\sum_{j} \bar{\beta}_{i j} f_{j}\left(\bar{\beta}_{i j} \in A\right)$; moreover, there are $f_{i j}, e_{i j} \in A$ with $f_{i}=\sum_{j} f_{i j} e_{j}, e_{i}=\sum_{j} e_{i j} f_{j}$. Consequently $\sum_{j} f_{i j} e_{j k}=\delta_{i k}=\sum_{j} e_{i j} f_{j k}$. Then

$$
\sum_{j k} \bar{\beta}_{i j} f_{j k} e_{k}=\sum_{j} \bar{\beta}_{i j} f_{j}=\alpha \sigma f_{i}=\sum_{j} \sigma^{-1}\left(f_{i j}\right) \alpha \sigma\left(e_{j}\right)=\sum_{j k} \sigma^{-1}\left(f_{i j}\right) \bar{\alpha}_{j k} e_{k}
$$

and
$\bar{\alpha}_{\ell k}=\sum_{i j} \sigma^{-1}\left(e_{\ell i}\right) \sigma^{-1}\left(f_{i j}\right) \bar{\alpha}_{j k}=\sum_{i j} \sigma^{-1}\left(e_{\ell i}\right) \bar{\beta}_{i j} f_{j k} \equiv \sum_{i j} \bar{\beta}_{i j} f_{j k} e_{\ell i}\left(\bmod <\sigma^{-1}(b) a-a b>\right)$.
Hence

$$
\operatorname{tr}_{P}(\alpha \sigma)=\sum_{i} \bar{\alpha}_{i i} \equiv \sum_{i} \bar{\beta}_{i i}\left(\bmod <\sigma^{-1}(b) a-a b>\right)
$$

is well-defined, as claimed.
If P is projective then there is a finitely generated A-module Q such that $P \oplus Q$ is free. Define σQ to be the vector space Q on which $a \in A$ acts by $\sigma^{-1}(a)$. Put $Q_{\sigma}=Q \oplus \sigma Q \oplus \cdots \oplus \sigma^{\ell-1} Q$. Then Aut ${ }_{A}^{\sigma} Q_{\sigma}$ is non-empty, and we define $\operatorname{tr}_{P}(\alpha \sigma)$ to be $\operatorname{tr}_{P \oplus \cdots \oplus P \oplus Q_{\sigma}}(\alpha \sigma \oplus 0 \oplus \cdots \oplus 0)$; it is independent of the choice of Q.

A basis of the trivial A-module A is its identity, which is fixed by σ. If a denotes multiplication of A by $a \in A$, then $\operatorname{tr}_{A}(a \sigma)=\operatorname{tr}_{A} a=a$. It follows that the map $\operatorname{tr}: \tau_{\sigma}(\mathbb{M}(A)) \rightarrow \tau_{\sigma} A$ is surjective.

$$
\begin{aligned}
& \text { If } \alpha \sigma e_{i}=\sum_{j} \bar{\alpha}_{i j} e_{j} \text { and } \beta e_{i}=\sum_{j} \beta_{i j} e_{j}\left(\bar{\alpha}_{i j}, \beta_{i j} \in A\right), \text { where } \beta \in \operatorname{End}_{A} P \text {, then } \\
& \qquad \beta \cdot \alpha \sigma e_{i}=\sum_{j k} \bar{\alpha}_{i j} \beta_{j k} e_{k}, \quad \alpha \sigma \cdot \beta e_{i}=\sum_{j k} \sigma^{-1}\left(\beta_{i j}\right) \bar{\alpha}_{j k} e_{k}
\end{aligned}
$$

and so

$$
\operatorname{tr}_{P}(\alpha \sigma \cdot \beta-\beta \cdot \alpha \sigma)=\sum_{i j}\left[\sigma^{-1}\left(\beta_{i j}\right) \bar{\alpha}_{j i}-\bar{\alpha}_{j i} \beta_{i j}\right] \in\left\langle\sigma^{-1}(b) a-a b\right\rangle
$$

To prove injectivity, given $\alpha \in \operatorname{End}_{A} P$ with $\operatorname{tr}_{P}(\alpha \sigma) \in\left\langle\sigma^{-1}(b) a-a b\right\rangle$ we need to exhibit $\beta, \gamma \in \operatorname{End}_{A} P$ with $\alpha \sigma=\gamma \sigma \cdot \beta-\beta \cdot \gamma \sigma$. If $\operatorname{tr}_{P}(\alpha \sigma)=\sum_{i}\left(\sigma^{-1}\left(b_{i}\right) a_{i}-a_{i} b_{i}\right)$, let P_{1} be a free A-module with basis $\left\{e_{i}\right\}$, and $\beta, \gamma \in \operatorname{End}_{A} P_{1}$ endomorphisms with $\gamma \sigma e_{i}=a_{i} e_{i}, \beta e_{i}=b_{i} e_{i}$. Then $\operatorname{tr}_{P_{1}}(\beta \cdot \gamma \sigma-\gamma \sigma \cdot \beta)=\sum_{i}\left(a_{i} b_{i}-\sigma^{-1}\left(b_{i}\right) a_{i}\right)$, and $\operatorname{tr}_{P \oplus P_{1}}[\alpha \sigma \oplus$ $(\beta \cdot \gamma \sigma-\gamma \sigma \cdot \beta)]=0$. Consequently, we may assume that $\operatorname{tr}_{P}(\alpha \sigma)=\sum_{i} \bar{\alpha}_{i i}$ is zero (on replacing (P, α) by $\left(P \oplus P_{1}, \alpha \oplus 0\right)$). Again we need to present an A-module P_{1} with σ-action and $\beta, \gamma \in \operatorname{End}_{A} P_{1}$ such that $(P, \alpha) \sim\left(P_{1}, \gamma \sigma \cdot \beta-\beta \cdot \gamma \sigma\right)$ in $\mathbb{M}(A)$. By (1) it suffices to take P_{1} free on a basis e_{1}, e_{2}, and assume that (i) $\alpha \sigma e_{1}=b e_{2}, \alpha \sigma e_{2}=a e_{1}$, or: (ii) $\alpha \sigma e_{1}=a e_{1}, \alpha \sigma e_{2}=-a e_{2}$. In the first case (i), take β with $\beta e_{1}=e_{1}, \beta e_{2}=0$, and γ with $\gamma \sigma e_{1}=b e_{2}, \gamma \sigma e_{2}=-a e_{1}$; then $(\gamma \sigma \cdot \beta-\beta \cdot \gamma \sigma) e_{1}=b e_{2},(\gamma \sigma \cdot \beta-\beta \cdot \gamma \sigma) e_{2}=a e_{1}$. In the second case (ii), take β, γ with $\beta e_{1}=e_{2}, \beta e_{2}=e_{1}, \gamma \sigma e_{1}=e_{2}, \gamma \sigma e_{2}=(a+1) e_{1}$. Then $(\gamma \sigma \cdot \beta-\beta \cdot \gamma \sigma) e_{1}=(a+1) e_{1}-e_{1}=a e_{1},(\gamma \sigma \cdot \beta-\beta \cdot \gamma \sigma) e_{2}=e_{2}-(a+1) e_{2}=-a e_{2}$, as required.

Consider the map $\Psi: \tau_{\sigma}\left(\mathbb{H}_{K}\right)=\mathbb{H}_{K} /\left\langle h_{1} \sigma\left(h_{2}\right)-h_{2} h_{1}\right\rangle \rightarrow R_{\sigma}^{*}(G)$, given by $\Psi(h)=F_{h}$, where $F_{h}((\pi, \sigma))=\operatorname{tr} \pi(h \sigma)$. Since $\tau_{\sigma}\left(\mathbb{H}_{K}\right)=\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{K}\right)\right)$ by Theorem $4, \Psi$ defines a
map $\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{K}\right)\right) \rightarrow R_{\sigma}^{*}(G)$, also denoted by Ψ. By definition $\Psi((P, S, \alpha))=F_{h}$ where $h=\operatorname{tr}_{P}(\alpha S)$.

The functors r, i on $\mathbb{M}(G)$ define homomorphisms

$$
i_{M}=i_{G M}: R^{\sigma}(M) \rightarrow R^{\sigma}(G) \text { and } r_{M}=r_{M G}: R^{\sigma}(G) \rightarrow R^{\sigma}(M)
$$

of the Grothendieck groups where $M=\sigma M<G$, and dual maps

$$
i_{M}^{*}=i_{G M}^{*}: R_{\sigma}^{*}(G) \rightarrow R_{\sigma}^{*}(M) \text { and } r_{M}^{*}=r_{M G}^{*}: R_{\sigma}^{*}(M) \rightarrow R_{\sigma}^{*}(G)
$$

on the dual spaces. Recall that $r_{M G}$ is defined using the standard parabolic subgroup $P=M P_{0}$, and $\bar{r}_{M G}$ using the opposite parabolic $\bar{P}=M \bar{P}_{0}$.
Corollary 4.1. The homomorphism $\Psi: \tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{G}\right)\right) \rightarrow R_{\sigma}^{*}(G)$ intertwines the homomorphisms $i_{G M}, r_{M G}$ with the homomorphisms $\bar{r}_{M G}^{*}, i_{G M}^{*}$. Namely

$$
\Psi\left(i_{G M}\left(P_{M}, S_{M}, \alpha_{M}\right)\right)=\bar{r}_{M G}^{*}\left(\Psi_{M}\left(\left(P_{M}, S_{M}, \alpha_{M}\right)\right)\right)
$$

and

$$
\Psi_{M}\left(r_{M G}(P, S, \alpha)\right)=i_{G M}^{*}(\Psi((P, S, \alpha)))
$$

for all $\left(P_{M}, S_{M}, \alpha_{M}\right) \in \tau_{\sigma}(\mathbb{M}(M))$ and $(P, S, \alpha) \in \tau_{\sigma}(\mathbb{M}(G))$.
Proof. Denote by $\operatorname{Ext}^{i}(P, \pi)=\operatorname{Ext}_{\mathbb{H}_{G}^{\#}}^{i}(P, \pi)$ the i th Ext group of the $\mathbb{H}_{G}^{\#}$-modules P and π; it is an $\mathbb{H}_{G}^{\#}$-module. We first claim that the value of Ψ at $(P, S, \alpha) \in \tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{K}\right)\right)$ is the homomorphism which takes $(\pi, \sigma) \in R^{\sigma}(G)$ to

$$
\operatorname{tr}\left[\alpha \sigma ; \operatorname{Ext}^{*}(P, \pi)\right]=\sum_{i}(-1)^{i} \operatorname{tr}\left[\alpha \sigma ; \operatorname{Ext}^{i}(P, \pi)\right]
$$

Since $\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{G}\right)\right)$ is generated by the (P, S, α), where P is a projective module, we may assume that P is projective. Then $\operatorname{Ext}^{i}(P, \pi)=\delta_{i, 0} \operatorname{Hom}(P, \pi)$. Note that $P_{K}=$ $C_{c}(G / K)$ is a projective generator of the category $\mathbb{M}\left(\mathbb{H}_{K}\right)$. Namely each projective module P in $\mathbb{M}\left(\mathbb{H}_{K}\right)$ is a direct summand of P_{K}. Extend α by 0 to P_{K}; then $\alpha \in$ End P_{K}, and

$$
\begin{aligned}
\operatorname{tr} \pi(\alpha \sigma) & =\operatorname{tr} \pi^{K}(\alpha \sigma) \\
& =\operatorname{tr}\left[\alpha \sigma ; \pi^{K}=\operatorname{Hom}_{K}\left(\mathbb{1}_{K}, \pi \mid K\right)=\operatorname{Hom}_{G}\left(i_{G K} \mathbb{1}_{K}, \pi\right)=\operatorname{Hom}\left(P_{K}, \pi\right)\right] \\
& =\operatorname{tr}\left[\alpha \sigma ; \operatorname{Ext}^{*}\left(P_{K}, \pi\right)\right]
\end{aligned}
$$

as claimed. To complete the proof of the corollary, we quote (from Bernstein [B]) the following

Second Adjointness Theorem ([B]). The functor \bar{r}_{M} is right adjoint to the functor i_{M}.

Hence

$$
\begin{aligned}
{\left[\Psi\left(i_{M}\left(E_{M}, S_{M}, \alpha_{M}\right)\right)\right]((\pi, \sigma)) } & =F_{i_{M}\left(E_{M}, S_{M}, \alpha_{M}\right)}((\pi, \sigma))=\operatorname{tr}\left[i_{M} \alpha_{M} \cdot \sigma ; \operatorname{Ext}^{*}\left(i_{M} E_{M}, \pi\right)\right] \\
& =\operatorname{tr}\left[\alpha_{M} \cdot \sigma ; \operatorname{Ext}^{*}\left(E_{M}, \bar{r}_{M} \pi\right)\right]=\left[\left(\bar{r}_{M}^{*} \Psi\right)\left(E_{M}, S_{M}, \alpha_{M}\right)\right]((\pi, \sigma))
\end{aligned}
$$

for all $(\pi, \sigma) \in R^{\sigma}(G)$ proving the first claim.
The other assertion of the corollary, that Ψ intertwines r_{M} on $\tau_{\sigma}\left(\mathbb{M}\left(\mathbb{H}_{G}\right)\right)$ with i_{M}^{*} on $R_{\sigma}^{*}(G)$, follows from the Frobenius reciprocity (see [BZ1]), which says that r_{M} is left adjoint to i_{M}.

G. Trace Paley-Wiener theorem.

The following is (a twisted generalization of) the trace Paley-Wiener theorem of [BDK].
Theorem 5. The map $\Psi: \tau_{\sigma}\left(\mathbb{H}_{G}\right) \rightarrow R_{\sigma}^{*}(G)_{\text {good }}$, by $h \mapsto F_{h}$, where $F_{h}((\pi, \sigma))=$ $\operatorname{tr} \pi(h \sigma)$, is surjective.

For any subset X of $R^{*}(G)$ denote by $R_{\sigma}^{*}(X)_{\text {good }}$ and $R_{\sigma}^{*}(X)$ trace the spaces of restrictions of elements of $R_{\sigma}^{*}(G)_{\text {good }}$ and of $R_{\sigma}^{*}(G)_{\text {trace }}$ to X. The corresponding forms will be called good or trace forms on X. Put $R_{\sigma}^{*}(G)_{\text {good }}^{\text {disc }}$ for $R_{\sigma}^{*}\left(\Theta_{\text {disc }}^{\sigma}(G)\right)$ good .
Proposition 5.1. The map $\Psi: \tau_{\sigma}\left(\mathbb{H}_{G}\right) \rightarrow R_{\sigma}^{*}(G) \underset{\text { good }}{\text { disc }}$ is surjective.
Proof. By Theorem 1, for every connected component Θ of $\Theta(G)$ the variety $\Theta_{\text {disc }}^{\sigma}$ is a finite union of $X^{\sigma}(G)$-orbits. Since an element of $R_{\sigma}^{*}(G)$ good is supported only on finitely many groups $R^{\sigma}(\Theta)$, it suffices to show that for any finite union X of $X^{\sigma}(G)$-orbits in Θ the map $\Psi: \tau_{\sigma}\left(\mathbb{H}_{G}\right) \rightarrow R_{\sigma}^{*}(X)_{\text {good }}$ is onto.

If $X^{\sigma}(G)$ is finite then X is a finite set. Then the restriction to X of any linear form $F: R^{\sigma}(G) \rightarrow \mathbb{C}$ is a trace form, and in particular $R_{\sigma}^{*}(X)_{\text {trace }}=R_{\sigma}^{*}(X)_{\text {good }}$. Indeed, the twisted characters of irreducible σ-invariant G-modules are linearly independent functionals on \mathbb{H}_{G}.

In general X has the natural structure of an algebraic variety, as the union of finitely many $X^{\sigma}(G)$-orbits. By definition of good forms we have

$$
R_{\sigma}^{*}(X)_{\text {trace }} \subset R_{\sigma}^{*}(X)_{\text {good }} \subset k[X]
$$

where $k[X]$ is the algebra of regular functions on X.
Choose a σ-invariant cocompact lattice Λ in the center Z of G. Put $X(\Lambda)=$ $\operatorname{Hom}\left(\Lambda, \mathbb{C}^{\times}\right)$, and $Y=X^{\sigma}(\Lambda)$ for the subgroup of σ-invariant characters. Then Y is an affine algebraic variety. The restriction map $X^{\sigma}(G) \rightarrow Y$ is a finite epimorphism of algebraic groups. Denote by ω_{π} the central character of $\pi \in \operatorname{Irr} G$; consider the map $\operatorname{Irr}^{\sigma}(G) \rightarrow Y, \pi \mapsto \omega_{\pi} \mid \Lambda$. Its restriction $X \rightarrow Y$ to X is a finite $X^{\sigma}(G)$-equivariant submersive morphism of algebraic varieties. Hence $k[X]$ is a finitely generated $k[Y]-$ module. Note that $R_{g}=R_{\sigma}^{*}(X)_{\text {good }}$ is a $k[Y]$-submodule of $k[X]$, where $k[Y]$ acts by
$(f F)(\pi)=f\left(\omega_{\pi} \mid \Lambda\right) F(\pi)\left(f \in k[Y], F \in R_{g}\right)$. Also $R_{t}=R_{\sigma}^{*}(X)_{\text {trace }}$ is a $k[Y]$-submodule via $f \cdot \operatorname{tr} \pi(h \sigma)=\operatorname{tr} z_{f} \cdot \pi(h \sigma)$; here $z_{f} \in k[X]$ is the image of $f \in k[Y]$ under the natural map $k[Y] \rightarrow k[X]$.

For any $y \in Y$ let $M_{y} \subset k[Y]$ be the maximal ideal consisting of those polynomial functions in $k[Y]$ which vanish at y. For each $k[Y]$-module E put $E_{y}=E / M_{y} E$ for the fiber of E at y. Since $u: X \rightarrow Y$ is finite and submersive, the set $X_{y}=u^{-1}(y)$ is finite, and the fiber $k[X]_{y}$ coincides with $k\left[X_{y}\right]$. Since X_{y} is a finite set, we have $R_{\sigma}^{*}\left(X_{y}\right)$ trace $=$ $R_{\sigma}^{*}\left(X_{y}\right)_{\text {good }}$ as noted above; hence $R_{g} \subset R_{t}+M_{y} k[X]$. Put $E=k[X] / R_{t}, E^{\prime}=R_{g} / R_{t} \subset$ E. Then $E^{\prime} \subset M_{y} E$ for each $y \in Y$. Since E is a finitely generated $k[Y]$-module it is locally free generically, namely at almost each $y \in Y$. Moreover, E is locally free at every $y \in Y$ since E is $X^{\sigma}(G)$-equivariant. Then $E^{\prime} \subset M_{y} E$ for all $y \in Y$ implies that $E^{\prime}=0$, since a function which vanishes at each point of a variety is necessarily the zero function. Hence $R_{t}=R_{g}$ as required.

Proof of Theorem 5. We argue by induction on M; the case of M_{0} follows from Proposition 5.1, since $R_{\sigma}^{*}\left(M_{0}\right)_{\text {good }}=R_{\sigma}^{*}\left(M_{0}\right)_{\text {good }}^{\text {disc }}$. By Corollary 2.3 there are $c_{M} \in Q$ such that for each $F \in R_{\sigma}^{*}(G)$ good there is $F^{d} \in R_{\sigma}^{*}(G)$ disc good with $F=F^{d}+\sum_{M \nsupseteq G} c_{M} r_{M G}^{*}\left(i_{G M}^{*} F\right)$. Then $F_{M}=i_{G M}^{*} F$ lies in $R_{\sigma}^{*}(M)_{\text {good }}$, and by induction there is some $h_{M} \in \tau_{\sigma}\left(\mathbb{H}_{M}\right)$ which maps to F_{M} by the map Ψ_{M} of the theorem. Then $\Psi_{M}\left(h_{M}\right)=F_{M}$, and by Corollary 4.1 we have $\Psi_{G}\left(\bar{i}_{G M} h_{M}\right)=r_{M G}^{*} F_{M}=r_{M G}^{*} \Psi_{M}\left(h_{M}\right)$. Hence $r_{M G}^{*} i_{G M}^{*} F$ is in the image of Ψ_{G}, and so is F since F^{d} is in the image by Proposition 5.1.

H. Density theorem.

The following is (a twisted generalization of) the density theorem of [K1, Appendix].
Theorem 6. The map $\Psi: \tau_{\sigma}\left(\mathbb{H}_{G}\right) \rightarrow R_{\sigma}^{*}(G)_{\text {trace }}=R_{\sigma}^{*}(G)_{\text {good }}$ of Theorem 5 is injective.
This can be phrased as follows. Given $h \in \mathbb{H}_{G}$ with $\operatorname{tr} \pi(h \sigma)=0$ for all $(\pi, \sigma) \in$ $\operatorname{Irr}{ }^{\sigma}(G)$, then h lies in the span $\left[\mathbb{H}_{G} \sigma, \mathbb{H}_{G}\right] \sigma^{-1}$ of $h_{1} \sigma\left(h_{2}\right)-h_{2} h_{1}\left(h_{1}, h_{2} \in \mathbb{H}_{G}\right)$. Here $\pi(h \sigma)=\int_{G} \pi(g \sigma) h(g)$ is a trace class operator.

We claim that it suffices to prove the theorem under the assumption that $X^{\sigma}(G)$ is finite. Indeed, let ω be a character of the center Z of G. By a standard reduction step we may work with the Hecke algebra of functions h which transform under Z by ω^{-1} and are compactly supported modulo Z, and forms on the Grothendieck group of G-modules π which transform under Z via ω. For $\pi \in \operatorname{Irr}^{\sigma}(G)$ with central character ω, we have $\omega={ }^{\sigma} \omega$. Multiplying π by a σ-invariant unramified character we may assume that ω is trivial on a σ-stable lattice Λ of finite index in Z. Replacing G by G / Λ we may assume that $X^{\sigma}(G)$ is finite.

Suppose then that $X^{\sigma}(G)$ is finite. It suffices to show for each connected component Θ of $\Theta(G)$ that the map $\tau_{\sigma}\left(\mathbb{H}_{\Theta}\right) \rightarrow R_{\sigma}^{*}(\Theta)$ good is injective. Put $\tau_{\sigma}\left(\mathbb{H}_{\Theta}\right)^{d}=$ $\tau_{\sigma}\left(\mathbb{H}_{\Theta}\right) / \tau_{\sigma, I}\left(\mathbb{H}_{\Theta}\right)$. Corollary 3.1 and Theorem 4 assert that the map $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}} \rightarrow \tau_{\sigma}\left(\mathbb{H}_{\Theta}\right)^{d}$ is surjective, and Proposition 5.1 implies the surjectivity of the map $\Psi: \tau_{\sigma}\left(\mathbb{H}_{\Theta}\right)^{d} \rightarrow$
$R_{\sigma}^{*}(\Theta)_{\text {good }}^{\text {disc }}$. Since $\widetilde{R}_{I}^{\sigma}(\Theta)_{\mathbb{C}}$ maps to zero in $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}} \rightarrow \tau_{\sigma}\left(\mathbb{H}_{\Theta}\right)^{d}$, we obtain a surjective map

$$
\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}^{d}=\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}} / \widetilde{R}_{I}^{\sigma}(\Theta)_{\mathbb{C}} \rightarrow R_{\sigma}^{*}(\Theta)_{\text {good }}^{\text {disc }}
$$

Since $\Theta_{\text {disc }}^{\sigma}$ is a finite set for each Θ (by Theorem 1, under our assumption that $X^{\sigma}(G)$ is finite), the complex vector space $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}^{d}$ is finite dimensional, and has the same dimension as its dual $R_{\sigma}^{*}(\Theta)$ disc good . In particular, the map above is an isomorphism, and if $h \in \widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}$ maps to zero in $R_{\sigma}^{*}(\Theta)_{\text {good }}$, then h lies in $\widetilde{R}_{I}^{\sigma}(\Theta)_{\mathbb{C}}$.

To prove the theorem consider h in $\tau_{\sigma}\left(\mathbb{H}_{\Theta}\right)$ which maps to zero in $R_{\sigma}^{*}(\Theta)$ good . For any $M=\sigma M<G$, the image of 0 by $i_{G M}^{*}: R_{\sigma}^{*}(\Theta)_{\text {good }} \rightarrow R_{\sigma}^{*}\left(\Theta_{M}\right)_{\text {good }}$, where $\Theta_{M}=i_{G M}^{-1}(\Theta)$, is 0 . By induction on M, when $M=\sigma M \lessgtr G$ the inverse image of $0 \in R_{\sigma}^{*}\left(\Theta_{M}\right)_{\text {good }}$ by $\Psi_{M}: \tau_{\sigma}\left(\mathbb{H}_{\Theta_{M}}\right) \rightarrow R_{\sigma}^{*}\left(\Theta_{M}\right)_{\text {good }}$ is zero. Corollary 4.1 asserts that $\Psi_{M}\left(r_{M G} h\right)=i_{G M}^{*}\left(\Psi_{G} h\right)$. Hence $r_{M G} h=0$. It follows that h lies in the intersection of ker $r_{M G}, M=\sigma M \varsubsetneqq G$. Consequently $h=A_{\sigma} h$ for $A_{\sigma}=A_{\sigma}^{\mathbf{c}}$ as in Theorem 2. As in the proof of Corollary 3.1, for a sufficiently large j we have that $A_{\sigma}^{j} h$ lies in $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}\left(\rightarrow \tau_{\sigma}\left(\mathbb{H}_{\Theta}\right)\right)$. Hence h lies in $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}$, and it maps to 0 under the map $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}\left(\rightarrow \tau_{\sigma}\left(\mathbb{H}_{\Theta}\right)\right) \rightarrow R_{\sigma}^{*}(\Theta)_{\text {good }}$ mentioned above. Therefore it lies in $\widetilde{R}_{I}^{\sigma}(\Theta)_{\mathbb{C}}$, and $A_{\sigma} h=0$ by Theorem 2 . We conclude that $h=A_{\sigma} h$ is zero, as required.

Theorems 5 and 6 establish the surjectivity and injectivity of the map of the Main Theorem, whose proof is now complete.

Appendix. Cohomological dimension.

Theorem. The category $\mathbb{M}(G)$ has finite cohomological dimension bounded by $d_{0}=$ $\operatorname{dim} X\left(M_{0}\right)$.
Proof. We should show that each G-module X has a projective resolution of length $\leq d_{0}$.
(1) We proceed to construct the standard resolution of the trivial G-module \mathbb{C} on using the theory of buildings (see Tits [T]). Recall that the building $B=B(G)$ associated with the group G is a $C W$-complex equipped with an action of G (on B). It has the following properties.
(i) All cells of B are polyhedra, and the action of G preserves cell decomposition.
(ii) For each cell τ of B, its stabilizer G_{τ} is an open compact subgroup of G which fixes all points in τ.
(iii) Modulo the action of G there are only finitely many cells. The dimension of any cell is bounded by d_{0}.
(iv) The building B is contractible as a topological space.

Consider the chain complex $C=\left\{0 \rightarrow C_{d_{0}} \rightarrow C_{d_{0}-1} \rightarrow \cdots \rightarrow C_{0} \rightarrow 0\right\}$ of B with complex coefficients. This is a complex of G-modules. If $\tau_{1}, \cdots, \tau_{k}$ is a set of representatives
of cells modulo the action of G, then $\oplus_{j} C_{j}=\bigoplus_{1 \leq i \leq k}$ ind $\left(G, G_{\tau_{i}}, \mathbb{C}\right)$ and (ii) implies that C_{j} are projective G-modules. Since B is contractible, we have $H^{i}(C)=0$ for $i \neq 0$ and $H^{0}(C)=\mathbb{C}$; thus C is a projective resolution of \mathbb{C} called the standard resolution of the trivial G-module \mathbb{C}.
(2) Let X be a G-module. Consider the complex $C_{X}=\left\{C_{i} \otimes_{\mathbb{C}} X\right\}$. Clearly this is a resolution of the G-module X of length d_{0}; we need to check that it is projective. Then let P be a projective G-module. We have to show that $P \otimes_{\mathbb{C}} X$ is also projective. For each G-module Y we have $\operatorname{Hom}_{G}(P \otimes X, Y)=\operatorname{Hom}_{G}\left(P, \operatorname{Hom}_{\mathbb{C}}^{0}(X, Y)\right)$. Here $\operatorname{Hom}_{\mathbb{C}}^{0}(X, Y)$ is the smooth part of the G-module $\operatorname{Hom}_{\mathbb{C}}(X, Y)$. Hence it suffices to check that the functor $Y \mapsto \operatorname{Hom}_{\mathbb{C}}^{0}(X, Y)$ is exact. Fix an open compact subgroup K of G. As a vector space, $\operatorname{Hom}_{\mathbb{C}}^{0}(X, Y)$ depends only on the K-module structure of Y. Since the category $\mathbb{M}(K)$ of K-modules is completely reducible, each exact sequence in $\mathbb{M}(K)$ splits. Hence the functor $Y \mapsto \operatorname{Hom}_{\mathbb{C}}^{0}(X, Y)$ is exact, and $P \otimes_{\mathbb{C}} X$ is projective, as required.

Remark. The standard resolution C_{X} constructed above is not finitely generated in general, even when X is irreducible. If X is finitely generated then one can construct a resolution $0 \rightarrow P_{d_{0}} \rightarrow P_{d_{0}-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow X \rightarrow 0$ in which all P_{i} are finitely generated and $P_{d_{0}-1}, P_{d_{0}-2}, \cdots, P_{0}$ are projective. The Theorem implies that $P_{d_{0}}$ is also projective.

References

[B] J. Bernstein, Notes for courses at Harvard and Tel-Aviv Universities, manuscript in preparation.
[BD] J. Bernstein, P. Deligne, Le "centre" de Bernstein, dans Représentations des groupes reductifs sur un corps local, Hermann, Paris 1985.
[BDK] J. Bernstein, P. Deligne, D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math. 47 (1986), 180-192.
[BZ1] J. Bernstein, A. Zelevinski, Representations of the group $G L(n, F)$ where F is a non-archimedean local field, Russian Math. Surveys 31 (1976), 1-68.
[BZ2] J. Bernstein, A. Zelevinski, Induced representations of reductive p-adic groups I, Ann. Sci. ENS 10 (1977), 441-472.
[BW] A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math Studies 94 (1980).
[F] Y. Flicker, Rigidity for automorphic forms, J. Analyse Math. 49 (1987), 135-202.
[K1] D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math. 47 (1986), 1-36.
[K2] D. Kazhdan, Representations of groups over close local fields, J. Analyse Math. 47 (1986), 175-179.
[T] J. Tits, Reductive groups over local fields, in Proc. Sympos. Pure Math. 33 I (1979), 29-69.

[^0]: Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, OH 43210-1174; email: flicker@math.ohio-state.edu

