BERNSTEIN'S ISOMORPHISM AND GOOD FORMS

Yuval Z. Flicker

A. Statement of Main Result.

Let G be a p-adic reductive group, and σ an automorphism of G of finite order ℓ . A G-module is a representation $\pi: G \to \operatorname{Aut} V$ of the group G on a complex vector space V, which is smooth (terminology of Bernstein-Deligne-Kazhdan [BDK]; in Bernstein-Zelevinski [BZ1] this is termed algebraic): the stabilizer of any vector in V is an open subgroup of G. It will be denoted by (π, V) , or simply π , or V. Put ${}^{\sigma}\pi(g) = \pi(\sigma^{-1}g)$. Then $({}^{\sigma}\pi, V)$ is a G-module. A G-module (π, V) is called σ -invariant if it is equivalent to $({}^{\sigma}\pi, V)$. Denote by $\operatorname{Aut}_{G}^{\sigma}\pi$ the set of vector space automorphisms $S: V \xrightarrow{\sim} V$ with $S\pi(g) = \pi(\sigma g)S$ for all $g \in G$ and $S^{\ell} = 1$. Then π is σ -invariant if and only if $\operatorname{Aut}_{G}^{\sigma}\pi$ is non-empty. In this case π extends to a $G^{\#}$ -module by $\pi(\sigma) = S$, where $G^{\#}$ is the semi-direct product $G \rtimes < \sigma >$ of G with the group $< \sigma >$ generated by σ . When π is irreducible then S is uniquely determined up to an ℓ th root ζ of unity in \mathbb{C} .

Let $\mathbb{M}(G)$ be the category of G-modules. An element E of $\mathbb{M}(G)$ is called finitely generated if for any filtered system of proper subobjects E_i in E, the subobject $\Sigma_i E_i$ is proper in E. Let K(G) be the Grothendieck group of finitely generated G-modules, and R(G) the Grothendieck group of G-modules of finite length. The group K(G) coincides with the Grothendieck group of projective (i.e. the functor $E \mapsto \text{Hom}(P, E)$ is exact) finitely generated G-modules P. Indeed, each finitely generated G-module has a projective resolution consisting of finitely generated G-modules, and this resolution is finite by virtue of the Theorem of Bernstein [B] recorded in the Appendix. This Theorem asserts that the category $\mathbb{M}(G)$ has finite cohomological dimension.

The group R(G) is the free abelian group generated by the set Irr G of equivalence classes of irreducible G-modules. Denote by Irr^{σ}(G) the subset of σ -invariant elements in Irr G. Let $R^{\sigma}(G)$ (resp. $K^{\sigma}(G)$) be the quotient of the free abelian group generated by the pairs (π, S) where π is a G-module of finite length (resp. projective finitely generated) and $S \in \operatorname{Aut}_{G}^{\sigma} \pi$, by the following relations.

 $(\mathbf{R}_1) \text{ If } \mathbf{0} \to (\pi',S') \to (\pi,S) \to (\pi'',S'') \to \mathbf{0} \text{ is exact then } (\pi,S) \sim (\pi',S') + (\pi'',S'') \, .$

(R₂) If $\pi = \bigoplus_i \pi_i$ and for each *i* there is *j* such that $S\pi_i = \pi_j$, then $(\pi, S) \sim \Sigma_i(\pi_i, S_i)$, where the sum ranges over all *i* such that $S\pi_i = \pi_i$, and $S_i = S|\pi_i$ for such *i*.

The abelian group $R^{\sigma}(G)$ is generated by the pairs $(\pi, S), \pi \in \operatorname{Irr}^{\sigma} G$ and $S \in \operatorname{Aut}_{G}^{\sigma} \pi$ with $S^{\ell} = 1$. For any \mathbb{Z} -modules R and T put R_{T} for $R \otimes_{\mathbb{Z}} T$. The quotient of $R^{\sigma}(G)_{\mathbb{C}}$ by the relations $(\pi, \zeta S) \sim \zeta(\pi, S)$ for all $\pi \in \operatorname{Irr}^{\sigma}(G), S \in \operatorname{Aut}_{G}^{\sigma} \pi, \zeta \in \mathbb{C}$ with $\zeta^{\ell} = 1$, is the free \mathbb{C} -module $\widetilde{R}^{\sigma}(G)_{\mathbb{C}}$ generated by $\operatorname{Irr}^{\sigma}(G)$.

Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, OH 43210-1174; email: flicker@math.ohio-state.edu

Fix a minimal parabolic subgroup P_0 of G. Suppose that $\sigma P_0 = P_0$. If $P_0 = M_0 U_0$ is a Levi decomposition, then $\sigma M_0 = u^{-1}M_0u$ for some u in (the unipotent radical) U_0 with $u\sigma(u)\cdots\sigma^{\ell-1}(u) = 1$. Since U_0 is an extension of additive groups, its first galois cohomology group is trivial, and there is $u' \in U_0$ with $u = u'\sigma(u')^{-1}$. Replacing M_0 by its conjugate by u' we may assume that the Levi subgroup M_0 is σ -invariant: $\sigma M_0 = M_0$. A standard Levi subgroup is a subgroup $M \supseteq M_0$ of G which is a Levi component of a parabolic subgroup $P = P_0 M$; such P is called a standard parabolic subgroup. Notations: M < G, P < G. Since P has a unique Levi subgroup containing a fixed minimal one, if $\sigma P = P$ then $\sigma M = M$ for M < G.

For M < G, let $i_{GM} : \mathbb{M}(M) \to \mathbb{M}(G)$ be the functor of normalized induction. Given an M-module (ρ, E) , the space $V = i_{GM}E$ consists of all smooth maps $f : G \to E$ with $f(mug) = \delta_P^{\frac{1}{2}}(m)\rho(m)f(g)$ $(m \in M, g \in G, u \in U(=$ unipotent radical of $P = MP_0)$, where $\delta_P(m) = |(\det : N \to N, n \mapsto m^{-1}nm)|$, and $\pi = i_{GM}\rho$ acts on $i_{GM}E$ by $(\pi(x)f)(g) = f(gx)$. If M < N < G and $M = \sigma M, N = \sigma N$, and (ρ, E) is σ -invariant, then $(\pi = i_{NM}\rho, V = i_{NM}E)$ is σ -invariant: define $\pi(\sigma)$ by $(\pi(\sigma)f)(g) = (\rho(\sigma)f)(\sigma^{-1}g)$. Denote by JH(E) the subset of Irr G consisting of all irreducible constituents of the G-module E. The automorphism σ of G defines a functor $\mathbb{M}(G) \to \mathbb{M}(G)$. It is easy to see that $\sigma i_{GM}(\rho) = i_{G,\sigma M}(^{\sigma}\rho)$, hence that $\pi \in JH(i_{GM}\rho)$ if and only if $^{\sigma}\pi \in JH(i_{G,\sigma M}(^{\sigma}\rho))$.

Let $r_{MG} : \mathbb{M}(G) \to \mathbb{M}(M)$ be the normalized functor of coinvariants. If (π, V) is a *G*-module, then the space $V_U = r_{MG}V$ is the quotient of *V* by the span V(U) of $\pi(u)v - v, v \in V, u \in U$ (= unipotent radical of $P = MP_0$). The action $r_{MG}\pi$ of *M* on $r_{MG}V$ is by $m: v + V(U) \mapsto \delta_U^{-1/2}(m)\pi(m)v + V(U)$ (note that $\pi(M)$ stabilizes V(U)). If $M < N < G, \ \sigma N = N, \ \sigma M = M$, and (π, V) is a σ -invariant *N*-module, then $r_{MN}\pi$ is σ -invariant, since $\pi(\sigma)(V(U)) = V(U)$. The functors i_{GM} and r_{MG} define homomorphisms $i_{GM}: R(M) \to R(G)$ and $r_{MG}: R(G) \to R(M)$, and $i_{GM}: R^{\sigma}(M) \to R^{\sigma}(G), \ r_{MG}: R^{\sigma}(G) \to R^{\sigma}(M)$, when $M = \sigma M$. Let \overline{P} be the parabolic subgroup of *G* opposite to *P* (then $M = P \cap \overline{P}$), and let \overline{r}_{MG} be the normalized functor of invariants defined using \overline{P} instead of *P*. If $P = \sigma P$ then $\overline{P} = \sigma \overline{P}$.

The group X(G) of complex-valued unramified characters of G is naturally isomorphic to $\mathbb{C}^{\times d}$ for some $d = d(G) \ge 0$, hence has a natural structure of a complex algebraic group. It acts on Irr G and R(G) by $\psi : \pi \mapsto \psi \pi$. Let $X^{\sigma}(G)$ be the group of ψ in X(G)which are fixed by σ . It is a subvariety of X(G) which acts on Irr $^{\sigma}(G)$ and $R^{\sigma}(G)$.

Let \mathbb{H}_G be the Hecke algebra of (locally-constant complex-valued compactly-supported measures on) G. Then $\mathbb{H}_G = C_c^{\infty}(G)dg$, where dg is a Haar measure. The automorphism σ acts on \mathbb{H}_G by $\sigma(h dg) = {}^{\sigma}hdg$, where ${}^{\sigma}h(g) = h(\sigma^{-1}g)$. Put $\mathbb{H}_G^{\#}$ for the semi-direct product $\mathbb{H}_G \rtimes \langle \sigma \rangle$. A measure h in \mathbb{H}_G defines a linear form $F_h : R(G) \to \mathbb{C}$ by $F_h(\pi) = \operatorname{tr} \pi(h)$, and $F_h^{\sigma} : R^{\sigma}(G) \to \mathbb{C}$ by $F_h^{\sigma}((\pi, S)) = \operatorname{tr} \pi(h\sigma)$; here $\pi(h\sigma) = \pi(h)S$, and $\pi(h)$ is the convolution operator $\int_G h(g)\pi(g)$. This $\pi(h)$ is of finite rank on $V = V_{\pi}$ since π is admissible (smooth of finite length, see [BZ1]), hence $\pi(h\sigma)$ is of trace class. Note that $F_h^{\sigma}((\pi, \zeta S)) = \zeta F_h^{\sigma}((\pi, S))$ if $\zeta^{\ell} = 1$. It is useful to note that \mathbb{H}_G is the tensor product with \mathbb{C} over Q of the rational Hecke algebra of Q-valued measures with the above properties. A similar comment applies to \mathbb{H}_K of §B below.

Let $R^*_{\sigma}(G) = \operatorname{Hom}_{\mathbb{Z},\zeta}(R^{\sigma}(G),\mathbb{C})$ (= $\operatorname{Hom}_{\mathbb{C}}(\widetilde{R}^{\sigma}(G)_{\mathbb{C}},\mathbb{C})$) be the space of \mathbb{C} -valued linear forms F on $R^{\sigma}(G)$ which are "genuine", namely satisfy $F((\pi,\zeta S)) = \zeta F((\pi,S))$ for all $\zeta \in \mathbb{C}$ with $\zeta^{\ell} = 1$. Let $R^*_{\sigma}(G)_{\mathrm{tr}}$ be the subspace of the forms F^{σ}_h , $h \in \mathbb{H}_G$. A form in this subspace is called a *trace form*. Any trace form F is genuine and it satisfies:

(i) There exists a σ -invariant open compact subgroup K of G which dominates F. Namely $F((\pi, S)) = 0$ if π is a G-module which has no non-zero K-fixed vector, or alternatively $F((\pi, S))$ depends only on the space π^K of K-fixed vectors in π , and the restriction of S to π^K .

(ii) For any standard Levi subgroup $M = \sigma M < G$ and $\rho \in \operatorname{Irr}^{\sigma}(M)$, the function $\psi \mapsto F((i_{GM}(\psi\rho), i_{GM}(\rho(\sigma))))$ is a regular function on the complex algebraic variety $X^{\sigma}(M)$.

Denote by $R^*_{\sigma}(G)_{\text{good}}$ the space of F in $R^*_{\sigma}(G)$ which satisfy (i), (ii); such forms will be called *good*.

Let $\tau_{\sigma}(\mathbb{H}_G)$ be the quotient of \mathbb{H}_G by the linear span $[\mathbb{H}_G \sigma, \mathbb{H}_G] \sigma^{-1}$ of the commutators $f\sigma(h) - hf$ in \mathbb{H}_G . Then $\tau_{\sigma}(\mathbb{H}_G) \simeq \mathbb{H}_G \sigma/[\mathbb{H}_G \sigma, \mathbb{H}_G]$, where $[\mathbb{H}_G \sigma, \mathbb{H}_G]$ is the linear span (in $\mathbb{H}_G^{\#}$) of all commutators $f\sigma \cdot h - h \cdot f\sigma$; $f, h \in \mathbb{H}_G$. Note that $[\mathbb{H}_G \sigma, \mathbb{H}_G] = \mathbb{H}_G \sigma \cap [\mathbb{H}_G^{\#}, \mathbb{H}_G^{\#}]$.

Main Theorem. The map $\Psi : \mathbb{H}_G \to R^*_{\sigma}(G), h \mapsto F^{\sigma}_h$, yields an isomorphism $\tau_{\sigma}(\mathbb{H}_G) \xrightarrow{\sim} R^*_{\sigma}(G)_{\text{good}}$.

In the special case where $\ell = 1$ and $\sigma = \text{identity}$, one has $R^*(G) = \text{Hom}_{\mathbb{Z}}(R(G), \mathbb{C}) = \text{Map}(\text{Irr } G, \mathbb{C})$ and its subspaces $R^*(G)_{\text{good}} \supset R^*(G)_{\text{tr}}$. Put $\tau(\mathbb{H}_G) = \mathbb{H}_G / [\mathbb{H}_G, \mathbb{H}_G]$. The assertion that the map $\mathbb{H}_G \to R^*(G)_{\text{good}}$ is surjective, namely that $R^*(G)_{\text{tr}} = R^*(G)_{\text{good}}$, is called the *trace Paley-Wiener theorem*; it is the main result of [BDK]. It is an analogue of the classical Paley-Wiener theorem which characterizes the image of the Fourier transform. The main ingredients in extending the proof of [BDK] to the twisted case, where σ is non-trivial, are explained in [F; I, §7]. As the twisted analogue requires only minor changes to the exposition of [BDK], it is noted in [F] that there is no need to reproduce the entire proof of [BDK] in the twisted setting.

The injectivity of the map $\tau(\mathbb{H}_G) \to R^*(G)$ implies the following density theorem. If $h \in \mathbb{H}_G$ satisfies tr $\pi(h) = 0$ for all π in R(G) then all orbital integrals $\Phi_h(\gamma) = \int h(g^{-1}\gamma g) \ (g \in Z_G(\gamma) \setminus G)$ of h at the regular elements γ , are zero. The density theorem is proven in Kazhdan [K1; Appendix] in characteristic zero, and subsequently in [K2; Theorem B], in positive characteristics. The proof of [K1] is global (it uses the trace formula) and requires non-trivial galois-cohomological constructions. The main ingredients in establishing a twisted analogue of the density theorem along the lines of the proof of [K1; Appendix], are explained in [F; I, §4].

The assertion of isomorphism in the Main Theorem above combines surjectivity (trace Paley-Wiener theorem) and injectivity (density theorem). The proof given here is due to J. Bernstein (in the case of $\sigma =$ identity). Its advantage over that of [BDK] is in proving

injectivity simultaneously to surjectivity. The proof is purely local, using neither the trace formula nor galois cohomology, and it applies with any characteristic . The new tool is the theory of "dévissage (unscrewing)" which is applied to a certain generalization (σ -cocenter of the category $\mathbb{M}(G)$) of the Grothendieck group $K^{\sigma}(G)$. Thus we work with finitely generated G-modules which are not necessarily of finite length, and study their support on the variety $\Theta(G)$ of infinitesimal characters. For completeness we reproduce here those parts of [BDK] which we need.

I wish to express my very deep gratitude to Joseph Bernstein for explaining his proof to me. My minor contribution is in carrying out the generalization to the twisted case, where σ is arbitrary. Since the present proof seems to be quite satisfactory, it is attempted here to supply all details, also in the twisted case. Further, we refer to Bernstein's fundamental lecture notes [B]. However, those results of [B] which we use can be found already in the preliminary work [BD], with the exception of the "second adjointness theorem": i is left adjoint to \overline{r} ; see §**F**.

I wish to thank J.-L. Colliot-Thélène, Bill Jacob, Wayne Raskind and Alex Rosenberg, for an instructive and enjoyable summer school. Nato-grant CRG-921232 is gratefully acknowledged.

B. Categorical center.

A cuspidal pair is a pair (M, ρ) consisting of a standard Levi subgroup M < G and the equivalence class $\rho \in \operatorname{Irr} M$ of a supercuspidal irreducible M-module. Denote by $\Theta(G)$ the set of all cuspidal pairs up to conjugation by G. It is the disjoint union of infinitely many sets $\Theta = \Theta(M, \rho)$, each of which is the image of the map $X(M) \to \Theta(G)$, $\psi \mapsto (M, \psi \rho)/G$, for some cuspidal pair (M, ρ) . Each such Θ is called a *connected component* of $\Theta(G)$ and has the natural structure of a complex affine algebraic variety as the quotient of X(M) by a finite group. Then $\Theta(G) = \cup \Theta$ has the structure of a complex algebraic variety consisting of infinitely many connected components.

For any $\pi \in \operatorname{Irr} G$ there is a unique up to conjugation by G cuspidal pair (M, ρ) such that π is a constituent of $i_{GM}(\rho)$. The image θ of (M, ρ) in $\Theta(G)$ is called the *infinitesimal character* of π , and the map χ : Irr $G \to \Theta(G)$, $\chi(\pi) = \theta$, is onto and finite to one (see [BZ1]). Note that χ is X(G)-equivariant, where X(G) acts on $\Theta(G)$ by $\psi: (M, \rho) \mapsto (M, \psi | M \cdot \rho)$.

For each connected component Θ in $\Theta(G)$ consider the set $\chi^{-1}(\Theta) \subset \operatorname{Irr} G$, and the corresponding abelian subcategory

$$\mathbb{M}(\Theta) = \{ E \in \mathbb{M}(G); \ JH(E) \subset \chi^{-1}(\Theta) \} \text{ of } \mathbb{M}(G).$$

The Decomposition Theorem of [B] asserts that for $\Theta \neq \Theta'$ the categories $\mathbb{M}(\Theta)$ and $\mathbb{M}(\Theta')$ are orthogonal, namely $\operatorname{Hom}(E, E') = 0$ for $E \in \mathbb{M}(\Theta), E' \in \mathbb{M}(\Theta')$. Moreover, we have $\mathbb{M}(G) = \prod_{\Theta} \mathbb{M}(\Theta)$, where the product ranges over all connected components Θ in $\Theta(G)$. Thus each G-module E has a unique decomposition $E = \bigoplus_{\Theta} E_{\Theta} = \prod_{\Theta} E_{\Theta}$ with $E_{\Theta} \in \mathbb{M}(\Theta)$. In particular \mathbb{H}_G is a G-module under the left action of G, and so

 \mathbb{H}_G decomposes as a direct sum $\oplus_{\Theta} \mathbb{H}_{\Theta}$ of two sided ideals \mathbb{H}_{Θ} , and $E_{\Theta} = \mathbb{H}_{\Theta} E$ for any G-module E.

The central algebra $\mathcal{Z}(\mathbb{M})$ of an abelian category \mathbb{M} is the algebra $\operatorname{End}(Id_{\mathbb{M}})$ of endomorphisms of the identity functor $Id_{\mathbb{M}}: \mathbb{M} \to \mathbb{M}$. Thus $z \in \mathcal{Z}(\mathbb{M})$ is a set of endomorphisms $\{z_E: E \to E; E \in \mathbb{M}\}$ such that for any morphism $\alpha: E \to F$ in \mathbb{M} we have $z_F \circ \alpha = \alpha \circ z_E$. Put $\mathcal{Z}(G)$ for $\mathcal{Z}(\mathbb{M}(G))$.

A ring \mathbb{H} is called an *id-ring* if for any finite set h_1, \dots, h_n in \mathbb{H} there is an idempotent e in \mathbb{H} with $eh_i = h_i = h_i e$. Any id-ring can be presented as $\lim_{\to} \mathbf{I}\mathbb{H}_i$, where \mathbf{I} is an ordered filtered set (for any i, j in \mathbf{I} there is k in \mathbf{I} with i < k, j < k), and where $\{\mathbb{H}_i (i \in \mathbf{I})\}$ is a directed system of rings with identity, but the morphisms $\mathbb{H}_i \to \mathbb{H}_j (i < j)$ are not assumed to map the identity of \mathbb{H}_i to that of \mathbb{H}_j . For example, \mathbb{H}_G is an idalgebra (algebra which is an id-ring), \mathbf{I} is the set of compact open subgroups K of G, and \mathbb{H}_K the convolution algebra of K-biinvariant measures in \mathbb{H}_G . Note that the subset \mathbf{I}^{σ} of σ -invariant K in \mathbf{I} is cofinal in \mathbf{I} , hence $\mathbb{H}_G = \lim_{\to} \mathbb{H}_K (K \in \mathbf{I}^{\sigma})$.

A module E over an id-ring \mathbb{H} is called *non-degenerate* if $\mathbb{H}E = E$, equivalently if $E = \lim_{\to \to} eE$, where the limit ranges over the set of idempotents in \mathbb{H} . From now on by an \mathbb{H} -module we shall mean a non-degenerate \mathbb{H} -module. Denote by $\mathbb{M}(\mathbb{H})$ the category of (non-degenerate) \mathbb{H} -modules. Note that $\mathbb{M}(\mathbb{H}_G) = \mathbb{M}(G)$, and $\mathbb{M}(\mathbb{H}_\Theta) = \mathbb{M}(\Theta)$ for each connected component Θ of $\Theta(G)$. Write $\mathcal{Z}(\mathbb{H})$ for $\mathcal{Z}(\mathbb{M}(\mathbb{H}))$. If \mathbb{H} is an id-ring, the morphism $z \mapsto z_{\mathbb{H}}$ identifies $\mathcal{Z}(\mathbb{H})$ with the algebra $\operatorname{End}_{\mathbb{H} \times \mathbb{H}^{opp}}(\mathbb{H})$ of endomorphisms of \mathbb{H} which commute with right and left multiplication. In particular, if \mathbb{H} has an identity then $\mathcal{Z}(\mathbb{H})$ is isomorphic to the center of \mathbb{H} . For example, $\mathcal{Z}(\mathbb{H}_K)$ is the center of \mathbb{H}_K .

The orthogonal decomposition $\mathbb{M}(G) = \Pi_{\Theta}\mathbb{M}(\Theta)$ implies that $\mathcal{Z}(G) = \Pi_{\Theta}\mathcal{Z}(\Theta)$, where $\mathcal{Z}(\Theta)$ is the center of $\mathbb{M}(\Theta)$. A theorem of [B] asserts that $\mathcal{Z}(\Theta)$ is naturally isomorphic to the algebra of regular (polynomial) functions on the variety Θ . Hence $\mathcal{Z}(G) = \mathcal{Z}(\mathbb{H}_G)$ is the algebra of regular functions on $\Theta(G)$. In particular $z \in \mathcal{Z}(G)$ acts on $\pi \in \operatorname{Irr}(G)$ by multiplication by the scalar $z(\theta)$, where $\theta = \chi(\pi)$.

For any compact open subgroup K of G put $\operatorname{Irr}^{K}(G) = \{E \in \operatorname{Irr} G; E^{K} \neq 0\}; E^{K}$ is the space of K-fixed vectors in $E \in \mathbb{M}(G)$. By a Proposition of [B] the subset $\chi(\operatorname{Irr}^{K}(G))$ of $\Theta(G)$ is a union of finitely many components, and for any component Θ of $\Theta(G)$ there is $K = K_{\Theta}$ such that $\chi^{-1}(\Theta) \subset \operatorname{Irr}^{K}(G)$. The open compact subgroup K of G is called *special* if $\operatorname{Irr}^{K}(G)$ is equal to a union of pullbacks $\chi^{-1}(\Theta)$ of components Θ . Put $\mathbb{M}_{K}(G) = \{E \in \mathbb{M}(G); E$ is generated by $E^{K}\}$, and $\mathbb{M}_{K}^{\perp}(G) = \{E \in \mathbb{M}(G); E^{K} = 0\}$. If K is special then $\mathbb{M}(G)$ is the direct sum of the abelian subcategories $\mathbb{M}_{K}(G)$ and $\mathbb{M}_{K}^{\perp}(G)$, and $\mathbb{M}_{K}(G) = \mathbb{M}(\mathbb{H}_{K})$, by a theorem of [B]. Consequently $\mathcal{Z}(\mathbb{M}_{K}(G)) = \mathcal{Z}(\mathbb{H}_{K})$ is the ring of regular functions on the union Θ_{K} of finitely many connected components Θ of $\Theta(G)$ with $\chi^{-1}(\Theta) \subset \operatorname{Irr}^{K}(G)$. Moreover, the algebra \mathbb{H}_{K} decomposes as $\bigoplus_{\Theta \subset \Theta_{K}} \mathbb{H}_{\Theta}$. By [B] the algebra \mathbb{H}_{Θ} is finitely generated $\mathcal{Z}(\Theta)$ -module, and \mathbb{H}_{K} is a finitely generated $\mathcal{Z}(\Theta_{K})$ -module (and $\mathcal{Z}(G)$ -module). Finally, it is shown in [B] that K is special if it has an Iwahori decomposition for each M < G (thus $K = K \cap \overline{U} \cdot K \cap M \cdot K \cap U$ where $M = P \cap \overline{P}$ is the intersection of the standard parabolic subgroup $P = M_0 = MU$ and its opposite parabolic $\overline{P} = M\overline{U}$), and there exists a compact subgroup K_0 which normalizes K and satisfies $G = K_0 P_0$. Congruence subgroups and Iwahori subgroups are special.

For any standard Levi subgroup M < G the morphism $i_{GM} : \Theta(M) \to \Theta(G)$ defined by $(N, \rho) \mapsto (N, \rho)$ is finite. It is not injective since cuspidal pairs conjugate under G may be non-conjugate under M. Denote the adjoint morphism by $i_{GM}^* : \mathcal{Z}(G) \to \mathcal{Z}(M)$. Then $\mathcal{Z}(M)$ is a finitely generated $\mathcal{Z}(G)$ -module. Put $z_M = i_{GM}^* z \in \mathcal{Z}(M)$ for $z \in \mathcal{Z}(G)$. Then by a Propoposition of [B], for each M-module ρ we have $i_{GM}(z_M) = z$ on $i_{GM}\rho$, and for each G-module π we have $r_{MGZ} = z_M$ on $r_{MG}\pi$.

Recall that $\pi \in JH(i_{GN}\rho)$ if and only if ${}^{\sigma}\pi \in JH(i_{G,\sigma N}({}^{\sigma}\rho))$. Hence the morphism $\sigma: \Theta(G) \to \Theta(G)$ defined by $(N,\rho) \mapsto (\sigma N, {}^{\sigma}\rho)$ satisfies $\sigma(\chi(\pi)) = \chi({}^{\sigma}\pi)$. Denote by σ also the dual map $\sigma: \mathcal{Z}(G) \to \mathcal{Z}(G), \ \sigma z(\theta) = z(\sigma^{-1}\theta)$.

Remark. Denote by Θ^{σ} , where Θ is a component of $\Theta(G)$, the subset of σ -fixed points of Θ . The subset Θ^{σ} is empty unless $\sigma\Theta = \Theta$, and it contains the infinitesimal characters of all σ -invariant G-modules π with $\chi(\pi) \in \Theta$ (however $\sigma\theta = \theta$ does not imply the existence of $\pi \in \operatorname{Irr} G$ with $\theta = \chi(\pi)$ and $\pi \simeq {}^{\sigma}\pi$). The set Θ^{σ} is a (closed) subvariety of Θ . Indeed, if Θ^{σ} is not empty then it contains a point represented by a cuspidal pair (M, ρ) . Let $W_G = W(M_0, G) = \operatorname{Norm} (M_0, G)/M_0$ be the Weyl group of G. Then there is $s \in W_G$ with $(\sigma N, \sigma \rho) = (sN, s\rho)$. If $(N, \psi \rho), \psi \in X(N)$, represents any other point in Θ^{σ} , then there is s_{ψ} in W_G with $(\sigma N, \sigma(\psi \rho)) = (s_{\psi}N, s_{\psi}(\psi)s_{\psi}(\rho))$. Since we have $sN = s_{\psi}N$, there is $w_{\psi} \in W(N, G) = \operatorname{Norm} (N, G)/N$ such that $s_{\psi} = sw_{\psi}$. Hence $sw_{\psi}(\psi) \cdot s\rho \simeq \sigma\psi \cdot s\rho$, or $((sw_{\psi})(\psi)/\sigma(\psi)) \otimes s\rho \simeq s\rho$, and $sw_{\psi}(\psi)/\sigma(\psi)$ lies in a fixed finite group depending only on ρ (and σ). Consequently Θ^{σ} is (Zariski) closed in Θ .

C. Discrete modules.

Put $R_I^{\sigma}(G) = \sum_{M = \sigma M \leq G} i_{GM}(R^{\sigma}(M))$. A *G*-module $\pi \in \operatorname{Irr}^{\sigma}(G)$ is called σ -discrete

if it does not lie in $R^{\sigma}_{I}(G)$. An element θ of $\Theta(G)$ is called σ -discrete if it is equal to $\chi(\pi)$ for a σ -discrete $\pi \in \operatorname{Irr}^{\sigma}(G)$. Denote by $R^{\sigma}_{\theta}(G)$ the subgroup of $R^{\sigma}(G)$ generated by the G-modules with infinitesimal character θ . Denote by $\Theta^{\sigma}_{\operatorname{disc}}(G)$ the subset of σ -discrete θ in $\Theta(G)$, and for each connected component Θ of $\Theta(G)$ put $\Theta^{\sigma}_{\operatorname{disc}} = \Theta \cap \Theta^{\sigma}_{\operatorname{disc}}(G)$.

Theorem 1. For each connected component Θ of $\Theta(G)$, the set $\Theta_{\text{disc}}^{\sigma}$ is a union of finitely many $X^{\sigma}(G)$ -orbits (and in particular is a subvariety of Θ).

A main step in the proof of this Theorem is the following

Proposition 1.1. For each Θ the set $\Theta_{\text{disc}}^{\sigma}$ is constructible (a finite union of locally closed, in the Zariski topology, subsets) in Θ .

Proof. We begin with some preliminaries. Let \mathbb{B} be a commutative algebra over \mathbb{C} . A $G \times \mathbb{B}$ -module is a G-module E equipped with a homomorphism $\mathbb{B} \to \operatorname{End}_G E$. Such E is called a \mathbb{B} -family of G-modules if E is finitely generated as a $G \times \mathbb{B}$ -module, and for each open compact subgroup K of G the \mathbb{B} -module E^K is finitely generated and

projective. For any homomorphism $\mathbb{B} \to \mathbb{B}'$ of algebras write $E_{\mathbb{B}'} = \mathbb{B}' \otimes_{\mathbb{B}} E$ for the induced \mathbb{B}' -family of G-modules. If \mathbb{B} is the algebra k[X] of regular functions on a variety X, call E an X-family of G-modules. Given a morphism $X' \to X$, denote by $E_{X'}$ the induced X'-family of G-modules. In particular for any point s in X (thus s: Spec $\mathbb{C} \to X$) the corresponding G-module $E_s = \mathbb{C} \otimes_{k[X]} E$ is called the *specialization* of the X-family E at s.

Given an X -family of G -modules E define a function $\nu_E : X \to R(G)$ by $\nu_E(s) = E_s$, and a function $\overline{\nu}_E : X \to \overline{R}^{\sigma}(G)$ by $\overline{\nu}_E(s) = \overline{E}_s$, where \overline{E}_s is the image of $E_s \in R(G)$ in the quotient $\overline{R}^{\sigma}(G)$ of $R^{\sigma}(G)$ by the relation $(\pi, \zeta S) \sim (\pi, S)$ if $\zeta^{\ell} = 1; \overline{R}^{\sigma}(G)$ is the free abelian group generated by $\operatorname{Irr}^{\sigma}(G)$. A function $\nu : X \to \overline{R}^{\sigma}(G)$ is called *regular* if $\nu = \overline{\nu}_E$ for some X-family E of G-modules. A regular function $\nu : X \to \overline{R}^{\sigma}(G)$ is called *irreducible* if $\nu(X) \subset \operatorname{Irr}^{\sigma}(G)$. Two irreducible functions ν, ν' are called *disjoint* if $\nu(s) \neq \nu(s')$ for every $s \neq s'$ in X.

Lemma 1.1.1. Given a regular function $\nu : X \to \overline{R}^{\sigma}(G)$ there exists a dominant étale morphism $\phi : X_1 \to X$, finitely many irreducible disjoint regular functions $\lambda_j : X_1 \to \overline{R}^{\sigma}(G)$, and positive integers n_j , such that $\nu \circ \phi = \sum_j n_j \lambda_j$.

Proof. Let E be an X-family of G-modules such that $\nu = \overline{\nu}_E$. Then there is an open compact σ -invariant subgroup K of G such that E is generated by E^K as a G-module. The subgroup K can be chosen to be special, and then any non-zero subquotient E' of E is generated by its subspace ${E'}^K$ (which is non-zero) by a theorem of [B]. Consequently it suffices to prove the lemma with finitely generated k[X]-families of \mathbb{H}_K -modules E^K , instead of finitely generated k[X]-families of G-modules E.

It suffices to prove the lemma with X replaced by an irreducible component. Hence we assume that X is irreducible. Write k(X) for the fraction field of k[X]. The $\mathbb{H}_K \times k[X]$ -module E^K is finitely generated as a k[X]-module; hence $k(X) \otimes_{k[X]} E^K$ is a finite dimensional vector space over the field k(X). Over an algebraic closure $\overline{k(X)}$ of k(X) there is an \mathbb{H}_K -stable flag $0 = \overline{E}'_0 \subset \overline{E}'_1 \subset \cdots \subset \overline{E}'_r$ of $\overline{k(X)}$ -vector spaces in $\overline{E}'_r = \overline{k(X)} \otimes_{k[X]} E^K$, such that each $\overline{E}_j = \overline{E}'_j/\overline{E}'_{j-1}$ is an irreducible \mathbb{H}_K -module over $\overline{k(X)}$. Since $k(X) \otimes_{k[X]} E^K$ is finite dimensional over k(X), there exists a finite extension k(X)'of k(X) in $\overline{k(X)}$, namely a finite étale dominant morphism $X' \to X$, such that the \mathbb{H}_K module $k(X') \otimes_{k[X]} E^K$ is completely reducible. Thus there is an \mathbb{H}_K -stable flag $0 = E'_0 \subset E'_1 \subset \cdots \subset E'_r$ of k(X')-vector spaces in $E'_r = k(X') \otimes_{k[X]} E^K$, such that each $\tilde{E}_j = E'_j/F'_{j-1}$ is an irreducible flag $0 = E'_0 \subset E'_1 \subset \cdots \subset E'_r$ of k(X')-vector spaces in $E'_r = k(X') \otimes_{k[X]} E^K$, such that each $\tilde{E}_j = E'_j/F'_{j-1}$ is an irreducible flag $0 = E'_0 \subset E'_1 \subset \cdots \subset E'_r$ of k(X')-vector spaces in $E'_r = k(X') \otimes_{k[X]} E^K$, such that each $\tilde{E}_j = E'_j/F'_{j-1}$ is an irreducible \mathbb{H}_K -module over k(X'). In particular \mathbb{H}_K spans $\operatorname{End}_{k(X')} \tilde{E}_j$ over k(X').

Choose a basis B_j of \tilde{E}_j over k(X'). Then $L'_j = (\mathbb{H}_K \times k[X'])B_j$ is a finitely generated projective $\mathbb{H}_K \times k[X']$ -module, and $k(X') \otimes_{k[X']} L'_j = \tilde{E}_j$. Hence $\operatorname{End}_{k[X']} L'_j$ is a ring of matrices over k[X'] of size $|B_j|$. Since $\operatorname{End}_{k(X')} \tilde{E}_j$ is $\mathbb{H}_K \times k(X')$, there exists an open subset X'' of X' such that $\operatorname{End}_{k[X'']} L''_j$, where $L''_j = k[X''] \otimes_{k[X']} L'_j$, is equal to $\mathbb{H}_K \times k[X'']$. Hence L''_j is an irreducible $\mathbb{H}_K \times k[X'']$ -module, and $L''_{j,s} = \mathbb{C} \otimes_{k[X'']} L''_j$ is an irreducible \mathbb{H}_{K} - module for every s in X''. In R(G) we then have $E_{s} = \sum_{j} L''_{j,s}$ for all $s \in X''$, and so $\nu_{E} \circ \phi = \sum_{j} \nu_{L''_{j}}$ on X'', where ϕ is the morphism $X'' \to X$. The regular functions $\nu_{L''_{j}}$ are irreducible.

Write λ_j for the distinct functions among the $\nu_{L_j^{\prime\prime}}$; then $\nu = \sum_j n_j \lambda_j$ for some $n_j \ge 1$. Replacing $X^{\prime\prime}$ by an open subset we may assume that the λ_j are disjoint; indeed, the set of $s \in X^{\prime\prime}$ with $\lambda_j(s) = \lambda_{j^\prime}(s)$ is closed in the Zariski topology.

Denote by J the set of j such that the irreducible $\mathbb{H}_K \times k[X'']$ -module \tilde{E}_j is σ invariant. Then for each $b_i \in B_j$ there are $f_{ik} = f'_{ik}/f''_{ik}$ with f'_{ik}, f''_{ik} in k[X''] such that $\sigma b_i = \sum_k f_{ik} b_k$. Replacing X'' by its open subset which is defined by $f''_{ik} \neq 0$ for all i, k, we conclude that L''_j is σ -invariant for each j in J. The functions $\nu_{L''_j}$ and $\nu_{\sigma L''_j}$ are equal or disjoint. Hence, if $L''_{j,s} \simeq \sigma L''_{j,s}$ for some s in X'' then $L''_j \simeq \sigma L''_j$, and \tilde{E}_j is σ -invariant (j lies in J). It follows that for $j \notin J$, the image of $L''_{j,s}$ in $\overline{R}^{\sigma}(G)$ is zero for every s in X''. This completes the proof of the lemma.

Corollary 1.1.2. Let $\lambda, \nu_1, \cdots, \nu_n : X \to \overline{R}^{\sigma}(G)$ be regular functions, and λ irreducible. Denote by X_I the set of s in X such that $\lambda(s)$ lies in the subgroup of $\overline{R}^{\sigma}(G)$ generated by $\nu_1(s), \cdots, \nu_n(s)$. Then there is an étale dominant morphism $\phi : X' \to X$ such that $\phi^{-1}X_I$ is empty or is X'.

Proof. There are irreducible disjoint regular functions $\lambda_1, \dots, \lambda_n : X \to \overline{R}^{\sigma}(G)$ and positive integers a_{ij} such that $\nu_i = \sum_j a_{ij}\lambda_j$. We may assume that $\lambda = \lambda_1$. It remains to

solve in integers b_1, \dots, b_n the equation $\sum_{i=1}^n b_i a_{ij} = \delta_{1,j}$.

Remark. A subset A of Θ is constructible if and only if it satisfies the condition:

(C) For any locally closed subvariety X of Θ there exists a dominant étale morphism $\phi: X' \to X$ such that $\phi^{-1}(X_I), X_I = X - X \cap A$, is either empty or X'.

Proof of Proposition. To show that $\Theta_{\text{disc}}^{\sigma}$ is constructible we shall verify (C) for $A = \Theta_{\text{disc}}^{\sigma}$. Suppose that (N, ρ) is a cuspidal pair which defines Θ , and let $\nu_{\rho} : X(N) \to \Theta$ be the morphism defined by $\psi \mapsto (N, \psi \rho)$. For each standard Levi subgroup M < G with $M = \sigma M > N$, denote by ν_M the regular function $X(N) \to \overline{R}^{\sigma}(M)$ defined by $\psi \mapsto i_{NM}(\psi \rho)$. Let X be a locally closed subvariety of Θ . Then by Lemma 1.1.1 there is a dominant étale morphism $\phi: X_1 \to X$ such that $\nu_M \circ \phi = \sum_j n_{M,j} \lambda_{M,j}$, $n_{M,j} > 0$ and

 $\lambda_{M,j}: X_1 \to \overline{R}^{\sigma}(M)$ are irreducible disjoint regular functions, for each such $M = \sigma M < G$. The set X_2 of points $s \in X_1$ where each $\lambda_{G,j}(s)$ lies in the subgroup of $\overline{R}^{\sigma}(G)$ generated by the regular functions $i_{GM}(\lambda_{M,k}(s))$, is $\phi^{-1}(X_I)$, $X_I = X - X \cap \Theta_{\text{disc}}^{\sigma}$. But then Corollary 1.1.2 implies that $\phi^{-1}(X_I)$ is empty or is X_1 . Hence X satisfies (C) and the proposition follows.

The following Lemma will be used in the proof below of Theorem 1.

Lemma 1.2. Given an irreducible σ -discrete G-module π there exists a tempered σ -discrete G-module π' and $\psi \in X^{\sigma}(G)$ with $\chi(\pi) = \chi(\psi \pi')$.

Proof. Langlands' classification [BW; §XI] implies that any π in Irr *G* determines a unique triple (P, ρ, ψ_M) consisting of a standard parabolic subgroup P = MU of *G*, a tempered (irreducible) *M*-module ρ , and $\psi_M \in X(M)$ which is positive with respect to *U* (see [BW]), such that π is the unique irreducible quotient of $i_{GM}(\psi_M \rho)$. The triple of ${}^{\sigma}\pi$ is $(\sigma P, {}^{\sigma}\rho, {}^{\sigma}\psi_M)$, and so if $\pi \simeq {}^{\sigma}\pi$ then $\sigma P = P, {}^{\sigma}\rho \simeq \rho, {}^{\sigma}\psi_M = \psi_M$. If the infinitesimal character of the *M*-module $\psi_M \rho$ is represented by the cuspidal pair $(N, \tau), N < M$, then each constituent of the *G*-module $i_{GM}(\psi_M \rho)$ is also a constituent of the *G*-module $i_{GN}(\tau)$, hence has the same infinitesimal character θ as π .

In $\overline{R}^{\sigma}(G)$ we have $\pi = i_{GM}(\psi_M \rho) - \sum_j \pi_j$, where π_j are the irreducible σ -invariant

constituents of $i_{GM}(\psi_M \rho)$ other than π . Moreover, if (P_j, ρ_j, ψ_j) is the triple determined by π_j , then $\psi_j < \psi_M$ in the order < introduced in [BW; XI, (2.13)]. Since the map χ : Irr $G \to \Theta(G)$ is finite to one, π_j lies in a fixed finite set determined by $\theta = \chi(\pi)$. By induction on the parameter ψ we may assume that each π_j is a \mathbb{Z} -linear combination of G-modules of the form $i_{GM'}(\psi'\rho')$, where $M' = \sigma M' < G$, $\psi' \in X^{\sigma}(M')$, and ${}^{\sigma}\rho' \simeq \rho'$ is tempered. Hence $\pi = \sum i_{GM'}(\psi'\rho')$ for some $M' = \sigma M' < G, \psi' \in X^{\sigma}(M')$, and tempered σ -invariant M'-modules ρ' . Since π is σ -discrete, at least one M' in the sum equals G, and the corresponding ρ' is σ -discrete. The lemma follows.

Proof of Theorem 1. The involution $+ : R(G) \to R(G)$ which assigns to each G-module π its Hermitian contragredient π^+ , maps Irr G to Irr G and Irr $^{\sigma}(G)$ to Irr $^{\sigma}(G)$. It commutes with i_{GM} for each M < G, acts on X(M) and on the set of cuspidal pairs (M, ρ) , and consequently defines an involution + on the complex algebraic variety $\Theta(G)$ which commutes with χ : Irr $G \to \Theta(G)$. It is clear that the action of + on the algebraic varieties X(M) and $\Theta(G)$ is anti-holomorphic and in particular anti-algebraic.

By Lemma 1.2 each $\theta \in \Theta_{\text{disc}}^{\sigma}$ is of the form $\chi(\psi\pi)$ where $\psi \in X^{\sigma}(G)$ and π is an irreducible tempered σ -invariant G-module. Since π is tempered it is unitary, and so $\pi^{+} = \pi$. Hence $\theta^{+} \in X^{\sigma}(G)\theta$. Consequently the subset $\overline{\Theta}_{\text{disc}}^{\sigma} = \Theta_{\text{disc}}^{\sigma}/X^{\sigma}(G)$ of the algebraic quotient variety $\overline{\Theta} = \Theta/X^{\sigma}(G)$, which is constructible by Proposition 1.1, is pointwise fixed by the anti-algebraic involution +. It follows that $\overline{\Theta}_{\text{disc}}^{\sigma}$ is finite, namely $\Theta_{\text{disc}}^{\sigma}$ consists of finitely many $X^{\sigma}(G)$ -orbits, as asserted.

D. Induction.

Let L be a field of characteristic zero. A G-module over L is a smooth representation $\pi: G \to \operatorname{Aut} V$ of the group G on a vector space V over L. Denote by R(G; L) the Grothendieck group of G-modules over L of finite length, and by $R^{\sigma}(G; L)$ the free abelian group generated by the pairs (π, S) , where π is a G-module over L of finite length and $S \in \operatorname{Aut}_{G}^{\sigma} \pi$, subject to the relations (R_{i}) in §A. Note that $R^{\sigma}(G; \mathbb{C}) = R^{\sigma}(G)$.

Let $\mathbf{c} = (c_M; M = \sigma M \leq G)$ be a sequence of rational numbers. Then the operator $A^{\mathbf{c}}_{\sigma} = 1 + \sum_{M=\sigma M \leq G} c_M i_{GM} r_{MG}$ maps $R^{\sigma}(G; L)_Q$ to itself, and it is clear that for any π in $R^{\sigma}(G; L)_Q$ we have $A^{\mathbf{c}}_{\sigma} \pi \equiv \pi \mod R^{\sigma}_I(G; L)_Q$, where $R^{\sigma}_I(G; L) = \sum_{M=\sigma M \leq G} i_{GM}(R^{\sigma}(M; L))$.

We shall now show that the sequence **c** can be chosen so that $A^{\mathbf{c}}_{\sigma}$ distinguishes between induced and non-induced modules, in the following sense.

Theorem 2. There exists a sequence $\mathbf{c} = (c_M \in Q; M = \sigma M \leq G)$ such that the endomorphism $A^{\mathbf{c}}_{\sigma}$ of $R^{\sigma}(G; L)_Q$ has the following property. Given π in $R^{\sigma}(G; L)_Q$ we have $A^{\mathbf{c}}_{\sigma}\pi = 0$ if and only if π lies in $R^{\sigma}_{I}(G; L)_Q$.

Thus we need to find $\mathbf{c} = (c_M)$ such that $A^{\mathbf{c}}_{\sigma}(R^{\sigma}_I(G;L)_Q) = 0$.

Recall that the Weyl group W_G of G is $\operatorname{Norm}(M_0, G)/M_0$. For M < G consider W_M as a subgroup of W_G . The standard Levi subgroups M, N < G are called *associate* if there is w in W_G with $N = wMw^{-1}$. Each such w defines an isomorphism $w : R(M; L) \to R(N; L)$ which depends only on the double class of w in $W_M \setminus W_G/W_N$. If $w' : R(N'; L) \to R(M; L)$ is defined, denote by $w \circ w'$ the composition $R(N'; L) \to R(N; L)$.

Lemma 2.1. (i) For N' < N < M < G we have $i_{MN'} = i_{MN} \circ i_{NN'}, r_{N'M} = r_{N'N} \circ r_{NM}$. (ii) If $N = wMw^{-1}$ then $i_{GN} \circ w(\rho) = i_{GM}(\rho)$ for all ρ in $R^{\sigma}(M; L)$.

(iii) For M, N < G, let W_G^{NM} be the set of representatives of $W_N \setminus W_G/W_M$ of minimal length. Then we have the following equality of functors from $\mathbb{M}(M; L)$ to $\mathbb{M}(N; L)$:

$$r_{NG} \circ i_{GM} = \sum_{w \in W_G^{NM}} i_{NN_w} \circ w \circ r_{M_w M},$$

where

$$M_w = w^{-1}Nw \cap M, \ N_w = wM_ww^{-1} = N \cap wMw^{-1}.$$

Proof. (i) follows from the definitions, (ii) is proven in [BDK], p. 189, and (iii) is [BZ2], (2.12).

Suppose that $M = \sigma M < G$. Then σ acts on W_M (and W_G). Since P_0 is σ -invariant we have $\ell(\sigma w) = \ell(w)$ where ℓ is the length function on W_G . If $N = \sigma N < G$ then σ acts on W_G^{NM} . Denote by $W_G^{NM}(\sigma)$ the subset of σ -fixed elements in W_G^{NM} .

Lemma 2.1. (iv). For $M = \sigma M, N = \sigma N < G$, the homomorphism $r_{NG} \circ i_{GM}$: $R^{\sigma}(M;L) \rightarrow R^{\sigma}(N;L)$ is equal to

$$\sum_{w \in W_G^{NM}(\sigma)} i_{NN_w} \circ w \circ r_{M_wM}.$$

Proof. The case of $\sigma = id$ follows at once from (iii). Denote by $\Sigma_1, \Sigma_2, \cdots$, the σ -orbits in W_G^{NM} . The length function is constant on each orbit Σ_i , and we index the Σ_i

to satisfy $\ell(\Sigma_i) \geq \ell(\Sigma_{i+1})$. Then $\ell(\Sigma_i) = 1$ if and only if $\Sigma_i \subset W_G^{NM}(\sigma)$. Index the elements w of W_G^{NM} as w_1, w_2, \cdots, w_t such that if $s_i = |\Sigma_i|$, and $t_i = s_1 + \cdots + s_i$, then $\Sigma_i = \{w_{t_{i-1}+1}, \cdots, w_{t_i}\}$. Put $P = MP_0 = MU_M$, $Q = NP_0 = NU_N$ (U_M, U_N are the unipotent radicals of the standards parabolic subgroups P, Q < G with Levi components M, N).

Given an M-module (ρ, E) , the space of $i_{GM}\rho$ consists of the functions $f: G \to E$ with $f(mug) = \delta_P(m)^{\frac{1}{2}}\rho(m)f(g)$ $(m \in M, u \in U_M)$. Let E_k be the subspace of the fwhich are supported on $\bigcup_{1 \leq i \leq k} Pw_iQ$. Then E_k is Q-invariant, and [BZ2] define $F'_k(\rho)$ to be the image of E_k under r_{NG} . Moreover, [BZ2] show that $F'_1 \subset F'_2 \subset \cdots \subset F'_t$ is a functorial filtration of the functor $F'_t = F = r_{NG} \circ i_{GM} : \mathbb{M}(M; L) \to \mathbb{M}(N; L)$, such that $F'_i/F'_{i+1} = i_{NN_{w_i}} \circ w_i \circ r_{M_{w_i}M}$. Put $F_i = F'_{t_i}$. For any $\rho \in \operatorname{Irr}^{\sigma}(M) \cap R^{\sigma}(M; L)$, the N-module $F_i(\rho)/F_{i-1}(\rho)$ is the direct sum of s_i N-modules over L which are permuted by the action of σ . If $s_i > 1$, the image of $F_i(\rho)/F_{i-1}(\rho)$ in $R^{\sigma}(N; L)$ is then zero. Since $s_i = 1$ precisely for the elements of $W_G^{NM}(\sigma)$, the lemma follows.

Corollary 2.2. For each $M = \sigma M < G$, the operator $T_M = i_{GM} \circ r_{MG} : R^{\sigma}(G;L) \rightarrow R^{\sigma}(G;L)$ satisfies

(a)
$$T_N \circ i_{GM} = \sum_{w \in W_G^{NM}(\sigma)} i_{GM_w} \circ r_{M_wM}, \text{ where } M_w = M \cap w^{-1}Nw;$$

(b)
$$T_N \circ T_M = \sum_{w \in W_G^{NM}(\sigma)} T_{M_w}$$

Proof. (a)
$$T_N \circ i_{GM} = i_{GN} \circ r_{NG} \circ i_{GM} \stackrel{(iv)}{=} \sum_w i_{GN} \circ i_{NN_w} \circ w \circ r_{M_wM}$$

 $\stackrel{(i)}{=} \sum_w i_{GN_w} \circ w \circ r_{M_wM} \stackrel{(ii)}{=} \sum_w i_{GM_w} \circ r_{M_wM}.$
(b) $T_N \circ T_M = T_N \circ i_{GM} \circ r_{MG} = \sum_w i_{GM_w} \circ r_{M_wM} \circ r_{MG} = \sum_w i_{GM_w} \circ r_{M_wG} = \sum_w T_{M_w}$

Proof of Theorem 2. For $M = \sigma M < G$ put $d(M) = \dim X(M)$, and define a decreasing filtration R^i_{σ} on $R^{\sigma}(G;L)$ by $R^i_{\sigma} = \sum_{\{M=\sigma M < G; d(M) \ge i\}} i_{GM}(R^{\sigma}(M;L))$. Then

 $R_{\sigma}^{i} = R^{\sigma}(G;L)$ for $i \leq d(G), R_{\sigma}^{d(G)+1} = R_{I}^{\sigma}(G;L)$, and $R_{\sigma}^{i} = 0$ for $i > d(M_{0})$. Corollary 2.2 (a) implies that the operator T_{N} for $N = \sigma N < G$ preserves the filtration $\{R_{\sigma}^{i}\}$. Put $[W_{N}^{\sigma}]$ for the cardinality of the set W_{N}^{σ} of σ -invariant elements in W_{N} . Put d = d(N). The action of T_{N} on $R_{\sigma}^{d}/R_{\sigma}^{d+1}$ is given by

$$T_N(i_{GM}\rho) = \begin{cases} [W_N^{\sigma}]i_{GM}(\rho), & \text{if } M = \sigma M \text{ is conjugate to } N, \rho \in R^{\sigma}(M;L), \\ 0, & \text{if } M = \sigma M \text{ is not conjugate to } N, \text{ and } d(N) = d, \rho \in R^{\sigma}(M;L) \end{cases}$$

It follows that the operator $A_d = \prod_{\{N=\sigma N; d(N)=d\}} (T_N - [W_N^{\sigma}])$ preserves the filtration $\{R_{\sigma}^i\}$ and annihilates $R_{\sigma}^d/R_{\sigma}^{d+1}$. Put $A_{\sigma}' = A_{d(M_0)} \circ A_{d(M_0)-1} \circ \cdots \circ A_{d(G)+1}$. Then

 $A'_{\sigma}(R^{\sigma}_{I}(G;L)) = 0$, and by Corollary 2.2 (b) the operator A'_{σ} takes the form $A'_{\sigma} = a(1 + \sum_{M=\sigma M \leq G} c_{M}T_{M})$ with $c_{M} \in Q, a \in \mathbb{Z}, a \neq 0$, and $ac_{M} \in \mathbb{Z}$. The operator

 $A^{\mathbf{c}}_{\sigma} = a^{-1}A'_{\sigma}$, where $\mathbf{c} = (c_M)$, has the properties asserted in the theorem.

For $M = \sigma M \leq G$, denote by $i_{GM}^* : R_{\sigma}^*(G;L) \to R_{\sigma}^*(M;L)$ and $r_{MG}^* : R_{\sigma}^*(M;L) \to R_{\sigma}^*(G;L)$ the homomorphisms adjoint to i_{GM} and r_{MG} . A form F in $R_{\sigma}^*(G;L)$ is called σ -discrete if $F(R_I^{\sigma}(G;L)) = 0$. Denote by $R_{\sigma}^*(G;L)^{\text{disc}}$ the space of σ -discrete forms. Note that $R_{\sigma}^*(G;L) = \text{Hom}_{\mathbb{Z},\zeta}(R^{\sigma}(G;L),\mathbb{C})$ is denoted by $R_{\sigma}^*(G)$ when $L = \mathbb{C}$.

Corollary 2.3. Given F in $R^*_{\sigma}(G;L)$, the form $F^d = F + \sum_{M=\sigma M \leq G} c_M r^*_{MG} i^*_{GM} F$ is

 σ -discrete.

Proof. For π in $R^{\sigma}(G;L), F^{d}(\pi) = a^{-1}F(A'_{\sigma}\pi)$ vanishes if $\pi \in R^{\sigma}_{I}(G;L)$.

E. Dévissage.

Given a G-module π there is a special compact open σ -invariant subgroup K of G such that π^K generates π . Each subquotient π' of π is generated by ${\pi'}^K$. The map $\pi \to \pi^K$ is an equivalence from the category $\mathbb{M}_K(G)$ of G-modules π generated by π^K , to the category $\mathbb{M}(\mathbb{H}_K)$ of (nondegenerate) \mathbb{H}_K -modules. Since $\mathbb{M}(\mathbb{H}_K)$ has finite cohomological dimension ([B], see Appendix), the Grothendieck group $K(\mathbb{H}_K)$ of finitely generated \mathbb{H}_K -modules coincides with the Grothendieck group of finitely generated projective (and even free) \mathbb{H}_K -modules. The center $\mathcal{Z}_K = \mathcal{Z}(\mathbb{H}_K)$ of the algebra \mathbb{H}_K is (equal to the center $\mathcal{Z}(\mathbb{M}(\mathbb{H}_K))$ of the category $\mathbb{M}(\mathbb{H}_K)$ and to) the ring $k[\Theta_K]$ of regular functions on the variety $\Theta_K; \Theta_K$ is a finite union of connected components Θ of $\Theta(G)$ with $\chi^{-1}(\Theta) \subset \operatorname{Irr}^K(G)$.

Denote by Ann (π, \mathcal{Z}_K) the annihilator of the \mathbb{H}_K -module π in the ring \mathcal{Z}_K . This is an ideal in \mathcal{Z}_K . The corresponding subvariety supp π of $\Theta_K \subset \Theta(G)$ is called the *support* of π . If the distinct irreducible components of supp π are denoted by Y then supp $\pi = \bigcup Y$.

Let A be a \mathbb{C} -algebra and denote by σ an automorphism of A of finite order ℓ .

Definition. The σ -cocenter $\tau_{\sigma}(\mathbb{M}(A))$ of the category $\mathbb{M}(A)$ of (non-degenerate) Amodules is defined to be the quotient of the free abelian group generated over \mathbb{C} by the triples (P, S, α) , where P is a projective finitely generated A-module, $S \in \operatorname{Aut}_{A}^{\sigma} P$ (thus $S: P \to P$ is a vector space automorphism with $S(hp) = \sigma(h)^{-1}S(p)$ for $p \in P, h \in A$, and $S^{\ell} = 1$), and $\alpha \in \operatorname{End}_{A} P$, subject to the following relations:

(1)
$$(P, S, \alpha) \sim (P', S', \alpha') + (P'', S'', \alpha'')$$
 if $0 \rightarrow (P', S', \alpha') \rightarrow (P, S, \alpha) \rightarrow (P'', S'', \alpha'') \rightarrow 0$ is exact;

$$\begin{array}{ll} (2) & (P,S,\alpha+\beta)\sim(P,S,\alpha)+(P,S,\beta), \ (P,S,\alpha\sigma(\beta)-\beta\alpha)\sim 0 \ , \ (P,\zeta S,t\alpha)\sim \zeta t(P,S,\alpha), \\ (\alpha,\beta\in \ \mathrm{End}_{A}P, \ \zeta^{\ell}=1, \ t\in\mathbb{C}); \end{array}$$

(3) If $P = \bigoplus_i P_i, \alpha(P_i) \subset P_i$ and for each *i* there is *j* such that $SP_i = P_j$, then $(P, S, \alpha) \sim \sum_i (P_i, S_i, \alpha_i)$, where the sum ranges over the *i* with j(i) = i, and $\alpha_i = \alpha |P_i, S_i = S|P_i$.

Write $\tau_{\sigma}(G)$ for $\tau_{\sigma}(\mathbb{M}(\mathbb{H}_G))$. Write $\tau_{\sigma}(\Theta)$ for $\tau_{\sigma}(\mathbb{M}(\mathbb{H}_{\Theta}))$; it is a direct summand of $\tau_{\sigma}(G)$. When K is σ -invariant and special, $\tau_{\sigma}(\Theta_K) = \tau_{\sigma}(\mathbb{M}(\mathbb{H}_K))$ is also a direct summand of $\tau_{\sigma}(G)$, being the direct sum of $\tau_{\sigma}(\Theta)$ over the $\Theta \subset \Theta_K$. Put $\tau_{\sigma,I}(G) = \sum_{M=\sigma} M \leq G i_{GM}(\tau_{\sigma}(M))$.

Define $\tau_{\sigma,i}(\Theta)$ to be the quotient by the relations (1), (2), (3) of the free abelian group generated over \mathbb{C} by the triples (P, S, α) $(P: \text{ projective finitely generated } \mathbb{H}_{\Theta} \text{-module}, S \in \operatorname{Aut}_{\mathbb{H}_G}^{\sigma} P, \alpha \in \operatorname{End}_{\mathbb{H}_G} P$) such that P is supported on a subvariety Y of Θ whose image \overline{Y} in the quotient variety $\overline{\Theta} = \Theta/X^{\sigma}(G)$ is of dimension at most i. Recall that the dimension of a subvariety Y of Θ , corresponding to a prime ideal I in the ring $k[\Theta]$, is defined to be the supremum of the lengths n of all finite strictly increasing chains $P_0 \subset$ $P_1 \subset \cdots \subset P_n$ of prime ideals P_i in $k[\Theta]$, with $P_n = I$. The identity induces a natural map $\tau_{\sigma,i}(\Theta) \to \tau_{\sigma,i+1}(\Theta)$, and for all sufficiently large i we have $\tau_{\sigma,i}(\Theta) = \tau_{\sigma,i+1}(\Theta)$. Define $\tau_{\sigma,i}(G)$ similarly, and note that $\tau_{\sigma,i}(G) = \bigoplus_{\Theta} \tau_{\sigma,i}(\Theta)$. Note that $\tau_{\sigma,0}(\Theta) \subset \widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}$ and $\tau_{\sigma,0}(G) \subset \widetilde{R}^{\sigma}(G)_{\mathbb{C}}$, where $R^{\sigma}(\Theta)$ is the subgroup of $R^{\sigma}(G)$ generated by the pairs (π, S) with supp $\pi \subset \Theta$. As usual, $R_T = R \otimes_{\mathbb{Z}} T$ for any \mathbb{Z} -modules R and T, and \widetilde{R}^{σ} indicates the quotient of R^{σ} by the relations $(P, \zeta S) \sim \zeta(P, S), \zeta \in \mathbb{C}, \zeta^{\ell} = 1$. Note that $\tau_{\sigma,0}(G)$ is generated by the (P, S, α) where P is projective of finite length.

The triple (π, S, α) represents an element of $\tau_{\sigma,i}(\Theta)$ if $\operatorname{supp} \pi = \bigcup Y, Y \subset \Theta$, $\dim \overline{Y} \leq i$ for all $i, \alpha \in \operatorname{End}_{\mathbb{H}_G} \pi$ and $S \in \operatorname{Aut}_{\mathbb{H}_G}^{\sigma} \pi$. The automorphism S satisfies $S(hp) = \sigma(h)^{-1}S(p)(h \in \mathbb{H}_{\Theta}, p \in \pi)$. In particular $S(zp) = \sigma(z)^{-1}S(p)$ for all $z \in \mathcal{Z}_{\Theta} = \mathcal{Z}(\mathbb{H}_{\Theta}) \subset \mathbb{H}_{\Theta}$, and so $\operatorname{Ann}(\sigma \pi, \mathcal{Z}_{\Theta})$ is an ideal in \mathcal{Z}_{Θ} which corresponds to $\bigcup_Y \sigma Y$.

For any subvariety Y of Θ_K (or Θ) put $J_Y = \operatorname{Ann}(Y, \mathbb{Z}_K)$. It is an ideal in the ring $k[\Theta_K]$, which is prime if and only if Y is irreducible.

For any subfield L of \mathbb{C} and algebra homomorphism $\theta : \mathcal{Z}_K \to L$, denote by $R_{\theta}(L)$ the Grothendieck group of (non-degenerate) \mathbb{H}_K -modules of finite length over L on which \mathcal{Z}_K acts via θ . Let $R_{\theta}^{\sigma}(L)$ be the quotient of the free abelian group generated by the pairs (π, S) where π is an \mathbb{H}_K -module over L on which \mathcal{Z}_K acts via θ , and $S \in \operatorname{Aut}_{\mathbb{H}_K}^{\sigma} \pi$, by the relations (R_i) in §**A**.

Theorem 3. For every connected component Θ of $\Theta(G)$, and $i \geq 0$, the map

$$(\pi, S, \alpha) \mapsto \sum_{Y} \sum_{j \ge 0} ((J_Y^j \pi / J_Y^{j+1} \pi) \otimes_{k[Y]} k(Y), S, \alpha),$$

where Y ranges over all irreducible subvarieties of $(\text{supp } \pi \subset)\Theta$ with $\dim \overline{Y} = i$ and $\sigma Y = Y$, yields an isomorphism

$$\tau_{\sigma,i}(\Theta)/ \operatorname{Im} \tau_{\sigma,i-1}(\Theta) \xrightarrow{\sim} \oplus_Y \widetilde{R}^{\sigma}_{\theta}(k(Y))_{\mathbb{C}}$$

Here k(Y) is the field of rational functions on the variety Y, and $\theta = \theta_Y$ is the generic point $\theta : (\mathcal{Z}_K \to)k[\Theta] \to k[Y]$ of Y (corresponding to $Y \hookrightarrow \Theta$). We fix an embedding of k(Y) in \mathbb{C} .

Remark. For each z in \mathcal{Z}_K we have $z\alpha = \alpha z$ and $Sz = \sigma^{-1}(z)S$. If $Y \neq \sigma Y$ then $\theta_Y \neq \theta_{\sigma Y} = {}^{\sigma}\theta_Y$, and $R^{\sigma}_{\theta}(k(Y)) = \{0\}$. If $Y = \sigma Y$ then S induces an automorphism of $J^j_Y \pi / J^{j+1}_Y \pi$, and so does α .

Proof. (i) It suffices to show that the map of the theorem defines an isomorphism $\tau_{\sigma,i}(\Theta)_Q / \operatorname{Im} \tau_{\sigma,i-1}(\Theta)_Q \to \bigoplus_Y R^{\sigma}_{\theta}(k(Y))_Q$, where $\tau_{\sigma,i}(\Theta)_Q$ is defined to be the quotient of the free abelian group generated by the (P, S, α) over Q, rather than \mathbb{C} , by the relations (1) - (3), where in (2) we take $t \in Q$ and $\zeta = 1$. In the course of this proof *only* we denote $\tau_{\sigma,i}(\Theta)_Q$ by $\tau_{\sigma,i}(\Theta)$.

(ii) The map is well-defined. Indeed, $X = \operatorname{supp} \pi$ is a subvariety of Θ corresponding to the ideal $I = \operatorname{Ann} \pi$ in the noetherian ring $A = k[\Theta]$. Let $I = \bigcap_k I_k$ be a minimal primary decomposition of I. The radical $J_k = r(I_k)$ is a prime ideal. It is finitely generated since A is noetherian. Hence there is $h_k \geq 1$ such that $J_k^{h_k} \subset I_k$, for each k. Let Y_k be the subvariety of Θ corresponding to J_k . Then $J_{Y_k} = \operatorname{Ann} Y_k$ is J_k . Now $X = \bigcup_k Y_k$ has only finitely many connected components Y (in particular with dim $\overline{Y} = i$, and $\sigma Y = Y$). Each $J_Y^j \pi / J_Y^{j+1} \pi$ is annihilated by J_Y , hence is supported on $Y \subset \operatorname{supp} \pi$. Put h(Y) for h_k if Y is Y_k .

To show that for each (π, S, α) the sum over j is finite, note that for each variety Y in the first sum, the module $J_Y^h \pi$ is annihilated by $\prod_{Y' \neq Y} J_{Y'}^{h(Y')}$; here we put h = h(Y), and Y' ranges over the connected components of supp π other than Y. Hence $J_Y^h \pi$ is supported on $\bigcup_{Y' \neq Y} Y'$, and $J_Y^h \pi / J_Y^{h+1} \pi$ on $Y \cap \bigcup_{Y' \neq Y} Y'$, a proper subvariety of Y (in particular, of lower dimension). Hence

$$(J_Y^j \pi / J_Y^{j+1} \pi) \otimes_{k[Y]} k(Y) = 0 \text{ for } j \ge h.$$

(iii) The map is surjective. Let $\theta: \mathcal{Z}_K \to k(Y)$ (i.e. $Y \hookrightarrow \Theta \hookrightarrow \Theta_K$) be a generic point of an irreducible subvariety $Y = \sigma Y$ of Θ with dim $\overline{Y} = i$. An irreducible π_1 in a pair (π_1, S_1) in $R^{\sigma}_{\theta}(k(Y))$ is a finite dimensional vector space over the field k(Y), σ -invariant and irreducible as an \mathbb{H}_K -module, on which \mathcal{Z}_K acts by multiplication by θ . Let B be a σ -invariant finite set which spans π_1 over k(Y). Then $\pi = \mathbb{H}_K B$ is a finitely generated σ -invariant \mathbb{H}_K -module on which \mathcal{Z}_K acts by multiplication via θ . It is therefore supported on $Y(\subset \Theta, \dim \overline{Y} = i, Y = \sigma Y)$, and so (π, S, id) defines an element in $\tau_{\sigma,i}(\Theta)$, where $S \in \operatorname{Aut}_{\mathbb{H}_K}^{\sigma} \pi$ exists since π is σ -invariant. Note that S is unique up to an ℓ th root of unity, since π is irreducible. Choose S to coincide with S_1 on π_1 . Note that since π is irreducible, any $\alpha \in \operatorname{End}_{\mathbb{H}_K} \pi$ is a scalar by Schur's lemma. Then $J_Y \pi = 0$, and since $\pi \otimes_{\mathcal{Z}_{K}\bar{\kappa}} k(Y) = \pi_1$, our (π_1, S_1) is the image of (π, S, id) .

(iv) The map is injective. To show this, note that any element of $\tau_{\sigma,i}(\Theta)$ can be represented as a difference $n_1(\pi_1, S_1, \alpha_1) - n_2(\pi_2, S_2, \alpha_2)$, where $n_k \ge 0$ are rational, π_k are projective finitely generated \mathbb{H}_{Θ} -modules, $S_k \in \operatorname{Aut}_{\mathbb{H}_G}^{\sigma} \pi_k$ and $\alpha_k \in \operatorname{End}_{\mathbb{H}_G} \pi_k$. Suppose this difference maps to zero by the map of the theorem. Multiplying by the denominators of n_k we may assume that the n_k are non-negative integers. Moreover, replacing α_k by $n_k \alpha_k$, or π_k by 0, we may assume that $n_k = 1$.

To simplify the notations, fix k(=1 or 2), and delete it from the notations. In the notations of (ii), we may replace (π, S, α) by $\sum_Y \sum_{0 \le j \le h} (J_Y^j \pi / J_Y^{j+1} \pi, S, \alpha)$ in $\tau_{\sigma,i}(\Theta) / \text{ Im } \tau_{\sigma,i-1}(\Theta)$. To prove injectivity it suffices to assume that the sum ranges over a single Y. Namely we may assume that π is a sum of finitely many modules, denoted again by π to simplify the notations, and these are supported on $Y = \sigma Y$ with dim $\overline{Y} = i$, and $J_Y \pi = 0$.

As in the proof of Lemma 1.1.1, we fix a special open compact σ -invariant subgroup K of G such that π is generated by π^K as a G-module, and we work with the \mathbb{H}_K -module π^K . As there, there is a finite étale dominant morphism $Y' \to Y$ such that the $\mathbb{H}_K \times k(Y')$ -module $k(Y') \otimes_{k[Y]} \pi^K$ is completely reducible. Let $0 = E'_0 \subset E'_1 \subset \cdots \subset E'_r$ be a composition series; the quotients $E_\ell = E'_\ell/E'_{\ell-1}$ are irreducible \mathbb{H}_K -modules over k(Y'). In each E_ℓ we can find a lattice L_ℓ (finitely generated projective $\mathbb{H}_K \times k[Y]$ -module with $k(Y') \otimes_{k[Y]} L_\ell = E_\ell$) which is generically irreducible. Since the endomorphism α commutes with \mathbb{H}_K , it maps each E'_ℓ to itself, and induces an endomorphism, denoted α_ℓ , on E_ℓ . The lattice L_ℓ can, and will, be chosen to satisfy $\alpha_\ell L_\ell \subset L_\ell$. By induction we may (and will) choose the E'_ℓ to have the property that there are $1 \leq \ell_1 < \ell_2 < \cdots < \ell_t = r$ such that $SE'_{\ell_s} = E'_{\ell_s}$ and $\ell_{\ell_{s+1}} = E'_{\ell_{s+1}}/E'_{\ell_s}$ is the direct sum of the orbit of $E_{\ell_s+1} = E'_{\ell_s+1}/E'_{\ell_s}$ under the action of S, and $\ell_{s+1} = \ell_s + 1$ (i.e. E'_{ℓ_s+1} is invariant under S). We may and will choose the lattice L_ℓ to be invariant under S_ℓ if S_ℓ is defined ($\ell = \ell_{s+1} = \ell_s + 1$).

Returning to the original notations (undeleting k), we conclude that there are finitely many generically irreducible \mathbb{H}_K -modules $L_{k\ell}$, supported on $Y(=\sigma Y, \dim \overline{Y}=i)$ with $J_Y = \operatorname{Ann}(L_{k\ell}, k[\Theta])$, and $S_{k\ell} \in \operatorname{Aut}_{\mathbb{H}_K}^{\sigma} L_{k\ell}$, and $\alpha_{k\ell} \in \operatorname{End}_{\mathbb{H}_K} L_{k\ell}$, such that

$$(\pi_k, S_k, \alpha_k) \equiv \Sigma_\ell(L_{k\ell}, S_{k\ell}, \alpha_{k\ell}) \text{ in } \tau_{\sigma,i}(\Theta) / \text{ Im } \tau_{\sigma,i+1}(\Theta) \ (k=1,2).$$

This is a "pre-semi-simplification" of π_k . The "semi-simplification" of $k(Y) \otimes_{k[Y]} \pi_k$ is $\bigoplus_{\ell} (k(Y) \otimes_{k[Y]} L_{k\ell})$.

To prove injectivity we assume that $\Sigma_{\ell}(E_{1\ell}, S_{1\ell}, \alpha_{1\ell}) = \Sigma_{\ell}(E_{2\ell}, S_{2\ell}, \alpha_{2\ell})$, where $E_{k\ell} = k(Y) \otimes_{k[Y]} L_{k\ell}$. Since the $E_{k\ell}$ are all irreducible, the existence and uniqueness of the Jordan-Holder composition series implies that up to reordering indices we have $(E_{1\ell}, S_{1\ell}, \alpha_{1\ell}) = (E_{2\ell}, S_{2\ell}, \alpha_{2\ell})$ for all ℓ . But $L_{1\ell}$ and $L_{2\ell}$ are both lattices in the same vector space $E_{k\ell}$. Their intersection $L_{1\ell} \cap L_{2\ell}$ is a lattice, and the quotient $L_{k\ell}/L_{1\ell} \cap L_{2\ell}$ is supported on a lower dimensional variety. Hence in $\tau_{\sigma,i}(\Theta)/\operatorname{Im} \tau_{\sigma,i-1}(\Theta)$ we have $(\pi_k, S_k, \alpha_k) = \Sigma_{\ell}(L_{1\ell} \cap L_{2\ell}, S_{1\ell}, \alpha_{1\ell})$ for both k = 1 and k = 2, as required.

Corollary 3.1. The map $\widetilde{R}^{\sigma}(G)_{\mathbb{C}} \to \tau_{\sigma}(G) / \operatorname{Im} \tau_{\sigma,I}(G)$, induced by the natural map $R^{\sigma}(G) \to K^{\sigma}(G)$ and $K^{\sigma}(G) \to \tau_{\sigma}(G)$ by $(P, S) \mapsto (P, S, id)$, is surjective.

Proof. Let Y be an irreducible subvariety of $\Theta \subset \Theta_K$ as in Theorem 3, and $\theta : \mathbb{Z}_K \to k[Y]$ its generic point, corresponding to $Y \hookrightarrow \Theta \hookrightarrow \Theta_K$. Denote by $\overline{k(Y)}$ an algebraic

closure of the field k(Y) of rational functions on Y, and fix an embedding $\overline{k(Y)} \hookrightarrow \mathbb{C}; k[Y]$ is naturally embedded in its fraction field k(Y), and so in $\overline{k(Y)}$. Then θ defines also maps $\mathcal{Z}_K \to \overline{k(Y)}$ and $\mathcal{Z}_K \to \mathbb{C}$, denoted again by θ .

If L'/L is a finite field extension, $\theta: \mathcal{Z}_K \to L$ a homomorphism, and θ' is its composition with the embedding $L \hookrightarrow L'$, then $R^{\sigma}_{\theta}(L)$ embeds in $R^{\sigma}_{\theta'}(L')$ via j' = j/[L':L']. Here j maps $V_L \in R^{\sigma}_{\theta}(L)$ to $V_{L'} = V_L \otimes_L L' \in R^{\sigma}_{\theta'}(L')$. Indeed, the restriction of the L'-module $j'(V_L)$ to L is V_L . Let \overline{L} denote an algebraic closure of L, and $\overline{\theta}: \mathcal{Z}_K \to \overline{L}$ the composition of θ with $L \hookrightarrow \overline{L}$. We conclude that $R^{\sigma}_{\theta}(L)$ embeds in $R^{\sigma}_{\overline{\theta}}(\overline{L}) = \lim_{\to} R^{\sigma}_{\theta'}(L')$ (limit over $L', L \subset L' \subset \overline{L}$).

If $\overline{L} \subset \overline{E}$ are algebraically closed, and $\theta : \mathcal{Z}_K \to \overline{E}$ is the composition of $\theta : \mathcal{Z}_K \to \overline{L}$ and $\overline{L} \hookrightarrow \overline{E}$, then $R^{\sigma}_{\theta}(\overline{L}) \xrightarrow{\sim} R^{\sigma}_{\theta}(\overline{E})$. Indeed, any irreducible \mathbb{H}_K -module over \overline{L} is absolutely irreducible, namely it stays irreducible after tensorring with \overline{E} over \overline{L} . On the other hand, given an irreducible in $R^{\sigma}_{\theta}(\overline{E})$ with a basis B as a vector space over \overline{E} , it is obtained from $\mathbb{H}_K B \otimes_Q \overline{L}$ in $R^{\sigma}_{\theta}(\overline{L})$ on tensorring with \overline{E} over \overline{L} . Here \mathbb{H}_K is the Hecke algebra over Q associated with K. Note that any element of $R^{\sigma}_{\overline{\theta}}(\overline{L})$ lies in $R^{\sigma}_{\theta'}(L')$ for some finite extension L' of L in \overline{L} .

In view of these comments we have the natural inclusions

$$R^{\sigma}_{\theta}(k(Y)) \hookrightarrow R^{\sigma}_{\theta}(\overline{k(Y)}) \hookrightarrow R^{\sigma}_{\theta}(\mathbb{C}).$$

Theorem 1 implies that if θ is σ -discrete, namely $\theta \in \Theta^{\sigma}_{\text{disc}}(G)$, then $\dim \overline{\theta}(= \dim \overline{Y}) = 0$. In particular $R^{\sigma}_{\theta}(\mathbb{C}) \subset R^{\sigma}_{I}(G)_{\mathbb{C}}$ if $\dim \overline{\theta} > 0$. Theorem 2 asserts the existence of an operator $A_{\sigma} = A^{\mathbf{c}}_{\sigma}$ on $\widetilde{R}^{\sigma}(G)_{\mathbb{C}}$ such that for any field L of characteristic zero and $\pi \in \widetilde{R}^{\sigma}(G; L)_{\mathbb{C}}$ we have $A_{\sigma}\pi = 0$ iff $\pi \in \widetilde{R}^{\sigma}_{I}(G; L)_{\mathbb{C}}$. Consequently $\pi \in \widetilde{R}^{\sigma}_{\theta}(k(Y))_{\mathbb{C}} \subset \widetilde{R}^{\sigma}_{\theta}(\mathbb{C})_{\mathbb{C}}$ lies in $\widetilde{R}^{\sigma}_{\theta,I}(k(Y))_{\mathbb{C}}$ iff $A_{\sigma}\pi = 0$, namely iff $\pi \in \widetilde{R}^{\sigma}_{\theta,I}(\mathbb{C})_{\mathbb{C}}$ (by a double application of Theorem 2), and if $\dim \overline{\theta} > 0$, by Theorem 1.

Theorem 3 provides an isomorphism

$$\tau_{\sigma,i}(\Theta)/ \operatorname{Im} \tau_{\sigma,i-1}(\Theta) \simeq \bigoplus_{Y \subset \Theta} \widetilde{R}^{\sigma}_{\theta}(k(Y))_{\mathbb{C}} \text{ (irreducible } Y = \sigma Y, \ \dim \overline{Y} = i)$$

If i > 0 then $\widetilde{R}^{\sigma}_{\theta}(k(Y))_{\mathbb{C}} \subset \widetilde{R}^{\sigma}_{I}(G)_{\mathbb{C}}$ as was just observed. Hence by Theorem 2 we have that $A_{\sigma}[\tau_{\sigma,i}(\Theta)/\operatorname{Im} \tau_{\sigma,i-1}(\Theta)] = 0$. It follow that for some $j \ge 0$ we have $A^{j}_{\sigma}(\tau_{\sigma}(G)) =$ $\tau_{\sigma,0}(G) \subset \widetilde{R}^{\sigma}(G)_{\mathbb{C}}$. In other words, given (π, S, α) in $\tau_{\sigma}(G)$, it is equal to $A^{j}_{\sigma}(\pi, S, \alpha) \in$ $\widetilde{R}^{\sigma}(G)_{\mathbb{C}}$ up to $(\pi, S, \alpha) - A^{j}_{\sigma}(\pi, S, \alpha) \in \tau_{\sigma,I}(G)$. Hence the map $\widetilde{R}^{\sigma}(G)_{\mathbb{C}} \to \tau_{\sigma}(G)/\operatorname{Im} \tau_{\sigma,I}(G)$ is surjective.

F. Categorical cocenter.

We need to relate the categorical σ -cocenter $\tau_{\sigma}(\mathbb{M}(\mathbb{H}_K))$ of §E with the algebra σ cocenter $\tau_{\sigma}(\mathbb{H}_K)$ which occurs in the statement of the Main Theorem. Instead of \mathbb{H}_K we shall work with a \mathbb{C} -algebra A with identity, and denote by σ an automorphism of A of finite order ℓ . The semi-direct product $A^{\#} = A \rtimes \langle \sigma \rangle$ contains the coset $A\sigma$. Put

$$\tau A = A/[A, A], \ \tau A^{\#} = A^{\#}/[A^{\#}, A^{\#}],$$

and

$$\tau_{\sigma}A = A/\langle a\sigma(b) - ba; a, b \in A \rangle \simeq A\sigma/[A\sigma, A] = A\sigma/A\sigma \cap [A^{\#}, A^{\#}]$$

Let $\mathbb{M}(A)$ (resp. $\mathbb{M}(A^{\#})$) be the category of (non-degenerate) A-modules (resp. $A^{\#}$ -modules). An $A^{\#}$ -module is a pair (P, S) consisting of an A-module P and an element S in the set $\operatorname{Aut}_{A}^{\sigma} P$ of vector space automorphisms $S: P \xrightarrow{\sim} P$ of order ℓ which satisfy $S(ap) = \sigma^{-1}(a)S(p)(a \in A, p \in P)$; σ acts on P via S.

The cocenter $\tau(\mathbb{M}(A))$ of the category $\mathbb{M}(A)$ is the quotient of the free abelian group generated over \mathbb{C} by the pairs (P, α) consisting of a projective finitely generated A-module P and $\alpha \in \operatorname{End}_A P$, by the relations

(1) $(P,\alpha) \sim (P',\alpha') + (P'',\alpha'')$ if $0 \rightarrow (P',\alpha') \rightarrow (P,\alpha) \rightarrow (P'',\alpha'') \rightarrow 0$ is exact;

(2) $(P, \alpha + \beta) \sim (P, \alpha) + (P, \beta), (P, \alpha\beta) \sim (P, \beta\alpha), (P, t\alpha) \sim t(P, \alpha) \ (t \in \mathbb{C}; \alpha, \beta \in \text{End}_A P).$

Similarly $\tau(\mathbb{M}(A^{\#}))$ is the quotient of the Grothendieck group of pairs (P, α) of a projective finitely generated $A^{\#}$ -module P and $\alpha \in \operatorname{End}_{A^{\#}} P$, by the analogous relations. The σ -cocenter $\tau_{\sigma}(\mathbb{M}(A))$ has already been defined in §E; it coincides with $\tau(\mathbb{M}(A))$ when σ = identity.

Theorem 4. We have $\tau_{\sigma}(\mathbb{M}(A)) \simeq \tau_{\sigma}A$; in particular $\tau(\mathbb{M}(A)) \simeq \tau A$.

Proof. Let P be a free finitely-generated A-module, and e_1, \dots, e_k a basis of P over A. Fix S in $\operatorname{Aut}_A^{\sigma} P$; then P extends to an $A^{\#}$ -module by $\sigma(p) = S(p)$. Given $\alpha \in \operatorname{End}_A P$ we shall associate to (P, S, α) an element in $\tau_{\sigma} A$ as follows. Since $\alpha \sigma$ is an endomorphism of P there are $\overline{\alpha}_{ij}$ in A such that

$$\alpha \sigma e_i = \sum_j \overline{\alpha}_{ij} e_j$$
. Define tr_P($\alpha \sigma$) to be $\sum_i \overline{\alpha}_{ii} (\in A)$.

We claim that $\operatorname{tr}_P(\alpha\sigma)$ is a well-defined element of $A/\langle a\sigma(b)-ba\rangle$. We need to show that $\operatorname{tr}_P(\alpha\sigma)$ is independent of the choice of the basis $\{e_i\}$. If f_1, \dots, f_k is another basis of P over A then $\alpha\sigma f_i = \sum_j \overline{\beta}_{ij} f_j \ (\overline{\beta}_{ij} \in A)$; moreover, there are $f_{ij}, e_{ij} \in A$ with

$$f_{i} = \sum_{j} f_{ij} e_{j}, \ e_{i} = \sum_{j} e_{ij} f_{j}. \text{ Consequently } \sum_{j} f_{ij} e_{jk} = \delta_{ik} = \sum_{j} e_{ij} f_{jk}. \text{ Then}$$
$$\sum_{jk} \overline{\beta}_{ij} f_{jk} e_{k} = \sum_{j} \overline{\beta}_{ij} f_{j} = \alpha \sigma f_{i} = \sum_{j} \sigma^{-1}(f_{ij}) \alpha \sigma(e_{j}) = \sum_{jk} \sigma^{-1}(f_{ij}) \overline{\alpha}_{jk} e_{k},$$

and

$$\overline{\alpha}_{\ell k} = \sum_{ij} \sigma^{-1}(e_{\ell i}) \sigma^{-1}(f_{ij}) \overline{\alpha}_{jk} = \sum_{ij} \sigma^{-1}(e_{\ell i}) \overline{\beta}_{ij} f_{jk} \equiv \sum_{ij} \overline{\beta}_{ij} f_{jk} e_{\ell i} (\mod \langle \sigma^{-1}(b)a - ab \rangle).$$

Hence

$$\operatorname{tr}_{P}(\alpha\sigma) = \sum_{i} \overline{\alpha}_{ii} \equiv \sum_{i} \overline{\beta}_{ii} \pmod{\langle \langle \sigma^{-1}(b)a - ab \rangle}$$

is well-defined, as claimed.

If P is projective then there is a finitely generated A-module Q such that $P \oplus Q$ is free. Define σQ to be the vector space Q on which $a \in A$ acts by $\sigma^{-1}(a)$. Put $Q_{\sigma} = Q \oplus \sigma Q \oplus \cdots \oplus \sigma^{\ell-1}Q$. Then $\operatorname{Aut}_{A}^{\sigma} Q_{\sigma}$ is non-empty, and we define $\operatorname{tr}_{P}(\alpha\sigma)$ to be $\operatorname{tr}_{P \oplus \cdots \oplus P \oplus Q_{\sigma}}(\alpha\sigma \oplus 0 \oplus \cdots \oplus 0)$; it is independent of the choice of Q.

A basis of the trivial A-module A is its identity, which is fixed by σ . If a denotes multiplication of A by $a \in A$, then $\operatorname{tr}_A(a\sigma) = \operatorname{tr}_A a = a$. It follows that the map $\operatorname{tr}: \tau_{\sigma}(\mathbb{M}(A)) \to \tau_{\sigma} A$ is surjective.

If
$$\alpha \sigma e_i = \sum_j \overline{\alpha}_{ij} e_j$$
 and $\beta e_i = \sum_j \beta_{ij} e_j \ (\overline{\alpha}_{ij}, \beta_{ij} \in A)$, where $\beta \in \text{End}_A P$, then
 $\beta \cdot \alpha \sigma e_i = \sum_{jk} \overline{\alpha}_{ij} \beta_{jk} e_k$, $\alpha \sigma \cdot \beta e_i = \sum_{jk} \sigma^{-1}(\beta_{ij}) \overline{\alpha}_{jk} e_k$,

and so

$$\operatorname{tr}_{P}(\alpha\sigma\cdot\beta-\beta\cdot\alpha\sigma)=\sum_{ij}[\sigma^{-1}(\beta_{ij})\overline{\alpha}_{ji}-\overline{\alpha}_{ji}\beta_{ij}]\in\langle\sigma^{-1}(b)a-ab\rangle.$$

To prove injectivity, given $\alpha \in \operatorname{End}_A P$ with $\operatorname{tr}_P(\alpha\sigma) \in \langle \sigma^{-1}(b)a - ab \rangle$ we need to exhibit $\beta, \gamma \in \operatorname{End}_A P$ with $\alpha\sigma = \gamma\sigma \cdot \beta - \beta \cdot \gamma\sigma$. If $\operatorname{tr}_P(\alpha\sigma) = \sum_i (\sigma^{-1}(b_i)a_i - a_ib_i)$, let P_1 be a free A-module with basis $\{e_i\}$, and $\beta, \gamma \in \operatorname{End}_A P_1$ endomorphisms with $\gamma\sigma e_i = a_ie_i, \beta e_i = b_ie_i$. Then $\operatorname{tr}_{P_1}(\beta \cdot \gamma\sigma - \gamma\sigma \cdot \beta) = \sum_i (a_ib_i - \sigma^{-1}(b_i)a_i)$, and $\operatorname{tr}_{P\oplus P_1}[\alpha\sigma\oplus (\beta \cdot \gamma\sigma - \gamma\sigma \cdot \beta)] = 0$. Consequently, we may assume that $\operatorname{tr}_P(\alpha\sigma) = \sum_i \overline{\alpha}_{ii}$ is zero (on replacing (P, α) by $(P \oplus P_1, \alpha \oplus 0)$). Again we need to present an A-module P_1 with σ -action and $\beta, \gamma \in \operatorname{End}_A P_1$ such that $(P, \alpha) \sim (P_1, \gamma\sigma \cdot \beta - \beta \cdot \gamma\sigma)$ in $\mathbb{M}(A)$. By (1) it suffices to take P_1 free on a basis e_1, e_2 , and assume that (i) $\alpha\sigma e_1 = be_2, \alpha\sigma e_2 = ae_1$, or: (ii) $\alpha\sigma e_1 = ae_1, \alpha\sigma e_2 = -ae_2$. In the first case (i), take β with $\beta e_1 = e_1, \beta e_2 = 0$, and γ with $\gamma\sigma e_1 = be_2, \gamma\sigma e_2 = -ae_1$; then $(\gamma\sigma \cdot \beta - \beta \cdot \gamma\sigma)e_1 = be_2, (\gamma\sigma \cdot \beta - \beta \cdot \gamma\sigma)e_2 = ae_1$. In the second case (ii), take β, γ with $\beta e_1 = e_2, \beta e_2 = e_1, \gamma\sigma e_1 = e_2, \gamma\sigma e_2 = (a+1)e_1$. Then $(\gamma\sigma \cdot \beta - \beta \cdot \gamma\sigma)e_1 = (a+1)e_1 - e_1 = ae_1, (\gamma\sigma \cdot \beta - \beta \cdot \gamma\sigma)e_2 = e_2 - (a+1)e_2 = -ae_2$, as required.

Consider the map $\Psi : \tau_{\sigma}(\mathbb{H}_K) = \mathbb{H}_K / \langle h_1 \sigma(h_2) - h_2 h_1 \rangle \to R^*_{\sigma}(G)$, given by $\Psi(h) = F_h$, where $F_h((\pi, \sigma)) = \operatorname{tr} \pi(h\sigma)$. Since $\tau_{\sigma}(\mathbb{H}_K) = \tau_{\sigma}(\mathbb{M}(\mathbb{H}_K))$ by Theorem 4, Ψ defines a map $\tau_{\sigma}(\mathbb{M}(\mathbb{H}_K)) \to R^*_{\sigma}(G)$, also denoted by Ψ . By definition $\Psi((P, S, \alpha)) = F_h$ where $h = \operatorname{tr}_P(\alpha S)$.

The functors r, i on $\mathbb{M}(G)$ define homomorphisms

$$i_M = i_{GM} : R^{\sigma}(M) \to R^{\sigma}(G) \text{ and } r_M = r_{MG} : R^{\sigma}(G) \to R^{\sigma}(M)$$

of the Grothendieck groups where $M = \sigma M < G$, and dual maps

$$i_M^* = i_{GM}^* : R_{\sigma}^*(G) \to R_{\sigma}^*(M) \text{ and } r_M^* = r_{MG}^* : R_{\sigma}^*(M) \to R_{\sigma}^*(G)$$

on the dual spaces. Recall that r_{MG} is defined using the standard parabolic subgroup $P = MP_0$, and \overline{r}_{MG} using the opposite parabolic $\overline{P} = M\overline{P}_0$.

Corollary 4.1. The homomorphism $\Psi : \tau_{\sigma}(\mathbb{M}(\mathbb{H}_G)) \to R^*_{\sigma}(G)$ intertwines the homomorphisms i_{GM}, r_{MG} with the homomorphisms $\overline{r}^*_{MG}, i^*_{GM}$. Namely

$$\Psi(i_{GM}(P_M, S_M, \alpha_M)) = \overline{r}_{MG}^*(\Psi_M((P_M, S_M, \alpha_M)))$$

and

$$\Psi_M(r_{MG}(P,S,\alpha)) = i^*_{GM}(\Psi((P,S,\alpha)))$$

for all $(P_M, S_M, \alpha_M) \in \tau_{\sigma}(\mathbb{M}(M))$ and $(P, S, \alpha) \in \tau_{\sigma}(\mathbb{M}(G))$.

Proof. Denote by Ext^{*i*}(P, π) = Ext^{*i*}_{$\mathbb{H}_{G}^{\#}$}(P, π) the *i*th Ext group of the $\mathbb{H}_{G}^{\#}$ -modules P and π ; it is an $\mathbb{H}_{G}^{\#}$ -module. We first claim that the value of Ψ at $(P, S, \alpha) \in \tau_{\sigma}(\mathbb{M}(\mathbb{H}_{K}))$ is the homomorphism which takes $(\pi, \sigma) \in R^{\sigma}(G)$ to

$$\operatorname{tr} \left[\alpha \sigma; \operatorname{Ext}^{*}(P, \pi) \right] = \sum_{i} (-1)^{i} \operatorname{tr} \left[\alpha \sigma; \operatorname{Ext}^{i}(P, \pi) \right].$$

Since $\tau_{\sigma}(\mathbb{M}(\mathbb{H}_G))$ is generated by the (P, S, α) , where P is a projective module, we may assume that P is projective. Then $\operatorname{Ext}^{i}(P, \pi) = \delta_{i,0} \operatorname{Hom}(P, \pi)$. Note that $P_{K} = C_{c}(G/K)$ is a projective generator of the category $\mathbb{M}(\mathbb{H}_{K})$. Namely each projective module P in $\mathbb{M}(\mathbb{H}_{K})$ is a direct summand of P_{K} . Extend α by 0 to P_{K} ; then $\alpha \in \operatorname{End} P_{K}$, and

$$\operatorname{tr} \pi(\alpha \sigma) = \operatorname{tr} \pi^{K}(\alpha \sigma)$$

=
$$\operatorname{tr} [\alpha \sigma; \pi^{K} = \operatorname{Hom}_{K}(\mathbb{1}_{K}, \pi | K) = \operatorname{Hom}_{G}(i_{GK} \mathbb{1}_{K}, \pi) = \operatorname{Hom}(P_{K}, \pi)]$$

=
$$\operatorname{tr} [\alpha \sigma; \operatorname{Ext}^{*}(P_{K}, \pi)]$$

as claimed. To complete the proof of the corollary, we quote (from Bernstein [B]) the following

Second Adjointness Theorem ([B]). The functor \overline{r}_M is right adjoint to the functor i_M .

Hence

$$\begin{aligned} [\Psi(i_M(E_M, S_M, \alpha_M))]((\pi, \sigma)) &= F_{i_M(E_M, S_M, \alpha_M)}((\pi, \sigma)) = \operatorname{tr} [i_M \alpha_M \cdot \sigma; \operatorname{Ext}^*(i_M E_M, \pi)] \\ &= \operatorname{tr} [\alpha_M \cdot \sigma; \operatorname{Ext}^*(E_M, \overline{r}_M \pi)] = [(\overline{r}_M^* \Psi)(E_M, S_M, \alpha_M)]((\pi, \sigma)) \end{aligned}$$

for all $(\pi, \sigma) \in R^{\sigma}(G)$ proving the first claim.

The other assertion of the corollary, that Ψ intertwines r_M on $\tau_{\sigma}(\mathbb{M}(\mathbb{H}_G))$ with i_M^* on $R_{\sigma}^*(G)$, follows from the Frobenius reciprocity (see [BZ1]), which says that r_M is left adjoint to i_M .

G. Trace Paley-Wiener theorem.

The following is (a twisted generalization of) the trace Paley-Wiener theorem of [BDK].

Theorem 5. The map $\Psi : \tau_{\sigma}(\mathbb{H}_G) \to R^*_{\sigma}(G)_{\text{good}}$, by $h \mapsto F_h$, where $F_h((\pi, \sigma)) = \text{tr } \pi(h\sigma)$, is surjective.

For any subset X of $R^*(G)$ denote by $R^*_{\sigma}(X)_{\text{good}}$ and $R^*_{\sigma}(X)_{\text{trace}}$ the spaces of restrictions of elements of $R^*_{\sigma}(G)_{\text{good}}$ and of $R^*_{\sigma}(G)_{\text{trace}}$ to X. The corresponding forms will be called *good* or *trace* forms on X. Put $R^*_{\sigma}(G)_{\text{good}}^{\text{disc}}$ for $R^*_{\sigma}(\Theta^{\sigma}_{\text{disc}}(G))_{\text{good}}$.

Proposition 5.1. The map $\Psi : \tau_{\sigma}(\mathbb{H}_G) \to R^*_{\sigma}(G)^{\text{disc}}_{\text{good}}$ is surjective.

Proof. By Theorem 1, for every connected component Θ of $\Theta(G)$ the variety $\Theta_{\text{disc}}^{\sigma}$ is a finite union of $X^{\sigma}(G)$ -orbits. Since an element of $R_{\sigma}^{*}(G)_{\text{good}}$ is supported only on finitely many groups $R^{\sigma}(\Theta)$, it suffices to show that for any finite union X of $X^{\sigma}(G)$ -orbits in Θ the map $\Psi : \tau_{\sigma}(\mathbb{H}_{G}) \to R_{\sigma}^{*}(X)_{\text{good}}$ is onto.

If $X^{\sigma}(G)$ is finite then X is a finite set. Then the restriction to X of any linear form $F: R^{\sigma}(G) \to \mathbb{C}$ is a trace form, and in particular $R^*_{\sigma}(X)_{\text{trace}} = R^*_{\sigma}(X)_{\text{good}}$. Indeed, the twisted characters of irreducible σ -invariant G-modules are linearly independent functionals on \mathbb{H}_G .

In general X has the natural structure of an algebraic variety, as the union of finitely many $X^{\sigma}(G)$ -orbits. By definition of good forms we have

$$R^*_{\sigma}(X)_{\text{trace}} \subset R^*_{\sigma}(X)_{\text{good}} \subset k[X],$$

where k[X] is the algebra of regular functions on X.

Choose a σ -invariant cocompact lattice Λ in the center Z of G. Put $X(\Lambda) = \text{Hom}(\Lambda, \mathbb{C}^{\times})$, and $Y = X^{\sigma}(\Lambda)$ for the subgroup of σ -invariant characters. Then Y is an affine algebraic variety. The restriction map $X^{\sigma}(G) \to Y$ is a finite epimorphism of algebraic groups. Denote by ω_{π} the central character of $\pi \in \text{Irr } G$; consider the map $\text{Irr}^{\sigma}(G) \to Y, \pi \mapsto \omega_{\pi} | \Lambda$. Its restriction $X \to Y$ to X is a finite $X^{\sigma}(G)$ -equivariant submersive morphism of algebraic varieties. Hence k[X] is a finitely generated k[Y]-module. Note that $R_g = R^*_{\sigma}(X)_{\text{good}}$ is a k[Y]-submodule of k[X], where k[Y] acts by

 $(fF)(\pi) = f(\omega_{\pi}|\Lambda)F(\pi) \ (f \in k[Y], F \in R_g)$. Also $R_t = R_{\sigma}^*(X)_{\text{trace}}$ is a k[Y]-submodule via $f \cdot \operatorname{tr} \pi(h\sigma) = \operatorname{tr} z_f \cdot \pi(h\sigma)$; here $z_f \in k[X]$ is the image of $f \in k[Y]$ under the natural map $k[Y] \to k[X]$.

For any $y \in Y$ let $M_y \subset k[Y]$ be the maximal ideal consisting of those polynomial functions in k[Y] which vanish at y. For each k[Y]-module E put $E_y = E/M_y E$ for the fiber of E at y. Since $u: X \to Y$ is finite and submersive, the set $X_y = u^{-1}(y)$ is finite, and the fiber $k[X]_y$ coincides with $k[X_y]$. Since X_y is a finite set, we have $R_{\sigma}^*(X_y)_{\text{trace}} =$ $R_{\sigma}^*(X_y)_{\text{good}}$ as noted above; hence $R_g \subset R_t + M_y k[X]$. Put $E = k[X]/R_t, E' = R_g/R_t \subset$ E. Then $E' \subset M_y E$ for each $y \in Y$. Since E is a finitely generated k[Y]-module it is locally free generically, namely at almost each $y \in Y$. Moreover, E is locally free at every $y \in Y$ since E is $X^{\sigma}(G)$ -equivariant. Then $E' \subset M_y E$ for all $y \in Y$ implies that E' = 0, since a function which vanishes at each point of a variety is necessarily the zero function. Hence $R_t = R_g$ as required.

Proof of Theorem 5. We argue by induction on M; the case of M_0 follows from Proposition 5.1, since $R^*_{\sigma}(M_0)_{\text{good}} = R^*_{\sigma}(M_0)_{\text{good}}^{\text{disc}}$. By Corollary 2.3 there are $c_M \in Q$ such that for each $F \in R^*_{\sigma}(G)_{\text{good}}$ there is $F^d \in R^*_{\sigma}(G)_{\text{good}}^{\text{disc}}$ with $F = F^d + \sum_{M \leq G} c_M r^*_{MG}(i^*_{GM}F)$.

Then $F_M = i_{GM}^* F$ lies in $R_{\sigma}^*(M)_{\text{good}}$, and by induction there is some $h_M \in \tau_{\sigma}(\mathbb{H}_M)$ which maps to F_M by the map Ψ_M of the theorem. Then $\Psi_M(h_M) = F_M$, and by Corollary 4.1 we have $\Psi_G(\overline{i}_{GM}h_M) = r_{MG}^*F_M = r_{MG}^*\Psi_M(h_M)$. Hence $r_{MG}^*i_{GM}^*F$ is in the image of Ψ_G , and so is F since F^d is in the image by Proposition 5.1.

H. Density theorem.

The following is (a twisted generalization of) the density theorem of [K1, Appendix].

Theorem 6. The map $\Psi : \tau_{\sigma}(\mathbb{H}_G) \to R^*_{\sigma}(G)_{\text{trace}} = R^*_{\sigma}(G)_{\text{good}}$ of Theorem 5 is injective.

This can be phrased as follows. Given $h \in \mathbb{H}_G$ with $\operatorname{tr} \pi(h\sigma) = 0$ for all $(\pi, \sigma) \in \operatorname{Irr}^{\sigma}(G)$, then h lies in the span $[\mathbb{H}_G \sigma, \mathbb{H}_G]\sigma^{-1}$ of $h_1\sigma(h_2) - h_2h_1$ $(h_1, h_2 \in \mathbb{H}_G)$. Here $\pi(h\sigma) = \int_G \pi(g\sigma)h(g)$ is a trace class operator.

We claim that it suffices to prove the theorem under the assumption that $X^{\sigma}(G)$ is finite. Indeed, let ω be a character of the center Z of G. By a standard reduction step we may work with the Hecke algebra of functions h which transform under Z by ω^{-1} and are compactly supported modulo Z, and forms on the Grothendieck group of G-modules π which transform under Z via ω . For $\pi \in \operatorname{Irr}^{\sigma}(G)$ with central character ω , we have $\omega = {}^{\sigma}\omega$. Multiplying π by a σ -invariant unramified character we may assume that ω is trivial on a σ -stable lattice Λ of finite index in Z. Replacing G by G/Λ we may assume that $X^{\sigma}(G)$ is finite.

Suppose then that $X^{\sigma}(G)$ is finite. It suffices to show for each connected component Θ of $\Theta(G)$ that the map $\tau_{\sigma}(\mathbb{H}_{\Theta}) \to R^*_{\sigma}(\Theta)_{\text{good}}$ is injective. Put $\tau_{\sigma}(\mathbb{H}_{\Theta})^d = \tau_{\sigma}(\mathbb{H}_{\Theta})/\tau_{\sigma,I}(\mathbb{H}_{\Theta})$. Corollary 3.1 and Theorem 4 assert that the map $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}} \to \tau_{\sigma}(\mathbb{H}_{\Theta})^d$ is surjective, and Proposition 5.1 implies the surjectivity of the map $\Psi : \tau_{\sigma}(\mathbb{H}_{\Theta})^d \to$ $R^*_{\sigma}(\Theta)^{\text{disc}}_{\text{good}}$. Since $\widetilde{R}^{\sigma}_{I}(\Theta)_{\mathbb{C}}$ maps to zero in $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}} \to \tau_{\sigma}(\mathbb{H}_{\Theta})^{d}$, we obtain a surjective map

$$\widetilde{R}^{\sigma}(\Theta)^d_{\mathbb{C}} = \widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}} / \widetilde{R}^{\sigma}_I(\Theta)_{\mathbb{C}} \to R^*_{\sigma}(\Theta)^{\operatorname{disc}}_{\operatorname{good}}$$

Since $\Theta_{\text{disc}}^{\sigma}$ is a finite set for each Θ (by Theorem 1, under our assumption that $X^{\sigma}(G)$ is finite), the complex vector space $\widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}^{d}$ is finite dimensional, and has the same dimension as its dual $R_{\sigma}^{*}(\Theta)_{\text{good}}^{\text{disc}}$. In particular, the map above is an isomorphism, and if $h \in \widetilde{R}^{\sigma}(\Theta)_{\mathbb{C}}$ maps to zero in $R_{\sigma}^{*}(\Theta)_{\text{good}}$, then h lies in $\widetilde{R}_{I}^{\sigma}(\Theta)_{\mathbb{C}}$.

To prove the theorem consider h in $\tau_{\sigma}(\mathbb{H}_{\Theta})$ which maps to zero in $R^*_{\sigma}(\Theta)_{\text{good}}$. For any $M = \sigma M < G$, the image of 0 by $i_{GM}^* : R^*_{\sigma}(\Theta)_{\text{good}} \to R^*_{\sigma}(\Theta_M)_{\text{good}}$, where $\Theta_M = i_{GM}^{-1}(\Theta)$, is 0. By induction on M, when $M = \sigma M \leq G$ the inverse image of $0 \in R^*_{\sigma}(\Theta_M)_{\text{good}}$ by $\Psi_M : \tau_{\sigma}(\mathbb{H}_{\Theta_M}) \to R^*_{\sigma}(\Theta_M)_{\text{good}}$ is zero. Corollary 4.1 asserts that $\Psi_M(r_{MG}h) = i^*_{GM}(\Psi_G h)$. Hence $r_{MG}h = 0$. It follows that h lies in the intersection of ker r_{MG} , $M = \sigma M \leq G$. Consequently $h = A_{\sigma}h$ for $A_{\sigma} = A^c_{\sigma}$ as in Theorem 2. As in the proof of Corollary 3.1, for a sufficiently large j we have that $A^j_{\sigma}h$ lies in $\tilde{R}^{\sigma}(\Theta)_{\mathbb{C}}(\to \tau_{\sigma}(\mathbb{H}_{\Theta}))$. Hence h lies in $\tilde{R}^{\sigma}(\Theta)_{\mathbb{C}}$, and it maps to 0 under the map $\tilde{R}^{\sigma}(\Theta)_{\mathbb{C}}(\to \tau_{\sigma}(\mathbb{H}_{\Theta})) \to R^*_{\sigma}(\Theta)_{\text{good}}$ mentioned above. Therefore it lies in $\tilde{R}^r_I(\Theta)_{\mathbb{C}}$, and $A_{\sigma}h = 0$ by Theorem 2. We conclude that $h = A_{\sigma}h$ is zero, as required.

Theorems 5 and 6 establish the surjectivity and injectivity of the map of the Main Theorem, whose proof is now complete.

Appendix. Cohomological dimension.

Theorem. The category $\mathbb{M}(G)$ has finite cohomological dimension bounded by $d_0 = \dim X(M_0)$.

Proof. We should show that each G-module X has a projective resolution of length $\leq d_0$.

(1) We proceed to construct the standard resolution of the trivial G-module \mathbb{C} on using the theory of buildings (see Tits [T]). Recall that the building B = B(G) associated with the group G is a CW-complex equipped with an action of G (on B). It has the following properties.

(i) All cells of B are polyhedra, and the action of G preserves cell decomposition.

(ii) For each cell τ of B, its stabilizer G_{τ} is an open compact subgroup of G which fixes all points in τ .

(iii) Modulo the action of G there are only finitely many cells. The dimension of any cell is bounded by d_0 .

(iv) The building B is contractible as a topological space.

Consider the chain complex $C = \{0 \to C_{d_0} \to C_{d_0-1} \to \cdots \to C_0 \to 0\}$ of B with complex coefficients. This is a complex of G-modules. If τ_1, \cdots, τ_k is a set of representatives

of cells modulo the action of G, then $\bigoplus_j C_j = \bigoplus_{1 \le i \le k} \operatorname{ind} (G, G_{\tau_i}, \mathbb{C})$ and (ii) implies that C_j are projective G-modules. Since B is contractible, we have $H^i(C) = 0$ for $i \ne 0$ and $H^0(C) = \mathbb{C}$; thus C is a projective resolution of \mathbb{C} called the *standard resolution* of the trivial G-module \mathbb{C} .

(2) Let X be a G-module. Consider the complex $C_X = \{C_i \otimes_{\mathbb{C}} X\}$. Clearly this is a resolution of the G-module X of length d_0 ; we need to check that it is projective. Then let P be a projective G-module. We have to show that $P \otimes_{\mathbb{C}} X$ is also projective. For each G-module Y we have $\operatorname{Hom}_G(P \otimes X, Y) = \operatorname{Hom}_G(P, \operatorname{Hom}_{\mathbb{C}}^0(X, Y))$. Here $\operatorname{Hom}_{\mathbb{C}}^0(X, Y)$ is the smooth part of the G-module $\operatorname{Hom}_{\mathbb{C}}(X, Y)$. Hence it suffices to check that the functor $Y \mapsto \operatorname{Hom}_{\mathbb{C}}^0(X, Y)$ is exact. Fix an open compact subgroup K of G. As a vector space, $\operatorname{Hom}_{\mathbb{C}}^0(X, Y)$ depends only on the K-module structure of Y. Since the category $\mathbb{M}(K)$ of K-modules is completely reducible, each exact sequence in $\mathbb{M}(K)$ splits. Hence the functor $Y \mapsto \operatorname{Hom}_{\mathbb{C}}^0(X, Y)$ is exact, and $P \otimes_{\mathbb{C}} X$ is projective, as required.

Remark. The standard resolution C_X constructed above is not finitely generated in general, even when X is irreducible. If X is finitely generated then one can construct a resolution $0 \to P_{d_0} \to P_{d_0-1} \to \cdots \to P_0 \to X \to 0$ in which all P_i are finitely generated and $P_{d_0-1}, P_{d_0-2}, \cdots, P_0$ are projective. The Theorem implies that P_{d_0} is also projective.

References

- [B] J. Bernstein, Notes for courses at Harvard and Tel-Aviv Universities, manuscript in preparation.
- [BD] J. Bernstein, P. Deligne, Le "centre" de Bernstein, dans Représentations des groupes reductifs sur un corps local, Hermann, Paris 1985.
- [BDK] J. Bernstein, P. Deligne, D. Kazhdan, Trace Paley-Wiener theorem for reductive *p*-adic groups, *J. Analyse Math.* 47 (1986), 180-192.
- [BZ1] J. Bernstein, A. Zelevinski, Representations of the group GL(n, F) where F is a non-archimedean local field, Russian Math. Surveys 31 (1976), 1-68.
- [BZ2] J. Bernstein, A. Zelevinski, Induced representations of reductive *p*-adic groups I, Ann. Sci. ENS 10 (1977), 441-472.
- [BW] A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math Studies 94 (1980).
 - [F] Y. Flicker, Rigidity for automorphic forms, J. Analyse Math. 49 (1987), 135-202.
- [K1] D. Kazhdan, Cuspidal geometry of p-adic groups, J. Analyse Math. 47 (1986), 1-36.
- [K2] D. Kazhdan, Representations of groups over close local fields, J. Analyse Math. 47 (1986), 175-179.
- [T] J. Tits, Reductive groups over local fields, in Proc. Sympos. Pure Math. 33 I (1979), 29-69.