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The theory of modular forms of half-integral weight has seen much progress 
since 1973 when Shimura [14] associated to each cusp form of weight �89 (odd 
k>3) and character Z a modular form of weight k - 1  and character Z 2. In a 
sequence of papers [ l ,3 ,4]  Gelbart and Piatetski-Shapiro reformulated 
Shimura's correspondence in ternSs of group representations and based their 
work on L-functions (as in [14]), the Weil representation [16] and Whittaker 
models in the sense of Jacquet-Langlands [7]. In particular, they showed that Well 
representations of a two-fold covering group of GL(2) correspond to automorphic 
representations of GL(2) which have one-dimensional components almost every- 
where and that cuspidal non-Weil representations correspond to cuspidal 
representations. 

One of the aims of this paper is to give a comprehensive presentation of the 
correspondence and to obtain a full description of the genuine automorphic rep- 
resentations of the two-fold covering group. In particular, we shall show that the 
correspondence is one-to-one and determine its image, and deduce that both 
multiplicity one and strong multiplicity one theorems are valid for the covering 
group. 

More significantly, we shall show that there is a correspondence from the 
space of automorphic forms on n-fold covering groups (~ (in the sense of Kubota 
[8]) of GL(2), where n > 2  is an arbitrary integer, to the space of automorphic 
forms on GL(2). The latter correspondence includes Shimura's in the case of n 
--2; it is one-to-one, and its image is determined (in 5.3 below); it affords a full 
description of the automorphic representations of G (in terms of those of GL(2)) 
and in particular those studied by Kubota [8]. Further, it suggests the existence 
of an intimate relationship between the automorphic representations of general 
reductive connected groups and those of their covering groups in the sense of 
Moore [11]. A special feature of the case of even n is that there are cuspidal 
representations of G which correspond to continuous series representations of 
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GL(2); if n is odd, then cuspidal representations of (J always correspond to 
cuspidal representations of GL(2). The case of n = 2  is singled out not only 
because the Well representation was defined in this case alone but also because 
here every special representation (fi la [7]) of GL(2) is obtained by the cor- 
respondence. 

Our work is based on the intrinsic approach of character theory, and its 
exposition in this context may be considered to be an aim in itself. We follow 
closely Langlands [-9] where this approach was developed for the first time. In 
particular, we make no use of the auxiliary characterization of automorphic 
forms by L-functions, and although we identify the Weil representations in the 
case n = 2 (for the sake of completeness), they do not play any role in this work. 
For us the main property of the correspondence is that it preserves characters 
(see 5.0). This also affords some understanding of the correspondence as a 
reflection of the relationship between conjugacy classes of the groups (J and 
GL(2) (see 0.3). 

The paper is arranged as follows. We recall Kubota's definition of (J in 0.2 
and discuss the structure of G in 0.3 (and 1.1). Lemma 1.2.3 is a key local result, 
matching orbital integrals on G and on GL(2); Lemma 1.4 deals with spherical 
functions. The local correspondence is established in 2.1 for the principal series, 
in 2.2 for the Weil representations (when n = 2), and in 2.4 for the archimedean 
places. An explicit expression for the Selberg trace formula for G is given in 
Sect. 3, and it is compared in Sect. 4 to the trace formula for GL(2). A full 
description of the local correspondence is deduced in 5.2 from the resulting 
equality of traces (see 4.3) using the results of 2.3 concerning square-integrable 
representations. A new difficulty here (compared to [9] and [7], Chap. 16) is 
that (J has no finite-dimensional (local) genuine representations and hence no 
square-integrable (special) representations which are easy to deal with. The 
global correspondence is described in the final subsection 5.3. 

Now we shall briefly mention some applications of our results in the case n 
=2  to the classical theory of modular forms of half-integral weight. Our work 
affords a solution to Shimura's question (A) in his list [,14], Sect. 4, of open 
questions. Indeed, we deduce that every holomorphic modular form of weight k 
- 1, level �89 N and character ~2 can be obtained from a modular form of weight 
�89 k, level N and character 7~, and (when restricted to new forms) that Shimura's 
map is one-to-one. A contribution in this direction had been made by Shintani 
[-15], who defined a map reversing Shimura's in some special cases. Our strong 
multiplicity one theorem (which can also be proved by using L-functions [4]) 
implies that the quotient of two cusp forms (of type (�89 N,D) which are 
eigenfunctions of almost all Hecke operators T(p 2) (see [14]) and have the same 
eigenvalues is a constant. 

We can also answer all parts of question (C) of [,14]. Its first part asserts that 
the image of the orthogonal complement (in the space of cusp forms of type 

(~, N, Z)) of the space generated by the theta-series ~ ~(m)me(m2z) (with ~ ( - 1 )  
1 

= - 1 ,  see [14]), is cuspidal. The assertion follows from the representation 
theoretic statement that cuspidal non-Weil representations of (~ correspond to 
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cuspidal representations of GL(2). This is a special case of (i) and (ii) of 5.3 below, 
and as we have mentioned, this already occurs in [4]. 

The second part of (C) was answered by Serre and Stark [13], who proved 
that each modular form of weight �89 is generated by translates of the theta-series 

~(m)e(mZz), where ~ is an even character. A representation theoretic refor- 

mulation of this was given by Gelbart and Piatetski-Shapiro I-3]. Since our work 
establishes the correspondence for the whole (not necessarily cuspidal) spectrum 
of G we obtain this as well. Indeed, a modular form of weight �89 generates the 
space of an automorphic representation ~ of C,(Ae) (here A e denotes the adeles 
of the rationals Q) whose component at infinity has lowest weight �89 and hence 
(see 2.4) is an even Well representation. But Corollary 5.3(b) below now implies 
that ~ is a global Well representation and, as is well known, its space is 
generated by theta-series which must be of the above form (since these are the 
only ones with weight �89 

More generally, our work (as well as [4]) applies to G(AF), where Av are the 
adeles of an arbitrary number field F, not necessarily Q. On applying the above 
argument with a totally real number field F instead of Q, the same conclusion 
holds for Hilbert modular forms whose weight vector contains a component 
equal to �89 In particular, the weight vector of any such form must consist of �89 
and 3's only since the components at infinity of a Weil representation are either 
even or odd local Weil representations whose weights are �89 and ~ (respectively; 
see 2.4 below and [1], p. 93). Other Hilbert modular forms whose weight vector 
( �89 ~ k  .. ,2 2, .) includes ~ (or �89 odd k>=5) correspond to Hilbert cusp forms (of 
weight vector (k I - I, k 2 - 1 . . . .  )). 

The last part of question (C) concerns the ~'basis problem". This asserts that 
the space of cusp forms of type (�89 4N, 1) (odd k=>3, odd square-free N>0) ,  in 
the orthogonal complement of the span of the theta-series associated with q(x) 
= x  2, is generated by theta-series associated with a positive-definite quadratic 
form in 3 variables. A representation theoretic analogue of this will be given by 
a parametrization of automorphic representations of (~ by those of IK/IK ~ (IK is 
a quaternion division algebra with a centre IK~ and such parametrization is 
given by combining our correspondence with that of Jacquet-Langlands [7], 
from automorphic forms on IIK to those on GL(2), as we now explain. 

1 k A cusp form of type (3 , 4 N, l) as above generates the space of an automor- 
phic representation of (~(AQ) (which is cuspidal non-Weil) with a trivial central 
character, and hence can be viewed as a representation of PG (which is defined 
to be the quotient of (~ by its centre Z2). Each irreducible component is of the 
form ~z=n~k| ' where ~ is the discrete series at infinity with lowest 

P 

weight �89 Up is special for any prime divisor p of 4N, and unramified elsewhere. 
Now ~ corresponds to an irreducible automorphic representation 
=~k-1 |  of PGL(2, Ao) with discrete series nk-1, special ~p if p divides 

p 
4N and unramified ~p otherwise. But ~ is obtained by the Jacquet-Langlands 
correspondence from an irreducible automorphic representation n' of IKAK ~ 
where IK is the quaternion division algebra over Q which ramifies at infinity and 
at all prime divisors p of 4 N. Note that there exists a quadratic form in 3 
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variables (which is the restriction of the form in 4 variables associated with IK to 
the "pure  quaternions")  whose or thogonal  algebra is (essentially) IK/IK ~ Hence 
we obtain a one- to-one correspondence rt'--*~ of  au tomorph ic  representations 
on ] K / N  ~ and PC,, and the determination of  its image is a representations 
theoretic analogue of  the "basis problem".  A full description of  the image is 
given by combining our  results with those of  [7] (i.e., ~ = @ 5~ lies in the image 

if ~ is square-integrable for any v at which 1K ramifies). To obtain the classical 
version of  this problem one has to show that if 05 generates the space of rt', then 
S 005 generates the space of ~ for some suitable theta-transform O. This is likely 
to follow as in Shimizu's dednct ion f rom [7]  of  Eichler's result concerning the 
generat ion of cusp forms of integral weight and square-free level by theta-series, 
but  it is not our  purpose to deal with that here. 

Clearly, Shimura 's  suggestion in his question (D), to apply representation 
theoretic techniques in this context, is completely exploited here. However,  we 
have left Shimura 's  remaining question (B) untouched,  and our  method does not 
seem to provide any information concerning the Fourier  coefficients of modular  
forms. Suggestive results were obtained by Shintani [15] (n =2)  and Pat terson (n 
= 3 ;  see Deligne [0] for exposition in terms of  the Eisenstein series of  Sect. 3 
below). 

Modula r  forms of  classical type were defined by Kubo ta  in [8] when n >  3, 
as forms on a product  of  " complex"  upper-half-planes. Our  results can be 
translated into the classical language in this case just as well. The fact that no 
natural  "Weil  representat ion" has ever been defined for n > 3  is related to the 
fact that no natural  "classical" theta-series have ever been introduced in this 
case. However,  it is clear that  the language of  representations is better fitted to 
describe results of  such generality, and we merely comment  here that some 
representat ion theoretic corollaries are ment ioned in 5.2 and 5.3. 

Langlands' idea of using representation theory in the above context, and especially the Selberg trace 
formula, was passed on to me by Gelbart in Jerusalem, spring of 1978, where 1 benefited from 
talking to him and Piatetski-Shapiro. Most of this work was written the fotlwing winter in 
Princeton where I had the unlimited and invaluable encouragement of Langlands. 

C O N T E N T S  

0.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
0.2. Covering Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 
0.3. From G to (~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

I. Local Theory 

1.0. Orbital Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 
1.1. Zero Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 
1.2. Matching Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 



Automorphic Forms on Covering Groups of GL(2) 123 

1.3. Proof of Lemma 1.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 
1.4. Spherical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 

2.0. Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 
2.1. Principal Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 
2.2. Well Representations (n=2) . . . . . . . . . . . . . . . . . . . . . . . . . . .  144 
2.3. Square-lntegrable Representations . . . . . . . . . . . . . . . . . . . . . . . .  149 
2.4. Archimedean Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 

I1. Global Theory 

3.0. The Trace formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156 
3.2. Explicit Expression (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
3.3. Explicit Expression (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160 

4.0. Equality of Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
4.1. Direct Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 
4.2. Indirect Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 
4,3. Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170 

5,0. The Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171 
5.1. Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 
5.2. Local Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 
5.3. Global Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 

0.1. Notations 

We fix an integer n > 2  and a number  field F which contains a primitive n-th 
root  of unity ; this condit ion is superfluous if n = 2, but it implies that F is totally 
imaginary for n > 3. For  any place v of F we signify by F~. the complet ion of  F at 
v and by ] Iv the normalized valuation on F~,, so that the product  formula on F is 
satisfied. When v is non-archimedean,  we let ord,, be the order valuation on F,,, 
O t, the ring of  integers in Fv, &v the local uniformizing parameter  at v, q~, = Iot,]~ 
the cardinality of  the residual field O~,/'&~,O,, and p its characteristic; here and 
below we drop the index v when reference to the valuation is made clear by the 
context. Also we denote by A the adetes of  F, A • its ideles, F • and F2 the 
multiplicative group of F and F~, (resp.), ~, the group of  n-th roots of unity in F ;  
( will always denote an element of  ~,. 

We write G(F,,) for GL(2, F,,) and G(A) for GL(2, A). We signify by K~ the 
standard maximal  compact  subgroup of G(F~), namely, 0(2, IR) if F,, is the field 
IR of  real numbers,  U(2, I17) if F,, is the field I1~ of  complex numbers,  and GL(2, O j  
if v is non-archimedean.  We denote by A(F~) (resp. A(A)) the subgroup of  
diagonal elements with entries from F,. ~ (resp. A~), and by Z(F~,) (resp. Z(A))  the 
subgroup of  scalar matrices over F,, • (resp. A • The subgroup consisting of  n- 
th powers of all elements of an abelian group H will be denoted by H"; for 
example, A"(F,,) denotes the group of diagonal matrices whose entries lie in F~ ~". 

Finally, we le t  N(F~,)(resp. N(A)) be the subgroup of all (10 ~)  wi thxinF~, ( resp .  

A), and note  once again that the reference to F,, or A will be omit ted whenever it 
is made redundant  by the context. 
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0.2. Covering Groups 

Since covering groups are the basic objects to be studied here, there is no harm 
in recalling their definition. By a two-cocycle on a locally compact  group G we 
mean a Borel m a p / / f r o m  G x G onto ~, with 

r g")/~(g, g')=/~(g, g'g")//(g', g") 

and 

f l(g,e)=fl(e,  g)= 1 (g, g', g" in G), 

where e is the identity of  G. It is said to be nontrivial if there is no map s from G 
to ~, such that/~(g, g') is equal to s(g)s(g')s(gg') -~ for all g, g' in G. By an n-fold 
covering group (~ of G, we mean the group of all pairs (g, c~) with g in G (and, as 
usual, ~ in ~,) with multiplication given by 

(g, ()(g', ( ' )=  (gg', (( ' f l(g,  g')), 

where fl is a nontrivial  two-cocycle. Then d is a locally compact  group which is 
not algebraic. It is central as a group extension of G by ~,, namely, on 
identifying _~, with its image under  the map ~--* (e, ~) we have that ~, is contained 
in the centre of  (~, and the sequence 

1 --*_~,--* ( ~  G ~ 1 

is exact. We say that (g, 1) is the lift (to G) of the element g of G; where no 
confusion may arise, we write g for (g, 1) and g~ for (g, 1)(e, ~)=(g, ~) (but not for 
(g~, 1)). 

When G is G(Fv) or G(A), an explicit construct ion of a nontrivial  two-cocycle 
/~ was given by Kubota  [8]; since we deal with Kubota ' s  cocycle only, we shall 
recall his results. When G is G(F~,), the cocycle / 3 = ~  is given in terms of the 
norm residue (or Artin) symbol ( , )  of degree n on F=F~,. The symbol ( , )  is 
defined in most  class field theory textbooks;  here we shall merely note that ( , )  
is a cont inuous bilinear map from F • x F • onto  ~,, that  

(a, b)(b, a) = (a, - a ) = ( a ,  b)(-b/a,  a + b ) =  1 (1) 

for any a and b in F • and that (a, b) = 1 for all a in F • if and only if b is in F • ". 

Fo r  any s =  (~ bd) in S=SL(2,  F) we write x(s)=c if c+O and x(s)=d if c 

=0,  and we put  

(s, s') = (x  (s), x (s')) ( - x (s') /x (s), x (s s')) 

= (x(ss')/x(s), x(ss')/x(s')) (s, s' in S) 

(1 ~ 
For  any g in G with determinant  g, we write p(g) for the element g of S, 
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wewriteg~ for (10 0z)-~g(10 O) if z is in F• and if g= (~ ~ ) , w e p u t  v(z ,g)=l  

when c # 0  and v(z, g)=(z, d) when c=0 .  Now a nontrivial two-cocycle is given 
by 

t g '  ~(g,g)=c~(p(g)-,p(g'))v(g_',p(g)) (g,g' in G). 

A more convenient but equivalent two-cocycle/~ is given by 

t l t t - - 1  fl(g, g )=  c~(g, g ) s(g) s(g )s(gg ) , 

where s(g)=(c, d/g_) if cd#O and n does not divide ord c, and s(g)= 1 otherwise. 
When F is IR, we set s (g)=l  for all g, and fl=c~ is defined as before; this case 
may occur only if n = 2. If F is 112, then s, e and/3 are identically 1 and C, is the 
direct product of G and ~,. We shall use below Kubota's result [8] that fl is 
continuous in the non-archimedean case. 

We say that (~ splits over a subgroup H of G if the map g~(g ,  s(g)) from H to 
G is a homomorphism for some s, namely, H lifts as a subgroup of G, or, equiva- 
lently, the inverse image/4 of H under (g, ~)--,g is the direct product of H and ~,,. 

(; (; It is easy to see that /~(g, g')=(a, c') for g =  and g '=  in G, and 

hence that G splits over N and over A". Moreover, (~ splits over K provided that 
}nl~, = 1 ([8], Theorem 2), and fl is normalized to obtain the value 1 on K x K in 
this case. The last property is fundamental for our study (in 1.4) of spherical 
functions. 

As usual we put these local results together to define an n-fold covering 
group (~(A) of G(~k). It suffices to define a nontrivial two-cocycle /~=/~, on 
G(zk), and this is given by 

Big, g')= [J #~,(g, g'), 
l '  

where g=  {g,,} and g '=  {g',,} are any elements of G(A), and we put fl~,(g,g') 
=fl~(g~, g'v) with the local two-cocycle fl~, defined above. The product is taken 
over all places v of F, and it makes sense since/~,(g, g') is 1 for almost all v. 

The centre of (~(A) (resp. (~(F~,)) is clearly 2Z"(A) (resp. -" �9 Z (Fv)), here and 
below we write H"  for the inverse image of H" in G, where H is an abelian 
subgroup of G, and not for the set of n-th powers of elements of H. 

Finally, we note that the reciprocity law for ( , ) ,  namely, that IJ(a, b),,= 1 
t '  

for any a,b in F • implies that ~(g,g')=l~,(g',,,g~,) is I for g,g' in G(F), and 
c 

hence that the map g--*(g,s(g) -1) from G(F) to G(A) is an injective homomor- 
phism. Here we write s(g) for 1-[s~,(gv). We shall regard G(F) as a subgroup of 

t ,  

(~(A) through this map. The fact that G(F) embeds as a subgroup of G(A) is 
fundamental for developing a theory of automorphic forms on G(A). 
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0.3. From G to 

There is a natural map from G to (7, which is given by 

7--' Y = f~', 1)". 

For us, its main virtue is the following: 

Lemma 1. The map 7 ~ T preserves conjugacy classes. 

Indeed, we have 

(g,l) l~(g, 1)=((g, 1)-~(T, 1)(g, 1)),=(g l~,g,~),=(g-~Tg, 1),=(g 'Tg)~, 

as required. 
The significance of this simple lemma is, as we shall see below, that it affords 

relating characters of representations on G and (7,, since these characters are 
functions on conjugacy classes. 

An element 7 of G (or (7,) is called regular if its eigenvalues are distinct, and 
singular otherwise. If 7 in G is singular, then 9 is clearly singular in (~. We have 
to determine which regular y map to singular 7. If such 7 has eigenvalues in F • 

then it is conjugate to (~,a u ) f o r  some a in F • I f7  is elliptic, its eigenvalues 

are of the form a + b ] /0  with a in F, b in F • 0 nonsquare in F • and it suffices 

to determine such a and b for which (a+b]/O)" lies in F • Since bq=0, we put x 

=a/b and note that (x+]/0-)" lies in F • if and only if the polynomial 

has a zero in F. Clearly, the zeros of this polynomial are obtained by multiply- 

ing by 1/0 the zeros of the polynomial 

Since x = l  is not a zero of the last polynomial, we divide it by (x -1 ) "  and 
obtain the polynomial 

x + l  ]" 
7Z1-1 / -1,  

~+1 
whose zeros are clearly given by x = ~ - ~ ,  where {~  1 runs through ~,. It follows 

that (*) has no zero in F ifn is odd, and it has the unique solution x = 0  ({= - 1) 
if n is even. We have proved: 

Lemma 2. I f  ~ is elliptic regular, then ~ is elliptic regular unless n is even and ~/ is 

~U U ~'~ ~ w i t h  s o m e  b i n  F X aY~d ~ , ,o , , square  O i , , F  )< , conjugate to 
\b O /  
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I. Local Theory 

1.0. Orbital Integrals 

The explicit expression for the Selberg trace formula will be given below in 
terms of orbital integrals. Here we prepare the local analysis required for the 
global considerations. Our aim is to relate orbital integrals on (~ to those on G. 

Throughout this section, F will denote a non-archimedean local field; the 
results can easily be established also for F = IR, and they are already known for 
F = q2 since (~(Ir) splits over G(tF). 

Until further notice we shall denote by f a n y  locally constant (smooth if F = 
IR or C) compactly supported genuine function on (~(= (~(F,,)) with values in C. 
A genuine function is one which satisfies 

f((g, ~))= ~f((g, 1)) ((g, ~) in (~); 

a function invariant under (,  (or a nontrivial subgroup of ~,,) reduces to a 
function on G (or a subcovering of G), and hence it is of no interest for us. 

An element 7 of (~ is called regular if its eigenvalues 71 and )~2 are distinct. 
We denote by (~. the centralizer of a regular element 7 in G, and by dg we signify 
the invariant form on G,,.\G obtained as the quotient of invariant forms on G 
and G~,, whose normalizations will be specified when used. We put 

A (~,) = (~'1 - ~2 )  2 ~, 
and note that A (7) depends only on the conjugacy class of 7- 

For any .]" and 7 as above, we define the (normalized) orbital integral by 

F(7,f)=A(?') ~ .f(g-17g)dg; 
G~\G 

since f has compact support the integral always converges. We prefer to deal 
with the F ( 7 , f  ) rather than with the un-normalized integrals (where A(7) is 
deleted), since they extend by continuity to the singular elements of (~; this will 
be discussed below. 

Finally, we define F(7 , f )  for regular 7 in G and locally constant compactly 
supported functions f on G in an entirely parallel fashion. The F(7, f )  have been 
studied extensively by Harish-Chandra, Shalika and, in the most useful form for 
us, by Langlands [9]. 

1.1. Zero Orbits 

Many of the F(y , f )  are 0. Indeed, we have: 

Lemma 1. F(7,f)  is 0 unless 7 = ~  with ~5 in G. 
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Proof Given a regular 7 in G which cannot be put in the form ~3 it suffices to 
find a g in (~ such that g-~ ?g=7~ with ~4= 1. Since f is genuine, we shall then 
deduce that F(7,f) is equal to {F(?, f ) ;  hence F ( 7 , f ) = 0  as required. 

If the eigenvalues a and b of 7 lie in F • we may replace it by its conjugate 

and assume that 7= (~ ; ) .  The claim follows from the equality 

g-l?g=(7,(a,d)(b,c)) ( g = ( 0  0d) )" 

/a  
I f 7 i s  elliptic regular, we may assume that ;~=[b va)  and denote its 

determinant by x; here a, b are in F while 0 is a nonsquare in F • We write 71 
=a+b]flO and ?2=a-b]flO for the eigenvalues of y, E for the quadratic 

extension of F generated by 1/0 and ( , ) E  for the n-th norm residue symbol on 

E. We take an arbitrary g =  (~ dOc)withc, d inF•  and denote its determinant 

by z and its eigenvalues by g~ and g2 in the above order. By the continuity of the 
two-cocycle, we may assume that all elements occurring in the calculation below 
are nonzero. But the ~ which is defined by g - t T g = 7 ~  is given by 

fl(7, g)/fl(g, 7) = ( b ,  ! ) ( . - d x ,  ad+be t (b, d ) ( a d + b c , - b z  
xz / \ xz d / 

= (d, b/x)(d/z, b) (a/b + e/d, 0 c2/d 2 

0 -- a2/b 2 ] 

= (d, b/x)(d/z, b) (~,l/b + g2/d, g 2 / d ]  = (d, b/x)(d/z, b)(?l/b, gg/d)E 
"?'1/b ] E 

= (71, g2)e ; 

here we use the fact that (~, fl)e=(Ncq fl) for any e in E • and fl in F • where N 
denotes the norm from E to F. Since g2 is arbitrary in E • the lemma follows from 
the nontriviality of ( , )e. 

If y is a regular element of G, it lies in some torus T, and it is clear that the 
centralizer Gy of y in G is T. If,7 is a regular element of G, it lies in the subgroup 
"F" of T and its centralizer (~ in (~ is certainIy contained in T. By virtue of 
Lemma 0.3.1 we deduce that 

Lemma 2 . / f ~  is a regular element of G then G~, is equal to T. 

(10 1) of G where z is in Z". Since f has Consider the unipotent element z = z  1 

compact support, the unnormalized orbital integral 

f (g -  'zg) dg 
G~_\G 
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is well-defined, and we denote it by F(z,f). Clearly, the centralizer ~ of z is ZN, 

on which we take the measure d • adn where d • = d • = ~  if a = , and dn 

= d x i f n = ( ;  ~). We have" 

Lemma 3. The limit of F(7,f), as 7 in A" tends to z in Z", is equal to F(z,f). 

Proof The Iwasawa decomposition for (~ is G=ANK,  and the associated 
decomposition of dg is dadndk where dn=dx as above, da=d•215 if a 

= ( ;  ~), and dk is suitably normalized (see 6 lines below).We have 

F(?,,f)=A(7) ~ ~ f ( k - ln - i?nk)dndk  
N ~n\K 

and when 7 is sufficiently close to z, this is equal to 

the last equality follows from the fact that 

dc~ 0 
dg=dxd• if g =  (~ 1 ) ( ~  f i )(~ 01)k, 

and the proof is complete. 
It follows from Lemma 1 that the limit of F(7,f),  where 7 in/1 tend to z in 

but not in z~", must be 0. In this case we write F(z,f)=O. This is not always the 
value of the orbital integral yf(g- lzg)dg.  However, Lemma 3 is valid for z in 
Z", and it suffices for our needs. 

1.2. Matching Orbits 

We are going to relate the orbital integrals F(~,f)  on G, which are not 
necessarily 0, to the orbital integrals F(7,f) on G. We shall first recall the 
characterization of the F(7, f )  from Langlands [9], then establish an analogous 
characterization for the F(p , f )  in a form suitable for their comparison. 

If 7 is regular in G, it lies in some torus T and we have G~ = T. The measure 
dg used in the definition of F(7, f )  is the quotient of invariant forms o M and m r 
on G and T (respectively). We write F(7,f; ~or,~Oc,) for F(? , f )  when its de- 
pendence on m r and o M has to be made explicit, 

We say that the set of complex numbers F(';)= F(y; mr, coa), with regular y in 
G, is a G-family if there exists an f (as in 1.0) on G with F(),)= F(y , f )  for all 
regular 7. 
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L e m m a  O. A subset {F(?)} of 112 is a G-family if and only if" (i)-(iv) below are 
satisfied. 

! ! • 

(i) / f  r r and o)a=bo)c; with a, b in F , then 

(D I (D' F(?; T, G)=lb/a]F(?;(Or, e)~) �9 

(ii) I f  ? , = g - l ? g  and T ' = g - l T g  with g in G, and o T, is obtained from (JOT, 
then 

F(7'; ~)r', o~;) =F(?'; O)W, (DG)- 

(iii) For each torus T the map 7~F(7)  is a locally constant compactly 
supported function on the set T~eg of regular elements 7 of T. 

(iv) For each T and z in Z there exists a neighborhood N(z) of z in T and 
locally constant functions F' and F" on N(z) such that 

F(7) = F ' (? ) -  A (7) CTF"(7) 

for all regular ? in N(z). F'(z) and F"(z) are independent of T; !f T is split we set 
CT=0; otherwise c r is a positive constant which depends on (the conjugacy class 
o f )  r. 

Proof. This is Lemma 4.1 of Langlands [9], where it is also shown that for some 
choice of measures F'(?, f )  is equal to 

F ( z , f ) =  ! \ 6 f ( g - ' z g ) d g  (_z=z(10 ] ) ) ,  

and F" (? , f )  to f(z), for ~ sufficiently close to z, and hence F'(z) and F"(z) are 
indeed independent of the torus T. We note that the limit of F(7,f)  as ~ tends to 
z is well-defined and equal to F ( z , f )  (see also the proof of Lemma 2 below). The 
value of c T will be determined in 1.3 below. 

Similar analysis can be applied in order to characterize the orbital integrals 
F(~,f).  Since we want to compare the F('7,f) to the F(7, f )  of Lemma 0, we 
normalize the F(~, f )  by writing 

P(~,f)=F(~l,f) 
for any ? in G for which ? is regular. Here we put 

It is easy verify that ~-=(?~, s(?~)- 1~), and this in fact motivates our definition of 
~ .  In particular, 

F(7, f )=A(y)  j f (g - t (7" , s (7" ) - ' )g )dg  
r 

if 7 lies in the torus T. 
It follows from Lemma 0.3.1 that F(~, f )  depends only on the conjugacy class 

of 7. If we want this to be true for F(7, f )  we must prove: 
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Lemma 1. (~, depends only on the conjugacy class of 7. 

Proof It suffices to show that e(7,?0 ( j> l )  depends only on the trace T and 

determinant D of 7. For any g = (~ bd) w i t h c # O w e l e t c ( g ) b e c .  S ince72=T.  ? 
- D .  1 we have 

c(? J+ lj/c(7 ) = T c(?,i)/c(y) - D c(?J- t)/c(7 ). 

Arguing inductively we see that this expression is a polynomial in T and D, 
hence a class function for all j. We deduce that 

~(~,,/) = ( c ( / +  ~)/c(~), c ( / +  1)/c(/))= (c(-j + 1)/c(~), - c(~)/c(~J)) 

is also a class function, as required. 
We have proved the Lemma under the conditions c(?)e(] 2j) c(7 j+ 1)q= 0. In the 

non-archimedean case the lemma follows for all ? by the continuity of the two- 
cocycle c~. The observation that ~(7, ?)=(a, d) for any V with eigenvalues a,d in 
F ~ completes the proof in the real case. 

As in the case of G we write F(7,./~ OT, ~ )  for F(?,, f )  in order to specify the 
dependence on the invariant forms co7., c% on T and G whose pullbacks to 
and (~ serve to define the integral in question. We say that the set of complex 
numbers F(7)=F(? ;  o r, o)~} (7 in G with regular ~) is a G-family if there exists a 
genuine f (as in 1.0) on (~ with F(7) = F(7, f )  for all such ?. 

Lemma 2. A subset {F(7)} of Ir is a G-family if and only if (i)-(iv) of Lemma 0 
hoht with F replaced by F, c r replaced PT= Inl cr, and (v) below is satisfied. 

(v) We have F(~ ?)= F(?) )'br all in ~, and 

The proof will be given in the next subsection. 
We draw the immediate conclusion from Lemmas 0 and 2. 

Lemma 3. Every CJ-family is a G-family; ever), G-family satisfying (v) 4 Lemma 2 
is a G-family. 

1.3. Pro(f  of Lemma 1.2.2 

Property (i) follows at once from the definition of a G-family, (ii) from Lemmas 
0.3.1, 1.2.1 and the definition of A(~), and (v) from the fact that f f(7,f)  depends 
only on the n-th power 7" of 7. Properties (iv) and (iii) for split tori T are 
obtained from Lemma 1.1.3 and its proof. To obtain these for nonsplit tori, we 
may assume that f satisfies f ( k - l g k ) = f ( g )  for all k i n K ,  since we can replace 
f by the function }g[-1 f ,r(k- lgk)dk" 

K 
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We may  restrict our  a t tent ion to ~ = (~ bOa)inanonsplittorusT, whereOis 

a nonsquare  in F • and ord O= 0 or 1. Since f is invariant  under conjugat ion by 
elements of K, we have the expansion 

F(7, f )  = A (5')[K/Tr K[ ~ [ T g K : Z K ]  f ( g -  '(7", s(7")- 1) g) 
g 

(1) 

(see [7], p. 254); here ISI denotes the measure  of  the set S and g runs through a 
set of  representat ives for the double  coset space T\G/K. We take the repre- 

sentatives ~=(~0 0j,m~0), and ~hen 
6 , .=[TgK:ZK]  

is given by 

1, (m =0)'~ 
(5,, = (1 + 1/q) q", (m > 0)J T unramified, 

2q", T ramified. 

We write a+blfO for an eigenvalue of 7 (with a, b in F) and  A+BI/O=(a 
+b]/-O)" for an eigenvalue of 5' (with A, B in F). To  determine (1) we note that  
in G we have 

(10 o)-m((; O B \  n 1) 
---- ((2--~ 07~)'~("2-~ 07~)--'). (2) 

To prove  (iv) we have to examine the case where 7 is close to some z in Z. Then 
b ~ 0, a ~ z, A ~ z", B ~ 0, and the funct ion s on the right side of  (2) obta ins  the 
value 1. Since 

(2B ]/0) 2 ~__ 12nl/Ob/al, 
A(5')= A 2 0 B 2  

(1) is the produc t  of  

2 [2 ]/-O] ]K/T c~ K] 

and 

�89 ~ Inb/al mf 
m>o B~-m 

This is 

s ~((x~n ~ 
Ixl > Inblal 

~ [ [ z '~ 0 U ) ) _ ~ Z , ~ o , ~ t t ~  ~ o)) 
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when T is ramified, and when the measure on T is normalized, (1) is the 
difference between 

1 

a n d  

Ixl < l~blc, l 

_lnb/al f ( z " )  1�89 Ae,,),f(z"); 
q - 1  q - 1  

Y~ t#)t m 
m>O 

hence (iv) follows. The calculation for unramified T is similar and will be 
deleted. 

The local constancy of F(7, J~ on most of the set of regular elements in T can 

easily be ~ fr~ (1)" The ~ excepti~ is at the element 7o = (0z ~ )  

where the verification is more difficult, and therefore it will be given here. We 

write y =  (~ Ob) for an element sufficiently close to To; thus a- ,O and b-~ z. We 

have to distinguish between even and odd n. 

Suppose n is even; then T"= (B 0AB) is close to the singular element zn. 

Since A=_b"O ~" (moda)  we have �9 Bx-1 =s(Bx-1), where we put s(x) 

=(x,O -~") if n does not divide ord(x), and s (x )= l  otherwise. When T is 
ramified, we put t=O~"b ~ and note that up to a constant, (1) is equal to 

OB -""" t 

Clearly, (1} would be independent of a if we showed that f ( t ) = 0 .  To see this we 
note that since ord (0) is odd, there is a unit ~: with (W 2, ~:) = - 1, and that 

.r((; ?))--~{('o 7)-'(; 7)('o 
hence .t '( t)=0 and (1) is independent of 

When T is unramified, then up to a 

7))=~((; 7)) '~ 
a, as required. 
constant (l) is equal to 

r((~ 7)),ajb,~<.,+<,+,jq,~0,ojb, q-ri(.~. ~U))s<.~-, 
j. t 

~')'~'~"'+~'+'~' ~ ((,.~, ?1) ~ Ixl > laihl 

i t = ( l + l / q ) ! .  ( (nx t  ? ) ) s (nx t )dx  (t=O~"b"), 
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which is independent of a, since 

( l + l / q )  j" s(nxt)dx=(l + I/q)la/bl ~, q-ms(B&") 
Ixl~l~/bl m_>_O 

=(1 + 1/q)[a/bl ~ q-ms(B)(- 1) ~= s(B)]a/bt 
m>=O 

when [nl = 1, and f ( t ) = 0  if In] < 1, as required. 
Suppose n is odd. Then AoO, BoO~("-l)z ", as a~O, boz, and A(~) is 

independent of a ,  b. For any c~ near 0 in F and a unit e of F • we write 

Y ,(x,y)=(Bz_lx_l OzxB) ) 

with x = e o r  1 a n d  y = c~ o r  0 .  Then 

f(7(e, 0))s(7(1, ~))/s(?(~, ~))= f(7(~, ~))s(7(1, ~))/s(y(~, ~)) 

=f(7(e, 0)) s(?(1, O))/s(y(e, 0)). 

In n does not divide ord(Bz -1) and f(7(e, 0))#0, then 

(Bz -1, ~)-1(B2-18-1, ~ ) =  (g, E) 

must be 1. But there is a unit e and some a as above with ( a , e )# l ;  hence 
f(7(e, 0))=f(7( 1, 0))=0, and (1) reduces to the sum over all m for which n divides 

~ ord(B&-"). For each such m we have s B& -m = 1, and we conclude 

that (1) is independent of a, as required. 
To complete the proof, we still have to show that if {F(~)} satisfies (i)-(v) of 

Lemma 2, then it is a G-family. By (i) and (ii) it suffices to restrict outselves to 
one choice of measures and of representatives for the conjugacy classes of tori, 
and we make the obvious choice. 

It is not difficult to find J~ and J~ such that F ( ~ , f l ) = P ( 7  ) and fl(z')=O 
while F(z',f2)=O, fz(z")+-O and F"(7,J~)=F"(?). It suffices to show that the new 
family 

P (~ ) -P (>  ~ ) - F ( ~ , L ) ,  

which we denote again by F(7), is a G-family. Its virtues are of course that F' 
= F" = 0 at some neighborhood of each singular ?. The singular elements are the 
only intersections between the different tori and F(?) vanishes there; hence we 
may restrict our attention to a single torus T (there are a finite number of 
conjugacy classes of these). We can also find some f3 with F(7, f3) being F(7) at 

?=(0b 0b) and 0 ~ a small neighb~176176 ~  element ;hence w e / a  n~, 

may assume in addition that F(7 ) vanishes at I~" ~,,~'). 
\o  
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By (iii) it is possible to find a locally constant compactly supported function 
--n X on Trig T \ G  whose integral over ~] 1 ~7 x T \ G  has the value/5(~,) for all ? with 

in T~g. Here we have to use (% which implies that F(7) depends only on ~" but 
not on 7- Finally, since the map 

T,:gx T\G~Gr~g, (?, g ) -+g- '  7g, 

is a local homeomorphism, we obtain .f with F(9(~71, f ) =  F(7 ) and F(7, J)= F(7), 
as required. 

1.4. Spherical Functions 

The trace formula will be applied to operators which depend on global functions 
whose local components are almost all spherical; namely, they satisfy 

f ( kgk ' )=f (g)  (k,k' in K,g in G). 

Of course, such f may exist only when n is a unit in the (local) field F (see the 
definitions of 0.2), and we restrict our attention to such residual characteristics 
only and to nondiadic F (for convenience sake). 

To apply the trace formula effectively, we need a more delicate form of 
Lemma 1.2.3, which will not only relate F(y , f )  and F(~,f), but will also show 
that i f f  is spherical, f can be chosen to be spherical, and vice versa. 

The convolution algebra ~r of all genuine spherical compactly supported 
functions on G is generated over (g by the functions s  where 2 = (m, m') is a pair 
of integers divisible by n, which obtain the value ~ at g if g is in 

0) 
and the value 0 otherwise. The reason for considering only m and m' divisible by 
n is explained by the arguments of Lemma 1.1.1. Similarly, the convolution 
algebra 0~ of spherical compactly supported functions on G is generated by the 
characteristic functions fz (2=(m,m') is a pair of integers) of K2K. We put 
{c~,,),) = m - m ' ,  and define a map q) from ~ to ~F' by 

=q~< ,("- l)a>fa ' 

This map is clearly one-to-one and onto; moreover, it takes the characteristic 
function of K to that of K. We prove: 

Lemma. For ever), 2 in G and f in ~ ,  we have 

F(~, f )  = e(~, ~o(f)). 

( ~  0 )  lies in Prool: It suffices to prove this only for .P=,/~a, (c~, 2 ) >  0. If y = 72 
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A" we claim that 

A\G A'IG 

This follows from the Iwasawa descomposition G=ANK and the following 
equality in 6 (not only in G!): 

m-1 i ) (m in f•  
0 ,  l 

indeed we may assume that [),1[>172[, and moreover that [~1[>[~,'21 (since the 
case [71[ = I'/zl is immediate). But .s is spherical, hence (for Iml > 1) we have 

)/~2 [(10 ~lm)00 ,02) ( 10 ~)] 

- - ] ~ x [ ( ? l  ; ) ( ) 0  702)(; (1-7;/3q)rn)(00 ; i ) ]  

where x=((72/71)- 1)m. By definition this is equal to 

as required. The last equality follows on reversing in G the above calculations in 
G and noting that f,a is spherical. 

It follows that F(7,J~a)=F(7",f. z) for all 7 in A. Lemma 3.1 of Langlands [9] 
establishes that for 2 ~ =(ord 71, ord 72) with (c~, 2 v ) >  0, 

[q~<~'~>, if 2 = 2  v, 

F(o;,f~)=,K/T~K, xI@<~,~(I- ~), if )~=)~ +m~,m>O, 

t 0, otherwise, 

(3~ 0 ) and e : ( 1 ,  -1) .  It is implicit that F(7,f)depends only on the where ?, = )'2 

pair ,~v so that we can write F(2V,f)  for F(',,,f), and this function is invariant 
under permutation of the two coordinates of )~ v. The lemma follows at once for 
all 7 in A. 

We shall now deal with elliptic elements ;~ of the nonsplit tori T =  a ! 

b+0~.  We assume as we may that 101 = 1 if T is unramified and 10] =1~51 if T a or 
1 
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is ramified. To consider the functions ~ ,  2=(m,m'), with m=m', it clearly 
suffices to study the case of 2=(0, 0) where . f = ~  is the "genuine" characteristic 
function of K. We compare (1) of 1.3 with its obvious analogue 

m>=O �9 ~ U  

for G, and as usual we write ?=  ( ;  0 a b ) , ? " = ( ;  0/3). 

There are various cases to be considered. Both F(?~, f )  and F(?,, o(f)) vanish 
unless det ? is a unit in F • Suppose a 2 -  Ob z is a unit. If lal > Ibl, then A ~a"  and 
B-nba"- t (mod( l  +COO)); hence lal=lAl(= 1) and Ib[ =IBI, and the expansions 
for F(7, f )  and F(7, ~o(f)) are clearly equal term by term. There is only one term 
on both sides when [al=lb[= 1. Indeed, in this case [BI=I. This is obvious if 
101< 1. If 10[= 1, we repeat the argument of Lemma 0.3.2: If B-0 (mod(1  +c50)) 
then x = a/b satisfies the equation 

3o,  o2+ _o 

whose zeros are obtained by multiplying by l /0  the zeros of 

who all lie in F• hence 1/0 lies in F • but this is impossible since 0 is a 
nonsquare. 

Finally, when Ibl>lal, we must have 10]=1. If n is odd, then B-b"O C'-1~/2 
and A-nab"  10(" 1)/2; hence there is only one term in the expansions of both 
F(? , f )  and F(?, (p(f)), and these are clearly equal. The last case is of even n. 
Here A=_b"O ''/2 and B-nab"  10r 1; hence [B[<I, and we have 

where s(x)=(x, A) 1 =(X, 0 n/2) 1 if n does not divide ord(x), and s(x)= 1 other- 
wise, and k=orda(la] =q-k). The inner sum is 

(l+ql), , ,=l ~ (-q)ms(B)= \i(-lla[ )k-1)s (B) ;  

hence 

-~(?, f )  = t( - 1) k s(B) = t, 

and this is equal to F(?, q)(f)), as required. 
To deal with general ./~, we distinguish between two cases. 
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(i) Suppose T is unramified, 7 in T, r is the order  of the eigenvalues of 7, and 
put 2 ~ =(r , r) .  F(7, q)(./~a)) is nonzero only if 2 = 2  ~ +(m, -m) ,  m>0 .  The case ). 
= 2  ~ has been dealt  with above, so we assume that m > 0 ,  and by Langlands [9], 
Lemma 3.6, we have F(7, q0(J~,x))=tq"(1 + l /q ) ,  where t= IK /Tc~KI .  The same 
lemma implies also that some conjugate of 7" lies in K(n2)K,  and that F(7",f,~) 
= tq'~(1 + 1/q), since n 2 =  n2 ~ +(nm, - n m ) .  We deduce from the usual formula 

(; (; o; 
F ( 7 " , f , a ) = t d ( 7 " ) k ;  6kf,~ ( 7" ) (1) 

that if A(7")=q -e, then 

0 j - k 7 ,  ( i  

if and only if k = f i + n m .  But by definition f l = o r d B - n r ,  hence (for such k) 

or d ( B (5- k) =ord  B - k = or d B - fl - n m = n(r - m) - 0 (mod n). 

It follows that 

0 --k 0 k 

is 1. Hence (y,f,a) is equal to F(7, q)(J~;,)), as required. 
(ii) Suppose that T is ramified and 101 = 1(51. If ord (det 7)= 2 r (t" integer), then 

((; (; lal > Ibl and A is an n-th power in F • ,' hence s (5 7" (7) = 1 for all 

k__>0. F(7, ~0(J~x)) does not  vanish only if 2 = ( r + m ,  r - m ) ,  m > 0 ,  and in view of 
the above considerations, we may assume that m>0 .  Then  A(7)=A(~), F(7,.~)) 
is equal to F(7 ,f,~), both ~ " " f,;,(a ) and ~o(./~)(a) are 0, and the lemma follows on a 
double applicat ion of [9], Lemma  3.8, with Ft~'"w ,J,x,r ~ and with F(7, q)(,/~x)). 

If o r d ( d e t T ) = 2 r + l  is odd, we have lal<lbl, and we deduce from [9], 
L emma  3.8, that for even n F(y",f ,x)  is 0 unless n , ~ = ( n r + � 8 9  n r + � 8 9  
with m > 0 ,  where it is tq "-~.  If A(7")=q -~, then fl is a half of a positive odd 
integer, and from (1) we deduce that  (2) holds if and only if k = m + / ~  - 1 .  Since 
ord(BCo-k)=ord(A6)  -m) is divisible by n, the expression (3) is 1. Hence F t~,w,,,.4F ) 
= t q  m-~ when n 2 = ( n r + � 8 9  n r + � 8 9  if m>0 ,  and = 0  otherwise. Now 

. - - 1  q~(~,(n- 1)4) = q ~ - m ,  

1 m m 1 m 1 

and [9], L e m m a  3.7, implies that F(7, f~)= t q ~-  ~, hence that F(7, ~o( f j )= tq"  " -  ~, 
as required. 

Finally, i f o r d ( d e t T ) = 2 r +  1 is odd and n is odd, F ( 7 " , f j  is 0 unless n)~= (nr 

n + l  n -  1 ) 
+ T + m ,  n r + ~ - m  , re>O, when it is tq". The only term to contr ibute to 
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n - -  l 
(1) is k=m-T(modn) ,  and since ord(Bgo k) is divisible by n, the expression 

(3) is 1; hence - - " F(7,f,).)-tq for nE as above. Also q~<~,l,-1jX>=q~-(,.+~) and 
_m+[ 

[9], Lemma 3.7, implies that F(7,f~)=tq, z, ~, hence that F(7,~o(f,)))=tq", 
as required. 

We finish this section by modifying all results so as to apply to genuine 
locally constant functions .f  which have compact support modulo the centre Z" 
of G and transform under the centre by a character # ~ of Z", namely, 

f(zg)=l*-t(z)f(g) (z in Z",g in G). 

Similarly, we shall consider locally constant functions f which have compact 
support modulo the centre Z of G and transform under the centre by a character 
/~'- ~ of Z;  thus 

f(zg)=lt'-l(z)f(g) (z in Z, g in G). 

Lemma 1.2.3 is again valid if the characters p and fd of Z" and Z are related 
by the equation 

#(z")=#'(z)  (z in Z). 
I 

Lemma 1.4 will be applied with elements of the algebra ,aft" of bi-invariant with 
respect to K, genuine, compactly supported modulo Z" functions ./" on G which 
transform under the centre by /~ 1, where /~ is an unramified character of Z". 
The convolution in at{" is defined by 

.f~ , f~(g)= j .f;(gh ')f~(h)Jh. 
Zn\G 

Similarly, we define an algebra .Yf' of spherical functions f '  on G with 
compact support modulo Z and which transform by /*'-~ under Z, where #' is 
an unramified character of Z satisfying F{ (z) = ~ (z") (z in Z). The convolution in 
~ "  is defined by an integral over Z\G. The map f - - . f '  defined by 

.f'(g) = ~ ,f(~-g) #(~)J~, 
Z,, 

is a surjective homomorphism from ~,g to ~ '  and so is the m a p . f ~ f '  from ~ 
to ~N' which can be defined in a similar way. Now if f is the image of f under 
the map q~ from ~ to a f ,  we have 

~, 
(~, f ) = .f ~(z~ ,  .f) , (z") ,t~ = j F(~ ~,, f ) ~ ' ( ~ )  d~ = F(~., f ' )  

Z Z 

for every 7 in G with 7" regular. 
Eemmas 1.2.3 and 1.4 will be applied with functions which transform under 

the centre by a character # and #' as above, and which have compact support 
modulo the centre and not with the functions which had previously been used. 
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2.0. Characters 

Let /l be a character of Z", and let g be an anti-genuine admissible repre- 
sentation of (7, in a vector space V (necessarily infinite-dimensional) which 
transforms under the centre by/~; thus, by definition, 

~(~zg) = ~- ~ #(z) ~(g) (z in Z ", g in G). 

For any locally constant genuine function f on G with compact support 
modulo Z" and with 

f(~zg)=~#-~(z)f(g) (z in Z"), 

we consider the operator 

~ ( f ) =  ~ f(g)~(g)dg. 
Z-\G 

Suppose that ~(f)  has a finite trace for any such f. The antigenuine locally 
integrable function 7~(g) on the conjugacy classes of G is called the character of 
if for any f we have 

t rY( f )=  ~ f(g)Z(g)dg. 
Z\G 

In this section the characters of admissible anti-genuine representations ~ of 
(~ will be studied. 

2.1. Principal Series 

An admissible irreducible representation ~ of G on a vector space V is said be 
supercuspidal if for every vector v in V there is an open compact subgroup U of 
N for which 

g(n) vdn =0.  
u 

Every anti-genuine admissible irreducible nonsupercuspidal representation 
of G is intertwined with a subquotient of the representation Ind (B, G, 7) induced 
from an anti-genuine irreducible representation 7 of B trivial on N ([-7] (for G), 
[1] (n=2)). The (Heisenberg) group 4~B/N  is not abelian, but it contains an 
abelian subgroup fi'o of minimal (finite) index. Note that 40 contains A", let ~7 
=(v 1, v2) be a pair of characters (a one-dimensional anti-genuine representation) 
of the abelian group A", and extend q in any way to 4 o. By Clifford's theory any 

as above is of the form Ind(A 0, 4,~/) ([1], p. 99 (n=2)); hence any ~ is a 
subquotient of some Ind(B0, G, tl), where B0 = 4 0  x N and q is extended to N by 
the value 1. We write fi(r/) for Ind (Bo, G, ~/). We shall show below that it depends 
only on the restriction of 11 to 4"; hence it is not necessary to specify the values 
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of r / o n / 1 o -  ~" or even to choose/1o. Recall that ~(q) acts by right translations 
on the space of locally constant anti-genuine functions q~ on G satisfying 

X 
4~ [ ((~ b),~)g]=~--l la/bl~v,(a 'v2(b'~(g)(g in (~), 

((; ~) ) for any b ' ~ in Bo, which are square-integrable on K. 

Lemma. The character Zr of ~(rl) at (g, () is equal to 

(_l'l(g')+r/(w-lg 'w) ( (01 - 1 ) )  
A (g) w = 0 

if g is conjugate to a regular element g' of A", and to 0 if g is any other regular 
element. 

H e r e w e s e t q ( ;  ~)=vl(a)v2(b)fora, b i n F  • 

Proof This follows closely the proof of 1-7], Proposition 7,6; when n = 2 a variant 
was given by [1], Theorem 5.14. 

By the Iwasawa decomposition we can choose a measure on K so that 

f(g)~(g)dg=t- '  ~ ~ ~ ~ f(aoamk)fc(aoamk ) 
Z'\G K N Z%Ao Ao\A 

= t  -1 ~ l a o a l  lf~(maoak); 

here t - - I / i o \ / i  I is the measure of Ao\A, and we put la[=l~/31 for a matrix a 

= ( ;  0fl)- Observing that 

(~(r/,f)q~)(h)= ~ f(g)(~(~)(g)~))(h)dg 
Z"\G 

= 5 f(g)~(hg)dg= j" f(h-tg)~(g)dg 
Z-\G Z.\G 

: t - '  y y j" ~ ]aoal-lf(h-'maoak)~(maoak) 
K N Z"\.~Io Ao\A 

-- t-~ J" S (S .I laoal -  ' laol~ n(ao)f(h- ~maoak)) b(ak), 
we see that ~(F/,f) is an integral operator with kernel 

K T(a'k',ak)= ~ ~ raol-~lal-~tl(ao)J'(k'-la'-lmaoak)dmdao, 
Z"\~ N 

0 

whence 

tr ~(t/, f )  = r 1 ~ ~ ~ ~ laol- ~lal-1 q(ao ) f ( k - t  a- '  maoak). 

Since, in G, 

(~ aO) -~ (~ ~)(~ 5 (;~ oO)=((~ ~)' (~ O)(; ~),~), 
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where z =  x~2a2 and (=(~1, a2)(~2, ~ the trace is a1(~1-~:) 

j" ~ ~ (~l- -ez2)2 ~v#(ao)f( k- = t-1 1 m- 1 aomk ) (at, a2) (~2 ' al), 
~1 0~2 

(;1 0), (;1 0 ). The integral over ~ o \ ~  will vanish for every where a o = a = 
~2 a2 

a o in Z" \A  o which does not lie in Z"\A". Noting this and integrating the 
remaining terms over A o \ A  we obtain 

= ~ A(ao)q(ao)(~ ~f(k-lm-~aomk)dmdk)dao 
Zn\A" K N 

_ 1 rl(ao) Af_ 004, -  1 aOW) 
- ~  ~ A(ao) 2 A(ao ) (~ ~f(k-~m-~aomk)dmdk)dao, 

Z~\A" K N 

and this is equal, as required, to 

Zo~.l(g) f (g) dg, 
2,,\,G 

by virtue of the Weyl integration formula 

z (g ) f (g )dg=IZ  ~ z()')d(y) 2 5 f(g-17g)dgd7 
Zn\G T Zn\T Gy\G 

= 1  E ~ Z(Y) A(7)  2 ~ f (g- l?g)dgd7 
T Z"\T" T\G 

(z(g) is an anti-genuine function invariant under conjugation and transforms 
under Z" by #, the last equality follows from Eemmas 1.1.1 and 1.1.2, and the 
sum is taken over a set of representatives for the conjugacy classes of Cartan 
subgroups of G). 

This lemma, together with Lemmas 1.2.3 and 1.4, and [-7], Proposition 7.6, 
implies that 

tr~(rl, f ) =  ~ z(g)f(g)dg= I ~ (~(a")+~(w-la"w));(a,f)da 
z. \G Z\A 

for measures related so that ~ h(x)d• ~ h(x")d• for any compactly 
z,,\~t, Z\A 

supported locally constant function h on Z\A ,  

1 - ~  ~ Of(a)+~l'(w-law))F(a,f)da = ~ Z.(r 
z\A Z\G 

where rf=(v'l, v~) is a character on A with q'(z)=q(z") (z in Z), and p(rf) is the 
principal series representation Ind (B, G, ~/') of G. Thus: 

Corollary. We have the character relation 
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with the (,g defined in 1.2, and for every f and f with matching orbital integrals as 
in Lemma 1.2.3 we have 

tr fi(r/, f )  = tr p(r/',f). 

A representation ~ (admissible, irreducible) is said to be of class 1 (or 
unramiJi'ed) if it contains a K-invarient non-zero vector. I f f  is spherical, then it 
is easy to verify that ~z(k)(~(flt ,)=~(f)v for any k in K and c in the space of re. 
Hence n ( J ) = 0  and tr ~ ( J )=0  if x is not of class 1 but f is spherical. 

A representation rr (admissible, irreducible) is said to be square-integrable if 
there is some v+0  in its space and some u=l=0 in the space of its contragredient 
representation, such that 

j" [j'(g)[2 I/*- 1( det g)[ d g <  %, 
Z~,G 

where f(g)=(Tt(g)v, u) and ( , )  denotes the canonical pairing between ~ and its 
contragredient, Z denote the centre of G, and/~ is the central character of ~. The 
function f is called a matrix coefficient of ft. The matrix coefficients of a 
supercuspidal representation r~ have compact support modulo the centre; hence 
such ~z is square-integrable. 

The representations p(r/') of G= GL(2) are class 1 if and only if r/'=(v'l, v~) is 
a pair of unramified characters, and then it contains exactly one K-invariant 
vector ([7], Lemma 3.9). The p(r/') are reducible if and only if r/'=0L' [[~,//1[-~) 
with s=�89 or -�89 and then the decomposition series is of length two. It has a 
square-integrable subquotient er(r/') which is called the special representation 
([7], Lemma 15.2). The complement of a(r/') in p(r/') is denoted by 7r(r/') (and it is 
one dimensional); g(r/') is of class 1 when r/' is unramified. 

The representations t501 ) of (7, cannot be of class 1 if [n[,,< 1. Suppose that [n[,, 
= 1 ; then ~(q) is of class 1 if and only if r/is unramified, and it contains exactly 
one K-invariant vector in this case ([1], p. 103 (n=2)). The fi(r/) are reducible if 

1 - 1  
and only if r/=(/~ []~, # ]1-s) with s = 2 ~  n or 2-nn' and then the decomposition series 

is of length two (see Lemma 3.2 below). We observe that ~5(r/) (s= 1/2n) has a 
subrepresentation 601)  (whose space contains the ~0 in ~5(q) with 

Svq~[( ~ ; 1 ) ( ;  1 ) ] d x = 0 )  which is square_integrable (for p roofsee  the 

remark ending the proof of Lemma 2.3.2 below). The quotient of ~(r/) by 6(r/) is 
denoted by if(r/) and it is equivalent to a subrepresentation of fi(r/) ( s = -  1/2n) 
which is again denoted by if(r/); the corresponding quotient is denoted by 
~(q), and it is equivalent to if(v/) (s= l/2n). In general fi(/q, P2) is equivalent to 
P(#2,/~1), and we shall deal below mostly with equivalence classes of repre- 
sentations. We call 8(r/) "special". Its complement if(r/) in fi(r/) is of class 1 if and 
only if Inl~ = 1 and r/is unramified. 

As in [73, where an irreducible p(r/') was denoted also by ~(q'), we shall often 
write ~(r/) for fi(r/) if fi(r/) is irreducible. Note that p(tf) and ~(r/) are not square- 
integrable. Since 8(r/) and a(r/') are never of class l, we deduce from the above 
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corollary that for any spherical f and f with matching orbital integrals as in 
Lemma 1.4 we have 

tr if(t/, f )  = tr P01, f )  = tr p(q', f )  = tr ~01', f ) ,  (2) 

where q'(z)=~/(z") (z in F• both sides are 0 unless q and q' are unramified. If t/ 
is ramified, then there is some # such that q | #-1  is unramified, and we have 

tr ~(~/, #-1 f )  = tr (~(q) | # -  1)(f) = tr (~(q) | # -  ~)(f) 

=tr(p(rf)| 1)(f) = tr (~(t/') | # ' -  ~)(f) = tr ~(r/', # ' -  1 j.), 

where #'(z)=#(z") (z in F• 
This formula relating g(r/) to g(r/') holds not only with (twists of) spherical 

functions, but also with general functions as in Lemma 1.2.3. Moreover, it holds 
for all v, not only when v is such that [n[~= 1. This will be deduced in 5.2 from 
the trace formula. 

2.2. Weil Representations (n = 2) 

These are certain genuine representations of the two-fold covering group (~ of G, 
which were introduced by Weil [16] in 1964 in his representation theoretic 
reformulation of theta-series in an odd number of variables. Although the Weil 
representations play no vital role in this work and could be ignored altogether, 
it seems suitable to discuss their characters here in view of the applications that 
this has to the classical theory of theta-series, and since the Weil representations 
have attracted much interest in the past. Thus in this subsection we shall 
calculate the character of the Weil representation associated to a quadratic form 
in one variable, and when our study of characters is complete, we shall be able 
to identify the various (even or odd) pieces of the Weil representation (cf. [-4]). 

Let q(x)=qx 2 be a quadratic form in one variable on F where q is a 
representative of the finite group F• • 2. We fix an additive order 0 character 

of F and define the Fourier transform qr (with respect to q and 0) of a 
square-integrable function �9 on F by 

�9 '(x) = j @(y) tp(2qxy)[ql~dy. 
F 

The subgroup S of all (g, ~) in (~ with d e t g =  1 is generated by the elements 

( ( 0 1  lo ) ,~ )and  ((10 bl),() (b in F). The maps 

and 

r((01 
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where 7(q) is an 8-th root of unity ([16], Theorem 2), extend to a genuine 
admissible representation r of S on the space of square-integrable functions on 
F, and it satisfies 

for every a in F • Note that by [16], p. 176, we have 

co(a) co(b) = (a, b) co(ab). 
The representation r of S decomposes as a direct sum of two irreducible 

subrepresentations on the subspaces of even (~(-x)=q~(x)) and odd ( ~ ( - x ) =  
-4'(x)) functions ([1], p. 118). If # is an even (resp. odd) character, then r 
extends to an irreducible genuine admissible representation r, of the subgroup 
G+ of all (g, ~) in (~ with square det g on the space of even (resp. odd) square- 
integrable functions on F by 

/"i, ( ( 0  2 ~).()cI)(x)=(#(a),a.4cla(ax) (a in F~), 

and it can easily be verified that r. satisfies 

r~,((; Oa),~,)Cb(x)=~#(a)co(a)cI)(x ). 

The map q,-,  ~0, given by 

(p(x2)=ru (( ;2 01), 1)q~(1)=#(x)Jx] ~ q~(x), 

intertwines rs, with a (genuine admissible irreducible) representation ~ of G+ on 
a space of square-integrable functions ~o on F • 2, satisfying 

~ ( ( ;  bl),(,)(p(x2)=~(bqx2)q~(ax2) (a in F• 

~ ( ( ? 1  lo)'(')q~ (~,2!_2 #-'(y)~(2qxy))]z]-~q~(z2)lq[-kdz' 

where the inner integral denotes the average of the nonzero values at y = z and y 
= - z  of the integrand, so that the right-hand side above depends only on x 2 but 
not on the choice of its square root x, and 

~ ( (; ~),~') ql(x2)=(,#(a)co(a)~( x2)" 

We write {q to specify the dependence of { on the quadratic form q(x). The 
induced representation Ind(G +, G, {q) of G is the "Kirillov model" of the 
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representation Ind(G+,G,~q); it is independent of q, and its restriction to G+ is 
the direct sum of the ~q over q in F • • 2. Its character Zu, if exists, is a function 
on conjugacy classes in G, and as such Lemma 1.1.1 shows that it vanishes 
at all regular elements of (~ which are not of the form ~ ( g  in G). 

Lemma. The character Zu of  the Weil representation is a locally integrable 
function and is given by 

zu(g ~ a) =/~( _ 1)/~(g) A (g)/A (~) 

if  ~, is elliptic, and by 

on the regular elements o f  A. 

Here we write tt(g) for #(det g). The right-hand sides above depend only on 
g2 but not on g, since if g2 is elliptic regular, the only solutions in G for x 2 =g2 
are x = g  and x =  - g .  Finally, we note that when/~ is odd and la] +lbl, we clearly 

have Z, (a02 O2) = 0; hence the odd Weil representation is supercuspidal. 

Proof  Any  g= (~ ~) in (~+ with c +0  can be written in the form 

alc) ( (-0 Lc)  7)t c 
where a = d e t g ,  and this allows us to calculate in stages the transformation 
~0 ~ ~q(g)~0 on functions q~ in the space of ~, using the values of ~q given above. 
Since 7 is a character on the Witt group of F ([16], p. 173) and 

y ( x Z - a y 2 - b z a  +abtZ)=(a ,b)  (a, b in F• 

([16], p. 176), we have 

~q (g) q~ (u 2) = s (g)- 17 ( - c q) la ( - u a/c) ~b (q a u Z/c) 

"!  u ~,~ r I I~-l(Y)O(q(2uy+cdv2/a))  �9 
y2~ u2 

On applying the transformation v ~ - - v ,  where . '  in F • satisfies ~,2=~, we 
c 

see that ~q(g) is an integral operator with a kernel 

s (g ) -~V( -cq )  --qc y ~ ! ~ # \  y ~b q uza-+v2-+2UYcc c �9 

U 0~' 
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It follows that for any genuine locally constant and compactly supported 
function f on G which vanishes on the upper triangular subgroup, the equation 

{q(f)= 5 f(g){q(g)dg 
~2 \ G  + 

defines an integral operator whose kernel is easily obtained from the kernel of 
~q(g). The trace of Cq(f) is obtained by integrating the kernel on its diagonal u 
: v, namely, 

~ f(g)s(g)-'7(--cq)l~:l ~ ~ #(-~')'(!lq/cl-~O(qu2fl+2~')du)dg, 
~2\G + c~,2= ~ C 

where f l= t r  g = a + d .  Using the transformation t = q u 2 / c  ( d u = l c t / q l 4 d  • t) we can 
write the inner integral in the form 

~s(t(fl + 2~'))ltl~ d• t =  ~, ~ (cqt, v)t~(t(fl + 2~'))ltl~ d• t. 
cqF • v F •  

For brevity, we wrote ~ for the sum over a set of representatives v of F • • 2 
b' 

which is normalized in the sense that it is divided by the cardinality of F •  • 2; 
note that 

1, if a is in F x2, 
~(v,  a)= O, otherwise�9 v 

The normalized sum of tr ~ q ( f )  over a set of representatives q for  F •  • 2 is 
therefore given by 

.f(g)s(g)-'l~l ~ j' ~ ( -~ ' )  
~2\G+ ~'2=a 

�9 y ~ (v, t) (~ ~,( - c q)(c  q, v)) ~, (t (fl + 2 ~')) [tl ~ d • t dg. 
F x v q 

Since 

7( - c q ) (cq ,  v) = 7(v) = e(Z~, �89 
q 

where Xv(u)=(u,v) and e(Xv, 1) denotes the e-factor in the Tate functional 
equation ([12], p. 503 and p. 537), this integral can be written in the form 

v F x 2  ~ , 2 = ~  

(v, t)It[ �89 ( ~ f ( g ) s ( g ) - '  ~s(t(fl -t- 2~'))dg)d • t d • a 
F x Ga 

the inner integral is taken over the set G o of all g in (2\t~+ with de tg=~ .  
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Theorem 11 of  Har i sh-Chandra  [5], p. 49, states that in our situation there is 
a map f ~  M = M~:~ such that for any locally constant  function p with compact  
support  on F we have 

f (g )  s(g) - I  p(tr(g + e')) dg = J M (t) p(t) dt. 
G~ F 

Hence we can write the inner integral above in the form 

J M(s) O(ts) as = ;t(t). 
F 

On applying the Tate functional equation we see that 

r,(Z~,�89 J ( v , t ) l t l ~ l ( t ) d •  = j M(t)lt l~(v,t)d • 
F x  F • 

and our  integral is equal to 

J J ~(-~')1~1 ~ .f (v, t )M(t) l t l  ~dtd• 
v F • ~ ' 2 = ~  F • 

= 2  J J ~(-~')lc~l a ~ (v, f l+R~')f(g)s(g)- ' l f l+R~'l-~dg d• 
t, F • c ( ' 2 - ~  C/~ 

If g is elliptic regular in G+, we denote its eigenvalues by x and X and note 
that x~ lies in F • 2. It contributes a nonzero term to the above expression only if 

fl+_2e'=x+'Y+_2(x~) ~ =x(1  -[- (X/X)�89 2 

lies in F • 2. If E denotes the quadrat ic  extension of  F generated by x, then ~/x 
lies in E • 2; hence (1 +(~/x)�89 2 lies in E • 2 and x lies in E • 2, and there is some z 
in E • such that z 2 =x .  We write ~ for the conjugate of z in E/F and note that ~2 
--~. We have 

f l__20(=(Zq-Z) 2, 

and we see that (z+~)  2 is a square in F • while ( z - ~ )  2 is not. Let h be the 
element of  G whose eigenvalues are z and 2, and g = h 2. Let 0 be the subset of (~ 
of all g = ~fi (h in G). If f vanishes outside the set of elliptic elements, the trace is 

Iz~l ~ 
]" f(g)s(g)-I ~(-~') I~7~ dg 

A(h) 
= ~ f (g t~ (g t - l~ ( - l l~ (h )  ~ j  dg, 

as required. 
Similarly, we see that if g in G§ has two distinct eigenvalues A and B in F ~, 

then it contributes a nonzero  term only if A and B lie in F • 2. We then write (22 
= A  and b 2 =B  with a, b in F • and let h (resp. h') be an element with eigenvalues 
a (resp. - a )  and b such that g = h  2 (resp. g=h'2). Now fl+_20t' is in F • for both 
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choices of sign, and assuming that f vanishes on the set of elliptic elements, we 
obtain 

�89 ~ .f(g)s(g)- '  (/2(-ab)labl~ /2(ab)labl~] 
;~,,c \ la+bl  ~ ]~_~) ]dg 

= �89 ~ f(g) s(g)-~ [(/2(h') A (h) +/2(h) A (h'))/A (g)] dg,' 

this completes the proof of the lemma. 
For any character /2 of F • the equation /2(g)=#(detg) defines a one- 

dimensional representation/2 of G. The above lemma shows that for every g in G 
such that g, is regular, we have 

)A (g)/2(g), 
A (~,) z.(g'~; ') = [�89 (g)/2(g) + 

elliptic g, 
(1) 

4 (g')/2(g')), otherwise, 

when /2 is even ( a s u s u a l w e p u t g ' = ( ;  a 0b) i f g = ( ~  0b) ). 

When/2 is odd, the lemma implies that 

_ ~ - a (g) /2  (g) = ~ (g)  {. (~), 
- [ - �89 (g)/2(g) + A (g) /2  (g')) = �89 (g) z~(g)  + 4 (g') Z. (g')). 

elliptic g'(2) 

where a=o-(/21l-~,/21p ~) is the special representation of [7], Sect. 3 (whose 
character is calculated at [7], end of Sect. 7). 

According to the definitions of 5.0 below, (1) implies that the even Weil 
representation r, corresponds to the one-dimensional representation /2, and (2) 
implies that the odd Weil representation r. corresponds to the special repre- 
sentation ~r = a(/2) as above. 

We shall extend (1) and (2) to all representations of (J in 5.2. In particular, we 
shall see that the character Z~I,) of ~(~/) (~1=(/2~ II ~, #~IP~'), ~t even) satisfies the 
equation obtained from (1) by replacing Z, by Z~,~; we shall then deduce that r, 
is equivalent to ~(q). Also we shall see that there is a supercuspidal repre- 
sentation of (~ whose character Z satisfies (2) with Z in place of X,- We shall 
deduce that r, is equivalent to this representation (p odd), and that it is 
supercuspidal. As we have noted above, the fact that rt, is supercuspidal if/2 is 
odd can also be deduced from the fact that its character is compactly supported 
modulo the centre. Both results are well-known ([1], p. 118), and it is merely our 
proof which is new and depends on character theory only. 

2.3. Square-Integrable Representations 

The character of the principal series was determined in 2.1. The characters of the 
square-integrable representations will be studied in 5.2 below, using the trace 
formula. Here we prepare two auxiliary results which are of key importance in 
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that study. First we shall record the intimate relationship between matrix 
coefficients and characters of square-integrable representations on the set of the 
elliptic regular elements. Then we shall give the orthogonality relations for such 
representations. 

Lemma 1. The character )~=Z~ of an anti-genuine square-integrable repre- 
sentation ~ of G is a locally integrable function, and it is given by 

z(g)=d(~) ~ (~(h- 'gh)u,u)dh 
Z-\G 

on the set of elliptic regular elements. Here u is a vector of length one and d(ff) is 
the formal degree of ~. 

Lemma 1.1.1 now implies that Z vanishes at every elliptic regular g which is 
not of the form g = ~l~ for any h in G. 

Proof The proof of [7], Lemma 7.4.1, can be imitated to show that if f is any 
genuine function on G as in 2.0, then the trace of the operator ~(f )  is finite and 
equal to 

t r~ ( f )=d (~ )  ~ ( ~ f(g)(~(h-~gh)u,u)dg)dh. 
2~\G Z~\a 

To obtain the lemma we merely have to show that the two integrations can 
be interchanged. If ~ is supercuspidal its matrix coefficients are compactly 
supported modulo the centre, and the absolute convergence of 
~(~(h-lgh)u,u)dh (for any elliptic regular g) is proved exactly as in [7], 
Proposition 7.5, using the obvious analogue of Lemma 7.4.2 for G. 

For special ~ the absolute convergence of this integral (uniformly in f with 
support in a fixed compact modulo the centre) can be proved using arguments 
generalizing those of [7], Lemma 15.2. Indeed, on multiplying ff by a character we 
may assume that ff = 6( ]11/z,, H- 1/2,); its most general matrix coefficient is given by 
f(g)=(q~, ff(g)~5) with q~ in the space of ff(H 1/2", I1-1/2") and q~ in the space of 
fi([I-1/2, [[ 1/2,). Hence q~ satisfies 

~O((oa a X ) g ) =  a l/2 al 1/2n F• 
- -  q0(g) ( a l ,  a 2 i n  la21 

and 

and 0 satisfies 

x = ~  ~22 0(g). 0((;' a2)g) al 1/~ a, 1/2. 

To estimate the integral ~f(h- t gh) dh we have (cf. (1) of 1.3) to estimate the sum 
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,,,__>o -1  10) (&; D )  ( ; b  

and since f is K-finite it is enough to consider 

It suffices to consider 0 

this is given by 

' 7)(7- 'o)( 'o 
=54o,(x)~ol(xa-Z)lal  '+l l"dx,  

where ~ 1 (x) denotes the complex conjugate of ~ l (x), 

4O'(X)=40((01-; ) ( ;  1 ) ) a n d  ~ l , x )=~( (7  

b O - a 2 / b / I  ' 

(1) 

~ a 1 f~215176176 dx  
F 

-;)('0 
Let M > 0 have the property that ~51 (X)  = (p 1 ( 0 )  for txl < M. If lat > 1 the last integral 
is equal to 

]al-l+l/n[(Pl(O) ~i 4OI(x) d x +  ~ 4ol(x)(ol(a-2x) dx] 
Ixl _-< [al 2 M txl > I~l ~ M 

which is bounded by the sum of 

lal -~+1/" S 14ol(x)~(a Zx)ldx 
Ixl> laV M 

<Jal ~+11,,( ~ [q~(x)l~dx)lls( ~ 1(51(a zx)l tdx)l l ,  
Ixt> lalZM [xl > lalZM 

l+L+2- , 
<el la] ~ , t t ~ [4ol(x)lSdx) j/~ (2) 

Ixl> lal2 M 

- +  =1 and c'~= ~ [(Oa(X)pdx is a finite constant and 
S l Ixl>M 

La]- 1+ 1/~ [~l(0)1 .f [4ol(x)[ dx, (3) 
Ixl>lal2M 

since S 4~ (x) dx  =0. 
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Without loss of generality we may assume that r is the function of P(II 1/2n, 
II ~/2.) which is defined by 

((01 X)k)=lal/a21�89 (al,a2 inF• (P a2 

with k in K (or in a suitable congruence subgroup if Inl~, < 1). Now since for Ixl > 1 we 
have 

( ? - ; ) ( ;  7 t = (  0, ? i - - ( ~ 0  ' ~ l l k  ( k i n K ) ,  

we see that if lal2=lcSI "m(m~oo) then 

[. i,al(x)l, dx=O( ~.. q,.kld2,2kl~(,.+.l/2)=O( ~, i~olk~,.~ ,.~+s~) 
[xl> la[ 2 k>m k>m 

= O(l~O[m(n(s- 1)+s)) = o(la[-  2(s- 1)- 2s/n), 

and hence that (2) is O( I"l- 1 - l/n); similarly 

j" Icp,(x)l dx=O( ~ q"klc52~l("+'/2)--O( ~ Idol~)=O(l~ol')=O(lal2/"), 
txl> tal 2 k>m k>m 

and so (3) is also O(lal ~- 1% It follows t h a t f  0 do is o(id)r .~1 + 1/,)), and 

therefore that the sum (1) is absolutely convergent, as required. 
We could imitate the arguments of [7], pp. 268-271, to show that the character 

exists as a locally integrable function also on A, at least when • is supercuspidal, but 
it is easier to deduce this in general from the trace formula, as we shall do below. 

Finally we note that the above estimations can also be used to prove that the 
special representation r is square-integrable. Indeed, as in [7], p. 473, by virtue of 
the decomposition G = KAK we have to consider the sum 

~ 
instead of (1), and this is absolutely convergent since 

f (((~)02m ~ ) ) ~ f  (((~);m O))=O(]~. )]m( l+l /n) )"  

Let gl be square-integrable anti-genuine representations of (~, and denote by ~i 
the contragredient of gl (i = 1, 2). We have: 

Lemma 2. The function f(g) =)G~ (g) Z~ (g) satisfies 

6~ , ,~= �89  I f(g)A(g)2dg, 
2"\ r .  

where the sum is taken over a set of representatives for the nonsplit Cartan subgroups 
of G, and 6~ .... is 1 if ~l and if2 are equivalent and 0 otherwise. 



Automorphic Forms on Covering Groups of GL(2) 153 

Proof We may assume that the central character p (see 2.0) is unitary, in which case 
Z~i is the complex conjugate of Z~. 

The matrix coefficient 

~(g)-- c/(~l)(u, ~ (g) u) 

is square-integrable, and the Schur orthogonality relations imply that 

6 . . . . .  = tr ~2 (~o). 

This is also given by 

trg2(q0)= ~ g,2(g)~o(g)dg, 
Z"\G 

which, by Weyl's integration formula ((1) of 2.1) is 

=�89 ~ A(h)2z,2(h)( Y ~(g 'hg)dg)dh. 
r z,\'r, r\c 

If T is a nonsplit torus the inner integral is 

d(51)12"\T"l ' j" (u, fft(g lhg)u)dg, 
2"\G 

which, by virtue of Lemma 1, is equal to 

[Z"\T'I 1 Z~'l(g)" 

When T=A, we apply Iwasawa's decomposition and note that the inner 
integral is a constant times the integral over K of 

= 1 - !  ~!(ff , (g,  ff~(;  ;)~,(k)u, ff~(k)u)dx ( g = ( ;  0b) ). 

If ff~ is supercuspidak then the last integral is 0 by a direct application of the 
definition of a supercuspidal representation. This conclusion holds also for any 
square-integrable representation ff~ by virtue of [6], Theorem 29, and the lemma 
follows. 

2.4. Archimedean Places 

Here the work is simpler since there are no supercuspidal representations, and only 
principal series and their subrepresentations occur. The results of 2.1 hold also for 
genuine principal series of (~(IR) and (~(~). Since the norm residue symbol is trivial 
on C, all irreducible admissible genuine representations of (~(C) are either principal 
series or a finite-dimensional quotient of two principal series, as in the case of G (~) 
([7], Theorem 6.2); no more needs to be said for the field C. This is also all that we 
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have to say for the case n >= 3, since our assumption that the global field F contains 
the n-th roots of unity implies that F is totally imaginary. 

It remains to discuss the case n = 2  and the group G=G(IR). Here the norm 
residue symbol is nontrivial and (~ has no finite-dimensional genuine admissible 
representations. The reducible principal series of (~ are of special interest. Their 
irreducible subrepresentations are the discrete series and the corresponding 
quotients. Here we shall recall the results that we need and refer to l-l], Sect. 4, for a 
more complete discussion. 

(~ is the direct product of the multiplicative group IR+ of the positive real 
numbers and the subgroup G' of all (g, ~) in (~ with det g = _+ 1. It suffices to deal with 
the discrete series of (~'; those of G are obtained by tensoring with a character of 
IR+. The discrete series of G' are denoted by ffk/2 (k >0  odd) and are induced from 
the discrete series 7~/2 of the subgroup S of (g, ~) in (~' with det g = 1. 

The Iwasawa decomposition of S takes the form S=  A 0 N/(  where the inverse 
im age / (  of S0(2, IR) in S can be parametrized by 

r(O)=(cosO - s i n  0] 
\s in0 cos0 ] (0< 0<4~z), 

o0,) witho .   
is B = M A o N ,  where M is the cyclic subgroup of order 4 generated by 7 

+ • and (2, r), with 2 in Ir and r = _ 2, 

(2, z)(7;a_n)=e~iJ~a ;" (l=<j~4, n in N, i=( -1)~) .  

Every genuine principal series of S is of the form p(2, r )=  Ind (B, G, (2, r)) and 
can be realized as the right representation on the space of functions on G which are 
square-integrable on /(  and transform on the left under b=y.ia_n (in /~) by 
multiplication by a(2, z ) (b)=(2+ 1, r)(/;). An orthonormal basis for this space is 
given by the functions q~,, defined by 

qo,,(anr(O)) =a ~ e i~2"+~~ (m integer). 

The representation p(2, z) is reducible only if 2=  • 1 8 9  with odd positive 
integer k. Suppose that 2 = � 8 9  and 2 r - k ( m o d 4 ) ;  then ff~k is the subre- 
presentation of p(2, z) whose space has the orthonormal basis of all q~m with 2m 
+~>�89 

The character of ff~k on /s can easily be calculated now. Since the eigenvalue 
of the operator ff~k(r(O)) with respect to the eigenvector ~o,, is e it2m+O0, w e  merely 
have to sum these up for m with 2 m > k - r .  As usual, introducing a convergence 
factor t ( 0 < t < l ) ,  this sum is 

e�89 
tm eil2m+t)O=t�89189 l _ t e 2 i  ~ ,  

,n >= �89 t) 
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which tends to 

_e i ( � 89  1)0 

e i O - e  io , a s  t - - + l .  

The character Z~k of the representation ff~k=lnd(S, G', ~k)  is therefore 

e - i ( ~ k ,  l)O ei(�89 1)0 

e i ~  e iO 

The discrete series =k (k > 0 even) of G' (the subgroup of GL(2) generated by 

(, ~  ,sgi enby SL(2) and 0 

e i(k I)0 ei(k 1)0 
zk(r(0))= 7,, ,s  (0<0<2~z). 

Since A (r(O)) = e "~- e i0 we have 

A(r(20))Z~k(r(20))=A(r(O))Zk ~(r(O)) (0=<0<270, (1) 

for all odd integral k>3.  This extends to k = l  on denoting by ~z 0 the trivial 
representation of G'._By tensoring if} k with a character # of 1R + and ~z k _ ~ by #2 this 
equality extends to G and G. We proved: 

Lemma. Let # be a character of lR + and k a positive odd integer. Suppose that ff ~k and 
ffk- 1 are the discrete series which transform under IR + by # and #2, respectively. Then 
lbr an), g in IR+ K with ~ regular in IR+ K we have 

A(g) z~k(g~g')=A(g)zk l(g). (2) 

It is now easy to deduce from Lemma 2.2 that the Weil representation r,, where 
it is the character of 1R • with #(x)=(sgu (x) /  #(Ixi) (j=0, 1), is equivalent to the 
discrete series if}+ i, and that (2) extends to all g in G with ~ regular for k = 1 or 3. The 
identification of the even (resp. odd) Weft representation with ff~ (resp. ff~) is well 
known using other techniques ([1], p. 94). Finally, we note that (2) will be used only 
with the g specified in the lemma, although it holds for all g (this can be proved 
either directly or by using the trace formula below). 

il. Global Theory 

3.0. The Trace Formula 

Our main purpose in this work is the study of the correspondence between 
representations of the adele groups (~(A) and G(A) and not only that of the local 
groups G(F~,) and G (F,~) with which we have dealt in the previous sections. To do this 
we shall apply the trace principle. More precisely, we shall obtain a variant of the 
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Selberg trace formula for the covering group (~(A) and using the local analysis of 
the previous sections we shall equate it to the trace formula for G(A) for matching 
functions as in Lemmas 1.2.3 and 1.4. This will afford not only a good 
understanding of the global correspondence but we shall also be in a position to 
complete the study of the local correspondence, in particular for square-integrable 
representations. 

We begin by discussing the trace formula for G(A). Although G is not an 
algebraic group, its trace formula is similar enough to the trace formula for G, and 
after some easy modifications the proof applies here as well. Since the proof has 
been fully exposed, at least in the context of GL(2) ([-7], [9] and recently [2]) and of 
other algebraic groups of rank one, there is no need to supply all details in our case. 
We shall content ourselves with writing the formula and indicating the new features 
here. The main phenomenon to be pointed out is the cancellation of all terms not 
indexed by n-th powers in the sense of Lemma 1.1.1. 

3.1. Preliminaries 

Let/~ be a unitary character of Z"(A) Z(F) trivial on F • =Z(F),  and express it as a 
product/~ = @ #~, of local characters/~,, on F~, • ", almost all of which are unramified. 

v 

Signify by LOt, G) the space of genuine measurable functions q~ on G(A) with 

~o(((7, s(?)-l)zg)=(l~(z)~0(g) (?' in G(F), z in Z"(A)Z(F)), 

and 

S I~~ dg < ~ 1 7 6  
Zn(~) G(F)\G(A) 

here we recall (from 0.2) that G(F) embeds as a subgroup of G(A) through the 
map 7~-~(7, s(y) 1). The group G(A) acts on L(/~, G) by right translations: g maps 
the function {h~--~0(h)} to the function {h~-~tp(hg)}. 

A function q~ in L(/~, G) is called cuspidal if 

for almost all g in (7(A). The subspace L0(/~, G) of cuspidal functions in LOt, G) is 
invariant under the action of C,(A). Its orthogonal complement is also invariant, 
and Langlands' theory of Eisenstein series decomposes it into two orthogonal 
invariant subspaces. One of these can be expressed as a direct integral of induced 
representations and the other, which we denote by L l(p, C,), is the subspace of 
residues of Eisenstein series. 

Let f = @ ~  be an anti-genuine function on (~(A) with 

f(((y,s(7) :)zg)=~-lla-l(z)f(g) (7 in G(F), z in Z"(A)Z(F)). 

Suppose .1~ is a smooth anti-genuine compactly supported function on G(F,,) 
modulo Z"(F~) satisfying 
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f,(~zg) = ~ ' #~ '(z)f,(g) (z in Z"(F~)), 

for all v. For  almost all (non-archimedean) v we letfv be the function which obtains 
the value ~ t :(z) at g=~zk  in -" Z (F,,)K, and the value 0 otherwise. 

On the direct sum Lo( #, G ) Q L I ( # ,  G) we define the operator  

r(f)  ~o(h)= ~ ~(hg) f(g) dg. 
G(F) 2~(A~}\G(A) 

It is of trace class and the Selberg trace formula provides an explicit expression for 
its trace. We shall now write a variant  of the formula for this operator  in a form 
similar to [7], Sect. 16, and [9], Sect. 8, modifying it as the change from G(A) to 
G(A) and Z(A)  to :Z"(A) requires, and indicating the cancellations which occur. 
As in [9], Sect. 8, we shall express the trace as a sum of invariant distributions in 
order to simplify the compar ison with the trace formula for GL(2). 

Following [9] and [2], Sect. 7, we shall use Tamagawa  measures locally and 
globally to simplify some normalizing constants. In particular we fix a non-trivial 
additive character  ~ = @  tp,: of  A which is trivial on F. For  each place v we denote 

t ;  

by dx+, the self-dual Haar  measure on F~, with respect to ~ .  On F, • we take the Haar  
measure d • x, ,=L(1,  1,,)dx~,/Ixv] (note that L(1, l~,) is 1 -  1/q for finite v). On the 
subgroup F,, • we take the Haa r  measure (denoted again by d • x~,) so that the 
resulting quotient  measure assigns the finite group F • " \ F  • the measure IF • " \ F  • ] 
= 1. The normalized Tamagawa  measure on A • is given by 

d •  0 - : @ d •  2 l=lim(s--1)L(s ,  lF). 
v s ~ l  

The same formula defines also a measure on A • with respect to the local measures 
d • x~ on F,, • ". As in Tate's thesis, we can find a fundamental  domain for the quotient  
F • " \ A  • and, by virtue of the relationship between the local measures, the global 
measure assigns to it the same volume which is assigned by d • x to the fundamental  
domain of  F • \ A  • In other  words, we have 

IF x Fo (A) , \F0 (A) I  = I(F • 1 7 6  • \F~  = 1, 

where F~  denote the group of ideles of  volume 1. 
Finally, for any subgroups H :  H '  of G we define the measure on the quotient  

space H \ H '  to be the pull-back of  the measure on the quotient H \ H '  of the 
subgroups H : H '  of  G; (H and H '  are the groups defined by the projection g 
=(g, ~)~-+g from (~ to G). 

3.2. Explicit Expression (I) 

The first term in the trace formula for G(A), corresponding to the term (i) of the 
formula for GL(2) on pp. 516-7 of  [7], is 

0 , 
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the second, corresponding to (ii) of [7], is 

�89  ~ f (g  ~(y,s(?)~)g)dg. (2) 
T ), Gv(A)\G(A} 

We use the fact that IZ"(A)Z(F)\2(A)I= 1 to replace Z"(A) by Z(A) in the 
constants of(l) and (2). The first sum in (2) is taken over all non-split tori TofG, and 
the second is taken over all regular 7 in T(F) modulo Z"(F). Since 

5 f (g  l(7, s(7)-')g)dg=H 5 ,/~,(g t(7, s(T)-l)g)dg , 
G,/(A)\G(A) v G./(Fv)\G(Fv) 

we can apply Lemma 1.1.1 to deduce that the left hand side contributes a non-zero 
term to (2) only if7 is an n-th power in G(F,,) for all v, and hence it lies in T"(F). We 
can now apply Lemma 1.1.2 to deduce that Gr(A)= T(A), hence (2) is 

�89 ~ IZ(A) T(F)\T(A)I ~ f(g ~(7, s (7 ) l )g )dg .  (2') 
7' 1 # 7 ~ T " ( F )  T(A) \G(A)  

Let D be the set of quasi-characters v/=(v~, v2) on A'(F) Z(F)\An(A) Z(F) with 
v I v 2 =/~ on Z"(A) Z(F). The only r/of order n is clearly the trivial one. The set/5 has 
a structure of a complex manifold of dimension 1 with infinitely many connected 
components. The component (v t I[ ~/2", Y2 I[ s/2n)(  S in II;) is parametrized by the 
complex variable s. Differentiation with respect to s is well-defined (and denoted by 
a prime) and we introduce the Haar measure Idsl on the subset/5o of (unitary) 
characters on / ) .  

For each v we fix a subgroup/10 (F~) of AI(F~,) containing A"(F,), as in 2.1, and let 
A0(A ) be the restricted direct product of the A o (F~). We extend q from An(A) Z (F) to 
the abelian group A0(A ) Z(F) in any way. 

The representation t/ofA0(A ) Z(F) extends to/10 (A) Z(F) N(A) by setting _q = 1 
on N(A) and t/(()= ~ on _~n" Let p(t/, g) be the genuine representation of G(A) 
induced from t /on .4o(A)Z(F)N(A), and put 

p(r/, f ) =  5 f(g) ts(~/, g) dg. 
Zn(A) Z(F)\G(A) 

For each place v we denote by r/~ the component of ~/at v and introduce the 
(normalized) intertwining operator R(r/~) from the space of fi(G,, g) to the space of 
fi(O~, g), where f/~, =(v2~, Vs~ ). It is defined by 

/~(rb)q)(g)=r~(G) ' ~ o ( ( ? - 1 0 ) ( 1 0  1) g)dx, 

where 

- -  _ n - - n  n - - n  m(r/u)--e(0 , Vzv v2~, t),,) L(1, vl~, Vzv)/L(O , v" v 'q" 2v l v l ~  

(see [7] for the definition of the e and L factors). The products 
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and 

L(I,  v'~ v2" ) ,~(,)  = [ ]  ,~ ( , , , )= 
n n ) '  ,, L(I, v 2 v 1 

are well-defined. 
With these definitions we can introduce the terms 

1 
---- j" '~07) 1 rff'(r/)trFS(t/,f)Idsl (3) 47z D~, 

and 

-�88 ~ M(r/)trp-(q,f) (4) 
r /=  (v, v) 

of the formula, corresponding to (vii) and (vi) of [7], respectively. It is implicit in (3) 
that tff(r/), r~'(q) and t r p ( q , f )  depend only on the restriction of t7 to 
Z(F)\A"(A) Z(F). We write M(q) in (4) outside the trace since M(~/) intertwines the 
irreducible representat ion space of P07, g) with itself, hence it must be a scalar. 
Moreover  we have: 

Lemma.  {f ~I =(v, v) then M01)= - 1 .  

Proo[~ Let 2 ~, 2 0 . . . .  be the coefficients of the terms ( s -  1) ~ (j = - I, 0 . . . .  ) in the 
Laurent  expansion of the global L-function L(s, If)  at 1. The scalar nS(r/) can be 
calculated as the limit over t ~ 0  of 

2 1 4_20+... 
L(1 - t ,  1F) - t  

L ( l + t ,  IF) /~ I ~]~o+.. .  
t 

and this clearly tends to - l .  
It suffices to show that each R(r/,), which is clearly a scalar, is equal to 1. For 

non-archimedean places v with ]m),.= 1, this can be shown by modifying the 
arguments of  [9], pp. 5.9-11; the only change is that we have to assume that the 
function q)0 which is defined on p. 5.9 is genuine and vanishes on the set of 

( ;  ~ ) ( :  ~ ) k w i t h  (~ ~ ) o u t s i d e A  0, in the notat ions of [9]. At other places k 

has to be restricted to a maximal subgroup of K which splits in G. (An alternative 
and detailed discussion of intertwining operators  for (~(F,,) and their normal izat ion 
will be given by C. Moen  in a work still in progress,) 

The next term of the trace formula, corresponding to the first term of(v) in [7], is 

.~0 ]-I L(I .  19 ' F 1 ' .1,.. (5) 
t, 

in the notat ions of  L e m m a  1.1.3. 
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3.3. Explicit Expression (II) 

Let 2(g) be the function on A(F,,)\G(F,,) obtained by writing g =amk  (a in ,4, m in N, 

K) and setting 2(g)=lx[ 2 i f  m = ( ;  1)  with Lxl>l and 2 ( g , = l i f L x ] < l .  k i n  

Consider the distribution 

A~(7, j~,)=A~,(7) ~ J~,(g ~ ?g)log2(g)dg.  
fl(Fv)\G(Fv) 

Noting that l~ [al~, = 1 for any a in F • the term corresponding to (iv) of [7] is 
v 

�89 EZA~( 7 ,  f~,) 1~ F(? ,L) .  (6) 
~, "~' w : ~ t ,  

The inner sum here is taken over all 7 4:1 in Z"(F)\A"(F) and not in Z(F) \A(F)  as 
for GL(2). This follows for example by integrating (6.19) of [2] over 
A(F) 2"(A)\~(A), and noting as in Lemma 1.1.1 that 

To deal with (6) we need the following: 

Lemma. For every place v of F there exist two distributions .~,~--~A2(~',.]~,) and 
L ~ A 3 ( ? ,  f3) (7 regular in A"(F~,)) with the following properties: 

(i) �89 A3(~,,L), 
(ii) A2( 7, f~) is an invariant distribution, 

(iii) For each genuine f~, A3( 7, fv) extends to a genuine continuous function on 
A"(F~) with compact support modulo 2"(F~,), 

(iv) I f  It~, is unramified and n is a unit in F, let f o  be the genuine spherical./'unction 
which vanishes outside 2"(F~) K. Then A3(7, f,, ~ is 0 for all 7, 

(v) l f f  v and f~ have matching orbital integrals as in Lemma 1.2.3 and Az(T, fv ) is 
the distribution defined in [9], p. 7.3, then 

((o 0 

(vi) I f  v is archimedean and f,, satisfies F ( ( ;  0),1 f '~)=0, then 

ds 

where 

! 
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Pro(?[; For brevity we shall omit the index v fi'om the notations below. We shall deal 

with non-archimedean local fields first. For any regular 7 = (O" O ) in,4" we define 

i _ba~ 
A2(Y.f )=log  1 F(7,f)+ ~ b;(y,f)+nc(7,f). 

in ~_,, 

Here b~(7, f ) =  c(y, f ) =  0 if 1 > 1 ; otherwise w e  put 

br f)= 1 - ( !  f(a')~l~,~, ~ ,og[x[dxdk 
and 

.. ,,_ (q ~ 

Assertion (ii) follows at once and so 
definition. 

Since 

K Ixl > i 

: - b  S S / k l 7 

if we want (i) to hold we must have 

a ,,/2 (k 1 

where 

co(x, 7)-- / - l~ b"l 

I - l o g  1 - a n ,  

does (v), which motivates the present 

t, - a ~  ! x 

1 loglxldxdk 

To verify (iii) we need only show that A 3(Y, f )  extends to a continuous function 
at Y = 1, namely as a ~ 1 and b ~ 1. We may ignore the terms c(y, f )  and b~(7, f )  
(~4= 1), since they are clearly locally constant at a = b =  1. The difference between 
the remaining terms is equal to 

near a=b = 1, and the assertion follows. 

To see (iv) we note that all terms in -.o 1 - b ~  A3(7, J ) are 0 unless < 1. We may a" 
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assumethat 1-ba < 1 - ~ !  f o r a n y ~ + l .  The difference between the first term and 

b,(),,f) is 

-f~ S ~ loglxldxdk--la41~176 f(a")~ ~ dxdk, 
K Ix l  < I 1 - -  ]6791 K Ix l  =< 1 

which is equal to c(7, f~ Also b~(7,f ~ (~6-1) and -c(7, f  ~ are equal (when Inl,: 
= 1), hence A3(7,f  ~ is always 0. 

Finally if F is archimedean we write 

Az(7 , f )= log  1 - b "  F(v,f)+nc(%f), 
a n 

where 

- E 0 ,  l) ((, ~ 

Assertion (v) follows at once on comparison with [9], pp. 7.5-6. Also (ii) is obvious 
and to satisfy (i) we write 

A3(7, f ) =  -• ba l ~ / 2 ! ! f [k - lT  (10 7 )k] log \ l t l -~ lb~2+lx]2)dxdk- -nc(7 , f ) .  

It is easy to verify (iii), and (vi) follows since under our assumption c(';, f )  is now 0. 
The proof is complete. 

We can use the Lemma to write (6) as the sum of 

' - 
2(?,fv) H r(7,fw) (7) 

v Y w * v  

and 

A ~ -; -IZZ 3(,,L) H (8) 
v 7 w * v  

The inner sums are taken over all 74 = 1 in Z"\A". 
Following [9], p. 8.7, we would like to extend the sum in (8) to include 7 = 1, and 

we would like the new term to be equal to the second half of (v) in [7]. By virtue of 
(vi) of the above Lemma the last requirement will be satisfied if we apply the trace 
formula to a function f =  @ fv whose component f~, at some archimedean place v 1 

v 

satisfies F 1 ' fv, =0. Henceforth we shall assume that f is of this form and 

extend the sum in (8) to include 7 = 1. 
We can now apply the Poisson summation formula to the sum (8), the function 

E A3( ,L) [ I  
W ~F V 
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and the group Z(F) Z"(A)\/I"(A) Z(F). This function transforms under Z(F) Z"(A) 
by the character #-  ~, and the Fourier transform will be concentrated on/5 0. The 
global Fourier transform can be calculated locally after dividing by 2__ 1, since the 
Tamagawa measure on A • is given by d• 1) l@d• The Fourier 

v 

transform of F(?,)~,) is trp(r/v,f~ ) and we denote the transform of A3(?',fv ) by 
B~ (t/v, fv). Finally writing 

B(qv, j~) =�89 tr (/~ ~ -, (t/v) R (t/v) fi(t/v , j~.)) - B, (t/v , f,) 

we can put (8) together with the term corresponding to (viii) of [7] to obtain 

1 
Idsl ~ B(q~,fv) [I trfi(t/w,•). (9) 

2~ Oo w,v 

The full expression for the trace formuly for the operator r(f) is given by the 
sum of(l) ,  (2'), (3), (4), (5), (7) and (9). It is noteworthy that the formula simplifies 
considerably if at least two components j~, (i = 1,2) of f satisfy F(?, fw,)=0 for all 7 
in -" A (Fw,). in this case tr r ( f )  is given by the sum of (1) and (2), and all other terms 
vanish. 

4.0. Equality of Traces 

Let f = @  J~, be a function satisfying the conditions of the previous section. In 
v 

particular we require that F ((10 01 ),.~1 ) vanishes for some archimedean place v, �9 

( ( - 1  ~ 0 ) )  
It follows that F - 1 ,fvl = 0  ire 1 is complex; ifv 1 is real the last equality 

follows from 

( - ;  It>01 

Iff~ is spherical we let L be the spherical function on G(F~,) associated to fv by 
matching orbital integrals as in Lemma 1.4. At other places v we choose f,  on G(F~,) 
as in Lemma 1.2.3, so that f~ and fv have matching orbital integrals. This, and the 
condition that we put on fvl, implies that 

1 +, 
0 ,,, 

We shall continue to denote by r ( f )  the trace class operator on Lo(P, C,) defined 

in 3.1. Also with f=@fv  we shall denote by r ( f )  the trace class operator on the 
v 

subspace Lo(p' , G) O LI(p' , G) of L(#', G). Here p'(z)=p(z") (z in Z(A)) and L(p', G) 
denotes the space of square-integrable functions on Z(A)G(F)\G(A) which 
transform under Z(A) by the character p' of A • Lo(#', G) denotes the subspace of 
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cuspidal functions and L l(#', G) denotes the span of the one-dimensional invariant 
subspaces. 

Our aim in this section is to prove: 

Theorem. For all functions f on (~(A) and f on G(A) related as above we have 

tr f ( f ) = t r  r(f). 

This simple equality is of key importance on our work. Using the local analysis 
of Chap. ! we shall show in the next section that it affords both a thorough 
description of the global correspondence and a completion of the description, 
begun in Chap. 1, of the local correspondence. 

To prove the Theorem we shall use the Selberg trace formula. In fact we shall 
compare the expression for the trace of t-(f) given in the previous section with the 
expression for the trace of r ( f )  given in [7], Sect. 16 (with 4) replaced by f and 
modified as in [9], Sect. 8, with E = F), and show that they are equal. 

Finally we note that the Theorem holds even without the restriction on .1~,~ ; this 
will follow from the results of 5.2 and 5.3 below. 

4.1. Direct Comparison 

We shall now start the proof of Theorem 4.0. All terms, except (9), of the trace 
formula for ~-(f) can be directly compared with the corresponding terms of the 
trace formula for r(f).  In this subsection we shall carry out this comparison. 

We begin with (1) (of 3.2). Our choice of measures (in 3.1) guarantees that 

12"(A) G(F)\G(A)I = [Z(A) G(F)\G(A)[. 

The relation between fv and fv, together with their asymptotic expansions on the 
non-split tori, implies that 

((; 0)) 
for all non-archimedean v, and for real v (note that (eZi~ 2i~176 i~176 
+e -i~ is equal to 2 at 0=0). For complex v this follows from the Plancherel 
formula 

9 2 

.f(~) = c(a) ~ F(~, T) (~ in Z(r 

where T(~) is the group of (~ xp(zl + z2) 0 ) exp(zl -z2)  (zl,z 2 in C), and c(~)is a 

function on Z(~)  (cf. [9], p. 4.6); we only have to note that [nlc=n 2 for the 
normalized valuation on Fv=q;, Hence (1) is equal to (i) of [7], p. 5.16, by virtue 
of the product formula on the number field F. 



Automorphic Forms on Covering Groups of GL(2) 165 

To deal with (2') (of 3.2) we note  that our choice of measures (in 3.1) implies 
that 

[Z"(A) T(F)\ T(A)I = IZ(A) T(F)\T(A)I 

for any non-split torus T of G and its lift T in G. If H is a normal  subgroup of a 
group H' we shall denote  by (H\H') • the set H\H'  with the coset of H 
excluded. The map 7~-~o/" from (Z(F)\T(F)) • to (Z"(F) \T"(F) )  • is clearly sur- 
jective and also injective, since ~, is contained in F • L emma  0.3.2 implies that 
all elements of ( ,~" (F) \T"(F) ) :  are regular when n is odd. If n is even 
(Z"(F)\Z(F)~ T"(F)) • is non-empty;  its pull-back consists of G(F)-conjugates in 

of the elements (u ~] with x in (F•215 • But (1 )o f  4.0 implies that T(F) 
\x O/ 

0 n/2 ~ 

for all x in F • Hence all terms in (ii) of [7], p. 5.16, must  vanish unless they are 
indexed by a regular 7 in Z(F)\T(F) for which ?," is regular in Z"(F)\T"(F). We 
conclude that the sums over the non-zero terms in (2) and (ii) of [7] are taken 
over isomorphic  sets. The  corresponding terms are equal since J~, and fv have 
matching orbital integrals for all v and by virtue of the product  formula 

f(g-l(7, s(Y)--a)g)dg=[IA~(Y) ~ f~,(g-l(7, s~(Y)-X)g)dg. 
T(A)\G(•) v T(Fv)\G(Fv) 

We shall now compare  (3) and the term (3) of [93, p. 8.4 (with E=F; this is 
(vii) of [73). The map 

where v'i(z ) = vi(z" ) (z in A • i =  1, 2), from the subset of  q i n / )  0 with tr fi(qv,j~,) 
4:0 for all v to the subset o fq '  in D o with tr p(q'v, f,,)4:0 for all v, is both  injective 
and surjective. Here D o denotes the set of characters rl~=(v'~, v'2) on A(F)\A(A) 
for which v] v~--# on Z(A), where/~'(z)=~t(z") (z in A • The injectivity follows 
from the fact that  all elements of  b 0 which are mapped  to r/' must differ by a 
character  of order  n, and the only such character  in b o is the trivial one. To see 
the surjectivity we note that each ~/a --(v], v~) in D o is of  the form q' with q in/50 
if v ' l~ ( ( )=v~( ( )=  1 for all v and all ( in ~,. If ql is such that there exists some v 
for which this does not  hold, say v'~,(()4:1 (~4: 1), then trp(rll~,f~,)=O. The last 
claim is a consequence of  the equalities 

Z(Fv)\A(Fv) 

Z(Fv)\A(Fv) 

O) Vl~(a)v2~(b)d• ad• 

and (by L e m m a  1.2.3) 



166 Y.Z. Flicker 

Since the measure on Z"\A" was chosen to be the pull-back of the measure 
on Z \ A  under the map 7~-~7" we deduce that 

tr~(q,,fv)=trp(tf,,,f~) (for all v). (1) 

By definition we have r~(q)=m(q') and r~'(t/)=m'(q'); hence (3) (of 3.2) and (3) of 
[9] are equal, as required. 

The term (4) (of 3.2) can be shown to be equal to (vi) of [7] ((2) of [9]) in the 
same way. The map rl~--~ q' gives an isomorphism between the sets indexing the 
non-zero terms in the sums occuring in (4) and (vi). The corresponding terms are 
equal by virtue of (1) (above) and the fact (Lemma 3.2) that M(~/) =M(r/') = -1 .  

The fact that (5) (of 3.2) and the first term of (v) in [7] ((4) of [9]) are equal 

((10~ 1 follows from the equality of F 1 ' fv and F , f~ for all v. In fact 

both are 0 since we assumed that for some archimedean v I we have 

 ((10 
It is also easy to see that (7) is equal to (5) of [9] since we defined A2(7,f~) 

with Lemma 3.3(v) in mind, and A2 ((~0 0) ) 1 ' s  i s 0 f o r ( ~ l  by our assumption 

on fv,. 
The proof of Theorem 4.0 will be complete when we have shown that (9) (of 

3.3) is equal to (7) of [9]. Rather indirectly we shall show this by establishing in 
the next subsection the following lemma, the assumption in which has just been 
proved. No simpler proof of this is available as yet. 

Lemma. I f  tr r ( f ) -  tr r(f)  is equal to 

1 ~ [ d s [ ~ ( B ( t l ~ ,  ~ ' - -  f~)-B(tl~,f~)) [7[ trp(t/w,f,~), (2) 
2~ Do w~cv 

then both are O. 

Here we write 

B(~/'v,f~)=�89 tr(R(q'v) 1R'(q'v) p(~'~, L ) ) -  B~(~'~, L), 

where R(q'o) is the (normalized) intertwining operator of [9], Sect. 5, and 
B~(q'~,f~) is the Fourier transform of 

x ~ 

A3(y,f~ ) is defined in [9], Sect. 7. Finally t/ is the element of b o which is 
determined uniquely by t/' of D o and the map t/~--,t/' (t((z)=t/(z"), z in A• 
provided that ~' satisfies tr p(tf~, fw)~0 for all w+ v. 
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4.2. Indirect Comparison 

We shall now prove Lemma 4.1. First we shall rewrite tr 7 ( f ) - t r  r(f) and then 
we shall rewrite (2) of 4.1 so that they are put in forms which are sufficiently easy 
to compare. We shall then choose a function f for which these expressions are 
different unless both are identically 0, thus completing the proof. 

Let V be a finite set of places containing all the v for which ]nlv~l (in 
particular it contains all of the archimedean places). Suppose that f = @ f ~  is 

v 

such that J~, is spherical outside V. Let f f = @ ~  be an automorphic tensor 
u 

product (of genuine irreducible admissible representations ff~ of (~(F~)) in 
Lo(#, G)| G). Suppose that ff~. belongs to the unramified principal series 
for v outside V. Then 

trff~,(fv)=tr n,,(f~)=f~(t(ff~)) (v outside V), 

where n~ is the unramified principal series representation of G(F~,) which is 
obtained from ~ by (2) of 2.1. Here ./'~v is the Satake transform of f ,  (which, in 
the notations of [9], Sect. 3, is given by 

f~v(y)=lA(O,)l ~ F(2~,f~)2~(7) (7 in A(tI?)); 

2 v runs through the lattice of rational characters on A(C) which is the same as 
A(O~,)\A(F~) and 7/2), and 

(o,;, o) 
t(ff,,) = b(ff~) ' with a(~,) b(~,,) = #',,(6J~,) = #~,(&,",), 

is an element of A((U). 
For brevity we put 

~(ff)= ]-~ trff~(L), 
v i n V  

and then 

t r F ( f ) - - ~ ( f f )  H Lv(t(ff,~)) , 
v outside V 

where the sum is taken over all 7~=(~)ff~ with ff~, in the unramified genuine 
v 

principal series for v outside E 
The trace of the operator r(f) can also be treated in this way, and we write 

t r r ( f ) = ~ ( n )  [l f~ (t(n~)), 
v outside V 

with 

t(n~) = (a(o,,) 0 ) i n  A(II;), a(n~) b(n~) = #'~(cSv). 
b(n~,) 
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The difference between tr ~ ( f )  and tr r(f)  can now be expressed in the form 

E ~  I] L~(t~,~) �9 
k v outside V 

Here for each k(=O,  1 . . . .  ), {tk,~; V outside V} is a sequence of elements f rom 
A(C). The  sequences are distinct in the sense that  for each k # k '  there exists 
some v such tha t  tk, v and tk , ,v  a r e  not conjugate.  The  flk are non-zero  complex  
numbers ;  the products  and the sum are absolutely convergent.  

Finally we fix some v 0 outside V and let r j=rj . ,o (3.= 1,2 . . . .  ) denote the 
distinct elements in the set {tk,~o}. We proved:  

L e m m a  1. Put 

~ E tk I] f;(tk, w). 
tk,  v o = r  ~ wouts ide  V 

w ~ v O  

Then tr g ( f ) - t r  r( f )  is equal to 

E cj L; %). 
J 

We shall now rewrite (2) of 4.1 
L e m m a  4.1, we set 

fl(t/ ' )= ~ (B(rl~,f~)-B(~f~,f~)) l~ trp(t/w,f~),  
v i n  V w i n  V 

w~= v 

and prove:  

L e m m a  2. The integral (2) of 4.1 is equal to 

, ~ ((,~0o, ~ 0 ~)),ds,, 
2~ -,oo ~ d(s) f"~ 61,5~ol 

where 

(1) 

in a similar way. In the nota t ion  of 

(2) 

d(s)=EZ(,7'O~s) ~ f;(t(r 
w outs ide  V 

w ~ v o  

O~s ((~ O\\___b))=la/blS ' for any imaginary s. Here the sum is taken over and all 

connected components of  D o at which the ~7'~ are unramified for v outside V and 
satisfy q'v(O = 1 for all v and ~. In each of these components there is some q~ with 

and any other ~1' is of the form q'o as. 

Proof. The  integral  (2) above is clearly equal to 

1 
~ ~ fl(rl') H f~v (t(q'~)) lds[, 

v outside V 

(3) 
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where the integral is taken over  all t/' in D o for which t/' v is unramified for v 
outside V and t/'v satisfies t/~,(~) = 1 for all v and ~, and where 

t ~ r 0 

To prove that  (3) is equal to (2) of  4.1, we merely have to show that 

B (t/~, J~,) = B (t/~,, f~) 

for all v outside V. For  these v the function ft, is spherical and t/' is unramified;  
thus we have 

B(~I'~,L)=-Bdtt'~,L) and B(q~,f~,)=-Bl(tl~,f~ ). 

It suffices to show that  

v~ 1 ' q" a 

is equal  to 

and this will follow if we knew that  

((o ((o ~ 
for any a in F~ • For  brevity we shall drop  the index v f rom now on. 

L e m m a  3.3(iv) and [9], pp. 7.4-5 show that  bo th  sides vanish identically i f f  
is the genuine spherical function which vanishes outside Z"K. By virtue of 
L e m m a  3.3(v) it suffices to show tha t  for any spherical f we have 

for any  a in F • Since the left side is equal to 

K Jxl_-> l 

and a similar t rea tment  can be given to the right side, it suffices to prove that  



170 Y.Z. Flicker 

As in 1.4 we may restrict ourselves to the genuine characteristic function f,x 
of a double coset /~(n2)K where 2=(k'  k) and k '>k.  The case of k'=k has 
already been dealt with, and we now assutne that k '>  k. 

As in the proof of Lemma 1.4 we note that 

The value of this was calculated in [-9], pp. 3.18-9, to be 

(2 log 1(5[ nr(1 - 1/q) qnr+ ~mn, 

if 

2v ( ( ;  " ~ ) )= (nm,  0 ) = ( n k ' - n r ,  nk+nr )  

A1 ((~ O1),fz)=(21~ 

But f ,z corresponds to ql<~,~,_ t)z>f~ under the map ~0 of 1.4 and 

q�89 1)2) =q�89 l)(k' k)=q(r+-~rn)(n- 1), 

hence the proof is complete. 
Lemma 4.1 can now be made to follow from the equality of (1) and (2). 

Indeed, on noting that the trace formula gives absolutely convergent sums and 
integrals and that all contributions to (2) are unitary, this can be done by 
choosing a suitable function fo for which (1) and (2) are different unless all c~ are 
0. It is easy to see that such a suitable function is given by the function f,, which 
is defined in [9], p. 9.16, and used for the same purpose. We deduce that the c~ 
(and also the/~)  are all 0, and Lemma 4.1 follows. This completes the proof of 
Theorem 4.0. 

4.3. Reformulation 

The following is a more practical form of Theorem 4.0. 

Theorem. Let V be a finite set of places containing all v with Inlv4= 1. Suppose that 
for every v outside V we are given 

(;v O) in A(C) with avb~=p'(cS~)=/2(d):). rv = b~ 

Then for any matching f~ and f~ (v in V) as in Lemma 1.2.3 such that 
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0 ~ 0 some we F ( ( ~  1 ) , f , l ) =  for archimedean v,, have 

Z ~ t rg~,(L)=Z I ]  tr~rv(f~). (1) 
rr v i n V  re v i n V  

The sum on the left (resp. right) is taken over all irreducible constituents ff=@ff~. 

of Lo(t~, G)O LI(tl, CJ) (resp. u = @ u ~  of Lo(I~,' G)@ Lz(t~; G)), such that Jor all v 
v 

outside V the ff~ and uv are unramified and satisfy 

r I ~ v 

for all spherical .functions f~ and f~ matching as in Lemma 1.4. 

Proof We fix some v outside V and claim that 

c~,,=Z l-I t r f f w ( L ) - Z  1] tr~,.(f~) 
7r w ~ v  rc w ~ : V  

is 0. Theorem 4.0 implies that 

0~ v Z ,oL (r,,)=o 

for all spherical f , ,  where the sum is absolutely convergent and taken over all 
matrices r~ in A(q2) with determinant/~ (c%) - #(%,). Considerations as at the end 
of 4.2 (cf. [9], pp. 9.11-15) afford a choice of f~, (as in [9], p. 9.16) for which 
Y~ e~ f ~  (r~,) does not vanish unless all ~ are 0. The claim follows. The theorem 
now follows on ordering the countable set of v outside V and applying 
induction. An alternative proof for the induction step, or the above claim, is 
given by noting that characters of inequivalent representations are linearly 
independent ([10], Lemma 6.1). 

We note that fixing r~ in the theorem is equivalent to fixing unramified ff'~, 
and ~z,', with 

tr ~.(f~)= tr n'~(f~) 

for all matching spherical fv and f, ,  and summing over all ff = @  ~,, with ~ ,~  ~'~ 
1, 

and n = @ g~ with ~,, ~ ~zl, for all v outside E 

Finally we deduce from the fact that both strong multiplicity one and 
multiplicity one theorems hold for L0(~', G)@L~(/~', G), that the sum on the 
right (over ~) contains at most one term. 

5.0. The Correspondence 

The preparations are over and we can begin the discussion of the local and 
global correspondence. 
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Definition 1. A genuine irreducible admissible representation ~v of G(Fv) with a 
central character p corresponds to an admissible representation rc~ of G(F~) with 
a central character/t '  if/~'(z) =#(z") for all z in Fv • and if 

! A(g) z,~(g), elliptic g, 

A(g))(.~,~(g(g 1)= E A(g;)z,~(g~), otherwise, 

whenever g" is regular. 
Here X~ and X~ are the characters of ff~ and 7% (see 2.0), ~ was defined in 0.3 

and ~g in 1.2, and for any g = h - t ( ~  ~ )h  we write g~=h ~(~0 a ~)h.  In all 
/ 

cases the right side of the character identity above is equal to the average of the 
values of A (h)Z,~(h) over all (conjugacy classes in G of) the h with h=~  (equality 
of conjugacy classes). An equivalent identity is given by 

tr ~(3~)= tr rcv(f~), 

for every f,  on G(F~) and f~ on G(F~) with matching orbital integrals as in 
Lemma 1.2.3. 

For example, we saw in 2.1 that the principal series p(v~, v2) corresponds to 
p(v'~, v'2). One of our aims in this section is to extend this for every such 
representation of G(F,). 

The definition of the local correspondence affords the following definition of 
the global correspondence: 

Definition 2. An irreducible constituent ~ = @  g~ of the space L(g, G) of auto- 
V 

morphic forms on G(A) corresponds to the constituent rt=@Tt,, of the space 

L(#', G) of automorphic forms of G(A) if ff~ corresponds to rt~ for all v. 
Our main aim in this section is to give a full description of the global 

correspondence; this will be obtained as an application of Theorem 4.3. 

5.1. Lemmas 

The following is fundamental in obtaining a description of the correspondence 
from the trace formula. 

Let V be a finite set of places vl . . . .  , v r such that v 1 is archimedean. Denote 
by (ft,  ...,J~) an r-tuple of anti-genuine locally constant compactly supported 
(modulo the centre) functions on G(Fv, ) (1 < i <  r) which transform under Z"(F,,,) 

by ~ ,  ~, and assume that F 1 ,f~l =0. 

Lemma 1. Let {(fflk . . . . .  grk); k>O} be a sequence of r-tuples of genuine, irreduc- 
ible, admissible and unitary representations of G(F~,) (1 __<i~r) which transform 
under Z"(Fj  by I~,. I f  for every (f~ . . . .  ,f~) the series 
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[ ]  tr ffi~(.~) 
k ~ O  i -  1 

is absolutely convergent and its sum is 0 then the sequence is empty. 

Proof The l emma would have followed at once from [7], L e m m a  16.1.1, applied 
to the direct product  G of G(F,,) (1 < i < r )  and with Ir~ = ~ @ f f i k  and g 2 = 0 ,  had 

i 

we restricted b,  ond, ,on 0,) It t e e ore to 

show that  v~ can be omi t ted  from V. Our  a rgument  is a variant  of  that given in 
[9], pp. 9.24-30. We assume that  v 1 is real (and hence that  n =2);  the proof  for a 
complex place is similar but  simpler. 

Let {f f j ; j>0} denote the set of inequivalent  discrete series or their comple-  
ments in the suitable principal series which occur in the sequence ff~k (k > 0). We 
write 

~j = }~ (1 tr ffik(,~), 
i - 2  

where the sum is taken over all k with f f lk~f f  i. Our assumption implies that 

j_>0 

we assert that  if the discrete series ~j~ occurs then its complement  ~j~ occurs 
(and vice versa), and %~ = ~h" To see this we choose f l  with F(7, f l )  = 0 if 7 lies in 
A2(F,,,) and F(y, f~)=A(7)2(7) ,  where Z denotes the character  of ~j,, if y is a 
regular elliptic element. Clearly tr ff~(f0 is 0 unless j=j~ when it is equal to 
some positive constant  c or j =J2 when it is - c .  We deduce that ~ j , -  ~i~ = 0, as 
asserted. 

The above  discussion shows that  we may  assume that  all fflk belong to the 
principal series. Hence  tr ff~ ~(f~) depends only on the values of  q~(t)= F(t, f~) on 
A2(F~,,). The  %'s can now be seen to be 0 as in [9], pp. 9.26-30; we merely have 

to note that  the condit ion q)(10 ~)  = 0  that  f t  satisfies does not introduce any 

restriction on the Four ier  t ransforms ~0 ~ (s) of  [9]. Hence  the p roof  is complete.  
Let g = @  %, be as in Theo rem 4.3 and choose a set V so that  (1) of 4.3 takes 

t, 

the form 

~ tr ff,.,~(J~,) = 1~ tr %,(f,). 
k v i n V  t ~ i n V  

We may  assume that  for every v in V there is some .[~,, obta ined f rom an J],, for 
which tr %,(.J~,)=t=0; otherwise the sum on the left is empty,  by L e m m a  1. This 
implies that  the central character  of % obtains  the value 1 at any ~ in ~n for all v 
in E and hence for all v. We have: 

Lemma 2. I f  Jbr some v in V there exists a if,, which corresponds to ~,, then ff~,k is 
equivalent to ff~.['or all k. 
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Proof Let ~j be the inequivalent representations among the ff~k (k >0) and put 

c~j=Z I1 trgw~(J~), ~= H trrc~(f~), 
w i n V  w i n V  
w * v  w:*:v 

where the sum is taken over all the ffk'S with g~k ~77j" Hence 

~j tr ffj(L) = ~ tr fly(L). 
J 

Arguments similar to those used in the proof of Lemma 1 show that for some j 
=Jo we have ffio~ff~ and c~jo=c~, while for j + j o  the ~j is 0 and is defined by an 
empty sum, as required. 

Lemma 2 allows us to deduce from (1) of 4.3 that 

H tr ff~k(f~)= H tr n~,(f~), (1) 
k>O v i n V '  v i n V '  

where V' is the set of v in V for which no ff~, corresponds to ~ ;  the sum is taken 
over all i f = @  ff~ for which ff~ corresponds to nv for all v in V but not in V', and 

v 

such that tr g~(f~)=tr ~(f~) for all v outside V and for all matching spherical J~, 
and f~, We shall eventually show that V' is empty. At present we know only that 
any v in V' is non-archimedean and that ~ is either one-dimensional or square- 
integrable. 

5.2. Local Results 

We shall discuss here the local correspondence. This has already been completed 
for the principal series in 2.1 and for the archimedean places in 2.4. Hence it 
remains to deal with the supercuspidal representations and the subquotients of 
the reducible principal series of G(Fv) and (~(Fv) where v is a non-archimedean 
place. 

We have to determine which representations n~ of G(Fv) are obtained by the 
correspondence. Clearly such ~z must satisfy tr~zv(f~)#0 for some f~ obtained 
from f~ as in Lemma 1.2.3, and this implies that the central character of ~v is 
even. Here and below we say that a character is even if it obtains the value 1 at 
any ~" in ( , .  Moreover we saw that any principal series ~v so obtained is of the 
form P(Vx, v:), where both v a and •2 are even. 

Let p'v be a character of F, • and set q'~=(/~'~l] +, P'v[l~). The central character 
of a(q'~) is fiE. If n is odd t h e n  ]2r 2 is even if and only if p'~ is even. However when 
n is even there exist/t ;  such that #~ is even but/~'~ is not; such #'~ will here be 
called odd. We say that r/' and a(r/') are even (or odd) if/~'~ is even (or odd). 
Finally when tl' ~ is even we define r/U by r/~(z")=t/'~(z) (z in F~• 

Theorem. Every genuine irreducible admissible representation of G(Fv) corresponds 
to an irreducible admissible representation of G(Fv). All supercuspidaI repre- 
sentations of G(F~) whose central character is even are obtained by the cor- 
respondence from supercuspidal representations of G(F~). Any even special repre- 
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sentation cr(q') is obtained from the square-integrable subquotient if(q,,) of p(q~), 
hence any even one-dimensional representation ~(tf,.) is obtained J?orn the quotient 
ff(rl~) of p(rl,~) by ~(rlv). Any odd special representation is obtained from a 
supercuspidal representation of G(F~.). 

In view of the above comments this Theorem determines the image of the 
local correspondence. Also we have: 

Corollary. The correspondence is one-to-one, and maps class 1 representations to 
class 1 representations and square-integrable to square-integrable representations. 
I f  n is odd then supercuspidal representations correspond to supercuspidal repre- 
sentations, while if n is even there are supercuspidal representations which cor- 
respond to (odd) special representations (which are not supercuspidal). I f  n = 2  
then ff(q~,) is equivalent to the even WeiI representation and the pull-back of an odd 
~(t/~,) is equivalent to the odd Weil representation. I f  a compactly supported 
(modulo the centre) genuine function on G(F~) whose orbital integrals are 0 on 
A(F~,) and which transforms under Z" by a character is or~hogonaI to the characters 
of all square-integrabte representations on G(F,,) then its orbital integrals are all O. 

Proof of Corollary. The first assertion follows from the orthogonality relations 
for square-integrable representations on G(F,~), the second from Lemma 1.4 and 
the third is obvious; note that class 1 representations exist on G only for v with 
]n[~. = 1, when the cocycle/~ splits on K,.. The second sentence is obvious, and the 
third follows from the results of 2.2. The last assertion, called the completeness 
of square-integrable representations on G(F,,), follows from the completeness of 
square-integrable representations on G(F,,), through the correspondence. 

Proof of Theorem. All representations of G(F~,) to be mentioned below are 
assumed to have an even central character. The proof is based on a repeated 
application of (1) of 5.1. 

Let % be a square-integrable representation of G(F,,), and 7z'= | 7z~. a cusp 
form with ~ ' ~ %  and 7z' in the unramified principal series for all non-archi- 
medean w =t= v. The existence of r~' was proved in [9], Proposition 9.6 (p. 9.40) if F 
is totally real. In general it suffices to consider f =  | f~ with f ,  being a locally 
constant compactly supported (modulo the centre) function whose orbital 
integrals are equal to those of a matrix coefficient of the given % (see subsection 
2.3 and below), fw is the spherical function which vanishes outside Z(F~)K~, for 
any non-archimedean w+v, and Ji~ with sufficiently small compact support 
(modulo the centre) at all archimedean places. Then f has a compact support 
containing the identity 1 of G(A), which can be chosen to be so small that its 
intersection with the discrete subgroup G(F) of G(A) is only 1 (modulo Z(F)). 
The automorphic function 

q'(g)= Y~ f(~lg), 
Z(F)\G(F) 

which lies in the space of square-integrable cusp forms on G(A), is therefore 
non-zero, since ~0(1)=f(1)4= O. Hence there exists an irreducible cuspidal repre- 
sentation g' such that the projection q0 ~ of q~ to the space of ~z' is non-zero. Since 
projections commute with the right representation, q)l is right invariant under 
1] K~ (product over non-archimedean w + v) and transforms on the right by r~. 

ur 
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Hence n ' = @  n',, is with ' ~  G,~ n,, and n,, spherical for all non-archimedean w+ v. 
vv 

as required. 
Now for this n' we have 

(1) 

by (1) of 5.1, where if, are inequivalent and irreducible, and n~ are positive 
integers. 

There occur some non-principal series if,. on the right of (1) since otherwise 
(1) would contradict the linear independence of characters on G(F~.). By Lemma 
2.3.1 there exists a function (matrix coefficient of if,,)f/ with F(7,J~)=0 for 7 in 
,4" and F(7,f/)_=t-1 A(7))~(7) for a regular 7 in T" where Tis a non-split torus, 
t=IZ\TE and Z~v denotes the complex conjugate of the character G~of  if,,. 

We have tr ff,,(f')= 0 for all ~, unless ~' ~ .  where we have tr ff,,(f')= 1, or if,, 
is a subquotient of a reducible principal series p~,, and ~',, is equivalent to the 
quotient of fi,. by flu, where tr ff'~(J~3=- 1. This is clear for a principal series ~'~, 
and follows in the other cases from the orthogonality relations for square- 
integrable representations. 

The trace formula is made of absolutely convergent sums and products, 
hence for f~ =f~' the right hand side of (1) is equal to an integer. We may assume 
that this integer is non-zero since otherwise we would be able to re-arrange the 
~ in (1) so that they include only (reducible or not) principal series, and deduce 
a contradiction from the linear independence of characters on G(F,,). If if,, is 
supercuspidal then this integer is clearly positive. 

On the other hand we can consider the left side of (1) at f,, =.J~,' (that is, at .~, 
=f~'), and deduce from Schwarz's inequality that the square of 

%=trn~(Z)=�89 ~ ~ A(g)Gv(g)F(g,f,,)dg 
Z(Fv)\ T(F,.) 

is bounded from above by the product of 

�89 IZ(F.)\ T(F~,)I ' ~ IZ,~(g)12A(g)2dg=l 
Z(Fv)\T(Fv) 

and 

�89 IZ(Fv)\T(F~)I ~1 ~ IZ~,,(g)l 2 A(g) 2 dg. 
Zn(Fv)\ Tn(Fv) 

which is also equal to 1, since we chose the measures so as to satisfy 

I Z (Fv)\ T(F,,)I = [Z"(F,,)\ T" (F,~) I. 

Since we have already seen that tr n~,(f~') is a non-zero integer, we deduce that it 
is equal either to 1 or to - 1 ,  and that %trn, , ( .s  for any ~, with 
F(?,f~)=0 for all 7 in/1". It is now possible to rewrite (1) in the form 

tr n~(f~)= tr ff~(L) + ~ n lj tr fij(jQ,), (l ') 
j>_t 
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where ~,, is not a principal series, fij are inequivalent (reducible or not) principal 
series and nu>O. 

Consider (I') with ~, =or(r/i. ) and even rf~,, and assert thai if,. is a subquotient 
of a principal series. Indeed, if ~,, was supercuspidal its character would have 
compact support modulo the centre and the arguments of [9], pp. 9.39-40, could 
be applied to show that all n~j are 0 and if,, corresponds (recall Definition 5.0.1) 

to a(q',,). This is impossible since at ( ;  ~) we have (as ,a,--* ~ )  

~ 

if r/" =(/~' N ~, I*~, H~), which is not compactly supported. 
The central character Z,, of if,, must satisfy g~,Z(z)=L,(z" ) since ll~, 2 is the 

central character of c~(r/i,). Hence if,, is of the form #(r/,,| or ff(r/~,| where 
rlt,(z")=rf,,(z) and c,, is a character of Z"(F,,) of order 2. In particular (1') implies 
that 

tr cr(q' C} c'~,)(f,,)= • tr #(r/,,)(s ~ tl2j tr fij(s 
j_>_~ 

with integral positive Fl2j and inequivalent principal series fij, and some de- 
termination of the sign. The advantage of the last equality over (13 is that here 
if,, is identified to be either #(q,,) or ff(q~,). Now on applying (1') once again with 
either a supercuspidal or an odd special ~z,, we deduce that if,, cannot be a sub- 
quotient of ri0/t,) (by the orthogonali ty relations for square-integrable representa- 
tions), hence fit, is supercuspidal. In particular tr c;(q'~,) (s = 1 for odd r/' as noted 
in the discussion of (1) above. 

Now suppose that n is even and consider the one-dimensional rt(r/') in 
, 2  L~(# , G), where #' = @  #'~. is a (unitary) character o f F •  • which is even at v, 

,a, 

odd at a non-empty even set S of places containing all w(+ v) with Inl~. < 1, and 
) r unramified at any other w. For any w in S we have trlw(rl,,.)(f,,.)=O for any f,. 

obtained from a fw by Lemma 1.2.3. hence 

tr ~(~'w)(./'i,.)= - t r  a(r/~)(Jl,. ) (w in S). 

Noting that S has a non-zero even cardinality we apply (1) of 5.1 with V' 
=Sw{v} and obtain 

tr~(~/;)(f,,) 1~ tro-(~',,,)(,L)=~ ~ tr~, , , (f& 
w i n  S w i n  S 

o r w = p  

.,x ~ !  

The above discussion shows that at.l,,. =f~ for all w in S this equality yields 

tr (rb,)(,/,,) = ~ n'~,. tr ff,,(s (2) 
r~ v 
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where g~, are irreducible and inequivalent, and n'~v are positive integers. Note 
that 

tr if(q,,)(f,) + tr cY(t/,)(fv) = tr p(t/t, ) (f~) 

= t r  O(r/',) (J~,) = tr ~z(tt~.) (f~) + t r a  (t/',,) (J~,), 

Applying (1') with ~ , =  a(r/',,) and adding it (side by side) to (2) we deduce that all 
n~j are 0 and that all n'~. are 0 except one of n'.(.~) or n'o(.,,), which is equal to 1. 
Moreover we claim that 

tr ~ 01'~)(f~,) = tr ~(r/,)(,~,) (all J~,), (3) 

and hence that 

tr a(r/'~)(f~)=tr 6(tl,,)(f,, ) (all J~,). (4) 

This follows at once for v with Inl,,= 1 from the remarks (involving spherical 
functions) at the end of subsection 2.1. At the other places we use a result of 
Harish-Chandra (private communication) asserting that the product of A (g) and 
the character of a square-integrable representation ((Y) is square-integrable on 
Z"\A"; thus ff(r/~) cannot correspond to 7r(tf,,). 

We have already noted that if (1') is applied with a supercuspidal or an odd 
special ~%, then ~, is supercuspidal. In particular, the character of ff~, is bounded 
on/1", and its support is compact modulo ;~". Hence we can repeat the argument 
of [9], pp. 9.39-40, using the function f,, as chosen in [9], pp. 9.37-38 (with the 
obvious modifications) and deduce that in this case all n~j ( j> 1) are 0. It follows 
that each supercuspidal and odd special representation of G(F,,) is obtained from 
a supercuspidal of G(F,,) by the correspondence. 

With the exception of the first sentence we have completed the proof of the 
theorem in the case that n is even. Suppose then that n is odd. The number field 
F contains a primitive n-th root ~ of 1, hence also the primitive 2n-th root - ~  of 
1. Let G denote the 2n-fold covering group over F and by G the n-fold group. 
Since C is the 2-fold covering group of G we can apply our arguments to this 
situation and deduce in a parallel fashion that any special ff of G(F~) (namely 
any square-integrable subquotient of a reducible principal series) is obtained by 
the correspondence from G to G; thus we have 

A(~')Xff(~'~; l)-----A(;~)Z~(~'~7 x) (~/'=(7, 1) 2", ~'=(~', 1)") 

for any elliptic 7 in G(F,,) for which 72n is regular and any 7 in A sufficiently far 
from the centre. But (~ is the 2n-fold covering of G, hence ~ corresponds to some 

on G(F~) and 

for the above 7's. We deduce that 
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and hence that (1') holds with ~ ~rt, l r , ~ a  and nlj=0 (j> 1). Clearly x is special 
since it must be square-integrable but not supercuspidal, in fact it is of the form 
cr(r/'~) if ~Y=g(tb), where q',,(z)=tl~(z"). Thus (3) and (4) are valid, and this = =or(r/') 
is even since its central character obtains the value 1 at any ~ in ~, (but not in 

_~2n ) '  
Since n is odd there are no odd special representations of G(F~.) and it 

remains to deal with supercuspidals on G(F~.). We apply (1') again with such ~ ,  
deduce as usual that ff~ is also supercuspidal, and apply [9], pp. 9.37-40, to 
deduce that all n u are 0. 

Finally to establish that every ff~. corresponds to some r%, we may restrict our 
attention to a supercuspidal ff~, and consider the function s  defined after (1), 
From Lemma 1.2.3 we obtain a matching s and by completeness of square- 
integrable characters on G(F,,) we deduce that t r ~ , ( f j ) # 0  for some square- 
integrable =,. Hence rq, is obtained from some square-integrable if;, by the 
correspondence, and trff~.(s The orthogonality relations on G(F~,) imply 
that if,, ~ ~i, and hence that ff~ corresponds to ~z~. 

The proof of the Theorem is now complete. Note that when n is of the form 
p" with a prime p and integral m > 0  there is no need to consider the n-fold 
and 2n-fold covering groups, as we did. Indeed, in this case it is easy to show 
that without loss of generality we may assume that there is only one v with 
[nl~<l and hence (1) of 5.1 can be applied with V' which consists of a single 
element. We deduce that (2) holds, and by virtue of (1') the proof is easily 
completed. 

5.3. Global Results 

The global correspondence was defined in 5.0 in terms of the local cor- 
respondence, and this in turn was fully described in 5.2. The description of the 
global correspondence readily follows. 

Theorem. Every irreducible admissible genuine automorphic representation ff of  
G(A) corresponds to an irreducible admissible automorphic representation ~ of" 
G(A). The correspondence is one-to-one and its image consists of  all ~ = @ ~ , ,  
such that ~,, has even central character for all v and such that /fTq,=rc(v], v2) then 
both v' 1 and v 2 are even. 

It is clear that: (i) Cuspidal representations ~ will be obtained from cuspidal 
representations ft. 

(ii) The continuous series representation 

t~ in V v outside V 

(where V is empty if n is odd and it is a finite set with even cardinality if n is 
even, and/~i, is even for v outside V and odd for v in V), will be obtained from 

- I  1 

~=(@ r,,O| @ ~(~vlh~,t',,tl~)), 
v in V v outside V 
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where for any v outside Vwe have/~(z")=#'~,(z) (z in F,,• ~ is cuspidal if V is 
non-empty and it lies in Ll (p  2, G), where p = @  p~,, if V is empty. 

v 

Here rul, denotes the representation which corresponds to an odd a(#'~,l[ ~ ~ 
1 1 

/~'~ tj~). If n=2  then r,; is an odd Weil representation, ff(/~,H ~ ,  P~, 112~,) is an even 
Weil representation, and ff is a global Weil representation. 

(iii) The continuous series representation ~z(v' I, v'z)=@rc(v'l~,, v2~, ) (where v' i 
v 

= @  vi~, and v' ~ are even for all v(i= 1, 2)) is obtained from the continuous series 
r 

n : Z x ff(v t, Va)=| vz,,), where v i=@ vi~, and vi~(z )=vi~,( ) (z in F~, ; i=  I. 2). 
v 

This list exhausts all representations in the image of the global correspon- 
dence and hence all representations of G(A). In particular any cuspidal repre- 
sentation of (~(A) corresponds to a cuspidal representation of G(A) if n is odd, 
while if n is even there are cuspidal representations of G(A) which correspond to 
continuous series of G(A), namely the z7 of (ii) with non-empty V. 

The theorem has the following 

Corollary. (a) Both multiplicity one and strong multiplicity one theorems hold in 
the space Lo(p, (~)| 1 (#, (~). 

(b) An automorphic representation ff=@ff~, of (~(A) must be o/" the Jorm 
I; 1 1 

described in (ii) above if  there is some v Jor which ff~ ~ff(g~, I[~,~, p,, [l~). Thus, when 
n=2,  g=@ffv  must be a Well representation if  ~br any v ~, is an even Weil 

c 

representation. 

Clearly (a) follows from the fact that the correspondence is one-to-one and 
both theorems hold for LoOt', G)OLI(ff ,  G); (multiplicity one theorem asserts 
that each constituent of L o |  ~ occurs only once, and strong multiplicity one 
asserts that if ff'--| and if= | lie in L o |  ~ and 7~,~,-'~- for almost all v 
then this holds for all v and g ' ~ g ;  although it is suggested by their names, 
neither theorem implies the other; in the special case of 2-fold G the strong 
multiplicity one theorem has also been proved in [3], using the (c,L)- 
techniques). Assertion (b) is implicit in (i), (ii), (iii) above since any automorphic 
representation ~z= |  of G(A) which has a one-dimensional component must 
be of the form described in (ii). 

Proof of  Theorem. Suppose ff occurs in Lo( p, t~)OL 1 (tl, t~) and it is irreducible. 
For some set V and elements r~, (v outside V) we obtain (1) of 4.3 such that ff 
occurs on the left. We have noted in 4.3 that the right side of (1) contains at 
most one ~, and it is not empty by virtue of Lemma 5.l,1. Each component ~z, of 
~ = @ ~ ,  is clearly obtained by the local correspondence; suppose ~'~ corre- 

v 

sponds to ~z~. Hence (1) of 4.3 can be written in the form 

~I trff~(f~)+ Z 1~ trffj~,(f~)= 1-I trzT;(J~,). 
v i n V  j > - I  v i n V  v i n V  

By linear independence of characters ([7], Lemma 16.1.1) we deduce that the 
above sum is empty, that ~ f f , ,  for all v in V, and hence that ffcorresponds to m 
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The first claim is proved for ~ in L o |  ~, as well as the assertion that  the 
correspondence  is one-to-one.  

Let n = @  n~, be a representat ion of G(A) as described in the theorem, and 

suppose that  it is either cuspidal or of the kind described in (ii). We rewrite (1) of 
4.3 in the form 

I~ tr ffj~,(j~,)= I~ tr ff~,(./~,) (*) 
j > l  v i n V  v i n V  

where if,, corresponds  to n,, (v in V); (we note that  

tr n (rll,) (.tl,) = - tr ~ (~/'~)(f,,) 

for any f ,  obta ined from f,,, where ~i',,=(121, [] }, I/,, 11 }) is odd, and the set V of (ii) 
has even cardinali ty;  then ff,~ corresponds  to aft/',,) and not to n(rl~, ) whenever 
n(rll, ) occurs). The usual a rguments  imply that  the left of  (*) reduces to exactly 
one term, say r~=(~) if,,, and ff corresponds  to n. 

It  remains to deal with cont inuous  series representat ions n of G(A) and ff of  
G(A). Indeed n is au tomorph ic  but  not cuspidal if and only if it is a consti tuent  
of  p(q') for some v/ '=(v'  1, v~), where v' i are quasi-characters  of F •  • ( i=1 ,  2); 
see [9], L e m m a  10.1. The p(v/') are reducible only if v' 1 (z ) /Vz(Z)= Izl ~ with s =  1 or 
- 1, and their subquot ients  are all of the form (ii). Similarly it can be shown that  
ff is au tomorph ic  but  not cuspidal if and only if it is a consti tuent  of fi(v/) for 
some v/=(v 1, v2), where v i are quasi-characters  of F •  •  • ( i=  1, 2). The fi(q) 
are reducible only if vl (z") /Vz(Z")=[z[  ~ with s = l  or - 1 ,  and their subquotients  
are all of the form (ii). Clearly fi(q) corresponds to p(q'), where v f ( z )=r l ( z"  ) (z in 
A• and all p(q') (such that  v i = ( ~ v i , ,  and vi,, are even for all v ( i = l ,  2)) are 
obtained,  as required. " 
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