Introduction.

Langlands' principle of functoriality [B] conjectures that there is a parametrization of the set $\operatorname{Rep}_{F}(G)$ of admissible [BZ] or automorphic [BJ] representations of a reductive group G over a local or global field F Гby admissible homomorphisms $\rho: W_{F} \rightarrow \hat{G} \rtimes W_{F}$. Here W_{F} is a form of the Weil group [T] of $F \Gamma$ and \hat{G} is the connected (complex) Langlands dual group [B] of $G \Gamma$ on which W_{F} acts via the absolute Galois group of F. If H is another reductive group over F and there is an admissible map $\hat{H} \rtimes W_{F} \rightarrow \hat{G} \rtimes W_{F} \Gamma$ then composing with $\rho_{H}: W_{F} \rightarrow \hat{H} \rtimes W_{F}$ we get $\rho: W_{F} \rightarrow \hat{G} \rtimes W_{F}$ Гand by the functoriality conjecture we would expect a "lifting" $\operatorname{map} \operatorname{Rep}_{F}(H) \rightarrow \operatorname{Rep}_{F}(G)$.

The trace formula has been used to establish the lifting in a few cases. For a test function $f=\otimes f_{v} \in C_{c}^{\infty}(G(\mathbb{A})) \Gamma$ the convolution operator $r(f)$ maps ϕ in $L^{2}(G(F) \backslash G(\mathbb{A}))$ to the function whose value at $h \in G(\mathbb{A})$ is $\int_{G(\mathbb{A})} f(g) \phi(h g) d g$. It is an integral operator with kernel $K_{f}(x, y)$ which has geometric expansion $\sum_{\gamma \in G(F)} f\left(x^{-1} \gamma y\right) \Gamma$ and spectral expansion $\sum_{\pi} \sum_{\phi} r(f) \phi(x) \bar{\phi}(y)$. Here π ranges over the set of the irreducible direct summands of L^{2} as a module under the action of $G(\mathbb{A})$ by multiplication on the right Γ and ϕ ranges over an orthonormal basis of smooth vectors. Integrating over $x=y \in G(F) \backslash G(\mathbb{A})$ we obtain the trace formula $\sum_{\pi} \operatorname{tr} \pi(f)=\sum_{G / \sim} \Phi_{f}(\gamma)$. Here G / \sim denotes the set of conjugacy classes in $G(F) \Gamma$ and $\Phi_{f}(\gamma)=\int_{G(\mathbb{A}) / Z(\gamma)} f\left(x \gamma x^{-1}\right) d x$ is an orbital integral of f. In this outline we ignore all questions of convergence Γ which make the development of the trace formula such a formidable task.

To develop a theory of liftings of representations from the group H to G Гone develops a trace formula for a test function f_{H} on $H(\mathbb{A})$ Гof the form $\sum_{\pi_{H}} \operatorname{tr} \pi_{H}\left(f_{H}\right)=\sum_{H / \sim} \Phi_{f_{H}}\left(\gamma_{H}\right)$. One then tries to compare the geometric sides of the two trace formulae. For this one needs:
(1) A notion of a norm map $N:\{G / \sim\} \rightarrow\{H / \sim\} \Gamma$ sending a stable conjugacy class γ in $G(F)$ to γ_{H} in $H(F)$ Clocally and globally. This has been defined by Kottwitz-Shelstad [KS] in our context.
(2) A statement of transfer of orbital integrals Γ asserting that given a test function $f \in$ $C_{c}^{\infty}(G(F)) \Gamma$ where F is a local field Γ there exists a test function $f_{H} \Gamma$ and given f_{H} there is an f Гwith "matching orbital integrals" Γ namely $\Phi_{f}(\gamma)=\Phi_{f_{H}}(N \gamma)$.

The global test function f is a product of local functions which are almost all the unit element 1_{K} of the Hecke algebra of spherical (bi-invariant by a standard maximal compact subgroup K of the local group $G(F)$ (K is hyperspecial $[$ [TiГ3.9.1]) functions on $G(F)$. Hence one must have also the statement that:
(3) $\Phi_{1_{K}}(\gamma)=\Phi_{1_{K_{H}}}(N \gamma)$ for all (regular) γ. This statement is called the fundamental lemma. It is a necessary initial point for the comparison to exist.

Further Γ the admissible map $\hat{H} \rtimes W_{F} \rightarrow \hat{G} \rtimes W_{F}$ defines a lifting map for unramified representations from $H(F)$ to $G(F) \Gamma$ and via the Satake transform a dual map from the Hecke algebra of G (locally) to the Hecke algebra of H Гand one needs:
(4) An extended fundamental lemma relating the orbital integrals of the corresponding spherical functions.

Received by the editor February 5, 1997, and in revised form August 21, 1997.

The statements (4) and (2) follow - or should follow - from (3); perhaps (2) implies (3).
Once all this is accomplished Γ the spectral sides of the trace formulae are equal for sufficiently many corresponding test functions Γ which are used to isolate individual contributions to the formula a and thus derive the lifting of global and local representations.

The technique of comparison of trace formulae has been applied to lift representations of the multiplicative group of a central simple algebra of degree $n \Gamma$ to $G L(n)$. Note that inner forms of G all have the same dual group \hat{G}. This is due to Jacquet-Langlands for $n=2 \Gamma$ Deligne-Kazhdan for all n and local as well as automorphic representations with two supercuspidal components Γ and [FK2] with "one" rather than "two" such constraints (see [F1] for the special case of a division algebra). However Γ in this case the two groups under comparison are isomorphic for almost all completions of the global field F 「and the fundamental lemma holds automatically.

The next case of such a comparison concerns endoscopy for $G=G L(n, F) \Gamma$ where $H=$ $G L(m, E) \Gamma E / F$ is a cyclic field extension of degree n / m. Labesse-Langlands dealt with $n=2 \Gamma$ Kazhdan $[\mathrm{K}]$ with all n and $m=1 \Gamma$ and Waldspurger [W1] with the general case. The fundamental lemma in this endoscopic case implies the fundamental lemma needed to establish the metaplectic correspondence of [FK1] Гbetween $G L(n)$ and any central topological covering group of it. This lifting generalizes Shimura's in the case of $n=2$. The extended fundamental lemma follows (as in [F2]) from the fundamental lemma of [W1] by means of the (simple) regular functions technique introduced in [FK1] Г or alternatively by using the spherical functions technique of Clozel.

For a cyclic extension E / F one has the base change lifting from $H(F)$ to $H(E)$. Viewing $H(E)$ as the group of F-points of the F-group $G=\operatorname{Res}_{E / F} H$ obtained by restricting scalars from E to $F \Gamma$ the lifting is compatible with the diagonal map of $\hat{H} \rtimes W_{F}$ to $\hat{G} \rtimes W_{F}$. Here \hat{G} is a product of $[E: F]$ copies of \hat{H} Con which W_{F} acts via its quotient $\operatorname{Gal}(E / F)$. H. Saito used (in the context of modular forms) the twisted (by a generator σ of the Galois group $\operatorname{Gal}(E / F))$ trace formula $\sum \operatorname{tr} \pi(f \sigma)=\sum \Phi_{f}(\gamma \sigma) \Gamma$ for the convolution operator $r(f \sigma)$. Here the twisted orbital integrals are $\int f\left(x^{-1} \gamma \sigma(x)\right) d x$. For $n=2$ the base change lifting for $G L(n)$ has been carried out by Saito ShintaniГLanglands「and for general n by Arthur-Clozel [AC]. The stable fundamental lemmaГmatching stable orbital integrals and stable twisted onesThas been proven by Kottwitz [Ko] for any G. Regular functions are used in [F3] to give a simple proof of the (unconditional) base change lifting for $G L(2) \Gamma$ and in [F4] for cusp forms on $G L(n)$ with a supercuspidal component.

Naturally one can consider actions other than that of the Galois group. Twisting by the outer automorphism $\theta(g)={ }^{t} g^{-1}$ (t for "transpose") of $G L(n)$ would lead to liftings from symplectic and orthogonal groups to $G L(n)$. The first example in this line concerns the symmetric square lifting [F6] from $H=S L(2)$ to $G=P G L(3) \Gamma$ which is associated with the dual group homomorphism embedding $\hat{H}=P G L(2, \mathbb{C})=S O(3, \mathbb{C})=\hat{G}^{\hat{\theta}}$ in $\hat{G}=S L(3, \mathbb{C})$. Here $\hat{H}=Z_{\hat{G}}(\hat{\theta})$ is a twisted endoscopic group. More generally for $n \geq 3 \Gamma \hat{G}=G L(n, \mathbb{C}) \Gamma$ $\theta(g)=J^{t} g^{-1} J^{-1}$ for some symmetric or anti-symmetric matrix $J \Gamma$ since $\hat{H}=S p(n / 2, \mathbb{C})$ or $S O(n, \mathbb{C}) \Gamma$ one expects to obtain liftings from orthogonal or symplectic groups to the general linear group. The purpose of this work is to prove the fundamental lemma in the next case Γ of $G L(4) \Gamma$ by means of a new technique Γ which also provides a more elementary proof in other
(known) cases Γ and a hope for extension.
The orbital integral $\int_{G} 1_{K}\left(x^{-1} \gamma x\right) d x$ is the number of cosets $x K$ in G / K (G is a p-adic group and K denotes a hyperspecial maximal compact subgroup) Γ which are fixed by the action of γ. Since G / K is the Bruhat-Tits building of $G \Gamma$ Langlands interpreted the computation of the orbital integral as a problem of counting points on the building. This led to a satisfactory proof of the stable fundamental lemma for base change $[\mathrm{Ko}] \Gamma$ and to a counting proof for the symmetric square lifting [F5 Γ §4]. Langlands and Shelstad then studied the asymptotic expansion of orbital integrals of general $\left(C_{c}^{\infty}\right)$ functions for a general G on developing an "Igusa data" approachГand Hales [H1] in the context of $S p(2)$. The recent coherence result of Waldspurger [W3] for the unit element 1_{K} (and standard endoscopy) is used in [H2] to deduce from [H1] the fundamental lemma for $S p(2)$.

Our - elementary - approach is entirely different. It involves neither buildings nor germs. Our expression for the orbital integral is entirely explicit. Our results for 1_{K} in the context of $G S p(2)$ and $S p(2)$ imply - using the reduction of Waldspurger [W2] - the transfer of general functions on $G S p(2)$ and $S p(2)$ to their endoscopic groupsTrecovering the results of [H1] and [H2]. Further Γ we prove the fundamental lemma in the twisted case.

To start with Γ we note that a useful reduction of the computation of the orbital integral of 1_{K} at an element k of K is given by Kazhdan's decomposition [K] of k as a commuting product of an absolutely semi-simple element s Гand a topologically unipotent element u. The integral is then reduced to that of $u \Gamma$ where G and K are replaced by the centralizers of s in these groups. A twisted analogue of this result is developed in [F7] Γ where - taking the group to be the semi direct product of $P G L(3, F)$ and the group generated by the twisting σ - the twisted orbital integrals of 1_{K} are reduced to orbital integrals on forms of $G L(2) \Gamma$ which can be directly computed Γ and compared with the orbital integrals on the "lifted" groups $(S L(2)$ and $P G L(2))$. This reduction is carried out in the context of $G L(4)$ rather than $G L(3)$ in the present work. It permits us to compare the resulting integrals on the group $S p(2)$ of fixed points of $\sigma(g)=J^{t} g^{-1} J^{-1}$ on $G L(4) \Gamma$ with the integrals of 1_{K} on $G S p(2)$ at the norm of the element u.

The basic idea for the computation of the non twisted orbital integrals comes from the work of Weissauer [We]. Since the orbital integral is an integral over $T \backslash G / K \Gamma$ where T is the centralizer of our regular element in $G \Gamma$ it suffices to find a double coset decomposition for $H \backslash G / K \Gamma$ for a subgroup H of G which contains $T \Gamma$ and then the computation of the orbital integral is reduced to one on the subgroup $H \Gamma$ which should be simpler than G. Weissauer [We] proved the fundamental lemma for $G S p(2)$ and its endoscopic group $S O(4)$. We prove here this lemma from $G L(4)$ to all of its twisted endoscopic groups Γ including $G S p(2) \Gamma u s i n g$ this approach. Of course here we consider all tori T of $G S p(2) \Gamma$ not only those which transfer to its endoscopic group Γ and compute the norm map.

Our work is entirely explicit. We exhibit a set of representatives for the twisted conjugacy classes in $G \Gamma$ in families of types which we call (I) $\Gamma(I I) \Gamma$ (III)) (IV). We list those in the same stable twisted conjugacy class. The listing is done on computing the Galois hypercohomology groups used in [KS] Гor simply on using low brow Galois cohomology ${ }^{\text {lbut }}$ it is important for us to exhibit explicit representatives Γ not just to describe the abstract structure of the conjugacy classes within the stable class. Further we describe the norm map explicitly for each type Γ
and find representatives for the stable conjugacy classes and the conjugacy classes in it Γ for $G S p(2)$. The stable orbital integral is simply the sum over the orbits in the stable orbit. Thus our computations can be used to compute the unstable orbital integrals. In the case of $G S p(2)$ we recover the results of Weissauer [We]. In the twisted case Γ this is done here too for all unstable twisted endoscopic groups. We compute all unstable orbital integrals of 1_{K} on the group $S p(2) \Gamma$ which has more endoscopic groups than $G S p(2) \Gamma$ and deduce all endoscopic transfers of orbital integrals.

In [F8] we obtain a double coset decompositions in the context of $(U(2) \times U(1)) \backslash U(3) / K \Gamma$ where U denote unitary groups of a quadratic field extension E / F Гand use these to prove the fundamental lemma for $U(2,1)$ and its endoscopic group $U(1,1) \times U(1) \Gamma$ for a torus T split over $E \Gamma$ a quadratic unramified extension of $F \Gamma$ and for a torus T which splits over a biquadratic extension of F.

The results and techniques of this work were described in the talk [F9] at the conference "Automorphic Forms on Algebraic Groups" Γ RIMS 1995. At the end of my talk Takayuki Oda pointed out that results of Murase and Sugano [MS] on double coset decompositions of the form $H \backslash G / K$ existed for all classical quasi-split groups Γ and our direct and elementary approach might extend to deal with twisted $G L(n)$ for all n Гnamely with all symplectic and orthogonal groups.

This work started and was completed at MannheimГsupported by DAAD and the Humboldt Stiftung. I wish to express my very deep gratitude to Rainer Weissauer for his hospitality inspiration and help to J.-L. Waldspurger for locating an error at my requestГand to J.G.M. Mars for developing an alternative technique - based on usage of lattices - and verifying that the result of our computations coincide.

Our work concerns an example Γ and we worked out all related objects. It will be useful to list here informally the main objects. These are the twisted elliptic endoscopic groups; the elliptic twisted stable conjugacy classes Γ listed according to the elliptic tori T; the group structure of the conjugacy classes within the stable conjugacy classes; the characters κ on these groups Γ and the endoscopic groups attached to a regular element of T and to κ. The "fundamental lemma" takes the form: the κ-linear combination of θ-orbital integrals of the unit element 1_{K} at a θ-regular element t - multiplied by a suitable transfer factor - is equal to the stable (trivial κ) orbital integral of 1_{K} on the θ-endoscopic group determined by t and κ at the norm of t.

Thus our group is $\mathbf{G}=G L(4) \times G L(1)$; our automorphism is $\theta(g, x)=\left(J^{t} g^{-1} J^{-1}, x \operatorname{det}(g)\right)$. In Section I.F (i.e. Section F of Part I) we show that the stable θ-endoscopic group is $\mathbf{H}=$ $G S p(2)$. It would have been $S p(2)$ had we taken $\mathbf{G}=G L(4)$. But while $G S p(2)$ has only one elliptic endoscopic group: $(G L(2) \times G L(2)) / G L(1) \Gamma S p(2)$ has the elliptic endoscopic groups $(G L(2) \times G L(2))^{\prime} / G L(1)$ (the prime indicates: equal determinants) $\operatorname{Res}_{E / F} G L(2)^{\prime} / G L(1)$ for each quadratic extension E / F (its group of F-points is $G L(2, E)^{\prime} / F^{\times} \Gamma$ the prime indicates: determinant in $\left.F^{\times}\right) \Gamma S L(2) \times U(1, E / F)$ for each quadratic extension E / F (its group of F points is $\left.S L(2, E) \times E^{1} \Gamma E^{1}=\operatorname{ker} \operatorname{Norm}_{E / F}\right)$. The unstable θ-endoscopic groups are "of type I.F.2": $\mathbf{C}=(G L(2) \times G L(2))^{\prime}$ and $\mathbf{C}_{E}=\operatorname{Res}_{E / F} G L(2)^{\prime}$ for each quadratic extension $E / F \Gamma$ and "of type I.F.3" : $C_{+}=G L(2, F) \times E^{1} \Gamma$ again all $[E: F]=2$.

The θ-elliptic strongly θ-regular elements are classified in Section I.D according to tori of
types $(\mathrm{I}) \Gamma(\mathrm{II}) \Gamma(\mathrm{III}) \Gamma(\mathrm{IV})$ in $G S p(2)$. We list the tori of $G S p(2)$ reversing the order of (II) and (III) Γ so that the norm map from \mathbf{G} to $\mathbf{H}=G S p(2)$ preserves the type. Tori of type (I) are isomorphic to $E^{\times} \times E^{\times} \Gamma[E: F]=2 \Gamma$ those of type (II) are $\simeq E_{1}^{\times} \times E_{2}^{\times} \Gamma\left[E_{i}: F\right]=2 \Gamma E_{1} \not 千 E_{2} \Gamma$ E_{2} / F ramified. They lie in the group C_{0} of F-rational points in $\mathbf{C}_{0} \simeq(G L(2) \times G L(2))^{\prime} \Gamma$ where \mathbf{C}_{0} is the group of $\left[\left(\begin{array}{cc}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)\right]=\left(\begin{array}{cccc}a & 0 & 0 & b \\ 0 & \alpha & \beta & 0 \\ 0 & \gamma & \delta & 0 \\ c & 0 & 0 & d\end{array}\right) \in \mathbf{H}$. Tori of type (III) are isomorphic to $E^{\times} \Gamma$ where $E=E_{1} E_{2}$ is a biquadratic extension ($\left[E_{i}: F\right]=2$) of F. The choice of the quadratic extensions $E_{1} \Gamma E_{2} \Gamma E_{3}$ of $F \Gamma$ is implicit in our presentation of the tori. Tori of type (IV) are isomorphic to E^{\times}एwhere E is a cyclic or a non Galois extension of F of degree 4. Put $E_{3}=F(\sqrt{A}) \Gamma A \in F-F^{2} \Gamma$ for the quadratic extension of F in E. These tori embed in the group $C_{A} \simeq G L\left(2, E_{3}\right)^{\prime}$ of rational points over E_{3} of the group \mathbf{C}_{A} of $\binom{\mathbf{a} \mathbf{b}}{\mathbf{c} \mathbf{d}} \in \mathbf{H}=G S p(2) \Gamma$ where $\mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} \\ a_{2} A & a_{1}\end{array}\right) \Gamma \mathbf{b}=\ldots$ The double coset decompositions (see Section I.J) of $C_{0} \backslash G S p(2, F) / K \Gamma$ $C_{A} \backslash G S p(2, F) / K \Gamma$ and the analogues with $S p(2)$ instead of $G S p(2) \Gamma$ play key roles in our analysis.

The θ-conjugacy classes within a stable θ-conjugacy class of a θ-elliptic strongly θ-regular element are the following groups. When the class is of type (I) Γ the group is $F^{\times} / N_{E / F} E^{\times} \times$ $F^{\times} / N_{E / F} E^{\times}$. Type (II): $F^{\times} / N_{E_{1} / F} E_{1}^{\times} \times F^{\times} / N_{E_{2} / F} E_{2}^{\times}$. Types (III) and (IV): $E_{3}^{\times} / N_{E / E_{3}} E_{3}^{\times}$. The κ combinations of θ-orbital integrals of 1_{K} are related to stable orbital integrals of 1_{K} on the θ-endoscopic groups determined as follows. If κ is trivial Γ we are in the stable case Γ and $G S p(2)$ is obtained. In type (I) $\Gamma \kappa=\kappa_{1} \times \kappa_{2}$. If both $\kappa_{i} \neq 1 \Gamma$ the group is $\mathbf{C}=(G L(2) \times G L(2))^{\prime}$. If precisely one of the κ_{i} is non trivial Γ then the group is $\mathbf{C}_{+}=G L(2) \times U(1, E / F)$ if E / F is unramified Γ but the κ - θ-integral vanishes when E / F is ramified: this is a general phenomenon Γ that the integral of 1_{K} would vanish when it should relate to a ramified endoscopic group. In type (II) $\Gamma \kappa=\kappa_{1} \times \kappa_{2}$. If both $\kappa_{i} \neq 1 \Gamma$ the group is $\mathbf{C}_{E_{3}}=\operatorname{Res}_{E_{3} / F} G L(2)^{\prime}$ when E_{3} / F is unramified; the integral vanishes when E_{3} / F is ramified. If $\kappa_{1} \neq 1 \Gamma \kappa_{2}=1 \Gamma$ and E_{1} / F is unramified Γ the group is $\mathbf{C}_{+}=G L(2) \times U\left(1, E_{1} / F\right) \Gamma$ but the κ-integral vanishes when E_{1} / F is ramified. In type (III) Γ if $\kappa \neq 1 \Gamma$ the group is \mathbf{C}. In type (IV) Γ if $\kappa \neq 1 \Gamma$ the group is $\mathbf{C}_{E_{3}}$ when E_{3} / F is unramified; the κ-integral vanishes when E_{3} / F is ramified.

To repeat Γ elliptic conjugacy classes in $\mathbf{C}=(G L(2) \times G L(2))^{\prime}$ lie in $E_{1}^{\times} \times E_{2}^{\times}$come from type (I) when $E_{1}=E_{2}$ Гand from type (III) if $E_{1} \neq E_{2}$. Those in $\mathbf{C}_{E_{3}}=\operatorname{Res}_{E_{3} / F} G L(2)^{\prime}$ lie in a quadratic extension E of the quadratic extension E_{3} of F; they come from type (II) if E is biquadratic ($=E_{1} E_{2}$) over $F \Gamma$ and from type (IV) if E is cyclic or non Galois over F. An elliptic conjugacy classes in $\mathbf{C}_{+}=G L(2) \times U\left(1, E_{1} / F\right)$) unramified E_{1} / F Гdefines a quadratic extension E_{2} / F (in its $G L(2)$ part); it comes from type (I) if $E_{1}=E_{2}$ Гand from type (II) if $E_{1} \neq E_{2} \Gamma$ and a $\kappa=\kappa_{1} \times \kappa_{2}$ with only one non trivial factor.

Our analysis applies to establish the fundamental lemma for the group $S p(2)$ Гexcept that types (II) and (III) need to change names Γ as they are interchanged under the norm map. The lists of endoscopic groups Γ elliptic elements $\Gamma \kappa$ and even statement of results are essentially the same Γ since the θ-integrals on G are integrals on $S p(2, F)$. The analysis in the case of $G S p(2, F)$ is simplerГthere is a unique endoscopic group Гessentially $G L(2) \times G L(2)$ Гand tori of type (I) $\Gamma(\mathrm{II}) \Gamma$ yield the tori $E^{\times} \times E^{\times}$and $E_{1}^{\times} \times E_{2}^{\times}$of the endoscopic group.

PART I. Preparations.

A. Statement of Theorem.

Let R denote the ring of integers in a local non archimedean field F. Let \mathbf{G} be the F group $\mathbf{G}_{1} \times \mathbf{G}_{m} \Gamma$ where $\mathbf{G}_{1}=G L(4)$ and $\mathbf{G}_{m}=G L(1)$. Put ${ }^{t} g_{1}$ for the transpose of $g_{1} \in$ \mathbf{G}_{1}. Define $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \Gamma J=\left(\begin{array}{cc}0 & w \\ -w & 0\end{array}\right) \Gamma \theta\left(g_{1}\right)=J^{t} g_{1}^{-1} J^{-1} \Gamma$ and $\theta\left(g_{1}, e\right)=\left(\theta\left(g_{1}\right), e\left\|g_{1}\right\|\right)$ for $g=\left(g_{1}, e\right) \in \mathbf{G} ;\left\|g_{1}\right\|$ denotes the determinant of g_{1}. Put $\mathbf{H}=G \operatorname{Sp}(2)=G \operatorname{Sp}(J)$ for the group $\left\{g_{1} \in \mathbf{G}_{1} ; \theta\left(g_{1}\right)=e g_{1}\right.$ for some $\left.e=e\left(g_{1}\right) \in G L(1)\right\}$ of symplectic similitudes. We write $G=\mathbf{G}(F)$ and $H=\mathbf{H}(F)$ for the groups of F-points Γ and $K=\mathbf{G}(R)$ and $K_{H}=\mathbf{H}(R)$ for the standard maximal compact subgroups. Similarly we have G_{1}, K_{1}, \ldots.

We choose Haar measures $d g, d h, \ldots$ on G, H, \ldots Tand denote by $1_{K}=1_{K_{G}}$ the quotient by the volume $|K|$ of K of the characteristic function of $K=K_{G}$ in $G \Gamma$ by $1_{K_{H}}$ the analogous object for $K_{H} \Gamma 1_{K_{1}}$ for K_{1} in $G_{1} \Gamma$ etc. Then 1_{K} lies in the space $C_{c}^{\infty}(G)$ of locally constant compactly supported functions on G. We often omit the subscript of $K \Gamma$ when it is clear from the context. Identify $C_{c}^{\infty}(G)$ with $C_{c}^{\infty}(G \theta)$ by $f(g)=f(g \theta) \Gamma$ put $\operatorname{Int}(g)(t \theta)=g t \theta g^{-1}=$ $g t \theta\left(g^{-1}\right) \theta \Gamma$ and introduce the orbital integral

$$
\Phi_{f}^{G}(t \theta)=\Phi_{f}^{G}\left(t \theta ; d_{G} / d_{Z_{G}(t \theta)}\right)=\int_{G / Z_{G}(t \theta)} f((\operatorname{Int}(g))(t \theta)) d g / d_{Z_{G}(t \theta)}
$$

of $f \in C_{c}^{\infty}(G)$ at $t \theta, t \in G$ (it is also called the θ-orbital integral of f at t). Here

$$
Z_{G}(t \theta)=\{g \in G ; \operatorname{Int}(g)(t \theta)=t \theta\}
$$

is the θ-centralizer of t in G Гor the centralizer of $t \theta$ in G.
The elements t, t^{\prime} of G are called stably θ-conjugate if $t^{\prime} \theta=\operatorname{Int}(g)(t \theta)$ for some $g \in \mathbf{G}(=$ $\mathbf{G}(\bar{F}) \Gamma \bar{F}=$ algebraic closure of $F)$. There are finitely many θ-conjugacy classes $(\operatorname{Int}(g)(t \theta), g \in$ $G)$ in a stable θ-conjugacy class Γ and we define the stable orbital integral $\Phi_{f}^{G, s t}(t \theta)$ of f at $t \theta$ to be the sum $\sum \Phi_{f}^{G}\left(t^{\prime} \theta\right)$ over a set of representatives t^{\prime} for the θ-conjugacy classes within the stable θ-conjugacy class of t (in G). Note that $Z_{\mathbf{G}}(t \theta)$ and $Z_{\mathbf{G}}\left(t^{\prime} \theta\right)$ are isomorphic when t, t^{\prime} are stably θ-conjugate Γ this isomorphism is used to relate the measures on these groups. Similarly we have the stable orbital integral $\Phi_{f}^{H, s t}\left(h ; d_{H} / d_{Z_{H}(h)}\right)$ of $f \in C_{c}^{\infty}(H)$ at $h \in H$.

The purpose of this paper is to prove the following.
Theorem. For any strongly θ-regular $t \in G$ we have

$$
\Phi_{1_{K}}^{G, s t}\left(t \theta ; d_{G} / d_{T^{\theta}}\right)=\Phi_{1_{K_{H}}}^{H, s t}\left(N t ; d_{H} / d_{T^{\theta}} \circ(1+\theta) \circ N^{-1}\right)
$$

An element t of G is called θ-semi-simple if $t \theta$ is semi-simple in the group $G \rtimes\langle\theta\rangle(\theta$ is an automorphism of G of order two). Such an element is called θ-regular if $Z_{\mathbf{G}}(t \theta)^{0} \Gamma$ the connected component of the identity in $Z_{\mathbf{G}}(t \theta)$ Гis a torus. Further it is called strongly θ-regular if $Z_{\mathbf{G}}(t \theta)$ is abelian. In this case $Z_{\mathbf{G}}\left(Z_{\mathbf{G}}(t \theta)^{0}\right)$ is a maximal torus \mathbf{T} in \mathbf{G} which is stable under $\operatorname{Int}(t \theta) \Gamma$ and $Z_{\mathbf{G}}(t \theta)=\mathbf{T}^{\operatorname{Int}(t \theta)}$ (see Kottwitz-Shelstad [KSГ3.3]). According to [KSГLemma 3.2.A(a)] Γ we may assume that the strongly θ-regular t lies in a θ-stable F-torus \mathbf{T}. Thus $t \in T=\theta(T)$.

To define the norm map - which appears in the statement of the Theorem - following $[\mathrm{KS}]$ we fix a θ-stable F-pair $\left(\mathbf{T}^{*}, \mathbf{B}^{*}\right)$ consisting of a minimal θ-stable F-parabolic subgroup \mathbf{B}^{*} of $\mathbf{G} \Gamma$ and a maximal θ-stable F-torus \mathbf{T}^{*} in \mathbf{B}^{*}. Namely we take \mathbf{B}^{*} to be the upper triangular subgroup of $\mathbf{G} \Gamma$ and \mathbf{T}^{*} to be the diagonal subgroup (thus $\mathbf{T}^{*}=\mathbf{T}_{1}^{*} \times \mathbf{G}_{m}$). Any two θ-stable F-tori \mathbf{T}^{*} and \mathbf{T} are θ-conjugate in $\mathbf{G} \Gamma$ thus given \mathbf{T} (\mathbf{T}^{*} is fixed) there is $h \in \mathbf{G}$ with $\mathbf{T}=h^{-1} \mathbf{T}^{*} \theta(h) \Gamma$ and in particular $t^{*} \in \mathbf{T}^{*}$ such that $t=h^{-1} t^{*} \theta(h)$. The norm of t is defined to be the stable conjugacy class in H which is conjugate to $N t^{*}$ over $\bar{F} \Gamma$ where $N t^{*}$ is defined as follows.

Put $\mathbf{V}=(1-\theta) \mathbf{T}^{*}$ and $\mathbf{U}=\mathbf{T}_{\theta}^{*}=\mathbf{T}^{*} / \mathbf{V}$. Here \mathbf{T}^{*} consists of ($a, b, c, d ; e$) $(=(\operatorname{diag}(a, b, c, d), e)) \Gamma$ and $\theta(a, b, c, d ; e)=\left(d^{-1}, c^{-1}, b^{-1}, a^{-1} ; e a b c d\right)$. Then \mathbf{V} consists of $(\alpha, \beta, \beta, \alpha ; 1 / \alpha \beta)$. Choose the isomorphism $N: \mathbf{U} \xrightarrow{\sim} \mathbf{T}_{H}^{*}$ given by

$$
(x, y, z, t ; w) \bmod \{(\alpha, \beta, \beta, \alpha ; 1 / \alpha \beta)\} \mapsto\left(x y w, x z w, t y w, t z w ; x y z t w^{2}\right)=(a, b, e / b, e / a ; e)
$$

It is surjective since $(b, a / b, 1, e / a ; 1) \mapsto(a, b, e / b, e / a ; e)$. Of course \mathbf{T}_{H}^{*} is the diagonal subgroup in $\mathbf{H} \Gamma$ and any torus \mathbf{T}_{H} in \mathbf{H} is conjugate to \mathbf{T}_{H}^{*} over \bar{F}. The stable conjugacy class of a regular element in H is the intersection with H of its conjugacy class over \bar{F}. The choice of the isomorphism $\mathbf{U} \stackrel{\sim}{\rightarrow} \mathbf{T}_{H}^{*}$ is dictated by dual groups considerations Γ namely that \mathbf{H} is an endoscopic group in \mathbf{G}; this we explain in Section F below.

The orbital integrals on $G=G L(4, F)$ and $H=G S p(2, F)$ depend on a choice of Haar measures. These are chosen compatibly「as follows. A Haar measure is unique up to a scalar Γ determined by the volume of the maximal compact subgroup. The function $1_{K_{G}}$ is the unit element in the Hecke algebra $C_{c}\left(K_{G} \backslash G / K_{G}\right) \Gamma$ thus it is the quotient of the characteristic function of K_{G} in G by the volume of K_{G}. The product $1_{K_{G}} d_{G}$ is the constant measure with support K_{G} and total volume 1 ; it is independent of the choice of the Haar measure d_{G}. Thus we may and do assume that $\left|K_{G}\right|=1$ and $1_{K_{G}}$ is the characteristic function of K_{G}. This simplifies our computations below. The same comment applies to $1_{K_{H}} d_{H}$.

It remains to relate the measures on $Z_{G}(t \theta)$ and on $Z_{H}(N t)$ โfor a strongly θ-regular element t in G. We shall use the observation that if $N: \mathbf{T}_{1} \rightarrow \mathbf{T}_{2}$ is an epimorphism of F-tori with kernel $\mathbf{T}_{0} \Gamma$ and if $d_{T_{i}}$ denotes the Haar measure on $T_{i}=\mathbf{T}_{i}(F)$ which assigns the maximal compact subgroup $T_{i}(R)$ the volume $\left|T_{i}(R)\right|=d_{T_{i}}\left(T_{i}(R)\right)$ one then $d_{T_{1}}=\mu N^{*}\left(d_{T_{2}}\right)$ for some $\mu>0 \Gamma$ where $N^{*}\left(d_{T_{2}}\right)=d_{T_{2}} \circ N$ is the measure on T_{1} obtained from $d_{T_{2}}$ via N. Computing the volume of $T_{1}(R)$ we see that $\mu=\left[T_{2}(R): N\left(T_{1}(R)\right)\right]$. We shall relate an orbital integral $\Phi\left(d_{G_{2}}, d_{T_{2}}\right)$ with $\Phi\left(d_{G_{2}}, d_{T_{2}} \circ N\right)=\mu \Phi\left(d_{G_{1}}, d_{T_{1}}\right)\left(T_{i} \subset G_{i}(i=1,2)\right)$.

Applying this principle to the norm map $N: \mathbf{T}^{*} \rightarrow \mathbf{T}_{H}^{*} \Gamma$ where $\left.\mathbf{T}_{H}^{*}=\{(x, y, z, t) ; x t=y z)\right\} \Gamma$ defined by $N(x, y, z, t)=(x y, x z, y t, z t) \Gamma$ whose kernel is $\mathrm{V} \Gamma$ we see that $d_{T^{*}}=\left[T_{H}^{*}(R)\right.$: $\left.N\left(T^{*}(R)\right)\right] d_{T_{H}^{*}} \circ N$. Applying the principle to the map $1+\theta: \mathbf{T}^{*} \rightarrow \mathbf{T}^{* \theta} \Gamma$ whose kernel is V Γ where $\theta(x, y, z, t)=\left(t^{-1}, z^{-1}, y^{-1}, x^{-1}\right) \Gamma$ thus $(1+\theta)(x, y, z, t)=(x / t, y / z, z / y, t / x) \Gamma$ and $\mathbf{T}^{* \theta}=\left\{\left(x, y, y^{-1}, x^{-1}\right)\right\} \Gamma$ we see that $d_{T^{*}}=\left[T^{* \theta}(R):(1+\theta)\left(T^{*}(R)\right)\right] d_{T^{* \theta}} \circ(1+\theta)$. In conclusion

$$
d_{T^{* \theta}} \circ(1+\theta)=\frac{\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]}{\left[T^{* \theta}(R):(1+\theta) T^{*}(R)\right]} d_{T_{H}^{*}} \circ N,
$$

and the (stable) θ-orbital integral $\Phi\left(1_{K} d_{G}, d_{T^{* \theta}}\right)$ on G is related to the (stable) orbital integral

$$
\left(\left[T^{* \theta}(R):(1+\theta) T^{*}(R)\right] /\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]\right) \Phi\left(1_{K} d_{H}, d_{T_{H}}\right)=\Phi\left(1_{K} d_{H}, d_{T^{* \theta} \circ}(1+\theta) \circ N^{-1}\right)
$$

This is the relation of measures which appears in the Theorem. We shall see below that $Z_{G}(t \theta)$ takes the form $T^{* \theta}$ (up to isomorphism; $T^{* \theta}=\theta$-fixed points in T^{*}) Γ and the measure used in the integration over H is pulled back from the measure $d_{T^{* \theta}}$ on $T^{* \theta}$ via the isomorphism $\mathbf{T}_{H}^{*} \stackrel{N}{\sim} \mathbf{T}^{*} / \mathbf{V} \xrightarrow{1+\theta} \mathbf{T}^{* \theta}$. The factor $\left[T^{* \theta}(R):(1+\theta)\left(T^{*}(R)\right)\right] /\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]$ which relates $d_{T_{H}}$ with $d_{T^{\theta}} \circ(1+\theta) \circ N^{-1} \Gamma$ will be computed for each torus considered in the course of the proof below.

B. Stable conjugacy.

Let us recall the structure of the set of (F-rational) conjugacy classes within the stable $(\bar{F}-)$ conjugacy class of a regular element t in H. By definition Γ the centralizer $Z_{\mathbf{H}}(t)$ of t in \mathbf{H} is a maximal F-torus \mathbf{T}_{H}. The elements t, t^{\prime} of H are conjugate if there is g in H with $t^{\prime}=\operatorname{Int}\left(g^{-1}\right) t\left(=g^{-1} t g\right)$. They are stably conjugate if there is such g in $\mathbf{H}(=\mathbf{H}(\bar{F}))$. Then $g_{\sigma}=g \sigma\left(g^{-1}\right)$ lies in \mathbf{T}_{H} for every σ in the Galois group $\Gamma=\operatorname{Gal}(\bar{F} / F) \Gamma$ and $g \mapsto\left\{\sigma \mapsto g_{\sigma}\right\}$ defines an isomorphism from the set of conjugacy classes within the stable conjugacy class of t to the pointed set $D\left(T_{H} / F\right)=\operatorname{ker}\left[H^{1}\left(F, \mathbf{T}_{H}\right) \rightarrow H^{1}(F, \mathbf{H})\right]$. In our case $H^{1}(F, \mathbf{H})$ is trivial Γ hence $D\left(T_{H} / F\right)$ is a group.

1. Lemma. The set of stable conjugacy classes of F-tori in \mathbf{H} injects naturally in the image in $H^{1}(F, W)$ of $\operatorname{ker}\left[H^{1}(F, \mathbf{N}) \rightarrow H^{1}(F, \mathbf{H})\right]$, where $\mathbf{N}=\operatorname{Norm}\left(\mathbf{T}_{H}^{*}, \mathbf{H}\right)$, and W is the Weyl group of \mathbf{T}_{H}^{*} in \mathbf{H}. This map is an isomorphism when \mathbf{H} is quasi-split. Note that the image is $H^{1}(F, W)$ when $H^{1}(F, \mathbf{H})$ is trivial, and $H^{1}(F, W)$ is the group of continuous homomorphisms $\rho: \Gamma \rightarrow W$, when Γ acts trivially on W.

Proof. Indeed $\boldsymbol{\Gamma}$ the tori \mathbf{T} and \mathbf{T}_{H}^{*} are conjugate in $\mathbf{H} \boldsymbol{\Gamma}$ thus $\mathbf{T}=g^{-1} \mathbf{T}_{H}^{*} g$ for some g in \mathbf{H}. For any t in \mathbf{T} there is t^{*} in \mathbf{T}_{H}^{*} with $t=g^{-1} t^{*} g$. For t in $T \Gamma \sigma g^{-1} \sigma t^{*} \sigma g=\sigma t=t=g^{-1} t^{*} g \Gamma$ thus $\sigma t^{*}=g_{\sigma}^{-1} t^{*} g_{\sigma} \in \mathbf{T}_{H}^{*} \Gamma$ and $g_{\sigma} \in \operatorname{Norm}\left(\mathbf{T}_{H}^{*}, \mathbf{H}\right)$. Since t (and so t^{*}) is regular Γg_{σ} is uniquely determined modulo $\mathbf{T}_{H}^{*} \Gamma$ namely in W. For a general t^{*} in \mathbf{T}_{H}^{*} we then have $\sigma\left(g^{-1} t^{*} g\right)=g^{-1}\left(g \sigma\left(g^{-1}\right)\right) \sigma\left(t^{*}\right)\left(\sigma(g) g^{-1}\right) g \Gamma$ so that the induced action on \mathbf{T}_{H}^{*} is given by $\sigma^{*}\left(t^{*}\right)=\operatorname{Int}\left(g_{\sigma}\right)\left(\sigma\left(t^{*}\right)\right)$. The cocycle $\rho=\rho(T): \Gamma \rightarrow W$ is given by $\rho(\sigma)=g_{\sigma} \bmod \mathbf{T}_{H}^{*}$. It determines \mathbf{T} up to stable conjugacy. Conversely $\mathrm{a}\left\{g_{\sigma}\right\}$ in $\operatorname{ker}\left[H^{1}(F, \mathbf{N}) \rightarrow H^{1}(F, \mathbf{H})\right]$ determines an action $\sigma^{*}\left(t^{*}\right)=\operatorname{Int}\left(g_{\sigma}\right)\left(\sigma\left(t^{*}\right)\right)$ on \mathbf{T}_{H}^{*}. By a well-known theorem of Steinberg Γ when \mathbf{H} is quasi split over F 和 F-conjugacy class in \mathbf{H} of a regular t^{*} contains a rational element $h^{-1} t^{*} h$ (in H) Γ whose centralizer is an F-torus which defines g_{σ}.

In our case of $\mathbf{H}=G \operatorname{Sp}(2) \Gamma$ the Weyl group W is the dihedral group $D_{4} \Gamma$ generated by the reflections $s_{1}=(12)(34)$ and $s_{2}=(23)$. Its other elements are $1,(12)(34)(23)=(3421)$ (which takes 1 to $2 \Gamma 2$ to $4 \Gamma 4$ to $3 \Gamma 3$ to 1$) \Gamma(23)(12)(34)=(2431) \Gamma(23)(3421)=(42)(31) \Gamma$ $(3421)^{2}=(23)(41) \Gamma(23)(23)(41)=(41)$. Let us list the F-tori \mathbf{T} according to the subgroups of $W \Gamma$ the split torus corresponding to $\{1\} \Gamma$ and conclude the following.
2. Lemma. We have that $H^{1}(F, \mathbf{T})$ is trivial except when $\rho(\Gamma)$ is the subgroup of W of the form $\langle(14)(23)\rangle$ or $\langle(14)(23),(12)(34),(13)(24)\rangle$, where $H^{1}(F, \mathbf{T})=\mathbb{Z} / 2$.

Proof. Recall that if \mathbf{T}_{H} splits over the Galois extension E of F then $H^{1}\left(F, \mathbf{T}_{H}\right)=$ $H^{1}\left(\operatorname{Gal}(E / F), \mathbf{T}_{H}^{*}(E)\right) \Gamma$ where $\mathbf{T}_{H}^{*}(E)=\left\{\operatorname{diag}(a, b, \lambda / b, \lambda / a) ; a, b, \lambda \in E^{\times}\right\} \Gamma$ and $\operatorname{Gal}(E / F)$
acts via ρ. Thus H^{1} is the quotient of the group C^{1} of cocycles: $a_{\tau} \in \mathbf{T}_{H}^{*}(E)$ with $a_{1}=1$ and $a_{\sigma \tau}=a_{\sigma} \sigma^{*}\left(a_{\tau}\right)$ for all $\sigma, \tau \in \operatorname{Gal}(E / F) \Gamma$ by the group of coboundaries: $c \sigma^{*}\left(c^{-1}\right), c \in \mathbf{T}_{H}^{*}(E)$. Here $\sigma^{*}=\rho(\sigma) \circ \sigma \Gamma$ thus $\sigma^{*}(a)=g_{\sigma} \cdot \sigma a \cdot g_{\sigma}^{-1}$ if $\rho(\sigma)=\operatorname{Int}\left(g_{\sigma}\right)$. When $\rho(\Gamma)=\{1\} \Gamma$ the group H^{1} is trivial since $E=F$. The other cases are:
(1) $\rho(\Gamma)=\langle(23)\rangle,[E: F]=2, a_{\sigma}=(a, b, \lambda / b, \lambda / a)$ with $a_{\sigma} \sigma^{*}\left(a_{\sigma}\right)=I$ satisfies $a \sigma a=1 \Gamma$ $\lambda \sigma \lambda=1 \Gamma b \sigma \lambda=\sigma b$. Choosing $\alpha, \mu \in E^{\times}$with $a=\alpha / \sigma \alpha, \mu=\sigma b^{-1} \Gamma$ we have $\lambda=\mu / \sigma \mu \Gamma$ and $c=(\alpha, 1, \mu, \mu / \alpha)$ satisfies $c \sigma^{*}(c)^{-1}=a_{\sigma}$. Hence H^{1} is trivial. The same result holds for $\rho(\Gamma)=\langle(14)\rangle$.
(2) $\rho(\Gamma)=\langle(12)(34)\rangle,[E: F]=2, a_{\sigma}$ satisfies $a \sigma b=1 \Gamma$ and $\lambda \sigma \lambda=1$. Choosing $\mu \in E^{\times}$with $\lambda=\mu / \sigma \mu$ एwe have that $c=(a, 1, \mu, \mu / a)$ satisfies $c \sigma^{*}\left(c^{-1}\right)=a_{\sigma}$. Hence H^{1} is trivial.
(3) $\rho(\Gamma)=\langle(13)(24)\rangle,[E: F]=2, a_{\sigma}$ satisfies $\lambda \sigma \lambda=1$ and $b=\lambda \sigma a$. Take $\mu \in E^{\times}$with $\lambda=\mu / \sigma \mu$ Гand $c=(a, \mu, 1, \mu / a)$. Then $c \sigma^{*}\left(c^{-1}\right)=a_{\sigma}$ and H^{1} is trivial.

These tori are not elliptic - their quotient by the center of H is not compact. The elliptic tori are:
(I) $\rho(\Gamma)=\langle(14)(23)\rangle,[E: F]=2, a_{\sigma}$ satisfies $\lambda=b / \sigma b=a / \sigma a=\sigma \lambda^{-1}$. Thus $a / b \in F^{\times}$. If $c=$ $(1, \beta, 1 / \beta \sigma a, 1 / \sigma a) \Gamma$ then $c \sigma^{*}\left(c^{-1}\right)=(a, a \beta \sigma \beta, \lambda / a \beta \sigma \beta, \lambda / a)$. Then $H^{1}=\left\{a_{\sigma}\right\} /\left\{c \sigma^{*}(c)^{-1}\right\}=$ $F^{\times} / N_{E / F} E^{\times}$.
(II) $\rho(\Gamma)=\langle(14)(23),(12)(34),(13)(24)\rangle, E$ is the composition of the different quadratic extensions E_{1}, E_{2}, E_{3} of $F \Gamma$ and so $\operatorname{Gal}(E / F)=\mathbb{Z} / 2 \times \mathbb{Z} / 2$ is generated by σ and τ whose fixed fields are $E_{3}=E^{\langle\sigma\rangle} \Gamma E_{2}=E^{\langle\sigma \tau\rangle} \Gamma E_{1}=E^{\langle\tau\rangle}$. Say $\rho(\sigma)=(14)(23)$ and $\rho(\tau)=(12)(34)$. Then $a_{\tau}=c \tau^{*}\left(c^{-1}\right) \Gamma$ as seen in (2) above. We shall replace the cocycle $\left\{a_{\alpha}\right\}$ by the equivalent $\left\{a_{\alpha} c^{-1} \alpha^{*}(c)\right\}$. Then we may assume that $a_{\tau}=I$. The relation $a_{\sigma}=a_{\sigma} \sigma^{*}\left(a_{\tau}\right)=a_{\sigma \tau}=$ $a_{\tau \sigma}=a_{\tau} \tau^{*}\left(a_{\sigma}\right)=\tau^{*}\left(a_{\sigma}\right)$ implies that $a_{\sigma}=(a, \tau a, \lambda / \tau a, \lambda / a)\left(a \in E^{\times}, \lambda \in E_{1}^{\times}\right)$. The relation $a_{\sigma} \sigma^{*}\left(a_{\sigma}\right)=I$ implies that $\lambda=a / \sigma a$. Hence $a / \sigma a=\lambda=\tau \lambda=\tau a / \sigma \tau a \Gamma$ and $a \sigma \tau a=\sigma a \tau a$ lies in F^{\times}. Since $N_{E_{1} / F} E_{1}^{\times} \neq N_{E_{2} / F} E_{2}^{\times}$and $F^{\times} / N_{E_{i} / F} E_{i}^{\times}$is of order two $\Gamma a \sigma \tau a$ can take any value in F^{\times}. For $c=(\alpha, \tau \alpha, \mu / \tau a, \mu / \alpha) \Gamma \mu=\tau \mu \in E_{1}^{\times} \Gamma$ we have $c \sigma^{*}(c)^{-1}=(d, \tau d, \lambda / \tau d, \lambda / d)$ with $d=\alpha \sigma \alpha / \sigma \mu$ and $\lambda=\mu / \sigma \mu=d / \sigma d$. However $\Gamma d \sigma \tau d \in N_{E_{1} / F} E_{1}^{\times} \Gamma$ since $\alpha \sigma \alpha \tau(\alpha \sigma \alpha) \in$ $N_{E / F} E^{\times}$and $\mu \sigma \mu \in N_{E_{1} / F} E_{1}^{\times}$. Hence $H^{1}=F^{\times} / N_{E_{1} / F} E_{1}^{\times}$.
(III) $\rho(\Gamma)=\langle(14),(23)\rangle$ Гagain $E=E_{1} E_{2}$ and $\operatorname{Gal}(E / F)=\mathbb{Z} / 2 \times \mathbb{Z} / 2$ is generated by σ and τ whose fixed fields are $E_{3}=E^{\langle\sigma\rangle}, E_{2}=E^{\langle\sigma \tau\rangle}$ and $E_{1}=E^{\langle\tau\rangle} \Gamma$ and $\rho(\tau)=(23), \rho(\tau \sigma)=$ (14). Using (1) above we may replace $\left\{a_{\alpha}\right\}$ by an equivalent cocycle with $a_{\tau_{1}}=I \Gamma$ where $\tau_{1}=\sigma \tau$. Then $a_{\tau}=\tau_{1}^{*}\left(a_{\tau}\right)$ (since $a_{\tau} \tau^{*}\left(a_{\tau_{1}}\right)=a_{\sigma}=a_{\tau_{1}} \tau_{1}^{*}\left(a_{\tau}\right)$) Chence $b=\tau_{1} b \in E_{2}^{\times}$and $\lambda=a \tau_{1} a \in N_{E / E_{2}} E^{\times}$. Further $I=a_{\tau} \tau^{*}\left(a_{\tau}\right)$ implies that $a \tau a=1$ and $\lambda=b / \tau b$. Take $\alpha \in E^{\times}$with $a=\alpha / \tau \alpha$ and $c=\left(\alpha, 1, \alpha \tau_{1} \alpha, \tau_{1} \alpha\right)$. Since $c=\tau_{1}^{*}(c)$ we can replace $\left\{a_{\sigma}\right\}$ by $\left\{a_{\sigma} c^{-1} \sigma^{*}(c)\right\} \Gamma$ to assume that a_{τ} has $a=1$. Thus $a_{\tau}=(1, b, 1 / b, 1)$ and $b=\tau_{1} b=\tau b$. Now taking $c=\left(\alpha, \beta, \alpha \tau_{1} \alpha / \beta, \tau_{1} \alpha\right)$ with $\alpha=\tau \alpha$ and $\beta=\tau_{1} \beta \Gamma$ we have $c=\tau_{1}^{*} c \Gamma$ and $c \tau^{*} c^{-1}=$ $\left(1, \beta \tau \beta / \alpha \tau_{1} \alpha, \alpha \tau_{1} \alpha / \beta \tau \beta, 1\right)$. Since $\beta \tau \beta$ ranges over $N_{E_{2} / F} E_{2}^{\times}$and $\alpha \tau_{1} \alpha$ over $N_{E_{1} / F} E_{1}^{\times}, E_{1} \neq$ $E_{2} \Gamma$ and $F^{\times} / N_{E_{i} / F} E_{i}^{\times}$have order two Γ we conclude that $a_{\sigma}=c \sigma^{*} c^{-1}$ for some $\alpha \in E_{1}^{\times}, \beta \in$ E_{2}^{\times}Thence H^{1} is trivial.

Remark. In the situation of (II) and (III) Γ where E is the composition of the quadratic extensions of F एwe have $N_{E / F} E^{\times}=F^{\times 2} \Gamma$ hence $N_{E_{3} / F}$ followed by inclusion yields the isomorphism $E_{3}^{\times} / N_{E / E_{3}} E^{\times} \xrightarrow{\sim} N_{E_{3} / F} E_{3}^{\times} / F^{\times 2} \hookrightarrow F^{\times} / N_{E_{1} / F} E_{1}^{\times} . \operatorname{Indeed} \Gamma N_{E / F} E^{\times} \supset N_{E / F} E_{i}^{\times}=$
$\left(N_{E_{i} / F} E_{i}^{\times}\right)^{2}$ implies $N_{E / F} E^{\times} \supset F^{\times 2} \Gamma$ and $N_{E / F} E^{\times}=N_{E_{i} / F} N_{E / E_{i}} E^{\times} \subset N_{E_{i} / F} E_{i}^{\times}$implies $N_{E / F} E^{\times} \subset F^{\times 2} \Gamma$ since $N_{E_{1} / F} E_{1}^{\times} \cap N_{E_{3} / F} E_{3}^{\times}=F^{\times 2}$.
(IV) $\rho(\Gamma)$ contains an element of order 4. There are two cases here. If $\rho(\Gamma)=W \Gamma$ then the splitting field E is a Galois extension of F with Galois group $W=D_{4}$. Suppose $\rho\left(\sigma_{1}\right)=$ (23) and $\rho\left(\sigma_{2}\right)=(14)$. As in (III) Γ we can multiply the cocycle by a coboundary so that $a_{\sigma_{1}}=I=a_{\sigma_{2}} \Gamma$ and so $a_{\sigma_{1} \sigma_{2}}=I=a_{\sigma_{2} \sigma_{1}}$. If $\rho(\sigma)=(3421), \rho\left(\sigma^{2}\right)=\rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right) \Gamma$ and $I=a_{\sigma^{2}}=a_{\sigma} \sigma^{*}\left(a_{\sigma}\right)=(a, b, \lambda / b, \lambda / a)(\sigma \lambda / \sigma b, \sigma a, \sigma \lambda / \sigma a, \sigma b)$. Then $b \sigma a=1=\lambda \sigma \lambda \Gamma$ and $\sigma b=a \sigma \lambda \Gamma$ thus $\lambda=a / \sigma b=a \sigma^{2}(a) \Gamma$ and $a \sigma(a) \sigma^{2}(a) \sigma^{3}(a)=1 \Gamma$ so that $a=\alpha / \sigma^{3} \alpha$ for some $\alpha \in E^{\times}$. Now $a_{\sigma}=\left(a, 1 / \sigma a, 1 / \sigma^{3} a, \sigma^{2} a\right) \Gamma$ and c is equal to $\sigma^{* 2}(c)$ (thus $a_{\sigma^{2}}=a_{\sigma^{2}} c \sigma^{* 2}\left(c^{-1}\right)$) if $c=\left(\alpha, \beta, \sigma^{2} \beta, \sigma^{2} \alpha\right)$ and $\alpha \sigma^{2} \alpha=\beta \sigma^{2} \beta$. As $c \sigma^{*}(c)^{-1}=\left(\alpha / \sigma^{3} \beta, \beta / \sigma \alpha, \sigma^{2} \beta / \sigma^{3} \alpha, \sigma^{2} \alpha / \sigma \beta\right) \Gamma$ we have $a_{\sigma}=c \sigma^{*}(c)^{-1}$ for $\beta=\alpha$. Then H^{1} is trivial.

The other case is when $\rho(\Gamma)$ is $\mathbb{Z} / 4 \Gamma$ say $\rho(\sigma)=(3421)$. The splitting field E is a cyclic extension of F of degree 4. Put $E_{3}=E^{\left\langle\sigma^{2}\right\rangle}$. By case (I) Γ we may assume that $a_{\sigma^{2}}=$ $\left(1, f, f^{-1}, 1\right), f \in E_{3}^{\times} / N_{E / E_{3}} E^{\times}$(as $\left.\rho\left(\sigma^{2}\right)=(14)(23)\right)$. If $a_{\sigma}=(a, b, \lambda / b, \lambda / a)$ then $a_{\sigma^{2}}=$ $a_{\sigma} \sigma^{*}\left(a_{\sigma}\right)=(a \sigma \lambda / \sigma b, b \sigma a, \lambda \sigma \lambda / b \sigma a, \lambda \sigma b / a)$. Hence $a=\sigma b / \sigma \lambda, \lambda \sigma \lambda=1 \Gamma$ and $b \sigma a=f$. Hence $\sigma \lambda=\sigma b / a, \lambda=b / \sigma^{3} a=f / \sigma(a) \sigma^{3}(a) \Gamma$ and $a_{\sigma}=\left(a, f / \sigma a, 1 / \sigma^{3} a, f / a \sigma(a) \sigma^{3}(a)\right)$. The relation $a_{\sigma^{2}}=a_{\sigma} \sigma^{*}\left(a_{\sigma}\right)$ amounts to $f \sigma(f)=a \sigma(a) \sigma^{2}(a) \sigma^{3}(a) \Gamma$ hence $f \in N_{E / E_{3}} E^{\times}$Гwe may assume $f=1 \Gamma$ and we are done as in the case where $\rho(\Gamma)$ contains an element of order four.

There is an easier way of computing the Galois cohomology groups aboveГusing the TateNakayama duality Γ which identifies $H^{1}\left(F, \mathbf{T}_{H}\right)$ with the Tate cohomology group
$\hat{H}^{-1}\left(F, X_{*}\left(\mathbf{T}_{H}\right)\right)$. The group $X_{*}\left(\mathbf{T}_{H}\right)$ of cocharacters is $\{(x, y, z-y, z-x) ; x, y, z \in \mathbb{Z}\}$ Гand \hat{H}^{-1} is the quotient of $\left\{X \in X_{*}\left(\mathbf{T}_{H}\right) ; N X=0\right\} \Gamma$ where N is the norm from a splitting field of F to $F \Gamma$ by the span of $X-\sigma X, X \in X_{*}\left(\mathbf{T}_{H}\right), \sigma \in \Gamma$. Thus for example in case (IV) $\Gamma N X=0$ means $z=0$ Гand $X-(3421) X=(x+y-z, y-x, x-y, z-x-y) \Gamma$ hence $\hat{H}^{-1}=\{0\} \Gamma$ while in case (I) again $N X=0$ means $z=0$ Гbut $X-(14)(23) X=(2 x-z, 2 y-z, z-2 y, z-2 x) \Gamma$ hence $\hat{H}^{-1}=\mathbb{Z} / 2$. But for our integral evaluations we need to choose representatives for $\mathbb{Z} / 2=F^{\times} / N E^{\times}$Гnot only to know their cardinality.

A standard integration formula from the group to a Levi subgroup containing the torus in question Γ reduces the study of orbital integrals of regular elements to that of the study in the case of elliptic elements「and their centralizers「the elliptic tori. These are the cases (I - IV).

C. Explicit representatives.

We proceed to describe a set of representatives for $t \in T_{H}$ and for their stably conjugate but not conjugate elements.

Example. Case of $S L(2)$. As a preliminary example Γ let us consider the case of an elliptic torus \mathbf{T} in $\mathbf{G}=S L(2) / F$ which splits over the quadratic extension $E=F(\sqrt{D})$ of F. If \mathbf{T}^{*} is the diagonal torus Γ then a representative of such \mathbf{T} is $\mathbf{T}=h_{D}^{-1} \mathbf{T}^{*} h_{D}, h_{D}=\left(\begin{array}{cc}1 & \sqrt{D} \\ 1 & -\sqrt{D}\end{array}\right)$. Note that $h_{D}^{\prime}=\operatorname{diag}\left(\left\|h_{D}\right\|^{-1}, 1\right) h_{D} \Gamma$ where $\left\|h_{D}\right\|=\operatorname{det} h_{D} \Gamma$ lies in $S L(2, E)$. If σ is the generator of $\operatorname{Gal}(E / F) \Gamma$ then $\sigma\left(h_{D}\right)=h_{D} \varepsilon=w h_{D}, \varepsilon=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. The elements of \mathbf{T} are $t=h_{D}^{-1} a h_{D}\left(a \in \mathbf{T}^{*}\right) \Gamma$ and we have $\sigma t=h_{D}^{-1} w \sigma(a) w h_{D}$ Гhence the action of σ on \mathbf{T} induces the action $\sigma^{*}(a)=\operatorname{Int}(w)(\sigma(a))$ on \mathbf{T}^{*}.

If $t, t_{1} \in G$ are stably conjugate then $t_{1}=g^{-1} t g=\sigma g^{-1} \cdot t \cdot \sigma g$ Chence $g_{\sigma}=g \sigma(g)^{-1}=$ $h_{D}^{-1} a_{\sigma} h_{D}$ lies in $\mathbf{T}\left(=Z_{\mathbf{G}}(t) ; \sigma t=t\right.$ and $\sigma t_{1}=t_{1}$ since $\left.t, t_{1} \in G\right)$. Now $1=g_{\sigma} \sigma\left(g_{\sigma}\right)=$ $\operatorname{Int}\left(h_{D}^{-1}\right)\left(a_{\sigma} w \sigma\left(a_{\sigma}\right) w\right)=a_{\sigma} \sigma\left(a_{\sigma}\right)^{-1} \Gamma$ thus $a_{\sigma}=\operatorname{diag}\left(R, R^{-1}\right)$ with $R=\sigma R \in F^{\times}$. Of course the cocycle g_{σ} or $a_{\sigma} \in \mathbf{T}^{*}$ Гcan be modified by $c \sigma^{*}(c)^{-1}=\left(\gamma, \gamma^{-1}\right)\left(\sigma \gamma, \sigma \gamma^{-1}\right)$ Гhence R ranges over $F^{\times} / N_{E / F} E^{\times}$. The relation $g \sigma(g)^{-1}=h_{D}^{-1} a_{\sigma} h_{D}=h_{D}^{-1} a_{\sigma} w \sigma\left(h_{D}\right)$ implies

$$
h_{D} g=a_{\sigma} w \sigma\left(h_{D} g\right)=\left(\begin{array}{cc}
x & y \\
z & t
\end{array}\right)=\left(\begin{array}{cc}
0 & R \\
R^{-1} & 0
\end{array}\right)\binom{\bar{x} \bar{y}}{\bar{z} \bar{t}}=\binom{R \bar{z}}{\bar{x} R^{-1} \bar{y} R^{-1}}=\left(\begin{array}{cc}
R \bar{z} R \bar{t} \\
z & t
\end{array}\right)
$$

where we wrote \bar{x} for σx. To have g of determinant 1 we note that $1=\|g\|=-R(\bar{z} t-z \bar{t}) / 2 \sqrt{D}$ has the solution $z=1$ and $t=-\sqrt{D} / R$. Then

$$
g=g_{R}=\frac{1}{2 \sqrt{D}}\left(\begin{array}{cc}
\sqrt{D} & \sqrt{D} \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
R & \sqrt{D} \\
1 & -\sqrt{D} / R
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
R+1 & (R-1) \sqrt{D} \\
\frac{R-1}{\sqrt{D}} & R+1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & R^{-1}
\end{array}\right) \in S L(2, E) .
$$

Moreover Γ

$$
t=\left(\begin{array}{cc}
a & b D \\
b & a
\end{array}\right), \quad t_{1}=g^{-1} t g=\left(\begin{array}{ll}
1 & 0 \\
0 & R
\end{array}\right)\left(\begin{array}{cc}
a & b D \\
b & a
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & R^{-1}
\end{array}\right)=\left(\begin{array}{cc}
a & b D / R \\
R b & a
\end{array}\right)
$$

make a complete set of representatives for the conjugacy classes within the stable conjugacy class of $t \in T \subset G$.

We shall next similarly describe representatives for the elliptic elements in $H=G S p(2, F) \Gamma$ and for elements stably conjugate but not conjugate to these representatives.
Notation. Write $\left[\left(\begin{array}{cc}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)\right]$ for $\left(\begin{array}{cccc}a & 0 & 0 & b \\ 0 & \alpha & \beta & 0 \\ 0 & \gamma & \delta & 0 \\ c & 0 & 0 & \delta\end{array}\right)$.
The tori \mathbf{T}_{H} of $\mathbf{H}=G S p(2)$ of type (I) split over a quadratic extension $E=F(\sqrt{D})$ of $F \Gamma$ whose Galois group is generated by σ.

1. Lemma. A torus \mathbf{T}_{H} of type (I) is given by

$$
\begin{aligned}
\mathbf{T}_{H} & =\widetilde{h}_{D}^{\prime}-1 \mathbf{T}_{H}^{*} \widetilde{h}_{D}^{\prime}
\end{aligned}=\left\{t=[\mathbf{a}, \mathbf{b}]=\widetilde{h}_{D}^{\prime}-1(a, b, \sigma b, \sigma a) \widetilde{h}_{D}^{\prime} ; ~\left(\begin{array}{cc}
a_{1} & a_{2} D \\
a_{2} & a_{1}
\end{array}\right), \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} D \\
b_{2} D
\end{array}\right),\|\mathbf{b}\|=\|\mathbf{b}\|\right\},
$$

where $a=a_{1}+a_{2} \sqrt{D}, b=b_{1}+b_{2} \sqrt{D}$, and $\widetilde{h}_{D}^{\prime}=\left[h_{D}^{\prime}, h_{D}^{\prime}\right]$. Moreover $t_{1}=\operatorname{Int}\left(\widetilde{g}^{-1}\right) t=$ $\operatorname{Int}\left(\left[I,\left(\begin{array}{ll}1 & 0 \\ 0 & R\end{array}\right)\right]\right) t, R \in F-N_{E / F} E$, is stably conjugate but not conjugate to t in H, where $\widetilde{g}=[I, g]$, and $g=g_{R}$ is as described in the example of $S L(2)$ above.
Proof. In the proof of Lemma B. 2Γ case (I) Γ we saw that if $t_{1}=\widetilde{g}^{-1} t \widetilde{g}$ and t are stably conjugate then $\widetilde{g}_{\sigma}=\widetilde{g} \sigma(\widetilde{g})^{-1}=\widetilde{h}_{D}^{-1} a_{\sigma} \widetilde{h}_{D} \Gamma$ with $\widetilde{h}_{D}=\left[h_{D}, h_{D}\right]$ and $a_{\sigma}=\left(1, R, R^{-1}, 1\right), R \in$ $F^{\times} / N_{E / F} E^{\times}$. Since $\sigma\left(\widetilde{h}_{D}\right) \widetilde{h}_{D}^{-1}=\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)$ wwe need to solve the equation $\widetilde{h}_{D} \widetilde{g}=a_{\sigma}\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right) \sigma\left(\widetilde{h}_{D} \widetilde{g}\right)$ in $\widetilde{g} \in \mathbf{H}(E)$. Using the $g \in S L(2, E)$ found in the discussion of $S L(2)$ above Γ clearly $\widetilde{g}=$ $\operatorname{diag}(1, g, 1)$ is a solution.

The \mathbf{H}-tori \mathbf{T}_{H} of type (II) and (III) split over a biquadratic extension $E=E_{1} E_{2} \Gamma E_{3}=$ $F(\sqrt{A})$ is the fixed field of σ in $E \Gamma E_{1}=F(\sqrt{D})$ is the fixed field of τ in E; $E_{2}=F(\sqrt{A D})$ is assumed to be ramified over F Гand A, D are normalized to be integral of minimal order such that E_{1}, E_{2}, E_{3} are the three quadratic extensions of F.
2. Lemma. A torus \mathbf{T}_{H} of type (III) is given by

$$
\begin{gathered}
\mathbf{T}_{H}=h^{-1} \mathbf{T}_{H}^{*} h=\left\{t=[\mathbf{a}, \mathbf{b}]=h^{-1}(a, b, \tau b, \sigma a) h ;\right. \\
\left.\mathbf{a}=\left(\begin{array}{cc}
a_{1} & a_{2} D \\
a_{2} & a_{1}
\end{array}\right), \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{2} A D \\
b_{1}
\end{array}\right),\|\mathbf{a}\|=\|\mathbf{b}\|\right\}, \\
a=a_{1}+a_{2} \sqrt{D}, b=b_{1}+b_{2} \sqrt{A D}, h=\left[h_{D}^{\prime}, h_{A D}^{\prime}\right] .
\end{gathered}
$$

Proof. By Lemma B.2Гcase IIIГthe stable conjugacy class of such t consists of a single conjugacy class.
3. Lemma. A torus \mathbf{T}_{H} of type (II) is given by $\mathbf{T}_{H}=h^{-1} \mathbf{T}_{H}^{*} h$, where $h=\left(\begin{array}{cc}h_{A} & 0 \\ 0 & \varepsilon h_{A} \varepsilon\end{array}\right)\left(\begin{array}{cc}I & \sqrt{D} \\ I & -\sqrt{D}\end{array}\right)$. It consists of $t=\left(\begin{array}{cc}\mathbf{a} & \mathbf{b} D \\ \mathbf{b} & \mathbf{a}\end{array}\right), \mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} A \\ a_{2} & a_{1}\end{array}\right), \mathbf{b}=\left(\begin{array}{cc}b_{1} & b_{2} A \\ b_{2} & b_{1}\end{array}\right)$, and $t=h^{-1}(t, \tau t, \sigma \tau t, \sigma t) h$, where as a scalar $t=a+b \sqrt{D}, \tau t=\tau a+\tau b \sqrt{D}, \sigma t=a-b \sqrt{D}$, and $t \sigma t \in F^{\times}$. Take $R \in E_{3}^{\times}$such that $\left(N_{E_{3} / F} R \notin N_{E_{1} / F} E_{1}^{\times}\right.$namely) $R \notin N_{E / E_{3}} E^{\times}$. If $R=R_{1}+R_{2} \sqrt{A}$, put $\mathbf{R}=\left(\begin{array}{cc}R_{1} R_{2} A \\ R_{2} & R_{1}\end{array}\right)$. Put $g=g_{R}=\frac{1}{2}\left(\begin{array}{c}\mathbf{R}+I \\ (\mathbf{R}-I) / \sqrt{D} \\ (\mathbf{R}-I) \sqrt{D} \\ \mathbf{R}+I\end{array}\right)\left(\begin{array}{cc}I & 0 \\ 0 \mathbf{R}^{-1}\end{array}\right)$. Then g lies in $S p(2, E)$, and $g^{-1} t g=\left(\begin{array}{c}\mathbf{a} \\ \mathbf{R} \mathbf{b} D \mathbf{R}^{-1} \\ \mathbf{a}\end{array}\right)$ is stably conjugate but not conjugate to t.

Proof. Since $\sigma(h) h^{-1}=\left(\begin{array}{cc}h_{A} & 0 \\ 0 & \varepsilon h_{A} \varepsilon\end{array}\right)\left(\begin{array}{c}0 \\ I \\ I\end{array}\right)\left(\begin{array}{cc}h_{A}^{-1} & 0 \\ 0 & \varepsilon h_{A}^{-1} \varepsilon\end{array}\right)=\left(\begin{array}{cc}0 & w \varepsilon \\ \varepsilon w & 0\end{array}\right) \Gamma$ we have $\rho(\sigma)=\sigma^{*}=(14)(23) \Gamma$ indeed $\sigma\left(h^{-1} t h\right)=h^{-1} h \sigma(h)^{-1} \sigma(t) \sigma(h) h^{-1} h$. SimilarlyГsince $\tau(h) h^{-1}=$ $\left(\begin{array}{cc}h_{A} \varepsilon h_{A}^{-1} & 0 \\ 0 & \varepsilon h_{A} \varepsilon h_{A}^{-1} \varepsilon\end{array}\right)=\left(\begin{array}{cc}w & 0 \\ 0 & -w\end{array}\right) \Gamma \tau$ acts on \mathbf{T}_{H}^{*} as (12)(34). Then $\mathbf{T}_{H}=h^{-1} \mathbf{T}_{H}^{*} h, \mathbf{T}_{H}^{*}=$ diagonal subgroup Γ is indeed of type (II)) and it consists of

$$
h^{-1}(t, \tau t, \sigma \tau t, \sigma t) h=h_{D}^{-1}\left(\begin{array}{cc}
h_{A}^{-1}(t, \tau t) h_{A} & 0 \\
0 & h_{A}^{-1}(\sigma t, \sigma \tau t) h_{A}
\end{array}\right) h_{D}=\left(\begin{array}{c}
\mathbf{a} \mathbf{b} D \\
\mathbf{b} \\
\mathbf{a}
\end{array}\right),
$$

where

$$
h_{A}^{-1}\left(\begin{array}{cc}
t & 0 \\
0 & \tau t
\end{array}\right) h_{A}=\frac{1}{2}\left(\begin{array}{cc}
t+\tau t & (t-\sigma t) \sqrt{A} \\
\frac{t-\tau t}{\sqrt{A}} & t+\tau t
\end{array}\right)=\left(\begin{array}{c}
a_{1}+b_{1} \sqrt{D} \\
a_{2}+b_{2} \sqrt{D}
\end{array} \begin{array}{c}
\left.a_{2}+b_{2} \sqrt{D}\right) A \\
a_{1}+b_{1} \sqrt{D}
\end{array}\right) .
$$

If $t_{1}=g^{-1} t g$ is stably conjugate to t then $g_{\sigma}=g \sigma\left(g^{-1}\right)=h^{-1} a_{\sigma} h$ defines a cocycle which was analyzed in Lemma B. 2Γ proof of case (II). Thus we can take $a_{\tau}=I \Gamma$ and so $g_{\tau}=I$ and $\tau(g)=g \Gamma \tau\left(g_{\sigma}\right)=g_{\sigma} \Gamma$ while $a_{\tau}=\tau^{*}\left(a_{\sigma}\right)=(R, \tau R, 1 / \tau R, 1 / R) \Gamma$ with R ranging over $R=\sigma R \in E_{3}^{\times} / N_{E / E_{3}} E^{\times}$(thus $N_{E_{3} / F} R$ does not lie in $N_{E_{1} / F} E_{1}^{\times}$unless $R \in N_{E / E_{3}} E^{\times}$). Since $h=\left(\begin{array}{cc}0 & w \varepsilon \\ w \varepsilon & 0\end{array}\right) \sigma h \Gamma$ we then need to solve the equation $g \sigma(g)^{-1}=h^{-1} a_{\sigma}\left(\begin{array}{cc}0 & w \varepsilon \\ \varepsilon w & 0\end{array}\right) \sigma(h) \Gamma$ or $h g=a_{\sigma}\left(\begin{array}{cc}0 & w \varepsilon \\ \varepsilon w & 0\end{array}\right) \sigma(h g)$. The g in the statement of the lemma is a solution:

$$
\begin{aligned}
& \frac{1}{2}\left(\begin{array}{cc}
h_{A} & 0 \\
0 & \varepsilon h_{A} \varepsilon
\end{array}\right) h_{D}\left(\begin{array}{c}
\mathbf{R}+I \\
(\mathbf{R}-I) / \sqrt{D}
\end{array} \begin{array}{c}
(\mathbf{R}-I) \sqrt{D} \\
\mathbf{R}+I
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
0 & \begin{array}{c}
(R, \tau R) w \varepsilon \\
\varepsilon\left(\tau R^{-1}, R^{-1}\right) w \\
0
\end{array}
\end{array}\right)\left(\begin{array}{cc}
h_{A} & 0 \\
0 & \varepsilon h_{A} \varepsilon
\end{array}\right) h_{D}\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \frac{1}{2}\left(\begin{array}{c}
\mathbf{R}+I \\
-(\mathbf{R}-I) / \sqrt{D}
\end{array} \begin{array}{c}
-(\mathbf{R}+I) \sqrt{D} \\
\mathbf{R}+I
\end{array}\right)
\end{aligned}
$$

since

$$
h_{A}^{-1}\left(\begin{array}{cc}
R & 0 \\
0 & \tau R
\end{array}\right) w h_{A}=\mathbf{R} \varepsilon, \text { and }\left(\begin{array}{cc}
\mathbf{R} R \sqrt{D} \\
I & -\sqrt{D}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & \varepsilon
\end{array}\right)\left(\begin{array}{cc}
0 & \mathbf{R} \boldsymbol{\varepsilon} \\
\tau \mathbf{R}^{-1} \boldsymbol{\varepsilon} & 0
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & \varepsilon
\end{array}\right)\left(\begin{array}{cc}
\mathbf{R} & \mathbf{R} \sqrt{D} \\
I & -\sqrt{D}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

(and $\boldsymbol{\varepsilon} \mathbf{R}^{-1}=\tau \mathbf{R}^{-1} \cdot \boldsymbol{\varepsilon}$). Finally note that t lies in $G S p(2, F)$ when

$$
t \theta\left(t^{-1}\right)=\left(\begin{array}{cc}
\mathbf{a} & \mathbf{b} D \\
\mathbf{b} & \mathbf{a}
\end{array}\right)\left(\begin{array}{cc}
0 & w \\
-w & 0
\end{array}\right)\left(\begin{array}{cc}
t_{\mathbf{a}} & t_{\mathbf{b}} \\
D^{t} \mathbf{b} & { }^{t} \mathbf{a}
\end{array}\right)\left(\begin{array}{cc}
0 & -w \\
w & 0
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{a}^{2}-\mathbf{b}^{2} D(\mathbf{b a - a b}) D \\
\mathbf{b a}-\mathbf{a b} & \mathbf{a}^{2}-\mathbf{b}^{2} D
\end{array}\right)
$$

is a scalar in $F^{\times}\left(\right.$note that $\left.w^{t} \mathbf{a} w=\mathbf{a}\right) \Gamma$ thus $t \sigma(t) \in F^{\times}$.
A torus \mathbf{T}_{H} of type (IV) is associated with a quadratic extension $F(\sqrt{D})=E_{3}(\sqrt{D})$ of $E_{3}=F(\sqrt{A}) \Gamma$ where $D=\alpha+\beta \sqrt{A} \in E_{3}$ and $A \in F-F^{2}$. The extension $E_{3}(\sqrt{D}) / F$ is cyclic or non Galois Γ and the group of field homomorphisms $E_{3}(\sqrt{D}) \rightarrow \bar{F}$ over F is generated by $\sigma \Gamma$ which maps $\sigma \sqrt{A}=-\sqrt{A} \Gamma$ and $\sigma \sqrt{D}=\sqrt{\sigma D}, \sigma^{2} \sqrt{D}=-\sqrt{D}, \sigma^{3} \sqrt{D}=-\sqrt{\sigma D}$. Then E_{3} is the fixed field of σ^{2} in $E_{3}(\sqrt{D})$.
4. Lemma. A torus \mathbf{T}_{H} of type (IV) is given by $\mathbf{T}_{H}=h^{-1} \mathbf{T}_{H}^{*} h, h=(-4 \sqrt{A D}, 4 \sqrt{A \sigma D}, w)^{-1}$ $\widetilde{h}_{D}\left(\begin{array}{cc}h_{A} & 0 \\ 0 & h_{A}\end{array}\right), \widetilde{h}_{D}=(23)\left(\left(\begin{array}{cc}h_{D} & 0 \\ 0 & \sigma h_{D}\end{array}\right)\right)$. It consists of $\left(\begin{array}{cc}\mathbf{a} & \mathbf{b D} \\ \mathbf{b} & \mathbf{a}\end{array}\right)=h^{-1}\left(t, \sigma t, \sigma^{3} t, \sigma^{2} t\right) h, t \in F(\sqrt{D})$ with $t \sigma^{2} t=\sigma t \sigma^{3} t$. Here, if $t=a+b \sqrt{D}, a=a_{1}+a_{2} \sqrt{A}$, then $\mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} A \\ a_{2} & a_{1}\end{array}\right)\left(\right.$ and $\mathbf{b}=\left(\begin{array}{ll}b_{1} & b_{2} A \\ b_{2} & b_{1}\end{array}\right)$ if $b=b_{1}+b_{2} \sqrt{A}$, and $\sigma t=\sigma a+\sigma b \sqrt{\sigma D}, \sigma^{2} t=a-b \sqrt{D}, \sigma^{3} t=\sigma a-\sigma b \sqrt{\sigma D}$.

Proof. Note that $\sigma\left(h_{A}\right)=w h_{A}$ Thence $\sigma\left(h_{A}\right) h_{A}^{-1}=w$. Then $\sigma(h) h^{-1}$ is equal to

$$
\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 \sqrt{A D} \\
-4 \sqrt{A D} & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

If $t=h^{-1} t^{*} h \Gamma$ then $\sigma(t)=h^{-1} \cdot h \sigma(h)^{-1} \cdot \sigma\left(t^{*}\right) \cdot \sigma(h) h^{-1} \cdot h$, and so the induced action on the diagonal subgroup \mathbf{T}_{H}^{*} is $\sigma^{*}(a, b, c, d)=(\sigma c, \sigma a, \sigma d, \sigma b) \Gamma$ thus $\sigma=(3421) \Gamma$ and $\mathbf{T}_{H}^{*}(F)=$ $\left\{\left(t, \sigma t, \sigma^{3} t, \sigma^{2} t\right)\right\}$. Stable conjugacy reduces to conjugacy in case (IV).

D. Stable θ-conjugacy.

Similarly F we describe the (F-rational) θ-conjugacy classes within the stable $(\bar{F}$-) θ-conjugacy class of a strongly θ-regular element t in G. Fix a θ-invariant F-torus \mathbf{T}^{*}; in fact we take \mathbf{T}^{*} to be the diagonal subgroup. The stable θ-conjugacy class of t in G intersects \mathbf{T}^{*} ([KSГLemma 3.2.A]). Hence there is $h \in \mathbf{G}$ and $t^{*} \in \mathbf{T}^{*} \Gamma$ such that $t=h^{-1} t^{*} \theta(h)$. The centralizers are related by $Z_{\mathbf{G}}(t \theta)=h^{-1} Z_{\mathbf{G}}\left(t^{*} \theta\right) h$. Further $Z_{\mathbf{G}}\left(t^{*} \theta\right)=\mathbf{T}^{* \theta} \Gamma$ the centralizer of $Z_{\mathbf{G}}(t \theta)$ in \mathbf{G} is an F-torus \mathbf{T} which is $\theta_{t}=\operatorname{Int}(t) \circ \theta$ invariant Γ and $Z_{\mathbf{G}}(t \theta)=\mathbf{T}^{\theta_{t}}$. The θ-conjugacy classes within the stable θ-conjugacy class of t can be classified as follows.
(1) Suppose that $t_{1}=g^{-1} t \theta(g)$ and t are stably θ-conjugate in G. Then $g_{\sigma}=g \sigma(g)^{-1} \in$ $Z_{G}(t \theta)=T^{\theta_{t}}$. The set $D(F, \theta, t)=\operatorname{ker}\left[H^{1}\left(F, \mathbf{T}^{\theta_{t}}\right) \rightarrow H^{1}(F, \mathbf{G})\right]$ parametrizes Γ via $\left(t_{1}, t\right) \mapsto$ $\left\{\sigma \mapsto g_{\sigma}\right\} \Gamma$ the θ-conjugacy classes within the stable θ-conjugacy class of t. The Galois action on $\mathbf{T}, \sigma(t)=\sigma\left(h^{-1} t^{*} \theta(h)\right)=h^{-1} \cdot h \sigma(h)^{-1} \cdot \sigma\left(t^{*}\right) \cdot \theta\left(\sigma(h) h^{-1}\right) \theta(h)$ induces a Galois action σ^{*} on $\mathbf{T}^{*} \Gamma$ given by $\sigma^{*}\left(t^{*}\right)=h \sigma(h)^{-1} \sigma\left(t^{*}\right) \theta\left(\sigma(h) h^{-1}\right) \Gamma$ and $H^{1}\left(F, \mathbf{T}^{\theta_{t}}\right)=H^{1}\left(F, \mathbf{T}^{* \theta}\right)$.
(2) The norm map $N: \mathbf{T}^{*} \rightarrow \mathbf{T}_{H}^{*}$ factorizes via the projection $\mathbf{T}^{*} \rightarrow \mathbf{T}^{*} / \mathbf{V}, \mathbf{V}=(1-\theta) \mathbf{T}^{*} \Gamma$ and the isomorphism $\mathbf{U}=\mathbf{T}_{\theta}^{*}=\mathbf{T}^{*} / \mathbf{V} \xrightarrow[\rightarrow]{\sim} \mathbf{T}_{H}^{*}$. Suppose that the norm $N t^{*}$ of $t^{*} \in \mathbf{T}^{*}$ is defined over F. Then for each $\sigma \in \Gamma$ there is $\ell \in \mathbf{T}^{*}$ such that $\sigma^{*}\left(t^{*}\right)=\ell t^{*} \theta(\ell)^{-1}$. Then

$$
h^{-1} t^{*} \theta(h)=t=\sigma(t)=\sigma h^{-1} \cdot \sigma t^{*} \cdot \theta(\sigma h)=\sigma(h)^{-1} \ell t^{*} \theta\left(\ell^{-1} \sigma(h)\right),
$$

hence

$$
t^{*}=h_{\sigma} \ell \cdot t^{*} \cdot \theta\left(h_{\sigma} \ell\right)^{-1}, \quad h_{\sigma}=h \sigma(h)^{-1}
$$

and $h_{\sigma} \ell \in Z_{\mathbf{G}}\left(t^{*} \theta\right)=\mathbf{T}^{* \theta} \Gamma$ so that $h_{\sigma} \in \mathbf{T}^{*}$. Moreover $\Gamma(1-\theta)\left(h_{\sigma}\right)=t^{*} \sigma\left(t^{*}\right)^{-1}$. Hence $\left(h_{\sigma}, t^{*}\right)$ lies in $H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{T}^{*}\right) \Gamma$ in a subset isomorphic to $H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right)$; this invariant parametrizes the (strongly θ-regular) θ-conjugacy classes which have the same norm. See [KSL Appendix $A]$ Гor Section G below Γ for a definition and properties of these hypercohomology groups; the lines preceding [KSГLemma 6.3.A] Cfor the definition of obs (δ); [KSГ6.2] F for the definition of $\operatorname{inv}^{\prime}\left(\delta, \delta^{\prime}\right)$; and [KSГpage prior to Theorem 5.1D] Γ for the definition of $\operatorname{inv}\left(\delta, \delta^{\prime}\right)$: if $t_{1}=g^{-1} t \theta(g)$ as in (1) above Γ then $\mathbf{T}_{t}=Z_{\mathbf{G}}\left(Z_{\mathbf{G}}(t \theta)^{0}\right)$ is a maximal torus in \mathbf{G}. Denote its inverse image under the natural homomorphism $\pi: \mathbf{G}_{s c} \rightarrow \mathbf{G}$ by $\mathbf{T}_{t}^{s c}\left(\mathbf{G}_{s c}\right.$ is the simply connected covering F-group of the derived group of $\mathbf{G}) \Gamma$ and write $g=\pi\left(g_{1}\right) z \Gamma g_{1}$ in $\mathbf{G}_{s c} \Gamma z$ in $Z(\mathbf{G})$. Then $\sigma\left(g_{1}\right) g_{1}^{-1}$ lies in $\mathbf{T}_{t}^{s c} \Gamma\left(1-\theta_{t}\right) \pi\left(\sigma\left(g_{1}\right) g_{1}^{-1}\right)=\sigma(b) b^{-1} \Gamma$ where $b=\theta(z) z^{-1}=$ $\left(1-\theta_{t}\right)\left(z^{-1}\right) \in \mathbf{V}_{t}=\left(1-\theta_{t}\right)\left(\mathbf{T}_{t}\right)$. Hence $\left(\sigma \mapsto \sigma\left(g_{1}\right) g_{1}^{-1}, b\right)$ defines the element $\operatorname{inv}\left(t, t_{1}\right)$ of $H^{1}\left(F, \mathbf{T}_{t}^{s c} \xrightarrow{\left(1-\theta_{t}\right) \circ \pi} \mathbf{V}_{t}\right)$. It parametrizes the θ-conjugacy classes under $G_{s c}$ within the stable θ conjugacy class of t. The image in $H^{1}\left(F, \mathbf{T}_{t} \xrightarrow{1-\theta_{t}} \mathbf{V}_{t}\right)$ Гunder the map $\left[\mathbf{T}_{t}^{s c} \rightarrow \mathbf{V}_{t}\right] \rightarrow\left[\mathbf{T}_{t} \rightarrow \mathbf{V}_{t}\right]$ (induced by $\left.\pi: \mathbf{T}_{t}^{s c} \rightarrow \mathbf{T}_{t}\right) \Gamma$ is denoted $\operatorname{inv}^{\prime}\left(t, t_{1}\right)$. It parametrizes the θ-conjugacy classes within the stable θ-conjugacy class of t Гas noted in (1) above.

Note that there is an exact sequence

$$
H^{0}\left(F, \mathbf{T}^{*}\right)=\mathbf{T}^{* \Gamma}=T^{*} \xrightarrow{1-\theta} H^{0}(F, \mathbf{V})=V \rightarrow H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right) \rightarrow H^{1}\left(F, \mathbf{T}^{*}\right) \xrightarrow{1-\theta} H^{1}(F, \mathbf{V}) .
$$

Moreover Γ the exact sequence $1 \rightarrow \mathbf{T}^{* \theta} \rightarrow \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V} \rightarrow 1$ induces the exact sequence

$$
H^{0}\left(F, \mathbf{T}^{*}\right) \xrightarrow{1-\theta} H^{0}(F, \mathbf{V}) \rightarrow H^{1}\left(F, \mathbf{T}^{* \theta}\right) \rightarrow H^{1}\left(F, \mathbf{T}^{*}\right) \xrightarrow{1-\theta} H^{1}(F, \mathbf{V})
$$

Hence $\Gamma H^{1}\left(F, \mathbf{T}^{* \theta}\right)=H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right)$ and $D(F, \theta, t)$ is $\operatorname{ker}\left[H^{1}\left(F, \mathbf{T}^{* \theta}\right) \rightarrow H^{1}(F, \mathbf{G})\right] \simeq$ $\operatorname{ker}\left[H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right) \rightarrow H^{1}(F, \mathbf{G})\right]$.

In our case the group $H^{1}(F, \mathbf{G})$ is trivial $(\mathbf{G}=G L(4) \times G L(1)) \Gamma$ and so is $H^{1}\left(F, \mathbf{T}^{*}\right)$. Hence $D(F, \theta, t)=H^{1}\left(F, \mathbf{T}^{* \theta}\right)=H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right)=V /(1-\theta) T^{*}$. The θ-invariant F-tori \mathbf{T} determine homomorphisms $\rho: \Gamma \rightarrow W\left(\mathbf{T}^{* \theta}, \mathbf{G}^{\theta}\right)=W\left(\mathbf{T}^{*}, \mathbf{G}\right)^{\theta}$. We proceed to describe a set of representatives for the F-tori \mathbf{T} in $\mathbf{G} \Gamma$ and the groups $H^{1}\left(F, \mathbf{T}^{*} \rightarrow \mathbf{V}\right)=H^{1}\left(F, \mathbf{T}^{* \theta}\right)$ which parametrize the θ-conjugacy classes within the stable θ-conjugacy classes of strongly θ-regular elements in $G \Gamma$ which are represented by elements of T. Since $W\left(\mathbf{T}^{*}, \mathbf{G}\right)^{\theta}=W\left(\mathbf{T}_{H}^{*}, \mathbf{H}\right) \Gamma$ our list of θ-invariant tori \mathbf{T} is obtained from the list of tori $\mathbf{T}_{H} \Gamma$ where \mathbf{T} is the centralizer of \mathbf{T}_{H}.

A useful fact would be that we can choose $h \in \mathbf{G}$ such that $\theta(h)=h$. Then the stable θ-conjugacy classes of strongly θ-regular elements are represented by $t=h^{-1} t^{*} \theta(h)=$ $h^{-1} t^{*} h, t^{*} \in \mathbf{T}^{*} \Gamma$ and we also exhibit a complete list of representatives for the θ-conjugacy classes within the stable θ-conjugacy class of such a strongly θ-regular element t.

The following is a list of the θ-invariant F-tori in \mathbf{G} up to F-isomorphism; they are parametrized by the homomorphisms $\rho: \Gamma \rightarrow W=W\left(\mathbf{T}^{* \theta}, \mathbf{G}^{\theta}\right)=W\left(\mathbf{T}^{*}, \mathbf{G}\right)^{\theta}$. Note that $\mathbf{G}^{\theta}=S p(2)$. Further we compute $H^{1}\left(F, \mathbf{T}^{* \theta}\right)=H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right) \Gamma$ we give an explicit realization of $\mathbf{T}=h^{-1} \mathbf{T}^{*} h$ (and $\left.h=\theta(h)\right) \Gamma$ and for $t \in T \Gamma$ strongly θ-regular Γ a set of representatives
in G for the θ-conjugacy classes in the stable θ-conjugacy class of t. Note that the only significant difference from the non twisted case is that we work with $\mathbf{G}^{\theta}=S p(2)$ instead of with $\mathbf{H}=\operatorname{GSp}(2)$.

Let us clarify that $t \in G$ is strongly θ-regular means that $t=h^{-1} t^{*} \theta(h), h \in \mathbf{G} \Gamma$ where t^{*} is such that $Z_{\mathbf{G}}\left(t^{*} \theta\right)$ is $\mathbf{T}^{* \theta}$. Then $Z_{\mathbf{G}}(t \theta)=h^{-1} Z_{\mathbf{G}}\left(t^{*} \theta\right) h$ is the torus $\mathbf{T}^{\operatorname{Int}(t) \circ \theta} \Gamma$ where \mathbf{T} is $Z_{\mathbf{G}}\left(Z_{\mathbf{G}}(t \theta)\right) \Gamma$ an $\operatorname{Int}(t) \circ \theta$-invariant maximal torus in \mathbf{G}. If $u=h^{-1} u^{*} h \in T \Gamma$ where $u^{*} \in T_{\text {reg }}^{* \theta} \Gamma$ then $h_{\sigma} \sigma\left(u^{*}\right) h_{\sigma}^{-1}=u^{*}=\theta\left(u^{*}\right)=\theta\left(h_{\sigma}\right) \sigma\left(u^{*}\right) \theta\left(h_{\sigma}\right)^{-1}$ implies that $h_{\sigma}=h \sigma\left(h^{-1}\right)$ is a θ-invariant element in the Weyl group $W\left(\mathbf{T}^{*}, \mathbf{G}\right)$ of \mathbf{T}^{*} Thence it can be represented by an element of $W=W\left(\mathbf{T}^{* \theta}, \mathbf{G}^{* \theta}\right) \Gamma$ and the tori \mathbf{T} in \mathbf{G} so obtained define $\rho: \Gamma \rightarrow W$. Hence we consider the centralizers of the tori in $\mathbf{G}^{* \theta}$.

As in the case of $\mathbf{H}=G S p(2) \Gamma$ we denote by \tilde{E} a minimal splitting field for the torus \mathbf{T} in G. The torus \mathbf{T} is associated with a homomorphism $\rho: \Gamma=\operatorname{Gal}(\tilde{E} / F) \rightarrow W$. Usually \tilde{E} is E. Recall: $\mathbf{V}=\{(\alpha, \beta, \beta, \alpha ; 1 / \alpha \beta)\}$.
(1) When $\rho(\Gamma)=\langle(12)(34)\rangle,[E: F]=2, T^{*}=\mathbf{T}^{*}(F)$ consists of $\left\{(a, \sigma a, b, \sigma b ; e) ; a, b \in E^{\times}, e \in\right.$ $\left.F^{\times}\right\} \Gamma$ where σ generates $\operatorname{Gal}(E / F)$. Then $V=\mathbf{V}(F)$ consists of $\{(\alpha, \sigma \alpha, \sigma \alpha, \alpha ; 1 / \alpha \sigma \alpha) ; \alpha \in$ $\left.E^{\times}\right\} \Gamma$ and $(1-\theta) T^{*}=\left\{(a \sigma b, b \sigma a, b \sigma a, a \sigma b ; 1 / a \sigma a b \sigma b) ; a, b \in E^{\times}\right\}$. Hence $H^{1}\left(T^{*} \rightarrow V\right)=$ $V /(1-\theta) T^{*}$ is $\{1\}$. Further $\Gamma T^{* \theta}=\left\{(a, \sigma a, 1 / \sigma a, 1 / a ; e) ; a \in E^{\times}, e \in F^{\times}\right\}$. Hence $H^{1}\left(T^{* \theta}\right)=$ $\hat{H}^{-1}\left(T^{* \theta}\right)$ is
$\{X=(x, y,-y,-x ; z) ; X+\sigma X=0$, i.e. $: x+y=0=z\} /\langle X-\sigma X=(x-y, y-x, \ldots ; 0)\rangle=\{0\}$.
Similarly Γ if $\rho(\Gamma)=\langle(13)(24)\rangle \Gamma$ then $T^{*}=\left\{(a, b, \sigma a, \sigma b ; e) ; a, b \in E^{\times}, e \in F^{\times}\right\}, V=$ $\{(a, b, \sigma a=b, \sigma b=a ; 1 / a \sigma a)\} \Gamma$ and $(1-\theta) T^{*}=\{(a \sigma b, b \sigma a, b \sigma a, a \sigma b ; 1 / a b \sigma a \sigma b)\} \Gamma$ so that $H^{1}\left(T^{*} \rightarrow V\right)=\{1\}$. Further $\Gamma T^{* \theta}=\{(a, 1 / \sigma a, \sigma a, 1 / a ; e)\}$ and $H^{1}\left(T^{* \theta}\right)=\hat{H}^{-1}\left(T^{* \theta}\right)$ consists of

$$
\{X=(x, y,-y,-x ; z) ; x-y=0=z\} /\langle(x, y,-y,-x ; z)-(-y,-x, x, y ; z)\rangle=\{0\}
$$

(2) $\rho(\Gamma)=\langle(23)\rangle,[E: F]=2, T^{*}=\left\{(a, b, \sigma b, d ; e) ; b \in E^{\times}, a, d, e \in F^{\times}\right\}, V=\{(a, b, b, a$; $1 / a b)\},(1-\theta) T^{*}=\{(a d, b \sigma b, b \sigma b, a d ; 1 / a d b \sigma b)\} \Gamma$ so that $H^{1}\left(T^{*} \rightarrow V\right)=F^{\times} / N_{E / F} E^{\times}$. Further $\Gamma T^{* \theta}$ is $\left\{(a, b, \sigma b=1 / b, 1 / a ; e) ; b \in E^{\times}, a, e \in F^{\times}\right\} \Gamma$ and $H^{1}\left(T^{* \theta}\right)$ is the quotient of $\left\{x=(a, b, 1 / b, 1 / a ; e) ; x \sigma x=1\right.$, i.e. $\left.\Gamma a \sigma a=1, e \sigma e=1, \sigma b=b ; a, b, e \in E^{\times}\right\}$by $\left\{x \sigma(x)^{-1}\right\} \Gamma$ thus it is $F^{\times} / N E^{\times}$Гby Hilbert Theorem 90.
(3) The analogous result holds when $\rho(\Gamma)=\langle(14)\rangle: H^{1}\left(T^{* \theta}\right)=\{x=(a, 1,1,1 / a ; 1) ; a \in$ $\left.F^{\times} / N E^{\times}\right\}$。

The tori T of (1), (2), (3) are not θ-anisotropic Γ namely T^{θ} contains the split torus $\{(z, z, 1 / z, 1 / z ; 1)\}($ and $\{(z, 1 / z, z, 1 / z ; 1)\}) \Gamma\{(z, 1,1,1 / z ; 1)\}$ and $\{(1, z, 1 / z, 1 ; 1)\} \Gamma$ and $Z\left(G^{\theta}\right)=\left\{(\pm I, t) ; t \in F^{\times}\right\} \Gamma$ as the center of $\operatorname{Sp}(2, F)$ is $\{ \pm I\}$.

In case (2) the torus \mathbf{T} can be presented as $\mathbf{T}=h^{-1} \mathbf{T}^{*} h, h=\left[I, h_{D}^{\prime}\right] \Gamma$ if $E=F(\sqrt{D}), D \in$ $F-F^{2} \Gamma$ and $h_{D}^{\prime}=\left(\begin{array}{cc}\left\|h_{D}\right\|^{-1} & 0 \\ 0 & 1\end{array}\right) h_{D}, h_{D}=\left(\begin{array}{cc}1 & \sqrt{D} \\ 1 & -\sqrt{D}\end{array}\right)$. Then $h=\theta(h) \Gamma$ and $\operatorname{Int}\left(h \sigma(h)^{-1}\right)=(23), T$ consists of $t=\left(\left[\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right), \mathbf{b}\right], e\right), \mathbf{b}=\left(\begin{array}{cc}b_{1} & b_{2} D \\ b_{2} & b_{1}\end{array}\right)$ if $b=b_{1}+b_{2} \sqrt{D} \Gamma$ and a stably θ-conjugate but not θ-conjugate element to t is given by

$$
g^{-1} t g, g=\left[I, g_{R}\right], g_{R}=\frac{1}{2}\left(\begin{array}{c}
R+1 \\
(R-1) / \sqrt{D}
\end{array} \begin{array}{c}
(R-1) \sqrt{D} \\
R+1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & R^{-1}
\end{array}\right),
$$

thus \mathbf{b} of t is replaced by $\left(\begin{array}{cc}b_{1} & b_{2} D / R \\ b_{2} R & b_{1}\end{array}\right)$.
In case (3) $\Gamma g=\left[g_{R}, I\right] \Gamma$ where $R \in F-N_{E / F} E \Gamma$ and $T=\left\{\left(\left[\mathbf{b},\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right)\right], e\right) ; a d \cdot b \sigma b=1\right\}$.
The θ-elliptic tori are the following.
(I) $\rho(\Gamma)=\langle(14)(23)\rangle,[E: F]=2, T^{*}=\left\{(a, b, \sigma b, \sigma a ; e) ; a, b \in E^{\times}, e \in F^{\times}\right\},(1-\theta) T^{*}=$ $\{(a \sigma a, b \sigma b, b \sigma b, a \sigma a ; 1 / a \sigma a b \sigma b)\} \Gamma$ and $V=\{(a, b, \sigma b=b, \sigma a=a ; 1 / a b)\}$. Hence $H^{1}\left(T^{*} \rightarrow\right.$ $V)=F^{\times} / N F^{\times} \times F^{\times} / N F^{\times}$. Further $\Gamma T^{* \theta}=\left\{(a, b, \sigma b=1 / b, \sigma a=1 / a ; e) ; a, b \in E^{\times}, e \in F^{\times}\right\} \Gamma$ and $H^{1}\left(T^{* \theta}\right)$ is the quotient of $\{x=(a, b, 1 / b, 1 / a ; e) ; x \sigma x=1 \Gamma$ thus $e \sigma e=1 \Gamma$ and $a=\sigma a, b=$ $\sigma b \Gamma$ in $\left.F^{\times}\right\}$by $\left\{x \sigma(x)^{-1}=(a \sigma a, b \sigma b, \ldots ; e / \sigma e)\right\} \Gamma$ thus it is $\left(F^{\times} / N E^{\times}\right)^{2}$.

In case (I) $\Gamma \mathbf{T}=h^{-1} \mathbf{T}^{*} h \Gamma$ where $h=\left[h_{D}^{\prime}, h_{D}^{\prime}\right] \Gamma$ consists of $([\mathbf{a}, \mathbf{b}], e), \mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} D \\ a_{2} & a_{1}\end{array}\right)$ if $a=$ $a_{1}+a_{2} \sqrt{D}$ in $E^{\times} \Gamma$ and $a \sigma a \cdot b \sigma b=1 \Gamma$ and representatives for the θ-conjugacy classes within the stable θ-conjugacy class of t are given by $t_{1}=g^{-1} t g, g=\left[g_{R}, g_{S}\right] \Gamma$ where R, S range over $F^{\times} / N_{E / F} E^{\times}$. Then t_{1} is obtained from t on replacing \mathbf{a} by $\left(\begin{array}{cc}a_{1} & a_{2} D R \\ a_{2} / R & a_{1}\end{array}\right)$ and \mathbf{b} by $\left(\begin{array}{c}b_{1} \\ b_{2} / S \\ b_{2} D S \\ b_{1}\end{array}\right)$. (II) $\rho(\Gamma)=\langle\rho(\sigma \tau)=(14), \rho(\tau)=(23)\rangle \Gamma$ the splitting field of T is $E=E_{1} E_{2} \Gamma$ where $E_{1}=F(\sqrt{D}), E_{2}=F(\sqrt{A D}), E_{3}=F(\sqrt{A})$ are the different quadratic extensions of F. The extension E_{2} / F is assumed to be ramified Γ and $\operatorname{Gal}(E / F)$ is generated by $\sigma, \tau, \sigma \tau$ whose fixed fields are $E_{1}=E^{\langle\tau\rangle} \Gamma E_{2}=E^{\langle\sigma \tau\rangle} \Gamma E_{3}=E^{\langle\sigma\rangle}$. Then $T^{*}=\{(a, b, \tau b, \sigma a ; e) ; a \in$ $\left.E_{1}^{\times}, b \in E_{2}^{\times}, e \in F^{\times}\right\}, V=\left\{(a, b, \tau b=b, \sigma a=a ; 1 / a b) ; a, b \in F^{\times}\right\} \Gamma$ and $(1-\theta) T^{*}=$ $\{(a \sigma a, b \tau b, b \tau b, a \sigma a ; 1 / a \sigma a b \tau b)\}$. Hence $H^{1}\left(\mathbf{T}^{*} \rightarrow \mathbf{V}\right)=F^{\times} / N_{E_{1} / F} E_{1}^{\times} \times F^{\times} / N_{E_{2} / F} E_{2}^{\times}$. Further $\Gamma T^{* \theta}=\left\{(a, b, \tau b=1 / b, \sigma a=1 / a ; e) ; a \in E_{1}^{\times}, b \in E_{2}^{\times}, e \in F^{\times}\right\} \Gamma$ and additively $\Gamma H^{1}\left(\mathbf{T}^{* \theta}\right)$ is the quotient of $\{(x, y,-y,-x ; 0)\}$ by $\langle X-\sigma X=(2 x, 0,0,-2 x ; 0), X-\tau X=(0,2 y,-2 y, 0 ; 0)\rangle \Gamma$ namely it is $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.

Let us compute $H^{1}\left(T^{* \theta}\right)$ explicitly. Consider a cocycle $\left\{a_{\sigma}\right\}$. If $a_{\sigma \tau}=(a, b, 1 / b, 1 / a ; e)$ and $a_{\tau}=(c, d, 1 / d, 1 / c ; f) \Gamma$ then $a_{\sigma} \sigma^{*}\left(a_{\sigma}\right)=1$ implies $b \sigma \tau b=1, e \sigma \tau e=1, c \tau c=1 \Gamma$ hence $b=\beta / \sigma \tau \beta, e=\varepsilon / \sigma \tau \varepsilon, c=\gamma / \tau \gamma \Gamma$ and $g=\left(\gamma, \beta, \beta^{-1}, \gamma^{-1} ; \varepsilon\right)$ has the property that the cocycle $\left\{a_{\sigma} g^{-1} \sigma(g)\right\} \Gamma$ renamed $\left\{a_{\sigma}\right\} \Gamma$ has $a_{\sigma \tau}=\left(a, 1,1, a^{-1} ; 1\right)$ and $a_{\tau}=\left(1, b, b^{-1}, 1 ; e\right) \Gamma$ where $a=$ $\sigma \tau a, b=\tau b, e \tau e=1$. The relation $a_{\sigma \tau} \sigma \tau^{*}\left(a_{\tau}\right)=a_{\tau} \tau^{*}\left(a_{\sigma \tau}\right)$ implies $a=\tau a, b=\sigma \tau b, e=$ $\sigma \tau e$. Hence $e=\varepsilon / \tau \varepsilon, \varepsilon=\sigma \tau \varepsilon \in E_{2}^{\times} \Gamma$ and $a, b \in F^{\times}$. If $g=\left(\alpha, \beta, \beta^{-1}, \alpha^{-1} ; \varepsilon\right) \Gamma$ with $\alpha \in E_{1}^{\times} \Gamma \beta \in E_{2}^{\times} \Gamma$ then $g \sigma \tau g^{-1}=(\alpha \sigma \alpha, 1,1,1 / \alpha \sigma \alpha ; 1)$ and $g \tau g^{-1}=(1, \beta \tau \beta, 1 / \beta \tau \beta, 1 ; e)$. Hence the class of the cocycle $\left\{a_{\sigma}\right\}$ is determined by $a \in F^{\times} / N_{E_{1} / F} E_{1}^{\times}, b \in F^{\times} / N_{E_{2} / F} E_{2}^{\times} \Gamma$ and $H^{1}\left(\mathbf{T}^{* \theta}\right)=F^{\times} / N_{E_{1} / F} E_{1}^{\times} \times F^{\times} / N_{E_{2} / F} E_{2}^{\times}$.

The torus \mathbf{T} is $\mathbf{T}=h^{-1} \mathbf{T}^{*} h, h=\left[h_{D}^{\prime}, h_{A D}^{\prime}\right]$ if $E_{1}=F(\sqrt{D}), E_{2}=F(\sqrt{A D}) \Gamma$ and T consists of $t=h^{-1} t^{*} h=([\mathbf{a}, \mathbf{b}], e), \mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} D \\ a_{2} & a_{1}\end{array}\right), \mathbf{b}=\left(\begin{array}{cc}b_{1} & b_{2} A D \\ b_{2} & b_{1}\end{array}\right) \Gamma$ if $a=a_{1}+a_{2} \sqrt{D}, b=b_{1}+b_{2} \sqrt{A D}$. Here $t^{*}=(a, b, \tau b, \sigma a ; e), a \in E_{1}^{\times}, b \in E_{2}^{\times}, e \in F^{\times}$. A complete set of representatives for the θ-conjugacy classes within the stable θ-conjugacy class of t is given by $g^{-1} t g \Gamma$ where $g=\left[g_{R}, g_{S}\right], R \in F^{\times} / N_{E_{1} / F} E_{1}^{\times}, S \in F^{\times} / N_{E_{2} / F} E_{2}^{\times}$. Note that $g=\theta(g)$ Гand that $g^{-1} t g$ is obtained from t on replacing a by $\left(\begin{array}{cc}a_{1} & a_{2} D R \\ a_{2} / R & a_{1}\end{array}\right)$ and \mathbf{b} by $\left(\begin{array}{cc}b_{1} & b_{2} A D S \\ b_{2} / S & b_{1}\end{array}\right)$. (III) $\rho(\Gamma)=\langle\rho(\tau)=(12)(34), \rho(\sigma)=(14)(23)\rangle \Gamma$ the splitting field of T is $E=E_{1} E_{2} \Gamma$ where E_{1}, E_{2}, E_{3} are the three quadratic extensions of $F \Gamma \mathrm{Gal}(E / F)$ is generated by σ and τ Гof order two Γ with $E_{3}=E^{\langle\sigma\rangle}=F(\sqrt{A}) \Gamma E_{1}=E^{\langle\tau\rangle}=F(\sqrt{D})$. Then $T^{*}=\{(a, \tau a, \tau \sigma a, \sigma a ; e) ; a \in$ $\left.E^{\times}, e \in F^{\times}\right\}, V=\left\{(a, \tau a, \tau \sigma a=\tau a, \sigma a=a ; 1 / a \tau a) ; a \in E_{3}^{\times}\right\}$and $(1-\theta) T^{*}=\{(a \sigma a, \tau a \tau \sigma a, \ldots ;$
$\left.1 / a \tau a \sigma a \sigma \tau a) ; a \in E^{\times}\right\}$. Then $H^{1}\left(\mathbf{T}^{*} \rightarrow \mathbf{V}\right)=E_{3}^{\times} / N_{E / E_{3}} E^{\times}=F^{\times} / N_{E_{1} / F} E_{1}^{\times}$(see Remark in Section B). Further $\Gamma T^{* \theta}$ is $\left\{(a, \tau a, \tau \sigma a=1 / \tau a, \tau a=1 / a ; e) ; a \in E^{\times}\right\} \Gamma$ and additively $\Gamma H^{1}\left(\mathbf{T}^{* \theta}\right)$ is the quotient of $\{(x, y,-y,-x ; 0)\}$ by $\langle(x-y, y-x, \ldots),(2 x, 2 y, \ldots)\rangle=\langle(x, y, \ldots) ; x \equiv$ $y \bmod 2\rangle$ Гnamely it is $\mathbb{Z} / 2$.

To compute $H^{1}\left(\mathbf{T}^{* \theta}\right)$ directly $\operatorname{let}\left\{a_{\sigma}\right\}$ be a cocycle. Then $a_{\sigma}=\left(a_{1}, a_{2}, a_{2}^{-1}, a_{1}^{-1} ; e\right), a_{\tau}=$ $\left(b_{1}, b_{2}, b_{2}^{-1}, b_{1}^{-1} ; f\right)$. The relation $1=a_{\tau} \tau^{*}\left(a_{\tau}\right)$ implies that $b_{1} \tau b_{2}=1 \Gamma$ and $f \tau f=1 \Gamma$ thus $f=\varepsilon / \tau \varepsilon \Gamma$ and $a_{\tau}=b^{-1} \tau^{*}(b) \Gamma$ where $b=\left(b_{1}^{-1}, 1, \alpha, b_{1} ; \varepsilon^{-1}\right)$. We replace a_{σ} by $a_{\sigma} b \sigma^{*}\left(b^{-1}\right) \Gamma$ to get $a_{\tau}=I$. Then $a_{\sigma}=\tau^{*}\left(a_{\sigma}\right) \Gamma$ so $a_{\sigma}=\left(a_{1}, \tau a_{1}, \tau a_{1}^{-1}, a_{1}^{-1} ; e\right) \Gamma e=\tau e$. The relation $I=a_{\sigma} \sigma^{*}\left(a_{\sigma}\right)$ Гimplies that $a_{1}=\sigma a_{1} \in E_{3}^{\times}$and e $\sigma e=1$. Replacing a_{σ} by $a_{\sigma} c \sigma^{*}\left(c^{-1}\right)$ with $c=\tau^{*}(c)=\left(\alpha, \tau \alpha, \tau \alpha^{-1}, \alpha^{-1} ; \varepsilon\right), \varepsilon \in E_{1}^{\times}$with $e=\varepsilon / \sigma \varepsilon \Gamma$ we see that the class of $\left\{a_{\sigma}\right\}$ is determined by $a_{1} \in E_{3}^{\times} / N_{E / E_{3}} E^{\times}$.

The torus $\mathbf{T}=h^{-1} \mathbf{T}^{*} h$ is defined by $h=\left(\begin{array}{cc}\gamma & 0 \\ 0 & 1\end{array}\right) h^{\prime} \Gamma$ where $\gamma=1 / 4 \sqrt{A D}$ and

$$
h^{\prime}=\left(\begin{array}{cc}
h_{A} & 0 \\
0 & \varepsilon h_{A} \varepsilon
\end{array}\right)\left(\begin{array}{cc}
I & \sqrt{D} \\
I & -\sqrt{D}
\end{array}\right)
$$

is the h used in the Lemma C. 3 which deals with the torus \mathbf{T}_{H} of type (II). Again $\sigma^{*}=$ Int $\left(\sigma(h) h^{-1}\right)=(14)(23)$ and $\tau^{*}=\operatorname{Int}\left(\tau(h) h^{-1}\right)=(12)(34)$. The advantage of our h over h^{\prime} is that $\theta(h)=h$. Then $T=h^{-1} T^{*} h$ consists of $t=h^{-1}(t, \tau t, \sigma \tau t, \sigma t ; e) h=\left(\binom{\mathbf{a} \mathbf{b} D}{\mathbf{b} \mathbf{a}}, e\right) \Gamma$ in the notations of that Lemma. To find an element $t_{1}=g^{-1} t \theta(g)$ which is stably θ-conjugate but
 $h^{\prime} g=a_{\sigma}\left(\begin{array}{cc}0 & w \varepsilon \\ \varepsilon w & 0\end{array}\right) \sigma\left(h^{\prime} g\right)$ एwhere $a_{\sigma}=\left(R, \tau R, \tau R^{-1}, R^{-1}\right)$. Here $R \in E_{3}^{\times} / N_{E / E_{3}} E^{\times}$. A solution is given by the g_{R} of Lemma C.3Гas verified there. Note that $\theta\left(g_{R}\right)=g_{R} \Gamma$ and that t_{1} is given $\operatorname{by}\left(\begin{array}{cc}\mathbf{a} & \mathbf{b} D \mathbf{R}^{-1} \\ \mathbf{R b} & \mathbf{a}\end{array}\right)($ and that $\mathbf{b R}=\mathbf{R b})$.
(IV) $\rho(\Gamma)$ contains $\rho(\sigma)=(3421) \Gamma$ and T is isomorphic to the multiplicative group E^{\times}of an extension $E=F(\sqrt{D})=E_{3}(\sqrt{D})$ of F of degree 4Γ where $E_{3}=F(\sqrt{A})$ is a quadratic extension of $F\left(A \in F-F^{2}, D=\alpha+\beta \sqrt{A} \in E_{3}\right)$. The Galois closure \widetilde{E} / F of $F(\sqrt{D}) / F$ is $E=F(\sqrt{D})$ when $F(\sqrt{D}) / F$ is cyclic Γ and $\widetilde{E}=F(\sqrt{D}, \zeta)$ when $F(\sqrt{D}) / F$ is not Galois; here $\zeta^{2}=-1 \Gamma$ and $\operatorname{Gal}(\widetilde{E} / F)$ is the dihedral group D_{4}. We have $\sigma \sqrt{D}=\sqrt{\sigma D}, \sigma^{2} \sqrt{D}=$ $-\sqrt{D}, \sigma^{3} \sqrt{D}=-\sqrt{\sigma D}, \sigma \sqrt{A}=-\sqrt{A}$.

In the D_{4}-case Γ the group $\operatorname{Gal}(\widetilde{E} / F)$ contains also the element τ of order two with $\tau \zeta=$ $-\zeta, \tau \sqrt{A}=\sqrt{A}$. In this case we take $D=\sqrt{A} \Gamma$ and so $\sigma \tau \sigma=\tau$. Further Γ if $\sigma \tau \sigma=\tau \Gamma$ then $x=\sigma \tau, \tau \sigma$ and $\sigma^{2} \tau$ solve the equation $\sigma x \sigma=x$ too and they are all of order 2. Renaming τ we may assume that $\rho(\tau)=(23)$ (the other possibilities are (43)(21), (42)(13), (14)). In all cases E_{3} is the fixed field of σ^{2} in $E=E_{3}(\sqrt{D}) \Gamma$ and $T^{*}=\left\{\left(a, \sigma a, \sigma^{3} a, \sigma^{2} a ; e\right) ; a \in\right.$ $\left.E^{\times}, e \in F^{\times}\right\}$. Further $V=\left\{\left(a, \sigma a, \sigma^{3} a=\sigma a, \sigma^{2} a=a ; 1 / a \sigma a\right) ; a \in E_{3}^{\times}\right\} \Gamma$ and $(1-\theta) T^{*}=$ $\left\{\left(a \sigma^{2} a, \sigma a \sigma^{3} a, \sigma a \sigma^{3} a, a \sigma^{2} a ; 1 / a \sigma a \sigma^{2} a \sigma^{3} a\right)\right\}$. Hence $H^{1}\left(\mathbf{T}^{*} \rightarrow \mathbf{V}\right)=E_{3}^{\times} / N_{E / E_{3}} E^{\times}$.

Further $T^{* \theta}=\left\{\left(a, \sigma a, \sigma^{3} a=1 / \sigma a, \sigma^{2} a=1 / a ; e\right) ; a \in E^{\times}, e \in F^{\times}\right\} \Gamma$ and additively $H^{1}\left(\mathbf{T}^{* \theta}\right)$ is the quotient of $\{(x, y,-y,-x ; 0)\}$ by $\langle(x-y, y-x, \ldots),(0,2 y,-2 y, 0 ; 0)\rangle \Gamma$ namely $\mathbb{Z} / 2$. Explicitly a cocycle in $H^{1}\left(\mathbf{T}^{* \theta}\right)$ is $a_{\sigma}=\left(e, f, f^{-1}, e^{-1}\right)$ with $1=a_{\sigma^{4}}=a_{\sigma} \sigma^{*}\left(a_{\tau}\right) \sigma^{* 2}\left(a_{\sigma}\right)$ $\sigma^{* 3}\left(a_{\sigma}\right)$ Гnamely $e / \sigma^{2} e=\sigma f / \sigma^{3} f \Gamma$ thus $e \sigma^{3} f \in E_{3}^{\times}$. If $b_{\sigma}=\left(c, d, d^{-1}, c^{-1}\right)$ then $b_{\sigma} \sigma^{*}\left(b_{\sigma}^{-1}\right)=$ ($c \sigma d, d / \sigma c, \sigma c / d, 1 / c \sigma d$). We can first assume that $f=1 \Gamma$ then the choice of $d=\sigma c$ shows that the class of a_{σ} depends on $e \Gamma$ which we now denote by $R \Gamma$ in $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$.

The torus \mathbf{T} takes the form $h^{-1} \mathbf{T}^{*} h \Gamma$ where - as in the Lemma C. 4 which dealt with tori \mathbf{T}_{H} of type (IV) $-h$ is $\operatorname{diag}(-1 / 4 \sqrt{A D}, 1 / 4 \sqrt{A \sigma D}, w) \widetilde{h}_{D} \operatorname{diag}\left(h_{A}, h_{A}\right) \Gamma$ where $\widetilde{h}_{D}=$ $\operatorname{Int}((1, w, 1))\left(h_{D}, \sigma h_{D}\right)$. Then $\sigma(h) \cdot h^{-1}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 / 4 \sqrt{A D} \\ -1 / 4 \sqrt{A D} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \Gamma$ and $\theta(h)=h$. To find $t_{1}=g^{-1} t \theta(g)$ which is stable θ-conjugate but not θ-conjugate to t Tas usual we need to solve: $h g=a_{\sigma} h \sigma(h)^{-1} \sigma(h g)$. A solution is given by

$$
g=g_{R}=\frac{1}{2}\left(\begin{array}{cc}
\mathbf{R}+I \\
(\mathbf{R}-I)\left(\sqrt{\mathbf{D}}^{-1}\right)
\end{array} \begin{array}{c}
(\mathbf{R}-I) \sqrt{\mathbf{D}} \\
\mathbf{R}+I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 \mathbf{R}^{-1}
\end{array}\right),
$$

where $\mathbf{R}=h_{A}^{-1}\left(\begin{array}{cc}R & 0 \\ 0 & \sigma R\end{array}\right) h_{A}=\left(\begin{array}{cc}R_{1} & R_{2} A \\ R_{2} & R_{1}\end{array}\right)$ if $R=R_{1}+R_{2} \sqrt{A}$ in $E_{3}^{\times} \Gamma$ and $\sqrt{\mathbf{D}}=h_{A}^{-1}\left(\begin{array}{cc}\sqrt{D} & 0 \\ 0 & \sqrt{\sigma D}\end{array}\right) h_{A}$ has inverse $\left(\sqrt{D}^{\mathbf{- 1}}\right)$. Further $\Gamma t_{1}=g^{-1} t \theta(g)=\left(\begin{array}{ll}I & 0 \\ 0 & \mathbf{R}\end{array}\right)\left(\begin{array}{ll}\mathbf{a} & \mathbf{b D} \\ \mathbf{b} & \mathbf{a}\end{array}\right)\left(\begin{array}{ll}I & 0 \\ 0 & \mathbf{R}^{-1}\end{array}\right)=\left(\begin{array}{cc}\mathbf{a} & \mathbf{b D R} \\ \mathbf{R b} & \mathbf{a}\end{array}\right) \Gamma$ and $\theta\left(g_{R}\right)=g_{R}$. When solving our equation it is convenient to rewrite it as:

$$
\begin{aligned}
& \widetilde{g}=\left(\begin{array}{cc}
h_{A} & 0 \\
0 & h_{A}
\end{array}\right) g\left(\begin{array}{cc}
h_{A} & 0 \\
0 & h_{A}
\end{array}\right)^{-1} \\
& =\widetilde{h}_{D}^{-1}\left(\begin{array}{ccc}
-4 \sqrt{A D} & & 0 \\
0 & 4 \sqrt{A \sigma D} & \\
0 & & w
\end{array}\right)\left(\begin{array}{ccc}
-R / 4 \sqrt{A D} & & 0 \\
& & I \\
0 & & 4 \sqrt{A D} / R
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 / 4 \sqrt{A \sigma D} & & 0 \\
0 & 1 / 4 \sqrt{A D} & \\
0 & & w
\end{array}\right) \sigma\left(\widetilde{h}_{D}\right) \sigma(\widetilde{g})\left(\begin{array}{cc}
w & 0 \\
0 & w
\end{array}\right) \\
& =\left[\widetilde{h}_{D}^{-1}\left(\begin{array}{cc}
R & 0 \\
& 1 \\
& \\
0 & 1
\end{array}\right) \widetilde{h}_{D}\right]\left(\begin{array}{cc}
w & 0 \\
0 & w
\end{array}\right) \sigma(\widetilde{g})\left(\begin{array}{cc}
w & 0 \\
0 & w
\end{array}\right),
\end{aligned}
$$

and further as $((23)$ stands for $(1, w, 1))$:

$$
\begin{aligned}
(23) \tilde{g}(23) & =\left(\begin{array}{cc}
\frac{1}{2}\left(R+R^{-1}\right) \\
\frac{1}{2}\left(R-R^{-1}\right) / \sqrt{D} & \frac{1}{2}\left(R-R^{-1}\right) \sqrt{D} \\
\frac{1}{2}\left(R+R^{-1}\right) & 0 \\
0 & 0 \\
\hline
\end{array}\right)\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right) \sigma((23) \tilde{g}(23))\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)=\left(\begin{array}{cc}
E & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\sigma T & \sigma Z \\
\sigma Y & \sigma X
\end{array}\right)=\left(\begin{array}{cc}
X & Y \\
\sigma Y & \sigma X
\end{array}\right) .
\end{aligned}
$$

Then $X=E \sigma^{2} X$. As $E=t^{-1} \frac{1}{2}\left(\begin{array}{ll}R+R^{-1} & R-R^{-1} \\ R-R^{-1} & R+R^{-1}\end{array}\right) t=t^{-1} \rho^{-1}\left(\begin{array}{cc}R & 0 \\ 0 & R^{-1}\end{array}\right) \rho t, \rho=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right), t=\left(\begin{array}{cc}1 & 0 \\ 0 & \sqrt{D}\end{array}\right) \Gamma$ we need to solve

$$
\begin{aligned}
\rho t X & =\left(\begin{array}{cc}
R & 0 \\
0 & R^{-1}
\end{array}\right) \rho t \sigma^{2} X=\left(\begin{array}{cc}
R & 0 \\
0 & R^{-1}
\end{array}\right)(-w) \sigma^{2}(\rho t X)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & -R \\
-R^{-1} 0
\end{array}\right)\left(\begin{array}{ll}
\sigma^{2} a & \sigma^{2} b \\
\sigma^{2} c & \sigma^{2} \\
d
\end{array}\right)=\left(\begin{array}{cc}
-R \sigma^{2} c & -R \sigma^{2} d \\
-\sigma^{2} a / R & -\sigma^{2} b / R
\end{array}\right) .
\end{aligned}
$$

Choosing $a=e$ and $b=\sqrt{D} \Gamma$ we get $X=\frac{1}{2}\left(\begin{array}{c}R+1 \\ (R-1) / \sqrt{D}\end{array} \begin{array}{c}\left(1-R^{-1}\right) \sqrt{D} \\ 1+R^{-1}\end{array}\right)$. Note that $g \theta\left(g^{-1}\right)=$ $\operatorname{diag}(\|X\|,\|\sigma X\|)$. We choose X to have determinant 1 Гso that $\theta(g)=g$ lies in $S p(2, E)$. Also we take $Y=0$. Then $g=\left(\begin{array}{cc}h_{A} & 0 \\ 0 & h_{A}\end{array}\right)^{-1}(23)\left(\begin{array}{cc}X & 0 \\ 0 & \sigma X\end{array}\right)(23)\left(\begin{array}{cc}h_{A} & 0 \\ 0 & h_{A}\end{array}\right)$ is as asserted.

E. Useful facts.

We collect here the following observations Γ used below.
Remark. For $A \in F-F^{2} \Gamma$ we introduce the subgroup \mathbf{C}_{A} of $\binom{\mathbf{a} \mathbf{b}}{\mathbf{c} \mathbf{d}} \in \mathbf{H}=G S p(2) \Gamma$ where $\mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} \\ a_{2} A & a_{1}\end{array}\right) \Gamma \mathbf{b}=\ldots$. We shall use below the observation that the tori T_{H} of type (II) and (IV) embed in C_{A}. Moreover ΓC_{A} is naturally isomorphic to $G L(2, F(\sqrt{A}))^{\prime} \Gamma$ the group of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, F(\sqrt{A}))$ with $a d-b c \in F^{\times}$. The isomorphism is given by $\mathbf{a} \mapsto a=a_{1}+a_{2} \sqrt{A}$. Also let \mathbf{C}_{0} be the group of $\left[\left(\begin{array}{cc}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)\right]=\left(\begin{array}{cccc}a & 0 & 0 & b \\ 0 & \alpha & \beta & 0 \\ 0 & \gamma & \delta & 0 \\ c & 0 & 0 & d\end{array}\right) \in \mathbf{H}$. The group C_{0} is isomorphic to $G L(2, F \oplus F)^{\prime}=\left\{\left(g, g^{\prime}\right)=\left(\left(\begin{array}{cc}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)\right)\right.$; $\left.\operatorname{det} g=\operatorname{det} g^{\prime}\right\}$. The tori T_{H} of type (I) and (III) (and (2) $\Gamma(3)$) naturally embed in C_{0}.

Remark. The norm map $N: T^{*} \rightarrow T_{H}^{*}$ is defined by $X=(x, y, z, t ; w) \mapsto(x y w, x z w, t y w$, $\left.t z w ; x y z t w^{2}\right)=N X$. If $\sigma=(23) \Gamma$ then σX has the norm $\left(x z w, x y w, z t w, t y w ; x y z t w^{2}\right)=$ $\tau N X \Gamma$ where $\tau=(12)(34)$. If $\sigma=(14)$ then $\tau=(13)(24) \Gamma$ if $\sigma=(12)(34)$ then $\tau=(23) \Gamma$ if $\sigma=(13)(24)$ then $\tau=(14) \Gamma$ if $\sigma=(14)(23)$ then $\tau=(14)(23)$ Гif $\sigma=(3421)$ then $\tau=(2431)$. Our numbering of the tori \mathbf{T}_{H} and \mathbf{T} is such that the norm preserves the type Γ thus the norm of \mathbf{T}^{*} of type (II) is \mathbf{T}_{H}^{*} of type (II) Гand not of type (III) although the centralizer in $\mathbf{G}=G L(4) \times G L(1)$ of a torus of type (III) in $\mathbf{H}=G S p(2)$ is a torus of type (II).

For tori of type (IV) it will be useful to note the following. Assume the residual characteristic is odd.

Lemma. If E is an extension of F of degree 4 which is not a compositum of two quadratic extensions, then $E=F(\sqrt{D}), D=\alpha+\beta \sqrt{A}, \alpha, \beta \in F, A \in F-F^{2}, D \in E_{3}-E_{3}^{2}, E_{3}=F(\sqrt{A})$, and we have the following possibilities. If $A=\pi$ then $D=\sqrt{\pi}$. If $-1 \in R^{\times 2}$ and $A \in R^{\times}$, then $D=\sqrt{A}$ or $\pi \sqrt{A}$. If $A=-1 \in R^{\times}-R^{\times 2}$, then $\alpha, \beta \in R^{\times}$or $\alpha, \beta \in \pi R^{\times}$. The extension $F(\sqrt{D}) / F$ is Galois, cyclic with Galois group $\mathbb{Z} / 4$, unless it is completely ramified $(A=\boldsymbol{\pi})$ and $-1 \notin R^{\times 2}$.

Proof. Denote by ζ a fourth root of 1. An extension E_{3} of degree two of F is given by $E_{3}=F(\sqrt{A})$ for some $A \in F-F^{2}$. An extension of degree two of E_{3} is given by $E_{3}(\sqrt{D})$ with $D \in E_{3}-E_{3}^{2}$. Denote by π a generator of the maximal ideal in the (local) ring of integers R of $F \Gamma$ and by ε a non square unit $\left(\varepsilon \in R^{\times}-R^{\times 2}\right)$. There are three quadratic extensions of F : two are ramified Γ namely $F(\sqrt{\pi}) / F, F(\sqrt{\varepsilon \pi}) / F \Gamma$ and one is unramified: $F(\sqrt{\varepsilon}) / F$. The extensions of degree four of F are as follows.
(i) Suppose that $A=\boldsymbol{\pi}$ and $E_{3}=F(\sqrt{\pi})=F\left(\sqrt{\varepsilon^{2} \pi}\right)$ is ramified over F. A quadratic ramified extension of E_{3} is defined by $D=\sqrt{\pi}$ or $\varepsilon \sqrt{\pi}$; indeed $R^{\times} /(1+\pi R) \simeq R_{3}^{\times} /\left(1+\pi_{3} R_{3}\right) \Gamma$ where R_{3} is the ring of integers in $E_{3} \Gamma$ and π_{3} is a uniformizer. In particular - 1 is a square in R^{\times} if and only if it is a square in $F(\sqrt{D})$. The field homomorphisms of $F(\sqrt{D})$ into a Galois closure Γ which fix F Гare generated by σ which maps \sqrt{A} to $-\sqrt{A} \Gamma$ and \sqrt{D} to $\zeta \sqrt{D}$. Then $F(\sqrt{D}) / F$ is Galois Γ cyclic with Galois group $\mathbb{Z} / 4 \Gamma$ when $\zeta \in R^{\times} \Gamma$ and it is non Galois when $\zeta \notin R^{\times}$. In this case $F(\zeta, \sqrt{D}) / F$ is Galois with group $D_{4} \Gamma$ generated by $\sigma(\sigma(\sqrt{D})=\zeta \sqrt{D})$ and an endomorphism τ which fixes \sqrt{D} and maps ζ to $-\zeta$.
(ii) If $A=\pi \Gamma$ thus $E_{3}=F(\sqrt{\pi})$ is ramified Γ but $E_{3}(\sqrt{D}) / E_{3}$ is unramified Γ we can take D to be a non square unit in $E_{3}^{\times} \Gamma$ namely a non square unit ε in R^{\times}. Hence $F(\sqrt{\pi}, \sqrt{\varepsilon})$ is the compositum of two quadratic extensions of F Гand its Galois group is $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.
(iii) Suppose that $A=\varepsilon \Gamma$ so that $E_{3}=F(\sqrt{A})$ is unramified over F. The ramified quadratic extensions of E_{3} are $E_{3}(\sqrt{\pi})$ (in which case $\left.\operatorname{Gal}\left(E_{3}(\sqrt{\pi}) / F\right)=\mathbb{Z} / 2 \times \mathbb{Z} / 2\right)$ and $E_{3}\left(\sqrt{\pi \varepsilon_{3}}\right) \Gamma$ where $\varepsilon_{3} \in R_{3}^{\times}-R_{3}^{\times 2}$. Indeed $\Gamma \pi$ generates the maximal ideal in the ring R_{3} of integers of the unramified extension E_{3} of F. The extension $E_{3}\left(\sqrt{\varepsilon_{3} \pi}\right)$ of F is cyclic with Galois group $\mathbb{Z} / 4 \Gamma$ generated by σ Гdescribed as follows.

If $\zeta \in R^{\times}$then $\varepsilon_{3}=\sqrt{\varepsilon} \Gamma$ and $\sigma\left(\sqrt{\varepsilon_{3} \pi}\right)=\zeta \sqrt{\varepsilon_{3} \pi}$. Then $\sigma\left(\boldsymbol{\pi} \varepsilon_{3}\right)=-\boldsymbol{\pi} \varepsilon_{3} \Gamma \sigma^{2}\left(\sqrt{\pi \varepsilon_{3}}\right)=-\sqrt{\boldsymbol{\pi} \varepsilon_{3}}$. Note that $\sqrt{\varepsilon}$ is not a square in E_{3}^{\times}. Indeed Γ if $\sqrt{\varepsilon}=(a+b \sqrt{\varepsilon})^{2}=a^{2}+b^{2} \varepsilon+2 a b \sqrt{\varepsilon}$ with $a, b \in F \Gamma$ then $b=1 / 2 a \Gamma$ and $-a^{2}=b^{2} \varepsilon=\varepsilon / 4 a^{2} \Gamma$ so that $\sqrt{\varepsilon}=2 \zeta a^{2}$ would lie in F^{\times}.

If $\zeta \notin R^{\times}$take $\varepsilon=-1 \Gamma$ then $\zeta \in R_{3}^{\times}$and $\sigma \zeta=-\zeta$ but $\zeta \in R_{3}^{\times 2}$. Indeed Γ since $-1 \notin R^{\times 2} \Gamma$ either 2 or -2 lies in $R^{\times 2} \Gamma$ and $\zeta=((1 \pm \zeta) / \sqrt{ \pm 2})^{2}$. Take $\varepsilon_{3}=a+b \zeta \in R_{3}-R_{3}^{2} \Gamma$ and put $\bar{\varepsilon}_{3}=a-b \zeta$. Then $\sigma \sqrt{\pi \varepsilon_{3}}=\sqrt{\pi \bar{\varepsilon}_{3}}, \sigma \sqrt{\boldsymbol{\pi} \bar{\varepsilon}_{3}}=-\sqrt{\boldsymbol{\pi} \varepsilon_{3}}, \sigma^{2} \sqrt{\boldsymbol{\pi} \varepsilon_{3}}=-\sqrt{\boldsymbol{\pi} \varepsilon_{3}}, \sigma^{3} \sqrt{\boldsymbol{\pi} \varepsilon_{3}}=-\sqrt{\boldsymbol{\pi} \bar{\varepsilon}_{3}}$. Note that $\varepsilon_{3} / \bar{\varepsilon}_{3}$ lies in $R_{3}^{\times 2}$.
(iv) If $A=\varepsilon$ and $E_{3}=F(\sqrt{A})$ is unramified over F Гand $D=\varepsilon_{3} \in R_{3}-R_{3}^{2}$ so that $E_{3}(\sqrt{D}) / E_{3}$ is unramified Γ then $E_{3}(\sqrt{D}) / F$ is Galois with cyclic group $\mathbb{Z} / 4$. It is the unique unramified extension of F of degree 4. If $-1 \in R^{\times 2} \Gamma \varepsilon \in R^{\times}-R^{\times 2}$ and $\varepsilon_{3}=\sqrt{\varepsilon}$ is then in $R_{3}-R_{3}^{\times} \Gamma$ and $\sigma \sqrt{\varepsilon_{3}}=\zeta \sqrt{\varepsilon_{3}}$ generates the Galois group. If $-1 \notin R^{\times 2}$ take $\varepsilon=-1 \Gamma$ and $\varepsilon_{3} \in R_{3}^{\times}-R_{3}^{\times 2}$. Then the Galois group is generated by $\sigma \sqrt{\varepsilon_{3}}=\sqrt{\bar{\varepsilon}_{3}}$ and $\sigma \sqrt{\bar{\varepsilon}_{3}}=-\sqrt{\varepsilon_{3}} \Gamma$ where $\bar{\varepsilon}_{3}=a-b \zeta$ if $\varepsilon_{3}=a+b \zeta ; a, b \in R$.

Remark. Twisted endoscopic groups are defined in [KSГ2.1]. Let us recall this definition.
Let us begin with a review of L-groups. Let G be a connected reductive group over a local field F of characteristic 0 . Write Γ for $\operatorname{Gal}(\bar{F} / F)$ and W_{F} for the absolute Weil group of F. Denote by \hat{G} the Langlands dual group of G. By definition there is an identification $\eta_{G}: \Psi^{\vee}(G) \xrightarrow{\sim} \Psi(\hat{G}) \Gamma$ where $\Psi^{\vee}(G)$ (resp. $\Psi(\hat{G})$) is the dual based root datum of G (resp. based root datum of $\hat{G})$.

An action $\rho: \Gamma \rightarrow \operatorname{Aut}(\hat{G})$ of Γ on \hat{G} is called an L-action if it preserves some splitting $\operatorname{spl}_{\hat{G}}=\left(\hat{B}, \hat{T},\left\{X_{\alpha^{\vee}}\right\}_{\alpha}\right)$ of \hat{G}. If this is the case then we call $\operatorname{spl}_{\hat{G}}$ a Γ-splitting for ρ and form the L-group by $\hat{G} \rtimes_{\rho} W_{F}$ एwhere W_{F} acts through Γ via ρ. If the composition $\Gamma \xrightarrow{\rho} \operatorname{Aut}(\hat{G}) \rightarrow$ $\operatorname{Out}(\hat{G})$ coincides (under the identification η_{G}) with the Γ-action on $\Psi^{\vee}(G) \Gamma$ then this L-group is that of G. This ρ is usually denoted by ρ_{G}. A triple $\left(\operatorname{spl}_{\hat{G}}, \rho_{G}, \eta_{G}\right)$ of this type is called an L-group data for G (sometimes $\left(\hat{G}, \rho_{G}, \eta_{G}\right)$ is refered to as L-group data Γ but the inclusion of a Γ-splitting in the data is convenient).

A tuple (H, \mathcal{H}, s, ξ) is said in $[K S \Gamma 2.1]$ to be an endoscopic data for G and $\theta(\in \operatorname{Aut} G)$ if [KSГ2.1.i] $(1 \leq i \leq 4)$ hold. Here [KSГ2.1.1] is: H is a quasisplit F-group. Fix L-group data $\left(\operatorname{spl}_{\hat{H}}, \rho_{H}, \eta_{H}\right)$ for H. The second ingredient \mathcal{H} is a split extension $1 \rightarrow \hat{H} \rightarrow \mathcal{H} \rightarrow W_{F} \rightarrow 1$. Hence we can choose a section $c: W_{F} \hookrightarrow \mathcal{H}$ of this extension. Consider \hat{H} as a closed subgroup of \mathcal{H}. Then we have a W_{F}-action ρ_{c} on \hat{H} : define $\rho_{c}(w)$ to be $\left.\operatorname{Int}(c(w))\right|_{\hat{H}}$. Of course this is not necessarily an L-action (i.e. it might not preserve any splitting of \hat{H}). But we have a
unique family $\left\{h_{w} \in \hat{H}_{a d} ; w \in W_{F}\right\}$ such that $\rho_{c}(w)\left(\operatorname{spl}_{\hat{H}}\right)=\operatorname{Int}\left(h_{w}\right)\left(\operatorname{spl}_{\hat{H}}\right)$ for all $w \in W_{F}$. This gives the L-action $\rho_{\mathcal{H}}: W_{F} \ni w \mapsto \operatorname{Int}\left(h_{w}^{-1}\right) \circ \rho_{c}(w) \in \operatorname{Aut}(\hat{H})$, which does not depend on the choice of $c: W_{F} \hookrightarrow \mathcal{H}$. Then [KSГ2.1.2] is: $\rho_{\mathcal{H}}$ coincides with ρ_{H}.

Let us clarify (I wish to thank Takuya Kon-no for this explanation) that \mathcal{H} need not be isomorphic to ${ }^{L} H$ under this requirement. Note that for $w, w^{\prime} \in W_{F}$ we have

$$
\begin{aligned}
& \operatorname{Int}\left(h_{w w^{\prime}}\right) \circ \rho_{H}\left(w w^{\prime}\right)=\rho_{c}\left(w w^{\prime}\right)=\rho_{c}(w) \circ \rho_{c}\left(w^{\prime}\right) \\
& =\operatorname{Int}\left(h_{w}\right) \circ \rho_{H}(w) \circ \operatorname{Int}\left(h_{w^{\prime}}\right) \circ \rho_{H}\left(w^{-1}\right) \rho_{H}(w) \rho_{H}\left(w^{\prime}\right)=\operatorname{Int}\left(h_{w} \rho_{H}(w)\left(h_{w^{\prime}}\right)\right) \circ \rho_{H}\left(w w^{\prime}\right)
\end{aligned}
$$

That is $\Gamma\left\{h_{w} ; w \in W_{F}\right\}$ is a $\hat{H}_{a d^{-}}$-valued 1-cocycle. It defines a class in $H^{1}\left(F, \hat{H}_{a d}\right)$. This class is trivial if and only if there exists some $h \in \hat{H}_{a d}$ such that $h_{w}=h^{-1} w(h)$ for all $w \in W_{F}$. Equivalently $\Gamma \rho_{c}(w)=\operatorname{Int}\left(h^{-1} w(h)\right) \circ \rho_{H}(w)=\operatorname{Int}\left(h^{-1}\right) \circ \rho_{H}(w) \circ \operatorname{Int}(h)$ for all $w \in W_{F}$. But this amounts to the fact that ρ_{c} is an L-action (it preserves the splitting $\left.\operatorname{Int}\left(h^{-1}\right)\left(\operatorname{spl}_{\hat{H}}\right)\right)$. In this case we have (from $\left.\rho_{\mathcal{H}}=\rho_{H}\right) \mathcal{H} \simeq{ }^{L} H$. Of course one can find examples for the situation $\mathcal{H} \not \chi^{L} H$ when $H^{1}\left(F, \hat{H}_{a d}\right)$ is non-trivial.

Finally $\Gamma[\mathrm{KS} \Gamma 2.1 .3]$ requires that the element $s \in \hat{G}$ is such that $s \hat{\theta}$ be semi-simple in $\hat{G} \rtimes \hat{\theta} \Gamma$ and [KSГ2.1.4] that $\xi: \mathcal{H} \rightarrow{ }^{L} G$ be an L-homomorphism Γ whose image $\xi(\mathcal{H})$ is contained in the group of fixed points $Z_{L_{G}}\left(s^{L} \theta\right)$ in ${ }^{L} G$ of $\operatorname{Int}(s) \circ{ }^{L} \theta \Gamma$ where ${ }^{L} \theta(g \times w)=\hat{\theta}(g) \times w \Gamma$ and that ξ map \hat{H} isomorphically onto the identity component $Z_{\hat{G}}(s \hat{\theta})^{0}$ of the group $Z_{\hat{G}}(s \hat{\theta})$ of fixed points of $\operatorname{Int}(s) \circ \hat{\theta}$ in \hat{G}.

F. Endoscopic groups.

Our Theorem is the "fundamental lemma" for the lifting of representations from GSp(2) to $G L(4)$. It is compatible with a dual group situation Γ which we proceed to describe.

Let \mathbf{G} be the F-group $\mathbf{G}_{1} \times \mathbf{G}_{m} \Gamma$ where $\mathbf{G}_{1}=G L(4)$ and $\mathbf{G}_{m}=G L(1)$. Let $\hat{G}=\hat{G}_{1} \times \hat{G}_{m}=$ $G L(4, \mathbb{C}) \times G L(1, \mathbb{C})$ be its connected dual group. Put $w=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and $J=\left(\begin{array}{cc}0 & w \\ -w & 0\end{array}\right) \Gamma$ and $\hat{\theta}\left(g_{1}\right)=\theta\left(g_{1}\right)=J^{t} g_{1}^{-1} J^{-1}$ for $g_{1} \in \mathbf{G}_{1} \Gamma$ where ${ }^{t} g_{1}$ is the transpose of g_{1}. For $g=\left(g_{1}, t\right)$ in $\hat{G} \Gamma$ write $\hat{\theta}(g)=\hat{\theta}\left(g_{1}, t\right)=\left(t \theta\left(g_{1}\right), t\right)$. This is an automorphism of \hat{G} of order 2 . We often attach a subscript 1 to indicate the $G L(4)$-component of an object in $\mathbf{G}=G L(4) \times G L(1) \Gamma$ and sometimes abuse notations and ignore the $G L(1)$-component.

Denote by \hat{T} the diagonal subgroup in \hat{G} (thus $\left.\hat{T}=\hat{T}_{1} \times \mathbb{C}^{\times}\right) \Gamma$ and by \mathbf{T}^{*} the diagonal subgroup of \mathbf{G}. Let \hat{B} and \mathbf{B} be the upper triangular subgroups in \hat{G} and \mathbf{G}. Then the group $X_{*}(\hat{T})=\operatorname{Hom}\left(\mathbf{G}_{m}, \hat{T}\right)=\{(a, b, c, d ; e)\}$ is isomorphic to $X^{*}\left(\mathbf{T}^{*}\right)=\operatorname{Hom}\left(\mathbf{T}^{*}, \mathbf{G}_{m}\right)$ Гand $X^{*}(\hat{T})=\{(x, y, z, t ; u)\}=X_{*}\left(\mathbf{T}^{*}\right)$. The automorphism $\hat{\theta}$ induces an automorphism θ on \mathbf{G} (fixing B) \mathbf{B} given on \mathbf{T}^{*} as follows.

$$
\begin{aligned}
& (\theta(x, y, z, t ; u))(a, b, c, d ; e)=(x, y, z, t ; u)(\hat{\theta}(a, b, c, d ; e)) \\
& \quad=(x, y, z, t ; u)(e / d, e / c, e / b, e / a ; e)=a^{-t} b^{-z} c^{-y} d^{-x} e^{x+y+z+t+u} \\
& \quad=(-t,-z,-y,-x, x+y+z+t+u)(a, b, c, d ; e)
\end{aligned}
$$

Then for $(g, t) \in \mathbf{G}, \theta(g, t)=(\theta(g), t\|g\|) \Gamma$ where $\|g\|$ denotes the determinant of g.

We are concerned with lifting of representations and transfer of orbital integrals between G and its endoscopic groups Γ in fact its twisted (by θ) such groups. The twisted endoscopic groups of $(\hat{G}, \hat{\theta})$ are determined by $\hat{H}=Z_{\hat{G}}(\hat{s} \hat{\theta})^{0}$ (superscript zero for "connected component of the identity") Γ where this centralizer is

$$
Z_{\hat{G}}(\hat{s} \hat{\theta})=\left\{(x, t) \in \hat{G} ; x \hat{s} \theta(x)^{-1}=t \hat{s}\right\} \subset Z_{G L(4, \mathbb{C})}(\hat{s} \hat{\theta}(\hat{s})) \times G L(1, \mathbb{C})
$$

and by a Galois action $\rho: \Gamma=\operatorname{Gal}(\bar{F} / F) \rightarrow Z_{\hat{G}}(\hat{s} \hat{\theta})$. Here \hat{s} is a semi-simple element in \hat{G} (which can and will be taken to be $\hat{s}=\left(\hat{s}_{1}, 1\right)$) Γ which can and will be taken to be diagonal Γ chosen up to $\hat{\theta}$-conjugacy Γ namely $\hat{T} \ni \hat{s} \equiv g \hat{s} \hat{\theta}\left(g^{-1}\right)$. Using a diagonal g we conclude that $\hat{s}=\operatorname{diag}(1,1, c, d)$. Taking g to be a representative in \hat{G} of the reflections (23), (14), (12)(34) in the Weyl group of \hat{G} (these elements are fixed by $\hat{\theta}$) Γ we conclude that the $\hat{\theta}$-conjugacy class of \hat{s} does not change if c is replaced by $c^{-1} \Gamma d$ by $d^{-1} \Gamma$ and (c, d) by (d, c). Let us list the possibilities. Recall ([KSГ2.1]) that an endoscopic group \mathbf{H} is called elliptic if $\left(Z(\hat{H})^{\Gamma}\right)^{0}$ is contained in the center $Z(\hat{G})$ of \hat{G}.

A list of the twisted endoscopic groups of $(\hat{G}, \hat{\theta})$ is as follows. 1. $\hat{s}=I, Z_{\hat{G}}(\hat{\theta})=\operatorname{GSp}(2, \mathbb{C})$ is connected Γ hence equal to $\hat{H} \Gamma$ the Galois action is trivial Γ and the endoscopic group is $\mathbf{H}=G \operatorname{Sp}(2)$ over F. Since $Z(\hat{H})=\mathbb{C}^{\times}=Z(\hat{G}), \mathbf{H}$ is elliptic.

An endoscopic group \mathbf{C} of \mathbf{H} is determined by a semi-simple (diagonal Γ up to conjugacy) element s in \hat{H}. The only proper elliptic endoscopic group of \mathbf{H} is determined by $s=\operatorname{diag}(1,-1,-1,1) \Gamma$ whose centralizer in \hat{H} is $\hat{C}_{0}=\left(\begin{array}{cccc}\bullet & 0 & \bullet \\ 0 & \bullet & 0 \\ 0 & \bullet & 0 \\ \bullet & 0 & 0 & \bullet\end{array}\right)=\left\{(a, b) \in G L(2, \mathbb{C})^{2}\right.$; $\operatorname{det} a=\operatorname{det} b\}$. Note that the connected component of $Z\left(\hat{C}_{0}\right)=\langle Z(\hat{H}), s\rangle$ is $Z(\hat{H}) \Gamma$ so that \mathbf{C}_{0} is elliptic. Also $\Gamma X_{*}\left(\hat{T}_{0}\right)=\{(a, b, c, d) ; a+d=b+c\}=X^{*}\left(T_{0}^{*}\right)$ has dual $X_{*}\left(T_{0}^{*}\right)=$ $X^{*}\left(\hat{T}_{0}\right)=\{(x, y, z, t) /(u,-u,-u, u)\} \Gamma$ hence $\mathbf{C}_{0}=G L(2) \times G L(2) / G L(1) \Gamma$ where $G L(1)$ embeds via $u \mapsto\left(u, u^{-1}\right)$.

The dual group of $\mathbf{H}_{0}=S p(2)$ is $\hat{H}_{0}=\operatorname{PGSp}(2, \mathbb{C})$. Its proper elliptic endoscopic groups are obtained as follows. (i) The centralizer of $s=\operatorname{diag}(1,-1,-1,1)$ in \hat{H}_{0} is generated by the reflection $\operatorname{diag}(w, w)$ and its connected component $\hat{C}_{0} / \hat{Z}=(G L(2, \mathbb{C}) \times G L(2, \mathbb{C}))^{\prime} / \mathbb{C}^{\times} \Gamma$ the prime indicates equal determinants. The corresponding endoscopic group is $(G L(2) \times$ $G L(2))^{\prime} / G L(1) \Gamma$ unless there is a quadratic extension E / F whose Galois group permutes the two factors Γ in which case $\operatorname{Res}_{E / F} G L(2)^{\prime} / G L(1)$ is obtained (its group of F-points is $G L(2, E)^{\prime} / F^{\times} \Gamma$ where the prime indicates here determinant in F^{\times}). (ii) The centralizer of $s_{1}=\operatorname{diag}(1,1,-1,-1)$ in \hat{H}_{0} is generated by $\left(\begin{array}{cc}0 & \varepsilon \\ -\varepsilon & 0\end{array}\right)$ (where $\boldsymbol{\varepsilon}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$) and its connected component $\hat{C}_{1}^{0}=\left\{\operatorname{diag}(x, \lambda \varepsilon x \varepsilon) ; x \in P G L(2, \mathbb{C}), \lambda \in \mathbb{C}^{\times}\right\}$. The endoscopic group is elliptic only when there is a quadratic extension E / F such that $\operatorname{Gal}(E / F)$ acts via $\operatorname{Int}\left(\begin{array}{cc}0 & \varepsilon \\ -\varepsilon & 0\end{array}\right)$ on this connected component Γ thus by $\sigma(x, \lambda)=\left(x, \lambda^{-1}\right)$ on $(x, \lambda) \in P G L(2, \mathbb{C}) \times \mathbb{C}^{\times} \Gamma$ and then the endoscopic group is $S L(2) \times U(1, E / F) \Gamma$ where $U(1, E / F)$ is the unitary group with F-points $E^{1}=\left\{x \in E^{\times} ; x \bar{x}=1\right\}$.
2. $\hat{s}=\left(\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right), Z_{\hat{G}}(\hat{s} \hat{\theta})=G O\left(\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right) ; \mathbb{C}\right)$ is $\left\{(x, t) \in \hat{G} ; x\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)^{t} x\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)=t\right\}$. It is isomorphic
to
$\left\langle\left(A, B=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\right)=\left(\left(\begin{array}{cc}a A & b A \varepsilon \\ c \varepsilon A & d \varepsilon A \varepsilon\end{array}\right),\|A B\|\right),(\operatorname{diag}(1, w, 1), 1)\right\rangle=\left\langle\left(\left(\begin{array}{cc}A & 0 \\ 0 & t \varepsilon A \varepsilon\end{array}\right), t\|A\|\right),(\operatorname{diag}(1, w, 1), 1)\right\rangle$,
which has connected component $\hat{C}=G L(2, \mathbb{C})^{2} / \mathbb{C}^{\times} \Gamma$ with \mathbb{C}^{\times}embedding via $z \mapsto\left(z, z^{-1}\right)$. Note that $Z(\hat{C})=\mathbb{C}^{\times}$is $Z(\hat{G})$ Гhence \mathbf{C} is elliptic. Now

$$
X^{*}\left(T_{C}^{*}\right)=X_{*}\left(\hat{T}_{C}\right)=\left\{(a, b ; c, d) /\left(u, u ; u^{-1}, u^{-1}\right)\right\}
$$

has dual $X_{*}\left(T_{C}^{*}\right)=X^{*}\left(\hat{T}_{C}\right)=\{(x, y ; z, t) ; x+y=z+t\}$, thus $\mathbf{C}=(G L(2) \times G L(2))^{\prime} \Gamma$ where the prime means the subgroup of (A, B) with $\|A\|=\|B\| \Gamma$ when Γ acts trivially. If there is a quadratic field extension E / F and $\rho(\sigma) \in \operatorname{diag}(1, w, 1) \hat{C}$ for σ in $\operatorname{Gal}(E / F) \Gamma$ then σ acts on $\mathbf{C}=\mathbf{C}_{E}=\operatorname{Res}_{E / F} G L(2)^{\prime}$ by permuting the two factors. In particular $\Gamma C_{E}=$ $\mathbf{C}_{E}(F)=G L(2, E)^{\prime} \Gamma$ the prime indicating determinant in F^{\times}. Note that the centralizer of $(\varepsilon, \varepsilon)$ in $\hat{C}=G L(2, \mathbb{C})^{2} / \mathbb{C}^{\times}$is generated by the diagonals and (w, w) Thence C has no elliptic endoscopic groups.
3. $\hat{s}=\operatorname{diag}(1,1,1,-1) \Gamma Z_{\hat{G}}(\hat{s} \hat{\theta})=\left\langle(\operatorname{diag}(a, B, b),\|B\|),(\iota, 1) ; \iota=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & I & 0 \\ 1 & 0 & 0\end{array}\right), B \in G L(2, \mathbb{C})\right.$, $\left.a, b \in \mathbb{C}^{\times}, a b=\|B\|\right\rangle$ has connected component $\hat{C}_{+}=\left(G L(2, \mathbb{C}) \times G L(1, \mathbb{C})^{2}\right)^{\prime}$ (the prime indicates (a, B, b) with $a b=\|B\|) \Gamma$ with center $Z\left(\hat{C}_{+}\right)=\mathbb{C}^{\times 2} \Gamma$ which will not be elliptic unless the Galois action is non trivial Γ namely there is a quadratic extension E / F with $\rho(\sigma)=\iota \Gamma\langle\sigma\rangle=\operatorname{Gal}(E / F)$. In this case $\left(Z\left(\hat{C}_{+}\right)^{\Gamma}\right)^{0}=\mathbb{C}^{\times}$is $Z(\hat{G})$. We have $X_{*}\left(\hat{T}_{+}\right)=$ $\{(a, b, c, b+c-a ; b+c)\}=X^{*}\left(T_{+}^{*}\right)$, with dual $X^{*}\left(\hat{T}_{+}\right)=\{(x, y, z, t ; w)\} /\{(u, v, v, u ;-u-$ $v)\}=\{(x, y, z, t)\} /\{(u,-u,-u, u)\}=X_{*}\left(T_{+}^{*}\right)$. We conclude that $\mathbf{C}_{+}=\mathbf{C}_{+}^{E}=(G L(2) \times$ $\left.\operatorname{Res}_{E / F} G L(1)\right) / G L(1) \Gamma G L(1)$ embeds as $\left(z, z^{-1}\right) \Gamma$ and $C_{+}=\mathbf{C}_{+}(F)=G L(2, F) \times E^{\times} / F^{\times} \simeq$ $G L(2, F) \times E^{1}$.
4. $\hat{s}=\left(\begin{array}{cc}I & 0 \\ 0 & c I\end{array}\right), c \neq \pm 1, Z_{\hat{G}}(\hat{s} \hat{\theta})=\left\langle\left(\left(\begin{array}{cc}A & 0 \\ 0 & t \varepsilon A \varepsilon\end{array}\right), t\|A\|\right)\right\rangle$ is connected but not elliptic.
5. $\hat{s}=\operatorname{diag}(1,1,1, d), d \neq \pm 1, Z_{\hat{G}}(\hat{s} \hat{\theta})=\langle(\operatorname{diag}(a, A,\|A\| / a ;\|A\|)\rangle$ is connected but not elliptic.
6. $\hat{s}=\operatorname{diag}(1,1,-1, d), d \neq \pm 1, Z_{\hat{G}}(\hat{s} \hat{\theta})=\langle(\operatorname{diag}(a, b, t / b, t / a), t),(\operatorname{diag}(1, w, 1), 1)\rangle$ is not elliptic.
7. $\hat{s}=\operatorname{diag}(1,1, c, d), c^{2} \neq 1 \neq d^{2}, c \neq d, d^{-1}, Z_{\hat{G}}(\hat{s} \hat{\theta})=\langle(\operatorname{diag}(a, b, t / b, t / a), t)\rangle$ is connected but not elliptic.

The norm map is defined as follows. Put $\mathbf{V}=(1-\theta) \mathbf{T}^{*}$ and $\mathbf{U}=\mathbf{T}_{\theta}^{*}=\mathbf{T}^{*} / \mathbf{V}$. Since \mathbf{T}^{*} consists of $(a, b, c, d ; e)$ and $\theta(a, b, c, d ; e)=\left(d^{-1}, c^{-1}, b^{-1}, a^{-1} ; e a b c d\right) \Gamma$ we have that \mathbf{V} consists of $(\alpha, \beta, \beta, \alpha ; 1 / \alpha \beta)$. The isomorphism $\hat{U}=\hat{T}^{\hat{\theta}} \simeq \hat{T}_{H} \Gamma$ where \mathbf{T}_{H}^{*} is the diagonal torus in $\mathbf{H}=G S p(2) \Gamma d e f i n e s$ a morphism

$$
X_{*}\left(\mathbf{T}^{*}\right) \rightarrow X_{*}\left(\mathbf{T}^{*}\right) / X_{*}(\mathbf{V})=X^{*}(\hat{T}) / X^{*}(\hat{V})=X^{*}\left(\hat{U}=\hat{T}^{\theta}\right)=X^{*}\left(\hat{\mathbf{T}}_{H}\right) \xrightarrow{\sim} X_{*}\left(\mathbf{T}_{H}^{*}\right),
$$

the last arrow being defined by

$$
(x, y, z, t ; w) \mapsto(x+y+w, x+z+w, t+y+w, t+z+w ; x+y+z+t+2 w)
$$

and a norm map $N: \mathbf{T}^{*} \rightarrow \mathbf{T}_{H}^{*} \Gamma$ given by

$$
(x, y, z, t ; w) \bmod (\alpha, \beta, \beta, \alpha ; 1 / \alpha \beta) \mapsto\left(x y w, x z w, t y w, t z w ; x y z t w^{2}\right)=(a, b, e / b, e / a ; e)
$$

which is surjective since $(b, a / b, 1, e / a ; 1) \mapsto(a, b, e / b, e / a ; e)$.
To describe the norm for the twisted endoscopic group \mathbf{C} (of (2) above) note that $\hat{T}_{C} \xrightarrow{\sim} \hat{T}_{H}$ by $((a, d),(b, c)) \mapsto(a b, a c, b d, c d)$. Hence $X^{*}\left(\hat{T}_{H}\right) \xrightarrow{\sim} X^{*}\left(\hat{T}_{C}\right)$ via $(x, y, z, t) \bmod \{(\alpha, \beta, \beta, \alpha)\}$ $\mapsto((x+y, z+t),(x+z, y+t)) \Gamma$ and the composition $X_{*}\left(\mathbf{T}^{*}\right) \rightarrow X^{*}\left(\hat{T}_{H}\right) \simeq X^{*}\left(\hat{T}_{C}\right)$ defines the norm map

$$
N_{C}: \mathbf{T}^{*} \rightarrow \mathbf{T}_{C}^{*},(x, y, z, t ; w) \mapsto((x y w, z t w) ;(x z w, y t w))\left(=\left(\left(\begin{array}{cc}
x y w & 0 \\
0 & z t w
\end{array}\right),\left(\begin{array}{cc}
x z w & 0 \\
0 & y t w
\end{array}\right)\right)\right) .
$$

Let us also describe the norm map for the twisted endoscopic group \mathbf{C}_{+}of (3) above. Since the map $X^{*}\left(\hat{T}^{\hat{\theta}}\right) \xrightarrow{\sim} X_{*}\left(T_{+}^{*}\right)$ is the identity Γ the norm is defined by

$$
N: X_{*}\left(\mathbf{T}^{*}\right) \rightarrow X_{*}\left(\mathbf{T}^{*}\right) / X_{*}(\mathbf{V})=X^{*}(\hat{T}) / X^{*}(\hat{V})=X^{*}\left(\hat{U}=\hat{T}^{\theta}=\hat{T}_{+}\right)=X_{*}\left(\mathbf{T}_{+}^{*}\right)
$$

$N(x, y, z, t)=(x, y, z, t) \bmod \left(u, u^{-1}, u^{-1}, u\right)$.

G. Instability.

Recall that the set of θ-conjugacy classes within the stable θ-conjugacy class of a strongly θ-regular element t in G is parametrized by the set $D(F, \theta, t)=\operatorname{ker}\left[H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right) \rightarrow\right.$ $\left.H^{1}(F, \mathbf{G})\right]=\operatorname{ker}\left[H^{1}\left(F, \mathbf{T}^{* \theta}\right) \rightarrow H^{1}(F, \mathbf{G})\right] \Gamma$ which is a group in our case Γ as $H^{1}(F, \mathbf{G})$ is trivial. There is an exact sequence

$$
H^{0}\left(F, \mathbf{T}^{*}\right)=T^{*} \xrightarrow{1-\theta} H^{0}(F, \mathbf{V})=V \rightarrow D(F, \theta, t) \rightarrow H^{1}\left(F, \mathbf{T}^{*}\right) \xrightarrow{1-\theta} H^{1}(F, \mathbf{V}) .
$$

In our case of $\mathbf{G}=G L(4) \times G L(1) \Gamma$ we have $H^{1}\left(F, \mathbf{T}^{*}\right)=\{1\}$ for all tori (or Galois actions Γ namely subgroups of the symmetric group S_{4} on four letters))

There is a dual five term exact sequence [useful when stabilizing the twisted trace formula. Let $\phi: \hat{V} \rightarrow \hat{T}$ be the homomorphism dual to $\mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}$. Thus $\phi: X_{*}(\hat{V})=X^{*}(\mathbf{V}) \rightarrow$ $X^{*}\left(\mathbf{T}^{*}\right)=X_{*}(\hat{T})$ takes $\chi=(x, y, z, t ; w)$ to $(\phi(\chi))(a, b, c, d ; e)=\chi(a d, b c, b c, a d ; 1 / a b c d)=$ $(a d)^{x+t-w}(b c)^{y+z-w}$. Namely Γ takes $(x, y, z, t ; w)$ in $\hat{V}=\hat{T} / \hat{U}=\hat{T} / \hat{T}^{\hat{\theta}}$ to $(x t / w, y z / w, y z / w$, $x t / w ; 1)$ in \hat{T}. Recall that $\hat{T}^{\hat{\theta}}=\{(a, b, e / b, e / a ; e)\}$.

To obtain the dual sequence recall the Langlands isomorphism $H^{1}\left(W_{F}, \hat{T}\right)=$ $\operatorname{Hom}_{c t s}\left(T, \mathbb{C}^{\times}\right)(T=\mathbf{T}(F) ;[$ KSCabout a page after Lemma A.3.A] $)$ Гand its hypercohomology analogue ([KSCLemma A.3.B]): $H^{1}\left(W_{F}, \hat{V} \xrightarrow{\phi} \hat{T}\right)$ is isomorphic to the group $\mathfrak{K}\left(F, \theta, T^{*}\right)$ of characters $\operatorname{Hom}_{c t s}\left(H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right), \mathbb{C}^{\times}\right)$. Since the Weil group W_{F} of F acts on \hat{T} and \hat{V} via the Galois group $\Gamma=\operatorname{Gal}(\bar{F} / F)$ Гone has

$$
H^{0}\left(W_{F}, \hat{V}\right)=\hat{V}^{\Gamma} \xrightarrow{\phi} H^{0}\left(W_{F}, \hat{T}\right)=\hat{T}^{\Gamma} \rightarrow \mathfrak{K}\left(F, \theta, T^{*}\right) \rightarrow H^{1}\left(W_{F}, \hat{V}\right) \xrightarrow{\phi} H^{1}\left(W_{F}, \hat{T}\right) .
$$

Here $\mathfrak{K}\left(F, \theta, T^{*}\right)=H^{1}\left(W_{F}, \hat{V} \xrightarrow{\phi} \hat{T}\right)$. This is the exact sequence [KSГA.1.1] Γ for $\phi: \hat{V} \rightarrow \hat{T} \Gamma$ which is dual to the previous five terms exact sequence for $1-\theta: \mathbf{T}^{*} \rightarrow \mathbf{V}$.

For each F-torus \mathbf{T} in $\mathbf{G} \Gamma$ and a strongly θ-regular element t in $T \Gamma$ we can make the:

Definition. The stable θ-orbital integral $\Phi^{s t}$ is the sum of the θ-orbital integrals on the θ conjugacy classes within the stable θ-conjugacy class of t.

The set of such θ-conjugacy classes (for some t) is parametrized by the group $H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta}\right.$ $\mathbf{V})=H^{1}\left(F, \mathbf{T}^{* \theta}\right)$ computed above. For each character κ of this group (into the group of roots of unity in $\left.\mathbb{C}^{\times}\right) \Gamma$ we can also make the:

Definition. The κ-orbital integral is the linear combination of the θ-orbital integrals weighted by the values of κ at the element of $H^{1}\left(F, \mathbf{T}^{*} \rightarrow \mathbf{V}\right)$ parametrizing the θ-conjugacy class.

These weighted (by κ) combinations of the θ-orbital integrals are to be compared with stable orbital integrals on the θ-endoscopic groups \mathbf{H} of (\mathbf{G}, θ). The θ-endoscopic group \mathbf{H} is determined from $\kappa \Gamma$ by [KSC Lemma 7.2.A] Γ via the surjection $H^{1}\left(W_{F}, \hat{V} \xrightarrow{\phi} \hat{T}\right) \rightarrow$ $\operatorname{Hom}_{c t s}\left(H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right), \mathbb{C}^{\times}\right)($see $[\mathrm{KS} \Gamma L e m m a \operatorname{A.3.B}])$. Recall ([KSГA.1]) that:

Definition. The first hypercohomology group $H^{1}(G, A \xrightarrow{f} B)$ of the short complex $A \xrightarrow{f} B$ of abelian G-modules in degrees 0 and 1Γ is the quotient of the group of 1 -hypercocycles Γ by the subgroup of 1-hypercoboundaries. A 1-hypercocycle is a pair (a, b) with a being a 1-cocycle of G in $A \Gamma$ and $b \in B$ such that $f(a)=\partial b\left(\partial b\right.$ is the 1-cocycle $\sigma \mapsto b^{-1} \sigma(b)$ of G in $\left.B\right)$. A 1-hypercoboundary is a pair $(\partial a, f(a)), a \in A$.

Thus $H^{1}\left(W_{F}, \hat{V} \xrightarrow{\phi} \hat{T}\right)$ consists of elements represented by pairs $(a, b), a \in H^{1}\left(W_{K / F}, \hat{V}\right) \Gamma$ where K / F is a Galois extension over which T splits and $\hat{V}=\hat{T} / \hat{U}, \hat{U}=\left(\hat{T}^{\hat{\theta}}\right)^{0}$. Here $\phi: \hat{V} \rightarrow \hat{T}$ is the map dual to $1-\theta: \mathbf{T}^{*} \rightarrow \mathbf{V} \Gamma$ thus $\phi(x, y, z, t ; w)=(x t / w, y z / w, y z / w, x t / w ; 1) \Gamma$ and $b \in \hat{T}$ satisfies $\phi(a)=\partial b$. The θ-endoscopic group \mathbf{H} has a dual group whose connected component \hat{H} is $Z_{\hat{G}}(b \hat{\theta})^{0} \Gamma$ the connected centralizer of $b \hat{\theta}$ in \hat{G} ([KSГLemma 7.2.A]).

We proceed to describe the 1-hypercocycles representing the non trivial characters κ on $H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right)$. The listing is as above except that $H^{1}\left(\mathbf{T}^{*} \rightarrow \mathbf{V}\right)$ is trivial in the case (1). Since \mathbf{V} embeds in $\mathbf{T} \Gamma$ we have that $H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{V}\right)$ embeds in $H^{1}\left(F, \mathbf{T}^{*} \xrightarrow{1-\theta} \mathbf{T}\right) \Gamma$ and we extend κ to a character of the bigger group.
(2) Here $\rho(\Gamma)=\langle\rho(\sigma)=(23)\rangle \Gamma \mathbf{T}$ splits over the quadratic extension $E / F \Gamma V=\{x=$ $\left.(\alpha, \beta, \beta, \alpha ; 1 / \alpha \beta) ; \alpha, \beta \in F^{\times}\right\} \Gamma(1-\theta) T^{*}=\left\{x \in V ; \alpha \in F^{\times}, \beta \in N_{E / F} E^{\times}\right\} \Gamma$ then $\kappa \neq 1$ on $H^{1}\left(\mathbf{T}^{*} \rightarrow \mathbf{V}\right)$ is given by $\kappa(x)=\chi_{E / F}(\beta) \Gamma$ where $\chi_{E / F}$ is the non trivial character on F^{\times}which is trivial on $N E^{\times}$. Extend $\chi_{E / F}$ to a character χ on E^{\times}. Then κ extends to $H^{1}\left(\mathbf{T}^{*} \rightarrow \mathbf{T}^{*}\right)$ by $(\alpha, \beta, \sigma \beta, \delta ; e) \mapsto \chi(\beta)$. Recall that we have an exact sequence $1 \rightarrow E^{\times} \rightarrow W_{E / F} \rightarrow\langle\sigma\rangle \rightarrow 1 \Gamma$ in fact $W_{E / F}=\left\langle z \in E^{\times}, \sigma ; \sigma^{2} \in F-N E, \sigma z=\bar{z} \sigma\right\rangle$. Now $a \in H^{1}\left(W_{E / F}, \hat{T}\right)$ is given by a function $a: W_{E / F} \rightarrow \hat{T}$ satisfying in particular $a_{\sigma} \sigma\left(a_{z}\right)=a_{\sigma z}=a_{\bar{z} \sigma}=a_{\bar{z}} a_{\sigma} \Gamma$ thus $\sigma\left(a_{z}\right)=a_{\bar{z}}$. Take $a_{z}=(1, \chi(z), \chi(\bar{z}), 1)$. Then $a_{\sigma^{2}}=(1,-1,-1,1)$. Take $a_{\sigma}=(1,1,-1,1) \in \hat{T}$ (then $a_{\sigma^{2}}=a_{\sigma} \sigma\left(a_{\sigma}\right) \Gamma$ as $\left.\sigma=(23)\right)$. By definition of ϕ एwe have $\phi\left(a_{\sigma}\right)=(1,-1,-1,1)$ (the 5 th entry is 1 if it is not explicitly written out). For $b=(1,1,-1,1) \in \hat{T} \Gamma \sigma b=(1,-1,1,1) \Gamma$ and $\partial b(\sigma)=$ $b^{-1} \sigma b$ is equal to $\phi\left(a_{\sigma}\right)$. Then $(a, b) \in H^{1}(\hat{T} \xrightarrow{\phi} \hat{T})$ represents κ. Now $Z_{\hat{G}}(b \hat{\theta}) \subset Z_{\hat{G}}(b \hat{\theta}(b)) \Gamma$
and $b \hat{\theta} b=(1,-1,-1,1)$ Гhence $\hat{H}=Z_{\hat{G}}(b \hat{\theta})^{0}$ is $\left\{\left(\left(\begin{array}{cccc}\alpha & 0 & 0 & \beta \\ 0 & a & 0 & 0 \\ 0 & 0 & b & 0 \\ \gamma & 0 & 0 & \delta\end{array}\right), t\right) ; a b=t=\alpha \delta-\beta \gamma\right\}$. Note that \mathbf{T} is not elliptic Γ so \mathbf{H} is contained in a Levi subgroup of a (maximal) parabolic subgroup of \mathbf{G}.
(3) The case of $\rho(\Gamma)=\langle\sigma=\rho(14)\rangle$ is similarly handled.
(I) Here $\rho(\Gamma)=\langle\rho(\sigma)=(14)(23)\rangle, V=\{x=(\alpha, \beta, \sigma \beta=\beta, \sigma \alpha=\alpha ; 1 / \alpha \beta)\}$ and since $V /(1-$ $\theta) T^{*}=\left(F^{\times} / N E^{\times}\right)^{2} \Gamma$ there are 4κ 's $\Gamma 3$ non trivial. Two of these can be dealt with as in case (2) above (i.e. when κ is $x \mapsto \chi_{E / F}(\beta)$; the case when κ is $x \mapsto \chi_{E / F}(\alpha)$ is analogous to the case where $\sigma=(14)$ as in (3)). But now σ acts (non trivially) by permuting the two one parameter multiplicative entries in $\hat{H} \Gamma$ thus we obtain the elliptic θ-endoscopic group $H=\mathbf{C}_{+}^{E}$ of type (3) in Section F.

The remaining κ on $V /(1-\theta) T^{*}$ is given by $x \mapsto \chi_{E / F}(\alpha \beta)$. Choosing extensions χ_{1}, χ_{2} of $\chi_{E / F}$ to E^{\times}एwe extend κ to T^{*} by $x=(\alpha, \beta, \sigma \beta, \sigma \alpha ; e) \in T^{*} \mapsto \chi_{1}(\alpha) \chi_{2}(\beta)$. As in case (2) Γ we define a 1-cocycle a of $W_{E / F}$ in \hat{T} by $a_{z}=\left(\chi_{1}(z), \chi_{2}(z), \chi_{2}(\sigma z), \chi_{1}(\sigma z)\right)\left(z \in E^{\times}\right) \Gamma$ then $a_{\sigma^{2}}=-I \Gamma$ since $\chi_{1}\left(\sigma^{2}\right)=-1$. An a_{σ} which satisfies $a_{\sigma} \sigma\left(a_{\sigma}\right)=a_{\sigma^{2}}=-I$ is given by $a_{\sigma}=(1,1,-1,-1) \in \hat{T} \Gamma$ and so $\phi\left(a_{\sigma}\right)=-I$. Choosing $b=(1,1,-1,-1) \in \hat{T} \Gamma$ we have $\sigma b=(-1,-1,1,1) \Gamma$ and $\partial b(\sigma)=b^{-1} \sigma b=-I$. Note that the norm $N \operatorname{maps}(x, y, z, t)$ in T to $((x y, z t),(x z, y t))$ in T_{C} Гand $\sigma=(14)(23)$ then acts on T_{C} by $\sigma((a, b),(c, d))=((b, a),(d, c))$. Then σ does not permute the two factors in $\mathbf{C}=(G L(2) \times G L(2))^{\prime} \Gamma$ and we obtain the endoscopic group C of type (2) (see Section F). The other two κ correspond to the elliptic θ-endoscopic groups of type (3) Гas noted above.
(II) Here $\rho(\Gamma)=\langle\rho(\sigma \tau)=(14), \rho(\tau)=(23)\rangle \Gamma$ and there are three non trivial characters κ of $V /(1-\theta) T^{*} \Gamma$ given at $x=(\alpha, \beta, \tau \beta=\beta, \sigma \alpha=\alpha ; 1 / \alpha \beta)$ in V by $\chi_{E / E_{1}}(\alpha), \chi_{E / E_{2}}(\beta)$, $\chi_{E / E_{1}}(\alpha) \chi_{E / E_{2}}(\beta) \Gamma$ where T splits over $E / F \Gamma$ and $E_{1}=E^{\langle\tau\rangle}, E_{2}=E^{\langle\sigma \tau\rangle}$. The first two characters are dealt with as in case (I) ((2) Γ and (3)). To deal with the last case Γ extend $\chi_{E / E_{1}}$ to a character χ_{1} on $E^{\times} \Gamma$ and $\chi_{E / E_{2}}$ to a character χ_{2} on E^{\times}. We get a character $(\alpha, \beta, \tau \beta, \sigma \alpha ; e) \mapsto \chi_{1}(\alpha) \chi_{2}(\beta)$ of T. A 1-cocycle of $W_{E / F}$ in \hat{T} is given by

$$
a_{z}=\left(\chi_{1}(z), \chi_{2}(z), \chi_{2}(\tau z), \chi_{1}(\sigma z)\right), \quad a_{\sigma}=(1,1,1,-1) \in \hat{T}, \quad a_{\tau}=(1,1,-1,1) \in \hat{T}
$$

and $b=(1,1,-1,-1) \in \hat{T}$ satisfies $\phi\left(a_{\sigma}\right)=(-1,1,1,-1)=\partial b(\sigma) \Gamma \phi\left(a_{\tau}\right)=(1,-1,-1,1)=$ $\partial b(\tau)$; the θ-endoscopic group of type (2) is obtained.

Note that τ acts on \hat{T}_{C} by mapping $((u, v) ;(x, y))=\left(\left(\begin{array}{cc}u & 0 \\ 0 & v\end{array}\right),\left(\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right)\right)=\operatorname{diag}(u x, v x, u y, v y)$ to $((x, y) ;(u, v))$ Гhence $(A, B) \in Z_{\hat{G}}(\hat{s} \hat{\theta})$ to $(B, A) ; \sigma$ maps it to $((v, u) ;(y, x)) \Gamma$ and $\sigma \tau$ to $((y, x) ;(v, u))$. Thus the endoscopic group is $\mathbf{C}_{E_{3}} \Gamma$ as $E_{3}=E^{\sigma}$. Its group of rational points is $G L\left(2, E_{3}\right)^{\prime}$.
(III) Here $\rho(\Gamma)=\langle\rho(\tau)=(12)(34), \rho(\sigma)=(14)(23)\rangle \Gamma$ and the non trivial character κ of $V /(1-\theta) T^{*}$ is given by $x=(\alpha, \tau \alpha, \tau \sigma \alpha=\tau \alpha, \sigma \alpha=\alpha ; 1 / \alpha \tau \alpha) \mapsto \chi_{E / E_{3}}(\alpha), \alpha \in E_{3}=E^{\langle\sigma\rangle}$. It extends to a character $x=(\alpha, \tau \alpha, \tau \sigma \alpha, \sigma \alpha ; e) \mapsto \chi(x) \Gamma$ if χ extends $\chi_{E / E_{3}}$ from E_{3}^{\times}to E^{\times}. A corresponding $(a, b) \in H^{1}(\hat{T} \rightarrow \hat{T})$ is given by $a_{z}=(\chi(z), \chi(\tau z), \chi(\tau \sigma z), \chi(\sigma z)), z \in E^{\times}$. Since $\sigma^{2} \in E_{3}-N_{E / E_{3}} E \Gamma$ we have $a_{\sigma^{2}}=(-1,-1,-1,-1) \Gamma$ and $a_{\sigma}=(1,1,-1,-1) \in \hat{T}$
solves $a_{\sigma} \sigma\left(a_{\sigma}\right)=a_{\sigma^{2}}$. Then $\phi\left(a_{\sigma}\right)=-I=\partial b(\sigma)$ for $b=(1,1,-1,-1) \in \hat{T}$. Further $\Gamma \tau^{2} \in$ $E_{1}\left(-N_{E / E_{1}} E\right), \tau\left(\tau^{2}\right)=\tau^{2}, \tau^{2} \sigma\left(\tau^{2}\right) \in N_{E / E_{3}} E^{\times}$Гhence $a_{\tau^{2}}=\left(\chi\left(\tau^{2}\right), \chi\left(\tau\left(\tau^{2}\right)\right), 1 / \chi\left(\tau\left(\tau^{2}\right)\right)\right.$, $\left.1 / \chi\left(\tau^{2}\right)\right) \Gamma$ and $a_{\tau}=\left(\chi\left(\tau^{2}\right), 1,1,1 / \chi\left(\tau^{2}\right)\right)$ satisfies $a_{\tau} \tau\left(a_{\tau}\right)=a_{\tau^{2}}\left(\chi\left(\tau\left(\tau^{2}\right)\right)=\chi\left(\tau^{2}\right)\right)$ and $a_{\tau} \tau\left(a_{\sigma}\right)=a_{\tau \sigma}=a_{\sigma \tau}=a_{\sigma} \sigma\left(a_{\tau}\right)$. Moreover $\Gamma \phi\left(a_{\tau}\right)=I=\partial b(\tau)$. The θ-endoscopic group defined by $b=(1,1,-1,-1)$ is of type (2).

Now τ acts on \hat{T}_{C} by mapping $((u, v) ;(x, y))$ to $((v, u) ;(x, y)) ; \sigma \tau$ maps it to $((u, v) ;(y, x)) \Gamma$ and σ to $((v, u) ;(y, x)) \Gamma$ thus the endoscopic group is $\mathbf{C}=(G L(2) \times G L(2))^{\prime}$.
(IV) Suppose that $\rho(\Gamma)=\langle\rho(\sigma)=(3421)\rangle \Gamma T^{*}=\left\{x=\left(\alpha, \sigma \alpha, \sigma^{3} \alpha, \sigma^{2} \alpha ; e\right) ; \alpha \in E^{\times}, e \in F^{\times}\right\} \Gamma$ $\left.V=\left\{x=\left(\alpha, \sigma \alpha, \sigma^{3} \alpha=\sigma \alpha, \sigma^{2} \alpha=\alpha ; 1 / \alpha \sigma \alpha\right) ; \alpha \in E_{3}^{\times}\right)\right\} \Gamma$ and $\kappa \neq 1$ is given by $x(\in V /(1-$ $\left.\theta) T^{*}\right) \mapsto \chi_{E / E_{3}}(\alpha), \chi_{E / E_{3}}$ being the non trivial character of E_{3}^{\times}which is trivial on $N_{E / E_{3}} E^{\times}$. Choosing an extension χ of $\chi_{E / E_{3}}$ to $E^{\times} \Gamma$ we can extend κ to $T^{*}\left(\right.$ and $H^{1}\left(T^{*} \rightarrow T^{*}\right)$) by $x \mapsto \chi(\alpha)$. A corresponding element of $H^{1}(\hat{T} \xrightarrow{\phi} \hat{T})$ is a pair $(a, b) \Gamma$ where a is a 1-cocycle of $W_{E / F}$ in \hat{T}. Note that $1 \rightarrow E^{\times} \rightarrow W_{E / E_{3}} \rightarrow\left\langle\sigma^{2}\right\rangle \rightarrow 1 \Gamma$ where $\left(\sigma^{2}\right)^{2} \in E_{3}-N_{E / E_{3}} E$. Put $a_{z}=$ $\left(\chi(z), \chi(\sigma z), \chi\left(\sigma^{3} z\right), \chi\left(\sigma^{2} z\right) ; 1\right)$. As $\sigma^{4} \in E_{3}-N_{E / E_{3}} E \Gamma$ and $\sigma\left(\sigma^{4}\right) \cdot \sigma^{4} \in N_{E / E_{3}} E^{\times} \Gamma$ we have $\chi\left(\sigma^{4}\right)=-1$ and $\chi\left(\sigma\left(\sigma^{4}\right)\right) \chi\left(\sigma^{4}\right)=1$. Then $a_{\sigma^{4}}=(-1,-1,-1,-1)$. From $a_{\sigma^{4}}=a_{\sigma^{2}} \sigma^{2}\left(a_{\sigma^{2}}\right) \Gamma$ if $a_{\sigma^{2}}=(a, b, c, d) \Gamma$ then $a d=-1=b c$. Then $a_{\sigma^{2}}=(1,1,-1,-1)=a_{\sigma} \sigma\left(a_{\sigma}\right)=(a c, b a, c d, d b)$ has the solution $a_{\sigma}=(1,1,1,-1) \in \hat{T}$. Also $\phi\left(a_{\sigma}\right)=(-1,1,1,-1)$. If $b=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right), \sigma b=$ $\left(c^{\prime}, a^{\prime}, d^{\prime}, b^{\prime}\right)$ Гand $\partial b(\sigma)=\left(c^{\prime} / a^{\prime}, a^{\prime} / b^{\prime}, d^{\prime} / c^{\prime}, b^{\prime} / d^{\prime}\right)$ has to be $\phi\left(a_{\sigma}\right) \Gamma$ then a solution is given by $b=(1,1,-1,-1) \in \hat{T}$.

The centralizer $Z_{\hat{G}}(b \hat{\theta})$ is the group $G O\left(\begin{array}{ll}0 & w \\ w & 0\end{array}\right)$ of orthogonal similitudes of the symmetric $\operatorname{matrix}\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)$. This group is isomorphic to $(G L(2, \mathbb{C}) \times G L(2, \mathbb{C})) / \mathbb{C}^{\times}$via

$$
\left(g, g_{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \mapsto\left(\begin{array}{cc}
a g & b g \varepsilon \\
c \varepsilon g & d \varepsilon g \varepsilon
\end{array}\right), \varepsilon=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), w=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

where the similitude factor is $\operatorname{det} g_{1} \cdot \operatorname{det} g$. This is the θ-endoscopic group (2).
Note that σ acts on \hat{T}_{C} by mapping $((u, v) ;(x, y))$ to $((y, x) ;(u, v)) \Gamma$ and σ^{2} then maps it to $((v, u) ;(y, x))$. The endoscopic group is then $\mathbf{C}_{E_{3}} \Gamma E_{3}=E^{\sigma^{2}}$.

Suppose that $\rho(\Gamma)=W=\langle\rho(\sigma)=(12)(34), \rho(\tau)=(23)\rangle$. Then $\sigma \tau \sigma=(14) \Gamma$ a splitting field of T is $E / F \Gamma$ and E_{1} denotes the fixed field of $\sigma \tau \sigma$ in E. The non trivial character κ of $V /(1-\theta) T^{*}$ is given by $x=(\alpha, \sigma \alpha, \tau \sigma \alpha=\sigma \alpha, \sigma \tau \sigma \alpha=\alpha ; 1 / \alpha \sigma \alpha) \mapsto \chi_{E / E_{1}}(\alpha)$. It extends to T^{*} by $x=(\alpha, \sigma \alpha, \tau \sigma \alpha, \sigma \tau \sigma \alpha ; e) \mapsto \chi(\alpha) \Gamma$ where χ extends $\chi_{E / E_{1}}$ from E_{1}^{\times}to E^{\times}. A 1-cocycle of $W_{E / F}$ in \hat{T} is given as follows. At $z \in E^{\times} \Gamma$ put $a_{z}=(\chi(z), \chi(\sigma(z)), \chi(\sigma \tau(z)), \chi(\sigma \tau \sigma(z)))$. Then $a_{(\sigma \tau \sigma)^{2}}=(-1,1,1,-1)$. Hence $a_{\sigma \tau \sigma}=(1,1,1,-1)=a_{\sigma} \sigma\left(a_{\tau \sigma}\right)=a_{\sigma} \sigma\left(a_{\tau}\right) \sigma \tau\left(a_{\sigma}\right)=$ $(a, b, c, d)(\beta, \alpha, \delta, \gamma)(c, a, d, b)$ has a solution $a_{\sigma}=I, a_{\tau}=(1,1,-1,1) \in \hat{T} \Gamma$ and $\phi\left(a_{\tau}\right)=$ $(1,-1,-1,1)$. Then $b=(1,1,-1,-1) \in \hat{T}$ satisfies $\partial b(\sigma)=I, \partial b(\tau)=(1,-1,-1,1), \partial b(\sigma \tau \sigma)=$ $\phi\left(a_{\sigma \tau \sigma}\right)=(-1,1,1,-1)$ Гand the corresponding θ-endoscopic group is of type (2).

In the comparison of the unstable (κ-) θ-orbital integral at a strongly θ-regular element $t \Gamma$ and the stable orbital integral on the endoscopic group H_{κ} determined by κ Гa transfer factor appears. It is a product of a sign and of a Jacobian factor $\Delta_{G, H_{\kappa}}=\Delta_{G} / \Delta_{H_{\kappa}} \Gamma$ denoted $\Delta_{I V}$
in [KSГ4.5] Γ which we proceed to describe in the main cases. Thus

$$
\Delta_{G}\left(t^{*} \theta\right)=\left|\operatorname{det}\left(1-\operatorname{Ad}\left(t^{*}\right) \theta\right)\right| \operatorname{Lie} \mathbf{G} /\left.\operatorname{Lie} \mathbf{T}^{*}\right|_{F} ^{1 / 2}
$$

is $=\Delta_{H}\left(N t^{*}\right)=\left|\operatorname{det}\left(1-\operatorname{Ad}\left(N t^{*}\right)\right)\right| \operatorname{Lie} \mathbf{H} /\left.\operatorname{Lie} Z_{\mathbf{H}}\left(N t^{*}\right)\right|_{F} ^{1 / 2}$. If $t^{*}=\operatorname{diag}(x, y, z, t), N t^{*}=$ $N_{H} t^{*}=(x y, x z, y t, z t)$. Here $\mathbf{H}=G S p(2), Z_{\mathbf{H}}\left(N t^{*}\right)$ is the diagonal Γ and $\operatorname{Lie}(\mathbf{H}) / \operatorname{Lie} Z_{\mathbf{H}}\left(N t^{*}\right)$ is the direct sum $\operatorname{Lie}(\mathbf{N}) \oplus \operatorname{Lie}(\overline{\mathbf{N}}) \Gamma$ the upper and lower nilpotent subgroups. On $\operatorname{Lie}(\mathbf{N})=$
$\left(\begin{array}{cccc}0 & x_{1} & y_{1} & z_{1} \\ 0 & 0 & t_{1} & y_{1} \\ 0 & 0 & 0 & -x_{1} \\ 0 & 0 & 0 & 0\end{array}\right) \Gamma \operatorname{det}(1-\operatorname{Ad}(a, b, c, d))$ is $(1-a / b)(1-a / c)(1-a / d)(1-b / c)$. On $\operatorname{Lie}(\overline{\mathbf{N}})$ the
same factor Γ but with (a, b, c, d) replaced by $\left(a^{-1}, b^{-1}, c^{-1}, d^{-1}\right) \Gamma$ is obtained. Hence

$$
\Delta_{G}\left(t^{*} \theta\right)=|(x-t)(y-z)(x y-z t)(x z-y t)|_{F} /|x y z t|_{F}^{3 / 2} .
$$

For $\kappa=1 \Gamma$ we have $\Delta_{G}\left(t^{*} \theta\right)=\Delta_{H}\left(N t^{*}\right)$. For $\kappa \neq 1$ which defines the endoscopic group $\mathbf{C} \Gamma$ the norm $N_{G} t^{*}$ is $\left(\left(\begin{array}{cc}x y & 0 \\ 0 & z t\end{array}\right),\left(\begin{array}{cc}x z & 0 \\ 0 & y t\end{array}\right)\right) \Gamma$ and

$$
\Delta_{C}\left(N_{C} t^{*}\right)=\left|\left(1-\frac{x y}{z t}\right)\left(1-\frac{z t}{x y}\right)\left(1-\frac{x z}{y t}\right)\left(1-\frac{y t}{x z}\right)\right|_{F}^{1 / 2}=|(x y-z t)(x z-y t)|_{F} /|x y z t|_{F} .
$$

Then

$$
\Delta_{G, C}\left(t^{*}\right)=\Delta_{G}\left(t^{*} \theta\right) / \Delta_{C}\left(N_{C} t^{*}\right)=|(x-t)(y-z)|_{F} /|x y z t|_{F}^{1 / 2}
$$

For $\kappa \neq 1$ which defines the endoscopic group $\mathbf{C}_{+} \Gamma$ the norm $N_{C_{+}} t^{*}$ is

$$
(x, y, z, t) \bmod (u, 1 / u, 1 / u, u), \quad \text { and } \quad \Delta_{C_{+}}\left(N_{C_{+}} t^{*}\right)=\left|(y-z)^{2} / y z\right|_{F}^{1 / 2}
$$

so that

$$
\Delta_{G, C_{+}}\left(t^{*}\right)=|(x-t)(x y-z t)(x z-y t)|_{F} /|x t|_{F}^{3 / 2}|y z|_{F} .
$$

H. Kazhdan's decomposition.

A main ingredient in our proof of the matching is the (twisted analogue [F7] of) Kazhdan's decomposition $[\mathrm{K} \Gamma$ p. 226] Γ which we now recall. Let \mathbf{H} be a connected reductive R-group Γ where R is the ring of integers of F Cand put $H=\mathbf{H}(F), K_{H}=\mathbf{H}(R)$.

Definition ([K]). An element $k \in H$ is called absolutely semi simple if $k^{a}=1$ for some positive integer a which is prime to the residual characteristic p of R. A $k \in H$ is called topologically unipotent if $k^{q^{N}} \rightarrow 1$ as $N \rightarrow \infty, q=\#(R / \pi R), \pi$ generates the maximal ideal in R.

1. Proposition ([K]). Any element $k \in K_{H}$ has a unique decomposition $k=s u=u s$, where s is absolutely semi simple, u is topologically unipotent, and s, u lie in K_{H}. For any $k \in K_{H}$ and $x \in H$, if $\operatorname{Int}(x) k\left(=x k x^{-1}\right)$ lies in K_{H}, then x is in $K_{H} Z_{H}(s)$, where $Z_{H}(s)$ denotes the centralizer of s in H.

In fact $[\mathrm{K}]$ proves this only for $\mathbf{H}=G L(n)$ but since s is defined as a limit of a sequence of the form $k^{q^{m}} \Gamma$ both s and u lie in K_{H}.

The twisted analogue which we need is reproduced next (from [F7]). Let \mathbf{G} be a reductive connected R-group and θ an automorphism of $G=\mathbf{G}(F)$ of order $\ell((\ell, p)=1) \Gamma$ whose restriction to $K=\mathbf{G}(R)$ is an automorphism of K of order ℓ. Denote by $\langle K, \theta\rangle$ the group generated by K and θ.

Definition. The element $k \theta$ of $G \theta \subset\langle G, \theta\rangle$ is called absolutely semi-simple if $(k \theta)^{a}=1$ for some positive integer a indivisible by p.
2. Proposition ([F7, Proposition 2]). Any $k \theta \in K \theta$ has a unique decomposition $k \theta=$ $s \theta \cdot u=u \cdot s \theta$ with absolutely semi simple s θ (called the absolutely semi simple part of $k \theta$) and topologically unipotent u (named the topologically unipotent part of $k \theta$). Both s and u lie in K. In particular, $Z_{G}(s \theta \cdot u)$ lies in $Z_{G}(s \theta)$.
3. Proposition ([F7, Proposition 3]). Given $k \in K$, put $\tilde{\theta}(h)=s \theta(h) s^{-1}$, where $k \theta=$ $s \theta \cdot u$. This $\tilde{\theta}$ is an automorphism of order ℓ on $Z_{K}\left((s \theta)^{\ell}\right)$. Suppose that the first cohomology set $H^{1}\left(\langle\tilde{\theta}\rangle, Z_{K}\left((s \theta)^{\ell}\right)\right)$, of the group $\langle\tilde{\theta}\rangle$ generated by $\tilde{\theta}$, with coefficients in the centralizer $Z_{K}\left((s \theta)^{\ell}\right)$ in K, injects in $H^{1}\left(\langle\tilde{\theta}\rangle, Z_{G}\left((s \theta)^{\ell}\right)\right)$. Then any $x \in G$ such that $\operatorname{Int}(x)(k \theta)$ is in $K \theta$, must lie in $K Z_{G}(s \theta)$.

The supposition of this proposition can be verified for our group $G=G L(4, F) \times G L(1, F)$ and our automorphism θ in the same way it is verified in [F7] for $G L(3, F)$. Note also (see [F7]) that if the elements $k \theta=s \theta \cdot u$ and $k^{\prime} \theta=s^{\prime} \theta \cdot u^{\prime}$ of $K \theta$ are conjugate by $\mathbf{G}(\bar{F})(\bar{F}$ is a separable closure of F) then so are $s \theta$ and $s^{\prime} \theta \Gamma$ and if $s=s^{\prime}$ then u, u^{\prime} are conjugate in $Z_{\mathbf{G}(\bar{F})}(s \theta)$.

Our argument uses the function

$$
1_{s \theta}(u)=\left|K / K \cap Z_{G}(s \theta)\right| 1_{K}(s \theta \cdot u)=\int_{K / K \cap Z_{G}(s \theta)} 1_{K}(\operatorname{Int}(x)(s \theta \cdot u)) d x
$$

Then the orbital integral $\Phi_{1_{K}}(k \theta)=\int_{G / Z_{G}(k \theta)} 1_{K}(\operatorname{Int}(x)(k \theta)) d x$ is equal - by Proposition $3-$ to $\int_{Z_{G}(s \theta) / Z_{G}(s \theta \cdot u)} 1_{s \theta}(\operatorname{Int}(x) u) d x=\Phi_{1_{s \theta}}(u)$, the orbital integral of the characteristic function $1_{s \theta}$ of the compact subgroup $Z_{K}(s \theta)=K \cap Z_{G}(s \theta)$ of $Z_{G}(s \theta)$ (multiplied by $\left|K / Z_{K}(s \theta)\right|$) at the topologically unipotent element u in $Z_{K}(s \theta)$.

Since $(k \theta)^{2}=s \theta(s) \cdot u^{2} \Gamma$ where in our case $\theta(g, t)=(\theta(g), t \operatorname{det} g), g \in G L(4, F), t \in F^{\times} \Gamma$ $\theta(g)=J^{t} g^{-1} J^{-1} \Gamma$ we shall deal with various cases according to the values of $s \theta(s)$ (s denotes also the $G L(4, F)$-component of $s)$.
4. Lemma. If $x=s \theta(s)$ has the eigenvalue λ, then it has the eigenvalue λ^{-1} too.

Proof. If $\xi \neq 0$ is a vector with ${ }^{t} x \xi=\lambda \xi \Gamma$ then $\theta(x) J \xi=J^{t} x^{-1} J^{-1} \cdot J \xi=\lambda^{-1} J \xi \Gamma$ and $s \theta(x) s^{-1}=x$.

Then $s \theta(s)$ has eigenvalues $\left(\lambda, \lambda^{-1}, \mu, \mu^{-1}\right)$. The main case to be considered is when $s \theta(s)=$ I. Then $s J^{t} s^{-1} J^{-1}=I$ implies $s J=J^{t} s=-^{t}(s J)$ is anti symmetric Γ and

$$
\begin{aligned}
Z_{G}(s \theta) & =\left\{(g, t) ;(g, t)(s, 1)\left(\theta(g)^{-1}, t^{-1} \operatorname{det} g^{-1}\right)=(s, 1)\right. \\
& \text { thus } \left.\operatorname{det} g=1 \text { and } g s J^{t} g=s J\right\}=S p(s J) \times G L(1)
\end{aligned}
$$

Any anti symmetric matrix $s J$ is similar to $J \Gamma$ namely there exists some h in $G L(4, F)$ with $s J=h J^{t} h \Gamma$ thus $s=h \theta(h)^{-1} \Gamma$ and $S p(s J)=h S p(J) h^{-1} \Gamma$ thus we may assume $s=I$.

I. Decompositions for $G L(2)$.

Before we start computing the orbital integrals of 1_{K} on $G S p(2, F)$ and the θ-orbital integrals of 1_{K} on $G L(4, F)$ Гlet us compute the analogous integral for $G L(2, F)$. Let $D \in F-F^{2}$ with $|D|=1$ or $|\boldsymbol{\pi}|$. Denote by T the torus $T=\left\{\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right) \in G L(2, F)\right\}$; put $K=G L(2, R) \Gamma$ $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \varepsilon=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \Gamma \mathbf{D}=\left(\begin{array}{ll}0 & D \\ 1 & 0\end{array}\right) \Gamma\|g\|$ denotes $\operatorname{det} g$.

1. Lemma. We have a disjoint decomposition $G=G L(2, F)=\underset{m \geq 0}{\cup} T\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{m}\end{array}\right) K$.

Proof. Consider the embedding $T \backslash G \hookrightarrow X(D)=\left\{x \in G ;\|x\|=-D,(w \varepsilon x)^{2}=D\right.$ (equivalently: $\left.\left.{ }^{t} x=x\right)\right\} \Gamma$ by $g \mapsto \varepsilon w^{-1} \mathbf{D} g=\|g\|^{-1}{ }^{t} g \varepsilon w \mathbf{D} g$. Any $x \in X(D)$ has the form $x=k\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right) k^{\prime}$ with $|\alpha| \leq|\beta|, k, k^{\prime} \in K$. If $|\alpha|=|\beta|$ then $|\alpha|=1, x \in K$, wex is semi simple $\left((w \boldsymbol{\varepsilon} x)^{2}=D\right)$ with eigenvalues $\alpha_{1}, \alpha_{2}, \alpha_{1} \alpha_{2}=-D$ and $\alpha_{1}^{2}=\alpha_{2}^{2}=D \Gamma$ thus $\alpha_{1}=-\alpha_{2}=\sqrt{D}$. Then there exists k_{1} in K with $w \boldsymbol{\varepsilon} x=k_{1}^{-2} \mathbf{D} k_{1} \Gamma$ and $T k_{1} \mapsto x=\boldsymbol{\varepsilon} w k_{1}^{-1} \mathbf{D} k_{1}$. If $|\alpha|<|\beta|$ then $x=k\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right) k^{\prime}={ }^{t} k^{\prime}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)^{t} k$ implies ${ }^{t}\left({ }^{t} k k^{\prime}-1\right)=\left(\begin{array}{c}\alpha \\ 0 \\ 0\end{array}\right)^{t} k k^{\prime-1}\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)^{-1} \Gamma$ thus ${ }^{t} k k^{\prime}-1=\left(\begin{array}{c}k_{1} \\ k_{2} \alpha / \beta\end{array} k_{4}\right) \Gamma$ where k_{1}, k_{4} are units Thence - putting $\alpha^{\prime}=k_{1} \alpha\left\|k^{\prime}\right\|$ and $\beta^{\prime}=\left(k_{4} \beta-k_{1} \alpha\left(k_{2} / k_{1}\right)^{2}\right)\left\|k^{\prime}\right\|$ - we have

$$
k\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) k^{\prime}={ }^{t} k^{\prime}\left(\begin{array}{cc}
k_{1} & k_{2} \alpha / \beta \\
k_{2} & k_{4}
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) k^{\prime}=\left\|k^{\prime \prime}\right\|^{-1} t^{t} k^{\prime \prime}\left(\begin{array}{cc}
\alpha^{\prime} & 0 \\
0 & \beta^{\prime}
\end{array}\right) k^{\prime \prime},
$$

where $k^{\prime \prime}=\left(\begin{array}{cc}1 & k_{2} / k_{1} \\ 0 & 1\end{array}\right) k^{\prime}$ Гand $\left|\alpha^{\prime}\right|=|\alpha| \Gamma\left|\beta^{\prime}\right|=|\beta|$. Since

$$
(-a b)^{-1}\left(\begin{array}{cc}
0 & a \\
b & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & D \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & b \\
a & 0
\end{array}\right)=\left(\begin{array}{cc}
a D / b & 0 \\
0 & -b / a
\end{array}\right),
$$

any (α, β) with $|\alpha|<|\beta|, \alpha \beta=-D \Gamma$ is obtained from (a, b) with $|a|<|b|$. As $T\left(\begin{array}{ll}0 & b \\ a & 0\end{array}\right) K=$ $T\left(\begin{array}{ll}b & 0 \\ 0 & a\end{array}\right) K=T\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{m}\end{array}\right) K$ for some $m \geq 1 \Gamma$ we are done.

Denote by 1_{K} the (quotient by the volume $|K|$ of K of the) characteristic function of K in $G \Gamma$ by e the ramification index of $E=F(\sqrt{D})$ over $F \Gamma$ by q the cardinality of $R / \pi R \Gamma$ and by $q_{E}=q^{2 / e}$ the cardinality of $R_{E} / \boldsymbol{\pi}_{E} R_{E}, \boldsymbol{\pi}=\boldsymbol{\pi}_{E}^{e}$. Put ord $\left(\varepsilon \boldsymbol{\pi}^{n}\right)=n,|\varepsilon|=1,\left|\varepsilon \boldsymbol{\pi}^{n}\right|=q^{-n}$. Fix $\gamma=\alpha+\beta \sqrt{D}$ with $\beta \neq 0$ in $E, \alpha, \beta \in F$. Write $\gamma=\left(\begin{array}{cc}\alpha & \beta D \\ \beta & \alpha\end{array}\right) \in T$.
2. Lemma. The integral $\int_{T \backslash G} 1_{K}\left(g^{-1} \boldsymbol{\gamma} g\right) d g$ is equal to $\frac{q-1+2 / e}{q-1}|\beta|^{-1}-\frac{2 / e}{q-1}$.

Proof. If $f \in C_{c}^{\infty}(T \backslash G) \Gamma$ then

$$
\int_{T \backslash G} f(g) d g=\sum_{m \geq 0} \int_{K \cap\left(\begin{array}{ll}
1 & 0 \\
0 & \pi^{-m}
\end{array}\right) T\left(\begin{array}{cc}
1 & 0 \\
0 & \pi^{m}
\end{array}\right) \backslash K} f\left(\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{\pi}^{m}
\end{array}\right) k\right) d k .
$$

But $K \cap\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-m}\end{array}\right) T\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{m}\end{array}\right)=\left\{\left(\begin{array}{cc}a & b D \boldsymbol{\pi}^{m} \\ \boldsymbol{\pi}^{-m} b & a\end{array}\right) \in K\right\}=\operatorname{Int}\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-m}\end{array}\right)\left\{\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right) ;|b| \leq|\boldsymbol{\pi}|^{m}\right\}$ is $R_{E}(m)^{\times} \Gamma$ where $R_{E}(m)=\left\{a+b \sqrt{D} ;|a| \leq 1,|b| \leq\left|\boldsymbol{\pi}^{m}\right|\right\}=R+\boldsymbol{\pi}^{m} R_{E}=R+R \boldsymbol{\pi}^{m} \sqrt{D}$. Put also $R_{E}^{\times}=\left\{a+b \sqrt{D} ; a^{2}-b^{2} D \in R^{\times}\right\}$. Then

$$
\int_{T \backslash G} 1_{K}\left(g^{-1} \boldsymbol{\gamma} g\right) d g=\sum_{m \geq 0}\left[R_{E}^{\times}: R_{E}(m)^{\times}\right] 1_{K}\left(\begin{array}{c}
\alpha \boldsymbol{\pi}^{-m} \\
\beta D \boldsymbol{\pi}^{m} \\
\alpha
\end{array}\right)
$$

This sum ranges over $0 \leq m \leq \operatorname{ord}(\beta)=B$. The index is computed as follows:

$$
\begin{aligned}
{\left[R_{E}^{\times}: R_{E}(m)^{\times}\right] } & =\left[R_{E}^{\times}: 1+\pi^{m} R_{E}\right] /\left[R_{E}(m)^{\times}: 1+\pi^{m} R_{E}\right] \\
& =\frac{\left(q_{E}-1\right) q_{E}^{e m-1}}{(q-1) q^{m-1}}= \begin{cases}1, & \text { if } e=1, m=0 \Gamma \\
(q+1) q^{m-1}, & \text { if } e=1, m \geq 1 \Gamma \\
q^{m}, & \text { if } e=2,\end{cases}
\end{aligned}
$$

since $R_{E}(m)^{\times} /\left(1+\boldsymbol{\pi}^{m} R_{E}\right) \simeq R^{\times} / R^{\times} \cap\left(1+\boldsymbol{\pi}^{m} R_{E}\right), q_{E}=q^{2 / e}, \boldsymbol{\pi}=\boldsymbol{\pi}_{E}^{e}$. Then the integral is equal (when $e=2$) to:

$$
=\sum_{0 \leq m \leq B} q^{m}=\frac{q^{B+1}-1}{q-1}=\frac{q|\beta|^{-1}-1}{q-1}=\frac{q}{q-1}|\beta|^{-1}-\frac{1}{q-1},
$$

and to

$$
=1+(q+1) \sum_{1 \leq m \leq B} q^{m-1}=1+(q+1) \frac{q^{m}-1}{q-1}=\frac{q+1}{q-1}|\beta|^{-1}-\frac{2}{q-1}
$$

when $e=1$.
We shall also need an analogous decomposition for $S L(2, F)$. For $D \in F-F^{2}$ put $E=$ $F(\sqrt{D})$. The torus $T=\left\{\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right) \in G L(2, F)\right\}$ is isomorphic to E^{\times}. For $\rho \in F^{\times}$put $T^{\rho}=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & \rho\end{array}\right)^{-1} T\left(\begin{array}{ll}1 & 0 \\ 0 & \rho\end{array}\right)=\left\{\left(\begin{array}{cc}a & b D \rho \\ b / \rho & a\end{array}\right)\right\}$. Write $\phi_{\rho}^{D}(a+b \sqrt{D})=\left(\begin{array}{cc}a & b D \rho \\ b / \rho & a\end{array}\right)$. Put $T_{0}^{\rho}=T^{\rho} \cap S L(2, F), K_{0}=$ $K \cap S L(2, F)$. As usual $\Gamma \pi$ is a generator of the maximal ideal in the ring R of integers in $F \Gamma$ and ε is a unit Γ in R^{\times}. Write $\bar{\rho}=\operatorname{ord}(\rho)$ thus $|\rho|=|\boldsymbol{\pi}|^{\bar{\rho}}$. Fix $\rho \in\{1, \boldsymbol{\pi}\}$ if E / F is unramified Γ and $\rho \in\{1, \varepsilon\}=R^{\times} / R^{\times 2}$ if E / F is ramified.
3. Lemma. If E / F is unramified then $S L(2, F)$ is the disjoint union over the set of $j \geq 0$ such that 2 divides $j-\bar{\rho}$, and over $\varepsilon \in R^{\times} / R^{\times 2}$ if $j>0$ and $\varepsilon=1$ if $j=0$, of the sets $T_{0}^{\rho} r_{j, \varepsilon} K_{0}$, where $r_{j, \varepsilon}=t_{\varepsilon} \operatorname{diag}\left(\boldsymbol{\pi}^{-(j-\bar{\rho}) / 2}, \varepsilon \pi^{(j-\bar{\rho}) / 2}\right)$, and where t_{ε} is an element of T^{ρ} with determinant $\left\|t_{\varepsilon}\right\|=\varepsilon^{-1}$. If E / F is ramified then the union $S L(2, F)=\cup_{j \geq 0} T_{0}^{\rho} r_{j} K_{0}$ is disjoint, where $r_{j}=\phi_{\rho}^{D}\left(\boldsymbol{\pi}_{E}^{-j}\right) \operatorname{diag}\left(1, \boldsymbol{\pi}^{j}\right), \boldsymbol{\pi}_{E}=\sqrt{-\boldsymbol{\pi}}, D=-\boldsymbol{\pi}$.
Proof. We have a disjoint union $G L(2, F)=\cup_{j \geq 0} T\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j}\end{array}\right) K=\underset{j \geq 0}{\cup} T^{\rho}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{j-\bar{\rho}}\end{array}\right) K \Gamma$ for any $\rho=u \pi^{\bar{\rho}}$ in $F^{\times}\left(u \in R^{\times}\right)$. When E / F is unramified $\Gamma \pi^{\bar{j}-\bar{\rho}} \operatorname{lies}$ in $R^{\times} N_{E / F} E^{\times}\left(=\operatorname{det}\left(T^{\rho} K\right)\right)$ precisely when 2 divides $j-\bar{\rho}$. In this case $\Gamma r_{j}=\operatorname{diag}\left(\boldsymbol{\pi}^{-(j-\bar{\rho}) / 2}, \boldsymbol{\pi}^{(j-\bar{\rho}) / 2}\right) \operatorname{lies}$ in $T^{\rho} \operatorname{diag}\left(1, \boldsymbol{\pi}^{j-\bar{\rho}}\right)$ $\cap S L(2, F)$. If $t r_{j} k$ lies in $S L(2, F) \Gamma$ then $\|t\|$ lies in $R^{\times} \Gamma$ in fact multiplying t by $\varepsilon \in R^{\times}$we may assume that $\|t\|$ ranges over $R^{\times} / R^{\times 2}$. Note that $\|t\|=N_{E / F}\left(\left(\phi_{\rho}^{D}\right)^{-1}(t)\right)$. Since E / F is unramified Γ we have $N_{E / F} R_{E}^{\times}=R^{\times} \Gamma$ where R_{E} is the ring of integers in E. Hence for any ε in R^{\times}there is t_{ε} in T^{ρ} with $\left\|t_{\varepsilon}\right\|=\varepsilon^{-1} \Gamma$ and we may assume that $t=t_{0} t_{\varepsilon} \in T_{0}^{\rho} t_{\varepsilon}$. Then $t r_{j} k$ lies in $T_{0}^{\rho} t_{\varepsilon} r_{j} \operatorname{diag}(1, \varepsilon) K_{0}$.

If $j=0 \Gamma$ then $T_{0}^{\rho} t_{\varepsilon}\left(\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right) K_{0}=T_{0}^{\rho} K_{0}$. Otherwise the cosets $T_{0}^{\rho} t_{\varepsilon} r_{j}\left(\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right) K_{0}$ and $T_{0}^{\rho} r_{j} K_{0}$ are disjoint Γ since $r_{j}^{-1} t t_{\varepsilon} r_{j} \in K_{0}\left(\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right)$ implies that $\varepsilon=\left\|t t_{\varepsilon}\right\| \in R^{\times 2}$ when $j>0$. In particular Γ when $\bar{\rho}=1 \Gamma$ and $\varepsilon \in R^{\times}-R^{\times 2} \Gamma t_{\varepsilon}$ is not in K.

If E / F is ramified we can choose the uniformizer π_{E} in $R_{E} \subset E$ to be $\sqrt{-\pi} \Gamma$ and D to be $-\pi \Gamma$ so that $N_{E / F} \boldsymbol{\pi}_{E}$ is $\boldsymbol{\pi}$. Then $G L(2, F)=\bigcup_{j \geq 0} T^{\rho} \phi_{\rho}^{D}\left(\boldsymbol{\pi}_{E}^{-j}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j}\end{array}\right) K$. If $t r_{j} k$ lies in $S L(2, F)$ then $\|t\| \in R^{\times} \cap N_{E / F} E^{\times}=R^{\times 2}$. Hence $t=t_{0} \varepsilon$ with $\left\|t_{0}\right\|=1$ and $\varepsilon \in R^{\times} \Gamma$ and $S L(2, F)=\underset{j \geq 0}{\cup} T_{0}^{\rho} r_{j} K_{0}$.
4. Corollary. For $f \in C_{c}^{\infty}(S L(2, F))$, since $S L(2, F)=\underset{r \in R}{\cup} T_{0} r K_{0}$, we have

$$
\begin{aligned}
\int_{S L(2, F)} f(h) d h & =\sum_{r \in R}\left|T_{0} \cap r K_{0} r^{-1}\right|_{T_{0}}^{-1} \int_{T_{0}} d t \int_{K_{0}} f(t r k) d k \\
& =\sum_{r \in R}\left|R_{T}^{\times}\right|^{-1}\left[R_{T}^{\times}: T_{0} \cap r K_{0} r^{-1}\right] \int_{T_{0}} d t \int_{K_{0}} f(t r k) d k
\end{aligned}
$$

where $R_{T}=T_{0}(R)=T_{0} \cap K_{0}$.
Yet another analogue is when $E_{1}=F(\sqrt{D})$ and $E_{3}=F(\sqrt{A})$ are two quadratic extensions of $F \Gamma$ one of which is ramified while the other is not. A prime indicates determinant in $F^{\times} \Gamma$ for $G L\left(2, E_{3}\right)^{\prime}, K^{\prime}\left(K=G L\left(2, R_{3}\right)\right), T_{\rho}^{\prime}\left(T_{\rho}\right.$ is the torus $\left(\begin{array}{cc}a & b D \rho \\ b / \rho & a\end{array}\right)$ in $G L\left(2, E_{3}\right)$ which is isomorphic to $E^{\times}, E=E_{1} E_{3}$). We normalize A, D, ρ to be integral of minimal order $\Gamma \rho$ represents $E_{3}^{\times} / N_{E / E_{3}} E^{\times} \Gamma$ and we write $\rho=u \pi_{3}^{\bar{\rho}} \Gamma \bar{\rho}=\operatorname{ord}_{3} \rho \Gamma u \in R_{3}^{\times}$. Of course ΓR_{3} is the ring $R_{E_{3}}$ of integers in $E_{3} \Gamma$ and π_{3} denotes $\pi_{E_{3}}$.
5. Lemma. We have a disjoint decomposition $G L\left(2, E_{3}\right)^{\prime}=\cup T_{\rho}^{\prime} r_{j} K^{\prime}$, where $j \geq 0$ and $r_{j} \in T_{\rho}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j}\end{array}\right)$ if E / E_{3} is ramified (E_{1} / F is ramified), while when E / E_{3} is unramified, the summation ranges over $j \geq 0$ such that $j-\bar{\rho}$ is even, and $r_{j}=\boldsymbol{\pi}_{3}^{-(j-\bar{\rho}) / 2}\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}_{3}^{j-\bar{\rho}}\end{array}\right)$.

Proof. We use $G L\left(2, E_{3}\right)=\cup_{j \geq 0} T_{\rho}\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}_{3}^{j-\bar{\rho}}\end{array}\right) K$. When E / E_{3} is ramified $\Gamma \bar{\rho}=0, \boldsymbol{\pi}_{3}=-D \in F^{\times}$ and $\boldsymbol{\pi}_{E}=\sqrt{D} \Gamma$ so that $N_{E / E_{3}}\left(\boldsymbol{\pi}_{E}\right)=\boldsymbol{\pi}_{3}$. Hence if $h=t r k \in G L\left(2, E_{3}\right)^{\prime}$ we may assume that $\|h\| \in R^{\times} \Gamma$ and rewrite h as $h=t t_{0} r k$ for some $t_{0} \in T_{\rho}$ with $\left\|t_{0} r\right\|=1$. Then $\|t\| \in$ $R_{3}^{\times} \cap N_{E / E_{3}} E^{\times}=R_{3}^{\times 2} \Gamma$ so there is $\varepsilon \in R_{3}^{\times}$with $\|t\|=\varepsilon^{2} \Gamma$ and we can write $h=\varepsilon^{-1} t \cdot t_{0} r \cdot \varepsilon k \Gamma$ with $\left\|\varepsilon^{-1} t\right\|=1$ and $\|\varepsilon k\| \in R^{\times}$.

When E / E_{3} is unramified Γ and $h=t r k \in G L\left(2, E_{3}\right)^{\prime}, r=\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j-\bar{\rho}}\end{array}\right) \Gamma$ since $\|t\| \in N_{E / E_{3}} E^{\times}$ $=\pi_{3}^{2 \mathbb{Z}} R_{3}^{\times}$Гand $\boldsymbol{\pi}_{F}=\pi_{3}^{2}$ (since E_{3} / F is ramified) Γ we must have that $j-\bar{\rho}$ is even. We may assume that $\|h\|$ lies in $R^{\times} \Gamma$ take r_{j} as in the lemma Γ and modify k by a scalar in R_{3}^{\times}. Then $\|k\|$ is represented by $R_{3}^{\times} / R_{3}^{\times 2} \Gamma$ namely by $R^{\times} \Gamma$ since $R_{3}^{\times}=R_{3}^{\times 2} R^{\times}$when E_{3} / F is ramified $\left(a+b \sqrt{\pi}=a\left(1+\frac{b}{a} \sqrt{\pi}\right) \in R^{\times} R_{3}^{\times 2}\right)$.

J. Decomposition for $S p(2)$.

In computing the orbital integrals of 1_{K} on $H=\operatorname{GSp}(2, F) \Gamma$ we shall use the following decomposition.

1. Lemma. We have a disjoint decomposition $H=G S p(2, F)=\underset{n \geq 0}{\cup} K u_{n} \mathbf{C}_{A}=\underset{n \geq 0}{\cup} \mathbf{C}_{A} u_{n} K$, where $A \in F-F^{2}, u_{n}=\left(\begin{array}{cccc}1 & 0 & 0 & \pi^{-n} / A \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), \mathbf{C}_{A}=\left\{\left(\begin{array}{c}\mathbf{a} \\ \mathbf{c} \\ \mathbf{c}\end{array}\right) \in H ; \mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} \\ A a_{2} & a_{1}\end{array}\right), \mathbf{b}=\ldots\right\}, K=$ $G S p(2, R)$, and $|A|=1$ or $=|\boldsymbol{\pi}|$.

Proof. It suffices to show one of these decompositions Γ since $u_{n}^{-1}=\left(\begin{array}{cc}-I & 0 \\ 0 & I\end{array}\right) u_{n}\left(\begin{array}{cc}-I & 0 \\ 0 & I\end{array}\right)$. Write $g_{1} \equiv g$ if $g_{1} \in K g C_{A}$. Using $G L(2, F)=\bigcup_{m \geq 0}\left\{\left(\begin{array}{cc}a & b A \\ b & a\end{array}\right)\right\}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{m}\end{array}\right) G L(2, R)$
$=\underset{m \geq 0}{\cup} G L(2, R)\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{m}\end{array}\right)\left\{\left(\begin{array}{cc}a & b \\ b A & a\end{array}\right)\right\} \Gamma$ we conclude that any $g \in H=K P \Gamma$ where P is the Siegel parabolicГof type (2, 2) Гhas

$$
\begin{aligned}
g & \equiv\left(\begin{array}{ccc}
Y & 0 \\
0 & w^{t} Y^{-1} w
\end{array}\right)\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right) \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \pi^{n} & 0 \\
0 & \pi^{-n} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & \pi^{-i} / A \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \in K\left(\begin{array}{cccc}
1 & 0 & 0 & \pi^{-j} / A \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) C_{A} .
\end{aligned}
$$

The last relation (\in) is clear when $n=0 \Gamma$ where $j=i$. If $i=0<n$ then $j=n$ Гsince

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & & & 1 / A \\
& \boldsymbol{\pi}^{n} & 0 & \\
& 0 & \boldsymbol{\pi}^{-n} & \\
0 & & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & \left(1+\boldsymbol{\pi}^{-n}\right) / A \\
0 & 1 & 1+\boldsymbol{\pi}^{-n} & 0 \\
0 & \pi^{n} & 0 & 0 \\
A \boldsymbol{\pi}^{n} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & & \\
& 1 & 0 \\
& \\
& 0 & 1
\end{array}\right. \\
& 0 \\
& \\
& \\
& =\left(\begin{array}{cccc}
1+\boldsymbol{\pi}^{n} & 0 & 0 & 0 \\
0 & \boldsymbol{\pi}^{n} & \boldsymbol{\pi}^{n}+1 & 0 \\
0 & 1 & 0 & 0 \\
\boldsymbol{\pi}^{n} A & 0 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

Note that $\left(\begin{array}{ccc}1 & & A^{-1} \\ 1 & 0 & \\ 0 & 1 & \\ 0 & & 1\end{array}\right)=\left(\begin{array}{ccc}1 & & 0 \\ 1 & -1 & \\ 0 & & 1 \\ 0 & & \end{array}\right)\left(\begin{array}{ccc}1 & & A^{-1} \\ 1 & 1 & \\ 0 & 1 & \\ 0 & & 1\end{array}\right) \in K C_{A}$. If $i \leq 2 n$ we reduce to $i=0<n$ to get $j=n$ Гsince

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & & & 0 \\
& \pi^{n} & 0 & \\
& 0 & \pi^{-n} & \\
0 & & & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & \pi^{-i} / A \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \equiv\left(\begin{array}{cccc}
1 & & & 0 \\
& \pi^{n} & & \\
& & \pi^{-n} & \\
& & & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \\
& 1 & -\pi^{-i} & \\
& 0 & 1 & \\
0 & & & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & & & 0 \\
& 1 & -\pi^{2 n-i} & \\
& 0 & 1 & \\
0 & & & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & & & 0 \\
& \pi^{n} & 0 & \\
& 0 & \pi^{-n} & \\
0 & & & 1
\end{array}\right) \equiv\left(\begin{array}{cccc}
1 & & & 0 \\
& \pi^{n} & 0 & \\
& 0 & \pi^{-n} & \\
0 & & & 1
\end{array}\right) \text {. }
\end{aligned}
$$

When $i>2 n$ we obtain $j=i-n \Gamma$ since

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & 0 & \boldsymbol{\pi}^{-i} / A \\
& \boldsymbol{\pi}^{n} & 0 & 0 \\
& 0 & \boldsymbol{\pi}^{-n} & 0 \\
0 & & & 1
\end{array}\right)\left(\begin{array}{cccc}
\boldsymbol{\pi}^{-n} & 0 & 0 & 1 \\
0 & \boldsymbol{\pi}^{-n} & A & 0 \\
0 & \boldsymbol{\pi}^{i}\left(1-\boldsymbol{\pi}^{-n}\right) & -\boldsymbol{\pi}^{n} & 0 \\
\boldsymbol{\pi}^{i}\left(1-\boldsymbol{\pi}^{-n}\right) A & 0 & 0 & -\boldsymbol{\pi}^{n}
\end{array}\right)\left(\begin{array}{lll}
1 & & \boldsymbol{\pi}^{n-i} / A \\
& 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 1-\boldsymbol{\pi}^{n-i} / A \\
0 & 1 & \boldsymbol{\pi}^{n} A & 0 \\
0 & \boldsymbol{\pi}^{i-n}\left(1-\boldsymbol{\pi}^{-n}\right) & -1 & 0 \\
\boldsymbol{\pi}^{i}\left(1-\boldsymbol{\pi}^{-n}\right) A & 0 & 0 & -\boldsymbol{\pi}^{n}
\end{array}\right)\left(\begin{array}{ccc}
1 & & \boldsymbol{\pi}^{n-i} / A \\
& 10 & 0 \\
0 & 01 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & \boldsymbol{\pi}^{n} A & 0 \\
0 & \boldsymbol{\pi}^{i-n}\left(1-\boldsymbol{\pi}^{-n}\right) & -1 & 0 \\
A \boldsymbol{\pi}^{i}\left(1-\boldsymbol{\pi}^{-n}\right) & 0 & 0 & -1
\end{array}\right) \in K .
\end{aligned}
$$

In order to verify that the union is disjoint Γ we need to show that $u_{n} h u_{m}^{-1} \in K$ for $h \in C_{A}$ implies that $m=n$. Thus

$$
\begin{aligned}
K \ni & \left(\begin{array}{ccc}
1 & 10 & \pi^{-n} / A \\
& 10 & \\
0 & 01 & 1
\end{array}\right)\left(\begin{array}{cccc}
a_{1} & a_{2} & b_{1} & b_{2} \\
a_{2} A & a_{1} & b_{2} A & b_{1} \\
c_{1} & c_{2} & d_{1} & d_{2} \\
c_{2} A & c_{1} & d_{2} A & d_{1}
\end{array}\right)\left(\begin{array}{ccc}
1 & & -\pi^{-m} / A \\
& 10 & \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{1}+c_{2} \pi^{-n} & a_{2}+c_{1} \pi^{-n} / A & b_{1}+d_{2} \pi^{-n} & b_{2}+d_{1} \pi^{-n} / A-\pi^{-m}\left(a_{1}+c_{2} \pi^{-n}\right) / A \\
A a_{2} & a_{1} & A b_{2} & b_{1}-a_{2} \pi^{-m} \\
c_{1} & c_{2} & d_{1} & d_{2}-c_{1} \pi^{-m} / A \\
A c_{2} & c_{1} & A d_{2} & d_{1}-c_{2} \pi^{-m}
\end{array}\right) .
\end{aligned}
$$

If $m=0$ and $n \geq 1 \Gamma$ using the top row we see that $\left|c_{2}\right|<1,\left|c_{1}\right|<1,\left|d_{2}\right|<1,\left|d_{1}\right|<1$, but then considering the bottom two rows we see that the last matrix is not in K Chence $n=m$ if $m=0$.

If $n \neq m \Gamma$ without loss of generality $1 \leq n<m$. Using the right column: $c_{2} \in \pi^{m} R, c_{1} \in$ $\pi^{m} R, a_{2} \in \pi^{m-n} A^{-1} R$ (since $b_{1} \in \pi^{-n} \bar{A}^{-1} R$ by top row Γ third entry Γ and third entry of bottom row). Then a_{1} is a unit (the last three entries in the first column are in πR) Гhence the fourth entry of top row $\Gamma x \Gamma$ has absolute value $\left|a_{1} \pi^{-m} A^{-1}\right|>1 \Gamma$ contradiction. Then $n=m$ as asserted.

There is an analogous decomposition for $S p(2, F)$.
2. Lemma. We have a disjoint decomposition $\operatorname{Sp}(2, F)=\underset{m \geq 0}{\cup} \mathbf{C}_{A}^{1} u_{m} K^{1}$, where the superscript 1 stands for the subgroup of elements with determinant one.
Proof. We can write $K=\cup\left(\begin{array}{cc}I & 0 \\ 0 & r\end{array}\right) K^{1}$ Гunion over $r \in R^{\times}$Гand $\mathbf{C}_{A}=\cup \mathbf{C}_{A}^{1}\left(\begin{array}{ll}I & 0 \\ 0 & \lambda\end{array}\right), \lambda \in F^{\times}$. Then $\mathbf{C}_{A} u_{m} K$ is a union of $\mathbf{C}_{A}^{1}\left(\begin{array}{cc}I & 0 \\ 0 & \lambda\end{array}\right) u_{m}\left(\begin{array}{c}I \\ 0 \\ 0\end{array}\right) K^{1}$ Гand such a coset lies in $S p(2, F)\left(\right.$ thus $\left(\begin{array}{ll}I & 0 \\ 0 & \lambda\end{array}\right) u_{m}\left(\begin{array}{ll}I & 0 \\ 0 & r\end{array}\right)$ lies in $S p(2, F)$) only when $\lambda r=1$. Writing $\left(\begin{array}{cc}I & 0 \\ 0 & r^{2}\end{array}\right)=r\left(\begin{array}{cc}r^{-1} & 0 \\ 0 & r\end{array}\right)$ and noting that $\left(\begin{array}{c}r^{-1} \\ 0\end{array} \quad \begin{array}{r}0\end{array}\right)$ lies in
K^{1} and $\mathbf{C}_{A}^{1} \Gamma$ we have $S p(2, F)=\cup \mathbf{C}_{A}^{1}\left(\begin{array}{cc}I & 0 \\ 0 & r^{-1}\end{array}\right) u_{m}\left(\begin{array}{ll}I & 0 \\ 0 & r\end{array}\right) K^{1} \Gamma$ where r ranges over $R^{\times} / R^{\times 2}$. Note that instead of u_{m} we can work with $u_{m}^{\prime}=\left(\begin{array}{cc}I & X \\ 0 & I\end{array}\right), X=\left(\begin{array}{cc}0 & 0 \\ \pi^{-m} & 0\end{array}\right)$ Isince the quotient of the two elements lies in \mathbf{C}_{A}^{1}. It remains to note that

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & & & 0 \\
& 1-\boldsymbol{\pi}^{-m} & \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & -\boldsymbol{\pi}^{-m} r & 0 \\
A & 0 & 0 & -\boldsymbol{\pi}^{-m} r \\
-\boldsymbol{\pi}^{m} c & 0 & 0 & -r \\
0 & -\boldsymbol{\pi}^{m} c & -r A & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & & & 0 \\
& 1 r \boldsymbol{\pi}^{-m} & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
A+c & 0 & 0 & 0 \\
-c \boldsymbol{\pi}^{m} & 0 & 0 & -r \\
0 & -c \boldsymbol{\pi}^{m} & -c r-r A & 0
\end{array}\right)
\end{aligned}
$$

lies in K^{1} when $c=-r^{-1}-A$ (we choose $r \in R^{\times}$with $c \neq 0$). Hence $\mathbf{C}_{A}^{1}\left(\begin{array}{cc}I & 0 \\ 0 & r^{-1}\end{array}\right) u_{m}\left(\begin{array}{ll}I & 0 \\ 0 & r\end{array}\right) K^{1}=$ $\mathbf{C}_{A}^{1} u_{m} K^{1} \Gamma$ and the lemma follows.

Put $K=G S p(2, R), K_{m}^{A}=\mathbf{C}_{A} \cap u_{m} K u_{m}^{-1} \Gamma$ and $C_{A}=G L(2, F(\sqrt{A}))^{\prime}$ for the group of $g \in G L(2, F(\sqrt{A}))$ with determinant in F^{\times}. We write $a=a_{1}+a_{2} / \sqrt{A}$ for an element of $F(\sqrt{A}), a_{1}, a_{2} \in F \Gamma$ and define

$$
\phi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} & a_{2} / A & b_{2} & b_{1} \\
a_{2} & a_{1} & b_{1} A & b_{2} \\
c_{2} / A & c_{1} / A & d_{1} & d_{2} / A \\
c_{1} & c_{2} / A & d_{2} & d_{1}
\end{array}\right)
$$

3. Lemma. The map $\phi_{m}: C_{A}=G L(2, F(\sqrt{A}))^{\prime} \rightarrow \mathbf{C}_{A}$,

$$
\phi_{m}:\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \mapsto \phi\left(\left(\begin{array}{cc}
1 & 0 \\
0 & A \boldsymbol{\pi}^{m}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{A}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / \sqrt{A}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / A \boldsymbol{\pi}^{m}
\end{array}\right)\right),
$$

is an isomorphism which maps $K_{m}=G L\left(2, R_{F(\sqrt{A})}(m)\right)^{\prime}$ onto K_{m}^{A}. Here $R_{F(\sqrt{A})}(m)=$ $R+\pi^{m} \sqrt{A} R=R+\pi^{m} R_{F(\sqrt{A})}$, and as usual, prime indicates"determinant in F^{\times}".
Proof. Note that

$$
\begin{aligned}
& u_{m} \phi\left(\left(\begin{array}{cc}
1 & 0 \\
0 & A \pi^{m}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \pi^{-m} A^{-1}
\end{array}\right)\right) u_{m}^{-1}= \\
& \left(\begin{array}{ccc}
1 & & \boldsymbol{\pi}^{-m} A^{-1} \\
& 10 & \\
0 & 01 & 1
\end{array}\right)\left(\begin{array}{cccc}
a_{1} & a_{2} / A & b_{2} / A \boldsymbol{\pi}^{m} & b_{1} / A \pi^{m} \\
a_{2} & a_{1} & b_{1} / \pi^{m} & b_{2} / A \boldsymbol{\pi}^{m} \\
c_{2} \boldsymbol{\pi}^{m} & c_{1} \boldsymbol{\pi}^{m} & d_{1} & d_{2} / A \\
c_{1} A \boldsymbol{\pi}^{m} & c_{2} \boldsymbol{\pi}^{m} & d_{2} & d_{1}
\end{array}\right)\left(\begin{array}{ccc}
1 & & -A^{-1} \boldsymbol{\pi}^{-m} \\
& 10 & \\
0 & 01 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{1}+c_{1} & \left(a_{2}+c_{2}\right) / A & \left(b_{2}+d_{2}\right) / A \pi^{m} & \left(b_{1}+d_{1}-a_{1}-c_{1}\right) / A \pi^{m} \\
a_{2} & a_{1} & b_{1} / \boldsymbol{\pi}^{m} & \left(b_{2}-a_{2}\right) / A \pi^{m} \\
c_{2} \pi^{m} & c_{1} \boldsymbol{\pi}^{m} & d_{1} & \left(d_{2}-c_{2}\right) / A \\
c_{1} A \boldsymbol{\pi}^{m} & c_{2} \pi^{m} & d_{2} & d_{1}-c_{1}
\end{array}\right)
\end{aligned}
$$

lies in K precisely when $a_{1}, a_{2}, d_{1}, d_{2}, c_{1} \in R ; a_{2}+c_{2}, c_{2}-d_{2} \in A R ; b_{2}+d_{2}, a_{2}-b_{2}, A b_{1}, b_{1}+$ $d_{1}-a_{1}-c_{1} \in A \pi^{m} R$ एin particular $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2} \in R$. Replacing $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ by

$$
\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
a+b & b \\
c-a+d-b & d-b
\end{array}\right)
$$

namely replacing a by $a+b \Gamma d$ by $d-b \Gamma c$ by $c-a+d-b$ (so $a+c$ becomes $c+d \Gamma c-d$ becomes $c-a$) Γ this condition becomes: $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2} \in R ; c_{2}+d_{2}, a_{2}-c_{2} \in A R ; d_{2}, a_{2}, A b_{1}, c_{1} \in$ $A \pi^{m} R \Gamma$ and in fact the conditions $c_{2}+d_{2}, a_{2}-c_{2} \in A R$ can then be replaced by $c_{2} \in A R$. Next we further replace $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ by $\left(\begin{array}{cc}1 & 0 \\ 0 & \sqrt{A}\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / \sqrt{A}\end{array}\right)=\left(\begin{array}{cc}a & b / \sqrt{A} \\ c \sqrt{A} & d\end{array}\right) \Gamma$ where $b / \sqrt{A}=b_{2} / A+b_{1} / \sqrt{A} \Gamma$ $c \sqrt{A}=c_{2}+c_{1} A / \sqrt{A}$. Thus we replace b_{1} by $b_{2} / A, b_{2}$ by $b_{1} \Gamma c_{1}$ by $c_{2} \Gamma c_{2}$ by $c_{1} A$. Then the condition changes to: $a_{1}, a_{2}, b_{1}, c_{2}, d_{1}, d_{2} \in R ; c_{1} \in R ; d_{2}, a_{2}, b_{2}, c_{2} \in A \pi^{m} R$. This is the claim of the lemma.

Denote by $T_{\rho}=\left\{\left(\begin{array}{cc}a & b D \rho \\ b / \rho & a\end{array}\right)\right\}$ an elliptic torus in $G L\left(2, E_{3}\right)$. Thus $a, b \in E_{3}, D \in E_{3}-E_{3}^{2}$ will be assumed to lie in R_{3} and to have minimal order in $R_{3}=R_{E_{3}} \Gamma$ and ρ is taken in a set of (two) representatives (including 1) for $E_{3}^{\times} / N_{E / E_{3}} E^{\times} \Gamma$ again $\rho \neq 1$ will be taken in R_{3} to have minimal order. Here $E=E_{3}(\sqrt{D})$ Гand $E_{3}=F(\sqrt{A})$. Write \tilde{C}_{A} for $G L(2, F(\sqrt{A}))$ Гand recall that $C_{A}=\left\{g \in \tilde{C}_{A} ;\|g\| \in F^{\times}\right\}$. Also $\bar{\rho}=\operatorname{ord} \rho$.
4. Lemma. When E / E_{3} is ramified we have $C_{A}=\bigcup_{j \geq 0} T_{\rho}^{\prime} r_{j} K^{\prime}$, where $r_{j} \in T_{\rho}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j}\end{array}\right)$ has $\left\|r_{j}\right\|=1$. When E / E_{3} is unramified, $C_{A}=\cup_{j} T_{\rho}^{\prime} r_{j} K^{\prime}(j \geq 0, j-\bar{\rho}$ is even $)$, where $r_{j}=$ $\pi_{3}^{-(j-\bar{\rho}) / 2}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j-\bar{\rho}}\end{array}\right)$.
Proof. We have $\tilde{C}_{A}=G L\left(2, E_{3}\right)=\underset{j \geq 0}{\cup} T_{\rho}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j-\bar{\rho}}\end{array}\right) K \Gamma K=G L\left(2, R_{3}\right) \Gamma \boldsymbol{\pi}_{3}=\boldsymbol{\pi}_{E_{3}}$. When E / E_{3} is ramified we choose $\boldsymbol{\pi}_{3}=-D=N_{E / E_{3}}\left(\boldsymbol{\pi}_{E}\right), \boldsymbol{\pi}_{E}=\sqrt{D}$. If $h=\operatorname{trk} \in \tilde{C}_{A} \Gamma r=\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j-\bar{p}}\end{array}\right) \Gamma$ changing t in T_{ρ} we may assume $\|h\| \in R^{\times} \Gamma$ and that there is $t_{0} \in T_{\rho}$ with $\left\|t_{0} r\right\|=1$. Then $h=t t_{0} r k \Gamma$ so that $\|t\| \in R_{3}^{\times} \cap N_{E / E_{3}} E^{\times}=R_{3}^{\times 2} \Gamma$ and $\|t\|=\varepsilon^{-2}$ for some $\varepsilon \in R_{3}^{\times}$. Then $h=\varepsilon t \cdot t_{0} r \cdot \varepsilon^{-1} k \Gamma\|\varepsilon t\|=1 \Gamma\left\|\varepsilon^{-1} k\right\| \in R^{\times}$Гas required.

When E / E_{3} is unramified Γ if $h=t r k \in C_{A}$ where $r=\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j-\bar{\rho}}\end{array}\right) \Gamma$ since $N_{E / E_{3}} E^{\times}$is $\pi_{3}^{2 \mathbb{Z}} R_{3}^{\times} \Gamma$ we have that $j-\bar{\rho}$ must be even (note that $\boldsymbol{\pi}_{F}=\pi_{3}^{2}$). We can then assume that $\|h\| \in R^{\times}$. Further Γ changing t in $h=\operatorname{tr} k \Gamma$ where $r=\pi_{3}^{-(j-\bar{\rho}) / 2}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j-\bar{\rho}}\end{array}\right)$ and $\|h\| \in R^{\times}$Гwe may change $\|k\| \in R_{3}^{\times}$by an element of $R_{3}^{\times 2}\left(=\right.$ scalar in $\left.T_{\rho}\right)$. But $R_{3}^{\times}=R_{3}^{\times 2} R^{\times} \Gamma$ since $a+b \sqrt{A}=$ $a\left(1+\frac{b}{a} \sqrt{A}\right) \in R^{\times} R_{3}^{\times 2}$ when $A=\pi_{F}\left(E_{3}=F(\sqrt{A})\right.$ is ramified over F if E / E_{3} is unramified Γ $E=E_{3}(\sqrt{D}) \Gamma$ since A, D are non squares in $R \Gamma$ and $A D$ has order 1). Hence we may assume that $\|k\| \in R^{\times}$so that $k \in K^{\prime} \Gamma$ as required.

We need an analogous result for $A \in F^{\times 2}$. Note that for $A \in F-F^{2} \Gamma$ the subgroup C_{A} of H is isomorphic to $G L(2, E)^{\prime}, E=F(\sqrt{A}) \Gamma$ where the prime indicates elements with determinant in F^{\times}. The isomorphism is given by $\mathbf{a} \mapsto \tilde{a}=a_{1}+a_{2} \sqrt{A}$. Let

$$
C_{0}=\left\{\left[\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right]=\left(\begin{array}{cccc}
a & 0 & 0 & b \\
0 & \alpha & \beta & 0 \\
0 & \gamma & \delta & 0 \\
c & 0 & 0 & d
\end{array}\right) \in H\right\} ;
$$

it is isomorphic to the group $G L(2, F \oplus F)^{\prime}=\left\{\left(g, g^{\prime}\right)=\left(\left(\begin{array}{cc}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)\right)\right.$; $\left.\operatorname{det} g=\operatorname{det} g^{\prime}\right\}$. Put

$$
z(m)=\left(\begin{array}{cccc}
1 & 0 & \boldsymbol{\pi}^{-m} & 0 \\
0 & 1 & 0 & \boldsymbol{\pi}^{-m} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

5. Lemma. We have a disjoint decomposition $H=G S p(2, F)=\cup_{m \geq 0} K z(m) C_{0}$.

Proof. Using the decomposition $H=K N M$ where $N M$ is the Heisenberg parabolicГof type $(1,2,1) \Gamma$ we have $H=K\left(\begin{array}{rrr}1 & * & * \\ 1 & 0 & * \\ 0 & 1 & * \\ 0 & & 1\end{array}\right) C_{0} \Gamma$ and representatives for $K \backslash H / C_{0}$ are given by

$$
\left(\begin{array}{cccc}
1 & \boldsymbol{\pi}^{-n} & \boldsymbol{\pi}^{-m} & \boldsymbol{\pi}^{-n-m} \\
0 & 1 & 0 & \boldsymbol{\pi}^{-m} \\
0 & 0 & 1 & -\boldsymbol{\pi}^{-n} \\
0 & 0 & 0 & 1
\end{array}\right), m \geq n
$$

But this is equal to

$$
\left(\begin{array}{cccc}
1 & & & 0 \\
& 1 & 0 & \\
& -\boldsymbol{\pi}^{m-n} & -1 & \\
0 & & & -1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & -\boldsymbol{\pi}^{-m} & 0 \\
0 & 1 & 0 & -\boldsymbol{\pi}^{-m} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \boldsymbol{\pi}^{-n-m} \\
& 1 & 0 & \\
& -\boldsymbol{\pi}^{m-n} & -1 & \\
0 & & & -1
\end{array}\right)
$$

To verify that the union is disjoint Γ it suffices to show that if

$$
\begin{aligned}
&\left(\begin{array}{cccc}
1 & 0 & \pi^{-m} & 0 \\
0 & 1 & 0 & \boldsymbol{\pi}^{-m} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
a & 0 & 0 & b \\
0 & \alpha & \beta & 0 \\
0 & \gamma & \delta & 0 \\
c & 0 & 0 & d
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & -\boldsymbol{\pi}^{-n} & 0 \\
0 & 1 & 0 & -\boldsymbol{\pi}^{-n} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{cccc}
a & \gamma \boldsymbol{\pi}^{-m} & \delta \boldsymbol{\pi}^{-m}-a \boldsymbol{\pi}^{-n} & b-\gamma \boldsymbol{\pi}^{-m-n} \\
c \boldsymbol{\pi}^{-m} & \alpha & \beta-c \pi^{-m-n} & d \pi^{-m}-\alpha \pi^{-n} \\
0 & \gamma & \delta & -\gamma \pi^{-n} \\
c & 0 & -c \pi^{-n} & d
\end{array}\right)
\end{aligned}
$$

lies in $K \Gamma$ then $m=n$. If $n=0<m \Gamma$ then $\gamma, \delta, c, d \in \pi^{m} R \Gamma$ but this is impossible (bottom row in $\boldsymbol{\pi} R$). Without loss of generality $0<n<m$. Then $c \in \pi^{m} R$ implies $d \in R^{\times}$(bottom row). Since $\alpha \in R \Gamma$ the last entry on the second row $\Gamma d \pi^{-m}-\alpha \pi^{-n} \Gamma$ is not in $R \Gamma$ contradiction. We conclude that $m=n \Gamma$ and the union is indeed disjoint.

$$
\text { Put } H^{1}=S p(2, F) \Gamma C_{0}^{1}=C_{0} \cap H^{1} \simeq C_{1}=S L(2, F) \times S L(2, F), K^{1}=K \cap H^{1} .
$$

6. Lemma. $H^{1}=\underset{m \geq 0}{\cup} C_{0}^{1} z(m) K^{1}$, where the union is disjoint.

Proof. We have $H=\underset{m \geq 0}{\cup} C_{0} z(m) K$. Then $h z(m) k \in H^{1}$ implies that $h=[a, b]$ with $\|a\|=$ $\|b\| \in R^{\times} \Gamma$ and $\|k\|=\|a\|^{-2} \in R^{\times 2}$. Multiplying a, b by $\varepsilon \in R^{\times}$and k by $\varepsilon^{-1} \Gamma$ we have
that $\|a\| \in R^{\times} / R^{\times 2}$. Then $H^{1}=\underset{\substack{m \geq 0 \\ \varepsilon \in R^{\times} / R^{\times 2}}}{\cup} C_{0}^{1} x^{-1} z(m) x K^{1}$. where $x=\operatorname{diag}(1, \varepsilon, 1, \varepsilon)$. But $x^{-1} z(m) x=z(m)$. The lemma follows.

Denote by $\phi_{m}:(G L(2, F) \times G L(2, F))^{\prime} \rightarrow C_{0} \Gamma$ where the prime indicates the subgroup of pairs (A, B) with $\|A\|=\|B\| \Gamma$ the isomorphism $\phi_{m}((A, B))=\left(\begin{array}{cc}I & 0 \\ 0 & \boldsymbol{\pi}^{m}\end{array}\right)[A, \boldsymbol{\varepsilon} w B w \varepsilon]\left(\begin{array}{cc}I & 0 \\ 0 & \boldsymbol{\pi}^{-m}\end{array}\right)$. It maps $C_{1}=S L(2, F) \times S L(2, F)$ onto C_{0}^{1}.
7. Lemma. ϕ_{m} maps $K_{m}^{1}=\left\{(A, B) \in S L(2, R) \times S L(2, R) ; A-\boldsymbol{\varepsilon} B \varepsilon \in \boldsymbol{\pi}^{m} M_{2}(R)\right\}$ isomorphically to $K_{m}^{C_{0}^{1}}=C_{0}^{1} \cap z(m) K^{1} z(m)^{-1}$, and $K_{m}=\left\{(A, B) \in(G L(2, R) \times G L(2, R))^{\prime} ; A-\boldsymbol{\varepsilon} B \boldsymbol{\varepsilon} \in\right.$ $\left.\pi^{m} M_{2}(R)\right\}$ onto $K_{m}^{C_{0}}=C_{0} \cap z(m) K z(m)^{-1}$. Note that $K_{m}^{1}=K_{m} \cap C_{0}^{1}$.

Proof. Multiply:

$$
\begin{aligned}
& z(m)^{-1}\left(\begin{array}{cc}
I & 0 \\
0 & \boldsymbol{\pi}^{m}
\end{array}\right)\left(\begin{array}{cccc}
a & 0 & 0 & b \\
0 & \delta & -\gamma & 0 \\
0 & -\beta & \alpha & 0 \\
c & 0 & 0 & d
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & \boldsymbol{\pi}^{-m}
\end{array}\right) z(m) \\
& =\left(\begin{array}{cccc}
1 & 0 & -\boldsymbol{\pi}^{-m} & 0 \\
0 & 1 & 0 & -\boldsymbol{\pi}^{-m} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
a & 0 & 0 & b \boldsymbol{\pi}^{-m} \\
0 & \delta & -\gamma \boldsymbol{\pi}^{-m} & 0 \\
0 & -\beta \boldsymbol{\pi}^{m} & \alpha & 0 \\
c \boldsymbol{\pi}^{m} & 0 & 0 & d
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \boldsymbol{\pi}^{-m} & 0 \\
0 & 1 & 0 & \boldsymbol{\pi}^{-m} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a & \beta & (a-\alpha) \boldsymbol{\pi}^{-m} & (b+\beta) \boldsymbol{\pi}^{-m} \\
-c & \delta & -(\gamma+c) \boldsymbol{\pi}^{-m} & (\delta-d) \boldsymbol{\pi}^{-m} \\
0 & -\beta \boldsymbol{\pi}^{m} & \alpha & -\beta \\
c \boldsymbol{\pi}^{m} & 0 & c & d
\end{array}\right) \text {. }
\end{aligned}
$$

This lies in K^{1} precisely when $a, b, c, d, \alpha, \beta, \gamma, \delta$ lie in $R \Gamma a-\alpha, b+\beta, c+\gamma, d-\delta \Gamma$ lie in $\pi^{m} R \Gamma$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ have determinant 1.

PART II. Main comparison.

A. Strategy.

Let us review our strategy in computing the θ-orbital integrals of 1_{K}. It is based on the twisted Kazhdan decomposition. Given a semi-simple $t \theta \in K \rtimes\langle\theta\rangle, G=G L(4, F) \times$ $G L(1, F), K=G L(4, R) \times G L(1, R) \Gamma$ it has the decomposition $t \theta=u \cdot s \theta=s \theta \cdot u \Gamma$ where $s \theta$ is absolutely semi simpleГand u is topologically unipotent. Then $\Phi_{1_{K}}^{G}(t \theta)=\Phi_{1_{Z_{K}}(s \theta)}^{Z_{G}(s \theta)}(u)$. The associated stable θ-orbital integral we wish to relate to the stable orbital integral $\Phi_{1_{K_{H}}}^{H, s t}(N t) \Gamma$ where H is the endoscopic group $G S p(2, F) \Gamma$ and $N t$ is the stable orbit of the norm of t. To compute the norm we write $t=h^{-1} t^{*} \theta(h) \Gamma$ where $h \in \mathbf{G}(=\mathbf{G}(\bar{F})) \Gamma$ and $t^{*} \in T^{*} \Gamma$ where \mathbf{T}^{*} is the diagonal subgroup and $T^{*}=\mathbf{T}^{* \Gamma}$. On T^{*} the norm is defined by $T^{*} \rightarrow T^{*} /(1-\theta) T^{*} \simeq T_{H}^{*} \Gamma$ thus $N(a, b, c, d ; e)=\left(a b e, a c e, b d e, c d e ; e^{2} a b c d\right)$. A θ-semi-simple $t(t \theta$ is semi simple in $G \rtimes\langle\theta\rangle)$ is called strongly θ-regular if $Z_{G}(t \theta)$ is abelian Γ in which case the centralizer $Z_{G}\left(Z_{G}(t \theta)^{0}\right)$ of $Z_{G}(t \theta)^{0}$ in G is an F-torus T in G which is invariant under $\operatorname{Int}(t) \circ \theta \Gamma$ and $Z_{G}(t \theta)=T^{\operatorname{Int}(t) \circ \theta}$. The θ-orbit of t intersects $T^{*} \Gamma$ thus there is $h \in \mathbf{G}$ and $t^{*} \in T^{*}$ with $t=h^{-1} t^{*} \theta(h) \Gamma$ and $Z_{G}(t \theta)=h^{-1} Z_{G}\left(t^{*} \theta\right) h=h^{-1} T^{* \theta} h$. Then $T=Z_{G}\left(h^{-1} T^{* \theta} h\right)=h^{-1} T^{*} h \Gamma$ and $Z_{G}(t \theta)=$ $T^{\operatorname{Int}(t) \circ \theta}$ consists of the $x \in T$ with $t \theta(x) t^{-1}=x \Gamma$ thus $x^{-1} t \theta(x)=t$.

An F-torus T in G is determined by $h \in \mathbf{G}$ and the Galois action on \mathbf{T}^{*}. Namely Γ for $t=h^{-1} t^{*} h \in T=h^{-1} T^{*} h$ we have $h^{-1} t^{*} h=t=\sigma t=\sigma h^{-1} \sigma t^{*} \sigma h \Gamma$ and so $\sigma t^{*}=h_{\sigma}^{-1} t^{*} h_{\sigma} \Gamma$ where $\operatorname{Int}\left(h_{\sigma}^{-1}\right) \in \operatorname{Norm}\left(T^{*}, G\right)$ has the image w_{σ} in $W=W\left(T^{*}, G\right)$
$=\operatorname{Norm}\left(T^{*}, G\right) / \operatorname{Cent}\left(T^{*}, G\right)$. If T^{*} is a θ-invariant F-torus Γ taking $t^{*} \in T^{* \theta}$ we conclude that $\operatorname{Int}\left(h_{\sigma}^{-1}\right)=\operatorname{Int}\left(\theta\left(h_{\sigma}\right)^{-1}\right) \Gamma$ thus $w_{\sigma} \in W^{\theta} \Gamma$ and the torus determines a cocycle $\left\langle w_{\sigma}\right\rangle$ in $H^{1}\left(F, W^{\theta}\right)$. We denoted the homomorphism $\Gamma \rightarrow W^{\theta} \Gamma \sigma \mapsto w_{\sigma} \Gamma$ by $\rho \Gamma$ and classified the tori according to the image of $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow W^{\theta} \Gamma$ as types (1) - (3) and (I) - (IV). We explicitly realized T in the form $T=h^{-1} T^{*} h \Gamma$ with $h=\theta(h)$. Thus in each stable θ-conjugacy class of strongly θ-regular elements we have a representative $t=h^{-1} t^{*} h \Gamma$ and further we found representatives for the θ-conjugacy classes within its stable θ-conjugacy class Γ of the form $g^{-1} t g, g=g_{R}$ with $g=\theta(g)$.

A θ-semi-simple $t \in G$ is called θ-elliptic if $Z_{G}(t \theta)^{0} / Z(G)^{0}$ is anisotropic. The associated tori $T=Z_{G}\left(Z_{G}(t \theta)^{0}\right)$ are called θ-elliptic. A complete set of representatives for the θ-elliptic tori is given by the tori of type (I)-(IV). The computations of θ-orbital integrals of non θ elliptic strongly θ-regular elements can be reduced - using a standard integration formula to the case of the θ-elliptic elements so we deal only with t in tori T of types (I) - (IV).

B. Twisted orbital integrals of type (I).

Let $u=\theta(u)$ be a topologically unipotent element in $G L(4, R) \times G L(1, R)$. Then $\Phi_{1_{K}}^{G}(u \theta)=$ $\Phi_{1_{Z_{K}(\theta)}}^{Z_{G}(\theta)}(u)$ Гwhere $Z_{G}(\theta)=H^{1}=S p(2, F)$ and $Z_{K}(\theta)=K^{1}=K \cap H^{1}$. We compute the value of this integral at u in a torus of type (I). To consider also the integrals at stably θ-conjugate but not θ-conjugate elements Γ we look at a complete set of representatives Γ parametrized by ρ_{1}, ρ_{2}. Here $\rho_{i} \in\{1, \boldsymbol{\pi}\}$ if E / F is unramified Γ and $\rho_{i} \in\{1, \varepsilon\}=R^{\times} / R^{\times 2}$ if E / F is ramified. Thus take t_{ρ} in the torus $T_{\rho}^{1}=\left\{t_{\rho}=\left[\phi_{\rho_{1}}^{D}\left(a_{1}+b_{1} \sqrt{D}\right), \phi_{\rho_{2}}^{D}\left(a_{2}+b_{2} \sqrt{D}\right)\right] \in C_{0}^{1}\right\} \Gamma$ where $\phi_{\rho}^{D}(a+b \sqrt{D})=\left(\begin{array}{cc}a & b D \rho \\ b / \rho & a\end{array}\right)$. If $E^{1}=\left\{x \in E^{\times} ; N_{E / F} x=1\right\} \Gamma$ then T_{ρ}^{1} is isomorphic to $E^{1} \times E^{1}$.

By Lemma I.J. 6 we have

$$
\begin{aligned}
\Phi_{1_{K^{1}}}^{H^{1}}\left(t_{\rho}\right) & =\int_{T_{\rho}^{1} \backslash H^{1}} 1_{K^{1}}\left(g^{-1} t_{\rho} g\right) d g \\
& =\sum_{m \geq 0}\left|K^{1}\right|_{H^{1}} \int_{T_{\rho}^{1} \backslash C_{0}^{1} / C_{0}^{1} \cap z(m) K^{1} z(m)^{-1}} 1_{K^{1}}\left(z(m)^{-1} h^{-1} t_{\rho} h z(m)\right) d h
\end{aligned}
$$

The integrand in the last integral is non zero precisely when $h^{-1} t_{\rho} h$ lies in $z(m) K^{1} z(m)^{-1}$ $\cap C_{0}^{1}=K_{m}^{C_{0}^{1}}$. Hence we get

$$
=\sum_{m \geq 0}\left|K^{1}\right|_{H^{1}} \int_{T_{\rho}^{1} \backslash C_{0}^{1} / K_{m}^{C_{0}^{1}}} 1_{K_{m}^{C_{0}^{1}}}\left(h_{0}^{-1} t_{\rho} h_{0}\right) d h_{0} .
$$

Using Lemma I.J. 7 we have an isomorphism $\phi_{m}: C_{1} \rightarrow C_{0}^{1}\left(\phi_{m}(h)=h_{0}\right) \Gamma \phi_{m}\left(K_{m}^{1}\right)=K_{m}^{C_{0}^{1}}$. Define x_{ρ} by $\phi_{m}\left(x_{\rho}\right)=t_{\rho}$ Гand note that $T_{\rho}^{1}=Z_{C_{0}^{1}}\left(t_{\rho}\right)$. Hence our expression is

$$
\begin{gathered}
=\sum_{m \geq 0}\left|K^{1}\right|_{H^{1}} \int_{Z_{C_{1}}\left(x_{\rho}\right) \backslash C_{1} / K_{m}^{1}} 1_{\phi_{m}\left(K_{m}^{1}\right)}\left(\phi_{m}(h)^{-1} \phi_{m}\left(x_{\rho}\right) \phi_{m}(h)\right) d h \\
=\sum_{m \geq 0}\left[K_{0}^{1}: K_{m}^{1}\right] \int_{Z_{C_{1}}\left(x_{\rho}\right) \backslash C_{1}} 1_{K_{m}^{1}}\left(h^{-1} x_{\rho} h\right) d h .
\end{gathered}
$$

Next we change variables on $C_{1}=S L(2, F) \times S L(2, F)$. If m is even Γ

$$
h \mapsto(I, w \varepsilon)\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{m / 2} & 0 \\
0 & \boldsymbol{\pi}^{-m / 2}
\end{array}\right),\left(\begin{array}{cc}
\boldsymbol{\pi}^{m / 2} & 0 \\
0 & \boldsymbol{\pi}^{-m / 2}
\end{array}\right)\right) h
$$

sends $h^{-1} x_{\rho} h$ to $h^{-1}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{m}\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{m}\end{array}\right)\right)(I, \varepsilon w) x_{\rho}(I, w \varepsilon)\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-m}\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & \boldsymbol{\pi}^{-m}\end{array}\right)\right) h=h^{-1} t_{\rho}^{\prime} h \Gamma$ where $t_{\rho}^{\prime}=\left(t_{\rho_{1}}, t_{\rho_{2}}\right) \in C_{1} \Gamma t_{\rho_{i}}=\phi_{\rho_{i}}^{D}\left(a_{i}+b_{i} \sqrt{D}\right)$.

If m is odd Γ and E / F is unramified $\Gamma h \mapsto(I, w \boldsymbol{\varepsilon})\left(\left(\begin{array}{c}\boldsymbol{\pi}^{(m+i) / 2} \\ 0\end{array} \boldsymbol{\pi}^{-(m+i) / 2}\right),\left(\begin{array}{c}\boldsymbol{\pi}^{(m+j) / 2} \\ 0\end{array} \boldsymbol{\pi}^{-(m+j) / 2}\right)\right) h$ sends $h^{-1} x_{\rho} h$ to $h^{-1}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{i}\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & \boldsymbol{\pi}^{j}\end{array}\right)\right) t_{\rho}^{\prime}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{-i}\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{-j}\end{array}\right)\right) h \Gamma$ where $i, j \in\{ \pm 1\} \Gamma i$ is taken to be 1 if $\rho_{1}=\boldsymbol{\pi}$ and -1 if $\rho_{1}=1\left(j=1\right.$ if $\rho_{2}=\pi$ and $j=-1$ if $\left.\rho_{2}=1\right)$. Then $h^{-1} x_{\rho} h$ is mapped to $h^{-1} t_{\tilde{\rho}}^{\prime} h \Gamma$ where if $\rho=\left(\rho_{1}, \rho_{2}\right)$ then $\tilde{\rho}=\left(\tilde{\rho}_{1}, \tilde{\rho}_{2}\right) \Gamma$ and $\tilde{\rho}_{i}$ is defined by $\left\{\rho_{i}, \tilde{\rho}_{i}\right\}=\{1, \boldsymbol{\pi}\}$.

If m is odd Γ and E / F is ramified Γ we take

$$
h \mapsto(I, w \boldsymbol{\varepsilon})\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{(m+1) / 2} & 0 \\
0 & \boldsymbol{\pi}^{-(m+1) / 2}
\end{array}\right),\left(\begin{array}{cc}
\boldsymbol{\pi}^{(m+1) / 2} & 0 \\
0 & \boldsymbol{\pi}^{-(m+1) / 2}
\end{array}\right)\right)(w \boldsymbol{\varepsilon}, w \boldsymbol{\varepsilon}) h,
$$

which maps $h^{-1} x_{\rho} h$ to $h^{-1} t_{\tilde{\rho}}^{\prime} h \Gamma$ where $\tilde{\rho}_{i}=-1 / \rho_{i}\left(\rho_{i} \mapsto \tilde{\rho}_{i}\right.$ is a permutation Γ trivial if $-1 \in$ $R^{\times 2} \Gamma$ of $\left.R^{\times} / R^{\times 2}\right)$.

Put $\rho_{m}=\rho$ if m is even Γ and $\rho_{m}=\tilde{\rho}$ if m is odd. We get

$$
=\sum_{m \geq 0}\left[K_{0}^{1}: K_{m}^{1}\right] \int_{T_{\rho_{m}}^{1} \backslash C_{1}} 1_{K_{m}^{1}}\left(h^{-1} t_{\rho_{m}} h\right) d h
$$

Using the double coset decomposition for $S L(2, F)$ of Lemma I.I. 3 we get

$$
=\sum_{m \geq 0} \sum_{r \in R_{\rho_{m}}}\left[R_{T}^{1}: T_{\rho_{m}}^{1} \cap r K_{0}^{1} r^{-1}\right]\left[K_{0}^{1}: K_{m}^{1}\right] \int_{K_{0}^{1}} 1_{K_{m}^{1}}\left(k^{-1} r^{-1} t_{\rho_{m}} r k\right) d k
$$

Here $R_{T}^{1}=T_{\rho_{m}}^{1} \cap K_{0}^{1}=T_{\rho_{m}}^{1}(R)$. Let \mathbf{j} signify $\left(j_{1}, j_{2}\right)$. To simplify the notations we write ρ for ρ_{m} until the index m is explicitly needed.

By Lemma I.I.3 5 the representatives $r \in R_{\rho}$ have the form (when E / F is unramified)

$$
r=r_{\mathbf{j}}=t_{\varepsilon_{1}} \operatorname{diag}\left(\boldsymbol{\pi}^{-\left(j_{1}-\bar{\rho}_{1}\right) / 2}, \varepsilon_{1} \boldsymbol{\pi}^{\left(j_{1}-\bar{\rho}_{1}\right) / 2}\right) \times t_{\varepsilon_{2}} \operatorname{diag}\left(\boldsymbol{\pi}^{-\left(j_{2}-\bar{\rho}_{2}\right) / 2}, \varepsilon_{2} \pi^{\left(j_{2}-\bar{\rho}_{2}\right) / 2}\right),
$$

$j_{1}, j_{2} \geq 0, j_{1}-\bar{\rho}_{1}$ and $j_{2}-\bar{\rho}_{2}$ are even $\Gamma t_{\varepsilon_{i}} \in \phi_{\rho_{i}}^{D}\left(E^{\times}\right)$has determinant $\varepsilon_{i}^{-1} \Gamma$ and ε_{i} ranges over $R^{\times} / R^{\times 2}$ if $j_{i}>0 \Gamma$ it is $\varepsilon_{i}=1$ if $j_{i}=0$. When E / F is ramified the representatives take the form

$$
r=r_{\mathbf{j}}=\phi_{\rho_{1}}^{D}\left(\boldsymbol{\pi}_{E}^{-j_{1}}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{\pi}^{j_{1}}
\end{array}\right) \times \phi_{\rho_{1}}^{D}\left(\pi_{E}^{-j_{2}}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{\pi}^{j_{2}}
\end{array}\right) \quad\left(j_{1}, j_{2} \geq 0\right) .
$$

1. Lemma. The index $\left[R_{T}^{1}: T_{\rho}^{1} \cap r_{\mathbf{j}} K_{0}^{1} r_{\mathbf{j}}^{-1}\right]$ is the product of $q^{j_{1}+j_{2}}$ and : 1 if E / F is ramified or $j_{1}=j_{2}=0, \frac{q+1}{2 q}$ if E / F is unramified and either $j_{1}=0$ or $j_{2}=0,\left(\frac{q+1}{2 q}\right)^{2}$ if E / F is unramified and $j_{1} j_{2} \geq 1$.

Proof. The intersection $T_{\rho}^{1} \cap r K_{0}^{1} r^{-1}$ consists of $t_{\rho} \in T_{\rho}^{1}$ such that $r^{-1} t_{\rho} r$ lies in K_{0}^{1}. But

$$
\begin{aligned}
r_{\mathbf{j}}^{-1} t_{\rho} r_{\mathbf{j}} & =\binom{1}{0 \varepsilon_{1}^{-1} \boldsymbol{\pi}^{-\left(j_{1}-\bar{\rho}_{1}\right)}}\left(\begin{array}{cc}
a_{1} & b_{1} D \rho_{1} \\
b_{1} / \rho_{1} & a_{1}
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \varepsilon_{1} \pi^{j_{1}-\bar{\rho}_{1}}
\end{array}\right) \times \ldots \\
& =\left(\begin{array}{c}
\varepsilon_{1}^{-1} b_{1} \rho_{1}^{-1} \boldsymbol{\pi}^{-\left(j_{1}-\bar{\rho}_{1}\right)} \\
b_{1} D \rho_{1} \varepsilon_{1} \pi^{j_{1}-\bar{\rho}_{1}} \\
a_{1}
\end{array}\right) \times \ldots .
\end{aligned}
$$

Then $r^{-1} t_{\rho} r \in K_{0}^{1}$ means that $b_{i} \in \pi^{j_{i}} R$. Hence $T_{\rho}^{1} \cap r K_{0}^{1} r^{-1}$ is isomorphic to $R_{E}\left(j_{1}\right)^{1} \times$ $R_{E}\left(j_{2}\right)^{1}$. Here $R_{E}(j)=R+\pi^{j} R_{E}=R+\pi^{j} \sqrt{D} R \subset R_{E}=R+\sqrt{D} R \Gamma$ and the superscript 1 indicates the subgroup of elements with norm $N_{E / F}$ equal to 1 .

To compute the index we use the exact sequence

$$
1 \rightarrow R_{E}^{1} / R_{E}(j)^{1} \rightarrow R_{E}^{\times} / R_{E}(j)^{\times} \rightarrow R_{E}^{\times} / R_{E}^{1} R_{E}(j)^{\times} \rightarrow 1
$$

Via the norm $N=N_{E / F}$ एwe have the isomorphism $R_{E}^{\times} / R_{E}^{1} R_{E}(j)^{\times} \xrightarrow[\rightarrow]{\sim} N R_{E}^{\times} / N R_{E}(j)^{\times}$. The last group is $R^{\times} / R^{\times 2}$ if E / F is unramified and $j \geq 1$; it is trivial if E / F is ramified or $j=0$. Further Γ we have

$$
\left[R_{E}(j)^{\times}: 1+\pi^{j} R_{E}\right]=\left[R^{\times}: R^{\times} \cap\left(1+\pi^{j} R_{E}\right)\right]=\left[R^{\times}: 1+\pi^{j} R\right]=(q-1) q^{j-1}
$$

Hence $\left[R_{E}^{\times}: R_{E}(j)^{\times}\right]=\left[R_{E}^{\times}: 1+\pi^{j} R_{E}\right] /\left[R_{E}(j)^{\times}: 1+\pi^{j} R_{E}\right]$ is

$$
=\left(q^{2}-1\right) q^{2(j-1)} /(q-1) q^{j-1}=(q+1) q^{j-1}
$$

when E / F is unramified and $j \geq 1 \Gamma$ since $\boldsymbol{\pi}_{E}=\pi$ and $q_{E}=q^{2}$. When E / F is ramified it is

$$
=(q-1) q^{2 j-1} /(q-1) q^{j-1}=q^{j}
$$

$(j \geq 0) \Gamma$ since $\pi_{E}^{2}=\pi$ and $q_{E}=q$. Then $\left[R_{T}^{1}: T_{\rho}^{1} \cap r_{\mathbf{j}} K_{0}^{1} r_{\mathbf{j}}^{-1}\right.$] is the product of $\left[R_{E}^{\times}\right.$: $\left.R_{E}\left(j_{1}\right)^{\times}\right],\left[R_{E}^{\times}: R_{E}\left(j_{2}\right)^{\times}\right]$Гand 1 (if E / F is ramified or $j_{1}=j_{2}=0$) $\Gamma \frac{1}{2}$ (if E / F is unramified and either $j_{1}=0$ or $j_{2}=0$) or $\frac{1}{4}$ (if E / F is unramified and $j_{1} j_{2} \geq 1$).

Put $R_{m}=R / \pi^{m} R, \bar{K}_{m}^{1}=K_{m}^{1} / K\left(\pi^{m}\right) \Gamma$ where again $K_{m}^{1}=\{(A, B) \in S L(2, R) \times S L(2, R) ; A$ $\left.\equiv \boldsymbol{\varepsilon} B \boldsymbol{\varepsilon}\left(\bmod \boldsymbol{\pi}^{m}\right)\right\} \Gamma$ and $K\left(\boldsymbol{\pi}^{m}\right)=\left\{(A, B) \in S L(2, R)^{2} ; A \equiv I, B \equiv I\left(\bmod \boldsymbol{\pi}^{m}\right)\right\}$. Then $\bar{K}_{m}^{1}=\left\{(A, \varepsilon A \boldsymbol{\varepsilon}) ; A \in S L\left(2, R_{m}\right)\right\}$. Here $m \geq 1$. Also put $\bar{K}_{0}^{1}=K_{0}^{1} / K\left(\pi^{m}\right)=S L\left(2, R_{m}\right) \times$ $S L\left(2, R_{m}\right)$.
2. Lemma. We have that $\left[K_{0}^{1}: K_{m}^{1}\right] \int_{K_{0}^{1}} 1_{K_{m}^{1}}\left(k^{-1} r^{-1} t_{\rho_{m}} r k\right) d k$ is equal to the cardinality of

$$
L_{m}^{1}=L_{m, \rho_{m}}^{1}=\left\{y \in \bar{K}_{0}^{1} / \bar{K}_{m}^{1} ; y^{-1} r^{-1} t_{\rho_{m}} r y \in \bar{K}_{m}^{1}\right\}
$$

Proof. The integral can be expressed as

$$
\int_{K_{0}^{1} / K_{m}^{1}} 1_{K_{m}^{1}}\left(k^{-1} r^{-1} t_{\rho_{m}} r k\right) d k=\#\left\{k K_{m}^{1} \in K_{0}^{1} / K_{m}^{1} ; k^{-1} r^{-1} t_{\rho_{m}} r k \in K_{m}^{1}\right\}=\# L_{m}^{1}
$$

To compute the cardinality $\# L_{m}^{1}$ of $L_{m}^{1} \Gamma$ introduce $N_{i}=\operatorname{ord}\left(b_{i}\right)$ and a unit B_{i} with $b_{i}=$ $B_{i} \pi^{N_{i}}(i=1,2), \nu_{i}=N_{i}-j_{i}, b_{i}^{\prime}=\left(B_{i} / \varepsilon_{i} u_{i}\right) \pi^{\nu_{i}}\left(\right.$ where $\left.\rho_{i}=u_{i} \pi^{\bar{\rho}_{i}}\right) \Gamma$ and $D_{i}=D \varepsilon_{i}^{2} u_{i}^{2} \pi^{2 j_{i}}$. Further Γ put $X=\operatorname{ord}\left(a_{1}-a_{2}\right) \Gamma$ and write \bar{a} for the image of a in R_{m}. Then $t_{\rho, r}=r^{-1} t_{\rho} r=$ $\left(\begin{array}{ll}a_{1} & b_{1}^{\prime} D_{1} \\ b_{1}^{\prime} & a_{1}\end{array}\right) \times\left(\begin{array}{cc}a_{2} & b_{2}^{\prime} D_{2} \\ b_{2}^{\prime} & a_{2}\end{array}\right)$. Also put $d(A)$ for $(A, \varepsilon A \varepsilon)$. When $\nu_{1}=\nu_{2} \Gamma$ we write ν for this value.
3. Lemma. The set L_{m}^{1} is non empty precisely when (1) $0 \leq m \leq X$, (2) $\nu_{i} \geq 0$, (3) $\nu_{1}<m$ if and only if $\nu_{2}<m$, in which case $\nu_{1}=\nu_{2}$ and we write ν for the common value, (4) if $\nu<m$, and $\nu_{1}<N_{1}$ or $\nu_{2}<N_{2}$ or E / F is ramified, then $u_{1} / u_{2} \in \frac{B_{1} \varepsilon_{1}}{B_{2} \varepsilon_{2}} R^{\times 2}$, (5) if $m>2 N_{i}-\nu_{i}+$ ord $D\left(\geq \nu_{i}\right.$, thus $\left.\nu_{1}=\nu_{2}\right)$ for some $i(=1,2)$, then $N_{1}=N_{2}$ (the common value is denoted by N), and $m+\nu \leq X$.

If the set L_{m}^{1} is non empty then its cardinality is: 1 , if $m=0 ;\left(q^{2}-1\right) q^{3 m-2}$, if $1 \leq m \leq$ $\min \left(\nu_{1}, \nu_{2}\right)\left(\right.$ thus $\left.\bar{b}_{i}^{\prime}=0\right) ; 2 q^{m+2 \nu}$, if $\nu<m$, and E / F is ramified or $\nu_{1}<N_{1}$ or $\nu_{2}<N_{2}$; $(q+1) q^{m+2 \nu-1}$, if $\nu<m$ and E / F is unramified and $\nu_{1}=N_{1}$ and $\nu_{2}=N_{2}$.

Proof. The set L_{m}^{1} is isomorphic to the set of y in $S L\left(2, R_{m}\right) \times S L\left(2, R_{m}\right) / d\left(S L\left(2, R_{m}\right)\right)$ Гsuch that $y^{-1} r^{-1} t_{\rho} r y$ lies in $d\left(S L\left(2, R_{m}\right)\right)$. This is isomorphic to the set of $\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$ in $S L\left(2, R_{m}\right)$ with

$$
\left(\begin{array}{cc}
\bar{a}_{1} & \bar{b}_{1}^{\prime} \bar{D}_{1} \tag{*}\\
\bar{b}_{1}^{\prime} & \bar{a}_{1}
\end{array}\right)\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)\left(\begin{array}{cc}
\bar{a}_{2} & \bar{b}_{2}^{\prime} \bar{D}_{2} \\
\bar{b}_{2}^{\prime} & \bar{a}_{2}
\end{array}\right) .
$$

If L_{m}^{1} is non empty comparing the traces of the two components of $r^{-1} t_{\rho} r \Gamma$ we obtain $\bar{a}_{1}=\bar{a}_{2} \Gamma$ thus $0 \leq m \leq X=\operatorname{ord}\left(a_{1}-a_{2}\right)$. Consequently $(*)$ holds with \bar{a}_{1} and \bar{a}_{2} replaced by 0 . Then $\bar{b}_{1}^{\prime}=0$ if and only if $\bar{b}_{2}^{\prime}=0 \Gamma$ namely $\nu_{1} \geq m$ if and only if $\nu_{2} \geq m$.

Multiplying out the matrices in $(*) \Gamma$ we see that L_{m}^{1} is then the set of $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R_{m}^{4}$ with $x_{1} x_{4}-x_{2} x_{3}=1 \Gamma$ which satisfy

$$
\begin{aligned}
& \bar{b}_{1}^{\prime} \bar{D}_{1} x_{3}=\bar{b}_{2}^{\prime} x_{2}, \quad \bar{b}_{1}^{\prime} \bar{D}_{1} x_{4}=x_{1} \bar{b}_{2}^{\prime} \bar{D}_{2} \\
& x_{1} \bar{b}_{1}^{\prime}=x_{4} \bar{b}_{2}^{\prime}, \quad x_{2} \bar{b}_{1}^{\prime}=x_{3} \bar{b}_{2}^{\prime} \bar{D}_{2} .
\end{aligned}
$$

If $\nu_{1}<m \Gamma$ thus $\bar{b}_{1}^{\prime} \neq 0 \Gamma$ and $\left|b_{2}^{\prime}\right|<\left|b_{1}^{\prime}\right| \Gamma$ then the last relation implies that $\left|x_{2}\right|<1 \Gamma$ while the third relation implies that $\left|x_{1}\right|<1$. Here we write $|x|<1$ if a representative in R of x in R_{m} has this property. This contradicts $x_{1} x_{4}-x_{2} x_{3}=1$. Hence Γ when $\nu_{1}<m$ or $\nu_{2}<m, \nu_{1}=\nu_{2}$.

The quantitative part of the lemma is clear when $m=0$. When $\bar{b}_{i}^{\prime}=0$ we simply have that $L_{m}^{1}=S L\left(2, R_{m}\right)$. The cardinality of this group is $\left(q^{2}-1\right) q$ when $m=1$ and so $R / \boldsymbol{\pi}$ is a field. For $m \geq 1 \Gamma$ apply induction on m using the natural surjection $S L\left(2, R_{m}\right) \rightarrow S L\left(2, R_{m-1}\right)$. Suppose then that $\nu=\nu_{1}=\nu_{2}<m$. Now for each solution x of $(*)$ there are $a_{2}, a_{2}^{\prime}, a_{4}$ in $R_{\nu} \Gamma$ such that on putting $\eta=\left(B_{1} / \varepsilon_{1} u_{1}\right) /\left(B_{2} / \varepsilon_{2} u_{2}\right) \Gamma$ we have

$$
\begin{aligned}
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)= & \left(\begin{array}{cc}
x_{1} & \left(\bar{D}_{1} x_{3}+\boldsymbol{\pi}^{m-\nu} a_{2}\right) \eta \\
x_{3} & \left(x_{1}+\boldsymbol{\pi}^{m-\nu} a_{4}\right) \eta
\end{array}\right) \\
& =\left(\begin{array}{cc}
x_{1} & x_{3} \bar{D}_{1} \\
x_{3} & x_{1}
\end{array}\right)\left(\begin{array}{cc}
1 & \boldsymbol{\pi}^{m-\nu} A_{2} \\
0 & 1+\boldsymbol{\pi}^{m-\nu} A_{4}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right)
\end{aligned}
$$

on using the first and third relations in (*) Гand

$$
\begin{aligned}
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)= & \left(\begin{array}{cc}
x_{1} & \left(\bar{D}_{2} x_{3}+\pi^{m-\nu} a_{2}^{\prime}\right) \eta^{-1} \\
x_{3} & \left(x_{1}+\pi^{m-\nu} a_{4}\right) \eta
\end{array}\right) \\
& =\left(\begin{array}{cc}
x_{1} & \bar{D}_{2} x_{3} \eta^{-2} \\
x_{3} & x_{1}
\end{array}\right)\left(\begin{array}{cc}
1 & \pi^{m-\nu} A_{2}^{\prime} \\
0 & 1+\pi^{m-\nu} A_{4}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right)
\end{aligned}
$$

on using the fourth and third relations in $(*) \Gamma$ where $A_{2}, A_{4}, A_{2}^{\prime}, A_{4}^{\prime} \in R_{\nu}$ are defined by

$$
\left(\begin{array}{cc}
x_{1} & x_{3} \bar{D}_{1} \\
x_{3} & x_{1}
\end{array}\right)\binom{A_{2}}{A_{4}}=\binom{a_{2}}{a_{4}}, \quad\left(\begin{array}{cc}
x_{1} & x_{3} \bar{D}_{2} \eta^{-2} \\
x_{3} & x_{1}
\end{array}\right)\binom{A_{2}^{\prime}}{A_{4}^{\prime}}=\binom{a_{2}^{\prime} \eta^{-2}}{a_{4}}
$$

Since $x_{1} x_{4}-x_{2} x_{3}=1$ and $1+\pi^{m-\nu} A_{4} \in R_{m}^{\times 2} \Gamma \eta$ lies in each of the groups

$$
N_{D_{1}}=\left\{y \in R_{m}^{\times} ; y=x_{1}^{2}-x_{3}^{2} D \varepsilon_{1}^{2} u_{1}^{2} \pi^{2 j_{1}}\right\}, \quad N_{D_{2}}=\left\{y \in R_{m}^{\times} ; y=x_{1}^{2}-x_{3}^{2} D \varepsilon_{2}^{2} \pi^{2 j_{2}} \eta^{-2}\right\}
$$

The intersection $N_{D}=N_{D_{1}} \cap N_{D_{2}}$ is $R_{m}^{\times 2}$ if $j_{1}>0$ or $j_{2}>0$ or $D \notin R^{\times} \Gamma$ it is R_{m}^{\times}if $j_{1}=0, j_{2}=0$ and $D \in R^{\times}$. Since $\eta=\left(B_{1} / \varepsilon_{1} u_{1}\right) /\left(B_{2} / \varepsilon_{2} u_{2}\right) \Gamma$ the 4 th qualitative claim of the lemma follows.

When $\nu<m \Gamma$ the cardinality of L_{m}^{1} is the product of the cardinalities of the sets $\left\{A_{2} \in\right.$ $\left.R_{m} / \pi^{\nu} R_{m} \simeq R / \pi^{\nu} R\right\}$ and $\left\{x_{1}, x_{3} \in R_{m} ; x_{1}^{2}-\bar{D}_{1} x_{3}^{2} \quad\right.$ and $\left.\quad x_{1}^{2}-\bar{D}_{2} \bar{\eta}^{-2} x_{3}^{2} \in 1+\pi^{m-\nu} R_{m}\right\}$. The first set has cardinality q^{ν}. The second has cardinality

$$
\#\left\{x_{1}, x_{3} \in R_{m} ; x_{1}^{2}-\bar{D}_{1} x_{3}^{2} \quad \text { and } \quad x_{1}^{2}-\bar{D}_{2} \bar{\eta}^{-2} x_{3}^{2} \in N_{D}\right\} /\left[N_{D}: 1+\pi^{m-\nu} R_{m}\right] .
$$

The denominator here is

$$
\left[R^{\times}: 1+\pi^{m-\nu} R\right] /\left[R_{m}^{\times}: N_{D}\right]=(q-1) q^{m-\nu-1} /\left[R_{m}^{\times}: N_{D}\right]
$$

Hence the cardinality of L_{m}^{1} is

$$
\left[R_{m}^{\times}: N_{D}\right] \frac{q^{2 \nu-m+1}}{q-1} \cdot \begin{cases}q^{2 m}-q^{2(m-1)}, & \text { if } D_{1} \in R^{\times} \text {and } D_{2} \in R^{\times}, \\ (q-1) q^{m-1} \cdot q^{m}, & \text { if } D_{1} \in \boldsymbol{\pi} R \text { or } D_{2} \in \pi R .\end{cases}
$$

Hence Γ when $\nu<m \Gamma$ if E / F is ramified $(D \in \pi R)$ or $j_{1}>0\left(\nu_{1}<N_{1}\right)$ or $j_{2}>0 \Gamma$ this is $2 q^{m+2 \nu} \Gamma$ while if E / F is unramified $\left(D \in R^{\times}\right)$and $j_{1}=0 \Gamma j_{2}=0 \Gamma$ we have $N_{D}=R_{m}^{\times} \Gamma$ and the cardinality of L_{m}^{1} is $(q+1) q^{m+2 \nu-1}$. This completes the quantitative part of the lemma.

If x_{1} or x_{4} are not units Γ then $x_{1} x_{4}-x_{2} x_{3}=1$ implies that $x_{2}, x_{3} \in R^{\times}$. When $\nu_{1}=\nu_{2}=$ $\nu<m \Gamma$ the relations $(*)$ imply that \bar{D}_{1}, \bar{D}_{2} are units Γ hence $j_{1}=j_{2}=0 \Gamma$ namely $N_{1}=\nu_{1}=$ $\nu_{2}=N_{2} \Gamma$ and that $\bmod \boldsymbol{\pi}^{m-\nu} \Gamma$ we have $\eta=\bar{b}_{1}^{\prime} / \bar{b}_{2}^{\prime}=\left(\bar{b}_{2}^{\prime} \bar{D}_{2}\right) /\left(\bar{b}_{1}^{\prime} \bar{D}_{1}\right) \Gamma$ or $\left(D_{1} / D_{2}\right) \eta^{2}=1 \Gamma$ or $\left(B_{1} / B_{2}\right)^{2} \equiv 1\left(\bmod \boldsymbol{\pi}^{m-\nu}\right)$.

If x_{1} and x_{4} are units then we have $\eta=x_{4} / x_{1}=\bar{b}_{1}^{\prime} / \bar{b}_{2}^{\prime}\left(\bmod \pi^{m-\nu}\right)$ and $\eta \bar{b}_{1}^{\prime} \bar{D}_{1}=\bar{b}_{2}^{\prime} \bar{D}_{2}$. This last relation implies that: $m>2 N_{1}-\nu_{1}+\operatorname{ord} D\left(\geq \nu_{1} \Gamma\right.$ so $\left.\nu_{1}=\nu_{2}\right)$ if and only if $2 N_{2}-\nu_{2}+$ ord $D<m \Gamma$ and if this happens then $N_{1}=N_{2}$; the common value is denoted by N. Further $\operatorname{Cif} 2 N-\nu+\operatorname{ord} D<m \Gamma$ then $m>0$ and $X(\geq m)>0$. The relation $\eta \bar{b}_{1}^{\prime} \bar{D}_{1}=\bar{b}_{2}^{\prime} \bar{D}_{2}$ can now be rewritten as asserting that

$$
\eta \equiv \frac{B_{2} \varepsilon_{2} u_{2}}{B_{1} \varepsilon_{1} u_{1}}\left(\bmod \boldsymbol{\pi}^{m-2 N+\nu-\operatorname{ord} D}\right)
$$

Together with $\eta=\left(B_{1} / \varepsilon_{1} u_{1}\right) /\left(B_{2} / \varepsilon_{2} u_{2}\right) \Gamma$ we obtain that $\left(B_{2} / B_{1}\right)^{2} \equiv 1\left(\bmod \pi^{m-2 N+\nu-\operatorname{ord} D}\right)$.
Thus we have this last relation when x_{1}, x_{4} are units Γ and when they are not. Since B_{i} are units Γ we rewrite the relation as $m-2 N+\nu-\operatorname{ord} D \leq \operatorname{ord}\left(B_{1}^{2}-B_{2}^{2}\right) \Gamma$ namely as $m+\nu \leq$ $\operatorname{ord}\left(D\left(b_{1}^{2}-b_{2}^{2}\right)\right)=\operatorname{ord}\left(a_{1}^{2}-a_{2}^{2}\right)=X$. Indeed Γ since t_{ρ} is topologically unipotent Γ we cannot have $\left|a_{1}+a_{2}\right|<1$. Finally note that $\left|a_{1}-a_{2}\right|=\left|a_{1}^{2}-a_{2}^{2}\right|=\left|D b_{1}^{2}-D b_{2}^{2}\right| \leq \max \left(\left|D b_{1}^{2}\right|,\left|D b_{2}^{2}\right|\right) \Gamma$ hence $X \geq$ ord $D+2 \min \left(N_{1}, N_{2}\right)$.

C. Orbital integrals of type (I).

We computed above the orbital integrals on the twisted conjugacy classes within the stable θ-conjugacy class of a strongly θ-regular element (which is topologically unipotent and θ-fixed) $u=t_{\rho}=h^{-1} t^{*} h \Gamma$ where $t^{*}=\left(t_{1}, t_{2}, \sigma t_{2}, \sigma t_{1} ; e\right), t_{1}=a_{1}+b_{1} \sqrt{D}, t_{2}=a_{2}+b_{2} \sqrt{D}$. The norm $N u$ of u is the stable conjugacy class of $\left(t_{1} t_{2} e, t_{1} \sigma t_{2} e, t_{2} \sigma t_{1} e, \sigma t_{1} \sigma t_{2} e ; e^{2} t_{1} t_{2} \sigma t_{1} \sigma t_{2}\right) \Gamma$ or $N t^{*} \Gamma$ in H. This stable conjugacy class is of type (I). Put $x^{*}=N t^{*}$. Consider $x_{\rho}=h^{-1} x^{*} h$ of type (I) Γ with $x^{*}=\left(x_{1}, x_{2}, \sigma x_{2}, \sigma x_{1} ; e\right) \Gamma$ in H. Its stable class consists of two conjugacy classes Γ parametrized by $\rho\left(\in\{1, \pi\}\right.$ if E / F is unramified $\Gamma \in\{1, \varepsilon\}=R^{\times} / R^{\times 2}$ if E / F is ramified $) \Gamma$ in the torus

$$
T_{\rho}=\left\{x_{\rho}=\left[\phi^{D}\left(\alpha_{1}+\beta_{1} \sqrt{D}\right), \phi_{\rho}^{D}\left(\alpha_{2}+\beta_{2} \sqrt{D}\right)\right] \in C_{0}\right\}
$$

in $H=G S p(2, F)$. We write $x_{1}=\alpha_{1}+\beta_{1} \sqrt{D} \Gamma x_{2}=\alpha_{2}+\beta_{2} \sqrt{D}\left(\alpha_{i}, \beta_{i} \in F\right)$. Then we have to compute $\Phi_{1_{K}}^{H}\left(x_{\rho}\right)$

$$
=\int_{T_{\rho} \backslash H} 1_{K}\left(g^{-1} x_{\rho} g\right) d g=\sum_{m \geq 0}|K|_{H} \int_{T_{\rho} \backslash C_{0} / C_{0} \cap z(m) K z(m)^{-1}} 1_{K}\left(z(m)^{-1} h^{-1} x_{\rho} h z(m)\right) d h .
$$

The last equality follows from the disjoint decomposition $H=\underset{m \geq 0}{\cup} C_{0} z(m) K$ of Lemma I.J.5.
The integrand in the last integral is non zero precisely when $h^{-1} x_{\rho} h$ lies in $z(m) K z(m)^{-1} \cap$ $C_{0}=K_{m}^{C_{0}}$. Since $\left[K: K_{m}^{C_{0}}\right]=\left[K_{0}: K_{m}\right]$ (by Lemma I.J.7) Γ we get

$$
=\sum_{m \geq 0}\left[K_{0}: K_{m}\right] \int_{T_{\rho} \backslash C_{0}} 1_{K_{m}}\left(h^{-1} x_{\rho} h\right) d h .
$$

In contrast to the case considered in the last section Γ where we worked in $S L(2) \times S L(2) \Gamma$ the change of variables (which led to the introduction of $\tilde{\rho}$ and t_{m} there) does not change our x_{ρ}.

Using a partition $C_{0}=(G L(2, F) \times G L(2, F))^{\prime}=\underset{r \in R}{\cup} T_{\rho} r K_{0} \Gamma$ this can be written as

$$
=\sum_{m \geq 0} \sum_{r \in R_{\rho}}\left[R_{T}: T_{\rho} \cap r K_{0} r^{-1}\right]\left[K_{0}: K_{m}\right] \int_{K_{0}} 1_{K_{m}}\left(k^{-1} r^{-1} x_{\rho} r k\right) d k
$$

where $R_{T}=T_{\rho} \cap K_{0}=T_{\rho}(R)$. Recall that $\rho=u \pi^{\bar{\rho}} \Gamma$ thus $\bar{\rho}=\operatorname{ord}(\rho)$ is 0 when E / F is ramified Γ and it is 0 or 1 when E / F is unramified.

1. Lemma. A set of representatives R_{ρ} for $T_{\rho} \backslash C_{0} / K_{0}$ is given by $\left[r_{j_{1}}, r_{j_{2}}\right], j_{i} \geq 0, r_{j_{1}}=$ $\phi^{D}\left(\sqrt{-\boldsymbol{\pi}}^{-j_{1}}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j_{1}}\end{array}\right), r_{j_{2}}=\phi_{\rho}^{D}\left(\sqrt{-\boldsymbol{\pi}}^{-j_{2}}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j_{2}}\end{array}\right)$, when E / F is ramified. When E / F is unramified, it is given by $I \times \boldsymbol{\pi}^{-\left(j_{2}-\bar{\rho}\right) / 2}\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j_{2}-\bar{\rho}}\end{array}\right)\left(j_{2} \geq 0, j_{2}-\bar{\rho}\right.$ even $), \boldsymbol{\pi}^{-j_{1} / 2}\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j_{1}}\end{array}\right) \times I\left(j_{1}>0\right.$, even $\left.j_{1}\right), \boldsymbol{\pi}^{-\left[j_{1} / 2\right]}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi^{j_{1}}\end{array}\right) \times \phi_{\rho}^{D}\left(\varepsilon^{\prime}\right) \boldsymbol{\pi}^{-\left[\left(j_{2}-\bar{\rho}\right) / 2\right]}\left(\begin{array}{c}1 \\ 0 \\ 0 \pi^{j_{2}-\bar{\rho}}\end{array}\right)\left(j_{1}, j_{2}>0\right.$, even $j_{1}-j_{2}+\bar{\rho}$; ε ranges over $R^{\times} / R^{\times 2}, \varepsilon^{\prime} \in R_{E}^{\times}$with norm $\left.N_{E / F} \varepsilon^{\prime}=\varepsilon^{-1}\right)$. Here $[*]$ denotes the maximal integer bounded $b y *$.

Proof. Using the double coset decomposition (Lemma I.I.1) for $T_{\rho} \backslash G L(2, F) / K \Gamma$ we can write

$$
C_{0}=(G L(2, F) \times G L(2, F))^{\prime}=\cup_{j_{1}, j_{2} \geq 0}\left(T_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{\pi}^{j_{1}}
\end{array}\right) K \times T_{\rho}\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{\pi}^{j_{2}-\bar{\rho}}
\end{array}\right) K\right)^{\prime} .
$$

If E / F is ramified then $\bar{\rho}=0 \Gamma E=F(\sqrt{-\pi}) \Gamma$ and $\left\|\phi_{\rho}^{D}(\sqrt{-\pi})\right\|=N_{E / F}(\sqrt{-\pi})=\pi \Gamma$ so that $r_{j_{1}}, r_{j_{2}}$ have determinant one Γ and $C_{0}=\underset{j_{1}, j_{2} \geq 0}{\cup}\left(T_{1} r_{j_{1}} K \times T_{\rho} r_{j_{2}} K\right)^{\prime}$. We naturally denote $T_{\rho} \subset C_{0}$ also as $\left(T_{1} \times T_{\rho}\right)^{\prime} \subset(G L(2, F) \times G L(2, F))^{\prime}$. We still have to show that $C_{0}=\cup T_{\rho} \cdot r_{j_{1}} \times$ $r_{j_{2}} \cdot K_{0}$. For that Γ note that if $\left\|t_{1} r_{j_{1}} k_{1}\right\|=\left\|t_{2} r_{j_{2}} k_{2}\right\| \Gamma$ then $\left\|k_{1} k_{2}^{-1}\right\|$ lies in $R^{\times} \cap N_{E / F} E^{\times}=R^{\times 2}$. Then t_{1} can be multiplied by a scalar in $R^{\times} \Gamma$ so that $\left\|k_{1}\right\|=\left\|k_{2}\right\| \Gamma$ namely $\left[k_{1}, k_{2}\right]$ lies in $K_{0} \Gamma$ and so also $\left[t_{1}, t_{2}\right]$ lies in $T_{\rho} \subset C_{0} \subset H \Gamma$ as asserted.

If E / F is unramified Γ we need to consider the conditions implied by the equation $\left\|t_{1}\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j_{1}}\end{array}\right) k_{1}\right\|=\left\|t_{2}\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j_{2}-\bar{\rho}}\end{array}\right) k_{2}\right\|$. These are: $\left|\boldsymbol{\pi}^{j_{1}-j_{2}+\bar{\rho}}\right| \in R^{\times} N_{E / F} E^{\times} \Gamma$ thus $j_{1}-j_{2}+\bar{\rho}$ is even.

We would like $k=k_{1} k_{2}^{-1}$ to have determinant 1 Tand we can modify k by multiplication by $\varepsilon \in$ R^{\times}(thus $\|k\|$ ranges over $\left.R^{\times} / R^{\times 2}\right) \Gamma$ or by $\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-j_{1}}\end{array}\right) t\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{j_{1}}\end{array}\right) \in K$ or $\left(\begin{array}{cc}1 & 0 \\ 0 & \rho^{-1} \boldsymbol{\pi}^{-\left(j_{2}-\bar{\rho}\right)}\end{array}\right) t\left(\begin{array}{cc}1 & 0 \\ 0 & \rho \boldsymbol{\pi}^{j_{2}-\bar{\rho}}\end{array}\right) \in$ $K \Gamma t \in T_{1} \Gamma$ whose determinants are in $R^{\times 2}$ if $j_{1}>0\left(\right.$ resp. $\left.j_{2}>0\right) \Gamma$ or in $N_{E / F} R_{E}^{\times}=R^{\times}$ otherwise. We then obtain the representatives of the lemma Γ which lie in C_{0}. To repeat Γ if $j_{1} j_{2}=0$ then $\varepsilon=1 \Gamma$ if $j_{1} j_{2} \neq 0$ then ε ranges over $R^{\times} / R^{\times 2}$ and $j_{1}-j_{2}+\bar{\rho}$ is even.
2. Lemma. The index $\left[R_{T}: T_{\rho} \cap r K_{0} r^{-1}\right]$ is the product of $q^{j_{1}+j_{2}}$ and: 1 if E / F is ramified or $j_{1}=0=j_{2} ;(q+1) / q$ if E / F is unramified, and either $j_{1}=0$ or $j_{2}=0 ; \frac{1}{2}\left(\frac{q+1}{q}\right)^{2}$ if E / F is unramified and $j_{1} j_{2} \neq 0$.

Proof. The intersection $T_{\rho} \cap r K_{0} r^{-1}$ consists of x_{ρ} such that $r^{-1} x_{\rho} r$ lies in K_{0}. Since

$$
r^{-1} x_{\rho} r=\left(\begin{array}{cc}
\alpha_{1} & \beta_{1} D \boldsymbol{\pi}^{j_{1}} \\
\beta_{1} / \boldsymbol{\pi}^{j_{1}} & \alpha_{1}
\end{array}\right) \times\left(\begin{array}{c}
\alpha_{2} \\
\beta_{2} /\left(\rho \boldsymbol{\pi}^{j_{2}-\bar{\rho}} \varepsilon\right)
\end{array} \hat{\alpha}_{2} D \rho \cdot \varepsilon \boldsymbol{\pi}^{j_{2}-\bar{\rho}}{ }_{\alpha}\right),
$$

it follows that $T_{\rho} \cap r K_{0} r^{-1}$ is isomorphic to $\left(R_{E}\left(j_{1}\right)^{\times} \times R_{E}\left(j_{2}\right)^{\times}\right)^{\prime} \Gamma$ where $R_{E}(j)=R+\pi^{j} R_{E} \Gamma$ and the prime indicates (x, y) with $N_{E / F} x=N_{E / F} y$. Since R_{T} is $\left(R_{E}^{\times} \times R_{E}^{\times}\right)^{\prime}$ under the same isomorphism Γ we are to compute the cardinality of the kernel in the exact sequence

$$
\begin{aligned}
1 & \rightarrow\left(R_{E}^{\times} \times R_{E}^{\times}\right)^{\prime} /\left(R_{E}\left(j_{1}\right)^{\times} \times R_{E}\left(j_{2}\right)^{\times}\right)^{\prime} \rightarrow R_{E}^{\times} \times R_{E}^{\times} / R_{E}\left(j_{1}\right)^{\times} \times R_{E}\left(j_{2}\right)^{\times} \\
& \rightarrow R_{E}^{\times} \times R_{E}^{\times} /\left(R_{E}^{\times} \times R_{E}^{\times}\right)^{\prime}\left(R_{E}\left(j_{1}\right)^{\times} \times R_{E}\left(j_{2}\right)^{\times}\right) \rightarrow 1 .
\end{aligned}
$$

For the middle term Γ note that $\left[R_{E}^{\times}: R_{E}(j)^{\times}\right]$is 1 if $j=0$ and it is the quotient of $\left[R_{E}^{\times}\right.$: $\left.1+\pi^{j} R_{E}\right]$ by $\left[R^{\times}: 1+\pi^{j} R\right]=(q-1) q^{j-1}$ when $j \geq 1$. When E / F is ramified then $\boldsymbol{\pi}_{E}^{2}=\boldsymbol{\pi}$ and $q_{E}=q$ so that the quotient is $(q-1) q^{2 j-1} /(q-1) q^{j-1}=q^{j}$. When E / F is unramified Γ $\boldsymbol{\pi}_{E}=\boldsymbol{\pi}$ and $q_{E}=q^{2} \Gamma$ so that the quotient is $\left(q^{2}-1\right) q^{2(j-1)} /(q-1) q^{j-1}=(q+1) q^{j-1}$.

It remains to compute the cardinality of the image in the short exact sequence. This set is isomorphic to its image under the norm map $N=N_{E / F}$. The cardinality of $N R_{E}^{\times} \times$ $N R_{E}^{\times} /\{(x, x)\} \cdot N R_{E}\left(j_{1}\right)^{\times} \times N R_{E}\left(j_{2}\right)^{\times}$is 1 if E / F is ramified or $j_{1} j_{2}=0$ Гand it is $\left[N R_{E}^{\times}\right.$: $\left.R_{E}^{\times 2}\right]=2$ if E / F is unramified and $j_{1} j_{2} \geq 1$.

As usual write $R_{m}=R / \pi^{m} R, \beta_{i}=B_{i}^{\prime} \pi^{n_{i}}\left(B_{i}^{\prime}\right.$ in R^{\times}「integral $\left.n_{i}\right) \Gamma \nu_{i}=n_{i}-j_{i}(i=1,2), \beta_{1}^{\prime}=$ $B_{1}^{\prime} \pi^{\nu_{1}}, \beta_{2}^{\prime}=\left(B_{2}^{\prime} / \varepsilon u\right) \pi^{\nu_{2}}\left(\right.$ where $\left.\rho=u \pi^{\bar{\rho}}\right) \Gamma D_{1}=D \pi^{2 j_{1}}, D_{2}=D u^{2} \varepsilon^{2} \pi^{2 j_{2}}, \chi=\operatorname{ord}\left(\alpha_{1}-\alpha_{2}\right), \bar{\alpha}$ for the image of $\alpha \in R$ in $R_{m} \Gamma d(A)$ for $(A, \varepsilon A \varepsilon)$. If $\nu_{1}=\nu_{2} \Gamma$ put ν for the common value.
3. Lemma. The integral $\left[K_{0}: K_{m}\right] \int_{K_{0}} 1_{K_{m}}\left(k^{-1} r^{-1} x_{\rho} r k\right) d k$ is equal to the cardinality of

$$
L_{m}=\left\{y \in\left(G L\left(2, R_{m}\right) \times G L\left(2, R_{m}\right)\right)^{\prime} / d\left(G L\left(2, R_{m}\right)\right) ; y^{-1} r^{-1} x_{\rho} r y \in d\left(G L\left(2, R_{m}\right)\right)\right\}
$$

If this set is non empty then $0 \leq m \leq \chi$, and $\nu_{1} \geq m$ if and only if $\nu_{2} \geq m$. If $\nu_{1}<m$ or $\nu_{2}<m$ then $\nu_{1}=\nu_{2}$.

Proof. Since

$$
L_{m}=\left\{\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \in S L\left(2, R_{m}\right) ;\left(\begin{array}{cc}
\bar{\alpha}_{1} & \bar{\beta}_{1}^{\prime} \bar{D}_{1} \\
\bar{\beta}_{1}^{\prime} & \bar{\alpha}_{1}
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)\left(\begin{array}{cc}
\bar{\alpha}_{2} & \bar{\beta}_{2}^{\prime} \bar{D}_{2} \\
\bar{\beta}_{2}^{\prime} & \bar{\alpha}_{2}
\end{array}\right)\right\},
$$

the proof is exactly the same as in Section $\mathrm{B} \Gamma$ where the group was $S p(2, F)$ rather than $G S p(2, F)$.
4. Lemma. If L_{m} is non empty, then its cardinality is: 1 if $m=0 ;\left(q^{2}-1\right) q^{3 m-2}$ if $1 \leq m \leq$ $\min \left(\nu_{1}, \nu_{2}\right)$ (thus $\left.\bar{\beta}_{i}^{\prime}=0\right) ; 2 q^{m+2 \nu}$, if $\nu<m$, and E / F is ramified or $\nu_{1}<n_{1}$ or $\nu_{2}<n_{2}$; $(q+1) q^{m+2 \nu-1}$ if $\nu<m, \nu_{1}=n_{1}, \nu_{2}=n_{2}$, and E / F is unramified.
Proof. Since $L_{m} \simeq L_{m}^{1} \Gamma$ the proof is the same as in the case of $\operatorname{Sp}(2, F)$.
5. Lemma. Suppose that $\nu<m$. If $2 n_{i}-\nu+\operatorname{ord} D<m$ for some $i(=1,2)$, then $n_{1}=n_{2}$ (the common value is then denoted by n), and ($0 \leq \nu<m \leq \chi$ and) $m+\nu \leq \chi$. Further, $B_{1}^{\prime} / B_{2}^{\prime} \in \varepsilon u R^{\times 2}$ unless $\nu_{1}=n_{1}, \nu_{2}=n_{2}$, and E / F is unramified. Note that when E / F is ramified, $\varepsilon=1$ and $\rho=u$.

Proof. The proof proceeds exactly the same as in the case of $S p(2, F) \Gamma$ to show that $m+\nu \leq$ $\operatorname{ord}\left(D\left(\beta_{1}^{2}-\beta_{2}^{2}\right)\right)=\operatorname{ord}\left(\alpha_{1}^{2}-\alpha_{2}^{2}\right)$. It remains to show that $\chi=\operatorname{ord}\left(\alpha_{1}-\alpha_{2}\right)$ is equal to ord $\left(D\left(\beta_{1}^{2}-\beta_{2}^{2}\right)\right)$. For this Γ recall that $x_{1}=t_{1} t_{2}=\alpha_{1}+\beta_{1} \sqrt{D}, x_{2}=t_{1} \sigma t_{2}=\alpha_{2}+\beta_{2} \sqrt{D} \Gamma t_{1}$ and t_{2} are units Γ and so if $\operatorname{tr}=1+\sigma \Gamma$ then

$$
\begin{aligned}
& \left|\alpha_{1}-\alpha_{2}\right|^{2}=\left|\operatorname{tr} x_{1}-\operatorname{tr} x_{2}\right|^{2}=\left|\operatorname{tr}\left(t_{1} t_{2}\right)-\operatorname{tr}\left(t_{1} \sigma t_{2}\right)\right|^{2}=\left|\left(t_{1}-\sigma t_{1}\right)\left(t_{2}-\sigma t_{2}\right)\right|^{2}\left|t_{1} t_{2}\right|^{2} \\
& =\left|\left(x_{1}-\sigma x_{2}\right)\left(x_{1}-x_{2}\right)\right|^{2}=\left|\left(\left(\alpha_{1}-\alpha_{2}\right)+\left(\beta_{1}+\beta_{2}\right) \sqrt{D}\right)\left(\left(\alpha_{1}-\alpha_{2}\right)+\left(\beta_{1}-\beta_{2}\right) \sqrt{D}\right)\right|^{2} \\
& =\left|\left(\left(\alpha_{1}-\alpha_{2}\right)^{2}-\left(\beta_{1}+\beta_{2}\right)^{2} D\right)\left(\left(\alpha_{1}-\alpha_{2}\right)^{2}-\left(\beta_{1}-\beta_{2}\right)^{2} D\right)\right| .
\end{aligned}
$$

Note that $0 \leq \nu<m \leq \chi \Gamma$ so that $\left|\alpha_{1}-\alpha_{2}\right|<1$. If $\left|\beta_{1}-\beta_{2}\right| \leq\left|\alpha_{1}-\alpha_{2}\right|<1$ then $\left|\left(\alpha_{1}-\alpha_{2}\right)^{2}-\left(\beta_{1}+\beta_{2}\right)^{2} D\right|=1$ Гand so $|D|=1$ and $\left|\beta_{1}+\beta_{2}\right|=1$ Thence $\left|\beta_{i}\right|=1$ and $n=0$ Гso $\nu=0$ and $\chi \geq m$ is our claim. The last sentence is valid with β_{2} replaced by $-\beta_{2}$. It remains to deal with the case where $\left|\beta_{1} \pm \beta_{2}\right|>\left|\alpha_{1}-\alpha_{2}\right|$. Then $\left|\alpha_{1}-\alpha_{2}\right|=\left|D\left(\beta_{1}^{2}-\beta_{2}^{2}\right)\right| \Gamma$ as was to be shown.

D. Comparison in stable case (I), E / F unramified.

Let us summarize the result of the computation of the stable twisted orbital integral in Section B. It is

$$
\Phi_{1_{K}}^{G, s t}(u \theta)=\Phi_{1_{K_{K}}(\theta)}^{Z_{G}(\theta), s t}(u)=\sum_{\rho} \sum_{m \geq 0} \sum_{r \in R_{\rho_{m}}}\left[R_{T}^{1}: T_{\rho_{m}}^{1} \cap r K_{0}^{1} r^{-1}\right] \# L_{m, \rho_{m}}^{1}
$$

where $u=t_{\rho}=h^{-1} t^{*} h$ is topologically unipotent. Recall that $L_{m, \rho_{m}}^{1}$ depends on m and $\rho_{m} \Gamma$ but for each $m \Gamma$ the set $\left\{\rho_{m}\right\}$ is the same as the set of ρ. Hence we replace ρ_{m} by ρ in the triple sum above.

Put $N=\min \left(N_{1}, N_{2}\right) \Gamma$ where $N_{i}=\operatorname{ord}\left(b_{i}\right)$. In the case where E / F is unramified $\Gamma \rho=$ $\left(\rho_{1}, \rho_{2}\right), \rho_{i} \in\{1, \boldsymbol{\pi}\}, u_{i}=1$ Гand the sum over r is a sum over $j_{1}, j_{2} \geq 0$ such that $j_{1}-\bar{\rho}_{1}, j_{2}-\bar{\rho}_{2}$ are even Γ and over ε_{i} in $R^{\times} / R^{\times 2}$ if $j_{i}>0$. When $j_{1}>0$ or $j_{2}>0 \Gamma$ and $\nu=\nu_{1}=\nu_{2}<m \Gamma$ we have $\varepsilon_{1} \varepsilon_{2} \in B_{1} B_{2} R^{\times 2}$. In other words Γ we have a sum over $\nu_{i}=N_{i}-j_{i}(i=1,2) \Gamma 0 \leq \nu_{i} \leq N_{i} \Gamma$ and over $\varepsilon_{i} \in R^{\times} / R^{\times 2}$ if $\nu_{i}<N_{i}$ for $i=1,2$. (If $\nu_{i}=N_{i}$ for some $i \Gamma$ then $\varepsilon_{i} \in R^{\times} / R^{\times}$).

Then we need to sum over m. We have the range $0 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right) \Gamma$ then the range $\nu\left(=\nu_{1}=\nu_{2}\right)<m \leq 2 N-\nu$ (since ord $D=0$ when E / F is unramified $\left(\nu_{i}<m\right.$ implies $\left.\nu_{1}=\nu_{2}\right)$) Гand the range $2 N-\nu<m \leq X-\nu\left(2 N-\nu<m\right.$ implies $\nu<m, N_{1}=N_{2}$ Гand
$m \leq X-\nu)$. Let $\delta(m=0)=\delta(m, 0)$ be 0 if $m \neq 0$ and 1 if $m \neq 0 \Gamma$ and $\delta(m \geq 1)$ be 0 if $m<1$ and 1 if $m \geq 1$. Thus we get the sum of three expressions:

$$
\begin{aligned}
& \sum_{0 \leq \nu_{1} \leq N_{1}} \sum_{0 \leq \nu_{2} \leq N_{2}} \sum_{0 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)}\left(\delta(m=0)+\delta(m \geq 1)\left(1-q^{-2}\right) q^{3 m}\right)\left[\sum_{m \leq \nu_{1}<N_{1}} \sum_{m \leq \nu_{2}<N_{2}} \sum_{0 \leq m \leq N}\left(\delta\left(\frac{q+1}{2 q}\right)^{2} q^{N_{1}-\nu_{1}+N_{2}-\nu_{2}}+\sum_{m \leq \nu_{1}<N_{1}} 2 \frac{q+1}{2 q} q^{N_{1}-\nu_{1}}+\sum_{m \leq \nu_{2}<N_{2}} 2 \frac{q+1}{2 q} q^{N_{2}-\nu_{2}}+1\right] ;\right. \\
& \sum_{0 \leq \nu \leq N} \sum_{\nu<m \leq 2 N-\nu} 2\left(\frac{q+1}{2 q}\right)^{2} q^{N_{1}+N_{2}-2 \nu} \cdot 2 q^{m+2 \nu} ; \\
& \delta\left(N_{1}, N_{2}\right) \\
& \sum_{0 \leq \nu \leq N} \sum_{2 N-\nu<m \leq X-\nu}=\delta\left(N_{1}, N_{2}\right)\left[\sum_{N<m \leq X-N} \frac{q+1}{q} q^{2 N+m}\right. \\
& \left.+\sum_{0 \leq \nu<N N} \sum_{2 N-\nu<m \leq X-\nu} 2\left(\frac{q+1}{2 q}\right)^{2} q^{2 N-2 \nu} \cdot 2 q^{m+2 \nu}\right] .
\end{aligned}
$$

To compute the first expression note that

$$
\begin{aligned}
\frac{q+1}{q} \sum_{m \leq \nu_{1}<N_{1}} q^{N_{1}-\nu_{1}}+1 & =1+(q+1) \sum_{\nu_{1}=0}^{N_{1}-1-m} q^{\nu_{1}}=1+\frac{q+1}{q-1}\left(q^{N_{1}-m}-1\right) \\
& =\frac{q+1}{q-1} q^{N_{1}-m}-\frac{2}{q-1} .
\end{aligned}
$$

Hence [...] is

$$
\left[\left(\frac{q+1}{q-1} q^{N_{1}-m}-\frac{2}{q-1}\right)\left(\frac{q+1}{q-1} q^{N_{2}-m}-\frac{2}{q-1}\right)\right] .
$$

So the first expression is

$$
\begin{aligned}
& \quad\left(\frac{q+1}{q-1} q^{N_{1}}-\frac{2}{q-1}\right)\left(\frac{q+1}{q-1} q^{N_{2}}-\frac{2}{q-1}\right) \\
& \quad+\sum_{1 \leq m \leq N} \frac{q^{-2}\left(q^{2}-1\right)}{(q-1)^{2}}\left((q+1)^{2} q^{N_{1}+N_{2}+m}-2(q+1)\left(q^{N_{1}}+q^{N_{2}}\right) q^{2 m}+4 q^{3 m}\right) \\
& =(q-1)^{-2}\left[\left((q+1) q^{N_{1}}-2\right)\left((q+1) q^{N_{2}}-2\right)\right]+\frac{q^{-1}(q+1)}{q-1}\left[\frac{(q+1)^{2}}{q-1} q^{N_{1}+N_{2}}\left(q^{N}-1\right)\right. \\
& \left.\quad-\frac{2 q(q+1)}{q^{2}-1}\left(q^{N_{1}}+q^{N_{2}}\right)\left(q^{2 N}-1\right)+\frac{4 q^{2}}{q^{3}-1}\left(q^{3 N}-1\right)\right] .
\end{aligned}
$$

The second expression is

$$
\begin{aligned}
& q^{N_{1}+N_{2}-1}(q+1)^{2} \sum_{0 \leq \nu \leq N} \sum_{\nu<m \leq 2 N-\nu} q^{m-1}=q^{N_{1}+N_{2}-1}(q+1)^{2} \sum_{0 \leq \nu \leq N} q^{\nu} \sum_{0 \leq m<2 N-2 \nu} q^{m} \\
& =q^{N_{1}+N_{2}-1} \frac{(q+1)^{2}}{q-1} \sum_{0 \leq \nu \leq N}\left(q^{N}-1\right) q^{\nu}=q^{N_{1}+N_{2}-1}\left(\frac{q+1}{q-1}\right)^{2}\left(q^{N}-1\right)\left(q^{N+1}-1\right) .
\end{aligned}
$$

The third expression is the product of $\delta\left(N_{1}, N_{2}\right)$ and the sum of

$$
\begin{aligned}
& (q+1)^{2} q^{2 N-1} \sum_{0 \leq \nu<N} \sum_{2 N-\nu<m \leq X-\nu} q^{m-1}=\frac{(q+1)^{2}}{q-1} q^{2 N-1} \sum_{0 \leq \nu<N}\left(q^{X}-q^{2 N}\right) q^{-\nu} \\
& =\frac{(q+1)^{2}}{(q-1)^{2}} q^{2 N}\left(q^{X}-q^{2 N}\right)\left(1-q^{-N}\right)
\end{aligned}
$$

and of

$$
\frac{(q+1)}{q-1} q^{2 N}\left(q^{X-N}-q^{N}\right)
$$

namely it is

$$
\delta\left(N_{1}, N_{2}\right)(q-1)^{-2}\left[\left(q^{X-N}-q^{N}\right) q^{N_{1}+N_{2}}(q+1)\left(q-1+(q+1)\left(q^{N}-1\right)\right)\right]
$$

A pleasant surprise is that the stable orbital integral $\Phi_{1_{K}}^{G S p(2, F), s t}\left(N t_{\rho}\right)$ takes precisely the same form. Indeed Γ we have in this case a sum over $\rho \in\{1, \boldsymbol{\pi}\} \Gamma$ a sum over $j_{1}, j_{2} \geq 0$ such that $j_{1}-\left(j_{2}-\bar{\rho}\right)$ is even Γ and a sum over $\varepsilon \in R^{\times} / R^{\times 2}$ when $j_{1} j_{2} \geq 1$. When $\nu=\nu_{1}=\nu_{2}<m \Gamma$ and $j_{1} j_{2} \geq 1 \Gamma$ there is a condition $\varepsilon \in\left(B_{1}^{\prime} / B_{2}^{\prime}\right) R^{\times 2}$. In other words we have a sum over $\nu_{i}=n_{i}-j_{i}(i=1,2), 0 \leq \nu_{i} \leq n_{i} \Gamma$ and over $\varepsilon \in R^{\times} / R^{\times 2}$ if $m \leq \nu_{i}<n_{i}(i=1,2)$. The sum over m is cut into three ranges Γ as in the twisted case. Exactly the same expressions are obtainedГbut for slightly different reasons. In the first range Γ the coefficient $4 \cdot\left(\frac{q+1}{2 q}\right)^{2}$ of the twisted case becomes $2 \cdot \frac{1}{2}\left(\frac{q+1}{q}\right)^{2}$; and $2 \cdot \frac{q+1}{2 q}$ is the index $\frac{q+1}{q}$. Similarly in the second and third ranges $\Gamma 2 \cdot\left(\frac{q+1}{2 q}\right)^{2}$ is $\frac{1}{2}\left(\frac{q+1}{q}\right)^{2}$. Writing in the non twisted case n_{1}, n_{2}, n and χ for the integers denoted by N_{1}, N_{2}, N, X in the twisted case Γ we obtain

$$
\begin{aligned}
& (q-1)^{-2}\left\{\left((q+1) q^{n_{1}}-2\right)\left((q+1) q^{n_{2}}-2\right)+(q+1)^{3} q^{n_{1}+n_{2}-1}\left(q^{n}-1\right)\right. \\
& -2(q+1)\left(q^{n_{1}}+q^{n_{2}}\right)\left(q^{2 n}-1\right)+\frac{4 q(q+1)}{q^{2}+q+1}\left(q^{3 n}-1\right)+(q+1)^{2} q^{n_{1}+n_{2}-1}\left(q^{n}-1\right)\left(q^{n+1}-1\right) \\
& \left.+\delta\left(n_{1}, n_{2}\right)(q+1) q^{n_{1}+n_{2}}\left(q^{\chi-n}-q^{n}\right)\left(q-1+(q+1)\left(q^{n}-1\right)\right)\right\}
\end{aligned}
$$

Notations. For the actual comparison Γ we use the following notations: $t^{*}=\left(t_{1}, t_{2}, \sigma t_{2}, \sigma t_{1}\right)$ (the last - fifth - component e Thas to be a unit in R^{\times}Гand will not affect otherwise the value of the integral) Γ and $N t^{*}=\left(x_{1}=t_{1} t_{2}, x_{2}=t_{1} \sigma t_{2}, \sigma x_{2}, \sigma x_{1}\right)$. Further $\Gamma t_{1}=a_{1}+b_{1} \sqrt{D}, t_{2}=$ $a_{2}+b_{2} \sqrt{D}, N_{i}=\operatorname{ord}\left(b_{i}\right) \Gamma$ and $n_{i}=\operatorname{ord}\left(\beta_{i}\right) \Gamma$ where

$$
\begin{aligned}
& x_{1}=\alpha_{1}+\beta_{1} \sqrt{D}=t_{1} t_{2}=a_{1} a_{2}+D b_{1} b_{2}+\sqrt{D}\left(a_{2} b_{1}+a_{1} b_{2}\right) \\
& x_{2}=\alpha_{2}+\beta_{2} \sqrt{D}=t_{1} \sigma t_{2}=a_{1} a_{2}-D b_{1} b_{2}+\sqrt{D}\left(a_{2} b_{1}-a_{1} b_{2}\right) .
\end{aligned}
$$

Also $\Gamma \chi=\operatorname{ord}\left(\alpha_{1}-\alpha_{2}\right)=\operatorname{ord}\left(2 D b_{1} b_{2}\right)=\operatorname{ord} D+N_{1}+N_{2}$. Note that t^{*} is topologically unipotent Γ hence a_{1}, a_{2} are units. Since the value of the θ-orbital integral is not changed if in t^{*} the entry t_{2} is multiplied by -1Γ (so is σt_{2}) Γ we may assume that $\left|a_{1}-a_{2}\right| \leq\left|a_{1}+a_{2}\right| \Gamma$ namely that $\left|a_{1}+a_{2}\right|=1$. Then

$$
\begin{aligned}
X & =\operatorname{ord}\left(a_{1}-a_{2}\right)=\operatorname{ord}\left[\left(a_{1}^{2}-a_{2}^{2}\right)\left(a_{2}^{2}-b_{2}^{2} D\right)\right]=\operatorname{ord}\left\{D\left[\left(b_{1}^{2}-b_{2}^{2}\right) a_{2}^{2}-b_{2}^{2}\left(a_{2}^{2}-a_{1}^{2}\right)\right]\right\} \\
& =\operatorname{ord} D\left(b_{1}^{2} a_{2}^{2}-a_{1}^{2} b_{2}^{2}\right)=\operatorname{ord} D \beta_{1} \beta_{2}=\operatorname{ord} D+n_{1}+n_{2} .
\end{aligned}
$$

Further Γ if $N_{1}<N_{2} \Gamma$ since a_{1}, a_{2} are units Γ we have $n_{1}=n_{2}=n=N_{1}$. If $n_{1}<n_{2}$ then $N_{1}=N_{2}=N=n_{1}$. Otherwise $n_{1}=n_{2}=n=N=N_{1}=N_{2}$ and $X=\chi$ Гin which case the two expressions to be compared are obviously equal. By symmetry「it suffices to perform the comparison when $n_{1}<n_{2} \Gamma$ thus $n_{2}>n_{1}=n=N_{1}=N_{2} \Gamma \chi=2 N$ and $X=n_{1}+n_{2}$.

The first Γ "twisted" Γ expression Γ multiplied by $(q-1)^{2} \Gamma$ is equal to

$$
\begin{aligned}
A= & \left((q+1) q^{n}-2\right)\left((q+1) q^{n}-2\right)+\left(1+q^{-1}\right)\left[(q+1)^{2} q^{2 n}\left(q^{n}-1\right)-4 q^{n+1}\left(q^{2 n}-1\right)\right. \\
& \left.+\frac{4 q^{2}(q-1)}{q^{3}-1}\left(q^{3 n}-1\right)\right]+(q+1)^{2} q^{2 n-1}\left(q^{n}-1\right)\left(q^{n+1}-1\right) \\
& +(q+1) q^{2 n}\left(q^{n_{2}}-q^{n}\right)\left((q+1) q^{n}-2\right)
\end{aligned}
$$

The last summand appears since $N_{1}=N_{2}(=n)$.
This we compare with the second Γ untwisted integral Γ which Γ multiplied by $(q-1)^{2} \Gamma$ is

$$
\begin{aligned}
a= & \left((q+1) q^{n}-2\right)\left((q+1) q^{n_{2}}-2\right)+\left(1+q^{-1}\right)\left[(q+1)^{2} q^{n+n_{2}}\left(q^{n}-1\right)\right. \\
& \left.-2 q\left(q^{n}+q^{n_{2}}\right)\left(q^{2 n}-1\right)+\frac{4 q^{2}(q-1)}{q^{3}-1}\left(q^{3 n}-1\right)\right] \\
& +(q+1)^{2} q^{n+n_{2}-1}\left(q^{n}-1\right)\left(q^{n+1}-1\right) .
\end{aligned}
$$

The contribution from the third range is zero since $n_{2} \neq n_{1}(=n)$.
A simple subtraction yields

$$
\begin{aligned}
A-a= & \left(q^{n}-q^{n_{2}}\right)\left[(q+1)\left((q+1) q^{n}-2\right)+\left(1+q^{-1}\right)\left[(q+1)^{2}\left(q^{n}-1\right) q^{n}-2 q\left(q^{2 n}-1\right)\right]\right. \\
& \left.+(q+1)^{2} q^{n-1}\left(q^{n}-1\right)\left(q^{n+1}-1\right)-(q+1) q^{2 n}\left((q+1) q^{n}-2\right)\right] \\
= & \left(q^{n}-q^{n_{2}}\right)(q+1)\left[\left((q+1) q^{n}-2\right)\left(1-q^{2 n}\right)+(q+1)^{2} q^{n-1}\left(q^{n}-1\right)-2 q^{2 n}\right. \\
& \left.+2+(q+1) q^{n-1}\left(q^{n}-1\right)\left(q^{n+1}-1\right)\right]
\end{aligned}
$$

and this is 0 (on opening parenthesis in [...]). This completes the comparison in case (I) C when E / F is unramifiedГonce we show that the measure factor which appears in the statement of the theorem is 1 in our case Γ of type (I) $\Gamma E / F$ unramified.

Lemma. In the case of tori of type (I), the measure factor

$$
\left[T^{* \theta}(R):(1+\theta)\left(T^{*}(R)\right)\right] /\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]
$$

is equal to the ramification index $e(E / F)$ of E over F.

Proof. The norm map N takes $(a, b, \sigma b, \sigma a) \in T^{*}(R)$ (thus $\left.a, b \in R_{E}^{\times}\right)$to $(a b, a \sigma b, b \sigma a, \sigma a \sigma b)$ in $T_{H}^{*}(R)$. To measure the index of the image in $T_{H}^{*}(R)=\left\{(x, y, \sigma y, \sigma x) ; x, y \in R_{E}^{\times}, x \sigma x=y \sigma y\right\} \Gamma$ we need to solve $x=a b, y=a \sigma b$ in $a, b \in R_{E}^{\times} \Gamma$ given $x, y \in R_{E}^{\times}, x \sigma x=y \sigma y$. It suffices to solve in $b \in R_{E}^{\times}$the equation $b / \sigma b=x / y \Gamma$ where $(x / y) \sigma(x / y)=1$. By Hilbert theorem 90Γ there is a solution b in E^{\times}. If E / F is unramified $\Gamma \boldsymbol{\pi}_{E}=\pi \Gamma$ and if $b=B \pi^{n}$ is a solution $\left(B \in R_{E}^{\times}\right) \Gamma$ then so is $B \in R_{E}^{\times}$. However Γ if E / F is ramified $\Gamma \sigma \pi_{E}=-\boldsymbol{\pi}_{E} \Gamma$ hence $z=u \pi_{E}^{n}\left(u \in R_{E}^{\times}\right)$ has $z / \sigma z=(-1)^{n} u / \sigma u$. Writing $u=\alpha+\beta \pi_{E}$ in $R_{E}^{\times} \Gamma$ we have $\alpha \in R^{\times}$and $\beta \in R \Gamma$ hence $u / \sigma u \equiv 1\left(\bmod \boldsymbol{\pi}_{E}\right) \Gamma$ and the index of $R_{E}^{1}=\left\{u / \sigma u ; u \in R_{E}^{\times}\right\}$in $E^{1}=\left\{z / \sigma z ; z \in E^{\times}\right\}$is $2=e(E / F)$. Hence $\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]$ is $e(E / F)$.

Similarly we need to compute the index in $T^{* \theta}(R)=\left\{(x, y, \sigma y, \sigma x) ; x, y \in R_{E}^{\times}, x \sigma x=1=\right.$ $y \sigma y\}$ of the image under $(1+\theta)$ of $T^{*}(R) \Gamma$ thus of $(1+\theta)(a, b, \sigma b, \sigma a)=(a / \sigma a, b / \sigma b, \sigma b / b, \sigma a / a)$. Again $\left[E^{1}: R_{E}^{1}\right]=e(E / F)$ Гhence $\left[T^{* \theta}(R):(1+\theta) T^{*}(R)\right]=e(E / F)^{2} \Gamma$ and the measure factor is $e(E / F)$.

This computation is naturally used also in the case where E / F is ramified Γ which we consider next.

E. Comparison in stable case (I), E / F ramified.

Here $\operatorname{ord}(D)=1$. The twisted orbital integral is a sum over $\rho=\left(\rho_{1}, \rho_{2}\right), \rho_{i} \in R^{\times} / R^{\times 2},\left(\rho_{i}\right.$ $=u_{i} \in\{1, \varepsilon\}$ and $\bar{\rho}_{i}=0$) Гand over $j_{1}, j_{2} \geq 0$ (these parametrize the representatives $\left.r \in R_{\rho}\right) \Gamma$ of the product of the index $q^{j_{1}+j_{2}} \Gamma$ and the quantity: 1 if $m=0,\left(q^{2}-1\right) q^{3 m-2}$ if $1 \leq m \leq$ $\min \left(\nu_{1}, \nu_{2}\right), 2 q^{m+2 \nu}$ if $\nu_{i}<m$ (for some $i \Gamma$ but then $\nu=\nu_{1}=\nu_{2} \Gamma$ and $m+\nu \leq X \Gamma$ and $\left.\rho_{1} / \rho_{2}=u_{1} / u_{2} \in\left(B_{1} / B_{2}\right) R^{\times 2}\right)$. In this last range: $\nu<m \leq X-\nu$. Note that when $2 N_{i}-\nu+1<m$ for some $i \Gamma$ we have $N_{1}=N_{2}$. Without loss of generality assume that $N_{1} \leq N_{2}$. Thus we get $4 q^{N_{1}+N_{2}}$ times the sum of

$$
\begin{aligned}
A & =\sum_{0 \leq \nu_{1} \leq N_{1}} \sum_{0 \leq \nu_{2} \leq N_{2}} q^{-\nu_{1}-\nu_{2}}=\frac{1-q^{-N_{1}-1}}{1-q^{-1}} \cdot \frac{1-q^{-N_{2}-1}}{1-q^{-1}} \\
& =\frac{q^{2}}{(q-1)^{2}}\left(1-q^{-N_{1}-1}\right)\left(1-q^{-N_{2}-1}\right) ; \\
B & =\left(1-q^{-2}\right) \sum_{0 \leq \nu_{1} \leq N_{1}} \sum_{0 \leq \nu_{2} \leq N_{2}} q^{-\nu_{1}-\nu_{2}} \sum_{1 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)} q^{3 m} \\
& =\frac{\left(1-q^{-2}\right) q^{3}}{q^{3}-1} \sum_{0 \leq \nu_{1} \leq N_{1}} q^{-\nu_{1}-\nu_{2}}\left(q^{3 \min \left(\nu_{1}, \nu_{2}\right)}-1\right) \\
& =\frac{q\left(q^{2}-1\right)}{q^{3}-1}\left[\sum_{0 \leq \nu_{2} \leq N_{2}} q^{-\nu_{1}} \sum_{0 \leq \nu_{2} \leq \nu_{1}}\left(q^{2 \nu_{2}}-q^{-\nu_{2}}\right)+\sum_{0 \leq \nu_{1} \leq N_{1}}\left(q^{2 \nu_{1}}-q^{-\nu_{1}}\right) \sum_{\nu_{1}<\nu_{2} \leq N_{2}} q^{-\nu_{2}}\right]
\end{aligned}
$$

(here we used $N_{1} \leq N_{2}$)

$$
\begin{aligned}
& =\frac{q\left(q^{2}-1\right)}{q^{3}-1} \sum_{0 \leq \nu_{1} \leq N_{1}}\left[q^{-\nu_{1}}\left(\frac{q^{2 \nu_{1}+2}-1}{q^{2}-1}-\frac{q^{-\nu_{1}-1}}{q^{-1}-1}\right)+\left(q^{2 \nu_{1}}-q^{-\nu_{1}}\right) \frac{q^{-N_{2}-1}-q^{-\nu_{1}-1}}{q^{-1}-1}\right] \\
& =\frac{q\left(q^{2}-1\right)}{q^{3}-1} \sum_{0 \leq \nu_{1} \leq N_{1}}\left[\frac{q^{\nu_{1}+2}-q^{-\nu_{1}}}{q^{2}-1}-\frac{q^{1-\nu_{1}}-q^{-2 \nu_{1}}}{q-1}-\frac{q^{-N_{2}}}{q-1}\left(q^{2 \nu_{1}}-q^{-\nu_{1}}\right)+\frac{q^{\nu_{1}}-q^{-2 \nu_{1}}}{q-1}\right] \\
& =\frac{q\left(q^{2}-1\right)}{q^{3}-1} \sum_{0 \leq \nu_{1} \leq N_{1}}\left[q^{\nu_{1}}\left(\frac{q^{2}}{q^{2}-1}+\frac{1}{q-1}\right)-\frac{q^{-N_{2}}}{q-1} q^{2 \nu_{1}}-q^{-\nu_{1}}\left(\frac{1}{q^{2}-1}+\frac{q}{q-1}-\frac{q^{-N_{2}}}{q-1}\right)\right] \\
& =\frac{q\left(q^{2}-1\right)}{q^{3}-1}\left[\frac{q^{N_{1}+1}}{q-1} \cdot \frac{q^{2}+q+1}{q^{2}-1}-\frac{q^{2 N_{1}+2}-1}{q^{2}-1} \cdot \frac{q^{-N_{2}}}{q-1}-\frac{1-q^{-N_{1}-1}}{1-q^{-1}}\left(\frac{q^{2}+q+1}{q^{2}-1}-\frac{q^{-N_{2}}}{q-1}\right)\right] \\
& =\frac{q\left(q^{2}-1\right)}{q^{3}-1} \cdot \frac{1-q^{-N_{1}-1}}{(q-1)^{2}}\left(\frac{q^{3}-1}{q^{2}-1} q^{N_{1}+1}-\frac{q^{2 N_{1}-N_{2}+2}\left(1+q^{-N_{1}-1}\right)}{q+1}-\frac{q\left(q^{3}-1\right)}{q^{2}-1}+q^{-N_{2}+1}\right)
\end{aligned}
$$

and $\left(\right.$ since $\left.4 q^{m+2 \nu} q^{j_{1}+j_{2}}=4 q^{N_{1}+N_{2}} q^{m}\right)$

$$
\begin{aligned}
C & =\sum_{0 \leq \nu \leq \min \left(N_{1}, N_{2}\right)} \sum_{\nu<m \leq X-\nu} q^{m}=\frac{q}{q-1} \sum_{0 \leq \nu \leq N_{1}}\left(q^{X-\nu}-q^{\nu}\right) \\
& =\frac{q}{q-1}\left(q^{X} \frac{1-q^{-N_{1}-1}}{1-q^{-1}}-\frac{q^{N_{1}+1}-1}{q-1}\right) .
\end{aligned}
$$

Then $A+C+B$ is

$$
\begin{aligned}
& \frac{q^{2}}{(q-1)^{2}}\left(1-q^{-N_{1}-1}\right)\left[\left(1-q^{-N_{2}-1}\right)+\left(q^{X}-q^{N_{1}}\right)+\right. \\
& \left.\quad\left(q^{N_{1}}-\frac{q-1}{q^{3}-1} q^{2 N_{1}-N_{2}+1}\left(1+q^{-N_{1}-1}\right)-1+\frac{q^{2}-1}{q^{3}-1} q^{-N_{2}}\right)\right] \\
& =\frac{q^{2}}{(q-1)^{2}}\left(1-q^{-N_{1}-1}\right)\left(q^{X}-q^{-N_{2}}\left(\frac{1}{q}-\frac{q^{2}-1}{q^{3}-1}+\frac{q-1}{q^{3}-1}\left(q^{2 N_{1}+1}+q^{N_{1}}\right)\right)\right) \\
& =\frac{q^{2}}{(q-1)^{2}}\left(1-q^{-N_{1}-1}\right)\left(q^{X}-\frac{q-1}{q^{3}-1} q^{-N_{2}-1}\left(1+q^{N_{1}+1}+q^{2 N_{1}+2}\right)\right) .
\end{aligned}
$$

The product of this with $4 q^{N_{1}+N_{2}}$ is the product of $4 q^{2} /(q-1)^{2}$ and

$$
q^{N_{1}+N_{2}}\left(1-q^{-N_{1}-1}\right)\left(q^{X}-q^{-N_{2}-1} \frac{1+q^{1+N_{1}}+q^{2+2 N_{1}}}{1+q+q^{2}}\right)
$$

This is the stable twisted orbital integral of 1_{K} at the strongly θ-regular topologically unipotent element $t_{\rho}=h^{-1} t^{*} h$ under consideration. The stable orbital integral of 1_{K} in $G S p(2, F)$ at its norm is computed similarly. The only differences are that there are only two conjugacy classes in the stable class of the norm Γ parametrized by ρ which ranges over a
set $\{1, \varepsilon\}$ of representatives for $R^{\times} / R^{\times 2}$. The constraint $\rho_{1} / \rho_{2}=u_{1} / u_{2} \in B_{1} B_{2} R^{\times 2}$ in the twisted case (of $S p(2, F)$) is now replaced by $\rho=u \in B_{1}^{\prime} B_{2}^{\prime} R^{\times 2}$. Hence we obtain $\frac{1}{2}$ of the expression which was computed in the evaluation of the stable orbital integral of type (I) of 1_{K} on $S p(2, F)$. Hence we obtain $\frac{1}{2}$ of exactly the same expression obtained in the twisted case e except that the parameters N_{1}, N_{2}, X of $t_{\rho}=h^{-1} t^{*} h$ will be denoted by n_{1}, n_{2}, χ in the case of its norm. As in the unramified case we have $\chi=\operatorname{ord} D+N_{1}+N_{2}$, ord $D=1 \Gamma$ and $X=\operatorname{ord} D+n_{1}+n_{2}$. If $N_{1}<N_{2}$ then $n_{1}=n_{2}=N_{1}$; if $n_{1}<n_{2}$ then $N_{1}=N_{2}=n_{1}$. When $n_{1}=n_{2}$ and $N_{1}=N_{2}$ we have $n_{1}=n_{2}=N_{1}=N_{2}$ and $X=\chi \Gamma$ then the comparison follows at once. When $N_{1}<N_{2}$ the twisted expression is $4 q^{2} /(q-1)^{2}$ times

$$
q^{N_{1}+N_{2}}\left(1-q^{-N_{1}-1}\right)\left(q^{1+2 N_{1}}-q^{-N_{2}-1} \frac{1+q^{1+N_{1}}+q^{2+2 N_{1}}}{1+q+q^{2}}\right)
$$

The expression for the non twisted integral at the norm is the product of $2 q^{2} /(q-1)^{2}$ and

$$
q^{2 N_{1}}\left(1-q^{-N_{1}-1}\right)\left(q^{1+N_{1}+N_{2}}-q^{-N_{1}-1} \frac{1+q^{1+N_{1}}+q^{2+2 N_{1}}}{1+q+q^{2}}\right) .
$$

Multiplying the last expressions by the measure factor $2=e(E / F)$ Гas computed in the Lemma of Section D Γ we conclude that these expressions are equal. The case where $n_{1}<n_{2}$ follows (e.g. on interchanging n 's and N 's). The comparison is then complete in Case (I).

F. Endoscopy for $H=G S p(2)$, type (I).

The computations of the orbital integrals of 1_{K} can be used to compare the unstable orbital integral of 1_{K} at an element of type (I) or (II) Γ where there are two conjugacy classes in the stable conjugacy class Γ with the orbital integral of 1_{K} on the proper endoscopic group \mathbf{C}_{0} of \mathbf{H}. The unstable orbital integral is a difference of the two orbital integrals m multiplied by a transfer factor. These objects are as follows. The dual group \hat{H} of $\mathbf{H}=G S p(2)$ is $G S p(2, \mathbb{C}) \Gamma$ and its principal endoscopic group has dual which is the centralizer $\hat{C}_{0}=Z_{\hat{H}}(\operatorname{diag}(1,-1,-1,1)) \simeq$ $(G L(2, \mathbb{C}) \times G L(2, \mathbb{C}))^{\prime}$. Thus $C_{0}=(G L(2) \times G L(2)) /\left\{\left(z, z^{-1}\right)\right\}$.

Let \mathbf{T}_{H} be a maximal torus in \mathbf{H}. Its group of cocharacters is $X_{*}\left(\mathbf{T}_{H}\right)=\left\{\left(x_{1}, y_{1}, y_{2}, x_{2}\right)\right.$; $\left.x_{1}+x_{2}=y_{1}+y_{2}\right\}$. Its dual group is $X^{*}\left(\mathbf{T}_{H}\right)=X_{*}\left(\hat{T}_{H}\right)=\left\{\left(z_{1}, t_{1}, t_{2}, z_{2}\right)\right\} /\langle(z,-z,-z, z)\rangle$. The $x_{i}, y_{i}, z_{i}, t_{i}$ are in \mathbb{Z}; \hat{T}_{H} denotes a maximal torus in \hat{H}, \hat{T}_{0} in $\hat{C}_{0} \Gamma \mathbf{T}_{0}$ in \mathbf{C}_{0}. The group $X_{*}\left(\hat{T}_{0}\right)=\left\{\left(x_{1}, y_{1}, y_{2}, x_{2}\right) ; x_{1}+x_{2}=y_{1}+y_{2}\right\}$ is isomorphic to $X_{*}\left(\hat{T}_{H}\right) \Gamma$ via $X_{*}\left(\hat{T}_{H}\right) \underset{\rightarrow}{\sim} X_{*}\left(\hat{T}_{0}\right)$, $\left(z_{1}, t_{1}, t_{2}, z_{2}\right) \mapsto\left(z_{1}+t_{1}, z_{1}+t_{2}, t_{1}+z_{2}, t_{2}+z_{2}\right)$. The dual map $\operatorname{Ffrom} X_{*}\left(\mathbf{T}_{0}\right)=\left\{\left(u_{1}, v_{1}, v_{2}, u_{2}\right)\right\}$ $/\langle(z,-z,-z, z)\rangle$ to $X_{*}\left(\mathbf{T}_{H}\right) \Gamma$ is given by $\left(u_{1}, v_{1}, \ldots\right) \mapsto\left(u_{1}+v_{1}, u_{1}+v_{2}, v_{1}+u_{2}, v_{2}+u_{2}\right)$. The tori \mathbf{T}_{0} and \mathbf{T}_{H} are determined by their cocharacter groups Γ thus we obtain an isomorphism Γ $\mathbf{T}_{0} \rightarrow \mathbf{T}_{H},\left(\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{2}\end{array}\right),\left(\begin{array}{cc}v_{1} & 0 \\ 0 & v_{2}\end{array}\right)\right) /\left(z, z^{-1}\right) \mapsto \operatorname{diag}\left(x_{1}=u_{1} v_{1}, x_{2}=u_{1} v_{2}, x_{2}^{\prime}=u_{2} v_{1}, x_{1}^{\prime}=u_{2} v_{2}\right)$. The dual group data includes a choice of a set of positive roots $\alpha>0 \Gamma$ so that we have a discriminant $D(t)=\prod_{\alpha>0}|1-\alpha(t)|$ on $t \in \mathbf{T}$. In particularГon \mathbf{T}_{0} we have $D_{0}\left(\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{2}\end{array}\right),\left(\begin{array}{cc}v_{1} & 0 \\ 0 & v_{2}\end{array}\right)\right)=$ $\left|1-u_{1} / u_{2}\right|\left|1-v_{1} / v_{2}\right| \Gamma$ and on \mathbf{T}_{H} we have

$$
D_{H}\left(\operatorname{diag}\left(x_{1}, x_{2}, x_{2}^{\prime}, x_{1}^{\prime}\right)\right)=\left|1-x_{1} / x_{2}\right|\left|1-x_{1} / x_{2}^{\prime}\right|\left|1-x_{2} / x_{2}^{\prime}\right|\left|1-x_{1} / x_{1}^{\prime}\right|
$$

The quotient is

$$
D_{H}\left(u_{1} v_{1}, u_{1} v_{2}, u_{2} v_{1}, u_{2} v_{2}\right) / D_{0}\left(\left(\begin{array}{cc}
u_{1} & 0 \\
0 & u_{2}
\end{array}\right),\left(\begin{array}{cc}
v_{1} & 0 \\
0 & v_{2}
\end{array}\right)\right)=\left|1-x_{1} / x_{1}^{\prime}\right|\left|1-x_{2} / x_{2}^{\prime}\right| .
$$

In the case of tori of type (I) the isomorphism $\mathbf{T}_{0} \xrightarrow{\sim} \mathbf{T}_{H}$ yields a map of F-rational points $\lambda: T_{0} \rightarrow T_{H} \Gamma$ induced from $\left(\left(\begin{array}{cc}t_{1} & 0 \\ 0 & \sigma t_{1}\end{array}\right),\left(\begin{array}{cc}t_{2} & 0 \\ 0 & \sigma t_{2}\end{array}\right)\right) /\left(z, z^{-1}\right) \mapsto x^{*}=\operatorname{diag}\left(x_{1}=t_{1} t_{2}, x_{2}=\right.$ $\left.t_{1} \sigma t_{2}, \sigma x_{2}, \sigma x_{1}\right)$. If $x_{i}=\alpha_{i}+\beta_{i} \sqrt{D} \Gamma$ then $x=\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right]=h^{-1} x^{*} h \Gamma$ where $h=\left[h_{D}^{\prime}, h_{D}^{\prime}\right] \Gamma$ lies in $T_{H}\left(=\left\{h^{-1}\left(y_{1}, y_{2}, \sigma y_{2}, \sigma y_{1}\right) h ; y_{i} \in E^{\times}\right\}\right) \Gamma$ and a stably conjugate but non conjugate element is given by $x_{R}=\left[\mathbf{x}_{1 R}, \mathbf{x}_{2}\right] \Gamma$ where $\mathbf{x}_{1 R}=\left(\begin{array}{c}\alpha_{1} \\ \beta_{1} R^{-1} \\ \beta_{1} D R \\ \alpha_{1}\end{array}\right), R \in F^{\times}-N_{E / F} E^{\times}$. Then the unstable orbital integral is $\Phi_{1_{K}}^{u s}(x)=\Phi_{1_{K}}(x)-\Phi_{1_{K}}\left(x_{R}\right)$. For emphasis Γ we sometimes write K_{H} for K of $H \Gamma$ and K_{0} for the standard maximal compact of C_{0}.

The orbital integrals on H and C_{0} depend on a choice of Haar measures Γ which we choose in a compatible way Γ as follows. Denote by t_{0} a regular element in $T_{0} \subset C_{0} \Gamma$ and $x=\lambda\left(t_{0}\right)$ for its image under $\lambda: T_{0} \rightarrow T_{H} \subset H$. We have $\Phi_{1_{K_{0}}}^{C_{0}}\left(t_{0}\right)=\int_{T_{0} \backslash C_{0}} 1_{K_{0}}\left(g^{-1} t_{0} g\right) d_{C_{0}}(g) / d_{T_{0}}$. Here $d_{C_{0}}$ is a Haar measure on $C_{0} \Gamma$ while $d_{T_{0}}$ is one on T_{0}. A Haar measure is unique up to a scalar Γ determined by the volume of the maximal compact subgroup. The function $1_{K_{0}}$ is the unit element in the Hecke algebra $C_{c}\left(K_{0} \backslash C_{0} / K_{0}\right)$ Thus it is the quotient of the characteristic function of K_{0} in C_{0} by the volume $\left|K_{0}\right|$ of K_{0} according to $d_{C_{0}}$. In particular Γ the measure $1_{K_{0}} d_{C_{0}}$ is independent of the choice of $\left|K_{0}\right|$: the integral $\int_{C_{0}} 1_{K_{0}} d_{C_{0}}$ is 1 . We can then assume that $\left|K_{0}\right|=1 \Gamma$ so that $1_{K_{0}}$ is the characteristic function of K_{0} in C_{0}. This is used in all of our computations above Γ to simplify the notations. Similarly $\Phi_{1_{K_{H}}}^{H}(x)$ is $\int_{T_{H} \backslash H} 1_{K_{H}}\left(h^{-1} x h\right) d_{H}(h) / d_{T_{H}} \Gamma$ and we may assume that $\left|K_{H}\right|_{1_{H}}=1$ and $1_{K_{H}}$ is the characteristic function of K_{H} in H. The problem is to relate the measures $d_{T_{H}}$ and $d_{T_{0}}$. This we do by means of the morphism $\lambda: \mathbf{T}_{0} \rightarrow \mathbf{T}_{H}$. Given a measure $d_{T_{H}}$ on T_{H} Гwe can define a measure $\lambda^{*}\left(d_{T_{H}}\right)=d_{T_{H}} \circ \lambda$ on T_{0}. Then there is $\mu>0$ such that $d_{T_{0}}$ is $\mu \lambda^{*}\left(d_{T_{H}}\right)$. The factor μ is given by the following computation Γ in which $R_{T_{0}}, R_{T_{H}}$ Гdenote the maximal compact subgroups in $T_{0}, T_{H} \Gamma$ and $\left|R_{T_{0}}\right|,\left|R_{T_{H}}\right|$ their volumes. Thus

$$
\left|R_{T_{0}}\right|=d_{T_{0}}\left(R_{T_{0}}\right)=\mu d_{T_{H}}\left(\lambda\left(R_{T_{0}}\right)\right)=\mu\left|R_{T_{H}}\right| /\left[R_{T_{H}}: \lambda\left(R_{\left.T_{0}\right)}\right)\right],
$$

and $\mu=\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right]\left|R_{T_{0}}\right| /\left|R_{T_{H}}\right| \Gamma$ or $\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right] \Gamma$ if we take - as we do $-d_{T_{0}}$ and $d_{T_{H}}$ to be normalized by $\left|R_{T_{0}}\right|=1,\left|R_{T_{H}}\right|=1$. Then $d_{T_{0}}=\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right] \lambda^{*}\left(d_{T_{H}}\right) \Gamma$ and we relate $\Phi_{1_{K_{H}}}^{H}\left(x ; d_{H} / d_{T_{H}}\right)$ with $\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right] \Phi_{1_{K_{0}}}^{C_{0}}\left(t_{0} ; d_{C_{0}} / d_{T_{0}}\right)$.

1. Theorem. Let E / F be a quadratic extension, and $x=h^{-1}\left(x_{1}, x_{2}, \sigma x_{2}, \sigma x_{1}\right) h$ a regular element of type (I) (thus $x_{1} \sigma x_{1}=x_{2} \sigma x_{2}$) in $\operatorname{GSp}(2, F)$. Introduce $t_{1}, t_{2} \in E^{\times}$by $t_{1} / \sigma t_{1}=$ $x_{1} / \sigma x_{2}, t_{2} / \sigma t_{2}=x_{1} / x_{2}$. Suppose that t_{1}, t_{2} are units, in R_{E}^{\times}. Let $\chi_{E / F}$ be the non trivial character on $F^{\times} / N_{E / F} E^{\times}$. Then

$$
\begin{aligned}
\chi_{E / F} & \left(\left(x_{1}-\sigma x_{1}\right)\left(x_{2}-\sigma x_{2}\right) / D\right)\left|1-x_{1} / \sigma x_{1}\right|\left|1-x_{2} / \sigma x_{2}\right| \Phi_{1_{K_{H}}}^{H, u s}\left(x ; d_{H} / d_{T_{H}}\right) \\
& =\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right] \Phi_{1_{K_{0}}}^{C_{0}}\left(\left(\left(\begin{array}{cc}
t_{1} & 0 \\
0 & \sigma t_{1}
\end{array}\right),\left(\begin{array}{cc}
t_{2} & 0 \\
0 & \sigma t_{2}
\end{array}\right)\right) ; d_{C_{0}} / d_{T_{0}}\right) \\
& =\Phi_{1_{K_{0}}}^{C_{0}}\left(\left(\left(\begin{array}{cc}
t_{1} \\
0 & \sigma t_{1}
\end{array}\right),\left(\begin{array}{cc}
t_{2} & 0 \\
0 & \sigma t_{2}
\end{array}\right)\right) ; d_{C_{0}} / \lambda^{*}\left(d_{T_{H}}\right)\right) .
\end{aligned}
$$

Proof. To compute the right side recall that if $t=a+b \sqrt{D}, \mathbf{t}=\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right) \Gamma$ then on $G=G L(2, F)$ we have

$$
\int_{T \backslash G} 1_{K}\left(g^{-1} \mathbf{t} g\right) d g=1_{R_{E}^{\times}}(t)(q-1)^{-1} \begin{cases}q|(t-\sigma t) / \sqrt{D}|^{-1}-1, & D \in \pi R^{\times}, \\ (q+1)|(t-\sigma t) / \sqrt{D}|^{-1}-2, & D \in R^{\times} .\end{cases}
$$

Recall that $x_{1}=t_{1} t_{2} \Gamma x_{2}=t_{1} \sigma t_{2} \Gamma x_{i}=\alpha_{i}+\beta_{i} \sqrt{D} \Gamma \beta_{i}=B_{i}^{\prime} \pi^{n_{i}} \Gamma B_{i}^{\prime} \in R^{\times} \Gamma$ put $n=\min \left(n_{1}, n_{2}\right) \Gamma$ $\left|\alpha_{1}-\alpha_{2}\right|=q^{-\chi}$. Suppose that x is absolutely unipotent. Then $\chi>0 \Gamma$ and we have:
2. Lemma. The unordered pair $\left\{\left|\left(t_{1}-\sigma t_{1}\right) / \sqrt{D}\right|^{-1},\left|\left(t_{2}-\sigma t_{2}\right) / \sqrt{D}\right|^{-1}\right\}$ equals $\left\{q^{n}, q^{\chi-n}|D|\right\}$.

Proof. This is the statement $n=N$ and $\chi=N_{1}+N_{2}+$ ord $D \Gamma$ proven in "Notations" of Section D. Here is an alternative proof. The product of the two terms is indeed $q^{\chi} D \Gamma$ since

$$
\begin{aligned}
q^{-\chi} & =\left|\alpha_{1}-\alpha_{2}\right|=\left|x_{1}+\sigma x_{1}-x_{2}-\sigma x_{2}\right| \\
& =\left|t_{1} t_{2}+\sigma t_{1} \sigma t_{2}-t_{1} \sigma t_{2}-t_{2} \sigma t_{1}\right|=\left|t_{1}-\sigma t_{1}\right|\left|t_{2}-\sigma t_{2}\right|
\end{aligned}
$$

This is also equal to

$$
=\left|x_{1}-\sigma x_{2}\right|\left|x_{1}-x_{2}\right|=\left|\left(\alpha_{1}-\alpha_{2}\right)^{2}-\left(\beta_{1}+\beta_{2}\right)^{2} D\right|^{1 / 2}\left|\left(\alpha_{1}-\alpha_{2}\right)^{2}-\left(\beta_{1}-\beta_{2}\right)^{2} D\right|^{1 / 2} .
$$

If $\left|\alpha_{1}-\alpha_{2}\right|<\left|\beta_{1} \pm \beta_{2}\right|$ for both choices of sign then the two factors are $\left|\left(\beta_{1}+\beta_{2}\right) \sqrt{D}\right|$ and $\left|\left(\beta_{1}-\beta_{2}\right) \sqrt{D}\right| \Gamma$ one of which has to be $q^{-n}|\sqrt{D}| \Gamma$ as required. Note that $n_{1}<n_{2}$ implies $2 n_{1}+$ ord $D=\chi$. If $\left|\beta_{1} \pm \beta_{2}\right| \leq\left|\alpha_{1}-\alpha_{2}\right|<1$ for some choice of sign Γ then the identity displayed above implies that $\left|\beta_{1} \mp \beta_{2}\right|=1$ and $|D|=1 \Gamma$ thus $\left|\beta_{1}\right|=\left|\beta_{2}\right|=1 \Gamma$ so $n_{1}=n_{2}=0 \Gamma$ and one of the two factors is equal to 1 . The lemma follows.

In conclusion Γ the orbital integral on C_{0} is the product of $1_{R_{E}^{\times}}\left(t_{1}\right) 1_{R_{E}^{\times}}\left(t_{2}\right)$ and

$$
\begin{aligned}
(q-1)^{-2}\left(q^{n+1}-1\right)\left(q^{\chi-n}-1\right), & D \in \pi R^{\times} \\
(q-1)^{-2}\left((q+1) q^{n}-2\right)\left((q+1) q^{\chi-n}-2\right), & D \in R^{\times}
\end{aligned}
$$

Let us consider first the case where E / F is unramified Γ thus $D \in R^{\times}$. Here the factor $\left|1-x_{1} / \sigma x_{1}\right|\left|1-x_{2} / \sigma x_{2}\right|=\left|x_{1}-\sigma x_{1}\right|\left|x_{2}-\sigma x_{2}\right|=\left|\beta_{1} \beta_{2} D\right|$ is $q^{-n_{1}-n_{2}}$. Further $\Gamma N_{E / F} R_{E}^{\times}=R^{\times} \Gamma$ and $N_{E / F} E^{\times}=R^{\times} \pi^{2 \mathbb{Z}}$ Thence $\chi_{E / F}$ is the character on E^{\times}which is trivial on R^{\times}Гand takes the value -1 at $\boldsymbol{\pi}$. Then $\chi_{E / F}\left(\left(x_{1}-\sigma x_{1}\right)\left(x_{2}-\sigma x_{2}\right) / D\right)=\chi_{E / F}\left(\beta_{1} \beta_{2}\right)=(-1)^{n_{1}+n_{2}} \Gamma$ and the transfer factor is $(-q)^{-n_{1}-n_{2}}$. The unstable orbital integral $\Phi_{1_{K}}^{H, u s}(x)$ is a difference of two sums Γ each of which was computed in the case of the stable orbital integral Γ which is the sum of the two integrals in question. These two orbital integrals are parametrized by ρ Гranging over the set $\{1, \pi\}$ of representatives for $F^{\times} / N_{E / F} E^{\times} \Gamma$ with $\rho=\pi^{\bar{\rho}}, \bar{\rho} \in\{0,1\}$. The sum (over $j_{1}, j_{2} \geq 0 \Gamma$ with 2 dividing $j_{1}-\left(j_{2}-\bar{\rho}\right)$) has now the coefficient $(-1)^{\bar{\rho}}$ (the coefficient was 1 in the stable case) Γ which is equal to $(-1)^{j_{1}+j_{2}}=(-1)^{n_{1}-\nu_{1}+n_{2}-\nu_{2}}$.

Consequently the unstable orbital integral is the sum of the following three sums.

$$
\sum_{0 \leq \nu_{1} \leq n_{1}} \sum_{0 \leq \nu_{2} \leq n_{2}} \sum_{0 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)}=\sum_{0 \leq m \leq n}\left(\delta(m=0)+\delta(m \geq 1)\left(1-q^{-2}\right) q^{3 m}\right)
$$

$$
\begin{aligned}
& {\left[\sum_{\substack{m \leq \nu_{1}<n_{1} \\
m \leq \nu_{2}<n_{2}}} 2 \cdot \frac{1}{2} \cdot\left(\frac{q+1}{q}\right)^{2}(-q)^{n_{1}-\nu_{1}+n_{2}-\nu_{2}}+\sum_{m \leq \nu_{1}<n_{1}} \frac{q+1}{q}(-q)^{n_{1}-\nu_{1}}\right.} \\
& \left.+\sum_{m \leq \nu_{2}<n_{2}} \frac{q+1}{q}(-q)^{n_{2}-\nu_{2}}+1\right] ; \\
& \sum_{0 \leq \nu \leq n \nu<m \leq 2 n-\nu} \sum_{2} \frac{1}{2}\left(\frac{q+1}{q}\right)^{2}(-q)^{n_{1}+n_{2}-2 \nu} \cdot 2 q^{m+2 \nu} ; \\
& \delta\left(n_{1}, n_{2}\right) \sum_{0 \leq \nu \leq n} \sum_{2 n-\nu<m \leq \chi-\nu} \\
& =\delta\left(n_{1}, n_{2}\right)\left[\sum_{0 \leq \nu<n} \sum_{2 n-\nu<m \leq \chi-\nu} \frac{1}{2}\left(\frac{q+1}{q}\right)^{2} q^{2 n-2 \nu} \cdot 2 q^{m+2 \nu}+\sum_{n<m \leq \chi-n} \frac{q+1}{q} q^{2 n+m}\right] .
\end{aligned}
$$

The [...] in the first sum is

$$
\begin{aligned}
& (q+1)^{2} \sum_{0 \leq j_{i}<n_{i}-m}(-q)^{j_{1}+j_{2}}-(q+1) \sum_{0 \leq j_{1}<n_{1}-m}(-q)^{j_{1}}-(q+1) \sum_{0 \leq j_{2}<n_{2}-m}(-q)^{j_{2}}+1 \\
& \quad=(-q)^{n_{1}+n_{2}-2 m} .
\end{aligned}
$$

Hence the first sum is

$$
(-q)^{n_{1}+n_{2}}\left(1+\left(1-q^{-2}\right) \sum_{0<m \leq n} q^{m}\right)=(-q)^{n_{1}+n_{2}}\left(1+\left(1+q^{-1}\right)\left(q^{n}-1\right)\right) .
$$

The second sum is

$$
(-q)^{n_{1}+n_{2}}\left(\frac{q+1}{q}\right)^{2} \sum_{0 \leq \nu \leq n}\left[q^{\nu+1} \sum_{0 \leq m<2 n-2 \nu} q^{m}\right] .
$$

Here $[\ldots]$ is $q^{\nu+1}\left(q^{2 n-2 \nu}-1\right) /(q-1)=(q /(q-1))\left(q^{2 n-\nu}-q^{\nu}\right)$. Hence $\sum_{0 \leq \nu \leq n}[\ldots]$ is $(q /(q-1))\left(q^{n}-1\right)$ times $\sum_{0 \leq \nu \leq n} q^{\nu}=\left(q^{n+1}-1\right) /(q-1)$ Гand we get

$$
(-q)^{n_{1}+n_{2}} \frac{(q+1)^{2}}{(q-1)^{2} q}\left(q^{2 n+1}-q^{n+1}-q^{n}+1\right)
$$

In the third sum $n=n_{1}=n_{2}$. It is the sum of two terms Γ namely

$$
\left(\frac{q+1}{q}\right)^{2} q^{2 n} \sum_{0 \leq \nu<n} q^{2 n-\nu+1}\left(q^{\chi-2 n}-1\right) /(q-1)=\left(\frac{q+1}{q}\right)^{2} q^{2 n} q^{n+2} \frac{q^{n}-1}{(q-1)^{2}}\left(q^{\chi-2 n}-1\right)
$$

and

$$
\frac{q+1}{q} q^{2 n} \cdot q^{n+1} \frac{q^{\chi-2 n}-1}{q-1}
$$

The third sum is then

$$
(-q)^{n_{1}+n_{2}} \frac{q+1}{(q-1)^{2} q} q^{n+1}\left(q^{\chi-2 n}-1\right)\left(q^{n+1}+q^{n}-2\right)
$$

When $n_{1}<n_{2}$ we have $n=n_{1}$ and $\chi=2 n \Gamma$ and the sum of the three sums is

$$
(-1)^{n_{1}+n_{2}}(q-1)^{-2}\left[(q-1)^{2}+q^{-1}(q+1)\left(q^{n}-1\right)\left\{(q-1)^{2}+(q+1)\left(q^{n+1}-1\right)\right\}\right]
$$

and [...] is $\left((q+1) q^{n}-2\right)^{2}$. If $(n=) n_{1}=n_{2} \Gamma$ we need to add the third sum (which is zero when $\left.n_{1} \neq n_{2}\right) \Gamma$ thus to $[\ldots]$ we add $\left((q+1) q^{n}-2\right)(q+1) q^{n}\left(q^{\chi-2 n}-1\right)$. Hence in all cases ($n_{1}=n_{2}$ or $n_{1} \neq n_{2}$) The unstable orbital integral adds up to

$$
(-q)^{n_{1}+n_{2}}(q-1)^{-2}\left((q+1) q^{n}-2\right)\left((q+1) q^{\chi-n}-2\right)
$$

Since the transfer factor is $(-q)^{-n_{1}-n_{2}}$ Cour comparison is complete in the case where E / F is unramified.

Next we consider the case where E / F is ramified Γ thus $D \in \pi R^{\times}$.
The factor $\left|1-x_{1} / \sigma x_{1}\right|\left|1-x_{2} / \sigma x_{2}\right|=\left|\beta_{1} \beta_{2} D\right|$ is $q^{-n_{1}-n_{2}-1}$. Further $N_{E / F} E^{\times}=R^{\times 2} \pi^{\mathbb{Z}} \Gamma$ so that $\chi_{E / F}$ is trivial at $\boldsymbol{\pi}\left(=n_{E / F} \boldsymbol{\pi}_{E}, \boldsymbol{\pi}_{E}=\sqrt{-\boldsymbol{\pi}} \Gamma\right.$ thus we take $\left.D=-\boldsymbol{\pi}\right)$ and its restriction to R^{\times}has the kernel $R^{\times 2}$. Since $\left(x_{i}-\sigma x_{i}\right) / \sqrt{D}=\beta_{i}=B_{i}^{\prime} \pi^{n_{i}} \Gamma$ the transfer factor is $\chi_{E / F}\left(B_{1}^{\prime} B_{2}^{\prime}\right) q^{-n_{1}-n_{2}-1}$. The unstable orbital integral is a difference of two integrals Γ indexed by ρ which ranges over a set of representatives $\{1, u\}$ for $R^{\times} / R^{\times 2}\left(=F^{\times} / N_{E / F} E^{\times}\right)$. The stable orbital integral was a sum Γ over $\rho \Gamma$ of the two integrals. We expressed each of these two integrals as sums of terms denoted above by $A, B, C \Gamma$ which are also sums Γ over different domains of summation. Over the domains of summation of A and $B \Gamma$ the contributions associated to $\rho=1$ and $\rho=u$ are equal Γ yielding a factor 2 in the computation of the stable integralCand a factor 0 in the case of the unstable integral. Over the domain of summation of $C \Gamma$ namely $0 \leq \nu \leq n=\min \left(n_{1}, n_{2}\right)$ and $\nu<m \leq \chi-\nu$ एwe have the condition $\rho \in B_{1}^{\prime} B_{2}^{\prime} R^{\times 2}$. In the computation of the stable integral we obtained in C a coefficient 1: precisely one of the $\rho \in\{1, u\}$ satisfies $\rho \in B_{1}^{\prime} B_{2}^{\prime} R^{\times 2}$. In the unstable case the contribution appears in the positive (resp. negative) integral if $\chi_{E / F}\left(B_{1}^{\prime} B_{2}^{\prime}\right)$ is 1 (resp. -1). Hence the unstable orbital integral is $\chi_{E / F}\left(B_{1}^{\prime} B_{2}^{\prime}\right) \cdot 2 q^{n_{1}+n_{2}} \cdot C$ where we recall that

$$
C=q(q-1)^{-2}\left(q^{\chi-n}-1\right)\left(q^{n+1}-1\right) .
$$

Multiplying by the transfer factor $\chi_{E / F}\left(B_{1}^{\prime} B_{2}^{\prime}\right) q^{-n_{1}-n_{2}-1}$ we are left with $2(q-1)^{-2}\left(q^{\chi-n}-\right.$ 1) $\left(q^{n+1}-1\right)$ which is the orbital integral of 1_{K} on C_{0} in the case where E / F is ramified Γ using the following.
3. Lemma. The index $\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right]$ is 1 if E / F is unramified, and 2 if E / F is ramified.

Proof. Recall that $\lambda\left(\left(t_{1}, \sigma t_{1}\right),\left(t_{2}, \sigma t_{2}\right)\right)=\left(x_{1}=t_{1} t_{2}, x_{2}=t_{1} \sigma t_{2}, \sigma x_{2}, \sigma x_{1}\right)$. Thus given x_{1}, x_{2} in $R_{E}^{\times} \Gamma$ we look for solutions t_{1}, t_{2} in R_{E}^{\times}for the equations $x_{1}=t_{1} t_{2}, x_{2}=t_{1} \sigma t_{2}$. It suffices to solve $x_{1} / x_{2}=t_{2} / \sigma t_{2}$ in $t_{2} \in R_{E}^{\times}$. Denote by E^{1} the group $\left\{x / \sigma x ; x \in E^{\times}\right\}$. When E / F is unramified ΓE^{1} is equal to $\left\{x / \sigma x ; x \in R_{E}^{\times}\right\} \Gamma$ so t_{2} exists. When E / F is ramified Γ write $x=t \pi_{E}^{n}, t \in R_{E}^{\times}$. Then $x / \sigma x=u / \sigma u(-1)^{n} \Gamma$ and since $u / \sigma u \equiv 1\left(\bmod \boldsymbol{\pi}_{E}\right) \Gamma$ the group $\left\{x / \sigma x ; x \in R_{E}^{\times}\right\}$has index 2 in $E^{1} \Gamma$ and $x_{1} / x_{2}=t_{2} / \sigma t_{2}$ has a solution in $t_{2} \in R_{E}^{\times}$if $x_{1} \equiv x_{2} \Gamma$ but not when $x_{1} \equiv-x_{2}\left(\bmod \boldsymbol{\pi}_{E}\right)$. Note that $x_{1} / x_{2} \equiv \pm 1\left(\bmod \boldsymbol{\pi}_{E}\right) \Gamma$ since $x_{1} \sigma x_{1}=x_{2} \sigma x_{2}$ implies that $x_{1} / x_{2} \cdot \sigma\left(x_{1} / x_{2}\right)=1$; if $x_{1} / x_{2}=a+b \sqrt{D}$ then $a^{2}-b^{2} D=1 \Gamma$ and $a^{2} \equiv 1(\bmod \pi) \Gamma$ so $x_{1} / x_{2} \equiv a\left(\bmod \boldsymbol{\pi}_{E}\right) \equiv \pm 1\left(\bmod \boldsymbol{\pi}_{E}\right)$. The lemma follows.

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the θ-orbital integrals can be used to compute the unstable κ - θ orbital integrals 5 at a strongly θ-regular topologically θ-unipotent element $t^{*}=\left(t_{1}, t_{2}, \sigma t_{2}, \sigma t_{1}\right)$ (thus $t^{*} \theta$ is topologically unipotent) of type (I). The character κ is defined on the group $\left(F^{\times} / N_{E / F} E^{\times}\right)^{2}$ of θ-conjugacy classes within the stable θ-conjugacy class of t^{*}. Thus $\kappa=$ $\kappa_{1} \times \kappa_{2}, \kappa_{i}$ on $F^{\times} / N_{E / F} E^{\times}$. The stable case is that where $\kappa_{i}=1, i=1,2$. The endoscopic group associated with κ with $\kappa_{i} \neq 1(i=1,2)$ is $\mathbf{C}=(G L(2) \times G L(2))^{\prime}$. We deal with this case now. The norm $N_{C} t^{*}$ is $\left.\left(\begin{array}{cc}t_{1} t_{2} & 0 \\ 0 & \sigma\left(t_{1} t_{2}\right)\end{array}\right),\left(\begin{array}{cc}t_{1} \sigma t_{2} & 0 \\ 0 & t_{2} \sigma t_{1}\end{array}\right)\right)$. If $t_{i}=a_{i}+b_{i} \sqrt{D} \Gamma$ then $\Delta_{G, C}\left(t^{*}\right)=$ $\left|\left(t_{1}-\sigma t_{1}\right)\left(t_{2}-\sigma t_{2}\right)\right|_{F} /\left|t_{1} \sigma t_{1} \cdot t_{2} \sigma t_{2}\right|_{F}^{1 / 2}=\left|b_{1} b_{2} D\right|_{F}$. If $N_{i}=\operatorname{ord}\left(b_{i}\right), n_{i}=\operatorname{ord}\left(\beta_{i}\right) \Gamma$ where $x_{1}=t_{1} t_{2}=\alpha_{1}+\beta_{1} \sqrt{D}, x_{2}=t_{1} \sigma t_{2}=\alpha_{2}+\beta_{2} \sqrt{D} \Gamma$ then the orbital integral $\Phi_{1_{K_{C}}}\left(N_{C} t^{*}\right)$ of $1_{K_{C}}$ on C at the norm $N_{C} t^{*}$ is a product of two integrals of 1_{K} on $G L(2, F)$ at the conjugacy classes with eigenvalues $\left(x_{1}, \sigma x_{1}\right)$ and $\left(x_{2}, \sigma x_{2}\right)$. By Lemma F. 2Γ this integral is the product of $\left(q^{N_{1}+1}-1\right)(q-1)^{-1}$ and $\left(q^{N_{2}+1}-1\right)(q-1)^{-1}$ when E / F is ramified Γ and of $\left((q-1) q^{N_{1}}-2\right)(q-1)^{-1}$ and $\left((q-1) q^{N_{2}}-2\right)(q-1)^{-1}$ when E / F is unramified.

Theorem. Let t^{*} be a topologically θ-unipotent strongly θ-regular element of type (I). Then

$$
\kappa_{1}\left(\left(t_{1}-\sigma t_{1}\right) / 2 \sqrt{D}\right) \kappa_{2}\left(\left(t_{2}-\sigma t_{2}\right) / 2 \sqrt{D}\right) \Delta_{G, C}\left(t^{*}\right) \Phi_{1_{K}}^{\kappa}\left(t^{*} \theta\right)=\Phi_{1_{K_{C}}}^{C}\left(N_{C} t^{*}\right)
$$

Proof. When E / F is unramified $\Gamma \rho_{i}$ ranges over $\{1, \pi\} \Gamma$ which represents $F^{\times} / N_{E / F} E^{\times} \Gamma$ and then $\kappa_{i}\left(\left(t_{i}-\sigma t_{i}\right) / 2 \sqrt{D}\right)=\kappa_{i}\left(b_{i}\right)=(-1)^{N_{i}}$. When E / F is ramified $\Gamma \rho_{i}$ ranges over a set $\{1, \varepsilon\}$ of representatives for $R^{\times} / R^{\times 2}\left(=F^{\times} / N_{E / F} E^{\times}\right), \kappa_{i}(\pi)=1 \Gamma$ and since $b_{i}=B_{i} \pi^{N_{i}} \Gamma$ the factor $\kappa_{i}\left(\left(t_{i}-\sigma t_{i}\right) / 2 \sqrt{D}\right)=\kappa_{i}\left(b_{i}\right)$ is $\kappa_{i}\left(B_{i}\right)$. The κ - θ-orbital integral is a sum no different than the stable orbital integral except that the summation over ρ_{1} and ρ_{2} in $F^{\times} / N_{E / F} E^{\times}$ is now weighted by the sign $\kappa_{1}\left(\rho_{1}\right) \kappa_{2}\left(\rho_{2}\right)$. Indeed Γ recall that ρ_{m} is ρ if m is even Γ but it is $\tilde{\rho}=\left(\tilde{\rho}_{1}, \tilde{\rho}_{2}\right)$ if m is odd Γ where $\left\{\rho_{i}, \tilde{\rho}_{i}\right\}=\{1, \boldsymbol{\pi}\}$ if E / F is unramified Γ and $\rho_{i} \mapsto \tilde{\rho}_{i}=-1 / \rho_{i}$ is a permutation of $R^{\times} / R^{\times 2}$ if E / F is ramified. Hence in our sum

$$
\sum_{\rho} \kappa_{1}\left(\rho_{1}\right) \kappa_{2}\left(\rho_{2}\right) \sum_{m \geq 0} \sum_{r \in R_{\rho_{m}}}\left[R_{T}^{1}: T_{\rho_{m}}^{1} \cap r K_{0} r^{-1}\right] \# L_{m, \rho_{m}}^{1}
$$

replacing ρ_{m} by ρ changes neither the factor $\# L_{m, \rho_{m}}^{1}$ nor the index [...]. The indexing set $R_{\rho_{m}}$ is not changed either Γ when E / F is ramified. However Γ when E / F is unramified $\Gamma R_{\rho} \Gamma$ defined by $j_{i} \equiv \bar{\rho}_{i}(\bmod 2) \Gamma$ is changed when ρ is replaced by ρ_{m}. In this unramified case we may replace ρ_{m} by ρ provided we multiply each summand by $(-1)^{m}(-1)^{m}=1$. The weighted sum thus obtained is precisely the same as that obtained in the proof of Theorem F. 1Γ which deals with endoscopy for $H=G S p(2) \Gamma$ type (I) (and computes the unstable orbital integral of type (I). The theorem follows.

Twisted endoscopic group of type I.F.3, E / F unramified.

When E / F is unramified Γ the orbital integral of 1_{K} on the twisted endoscopic group of type (3) of Section I.F is $\left((q+1)\left|b_{2}\right|^{-1}-2\right) /(q-1) \Gamma\left|b_{i}\right|=q^{-N_{i}}$. It has to be divided by the factor $\Delta_{G, C_{+}}\left(t^{*}\right)=|(x-t)(x y-z t)(x z-y t)| /\left(|x t|^{3 / 2}|y z|\right)=|x-\bar{x}||x y-\overline{x y}||x \bar{y}-y \bar{x}|$ (see the last lines of Sections I.F and I.G). Here $x=a_{1}+b_{1} \sqrt{D}$ and $y=a_{2}+b_{2} \sqrt{D}$ are topologically unipotent Γ which means that they lie in $1+\pi R_{E}$. Then ord $((x y-\overline{x y})(x \bar{y}-y \bar{x}))=$ $\operatorname{ord}\left(a_{1}^{2} b_{2}^{2}-a_{2}^{2} b_{1}^{2}\right)=\operatorname{ord}\left(b_{2}^{2}-b_{1}^{2}\right)=\operatorname{ord}\left(a_{1}^{2}-a_{2}^{2}\right)=X$. Hence the inverse of the Δ-factor is $q^{N_{1}+X}$. We show below that the κ-orbital integral is $(-q)^{N_{1}+X}\left((q+1) q^{N_{2}}-2\right) /(q-1)$. Put $\kappa_{G, C_{+}}(u)=\kappa_{E}((x-\bar{x})(x y-\overline{x y})(x \bar{y}-y \bar{x})) \Gamma$ where $\kappa_{E}\left(R_{E}^{\times} \pi_{E}^{n}\right)=(-1)^{n}$. We conclude the following.

Theorem. Let u be a topologically θ-unipotent strongly θ-regular element of type (I). Then

$$
\kappa_{G, C_{+}}(u) \Delta_{G, C_{+}}(u) \Phi_{1_{K}}^{G, \kappa}(u \theta)=\Phi_{1_{K}}^{C_{+}}(u)
$$

if E / F is unramified, while when E / F is ramified, the left side vanishes.
Proof. The computation of the twisted orbital integral is as in Section D. The κ-orbital integral is

$$
\Phi_{1_{K}}^{G, \kappa}(u \theta)=\Phi_{1_{K^{\prime}}(\theta)}^{Z G_{G}(\theta), \kappa}(u)=\sum_{\rho} \kappa(\rho) \sum_{m \geq 0} \sum_{r \in R_{\rho_{m}}}\left[R_{T}^{1}: T_{\rho_{m}}^{1} \cap r K_{0}^{1} r^{-1}\right] \# L_{m, \rho_{m}}^{1}
$$

where $u=h^{-1} t^{*} h$ is topologically unipotent. Put $N=\min \left(N_{1}, N_{2}\right) \Gamma$ where $N_{i}=\operatorname{ord}\left(b_{i}\right)$. The factor $\# L_{m, \rho_{m}}^{1}$ is equal to $\# L_{m, \rho}^{1}$ Гand the index [...] is independent of ρ. When E / F is ramified we also have $R_{\rho_{m}}=R_{\rho}$ Гhence the sum vanishes. In the case where E / F is unramified Γ $\rho=\left(\rho_{1}, \rho_{2}\right), \rho_{i} \in\{1, \boldsymbol{\pi}\}, u_{i}=1 \Gamma$ and ρ_{m} is ρ if m is even Γ but it is $\tilde{\rho}=\left(\tilde{\rho}_{1}, \tilde{\rho}_{2}\right)$ if m is odd Γ where $\left\{\rho_{i}, \tilde{\rho}_{i}\right\}=\{1, \pi\}$. The indexing set $R_{\rho_{m}}$ Ddefined by $j_{i} \equiv \bar{\rho}_{i}(\bmod 2)$ is changed when ρ_{m} is replaced by ρ. Hence we can replace ρ_{m} by ρ at the price of multiplying each summand by $(-1)^{m}$.

The sum over r is a sum over $j_{1}, j_{2} \geq 0$ such that $j_{1}-\bar{\rho}_{1}, j_{2}-\bar{\rho}_{2}$ are even Γ and over ε_{i} in $R^{\times} / R^{\times 2}$ if $j_{i}>0$. When $j_{1}>0$ or $j_{2}>0$ Гand $\nu=\nu_{1}=\nu_{2}<m \Gamma$ we have $\varepsilon_{1} \varepsilon_{2} \in B_{1} B_{2} R^{\times 2}$. In other words Γ we have a sum over $\nu_{i}=N_{i}-j_{i}(i=1,2) \Gamma 0 \leq \nu_{i} \leq N_{i} \Gamma$ and over $\varepsilon_{i} \in R^{\times} / R^{\times 2}$ if $\nu_{i}<N_{i}$ for $i=1$, 2. (If $\nu_{i}=N_{i}$ for some $i \Gamma$ then $\varepsilon_{i} \in R^{\times} / R^{\times}$).

Then we need to sum over m. We have the range $0 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right) \Gamma$ then the range $\nu\left(=\nu_{1}=\nu_{2}\right)<m \leq 2 N-\nu$ (since ord $D=0$ when E / F is unramified ($\nu_{i}<m$ implies $\left.\nu_{1}=\nu_{2}\right)$) and the range $2 N-\nu<m \leq X-\nu\left(2 N-\nu<m\right.$ implies $\nu<m, N_{1}=N_{2}$ Гand
$m \leq X-\nu)$. Let $\delta(m=0)=\delta(m, 0)$ be 0 if $m \neq 0$ and 1 if $m \neq 0 \Gamma$ and $\delta(m \geq 1)$ be 0 if $m<1$ and 1 if $m \geq 1$.

Thus we get the sum of three expressions:

$$
\begin{aligned}
& \sum_{0 \leq \nu_{1} \leq N_{1}} \sum_{0 \leq \nu_{2} \leq N_{2}} \sum_{0 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)}(-1)^{m}\left(\delta(m=0)+\delta(m \geq 1)\left(1-q^{-2}\right) q^{3 m}\right)\left[\sum_{m \leq \nu_{1}<N_{1}} \sum_{m \leq \nu_{2}<N_{2}}\right. \\
& \left.=\sum_{0 \leq m \leq N} 2\left(\frac{q+1}{2 q}\right)^{2}(-q)^{N_{1}-\nu_{1}} q^{N_{2}-\nu_{2}}+\sum_{m \leq \nu_{1}<N_{1}} 2 \frac{q+1}{2 q}(-q)^{N_{1}-\nu_{1}}+\sum_{m \leq \nu_{2}<N_{2}} 2 \frac{q+1}{2 q} q^{N_{2}-\nu_{2}}+1\right] ; \\
& \sum_{0 \leq \nu \leq N} \sum_{\nu<m \leq 2 N-\nu} 2\left(\frac{q+1}{2 q}\right)^{2}(-q)^{N_{1}-\nu} q^{N_{2}-\nu} \cdot 2(-q)^{m+2 \nu} ; \\
& \delta\left(N_{1}, N_{2}\right) \sum_{0 \leq \nu \leq N} \sum_{2 N-\nu<m \leq X-\nu}=\delta\left(N_{1}, N_{2}\right)\left[\sum_{N<m \leq X-N} \frac{q+1}{q} q^{2 N}(-q)^{m}\right. \\
& \left.\quad+\sum_{0 \leq \nu<N} \sum_{2 N-\nu<m \leq X-\nu} 2\left(\frac{q+1}{2 q}\right)^{2}\left(-q^{2}\right)^{N-\nu} \cdot 2(-q)^{m+2 \nu}\right] .
\end{aligned}
$$

To compute the first expression note that

$$
\frac{q+1}{q} \sum_{m \leq \nu_{1}<N_{1}}(-q)^{N_{1}-\nu_{1}}+1=1-(q+1) \sum_{0 \leq j<N_{1}-m}(-q)^{j}=(-q)^{N_{1}-m}
$$

and

$$
\begin{aligned}
\frac{q+1}{q} \sum_{m \leq \nu_{2}<N_{2}} q^{N_{2}-\nu_{2}}+1 & =1+(q+1) \sum_{0 \leq j<N_{2}-m} q^{j}=1+\frac{q+1}{q-1}\left(q^{N_{2}-m}-1\right) \\
& =\frac{q+1}{q-1} q^{N_{2}-m}-\frac{2}{q-1} .
\end{aligned}
$$

Hence $(-1)^{m}[\ldots]$ is

$$
(-q)^{N_{1}} q^{-m}\left(\frac{q+1}{q-1} q^{N_{2}-m}-\frac{2}{q-1}\right)=\frac{(-q)^{N_{1}}}{q-1}\left[(q+1) q^{N_{2}-2 m}-2 q^{-m}\right] .
$$

So the first expression is

$$
\frac{(-q)^{N_{1}}}{q-1}\left[(q+1) q^{N_{2}}-2+\left(1-q^{-2}\right) \sum_{1 \leq m \leq N}\left((q+1) q^{N_{2}+m}-2 q^{2 m}\right)\right]
$$

Since $\sum_{N \leq n<M} x^{n}=\left(x^{M}-x^{N}\right) /(x-1) \Gamma$ the sum is

$$
q(q+1) q^{N_{2}} \frac{q^{N}-1}{q-1}-2 q^{2} \frac{q^{2 N}-1}{q^{2}-1} .
$$

We then get

$$
\frac{(-q)^{N_{1}}}{q-1}\left[(q+1) q^{N_{2}}+(q+1)^{2} q^{N_{2}-1}\left(q^{N}-1\right)-2 q^{2 N}\right] .
$$

The second expression is the product of $(-q)^{N_{1}} q^{N_{2}-1}(q+1)^{2}$ and

$$
-\sum_{0 \leq \nu \leq N}(-1)^{\nu} \sum_{\nu<m \leq 2 N-\nu}(-q)^{m-1}=\sum_{0 \leq \nu \leq N}\left(q^{2 N-\nu}-q^{\nu}\right) /(q+1)
$$

But

$$
\left(q^{N}-1\right) \sum_{0 \leq \nu \leq N} q^{\nu}=\left(q^{N}-1\right)\left(q^{N+1}-1\right) /(q-1),
$$

hence we get

$$
\frac{(-q)^{N_{1}}}{q-1} q^{N_{2}-1}(q+1)\left(q^{2 N+1}-(1+q) q^{N}+1\right)
$$

The sum of the first and second expressions is $(-q)^{N_{1}} q^{2 N}\left((q+1) q^{N_{2}}-2\right) /(q-1)$.
The third expression is the product of $\delta\left(N_{1}, N_{2}\right)$ and the sum of

$$
\begin{aligned}
& -q^{-1}(q+1)^{2}\left(-q^{2}\right)^{N} \sum_{0 \leq \nu<N}(-1)^{\nu} \sum_{2 N-\nu<m \leq X-\nu}(-q)^{m-1} \\
& =q^{-1}(q+1)\left(-q^{2}\right)^{N} \sum_{0 \leq \nu<N}\left((-q)^{X}-q^{2 N}\right) q^{-\nu} \\
& =-\frac{q+1}{q-1}\left(-q^{2}\right)^{N}\left((-q)^{X}-q^{2 N}\right)\left(q^{-N}-1\right)=\frac{q+1}{q-1}(-q)^{N}\left((-q)^{X}-q^{2 N}\right)\left(q^{N}-1\right),
\end{aligned}
$$

and of $q^{2 N}\left((-q)^{X-N}-(-q)^{N}\right)$. Since $X=2 N$ when $N_{1} \neq N_{2} \Gamma$ it is

$$
(-q)^{N}\left((-q)^{X}-q^{2 N}\right)\left((q+1) q^{N}-2\right) /(q-1) .
$$

The sum of the three terms is $(-q)^{N_{1}}(-q)^{X}\left[(q+1) q^{N_{2}}-2\right] /(q-1)$. This completes the proof of the theorem「as noted before its statement.

G. Twisted orbital integrals of type (II).

The stable θ-orbital integral $\Phi_{1}^{G, s t}(u \theta)$ of a type (II) strongly θ-regular topologically unipotent element $u=\theta(u)$ in $G=G L(4, F) \times F^{\times}$is equal to the stable orbital integral $\Phi_{1_{K}^{1}}^{S p(2, F), s t}(u)$ at $u \in H^{1}=S p(2, F)$. We proceed to compute this integral. Let us recall our notations Γ in the case of type (II). There are three distinct quadratic extensions $E_{1}=F(\sqrt{D}), E_{2}=$ $F(\sqrt{A D}), E_{3}=F(\sqrt{A})$ of F Ttwo ramified and one unramified Γ and we take E_{2} to be ramified Γ and normalize A, D to be integral (in R) of minimal order Γ thus the set $\{A, D\}$ consists of a unit and a uniformizer. The Galois group of $E=E_{1} E_{2}$ over F is $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \Gamma$ generated by σ, τ Гsuch that E_{1} is the fixed field of τ in $E \Gamma$ and $E_{2}=E^{\langle\sigma \tau\rangle}$.

The torus \mathbf{T} is defined by the Galois action $\rho \Gamma$ thus τ acts on \mathbf{T}^{*} as (23) and $\sigma \tau$ as (14). The torus $T=h^{-1} T^{*} h$ can be realized as $\left[\phi^{D}\left(a_{1}+b_{1} \sqrt{D}\right), \phi^{A D}\left(a_{2}+b_{2} \sqrt{A D}\right)\right]$. A complete set of representatives for the θ-conjugacy classes within the stable θ-conjugacy class is given by $s_{\rho}=\left[\phi_{\rho_{1}}^{D}\left(a_{1}+b_{1} \sqrt{D}\right), \phi_{\rho_{2}}^{A D}\left(a_{2}+b_{2} \sqrt{A D}\right)\right] \Gamma$ where ρ_{1} ranges over $F^{\times} / N_{E_{1} / F} E_{1}^{\times}$and ρ_{2} over $F^{\times} / N_{E_{2} / F} E_{2}^{\times}$. Here $\phi_{\rho}^{D}\left(a_{1}+b_{1} \sqrt{D}\right)=\left(\begin{array}{cc}a_{1} & b_{1} D \rho \\ b_{1} / \rho & a_{1}\end{array}\right)$. Then $s_{\rho}=h^{-1}(a, b, \tau b, \sigma a ; e) h, a \in E_{1}^{\times}$, $b \in E_{2}^{\times}, e \in F^{\times}$. Put T_{ρ}^{1} for the torus (i.e. centralizer) containing $s_{\rho} \Gamma$ in $H^{1}=S p(2, F)$.

There are two cases to consider. The ramified case is when E_{1} / F is ramified Γ namely $D=\pi_{F}$ and A is a unit (in $R^{\times}-R^{\times 2}$) sso that E_{3} / F is unramified. In this case $\rho_{1}=u_{1} \pi^{\bar{\rho}_{1}} \Gamma \bar{\rho}_{1}=\operatorname{ord} \rho_{1} \Gamma$ ranges over $R^{\times} / R^{\times 2} \Gamma$ thus $\bar{\rho}_{1}=0$. The unramified case is when E_{1} / F is unramified Γ thus D is a non square unit in R^{\times}Гand $A=\pi_{F} \Gamma$ so that E_{3} / F is ramified. In this case ρ_{1} ranges over $\{1, \pi\} \Gamma$ so $\bar{\rho}_{1}$ over $\{0,1\} \Gamma$ and $u_{1}=1$. In both cases E_{2} / F is ramified; so ρ_{2} ranges over a set $\{1, \varepsilon\}$ of representatives for $R^{\times} / R^{\times 2} \Gamma$ and $\bar{\rho}_{2}=\operatorname{ord} \rho_{2}$ is 0 .

The computation of the orbital integral $\Phi_{1^{1}}^{S p(2, F)}\left(s_{\rho}\right)$ proceeds as in case (I). We use the double coset decomposition $H^{1}=S p(2, F)=\underset{m \leq 0}{\cup} C_{0}^{1} z(m) K^{1}$ Гof Lemma I.J. 6Γ to get

$$
\begin{aligned}
\Phi_{1_{K^{1}}}^{H^{1}}\left(s_{\rho}\right) & =\int_{T_{\rho}^{1} \backslash H^{1}} 1_{K^{1}}\left(g^{-1} s_{\rho} g\right) d g \\
& =\sum_{m \geq 0}\left|K^{1}\right|_{H^{1}} \int_{T_{\rho}^{1} \backslash C_{0}^{1} / C_{0}^{1} \cap z(m) K^{1} z(m)^{-1}} 1_{K^{1}}\left(z(m)^{-1} h^{-1} s_{\rho} h z(m)\right) d h .
\end{aligned}
$$

The integrand in the last integral is non zero precisely when $h^{-1} t_{\rho} h$ lies in $z(m) K^{1} z(m)^{-1}$ $\cap C_{0}^{1}=K_{m}^{C_{0}^{1}}$. Hence we get

$$
=\sum_{m \geq 0}\left|K^{1}\right|_{H^{1}} \int_{T_{\rho}^{1} \backslash C_{0}^{1} / K_{m}^{C_{0}^{1}}} 1_{K_{m}^{C_{0}^{1}}}\left(h_{0}^{-1} s_{\rho} h_{0}\right) d h_{0} .
$$

Using Lemma I.J. 7 we have an isomorphism $\phi_{m}: C_{1} \rightarrow C_{0}^{1}\left(\phi_{m}(h)=h_{0}\right) \Gamma \phi_{m}\left(K_{m}^{1}\right)=K_{m}^{C_{0}^{1}}$. Define x_{ρ} by $\phi_{m}\left(x_{\rho}\right)=s_{\rho} \Gamma$ and note that $T_{\rho}=Z_{C_{0}^{1}}\left(s_{\rho}\right)$. Hence our expression is

$$
\begin{gathered}
=\sum_{m \geq 0}\left|K^{1}\right|_{H^{1}} \int_{Z_{C_{1}}\left(x_{\rho}\right) \backslash C_{1} / K_{m}^{1}} 1_{\phi_{m}\left(K_{m}^{1}\right)}\left(\phi_{m}(h)^{-1} \phi_{m}\left(x_{\rho}\right) \phi_{m}(h)\right) d h \\
=\sum_{m \geq 0}\left[K_{0}^{1}: K_{m}^{1}\right] \int_{Z_{C_{1}}\left(x_{\rho}\right) \backslash C_{1}} 1_{K_{m}^{1}}\left(h^{-1} x_{\rho} h\right) d h
\end{gathered}
$$

Next we change variables on $C_{1}=S L(2, F) \times S L(2, F)$. If m is even Γ

$$
h \mapsto(I, w \varepsilon)\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{m / 2} & 0 \\
0 & \boldsymbol{\pi}^{-m / 2}
\end{array}\right),\left(\begin{array}{cc}
\boldsymbol{\pi}^{m / 2} & 0 \\
0 & \boldsymbol{\pi}^{-m / 2}
\end{array}\right)\right) h
$$

sends $h^{-1} x_{\rho} h$ to $h^{-1}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{m}\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{m}\end{array}\right)\right)(I, \varepsilon w) x_{\rho}(I, w \varepsilon)\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-m}\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-m}\end{array}\right)\right) h=h^{-1} s_{\rho}^{\prime} h \Gamma$ where $s_{\rho}^{\prime}=\left(s_{\rho_{1}}, s_{\rho_{2}}\right) \in C_{1} \Gamma s_{\rho_{1}}=\phi_{\rho_{1}}^{D}\left(a_{1}+b_{1} \sqrt{D}\right) \Gamma s_{\rho_{2}}=\phi_{\rho_{2}}^{A D}\left(a_{2}+b_{2} \sqrt{A D}\right)$.

If m is odd Γ and E_{1} / F is unramified Γ

$$
h \mapsto(I, w \boldsymbol{\varepsilon})\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{(m+i) / 2} & 0 \\
0 & \boldsymbol{\pi}^{-(m+i) / 2}
\end{array}\right),\left(\begin{array}{cc}
\boldsymbol{\pi}^{(m+1) / 2} & 0 \\
0 & \boldsymbol{\pi}^{-(m+1) / 2}
\end{array}\right)\right)(I, w \boldsymbol{\varepsilon}) h
$$

sends $h^{-1} x_{\rho} h$ to $h^{-1}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{i}\end{array}\right), \boldsymbol{\varepsilon} w\left(\begin{array}{ll}1 & 0 \\ 0 & \boldsymbol{\pi}\end{array}\right)\right) s_{\rho}^{\prime}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-i}\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}^{-1}\end{array}\right) w \boldsymbol{\varepsilon}\right) h$ where i is taken to be 1 if $\rho_{1}=\boldsymbol{\pi}$ and -1 if $\rho_{1}=1$. Then $h^{-1} x_{\rho} h$ is mapped to $h^{-1} s_{\tilde{\rho}}^{\prime} h \Gamma$ where if $\rho=\left(\rho_{1}, \rho_{2}\right)$ then $\tilde{\rho}=\left(\tilde{\rho}_{1}, \tilde{\rho}_{2}\right) \Gamma$ and $\tilde{\rho}_{1}$ is defined by $\left\{\rho_{1}, \tilde{\rho}_{1}\right\}=\{1, \boldsymbol{\pi}\} \Gamma$ and $\rho_{2} \mapsto \tilde{\rho}_{2}=-1 / D \rho_{2}$ is a permutation (trivial if $-1 \notin R^{\times 2}$) of $R^{\times} / R^{\times 2}$.

If m is odd Γ and E_{1} / F is ramified Γ we take

$$
h \mapsto(I, w \boldsymbol{\varepsilon})\left(\left(\begin{array}{cc}
\boldsymbol{\pi}^{(m+1) / 2} & 0 \\
0 & \boldsymbol{\pi}^{-(m+1) / 2}
\end{array}\right),\left(\begin{array}{cc}
\boldsymbol{\pi}^{(m+1) / 2} & 0 \\
0 & \boldsymbol{\pi}^{-(m+1) / 2}
\end{array}\right)\right)(w \boldsymbol{\varepsilon}, w \boldsymbol{\varepsilon}) h,
$$

which maps $h^{-1} x_{\rho} h$ to $h^{-1} s_{\tilde{\rho}}^{\prime} h \Gamma$ where $\rho_{1} \mapsto \tilde{\rho}_{1}=-1 / \rho_{1}$ is a permutation Γ trivial if $-1 \in R^{\times 2} \Gamma$ of $R^{\times} / R^{\times 2} \Gamma$ and $\rho_{2} \mapsto \tilde{\rho}_{2}=-1 / A \rho_{2}$ is a permutation (trivial if $-1 \notin R^{\times 2}$) of $R^{\times} / R^{\times 2}$.

Put $\rho_{m}=\rho$ if m is evenГand $\rho_{m}=\tilde{\rho}$ if m is odd. We get

$$
=\sum_{m \geq 0}\left[K_{0}^{1}: K_{m}^{1}\right] \int_{T_{\rho_{m}} \backslash C_{1}} 1_{K_{m}^{1}}\left(h^{-1} s_{\rho_{m}} h\right) d h
$$

Using the double coset decomposition for $S L(2, F)$ of Lemma I.I. 3 we get

$$
=\sum_{m \geq 0} \sum_{r \in R_{\rho_{m}}}\left[R_{T}^{1}: T_{\rho_{m}}^{1} \cap r K_{0}^{1} r^{-1}\right]\left[K_{0}^{1}: K_{m}^{1}\right] \int_{K_{0}^{1}} 1_{K_{m}^{1}}\left(k^{-1} r^{-1} s_{\rho_{m}} r k\right) d k
$$

Here $R_{T}^{1}=T_{\rho_{m}}^{1} \cap K_{0}^{1}=T_{\rho_{m}}^{1}(R)$. Let \mathbf{j} signify $\left(j_{1}, j_{2}\right)$. To simplify the notations we write ρ for ρ_{m} until the index m is explicitly needed.

The decomposition of Lemma I.I. 3 is $S L(2, F)=\underset{j \geq 0}{\bigcup} T_{\rho}^{1} \phi_{\rho}^{D}\left(\boldsymbol{\pi}_{E}^{-j}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{F}^{j}\end{array}\right) K^{1}$ if $E_{1}=F(\sqrt{D})$ is ramified over F (and $\boldsymbol{\pi}_{E}=\sqrt{-\boldsymbol{\pi}_{F}}$). It is $S L(2, F)=\cup T_{\rho}^{1} t_{\varepsilon}\left(\begin{array}{c}\boldsymbol{\pi}_{F}^{-(j-\bar{\rho}) / 2} \\ 0 \\ \varepsilon \boldsymbol{\pi}_{F}^{(j-\bar{\rho}) / 2}\end{array}\right) K^{1}$ [union over $j \geq 0$ such that $j-\bar{\rho}$ is even Γ and over $\varepsilon \in R^{\times} / R^{\times 2}$ when $j \geq 1 \Gamma$ if E_{1} / F is unramified. Here $T_{\rho}^{1}=\phi_{\rho}^{D}\left(E_{1}^{1}\right), E_{1}=F(\sqrt{D})$ and E_{1}^{1} is the group of $x \in E_{1}^{\times}$with norm $N_{E_{1} / F} x=1$. Further $t_{\varepsilon} \in T_{\rho}=\phi_{\rho}^{D}\left(E_{1}^{\times}\right)$is an element with determinant ε^{-1}. Of course Γ here $K^{1}=S L(2, R)$. Consequently the representatives $r \in R_{\rho}\left(\rho=\left(\rho_{1}, \rho_{2}\right)\right)$ take the form

$$
r=\phi_{\rho_{1}}^{D}\left(\boldsymbol{\pi}_{1}^{-j_{1}}\right)\left(\begin{array}{c}
1 \\
0 \\
\left(\varepsilon_{0} \boldsymbol{\pi}_{F}\right)^{j_{1}}
\end{array}\right) \times \phi_{\rho_{2}}^{A D}\left(\boldsymbol{\pi}_{2}^{-j_{2}}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{\pi}_{F}^{j_{2}}
\end{array}\right), \quad j_{1}, j_{2} \geq 0,
$$

when E_{1} / F is ramified ($\boldsymbol{\pi}_{1}=\sqrt{-\varepsilon_{0} \boldsymbol{\pi}}$ and $\boldsymbol{\pi}_{2}=\sqrt{-\boldsymbol{\pi}}$ denote uniformizers of E_{1} and $E_{2} \Gamma$ where $\left.\varepsilon_{0} \in R^{\times}-R^{\times 2}\right)$. When E_{1} / F is unramified Γ the representatives r are $t_{\varepsilon}\left(\begin{array}{c}\pi_{F}^{-\left(j_{1}-\bar{\rho}_{1}\right) / 2} \\ 0 \\ \varepsilon \boldsymbol{\pi}_{F}^{\left(j_{1}-\bar{\rho}_{1}\right) / 2}\end{array}\right)$ $\times \phi_{\rho_{2}}^{A D}\left(\boldsymbol{\pi}_{2}^{-j_{2}}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{\pi}_{F}^{j_{2}}\end{array}\right) \Gamma$ where $j_{1}, j_{2} \geq 0, j_{1}-\bar{\rho}_{1}$ is even $\Gamma \varepsilon$ ranges over $R^{\times} / R^{\times 2}$ if $j_{1} \geq 1 \Gamma$ and $t_{\varepsilon} \in \phi_{\rho_{1}}^{D}\left(E_{1}^{\times}\right)$has determinant ε^{-1}. Write q_{0} for the residual cardinality $\# R / \pi_{F} R$ of $F \Gamma$ and $q=q_{3}$ for $\# R_{3} / \boldsymbol{\pi}_{3} R_{3}$.

1. Lemma. The index $\left[R_{T_{\rho}^{1}}^{1}: T_{\rho}^{1} \cap r K_{0}^{1} r^{-1}\right]$ is equal to $q_{0}^{j_{1}+j_{2}}$ if E_{1} / F is ramified or $j_{1}=0$, and to $q_{0}^{j_{1}+j_{2}}\left(q_{0}+1\right) / 2 q_{0}$ if E_{1} / F is unramified (then $q=q_{0}$) and $j_{1} \geq 1$.
Proof. This is proven as in the case of type (I) Γ see Lemma B.1 1 on noting that $T_{\rho}^{1} \cap r K_{0}^{1} r^{-1}=$ $R_{E_{1}}\left(j_{1}\right)^{1} \times R_{E_{2}}\left(j_{2}\right)^{1}, R_{E}(j)=R+\pi_{F}^{j} R_{E}$ Гand $R_{T_{\rho}^{1}}^{1}=R_{E_{1}}^{1} \times R_{E_{2}}^{1}$.
2. Lemma. The integral $\int_{K_{0}^{1} / K_{m}^{1}} 1_{K_{m}^{1}}\left(k^{-1} r^{-1} s_{\rho} r k\right) d k$ is equal to the cardinality of the set

$$
L_{m}^{1}=L_{m, \rho}^{1}=\left\{x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array} x_{4}\right) \in S L\left(2, R_{m}\right) ;\left(\begin{array}{cc}
\bar{a}_{1} & \bar{b}_{1}^{\prime} \bar{D}_{1}^{\prime} \\
\bar{b}_{1}^{\prime} & \bar{a}_{1}
\end{array}\right)\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}
\end{array} x_{2},\left(\begin{array}{cc}
\bar{a}_{2} & \bar{b}_{2}^{\prime} \bar{D}_{2}^{\prime} \\
x_{3} & x_{4}
\end{array}\right)\binom{\bar{b}_{2}^{\prime}}{\overline{a_{2}}}\right\} .\right.
$$

Here we put $R_{m}=R / \pi_{F}^{m} R, \bar{a}$ denotes the image in R_{m} of a in R. Suppose that $b_{i}=$ $B_{i} \pi_{F}^{N_{i}}, \rho_{i}=u_{i} \pi_{F}^{\bar{\rho}_{i}}$, and $\varepsilon_{1}=\varepsilon_{0}^{j_{1}}$ when $e\left(E_{1} / F\right)=2$ or $j_{1}=0$, and $\varepsilon_{1}=\varepsilon\left(\in R^{\times} / R^{\times 2}\right)$ when $e\left(E_{1} / F\right)=1$ and $j_{1} \geq 1$, so $\varepsilon_{1}=\varepsilon(r), r \in R_{\rho}$, and $\varepsilon_{2}=1$. Then we write $b_{i}^{\prime}=\left(B_{i} / \varepsilon_{i} u_{i}\right) \pi_{F}^{\nu_{i}}$, where $\nu_{i}=N_{i}-j_{i},(i=1,2)$, and $D_{i}^{\prime}=D_{i} \varepsilon_{i}^{2} u_{i}^{2} \pi_{F}^{2 j_{i}}$, where $D_{1}=D, D_{2}=A D$.

Proof. As in case (I)) see Lemma B. 2Γ recall that $d(A)=(A, \varepsilon A \varepsilon) \Gamma$ and note that K_{0}^{1} / K_{m}^{1} $=S L\left(2, R_{m}\right) \times S L\left(2, R_{m}\right) / d\left(S L\left(2, R_{m}\right)\right)$.

Put $X=\operatorname{ord}\left(a_{1}-a_{2}\right)$.
3. Lemma. The set L_{m}^{1} is non empty precisely when the following conditions are satisfied:
(1) $0 \leq m \leq X$. (2) $\nu_{i} \geq 0$. (3) $m \leq \nu_{1}$ if and only if $m \leq \nu_{2}$. (4) If $\nu_{1}<m$ or $\nu_{2}<m$ then $\nu_{1}=\nu_{2}$; we denote then the common value by ν. (5) If $\nu<m$ then $\left(B_{1} / \varepsilon_{1} u_{1}\right) /\left(B_{2} / u_{2}\right) \in R^{\times 2}$.
(6) Further, if $\nu<m$ then $m \leq 2 N_{i}-\nu+\operatorname{ord} D_{i}(i=1,2)$.

If L_{m}^{1} is non empty, then its cardinality is: 1 if $m=0 ;\left(q_{0}^{2}-1\right) q_{0}^{3 m-2}$ if $1 \leq m \leq \nu_{1}$ (equivalently: $1 \leq m \leq \nu_{2}$); $2 q_{0}^{m+2 \nu}$ if $\nu<m$.

Proof. If L_{m}^{1} is not empty Γ then comparing the traces of $\left(\begin{array}{c}\bar{a}_{i} \bar{b}_{b}^{\prime} \bar{D}_{i}^{\prime} \\ \bar{b}_{i}^{\prime} \\ \bar{a}_{i}\end{array}\right) \Gamma i=1,2 \Gamma$ we get $\bar{a}_{1}=\bar{a}_{2} \Gamma$ hence $0 \leq m \leq X=\operatorname{ord}\left(a_{1}-a_{2}\right)$. We then replace \bar{a}_{i}^{\prime} by 0 in the equation defining $L_{m}^{1} \Gamma$ and conclude that $\bar{b}_{1}^{\prime}=0$ if and only if $\bar{b}_{2}^{\prime}=0 \Gamma$ thus $m \leq \nu_{1}$ precisely when $m \leq \nu_{2}$.

The same equation shows that if $\bar{b}_{i}^{\prime} \neq 0$ for some $i \Gamma$ so $\nu_{i}<m \Gamma$ then $\left|b_{1}^{\prime}\right|=\left|b_{2}^{\prime}\right| \Gamma$ namely $\nu_{1}=\nu_{2}$. The common value is denoted then by ν. Assume that $\nu\left(=\nu_{1}=\nu_{2}\right)<m$. The set L_{m}^{1} consists of all $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R_{m}^{4}$ with $x_{1} x_{4}-x_{2} x_{3}=1 \Gamma$ satisfying

$$
\bar{b}_{1}^{\prime} \bar{D}_{1}^{\prime} x_{3}=\bar{b}_{2}^{\prime} x_{2}, \quad \bar{b}_{1}^{\prime} \bar{D}_{1}^{\prime} x_{4}=\bar{b}_{2}^{\prime} \bar{D}_{2}^{\prime} x_{1}, \quad \bar{b}_{1}^{\prime} x_{2}=\bar{b}_{2}^{\prime} \bar{D}_{2}^{\prime} x_{3}, \quad \bar{b}_{1}^{\prime} x_{1}=\bar{b}_{2}^{\prime} x_{4}
$$

Put $\eta=\left(B_{1} / \varepsilon_{1} u_{1}\right) /\left(B_{2} / u_{2}\right)$. Then for each $\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$ in L_{m}^{1} there are $a_{2}, a_{4} \in R_{m}$ with

$$
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & \eta^{-1}\left(D_{2}^{\prime} x_{3}+\pi^{m-\nu} a_{2}\right. \\
x_{3} & \eta\left(x_{1}+\boldsymbol{\pi}_{F}^{m-\nu} a_{4}\right)
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & \eta^{-2} x_{3} \bar{D}_{2}^{\prime} \\
x_{3} & x_{1}
\end{array}\right)\left(\begin{array}{cc}
1 & \boldsymbol{\pi}_{F}^{m-\nu} A_{2} \\
0 & 1+\boldsymbol{\pi}_{F}^{m-\nu} A_{4}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right),
$$

where A_{2}, A_{4} are defined (in $\left.R_{m}\right)$ by $\binom{\eta^{-2} a_{2}}{a_{4}}=\left(\begin{array}{cc}x_{1} & \eta^{-2} x_{3} \bar{D}_{2}^{\prime} \\ x_{3} & x_{1}\end{array}\right)\binom{A_{2}}{A_{4}}$. Since the determinant is one $\Gamma \eta$ lies in $N_{D_{2}}=\left\{y \in R_{m}^{\times} ; y=x_{1}^{2}-x_{3}^{2} A D \frac{B_{2}^{2}}{B_{1}^{2}} \varepsilon_{1}^{2} u_{1}^{2} \pi_{F}^{2 N_{2}-2 \nu_{2}}\right\} \Gamma$ which is $R_{m}^{\times 2}$ since $|A D|<1$. This is (5) of the lemma.

If x lies in $L_{m}^{1} \Gamma$ then x_{1}, x_{4} are units. Otherwise x_{2}, x_{3} are units Γ and since we are assuming that $\nu<m \Gamma$ the conditions that x satisfies imply that D_{1}^{\prime} and D_{2}^{\prime} are units Γ but $A D$ is not a unit. Since x_{1}, x_{4} are units Γ if $\bar{b}_{1}^{\prime} \bar{D}_{1}$ or $\bar{b}_{2}^{\prime} \bar{D}_{2} \neq 0$ Гnamely $m>2 N_{i}-\nu_{i}+$ ord D_{i} for some $i=1,2 \Gamma$ then $\eta \bar{b}_{1}^{\prime} \bar{D}_{1}^{\prime}=\bar{b}_{2}^{\prime} \bar{D}_{2}^{\prime}\left(\bmod \boldsymbol{\pi}^{m}\right)$ implies that $N_{1}=N_{2}$ and ord $A D=\operatorname{ord} D \Gamma$ thus $\operatorname{ord} A=0 \Gamma$ and $B_{1}^{2} D_{1} \equiv B_{2}^{2} D_{2}\left(\bmod \left(\pi^{m-\left(2 N_{i}-\nu_{i}\right)}\right)\right)$. But A is not a square $\left(D_{2} / D_{1}=A\right)$ एwe obtain a contradiction Γ and we conclude (6) of the lemma n namely that $\bar{b}_{i}^{\prime} \bar{D}_{i}=0(i=1,2)$.

The cardinality of L_{m}^{1} is clearly 1 when $m=0 \Gamma$ and it is $\# S L\left(2, R_{m}\right)=\left(q_{0}^{2}-1\right) q_{0}^{3 m-2}$ when $\bar{b}_{i}^{\prime}=0 \Gamma$ namely $\nu_{i} \geq m(i=1,2)$. If $\nu<m \Gamma$ the cardinality of L_{m}^{1} is the product of the cardinalities of the sets $\left\{A_{2} \in R_{m} / \pi_{F}^{\nu} R_{m} \simeq R / \pi_{F}^{\nu} R\right\}$ and $\left\{x_{1}, x_{3} \in R_{m} ; x_{1}^{2}-\bar{D}_{1} x_{3}^{2} \in\right.$ $\left.1+\pi_{F}^{m-\nu} R_{m}\right\}$. The cardinality of the first set is q^{ν}. The second has cardinality

$$
\#\left\{x_{1}, x_{3} \in R_{m} ; x_{1}^{2}-\bar{D}_{1} x_{3}^{2} \in R_{m}^{\times 2}\right\} /\left[R_{m}^{\times 2}: 1+\pi_{F}^{m-\nu} R_{m}\right] .
$$

The denominator is $\left[R^{\times}: 1+\pi^{m-\nu} R\right] /\left[R_{m}^{\times}: R_{m}^{\times 2}\right]=\frac{1}{2}\left(q_{0}-1\right) q_{0}^{m-\nu-1}$. Hence the cardinality of L_{m}^{1} is $2\left(q_{0}-1\right)^{-1} q_{0}^{2 \nu-m+1} \cdot\left(q_{0}-1\right) q_{0}^{m-1} \cdot q_{0}^{m}=2 q_{0}^{m+2 \nu}$ Гas asserted.

H. Orbital integrals of type (II).

We need to compare the stable θ-orbital integral of 1_{K} at a topologically unipotent strongly θ-regular element $u=h^{-1} t^{*} h$ of type (II) Γ computed above Γ with the stable orbital integral of 1_{K} at the norm $N u$ of u. We compute this integral next. This norm $N u=h^{-1} N t^{*} h$ is also of type (II) in our listing of elliptic conjugacy classes in $H=G S p(2, F)$. There are two conjugacy classes in the stable conjugacy class of a regular element of type (II) Гrepresented here by $\mathbf{s}_{\rho}=\left(\begin{array}{cc}\mathbf{a} & \mathbf{b} D \boldsymbol{\rho} \\ \rho^{-1} \mathbf{b} & \mathbf{a}\end{array}\right)$. We write $\mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} / A \\ a_{2} & a_{1}\end{array}\right)$ if $a=a_{1}+a_{2} / \sqrt{A}$ lies in $E_{3}=F(\sqrt{A})=E^{\langle\sigma\rangle} \Gamma$ similarly for $\mathbf{b}, \boldsymbol{\rho}$ एwhere ρ ranges over a set of representatives for $E_{3}^{\times} / N_{E / E_{3}} E^{\times} \Gamma$ say 1 and an element of minimal order in $R_{3}=R_{E_{3}}$. The centralizer T_{ρ} of \mathbf{s}_{ρ} in $H=G S p(2, F)$ lies in the subgroup

$$
\mathbf{C}_{A}=\left\{\left(\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right) ;\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L\left(2, E_{3}\right)^{\prime}\right\},
$$

the prime indicates: determinant in F^{\times}.

1. Lemma. The integral $\Phi_{1_{K}}^{G S p(2, F)}\left(\mathbf{s}_{\rho}\right)$ is equal to $\sum_{m=0}^{\infty}\left[K_{0}: K_{m}\right] \int_{T_{\rho} \backslash C_{A}} 1_{K_{m}}\left(h^{-1} s_{\rho} h\right) d h$. Here $C_{A}=G L(2, F(\sqrt{A}))^{\prime}$ and $K_{m}=G L\left(2, R_{E_{3}}(m)\right)^{\prime}$, where $R_{E_{3}}(m)=R+\pi^{m} \sqrt{A} R=$ $R+\boldsymbol{\pi}^{m} R_{E_{3}}$, and $s_{\rho}=\left(\begin{array}{cc}a & b D \rho \\ \rho^{-1} b & a\end{array}\right)$.

Proof. Using the decomposition $H=G S p(2, F)=\underset{m \geq 0}{\cup} \mathbf{C}_{A} u_{m} K, K=G S p(2, R)$ of Lemma I.J.1Гwe deduce that

$$
\int_{T_{\rho} \backslash G S p(2, F)} 1_{K}\left(g^{-1} \mathbf{s}_{\rho} g\right) d g=\sum_{m=0}^{\infty}|K|_{H} \int_{T_{\rho} \backslash \mathbf{C}_{A} / \mathbf{C}_{A} \cap u_{m} K u_{m}^{-1}} 1_{K}\left(u_{m}^{-1} h^{-1} \mathbf{s}_{\rho} h u_{m}\right) d h .
$$

Put $K_{m}^{A}=\mathbf{C}_{A} \cap u_{m} K u_{m}^{-1}$. The integrand on the right is non zero precisely when $h^{-1} \mathbf{s}_{\rho} h \in$ $u_{m} K u_{m}^{-1} \cap \mathbf{C}_{A}$ Гso we obtain

$$
=\sum_{m \geq 0}|K|_{H} \int_{T_{\rho} \backslash \mathbf{C}_{A} / K_{m}^{A}} 1_{K_{m}^{A}}\left(h_{0}^{-1} \mathbf{s}_{\rho} h_{0}\right) d h_{0}
$$

Next we use the isomorphism $\phi_{m}: C_{A} \rightarrow \mathbf{C}_{A}\left(\phi_{m}(h)=h_{0}\right)$ of Lemma I.J.3 Γ which asserts that $\phi_{m}\left(K_{m}\right)=K_{m}^{A}$. Define x_{ρ} by $\phi_{m}\left(x_{\rho}\right)=\mathbf{s}_{\rho}$. We obtain

$$
=\sum_{m \geq 0}|K|_{H} \int_{Z_{C_{A}}\left(x_{\rho}\right) \backslash C_{A} / K_{m}} 1_{\phi_{m}\left(K_{m}\right)}\left(\phi_{m}(h)^{-1} \phi_{m}\left(x_{\rho}\right) \phi_{m}(h)\right) d h
$$

in which we can erase ϕ_{m} everywhere. Changing variables $h \mapsto\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 1 / A \boldsymbol{\pi}^{m}\end{array}\right) h$ on $C_{A} \Gamma$ we obtain

$$
=\sum_{m \geq 0}\left[K_{0}: K_{m}\right] \int_{T_{\rho} \backslash C_{A}} 1_{K_{m}}\left(h^{-1} s_{\rho} h\right) d h .
$$

Using the decomposition $C_{A}=\cup_{r} T_{\rho}^{\prime} r K^{\prime}$ 「our integral takes the form

$$
=\sum_{m \geq 0} \sum_{r}\left[T_{0}^{\prime}: T_{\rho}^{\prime} \cap r K^{\prime} r^{-1}\right]\left[K_{0}: K_{m}\right] \int_{K_{0}} 1_{K_{m}}\left(k^{-1} r^{-1} s_{\rho} r k\right) d k
$$

where $T_{0}^{\prime}=T_{\rho}^{\prime} \cap K^{\prime}=T_{\rho}^{\prime}(R)=R_{E}^{\prime}$. Here $R_{E}^{\prime}=\left\{x \in R_{E}^{\times} ; N_{E / E_{3}} x \in F^{\times}\right\}$.
Recall that $q=q_{3}=q_{E_{3}}$ denotes the residual cardinality of E_{3}.
2. Lemma. The index $\left[T_{0}^{\prime}: T_{\rho}^{\prime} \cap r K^{\prime} r^{-1}\right]$ is equal to q^{j} if E / E_{3} is ramified or $j=0$, and to $(q+1) q^{j-1}$ if E / E_{3} is unramified and $j \geq 1$, where $r=r_{j, \rho}=t_{j, \rho}\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j-\bar{\rho}}\end{array}\right)$.
Proof. The intersection $T_{\rho}^{\prime} \cap r K^{\prime} r^{-1} \simeq\left\{t \in T_{\rho}^{\prime} ; r^{-1} t r \in K^{\prime}\right\}$ is

$$
\left\{a+b \sqrt{D} \in T_{\rho}^{\prime} ;\left(\begin{array}{cc}
1 & 0 \\
0 & \left.\boldsymbol{\pi}_{3}^{-(j-\bar{\rho}}\right)
\end{array}\right)\left(\begin{array}{cc}
a & b D \rho \\
b / \rho & a
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{\pi}_{3}^{j-\bar{\rho}}
\end{array}\right)=\left(\begin{array}{cc}
a \\
(b / \rho) \boldsymbol{\pi}_{3}^{-(j-\bar{\rho})} & b D \rho \boldsymbol{\pi}_{3}^{j-\bar{\rho}} \\
a
\end{array}\right) \in K^{\prime}\right\},
$$

which is $R_{E}^{\prime} \cap R_{E}(j)^{\times}$Twhere $R_{E}(j)=R_{3}+\pi_{3}^{j} R_{E}=R_{3}+\sqrt{D} \pi_{3}^{j} R_{3}, R_{3}=R_{E_{3}}$ Гsince $b \in \pi_{3}^{j} R_{3}$. Put $R_{E}(j)^{\prime}$ for $R_{E}^{\prime} \cap R_{E}(j)^{\times}$. Consider the exact sequence

$$
1 \rightarrow R_{E}^{\prime} / R_{E}(j)^{\prime} \rightarrow R_{E}^{\times} / R_{E}(j)^{\times} \rightarrow R_{E}^{\times} / R_{E}^{\prime} R_{E}(j)^{\times} \rightarrow 1
$$

The last group is isomorphicГvia the norm map $N=N_{E / E_{3}} \Gamma$ to $N R_{E}^{\times} / N R_{E}^{\times} \cap R^{\times} \cdot N R_{E}(j)^{\times}$. Indeed Γ the kernel of the norm map is contained in R_{E}^{\prime}. When E / E_{3} is ramified we have $N R_{E}^{\times}=$ $N R_{E}(j)^{\times}$. When E / E_{3} is unramified Γ we have $N R_{E}^{\times}=R_{3}^{\times} \Gamma$ and $N R_{E}(j)^{\times}=R_{3}^{\times 2}(j \geq 1)$. Moreover $\Gamma R_{3}^{\times}=R^{\times} R_{3}^{\times 2} \Gamma$ since $a+b \sqrt{\pi_{F}}=a\left(1+\frac{b}{a} \sqrt{\pi_{F}}\right)\left(a, b, \in R ; E_{3} / F\right.$ is ramified $)$. Hence

$$
\left[R_{E}^{\prime}: R_{E}(j)^{\prime}\right]=\left[R_{E}^{\times}: R_{E}(j)^{\times}\right]=\left[R_{E}^{\times}: 1+\pi_{3}^{j} R_{E}\right] /\left[R_{E}(j)^{\times}: 1+\pi_{3}^{j} R_{E}\right]
$$

The denominator here is $\left[R_{3}^{\times}: R_{3}^{\times} \cap\left(1+\pi_{3}^{j} R_{E}\right)\right]=\left[R_{3}^{\times}: 1+\pi_{3}^{j} R_{3}\right]=(q-1) q^{j-1}, q=q_{3}$. When E / E_{3} is ramified $\Gamma q_{E}=q \Gamma$ hence the numerator is $(q-1) q^{2 j-1}$ (since $\pi_{3}=\pi_{E}^{2}$). When E / E_{3} is unramified $\Gamma q_{E}=q^{2}$ and $\boldsymbol{\pi}_{3}=\boldsymbol{\pi}_{E} \Gamma$ hence the numerator is $\left(q^{2}-1\right) q^{2(j-1)}$. The quotient is as stated in the lemma.

Consider the ring $S_{m}=R_{3} / \pi_{F}^{m} R_{3}$ Гand the subring $R_{m}=\left(R+\pi_{F}^{m} R_{3}\right) / \pi_{F}^{m} R_{3}=R / \pi_{F}^{m} R$. If $K\left(\boldsymbol{\pi}_{F}^{m}\right)=\left\{k \in G L\left(2, R_{3}\right) ; k \equiv 1\left(\boldsymbol{\pi}_{F}^{m}\right)\right\} \Gamma$ and $K_{m}=G L\left(2, R_{3}(m)\right)^{\prime} \Gamma$ where $R_{3}(m)=R+$ $\pi_{F}^{m} R_{3} \Gamma$ then $K_{m} / K\left(\pi_{F}^{m}\right)=G L\left(2, R_{m}\right)$ and $K_{0} / K\left(\pi_{F}^{m}\right)=G L\left(2, S_{m}\right)^{\prime}$. The prime indicates determinant in R_{m}^{\times}. We emphasize that $R_{3}=R_{E_{3}}$ is the ring of integers in R_{3} Гwhile R_{m} is a finite ring ($m \geq 1$); they should not be confused with each other when $m=3$.
3. Lemma. The integral $\int_{K_{0} / K_{m}} 1_{K_{m}}\left(k^{-1} r_{j \rho}^{-1} s_{\rho} r_{j \rho} k\right) d k$ is equal to the cardinality of the set

$$
L_{m}^{\prime}=\left\{y \in G L\left(2, S_{m}\right)^{\prime} / G L\left(2, R_{m}\right) ; y^{-1} r_{j \rho}^{-1} s_{\rho} r_{j \rho} y \in G L\left(2, R_{m}\right)\right\}
$$

where $s_{\rho}=r_{j \rho}^{-1} s_{\rho} r_{j \rho}=\left(\begin{array}{c}a \\ (b / \rho) \boldsymbol{\pi}_{3}^{-(j-\bar{\rho})}\end{array}{ }_{a}^{b D \boldsymbol{\pi}_{3}^{j-\bar{\rho}}}\right.$. . Consequently, if L_{m}^{\prime} is not empty, then $0 \leq j \leq$ $N=\operatorname{ord}_{3}(b)=\operatorname{ord}_{E_{3}}(b)$.
4. Lemma. The map $L_{m}^{\prime} \rightarrow L_{m}=\left\{x \in S L\left(2, S_{m}\right) ; \tau x=x^{-1}, x s_{\rho, r} x^{-1}=\tau\left(s_{\rho, r}\right)\right\}, y \mapsto$ $x=\tau(y) y^{-1}$, is injective. It is surjective if E / E_{3} is ramified, while the image has index two if E / E_{3} is unramified. In particular $\# L_{m}^{\prime}=\frac{1}{2} e\left(E / E_{3}\right) \cdot \# L_{m}$, where $e=e\left(E / E_{3}\right)$ is the ramification index of E / E_{3}.

Proof. For the injectivity if $\tau\left(y_{1}\right) y_{1}^{-1}=\tau\left(y_{2}\right) y_{2}^{-1}$ then $\tau\left(y_{1}^{-1} y_{2}\right)=y_{1}^{-1} y_{2} \in G L\left(2, R_{m}\right)$. If E / E_{3} is ramified then E_{3} / F is unramified Γ and the map $G L\left(2, R_{3}\right)^{\prime} \rightarrow\left\{x=\tau(x)^{-1} \in\right.$ $\left.S L\left(2, R_{3}\right)\right\} \Gamma y \mapsto x=\tau(y) y^{-1} \Gamma$ is onto by Hensel's Lemma. If E / E_{3} is unramified then E_{3} / F is ramified Γ hence $\tau(x) \equiv x\left(\bmod \boldsymbol{\pi}_{3}\right)$. Thus $\tau(x)=x^{-1}$ implies that $x^{2} \equiv 1\left(\bmod \boldsymbol{\pi}_{3}\right) \Gamma$ and since $\|x\|=1 \Gamma$ that $x \equiv \pm I\left(\bmod \boldsymbol{\pi}_{3}\right)$. Namely $x \in L_{m}$ if and only if $-x \in L_{m}$. Further Γ $x \equiv I\left(\bmod \pi_{3}\right)$ if and only if $x=\tau(y) y^{-1}$ for some $y \in G L\left(2, S_{m}\right)^{\prime}$. Hence L_{m} is the disjoint union of image $\left(L_{m}^{\prime}\right)$ and -image $\left(L_{m}^{\prime}\right)$.

Remark. Put $b=B \pi_{3}^{N}, B \in R_{3}^{\times} \Gamma$ and if $\rho=u \pi_{3}^{\bar{\rho}}, u \in R_{3}^{\times} \Gamma$ we put $b^{\prime}=(B / u) \pi_{3}^{\nu} \Gamma$ where $\nu=N-j$ (satisfies $0 \leq \nu \leq N$ if $\# L_{m} \neq 0$). Put m^{\prime} for $2 m / e, e=e\left(E / E_{3}\right)$. Then $b^{\prime} \neq 0$ in $S_{m}=R_{3} / \pi_{F}^{m} R_{3}=R_{3} / \pi_{3}^{2 m / e} R_{3}$ precisely when $\nu<m^{\prime}=2 m / e$. Let \bar{a} be the image in R_{m} of $a \in R_{3}$.
5. Lemma. The set L_{m} is non empty precisely when $0 \leq \nu \leq N, 0 \leq m^{\prime} \leq X=\operatorname{ord}_{3}(a-\tau a)$, and when $m^{\prime}>\nu$ we further have that there exists $\varepsilon \in S_{m}^{\times 2}$ such that $\tau s_{\rho, r}=\left(\begin{array}{cc}1 & 0 \\ 0 & \varepsilon / \tau \varepsilon\end{array}\right) s_{\rho, r}\left(\begin{array}{cc}1 & 0 \\ 0 & \tau \varepsilon / \varepsilon\end{array}\right)$, thus $\left(\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right) s_{\rho, r}\left(\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right)^{-1}$ lies in $G L\left(2, R_{m}\right)$ or equivalently that $\nu+m^{\prime} \leq X$, and $u \in B S_{m}^{\times 2}$ when E / E_{3} is ramified, and ν is even when E / E_{3} is unramified.

Proof. Suppose that $x=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$ lies in $L_{m} \Gamma$ thus $\|x\|=1$ and $\tau x=x^{-1} \Gamma$ and $x s_{\rho r} x^{-1}=\tau\left(s_{\rho r}\right) \Gamma$ where $s_{\rho, r}=\left(\begin{array}{cc}\bar{a} & \bar{b}^{\prime} \bar{D}^{\prime} \\ \bar{b}^{\prime} & \bar{a}\end{array}\right)$ Гand $D^{\prime}=D u^{2} \pi_{3}^{2 j}$. Taking traces we conclude that $\bar{a}=\tau \bar{a}$ lies in R_{m}. Hence $0 \leq m^{\prime} \leq X=\operatorname{ord}_{3}(a-\tau a) \Gamma$ and when $\bar{b}^{\prime}=0$ we are done. Suppose Γ from now on Γ that $\bar{b}^{\prime} \neq 0$ Гnamely $m^{\prime}>\nu$. As $\tau x=x^{-1}$ and $\|x\|=1$ एwe have $\left(\begin{array}{cc}\tau x_{1} & \tau x_{2} \\ \tau x_{3} & \tau x_{4}\end{array}\right)=\left(\begin{array}{cc}x_{4} & -x_{2} \\ -x_{3} & x_{1}\end{array}\right)$. Hence there are r_{2}, r_{3} in $R_{m} \Gamma$ such that $x=\left(\begin{array}{cc}x_{1} & r_{2} \sqrt{A} \\ r_{3} \sqrt{A} & \tau x_{1}\end{array}\right)$. The relation $x s_{\rho r} x^{-1}=\tau\left(s_{\rho r}\right) \Gamma$ but with \bar{a} replaced by 0 (since $\bar{a}=\tau \bar{a})$ Гis:

$$
\left(\begin{array}{cc}
\left.\begin{array}{c}
x_{1} \\
r_{3} \sqrt{A}
\end{array} \begin{array}{r}
r_{2} \sqrt{A} \\
\tau x_{1}
\end{array}\right)\left(\begin{array}{c}
0 \bar{b}^{\prime} \bar{D}^{\prime} \\
\bar{b}^{\prime} \\
0
\end{array}\right)=x\left(s_{\rho r}-\bar{a}\right)=\tau\left(s_{\rho r}-\bar{a}\right) x=\left(\begin{array}{cc}
0 \\
\tau \bar{b}^{\prime} & \tau \bar{b}^{\prime} \tau \bar{D}^{\prime} \\
0
\end{array}\right)\left(\begin{array}{cc}
x_{1} & r_{2} \sqrt{A} \\
r_{3} \sqrt{A} & \tau x_{1}
\end{array}\right), . . .
\end{array}\right.
$$

namely

$$
\left(\begin{array}{cc}
\bar{b}^{\prime} r_{2} \sqrt{A} & x^{\prime} \bar{b}^{\prime} \bar{D}^{\prime} \tag{*}\\
\bar{b}^{\prime} \tau x_{1} & \bar{b}^{\prime} \bar{D}^{\prime} r_{3} \sqrt{A}
\end{array}\right)=\left(\begin{array}{c}
\tau \bar{b} \cdot \tau \bar{D}^{\prime} \cdot r_{3} \sqrt{A} \tau \bar{b}^{\prime} \cdot \tau \bar{D}^{\prime} \cdot \tau x_{1} \\
\tau \bar{b}^{\prime} \cdot x_{1} \\
\tau \bar{b}^{\prime} \cdot r_{2} \sqrt{A}
\end{array}\right)
$$

Then $x_{1} \in S_{m}^{\times} \Gamma$ otherwise (since $\|x\|=1$) $A, r_{2}, r_{3} \in R_{m}^{\times} \Gamma$ hence $D \in \pi_{F} R^{\times}$and so $D^{\prime} \in \pi_{3} S_{m} \Gamma$ contradicting the relation obtained on comparing the entries on second row and second column. We denote this location by $(2,2)$. In fact this relation $\Gamma(2,2) \Gamma$ shows that $r_{2} \sqrt{A}=\frac{\bar{b}^{\prime}}{\tau \bar{b}} \bar{D}^{\prime} r_{3} \sqrt{A}+\pi_{3}^{m^{\prime}-\nu} S_{m}$. Hence

$$
x=\left(\begin{array}{c}
x_{1} \\
r_{3} \sqrt{A}
\end{array} r_{3} \bar{D}^{\prime} \sqrt{A} \frac{x_{1}}{\tau x_{1}}+\boldsymbol{\pi}_{3}^{m^{\prime}-\nu} S_{m}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \varepsilon
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\frac{x_{1}}{\tau x_{1}} r_{3} \sqrt{A}
\end{array} x^{\frac{x_{1}}{\tau x_{1}} r_{3} \bar{D}^{\prime} \sqrt{A}+\boldsymbol{\pi}_{3}^{m^{\prime}-\nu} S_{m}} x_{1},\right.
$$

where $\varepsilon=\tau x_{1} / x_{1}$ Гlies in $\left(\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right) Z_{G L\left(2, S_{m}\right)}\left(s_{\rho, r}\right)$.
Since $\nu<m^{\prime}$ we have

$$
\bar{b}^{\prime} / \tau \bar{b}^{\prime}=x_{1} \cdot\left(\bar{b}^{\prime} / \tau \bar{b}^{\prime}\right) \tau x_{1}-\left(\bar{b}^{\prime} / \tau \bar{b}\right) r_{2} \sqrt{A} r_{3} \sqrt{A}=x_{1}^{2}-r_{3}^{2} A \tau\left(\bar{D}^{\prime}\right)+\boldsymbol{\pi}_{3}^{m^{\prime}-\nu} S_{m}=x_{1}^{2}+\pi_{3} S_{m}
$$

The first equality follows from $\left\|\left(\begin{array}{cc}x_{1} \\ r_{3} \sqrt{A} & r_{2} \sqrt{A} \\ \tau x_{1}\end{array}\right)\right\|=1 \Gamma$ the second uses the relations obtained on comparing the entries at the locations $(2,1)$ and $(1,1) \Gamma$ and the last follows since E / F is ramified (thus $|A \tau(\bar{D})|<1$). Further Γ from $(2,1)$ we have $\bar{b}^{\prime} / \tau \bar{b}^{\prime}=x_{1} / \tau x_{1}+\pi_{3}^{m^{\prime}-\nu} S_{m}$. Hence $x_{1} \tau x_{1} \equiv 1\left(\bmod \pi_{3}\right)$. If E / E_{3} is unramified Γ then $A \notin R^{\times} \Gamma$ hence $x_{1}=\alpha+\beta \sqrt{A}, x_{1} \tau x_{1}=$ $\alpha^{2}-\beta^{2} A \equiv 1$ implies that $\alpha \equiv \pm I$ and $\beta \equiv 0\left(\bmod \pi_{3}\right)$. Then $\alpha^{-1} x_{1} \in S_{m}^{\times 2} \Gamma$ and $\varepsilon=$ $\tau\left(\alpha^{-1} x_{1}\right) / \alpha^{-1} x_{1}$ is as required.

If E / E_{3} is ramified then E_{3} / F is unramified $\Gamma R_{3}^{\times} / \operatorname{ker}\left(N_{E_{3} / F} \mid R_{3}^{\times}\right) \simeq R^{\times}\left(N_{E_{3} / F}: R_{3}^{\times} \rightarrow R^{\times}\right.$ is surjective))hence $\operatorname{ker}\left(N_{E_{3} / F} \mid R_{3}^{\times}\right)$has index $q_{0}-1$ in $R_{3}^{\times} \Gamma$ and so it is contained in the index 2 subgroup $R_{3}^{\times 2}$ of R_{3}^{\times}Chence $x_{1} \tau x_{1} \equiv 1\left(\bmod \pi_{3}\right)$ implies that $x_{1} \in R_{3}^{\times 2} \Gamma$ as required. In the lemma Γx_{1} (or $\alpha^{-1} x_{1}$ when E / E_{3} is unramified) is denoted by $\varepsilon \Gamma$ as we do from now on.

Suppose again that $\bar{b}^{\prime} \neq 0$ in $S_{m} \Gamma$ thus $\nu<m^{\prime}$. The relation $(2,1) \Gamma$ and $\tau \pi_{3}=(-1)^{e} \boldsymbol{\pi}_{3}, b^{\prime}=$ $(B / u) \pi_{3}^{\nu} \Gamma$ imply that $\tau(\varepsilon) / \varepsilon \equiv \bar{b}^{\prime} / \tau \bar{b}^{\prime} \equiv(-1)^{\nu e}(B / u) / \tau(B / u)\left(\bmod \pi_{3}^{m^{\prime}-\nu}\right)$. When E / E_{3} is ramified $(e=2) \Gamma$ we deduce that $\varepsilon B / u \in R_{m}^{\times} \Gamma$ namely $u \in B \varepsilon R_{m}^{\times} \subset B S_{m}^{\times 2} R_{m}^{\times}=B S_{m}^{\times}$. When E / E_{3} is unramified $(\varepsilon=1) \Gamma E_{3} / F$ is ramified Γ hence $S_{m}^{\times} \cap R_{m} \sqrt{A}$ is empty Γ hence $\operatorname{Re}(\varepsilon B / u)=\overline{\varepsilon B / u}+\overline{\tau(\varepsilon B / u)}$ is non zero in $R_{m} \operatorname{\Gamma and} \operatorname{Re}(\varepsilon B / u)=(-1)^{\nu e} \operatorname{Re}(\tau(\varepsilon B / u))$ implies that $(-1)^{\nu}=0 \Gamma$ thus ν is even. Hence $\tau(\varepsilon) / \varepsilon \equiv(B / u) / \tau(B / u)\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-\nu}\right) \Gamma$ and the relation $(1,2)$ implies that

$$
D B u / \tau(D B u) \equiv \varepsilon / \tau \varepsilon\left(\bmod \pi_{3}^{m^{\prime}-(2 N-\nu+\operatorname{ord} D)}\right)
$$

provided that $m^{\prime}>2 N-\nu+$ ord $D(\geq \nu)$. The two relations together imply that $D B^{2} / \tau\left(D B^{2}\right)$ $\equiv 1\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-(2 N-\nu+\operatorname{ord} D)}\right)$ Гnamely $D\left(B^{2}-\tau B^{2}\right) \equiv 0\left(\bmod \pi_{3}^{m^{\prime}+\nu-2 N}\right)$. But then $|a+\tau a|=1 \Gamma$ since s_{ρ} is topologically unipotent Γ and

$$
(a-\tau a)(a+\tau a)=a^{2}-\tau a^{2}=D\left(b^{2}-\tau b^{2}\right) \equiv 0\left(\bmod \pi_{3}^{m^{\prime}+\nu}\right)
$$

implies that $m^{\prime}+\nu \leq X$ Гas required.
As usual Γq_{0} is $q_{F}, q=q_{3}$ is $q_{E_{3}} \Gamma$ and $e=e\left(E / E_{3}\right)$.
6. Lemma. When L_{m}^{\prime} is non empty, its cardinality is: 1 if $m=0 ; q^{3 m^{\prime} / 2}$ if $e=1$, and $(q+1) q^{3 m^{\prime} / 2-1}$ if $e=2$, when $1 \leq m^{\prime} \leq \nu ; e q_{0}^{m} q^{\nu}$ when $\nu<m^{\prime}$.

Proof. This is clear when $m=0 \Gamma$ and $\# L_{m}^{\prime}$ is the cardinality of $G L\left(2, S_{m}\right)^{\prime} / G L\left(2, R_{m}\right) \simeq$ $S L\left(2, S_{m}\right) / S L\left(2, R_{m}\right)$ where $\bar{b}^{\prime}=0 \Gamma$ namely $1 \leq m^{\prime} \leq \nu$. Recall that $R_{m}=R / \pi_{F}^{m} R \Gamma$ and $\# S L\left(2, R_{m}\right)=\left(q_{0}^{2}-1\right) q_{0}^{3 m-2}=\left(q_{0}^{2}-1\right) q_{0}^{3 e m^{\prime} / 2-2}$. Also $S_{m}=R_{3} / \pi_{3}^{m^{\prime}} R_{3}$ Гand $\# S L\left(2, S_{m}\right)=$ $\left(q^{2}-1\right) q^{3 m^{\prime}-2}$. When $e=1, q=q_{0} \Gamma$ and the quotient is $q^{3 m^{\prime} / 2}\left(m^{\prime}=2 m\right)$. When $e=2, q=q_{0}^{2} \Gamma$ and the quotient is $(q+1) q^{3 m^{\prime} / 2-1}\left(m^{\prime}=m\right)$. From now on we then assume that $\nu<m^{\prime}$. In the notations of the previous proof t the set L_{m} consists of the

$$
x=\left(\begin{array}{cc}
x_{1} & \frac{\bar{b}^{\prime}}{\tau \bar{b}} \bar{D}^{\prime} \cdot r_{3} \sqrt{A}+a \\
r_{3} \sqrt{A} & \tau x_{1}
\end{array}\right)
$$

with $\|x\|=1 \Gamma$ where $r_{3} \in R_{m}, a \in \pi_{3}^{m^{\prime}-\nu} S_{m}$ lies in $R_{m} \sqrt{A}$ too (since $\|x\|=1 \Gamma$ and $\frac{\bar{b}^{\prime}}{\tau \bar{b}^{\prime}} \bar{D}^{\prime}$ lies in R_{m} by $(1,2)$ and $\left.(2,1)\right) \Gamma$ and $x_{1}=(\overline{B / u}) r_{2}(1+\delta) \Gamma$ where $r_{1} \in R_{m}$ and $\delta \in \pi_{3}^{m^{\prime}-\nu} S_{m} \Gamma$ since by $(2,1)$ we have $x_{1} /(\overline{B / u})=r_{1}+\pi_{3}^{m^{\prime}-\nu} S_{m}, r_{1} \in R_{m}$.

In other words ΓL_{m} is the set of 4-tuples $\left(r_{1}, r_{3}, a, \delta\right) \in R_{m}^{2} \times\left(\pi_{3}^{m^{\prime}-\nu} S_{m}\right)^{2}$ Гsuch that $\tau a=-a \Gamma$ and $r_{1}^{2}(\overline{B / u}) \tau(\overline{B / u})(1+\delta)(1+\tau \delta)-r_{3}^{2} A \cdot \frac{\bar{b}^{\prime}}{\tau \bar{b}} \bar{D}^{\prime}-a r_{3} \sqrt{A}=1$ Tsubject to the equivalence relation $\left(r_{1}, \delta\right) \sim\left(r_{1}^{\prime}, \delta^{\prime}\right)$ if $r_{1}(1+\delta)=r_{1}^{\prime}\left(1+\delta^{\prime}\right)$. Namely we take the quotient of the set of such 4 -tuples by the group $1+R_{m} A \pi_{3}^{m^{\prime}-\nu} S_{m}$.

To compute the cardinality of this quotient Γ take $r_{3} \in R_{m} \Gamma \delta \in \pi_{3}^{m^{\prime}-\nu} R_{3} / \pi_{3}^{m^{\prime}} R_{3}=$ $R_{3} / \pi_{3}^{\nu} R_{3} \Gamma a=\alpha \sqrt{A} \Gamma \alpha \in R_{m} \cap \pi_{3}^{m^{\prime}-\nu-\operatorname{ord}_{3} \sqrt{A}} S_{m} \simeq R_{m} \cap \pi_{3}^{m^{\prime}-\nu} S_{m}$ (when $e=2, A \in R^{\times}$is a unit; when $e=1 \Gamma \nu$ is even Γ and $A=\pi_{F}=\pi_{3}^{2}$). Now put $B^{\prime}=B / u \Gamma$ and recall from the proof of Lemma 5 that $\bar{B}^{\prime} / \tau \bar{B}^{\prime} \equiv x_{1}^{2}\left(\bmod \pi_{3}\right) \Gamma$ hence $\bar{B}^{\prime} / \tau \bar{B}^{\prime}$ is a square Γ in $S_{m}^{\times 2}$. More precisely Γ $x_{1} \equiv \bar{B}^{\prime} r_{1} \Gamma$ so $\bar{B}^{\prime} \tau \bar{B}^{\prime} \equiv\left(\bar{B}^{\prime} / \tau \bar{B}^{\prime}\right)\left(\tau \bar{B}^{\prime}\right)^{2}=\left(\bar{B}^{\prime} \tau \bar{B}^{\prime}\right)^{2} r_{1}^{2} \Gamma$ and $r_{1}^{2} \bar{B}^{\prime} \tau \bar{B}^{\prime} \equiv 1 \Gamma$ and $\bar{B}^{\prime} \tau \bar{B}^{\prime} \in R_{m}^{\times 2}$.

Since $|A D|<1$ and $|a|<1 \Gamma$ there are always two solutions in r_{1}. The number of α 's is the same as that of the equivalence relation by which we divide. We obtain that $\# L_{m}$ is $2 q_{0}^{m} q^{\nu}$ (number of r_{1} 's Γ number of $r_{3} \in R_{m} \Gamma$ number of $\delta \in R_{3} / \pi_{3}^{-\nu} R_{3}$). We are done since $\# L_{m}=2 \cdot \# L_{m}^{\prime} / e$.

I. Comparison in case (II), E / E_{3} ramified $(e=2)$.

We compare the stable θ-orbital integral of 1_{K} at $u=s_{\rho}=\left[\phi_{\rho_{1}}^{D}\left(\alpha_{1}+\beta_{1} \sqrt{D}\right), \phi_{\rho_{2}}^{A D}\left(\alpha_{2}+\right.\right.$ $\left.\beta_{2} \sqrt{A D}\right] \Gamma$ a topologically unipotent θ-fixed element of the form $h_{\rho}^{-1} t^{*} h_{\rho} \Gamma$ where $t^{*}=$ $\left(t_{1}, t_{2}, \tau t_{2}, \sigma t_{1} ; e\right)$ in $S p(2)$ (the integral vanishes unless $e \in R^{\times} \Gamma$ as we now assume Γ and then it is independent of e) Γ with the stable orbital integral of 1_{K} at the stable orbit of the norm $N t^{*}=\left(x_{1}, \tau x_{1}, \sigma \tau x_{1}, \sigma x_{1}\right)$ in $G S p(2, F)$. Here $t_{1}=\alpha_{1}+\beta_{1} \sqrt{D} \Gamma$ and $t_{2}=\alpha_{2}+\beta_{2} \sqrt{A D}$.

The assumption that $e=2$ implies that $A \in R^{\times}$and $D=\pi_{F}$ एand we have $\alpha_{1}^{2}-\beta_{1}^{2} D=$ $1=\alpha_{2}^{2}-\beta_{2}^{2} A D$. By the definition of the norm $\Gamma x_{1}=t_{1} t_{2}\left(\tau x_{1}=t_{1} \tau t_{2}, \sigma \tau x_{1}=t_{2} \sigma t_{1} \Gamma\right.$ and $\left.\sigma x_{1}=\sigma t_{1} \tau t_{2}\right)$. Hence $x_{1}=\alpha_{1} \alpha_{2}+D \beta_{1} \beta_{2} \sqrt{A}+\left(\alpha_{2} \beta_{1}+\alpha_{1} \beta_{2} \sqrt{A}\right) \sqrt{D}=a_{1}+b_{1} \sqrt{D}$. We denote $n_{i}=\operatorname{ord}_{F}\left(\beta_{i}\right)$. Hence $X=\operatorname{ord}_{3}\left(a_{1}-\tau a_{1}\right)=\operatorname{ord}_{3}\left(D \sqrt{A} \beta_{1} \beta_{2}\right)=1+n_{1}+n_{2}\left(E_{3}=F(\sqrt{A})\right.$
is unramified over F). Further $\chi=\operatorname{ord}_{F}\left(\alpha_{1}-\alpha_{2}\right)=\operatorname{ord}_{F}\left(\alpha_{1}^{2}-\alpha_{2}^{2}\right)=\operatorname{ord}_{F}\left(A D \beta_{2}^{2}-D \beta_{1}^{2}\right)=$ $1+2 \min \left(n_{1}, n_{2}\right) \Gamma$ and $N=\operatorname{ord}_{3}\left(b_{1}\right)=\operatorname{ord}_{3}\left(\alpha_{2} \beta_{1}+\alpha_{1} \beta_{2} \sqrt{A}\right)=\min \left(n_{1}, n_{2}\right) \Gamma$ since α_{1}, α_{2} are units.

When $e=1 \Gamma$ namely when E / E_{3} is unramified Γ we have $D \in R^{\times}$and $A=\pi_{F} \Gamma$ thus $\boldsymbol{\pi}_{3}^{2}=\boldsymbol{\pi}_{F}$ Гand then we have that $\chi=\operatorname{ord}_{F}\left(\alpha_{1}-\alpha_{2}\right)=\min \left(2 n_{1}, 1+2 n_{2}\right), X=1+2 n_{1}+2 n_{2} \Gamma$ and $N=\min \left(2 n_{1}, 1+2 n_{2}\right)=\chi$.

We shall use this for the actual comparison Γ but let us first compute.

1. Lemma. Put $n_{1}^{\prime}=\min \left(n_{1}, n_{2}\right)$, $n_{2}^{\prime}=\max \left(n_{1}, n_{2}\right)$. When E / E_{3} is ramified, the stable θ-orbital integral of 1_{K} at a strongly θ-regular topologically unipotent element of type (II) is equal to

$$
\begin{equation*}
4 q_{0}^{n_{1}+n_{2}} \frac{q_{0}^{2}}{\left(q_{0}-1\right)^{2}}\left(1-q_{0}^{-n_{1}-1}\right)\left(q^{\chi}-q_{0}^{-n_{2}-1} \frac{1+q_{0}^{1+n_{1}}+q_{0}^{2+2 n_{1}}}{1+q_{0}+q_{0}^{2}}\right) . \tag{*}
\end{equation*}
$$

Proof. Let us summarize the result of the computation of the stable twisted orbital integral in Section G. It is

$$
\Phi_{1_{K}}^{G, s t}(u \theta)=\Phi_{1_{K_{K}}(\theta)}^{Z_{G}(\theta), s t}(u)=\sum_{\rho} \sum_{m \geq 0} \sum_{r \in R_{\rho_{m}}}\left[R_{T}^{1}: T_{\rho_{m}}^{1} \cap r K_{0}^{1} r^{-1}\right] \# L_{m, \rho_{m}}^{1},
$$

where $u=t_{\rho}=h^{-1} t^{*} h$ is topologically unipotent. Recall that $L_{m, \rho_{m}}^{1}$ depends on m and $\rho_{m} \Gamma$ but for each $m \Gamma$ the set $\left\{\rho_{m}\right\}$ is the same as the set of ρ. Hence we replace ρ_{m} by ρ in the triple sum above.

In this case there is no $\varepsilon \Gamma$ we have summation over $0 \leq \nu_{1} \leq n_{1}$ and $0 \leq \nu_{2} \leq n_{2}$ Гand over $0 \leq m \leq \chi\left(=1+\min \left(2 n_{1}, 2 n_{2}\right)\right)$. Also $m \leq \nu_{1}$ if and only if $m \leq \nu_{2}$ Гand if $m>\nu_{1}$ or ν_{2} then $\nu_{1}=\nu_{2}$ is named ν Гand m is bounded by $\min \left(2 n_{1}+\operatorname{ord} D-\nu, 2 n_{2}+\operatorname{ord}(A D)-\nu\right)=\chi-\nu$. On this last range we have the relation $u_{1} / u_{2} \in\left(B_{1} / B_{2}\right) R^{\times 2}$. Then the cardinality of the ρ 's is 2 Гinstead of 4 Con this range. Then the stable θ-orbital integral of 1_{K} at a strongly θ-regular topologically unipotent element of type (II) is:

$$
\begin{aligned}
& 4 q_{0}^{n_{1}+n_{2}}\left[\sum_{0 \leq \nu_{1} \leq n_{1}} q_{0}^{-\nu_{1}} \sum_{0 \leq \nu_{2} \leq n_{2}} q_{0}^{-\nu_{2}}+\left(1-q_{0}^{-2}\right) \sum_{0 \leq \nu_{1} \leq n_{1}} q_{0}^{-\nu_{1}} \sum_{0 \leq \nu_{2} \leq n_{2}} q^{-\nu_{2}} \sum_{1 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)} q_{0}^{3 m}\right. \\
& \left.\quad+\sum_{0 \leq \nu \leq \min \left(n_{1}, n_{2}\right)} \sum_{\nu<m \leq \chi-\nu} q_{0}^{m}\right] \\
& =4 q_{0}^{n_{1}+n_{2}}\left[\frac{1-q_{0}^{-n_{1}-1}}{1-q_{0}^{-1}} \cdot \frac{1-q_{0}^{-n_{2}-1}}{1-q_{0}^{-1}}\right. \\
& \left.\quad+q_{0}\left(q_{0}^{2}-1\right) \sum_{\substack{0 \leq \nu_{1} \leq n_{1} \\
0 \leq \nu_{2} \leq n_{2}}} q_{0}^{-\nu_{1}} q_{0}^{-\nu_{2}} \frac{q_{0}^{3 \min \left(\nu_{1}, \nu_{2}\right)}-1}{q_{0}^{3}-1}+\sum_{0 \leq \nu \leq \min \left(n_{1}, n_{2}\right)} \frac{q_{0}^{\chi-\nu+1}-q_{0}^{\nu+1}}{q_{0}-1}\right] .
\end{aligned}
$$

Assume (without loss of generality) that $n_{1} \leq n_{2} \Gamma$ and note that our expression is precisely that of case (I) for ramified E / F. The lemma follows.
2. Lemma. When E / E_{3} is ramified, the stable orbital integral of 1_{K} at a topologically unipotent regular element of type (II) in $G S p(2, F)$, is

$$
\begin{equation*}
2 q_{0}^{2 N+1} \frac{1-q_{0}^{-N-1}}{1-q_{0}^{-1}}\left(\frac{q_{0}^{X}}{q_{0}-1}-\frac{q_{0}^{N+1}}{q_{0}^{3}-1}-\frac{1+q_{0}^{-N-1}}{q_{0}^{3}-1}\right) . \tag{**}
\end{equation*}
$$

Proof. The integral is the sum over $\rho=u \in E_{3}^{\times} / N_{E / E_{3}} E^{\times} \Gamma$ which can be assumed to be 1 and a (non square) unit in R_{3}^{\times}in the case where E / E_{3} is ramified $\Gamma e=2$. Then we have a sum over $0 \leq \nu \leq N$ and a sum over $m(\leq X-\nu)$. Note that $m^{\prime}=m$ and $q=q_{0}^{2}$ when $e=2$. Also Γ in the range $\nu<m \leq X-\nu \Gamma$ we have that $u \in B R_{3}^{\times 2} \Gamma$ namely the sum over $\rho=u$ reduces to a single term. The stable orbital integral is then

$$
\begin{gathered}
\sum_{0 \leq \nu \leq N} q^{N-\nu}\left(2+2 \sum_{1 \leq m \leq \nu}\left(1+q^{-1}\right) q_{0}^{3 m}+\sum_{\nu<m \leq X-\nu} e q_{0}^{m} q^{\nu}\right) \\
=2 q^{N}\left[\frac{1-q^{-N-1}}{1-q^{-1}}+\frac{(q+1) q_{0}}{q_{0}^{3}-1} \sum_{0 \leq \nu \leq N} q^{-\nu}\left(q^{3 \nu / 2}-1\right)+\frac{1}{q_{0}-1} \sum_{0 \leq \nu \leq N}\left(q_{0}^{X-\nu+1}-q_{0}^{\nu+1}\right)\right] \\
=2 q^{N}\left[\frac{1-q^{-N-1}}{1-q^{-1}}+\frac{(1+q) q_{0}}{q_{0}^{3}-1}\left(\frac{q_{0}^{N+1}-1}{q_{0}-1}-\frac{1-q^{-N-1}}{1-q^{-1}}\right)\right. \\
\left.+\frac{1}{q_{0}-1}\left(q_{0}^{X+1} \frac{1-q_{0}^{-N-1}}{1-q_{0}^{-1}}-q_{0} \frac{q_{0}^{N+1}-1}{q_{0}-1}\right)\right] \\
=2 q_{0}^{2 N} \cdot \frac{1-q_{0}^{-N-1}}{1-q_{0}^{-1}}\left[\frac{1+q_{0}^{-N-1}}{1+q_{0}^{-1}}+\frac{q_{0}^{3}+q_{0}}{q_{0}^{3}-1}\left(q_{0}^{N}-\frac{1+q_{0}^{-N-1}}{1+q_{0}^{-1}}\right)+\frac{1}{q_{0}-1}\left(q_{0}^{X+1}-q_{0}^{N+1}\right)\right] .
\end{gathered}
$$

The [...] here is

$$
\frac{1}{q_{0}-1} q_{0}^{X+1}+q_{0}^{N+1}\left(\frac{q_{0}^{2}+1}{q_{0}^{3}-1}-\frac{1}{q_{0}-1}\right)+\frac{1+q_{0}^{-N-1}}{1+q_{0}^{-1}}\left(1-\frac{q_{0}^{3}+q_{0}}{q_{0}^{3}-1}\right) .
$$

Hence our stable integral is as stated in the lemma.
Since we are evaluating our stable integral at the stable orbit of $N u$ or $N t^{*} \Gamma$ we can take $X=1+n_{1}+n_{2}$ Гand $N=n_{1}$ if $n_{1} \leq n_{2}$ Гas we assume. Then the stable integral is

$$
\begin{aligned}
& =\frac{2 q_{0}^{2 n_{1}+2}}{\left(q_{0}-1\right)^{2}}\left(1-q_{0}^{-n_{1}-1}\right)\left(q_{0}^{1+n_{1}+n_{2}}-\frac{q_{0}-1}{q_{0}^{3}-1}\left(q_{0}^{n_{1}+1}+1+q_{0}^{-n_{1}-1}\right)\right) \\
& =\frac{2 q_{0}^{2+n_{1}+n_{2}}\left(1-q_{0}^{-n_{1}-1}\right)}{\left(q_{0}-1\right)^{2}}\left(q_{0}^{1+2 n_{1}}-\frac{q_{0}-1}{q_{0}^{3}-1} q_{0}^{-n_{2}-1}\left(1+q_{0}^{n_{1}+1}+q_{0}^{2 n_{1}+2}\right)\right)
\end{aligned}
$$

Multiplied by 2Γ the stable orbital integral is equal to the stable θ-orbital integral computed above Γ since $\chi=1+2 n_{1}$ as $n_{1} \leq n_{2}$.

Thus it remains to show
3. Lemma. The measure factor $\left[T^{* \theta}(R):(1+\theta)\left(T^{*}(R)\right)\right] /\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]$ is equal to 2 for tori T of type (II).

Proof. The norm map N takes $(a, b, \sigma b, \sigma a)$ in $T^{*}(R) \Gamma$ thus $a \in R_{1}^{\times}, b \in R_{2}^{\times}$to ($a b, a \sigma b, b \sigma a, \sigma a \sigma b$) in $T_{H}^{*}(R)$ एwhich consists of $(x, \tau x, \sigma \tau x, \sigma x), x \in R_{E}^{\times}$with $x \sigma x=\tau(x \sigma x) \in R_{1}^{\times}$. Thus we need to solve in $a \in R_{1}^{\times}$the equation $a / \sigma a=x / \sigma \tau x\left(=\tau(x / \sigma \tau x), \in E_{1}^{1}=\left\{y / \sigma y ; y \in E_{1}^{\times}\right\}\right)$.

As in the proof of the corresponding Lemma for tori of type (I) Γ we have $\left[E_{1}^{1}: R_{1}^{1}\right]=$ $e\left(E_{1} / F\right)$. Put $b=x / a$. Then $\sigma \tau(b)=\sigma \tau(x / a)=\sigma \tau(x) / \sigma a=x / a=b$ lies in R_{2}^{\times}. Hence $\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]=e\left(E_{1} / F\right)$.

Next we compute the index in $T^{* \theta}(R)=\left\{(x, y, \sigma y, \sigma x) ; x \in R_{1}^{1}, y \in R_{2}^{1}\right.$ (thus $y \in R_{2}^{\times}, y \sigma y=$ $1)\}$ of $(1+\theta) T^{*}(R)=\left\{(1+\theta)(a, b, \sigma b, \sigma a)=(a / \sigma a, b / \sigma b, \sigma b / b, \sigma a / a), a \in R_{1}^{\times}, b \in R_{2}^{\times}\right\}$. Since E_{2} / F is ramified $\Gamma\left[E_{2}^{1}: R_{2}^{1}\right]=e\left(E_{2} / F\right)=2 \Gamma$ we conclude that $\left[T^{* \theta}(R):(1+\theta) T^{*}(R)\right]=$ $2 e\left(E_{1} / F\right)$. The quotient by $e\left(E_{1} / F\right)$ is 2 Гand the lemma follows.

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the θ-orbital integrals permits us to compute the unstable $\Gamma \kappa$ -θ-orbital integrals Γ too. Let κ be the character which defines the endoscopic group $\mathbf{C}_{3}=\mathbf{C}_{E_{3}}$. It is a character on the group of θ-conjugacy classes within the stable θ-conjugacy class of the topologically unipotent element $t^{*}=\left(t_{1}, t_{2}, \sigma t_{2}, \sigma t_{1}\right)$ of type (II). This group is $F^{\times} / N_{E_{1} / F} E_{1}^{\times} \times$ $F^{\times} / N_{E_{2} / F} E_{2}^{\times} \Gamma$ so κ is a product $\kappa_{1} \times \kappa_{2}$. As $E_{2}=F(\sqrt{-\pi}) \Gamma$ we have $N_{E_{2} / F} E_{2}^{\times}=\pi^{\mathbb{Z}} R^{\times 2} \Gamma$ hence $\kappa_{2}(\boldsymbol{\pi})=1$ and $\kappa_{2}\left(\varepsilon_{0}\right)=-1 \Gamma$ where $\varepsilon_{0} \in R^{\times}-R^{\times 2}$. Further Γ when E_{1} / F is ramified Γ $E_{1}=F\left(\sqrt{-\varepsilon_{0} \pi}\right) \Gamma$ hence $N_{E_{1} / F} E_{1}^{\times}=\left(\varepsilon_{0} \pi\right)^{\mathbb{Z}} R^{\times 2} \Gamma$ and so $\kappa_{1}\left(\varepsilon_{0}\right)=\kappa_{1}(\boldsymbol{\pi})=-1$. This defines the quadratic characters $\kappa_{i} \neq 1 \Gamma$ and κ. The Jacobian factor is (when $\left|t_{1}\right|=\left|t_{2}\right|=1 \Gamma e=2$)

$$
\Delta_{G, C_{3}}\left(t_{1}, t_{2}, \sigma t_{2}, \sigma t_{1}\right)=\left|\frac{\left(t_{1}-\sigma t_{1}\right)^{2}\left(t_{2}-\sigma t_{2}\right)^{2}}{t_{1} \sigma t_{1} \cdot t_{2} \sigma t_{2}}\right|_{F}^{1 / 2}=\left|\beta_{1} \beta_{2} D \sqrt{A}\right|_{F}=q_{0}^{-1-n_{1}-n_{2}}
$$

Theorem. If $t=h^{-1} t^{*} \theta(h)$ is a strongly θ-regular topologically unipotent element of type (II), E_{3} / F is unramified, and κ is the character associated with the endoscopic group \mathbf{C}_{3}, then

$$
-\Delta_{G, C_{3}}\left(t^{*}\right) \kappa_{1}\left(\left(t_{1}-\sigma t_{1}\right) / 2 \sqrt{D}\right) \kappa_{2}\left(\left(t_{2}-\sigma t_{2}\right) / 2 \sqrt{A D}\right) \Phi_{1_{K}}^{\kappa}(t \theta)=\Phi_{1_{K_{3}}}^{C_{3}}\left(N_{C_{3}} t^{*}\right)
$$

When E_{3} / F is ramified, $\Phi_{1_{K}}^{\kappa}(t \theta)=0$.
Proof. The last assertion is proven in the next section. Suppose E_{3} / F is unramified. Then the $\kappa_{1} \kappa_{2}$ factor on the left is $\kappa_{1}\left(\beta_{1}\right) \kappa_{2}\left(\beta_{2}\right)=\kappa_{1}\left(B_{1}\right) \kappa_{1}\left(\pi^{n_{1}}\right) \kappa_{2}\left(B_{2}\right)=\kappa_{0}\left(B_{1} B_{2}\right)(-1)^{n_{1}} \Gamma$ where κ_{0} is the non trivial character on $R^{\times} / R^{\times 2}$. Recall that ρ_{m} is ρ if m is evenएbut it is $\tilde{\rho}=\left(\tilde{\rho}_{1}, \tilde{\rho}_{2}\right)$ if m is odd Γ where $\rho_{i} \mapsto \tilde{\rho}_{i}=-1 / \rho_{i}$ and $\rho_{2} \mapsto \tilde{\rho}_{2}=-1 / A \rho_{2}$ are permutations of $R^{\times} / R^{\times 2}$ if E / F is ramified. Hence in our sum

$$
\sum_{\rho} \kappa_{1}\left(\rho_{1}\right) \kappa_{2}\left(\rho_{2}\right) \sum_{m \geq 0} \sum_{r \in R_{\rho_{m}}}\left[R_{T}^{1}: T_{\rho_{m}}^{1} \cap r K_{0} r^{-1}\right] \# L_{m, \rho_{m}}^{1}
$$

replacing ρ_{m} by ρ does not change the index [...] but it affects the part of the factor $\# L_{m, \rho_{m}}^{1}$ described by Lemma G.3(5): the corresponding summands will have to be multiplied by $(-1)^{m}$.

The κ - θ-orbital integral is the sum of

$$
\left(\sum_{u_{1}, u_{2} \in R^{\times} / R^{\times 2}} \kappa_{0}\left(u_{1} u_{2}\right)\right) \sum_{\substack{0 \leq \nu_{1} \leq n_{1} \\ 0 \leq \nu_{2} \leq n_{2}}} q_{0}^{n_{1}-\nu_{1}+n_{2}-\nu_{2}}\left(\delta(m=0)+\left(1-q_{0}^{-2}\right) \sum_{1 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)} q_{0}^{3 m}\right),
$$

which is zero Pand

$$
\sum_{0 \leq \nu \leq n} q_{0}^{n_{1}+n_{2}-2 \nu} \sum_{\nu<m \leq \chi-\nu} 2 q_{0}^{m+2 \nu} \sum_{u_{1}, u_{2}} \kappa_{0}\left(u_{1} u_{2}\right)(-1)^{m}
$$

Here $n=\min \left(n_{1}, n_{2}\right)$ Гand u_{1}, u_{2} range over $R^{\times} / R^{\times 2} \Gamma$ subject to the relation (Lemma G.3) that $u_{1} u_{2} \in B_{1} B_{2} \varepsilon_{0}^{n_{1}-\nu}$ (there are two such pairs). The factor (-1$)^{m}$ comes from from changing $R_{\rho_{m}}$ to R_{ρ}. The last displayed sum is then

$$
\begin{aligned}
& 4 \kappa_{0}\left(B_{1} B_{2}\right)\left(-q_{0}\right)^{n_{1}} q_{0}^{n_{2}} \sum_{0 \leq \nu \leq n}(-1)^{\nu} \frac{q_{0}}{q_{0}+1}\left(\left(-q_{0}\right)^{\chi-\nu}-\left(-q_{0}\right)^{\nu}\right) \\
& \quad=4\left(q_{0}+1\right)^{-1} \kappa_{0}\left(B_{1} B_{2}\right)(-1)^{n_{1}} q_{0}^{1+n_{1}+n_{2}} \sum_{0 \leq \nu \leq n}\left[\left(-q_{0}\right)^{\chi} q_{0}^{-\nu}-q_{0}^{\nu}\right] .
\end{aligned}
$$

The last sum is

$$
\begin{gathered}
\left(-q_{0}\right)^{\chi}\left(1-q_{0}^{-n-1}\right) /\left(1-q_{0}^{-1}\right)-\left(q_{0}^{n+1}-1\right) /\left(q_{0}-1\right) \\
=\left(q_{0}^{n+1}-1\right)\left(q_{0}^{\chi-n}(-1)^{\chi}-1\right) /\left(q_{0}-1\right)
\end{gathered}
$$

The left side of the expression of the theorem is then (note that $\left.\chi=2 n+1, q=q_{0}^{2}\right)-4(q-$ $1)^{-1}\left(q^{n+1}-1\right)$. The measure factor is 4Γ and the right hand side is an orbital integral on $G L\left(2, E_{3}\right)$ at the elliptic element with eigenvalues $x_{1}, \sigma x_{1} \Gamma$ with parameter $N=n$. Since E / E_{3} is ramified Γ by Lemma I.I. 2 this orbital integral is $\left(q^{N+1}-1\right) /(q-1) \Gamma$ and we are done.

Remark. If E_{3} / F is unramified and precisely one of $\kappa_{1}, \kappa_{2} \Gamma$ is non trivial Γ the same computation shows that the associated κ - θ-orbital integral is zero. Such κ defines the ramified twisted endoscopic group \mathbf{C}_{+}of type (3) in Section I.F (namely $C_{+}=G L(2, F) \times E_{1}^{1} \Gamma$ and E_{1} / F is ramified). This verifies the "ramified" claim of the Theorem of the next Section.
J. Comparison in case (II), E / E_{3} unramified ($e=1$).

In this case E_{1} / F is unramified $\Gamma E_{3} / F$ is ramified and so $q=q_{0} \Gamma$ and the stable θ-orbital integral is given by a summation over $0 \leq \nu_{1} \leq n_{1}$ and $0 \leq \nu_{2} \leq n_{2}$ Гover $\varepsilon \in R^{\times} / R^{\times 2}$ if $\nu_{1}<n_{1}$ Гover $\rho_{2}=u_{2} \in R^{\times} / R^{\times 2} \Gamma$ and $\rho_{1}=\pi^{\bar{\rho}_{1}}\left(u_{1}=1\right) \Gamma \bar{\rho}_{1}$ is 0 or 1Γ subject to the condition that $j_{1}-\bar{\rho}_{1}$ be even. Further Γ when $\nu_{1}<m$ or $\nu_{2}<m$ then $\nu_{1}=\nu_{2}$ is denoted by $\nu \Gamma$ and $\varepsilon / u_{2} \in\left(B_{1} / B_{2}\right) R^{\times 2} \Gamma$ and $m \leq \min \left(2 n_{1}-\nu+\operatorname{ord} D, 2 n_{2}-\nu+\operatorname{ord}(A D)\right)$. Here $D \in R^{\times}$and $A=\pi_{F} \Gamma$ and as we saw $\chi=\min \left(2 n_{1}, 1+2 n_{2}\right) \Gamma$ so $m \leq \chi-\nu$ when $\nu<m$. Then we obtain the following.

1. Lemma. The stable θ-orbital integral of 1_{K} at a topologically unipotent strongly θ-regular element u of type (II) is given - when E / E_{3} is unramified - by

$$
\begin{equation*}
2(q-1)^{-2}\left[(q+1) q^{2+n_{1}+3 n_{2}}-(q+1) q^{1+n_{1}+2 n_{2}}-\frac{2(q-1)}{q^{3}-1}\left(q^{3 n_{2}+3}-1\right)\right] \tag{*}
\end{equation*}
$$

when $n_{2}<n_{1}$, and by

$$
\begin{equation*}
2(q-1)^{-2}\left[-2 q^{1+2 n_{1}+n_{2}}+(q+1) q^{1+3 n_{1}+n_{2}}+\frac{q-1}{q^{3}-1}\left(2-\left(q^{3}+1\right) q^{3 n_{1}}\right)\right] \tag{**}
\end{equation*}
$$

when $n_{1} \leq n_{2}$.
Proof. Recall that $L_{m, \rho_{m}}^{1}$ depends on m and $\rho_{m} \Gamma$ but for each $m \Gamma$ the set $\left\{\rho_{m}\right\}$ is the same as the set of ρ. Hence we replace ρ_{m} by ρ in the triple sum above. Our integral is the sum of

$$
2 \sum_{\substack{0 \leq \nu_{1} \leq n_{1} \\ 0 \leq \nu_{2} \leq n_{2}}} q^{n_{1}-\nu_{1}+n_{2}-\nu_{2}}\left(\delta\left(\nu_{1}=n_{1}\right)+\delta\left(\nu_{1}<n_{1}\right) 2 \cdot \frac{q+1}{2 q}\right)\left[1+\sum_{1 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)}\left(1-q^{-2}\right) q^{3 m}\right]
$$

and

$$
2 \sum_{0 \leq \nu \leq n} q^{n_{1}+n_{2}-2 \nu}\left[\delta\left(\nu_{1}=n_{1}\right)+\frac{q+1}{2 q} \delta\left(\nu_{1}<n_{1}\right)\right] \sum_{\nu<m \leq \chi-\nu} 2 q^{m+2 \nu}
$$

where $n=\min \left(n_{1}, n_{2}\right)$. The first sum can also be written as

$$
\begin{aligned}
& 2 \sum_{0 \leq m \leq n} \# L_{m}^{1}\left(\sum_{m \leq \nu_{2} \leq n_{2}} q^{n_{2}-\nu_{2}}\right)\left[\sum_{\nu_{1}=n_{1}} 1+\left(1+q^{-1}\right) \sum_{m \leq \nu_{1}<n_{1}} q^{n_{1}-\nu_{1}}\right] \\
& =2\left[(q-1)^{-2}\left(q^{n_{2}+1}-1\right)\left((q+1) q^{n_{1}}-2\right)\right. \\
& \left.\quad+\left(1-q^{-2}\right) \sum_{1 \leq m \leq n} q^{3 m} \cdot \frac{q^{n_{2}-m+1}-1}{q-1} \cdot \frac{(q+1) q^{n_{1}-m}-2}{q-1}\right] \\
& =2(q-1)^{-2}\left[(q+1) q^{n_{1}+n_{2}+1}-(q+1) q^{n_{1}}-2 q^{n_{2}+1}+2\right. \\
& \left.+\left(1-q^{-2}\right) \sum_{1 \leq m \leq n}\left((q+1) q^{n_{1}+n_{2}+m+1}-(q+1) q^{n_{1}+2 m}-2 q^{n_{2}+2 m+1}+2 q^{3 m}\right)\right] .
\end{aligned}
$$

The inner sum here is

$$
\frac{q+1}{q-1} q^{2+n_{1}+n_{2}}\left(q^{n}-1\right)-\frac{q+1}{q^{2}-1} q^{n_{1}+2}\left(q^{2 n}-1\right)-2 \frac{q^{3+n_{2}}}{q^{2}-1}\left(q^{2 n}-1\right)+\frac{2 q^{3}}{q^{3}-1}\left(q^{3 n}-1\right)
$$

so we get

$$
\begin{gathered}
2(q-1)^{-2}\left[(q+1) q^{n_{1}+n_{2}+1}-(q+1) q^{n_{1}}-2 q^{n_{2}+1}+2+(q+1)^{2} q^{n_{1}+n_{2}}\left(q^{n}-1\right)\right. \\
\left.-(q+1) q^{n_{1}}\left(q^{2 n}-1\right)-2 q^{n_{2}+1}\left(q^{2 n}-1\right)+\frac{2 q\left(q^{2}-1\right)}{q^{3}-1}\left(q^{3 n}-1\right)\right] .
\end{gathered}
$$

To compute the second sumएnote that $m>\nu_{1}$ if and only if $m>\nu_{2} \Gamma$ and then $\nu_{1}=\nu_{2}$ is denoted by ν Гand there are two possibilities. If $n_{1} \leq n_{2}$ then $\chi=2 n_{1} \Gamma$ and there is no m with $n_{1}<m \leq \chi-n_{1}$; hence $\nu<n=n_{1}$ in this case. If $n_{2}<n_{1}$ then $\chi=1+2 n_{2}$ and $n=n_{2} \Gamma$ and the m with $n_{2}<m \leq 1+n_{2}$ is $m=1+n_{2}$. Hence the second sum takes the form

$$
\begin{aligned}
& 2(q+1) q^{n_{1}+n_{2}} \sum_{0 \leq \nu<n} \frac{q^{\chi-\nu}-q^{\nu}}{q-1}+2 \delta\left(n_{2}<n_{1}\right) q^{n_{1}+n_{2}}(q+1) q^{n_{2}} \\
= & 2 \frac{q+1}{q-1} q^{n_{1}+n_{2}}\left(q^{\chi} \frac{1-q^{-n}}{1-q^{-1}}-\frac{q^{n}-1}{q-1}\right)+2 \delta\left(n_{2}<n_{1}\right)(q+1) q^{n_{1}+2 n_{2}} \\
= & 2 \frac{q+1}{(q-1)^{2}} q^{n_{1}+n_{2}}\left(q^{n}-1\right)\left(q^{\chi+1-n}-1\right)+2 \delta\left(n_{2}<n_{1}\right)(q+1) q^{n_{1}+2 n_{2}} .
\end{aligned}
$$

We deal separately with the two cases. When $n_{2}<n_{1}, \chi=1+2 n_{2}$ and $n=n_{2} \Gamma$ thus $\chi+1-n=2+n_{2}$ Cour integral is

$$
\begin{gathered}
2(q-1)^{-2}\left[(q+1) q^{n_{1}+n_{2}+1}-(q+1) q^{n_{1}}-2 q^{n_{2}+1}+2\right. \\
+(q+1)^{2} q^{n_{1}+2 n_{2}}-(q+1)^{2} q^{n_{1}+n_{2}}-(q+1) q^{n_{1}+2 n_{2}} \\
+(q+1) q^{n_{1}}-2 q^{1+3 n_{2}}+2 q^{n_{2}+1}+\frac{2 q\left(q^{2}-1\right)}{q^{3}-1}\left(q^{3 n_{2}}-1\right) \\
\left.+(q+1)\left(q^{2+n_{1}+3 n_{2}}-q^{2+n_{1}+2 n_{2}}-q^{n_{1}+2 n_{2}}+q^{n_{1}+n_{2}}+(q-1)^{2} q^{n_{1}+2 n_{2}}\right)\right] .
\end{gathered}
$$

Collecting the coefficients of $q^{n_{1}+n_{2}}, q^{n_{1}+2 n_{2}}, q^{n_{1}+3 n_{2}} \Gamma$ we obtain ($*$) of the lemma.
When $n_{1} \leq n_{2}, \chi=2 n_{1}(=N), n=n_{1}, \chi+1-n=1+n_{1} \Gamma$ the integral is equal to

$$
\begin{aligned}
& 2(q-1)^{-2}\left[(q+1) q^{n_{1}+n_{2}+1}-(q+1) q^{n_{1}}-2 q^{n_{2}+1}+2+(q+1)^{2} q^{n_{1}+n_{2}}\left(q^{n_{1}}-1\right)\right. \\
& \quad-(q+1) q^{n_{1}}\left(q^{2 n_{1}}-1\right)-2 q^{n_{2}+1}\left(q^{2 n_{1}}-1\right) \\
& \left.\quad+\frac{2 q\left(q^{2}-1\right)}{q^{3}-1}\left(q^{3 n_{1}}-1\right)+(q+1) q^{n_{1}+n_{2}}\left(q^{2 n_{1}+1}-q^{n_{1}+1}-q^{n_{1}}+1\right)\right] .
\end{aligned}
$$

Collecting the coefficients of $q^{n_{1}+n_{2}}, q^{2 n_{1}+n_{2}}, q^{3 n_{1}+n_{2}}, q^{3 n_{1}} \Gamma$ we obtain (**) of the lemma.
To complement Lemma 1Γ we need to compute the stable orbital integral of 1_{K} at the norm $N u \Gamma$ which is a topologically unipotent regular element in $\operatorname{GSp}(2, F)$ of type (II) (in our case $e=1 \Gamma$ that is E / E_{3} is unramified $\Gamma q=q_{0}$.
2. Lemma. The stable orbital integral of 1_{K} at the topologically unipotent regular element $N u$ in $\operatorname{GSp}(2, F)$ of type (II), when E / E_{3} is unramified, is given by

$$
\begin{aligned}
& \frac{q+1}{(q-1)^{2}} q^{N}\left[\delta(2 \mid N)\left(q^{\frac{X+1}{2}}-\frac{2}{q+1} q^{\frac{X+1-N}{2}}+\frac{q-1}{q+1} q^{\frac{N}{2}}\right)+(1-\delta(2 \mid N)) q^{\frac{X-N}{2}}\left(q^{\frac{N+1}{2}}-1\right)\right] \\
& \quad-\frac{2}{q-1} \frac{q^{3([N / 2]+1)}-1}{q^{3}-1}
\end{aligned}
$$

Proof. Here ρ ranges over $E_{3}^{\times} / N_{E / E_{3}} E^{\times} \Gamma$ thus $\rho=\pi_{3}^{\bar{\rho}}$ with $\bar{\rho}=0,1$. There is a sum over $\nu(0 \leq \nu \leq N)$ such that $N-\nu-\bar{\rho}$ is even so the sums over $\bar{\rho}$ and ν are combined to a single sum over $\nu(0 \leq \nu \leq N)$. Further Γ we have a sum over the even $m^{\prime}(=2 m)$ with $0 \leq m^{\prime} \leq X \Gamma$ but $X=1+2 n_{1}+2 n_{2}$ when $e=1 \Gamma$ thus $0 \leq m^{\prime} \leq X-1$. When $\nu<m^{\prime}$ we have that $m^{\prime} \leq X-\nu \Gamma$ and ν is even; thus $\nu<m^{\prime} \leq X-1-\nu \Gamma$ as ν, m^{\prime} are even and X is odd. The stable integral is then

$$
\begin{aligned}
& \sum_{0 \leq \nu \leq N} \sum_{0 \leq m^{\prime}=2 m \leq X-1} q^{N-\nu}\left(\delta(\nu=N)+\left(1+q^{-1}\right) \delta(\nu<N)\right) \\
& \left(q^{3 m^{\prime} / 2} \delta\left(0 \leq m^{\prime} \leq \nu\right)+q^{\nu+m^{\prime} / 2} \delta\left(\nu<m^{\prime} \leq X-1-\nu, \nu \text { even }\right)\right)
\end{aligned}
$$

It is the sum of

$$
\begin{aligned}
\sum_{0 \leq \nu \leq N} \sum_{0 \leq m^{\prime} \leq \nu} & =\sum_{0 \leq m^{\prime} \leq N} q^{3 m^{\prime} / 2}\left(\sum_{\nu=N} 1+\left(1+q^{-1}\right) \sum_{m^{\prime} \leq \nu<N} q^{N-\nu}\right) \\
& =\sum_{0 \leq m \leq N / 2} q^{3 m}\left(1+\frac{q+1}{q-1}\left(q^{N-2 m}-1\right)\right) \\
& =\frac{q+1}{(q-1)^{2}} q^{N}\left(q^{[N / 2]+1}-1\right)-\frac{2}{q-1} \frac{q^{3([N / 2]+1)}-1}{q^{3}-1}
\end{aligned}
$$

and Γ writing $\nu^{\prime}=2 \nu$ for the even ν when $\nu<m^{\prime} \leq X-1-\nu \Gamma$

$$
\begin{gathered}
\sum_{0 \leq \nu^{\prime}<N} \sum_{\nu^{\prime}<m^{\prime} \leq X-1-\nu^{\prime}} q^{\nu^{\prime}+m^{\prime} / 2} \cdot q^{N-\nu^{\prime}}\left(1+q^{-1}\right)+\delta(N \text { is even }) \cdot \sum_{N<m^{\prime} \leq X-1-N} q^{N+m^{\prime} / 2} \\
=\sum_{0 \leq \nu<N / 2} \sum_{\nu<m \leq \frac{X-1}{2}-\nu} q^{N+m}\left(1+q^{-1}\right)+\delta(2 \mid N) \sum_{N / 2<m \leq \frac{X-1}{2}-\frac{N}{2}} q^{N+m} \\
=q^{N} \frac{q+1}{q-1} \sum_{0 \leq \nu<N / 2}\left(q^{\frac{X-1}{2}-\nu}-q^{\nu}\right)+\delta(2 \mid N) q^{N}(q-1)^{-1}\left(q^{\frac{X+1}{2}-\frac{N}{2}}-q^{\frac{N}{2}+1}\right) \\
=\delta(2 \mid N) \frac{q^{N}}{q-1}\left[\frac{q+1}{q-1}\left(q^{\frac{X+1}{2}}\left(1-q^{-N / 2}\right)-\left(q^{N / 2}-1\right)\right)+q^{\frac{X+1}{2}-\frac{N}{2}}-q^{\frac{N}{2}+1}\right] \\
\quad+(1-\delta(2 \mid N)) \frac{q^{N}}{q-1} \cdot \frac{q+1}{q-1}\left(q^{\frac{X+1}{2}}\left(1-q^{-\frac{N+1}{2}}\right)-\left(q^{\frac{N+1}{2}}-1\right)\right) .
\end{gathered}
$$

This completes the proof of the lemma.
We can now complete the comparison of the θ-stable and stable integrals.
When N is odd $(\delta(2 \mid N)=0)$ Гsince $N=\min \left(2 n_{1}, 1+2 n_{2}\right)$ we have that $N=1+2 n_{2}$ Гand $n_{2}<n_{1}$ Гas well as $(X-1) / 2=n_{1}+n_{2}$ Гso that we obtain

$$
\frac{q+1}{(q-1)^{2}} q^{1+2 n_{2}+n_{1}}\left(q^{n_{2}+1}-1\right)-\frac{2}{q-1} \frac{q^{3\left(n_{2}+1\right)}-1}{q^{3}-1}
$$

which is half the expression for the stable θ-orbital integral when $n_{2}<n_{1}$.
When N is even $\Gamma N=2 n_{1}, n_{1} \leq n_{2} \Gamma$ the stable orbital integral is

$$
\frac{q+1}{(q-1)^{2}}\left[q^{1+3 n_{1}+n_{2}}-\frac{2}{q+1} q^{1+2 n_{1}+n_{2}}\right]+\frac{1}{q-1}\left[\frac{2-2 q^{3 n_{1}+3}}{q^{3}-1}+q^{3 n_{1}}\right],
$$

which is equal to half the expression for the stable θ-orbital integral when $n_{1} \leq n_{2}$. Since the measure factor is equal to 2 Гthe comparison is complete in the case of type (II).

Proof of Theorem I when E_{3} / F is ramified. The computations are the same as in the stable case of Lemma 1Γ except that both κ_{i} are now non trivial. In this case E_{1} / F is unramified Γ thus $\pi_{1}=\pi$ Chence $N_{E_{1} / F} E_{1}^{\times}$is $R^{\times} \boldsymbol{\pi}^{2 \mathbb{Z}} \Gamma$ and $\kappa_{1}\left(u \pi^{j_{1}}\right)=(-1)^{j_{1}}\left(u \in R^{\times}\right)$. The κ - θ-orbital integral is then the sum of

$$
\begin{aligned}
& \sum_{\nu_{1}, \nu_{2}}\left(-q_{0}\right)^{n_{1}-\nu_{1}} q_{0}^{n_{2}-\nu_{2}} \sum_{u_{2}} \kappa_{2}\left(u_{2}\right)\left[\delta\left(\nu_{1}=n_{1}\right)+\left(1+q_{0}^{-1}\right) \delta\left(\nu_{1}<n_{1}\right)\right] \\
& \quad\left[1+\left(1-q^{-2}\right) \sum_{1 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)}\left(-q_{0}\right)^{3 m}\right],
\end{aligned}
$$

$\left(0 \leq \nu_{i} \leq n_{i}\right) \Gamma$ which is 0 since u_{2} ranges over $R^{\times} / R^{\times 2} \Gamma$ and

$$
\begin{aligned}
& \sum_{0 \leq \nu \leq n}(-1)^{\nu-n_{1}} q^{n_{1}+n_{2}-2 \nu}\left[\sum_{u_{2}} \kappa_{2}\left(u_{2}\right) \cdot \delta\left(\nu_{1}=n_{1}\right)\right. \\
& \left.\quad+\sum_{u_{2}} \kappa_{2}\left(u_{2}\right) \sum_{\varepsilon \in u_{2} B_{1} B_{2} R^{\times 2}} \frac{1}{2}\left(1+q^{-1}\right) \delta\left(\nu_{1}<n_{1}\right)\right] \sum_{\nu<m \leq \chi-\nu} 2(-q)^{m+2 \nu}
\end{aligned}
$$

which is also zero (since ε is determined by u_{2} Гleaving us with the sum $\sum_{u_{2}} \kappa_{2}\left(u_{2}\right)$ over $R^{\times} / R^{\times 2} \Gamma$ which is zero).

Remark. If E_{1} / F is unramified $\Gamma \kappa_{1}=1$ and $\kappa_{2} \neq 1 \Gamma$ the corresponding κ - θ-orbital integral is zero by the same argument. The only change will be that the powers of (-1) - introduced by $\kappa_{1} \neq 1$ - need to be replaced by 1 .

Unstable twisted case. Twisted endoscopic group of type I.F.3.

The explicit computation of the θ-orbital integrals can be used to compute the unstable κ - θ orbital integrals「at a strongly θ-regular topologically θ-unipotent element $t^{*}=\left(t_{1}, t_{2}, \tau t_{2}, \sigma t_{1}\right)$ (thus $t^{*} \theta$ is topologically unipotent) of type (II). The character κ is defined on the group $F^{\times} / N_{E_{1} / F} E_{1}^{\times} \times F^{\times} / N_{E_{2} / F} E_{2}^{\times}$of θ-conjugacy classes within the stable θ-conjugacy class of t^{*}. Thus $\kappa=\kappa_{1} \times \kappa_{2} \Gamma \kappa_{1} \neq 1$ on $F^{\times} / N_{E_{1} / F} E_{1}^{\times} \Gamma$ and $\kappa_{2}=1$. The stable case is that where $\kappa_{i}=1, i=1,2$. The endoscopic group associated with κ is $\mathbf{C}_{+} \Gamma$ with $C_{+}=G L(2, F) \times E_{1}^{1}$. As noted at the end of Section I.FГthe $G L(2)$-part of the norm $N_{C_{+}} t^{*}$ is $\operatorname{diag}\left(t_{2}, \tau t_{2}\right)$. Recall that $t_{2} \in E_{2}^{\times} \Gamma$ and E_{2} / F is ramified. Hence by Lemma I.I.2 2 the orbital integral $\Phi_{1_{K}}\left(\operatorname{diag}\left(t_{2}, \sigma t_{2}\right)\right)$ is equal to $\left(q\left|\beta_{2}\right|^{-1}-1\right) /(q-1)=\left(q^{n_{2}+1}-1\right) /(q-1)$. As usual $\Gamma t_{1}=\alpha_{1}+\beta_{1} \sqrt{D}$ and $t_{2}=\alpha_{2}+$
$\beta_{2} \sqrt{A D}$ are unitsFand $\left|\beta_{i}\right|=q^{-n_{i}}$. Then $\Delta_{G, C_{+}}\left(t^{*}\right)=\left|\left(t_{1}-\sigma t_{1}\right)\left(t_{1} t_{2}-\sigma t_{1} \tau t_{2}\right)\left(t_{1} \tau t_{2}-t_{2} \sigma t_{1}\right)\right|_{F}$ (recall that this factor is computed at the end of Section I.G) is equal to $\mid D \sqrt{D} \beta_{1}\left(\left(\alpha_{2} \beta_{1}\right)^{2}-\right.$ $\left.\left(\alpha_{1} \beta_{2}\right)^{2} A\right) \mid$ (recall that $E_{1}=F(\sqrt{D})=E^{\tau}$ and $E_{3}=F(\sqrt{A})=E^{\sigma}$). As noted in the Remark at the end of Section IГthe κ - θ-orbital integral vanishes when E_{1} / F is ramified. Assume that E_{1} / F is unramified. Then $\Delta_{G, C_{+}}\left(t^{*}\right)$ is $q^{-n_{1}-2 n_{2}-1}$ if $n_{2}<n_{1} \Gamma$ but it is $q^{-3 n_{1}}$ if $n_{2} \geq n_{1}$. We claim the following.

Theorem. Let t^{*} be a topologically θ-unipotent strongly θ-regular element of type (II), E_{1} / F is unramified, $\kappa_{1} \neq 1$ and $\kappa_{2}=1$. Then the κ - θ-orbital integral of 1_{K} is related to the orbital integral of $1_{K_{C_{+}}}$on the twisted endoscopic group of type (3) of Section I.F, by

$$
\kappa_{1}\left(\left(\left(t_{1}-\sigma t_{1}\right) / \sqrt{D}\right)\left(t_{1} t_{2}-\sigma t_{1} \tau t_{2}\right)\left(t_{1} \tau t_{2}-t_{2} \sigma t_{1}\right)\right) \Delta_{G, C_{+}}\left(t^{*}\right) \Phi_{1_{K}}^{\kappa}\left(t^{*} \theta\right)=\Phi_{1_{K_{C_{+}}}^{C_{+}}}\left(N_{C_{+}} t^{*}\right)
$$

When E_{1} / F is ramified, $\Phi_{1_{K}}^{\kappa}\left(t^{*} \theta\right)=0$.
Proof. The computations are the same as in the stable case of Lemma 1Γ except that now $\kappa_{1} \neq 1$ and $\kappa_{2}=1$. Recall that $q=q_{0}$. Our integral is the sum of

$$
2 \sum_{\substack{0 \leq \nu_{1} \leq n_{1} \\ 0 \leq \nu_{2} \leq n_{2}}}(-q)^{n_{1}-\nu_{1}} q^{n_{2}-\nu_{2}}\left(\delta\left(\nu_{1}=n_{1}\right)+\delta\left(\nu_{1}<n_{1}\right) 2 \cdot \frac{q+1}{2 q}\right)\left[1+\sum_{1 \leq m \leq \min \left(\nu_{1}, \nu_{2}\right)}\left(1-q^{-2}\right)(-q)^{3 m}\right]
$$

and

$$
2 \sum_{0 \leq \nu \leq n}(-q)^{n_{1}-\nu} q^{n_{2}-\nu}\left[\delta\left(\nu_{1}=n_{1}\right)+\frac{q+1}{2 q} \delta\left(\nu_{1}<n_{1}\right)\right] \sum_{\nu<m \leq \chi-\nu} 2(-q)^{m+2 \nu}
$$

where $n=\min \left(n_{1}, n_{2}\right)$. The first sum can also be written as

$$
2 \sum_{0 \leq m \leq n}(-1)^{m} \# L_{m}^{1}\left(\sum_{m \leq \nu_{2} \leq n_{2}} q^{n_{2}-\nu_{2}}\right)\left[\sum_{\nu_{1}=n_{1}} 1+\left(1+q^{-1}\right) \sum_{m \leq \nu_{1}<n_{1}}(-q)^{n_{1}-\nu_{1}}\right] .
$$

Here $[\ldots]=(-q)^{n_{1}-m}$. Hence we get

$$
\begin{gathered}
=2(q-1)^{-1}(-q)^{n_{1}}\left[q^{n_{2}+1}-1+\left(q^{2}-1\right) q^{-2} \sum_{1 \leq m \leq n}\left(q^{n_{2}+1} q^{m}-q^{2 m}\right)\right] \\
=2(q-1)^{-1}(-q)^{n_{1}}\left[q^{n+n_{2}}(q+1)-q^{2 n}-q^{n_{2}}\right]
\end{gathered}
$$

To compute the second sumएnote that $m>\nu_{1}$ if and only if $m>\nu_{2} \Gamma$ and then $\nu_{1}=\nu_{2}$ is denoted by ν Гand there are two possibilities. If $n_{1} \leq n_{2}$ then $\chi=2 n_{1}$ Гand there is no m with $n_{1}<m \leq \chi-n_{1}$; hence $\nu<n=n_{1}$ in this case. If $n_{2}<n_{1}$ then $\chi=1+2 n_{2}$ and $n=n_{2} \Gamma$ and the m with $n_{2}<m \leq 1+n_{2}$ is $m=1+n_{2}$. Hence the second sum takes the form

$$
-2(q+1) q^{n_{1}+n_{2}} \sum_{0 \leq \nu<n} \frac{(-q)^{\chi-\nu}-(-q)^{\nu}}{-q-1}(-1)^{n_{1}-\nu}+2 \delta\left(n_{2}<n_{1}\right) q^{n_{1}+n_{2}}(q+1) q^{n_{2}}(-1)^{n_{1}+1}
$$

$$
\begin{aligned}
& =2(-1)^{n_{1}} q^{n_{1}+n_{2}}\left((-q)^{\chi} \frac{1-q^{-n}}{1-q^{-1}}-\frac{q^{n}-1}{q-1}\right)+2 \delta\left(n_{2}<n_{1}\right)(q+1) q^{n_{1}+2 n_{2}}(-1)^{n_{1}+1} \\
& =2(-1)^{n_{1}} q^{n_{1}+n_{2}}\left(q^{n}-1\right)\left((-q)^{\chi} q^{1-n}-1\right)+2 \delta\left(n_{2}<n_{1}\right)(q+1) q^{n_{1}+2 n_{2}}(-1)^{n_{1}+1}
\end{aligned}
$$

We deal separately with the two cases. When $n_{2}<n_{1}, \chi=1+2 n_{2}$ and $n=n_{2}$ Гthus our integral is the sum of $2(q-1)^{-1}(-q)^{n_{1}} q^{2 n_{2}}\left[q-q^{-n_{2}}\right]$ and $-2(q-1)^{-1}(-q)^{n_{1}} q^{2 n_{2}}\left[q^{n_{2}+2}-q^{2}+\right.$ $\left.1-q^{-n_{2}}+q^{2}-1\right]$. Namely it is $-2(q-1)^{-1}(-q)^{n_{1}} q^{1+2 n_{2}}\left[q^{n_{2}+1}-1\right]$.

When $n_{1} \leq n_{2}, \chi=2 n_{1}(=N), n=n_{1}, \chi+1-n=1+n_{1} \Gamma$ the integral is equal to $2(q-1)^{-1}(-q)^{n_{1}}\left[q^{n_{1}+n_{2}}(q+1)-q^{2 n_{1}}-q^{n_{2}}+q^{n_{2}}\left(q^{n_{1}}-1\right)\left(q^{1+n_{1}}-1\right)\right]$. This is equal to $2(q-1)^{-1}(-q)^{3 n_{1}}\left[q^{1+n_{2}}-1\right]$.

This κ - θ-orbital integral relates to the orbital integral of $1_{K_{C_{+}}}$on the twisted endoscopic group of type (3) of Section I.F as asserted in the theorem in view of the observations stated prior to the statement of the theorem..

K. Endoscopy for $G S p(2)$, type (II).

In the case of tori of type (II) the isomorphism $\mathbf{T}_{0} \rightarrow \mathbf{T}_{H}$ yields a map of F-rational points $T_{0} \rightarrow T_{H}$ Гdetermined by $\lambda:\left(\left(\begin{array}{cc}t_{1} & 0 \\ 0 & \sigma t_{1}\end{array}\right),\left(\begin{array}{cc}t_{2} & 0 \\ 0 & \tau t_{2}\end{array}\right)\right) \mapsto \operatorname{diag}\left(x_{1}=t_{1} t_{2}, \tau x_{1}=t_{1} \tau t_{2}, \sigma \tau x_{1}=\sigma t_{1}\right.$. $\left.t_{2}, \sigma x_{1}=\sigma t_{1} \cdot \tau t_{2}\right)$. Here $t_{1} \in E_{1}^{\times}, E_{1}=F(\sqrt{D})=E^{\tau}$ Гand $t_{2} \in E_{2}^{\times}, E_{2}=F(\sqrt{A D})=E^{\sigma \tau}$. As in the discussion of the stable orbital integrals of elements of type (II) Γ we write
$t_{1}=\alpha_{1}+\beta_{1} \sqrt{D}, t_{2}=\alpha_{2}+\beta_{2} \sqrt{D A}, x_{1}=a_{1}+b_{1} \sqrt{D} \in E^{\times}\left(a_{1}, b_{1} \in E_{3}^{\times}, E_{3}=F(\sqrt{A})=E^{\sigma}\right)$,
and we recall that the numbers $N=\operatorname{ord}_{3}\left(b_{1}\right) \Gamma X=\operatorname{ord}_{3}\left(a_{1}-\tau a_{1}\right) \Gamma \chi=\operatorname{ord}_{F}\left(\alpha_{1}-\alpha_{2}\right) \Gamma$ are equal to $\min \left(n_{1}, n_{2}\right) \Gamma 1+n_{1}+n_{2}, 1+2 N \Gamma$ when $D \in \pi R^{\times}$Гand to $\chi, 1+2 n_{1}+2 n_{2}, \min \left(2 n_{1}, 1+2 n_{2}\right) \Gamma$ when $D \in R^{\times}$.

A set of representatives for the conjugacy classes within the stable conjugacy class determined by $\left(x_{1}, \tau x_{1}, \sigma \tau x_{1}, \sigma x_{1}\right)$ is given by $x(R)=\left(\begin{array}{c}\mathbf{a}_{1} R^{-1} \\ \mathbf{b}_{1} D \mathbf{R} \\ \mathbf{a}_{1}\end{array}\right) \Gamma$ where R ranges over $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$. The unstable orbital integral is the difference of the orbital integral at $x(1)$ (with positive sign) and the orbital integral at $x(R), R \neq 1$ (in $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$). Recall also that the norm map $N_{E_{3} / F} \Gamma$ followed by the inclusion Γ induces an isomorphism $E_{3}^{\times} / N_{E / E_{3}} E^{\times} \rightarrow$ $N_{E_{3} / F} E_{3}^{\times} / N_{E / F} E^{\times} \hookrightarrow F^{\times} / N_{E_{1} / F} E_{1}^{\times}$(further inducing the isomorphism $R_{3}^{\times} / N_{E / E_{3}} R_{E}^{\times} \rightarrow$ $N_{E_{3} / F} R_{3}^{\times} / N_{E / F} R_{E}^{\times} \stackrel{\sim}{\rightarrow} R^{\times} / N_{E_{1} / F} R_{1}^{\times}$when E / E_{3} is ramified).

1. Theorem. Let E be the compositum of the quadratic extensions $\left(E_{1}, E_{2}, E_{3}\right)$ of F, and $x=h^{-1}\left(x_{1}, \tau x_{1}, \sigma \tau x_{1}, \sigma x_{1}\right) h$ a regular element of type (II) in $G S p(2, F)$ (thus $\left.x_{1} \sigma x_{1} \in E_{1}^{\times}\right)$. Introduce $t_{1} \in E_{1}^{\times}, t_{2} \in E_{2}^{\times}$, by $t_{1} / \sigma t_{1}=x_{1} / \sigma \tau x_{1}, t_{2} / \tau t_{2}=x_{1} / \tau x_{1}$. Suppose that $t_{1} \in$ $R_{1}^{\times}, t_{2} \in R_{2}^{\times}$, are units. Let $\chi_{E_{1} / F}$ be the non trivial character on $F^{\times} / N_{E_{1} / F} E_{1}^{\times}$. Then

$$
\begin{gathered}
\chi_{E_{1} / F}\left(\left(x_{1}-\sigma x_{1}\right)\left(\tau x_{1}-\tau \sigma x_{1}\right) / D\right)\left|1-x_{1} / \sigma x_{1} \| 1-\tau x_{1} / \tau \sigma x_{1}\right| \Phi_{1_{K}}^{H, u s}(x) \\
=\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right] \Phi_{1_{K}}^{C_{0}}\left(\left(\begin{array}{cc}
t_{1} & 0 \\
0 & \sigma t_{1}
\end{array}\right),\left(\begin{array}{cc}
t_{2} & 0 \\
0 & \tau t_{2}
\end{array}\right)\right) .
\end{gathered}
$$

The measures are related as in the case of tori of type (I).
Proof. Let us first clarify that the absolute value $|\cdot|=|\cdot|_{F}$ is an extension of the absolute value on F^{\times}normalized as usual by $\left|\pi_{F}\right|=q_{0}^{-1}, q_{0}=\#\left(R / \pi_{F} R\right), R=R_{F}$. We write q for $q_{3}=q_{E_{3}}$ Гand note that

$$
\left|\boldsymbol{\pi}_{3}\right|=\left|\pi_{3} \tau\left(\boldsymbol{\pi}_{3}\right)\right|^{1 / 2}=\left\{\begin{array}{cc}
\left|\boldsymbol{\pi}_{F}\right|^{1 / 2}=q_{0}^{-1 / 2} & \left(E_{3} / F \text { ramified }\right) \\
\left|\boldsymbol{\pi}_{F}\right|=q_{0}^{-1} & \left(E_{3} / F \text { unramified }\right)
\end{array}\right\}=q^{-1 / 2}
$$

As in the case of type (I) above Γ to compute the right side in the theoremГwe use the formula for the orbital integral on $G L(2, F)$. We then compute the factors which appear in that formula.
2. Lemma. The unordered pair $\left.\left.\left\{\left|\left(t_{1}-\sigma t_{1}\right) / \sqrt{D}\right|^{-1}, \mid\left(t_{2}-\sigma t_{2}\right) / \sqrt{D}\right)\right|^{-1}\right\}$ is equal to $\left\{q^{N / 2}, q^{(X-N) / 2}|D|\right\}$.

Proof. The product of the two terms is equal to $q^{X / 2}|D|$ Гsince

$$
\begin{aligned}
q^{-X / 2} & =\left|a_{1}-\tau a_{1}\right|=\left|x_{1}+\sigma x_{1}-\tau x_{1}-\sigma \tau x_{1}\right|=\left|t_{1} t_{2}+\sigma t_{1} \sigma t_{2}-t_{1} \sigma t_{2}-t_{2} \sigma t_{1}\right| \\
& =\left|\left(t_{1}-\sigma t_{1}\right)\left(t_{2}-\sigma t_{2}\right)\right| .
\end{aligned}
$$

The last two factors are given by

$$
\left|t_{2}-\sigma t_{2}\right|=\left|x_{1}-\tau x_{1}\right|=\left|\left(a_{1}-\tau a_{1}\right)^{2}-\left(b_{1}-\tau b_{1}\right)^{2} D\right|^{1 / 2}
$$

and

$$
\left|t_{1}-\sigma t_{1}\right|=\left|x_{1}-\tau \sigma x_{1}\right|=\left|\left(a_{1}-\tau a_{1}\right)^{2}-\left(b_{1}+\tau b_{1}\right)^{2} D\right|^{1 / 2}
$$

If $\left|b_{1} \pm \tau b_{1}\right|>\left|a_{1}-\tau a_{1}\right|$ for both choices of $\operatorname{sign} \Gamma$ then $\left|\left(t_{i}-\sigma t_{i}\right) / \sqrt{D}\right|=\left|b_{1} \pm \tau b_{1}\right|$ (for the right choice of sign) Γ and one of $\left|b_{1}+\tau b_{1}\right|$ or $\left|b_{1}-\tau b_{1}\right|$ is equal to $\left|b_{1}\right|=q^{-N / 2} \Gamma$ as required. If there is a choice of sign such that $\left|b_{1} \pm \tau b_{1}\right| \leq\left|a_{1}-\tau a_{1}\right| \Gamma$ then $\left|b_{1} \mp \tau b_{1}\right|=1=|D|, N=0 \Gamma$ and $\left|\left(t_{i}-\sigma t_{i}\right) / \sqrt{D}\right|=1$ for some $i \Gamma$ and the lemma follows in this case too.

Remark. If $D \in R^{\times}$Гnamely E_{1} / F is unramified Γ since $t_{1} \in E_{1}^{\times}$we have $\left|t_{1}-\sigma t_{1}\right| \in q_{0}^{\mathbb{Z}}=q^{\mathbb{Z}}$. Indeed $q=q_{0}$ as E_{3} / F is ramified. In this case X is oddChence $\left|\left(t_{1}-\sigma t_{1}\right) \sqrt{D}\right|^{-1}$ is $q^{N / 2}$ if N is even Γ and $q^{(X-N) / 2}$ if N is odd.
3. Corollary. The integral $\Phi_{1_{K}}^{C_{0}}\left(\left(\begin{array}{cc}t_{1} & 0 \\ 0 & \sigma t_{1}\end{array}\right),\left(\begin{array}{cc}t_{2} & 0 \\ 0 & \tau t_{2}\end{array}\right)\right)$ is the product of

$$
1_{R_{1}^{\times}}\left(t_{1}\right) 1_{R_{2}^{\times}}\left(t_{2}\right)\left(q_{0}-1\right)^{-2}
$$

with

$$
\begin{aligned}
\left((q+1) q^{N / 2}-2\right)\left(q \cdot q^{(X-N-1) / 2}-1\right), & \text { if }|D|=1, N \text { is even; } \\
\left((q+1) q^{(X-N) / 2}-2\right)\left(q \cdot q^{(N-1) / 2}-1\right), & \text { if } D \in R^{\times}, N \text { is odd; } \\
\left(q^{(1+N) / 2}-1\right)\left(q^{(X-N) / 2}-1\right), & \text { if } D \in \pi R^{\times}\left(|D|=q^{-1 / 2}\right) .
\end{aligned}
$$

Proof. Note that when $|D|=1, A=\pi$ and $|A|=q^{-1 / 2} \Gamma$ hence $\left|\left(t_{2}-\sigma t_{2}\right) / \sqrt{A D}\right|^{-1}$ is $q^{(X-N-1) / 2}$ when N is even Γ and $q^{(N-1) / 2}$ when N is odd.

Remark. The transfer factor is the product of $\left|1-x_{1} / \sigma x_{1}\right|\left|1-\tau x_{1} / \sigma \tau x_{1}\right|=|b \tau b D|$ and $\chi_{E_{1} / F}\left(\left(x_{1}-\sigma x_{1}\right)\left(\tau x_{1}-\tau \sigma x_{1}\right) / D\right)=\chi_{E_{1} / F}(b \tau b)$ (since $\left|x_{1}\right|=1$ and the residual characteristic is odd).

We now turn to the computation of the unstable orbital integral in the case where E / E_{3} is ramified. As in the computation of the stable integral Γ we have a sum over $\rho \in\{1, u\} \Gamma$ where $u \in R_{3}^{\times}-R_{3}^{\times 2}$. While in the stable case both terms indexed by 1 and u appeared with coefficient 1Γ in the unstable case the term associated with $\rho=1$ has coefficient 1Γ while that associated with $\rho=u$ has coefficient -1 . Only in the range $\nu<m \leq X-\nu$ there appears a difference between these two terms. Namely in this range we have the condition $\rho \in B R_{3}^{\times 2} \Gamma$ and so only one of $\{1, u\}$ makes a contribution. For m with $m \leq \nu$ both of $\{1, u\}$ contribute and cancel each other. Thus the unstable orbital integral is given by the sum

$$
\chi_{E_{1} / F}(B \tau B) 2 q^{N} \sum_{0 \leq \nu \leq N} \sum_{\nu<m \leq X-\nu} q_{0}^{m} .
$$

The double sum here is

$$
\left(q_{0}-1\right)^{-1} \sum_{0 \leq \nu \leq N}\left(q_{0}^{X+1-\nu}-q_{0}^{\nu+1}\right)=\frac{q_{0}}{\left(q_{0}-1\right)^{2}}\left(q_{0}^{X-N}-1\right)\left(q_{0}^{N+1}-1\right)
$$

This is the product of $q_{0}=q^{1 / 2}$ and the orbital integral $\Phi_{1_{K}}^{C_{0}}$ of the Corollary above. Since $b=B \boldsymbol{\pi}_{3}^{N} \Gamma|b \tau b D|=q^{-N} q_{0}^{-1} \Gamma$ in fact $\boldsymbol{\pi}_{3}=\boldsymbol{\pi}_{F}$ and $\boldsymbol{\pi}_{F}=N_{E_{1} / F} \boldsymbol{\pi}_{1} \Gamma$ as $\boldsymbol{\pi}_{1}=\sqrt{D}$ and $D=-\boldsymbol{\pi}_{F}$. Hence the transfer factor is $\chi_{E_{1} / F}(B \tau B) q^{-N} q_{0}^{-1} \Gamma$ and the product of the transfer factor with the unstable integral is indeed the integral $\Phi_{1_{K}}^{C_{0}} \Gamma$ as asserted.

Finally we consider the case where E / E_{3} is unramified Γ thus $D \in R^{\times}$. Again we have a sum over ρ in $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$parametrizing the two integrals which make the stable and unstable orbital integrals. A set of representatives for $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$is given by $\left\{1, \pi_{3}\right\} \Gamma$ and as usual we write $\rho=\pi_{3}^{\bar{\rho}} \Gamma$ thus $\bar{\rho} \in\{0,1\}$. The orbital integral is a sum over $\nu(0 \leq \nu \leq N)$ such that $N-\nu-\bar{\rho}$ is even. In the stable case Γ both sums were added and thus combined to a single sum over $\nu(0 \leq \nu \leq N)$. Now in the unstable case Γ we need to multiply the contribution by $(-1)^{\bar{\rho}}=(-1)^{\bar{N}-\nu}$ before adding up the sum. The unstable integral is then

$$
\begin{aligned}
& \sum_{0 \leq \nu \leq N} \sum_{0 \leq m^{\prime}=2 m \leq X-1}(-q)^{N-\nu}\left(\delta(\nu=N)+\left(1+q^{-1}\right) \delta(\nu<N)\right) \\
& \left(q^{3 m^{\prime} / 2} \delta\left(0 \leq m^{\prime} \leq \nu\right)+q^{\nu+m^{\prime} / 2} \delta\left(\nu<m^{\prime} \leq X-1-\nu, \nu \text { even }\right)\right) .
\end{aligned}
$$

This is the sum of two terms. The first is

$$
\sum_{0 \leq \nu \leq N} \sum_{0 \leq m^{\prime} \leq \nu}=\sum_{0 \leq m^{\prime} \leq N} q^{3 m^{\prime} / 2}\left(\sum_{\nu=N} 1+\left(1+q^{-1}\right) \sum_{m^{\prime} \leq \nu<N}(-q)^{N-\nu}\right)
$$

The inner (\ldots) is $(-q)^{N-m^{\prime}} \Gamma$ so the sum is $(-q)^{N} \sum_{0 \leq m \leq N / 2} q^{m}=(-q)^{N}(q-1)^{-1}\left(q^{1+[N / 2]}-1\right) \Gamma$ where $[X]$ is the biggest integer bounded by the real number X.

Writing $\nu^{\prime}=2 \nu$ for the even ν when $\nu<m^{\prime} \leq X-1-\nu$ Гthe second term is

$$
\begin{aligned}
& \sum_{0 \leq \nu^{\prime}<N} \sum_{\nu^{\prime}<m^{\prime} \leq X-1-\nu^{\prime}} q^{\nu^{\prime}+m^{\prime} / 2}(-q)^{N-\nu^{\prime}}\left(1+q^{-1}\right)+\delta(N \text { is even }) \sum_{N<m^{\prime} \leq X-1-N} q^{N+m^{\prime} / 2} \\
& =\sum_{0 \leq \nu<N / 2} \sum_{\nu<m \leq \frac{1}{2}(X-1)-\nu}\left(1+q^{-1}\right)(-1)^{N} q^{N+m}+\delta(2 \mid N) \sum_{N / 2<m \leq \frac{1}{2}(X-1)-\frac{1}{2} N} q^{N+m} \\
& =(1-\delta(2 \mid N)) \frac{(-q)^{N}(q+1)}{(q-1)^{2}}\left(q^{\frac{1}{2}(X-N)}-1\right)\left(q^{\frac{1}{2}(N+1)}-1\right) \\
& \quad+\delta(2 \mid N)(q-1)^{-2}(-q)^{N}\left((q+1) q^{\frac{1}{2}(X+1)}-2 q^{\frac{1}{2}(X+1-N)}-\left(q^{2}+1\right) q^{N / 2}+q+1\right),
\end{aligned}
$$

where the last equality follows at once from the corresponding computation in the stable case. The sum of these two terms Γ when N is odd Γ is

$$
\frac{(-q)^{N}}{(q-1)^{2}}\left(q^{\frac{1}{2}(N+1)}-1\right)\left((q+1) q^{\frac{1}{2}(X-N)}-2\right)
$$

while when N is even it is

$$
\frac{(-q)^{N}}{(q-1)^{2}}\left((q+1) q^{N / 2}-2\right)\left(q^{(X-N+1) / 2}-1\right)
$$

The transfer factor is the product of $|D|=1,|b \tau b|=q^{-N}\left(\right.$ as $\left.\left|\pi_{3}\right|=q^{-1 / 2}\right)$ Гand $\chi_{E_{1} / F}(b \tau b)=$ $\chi_{E_{1} / F}\left(\boldsymbol{\pi}^{N}\right)=(-1)^{N} \Gamma$ since $\boldsymbol{\pi}_{3}=\sqrt{A}, A=-\pi$ Гand so $N_{E_{3} / F} \boldsymbol{\pi}_{3}=\boldsymbol{\pi}$. In view of the Corollary above our comparison is complete for regular elements of type (II) Гonce we prove:
4. Lemma. The index $\left[R_{T_{H}}: \lambda\left(R_{T_{0}}\right)\right]$ is 1 if E_{1} / F is unramified, and 2 if E_{1} / F is ramified.

Proof. Recall that $\lambda\left(\left(t_{1}, \sigma t_{1}\right),\left(t_{2}, \sigma t_{2}\right)\right)=\left(x_{1}=t_{1} t_{2}, \tau x_{1}=t_{1} \sigma t_{2}, \sigma \tau x_{1}=\sigma t_{1} \cdot t_{2}, \sigma x_{1}=\right.$ $\left.\sigma t_{1} \sigma t_{2}\right) \Gamma$ with $t_{1} \in E_{1}=F(\sqrt{D})=E^{\tau} \Gamma$ and $t_{2} \in E_{2}=F(\sqrt{A D})=E^{\sigma \tau}$. Note that $x_{1} \sigma x_{1}=$ $\tau\left(x_{1} \sigma x_{1}\right)$ implies that $\left(x_{1} / \sigma \tau x_{1}\right) \sigma\left(x_{1} / \sigma \tau x_{1}\right)=1$ Thence $x_{1} / \sigma \tau x_{1}=t_{1} / \sigma t_{1}$ has a solution in $t_{1} \in E_{1}^{\times} \Gamma$ and our index computation is the question whether there exists a solution t_{1} in R_{1}^{\times}. Indeed Γ if such a unit solution t_{1} is found Γ we can define the unit $t_{2}=x_{1} / t_{1} \Gamma$ which satisfies $\sigma \tau\left(x_{1} / t_{1}\right)=\sigma \tau x_{1} / \sigma t_{1}=x_{1} / t_{1}=t_{2} \in E_{2}^{\times}$. In the proof of the analogous Lemma in the case of elements of type (I) we have seen that $t_{1} \in R_{1}^{\times}$exists if E_{1} / F is unramified Γ and that $\left\{t_{1} / \sigma t_{1} ; t_{1} \in R_{1}^{\times}\right\}$has index 2 in $\left\{t_{1} / \sigma t_{1} ; t_{1} \in E_{1}^{\times}\right\}$when E_{1} / F is ramified. The lemma follows Γ as does the Theorem Γ transferring the orbital integrals of 1_{K} on $H=G S p(2, F)$ to its endoscopic group $C_{0}=G L(2, F) \times G L(2, F) /\left\{\left(z, z^{-1}\right) ; z \in F^{\times}\right\}$.

L. Comparison in case (III).

In this case the norm map goes in the opposite direction than in case (II) Γ and we shall reduce the computations here to those of case (II). Let us recall the notations. The three
quadratic extensions of F are $E_{1}=F(\sqrt{D}) \Gamma E_{2}=F(\sqrt{A D}), E_{3}=F(\sqrt{A}), E_{2} / F$ is ramified Γ A and D are integral of minimal order $\Gamma E=E_{3}(\sqrt{D})$ has Galois group $\mathbb{Z} / 2 \times \mathbb{Z} / 2$ generated by σ, τ such that $E_{3}=E^{\langle\sigma\rangle}, E_{1}=E^{\langle\tau\rangle}, E_{2}=E^{\langle\sigma \tau\rangle}$. The two θ-conjugacy classes in the stable θ-conjugacy class of a strongly θ-regular element of type (III) are represented by $\left(\begin{array}{c}\mathbf{a} \\ \boldsymbol{\rho}^{-1} \mathbf{b} \\ \mathbf{b} D \boldsymbol{\rho} \\ \mathbf{a}\end{array}\right), \rho$ ranges over a set of representatives for $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$$\Gamma$ including 1 and an element in R_{3} of minimal order.

Our element is moreover topologically unipotent Γ and it commutes with $\theta \Gamma$ thus these representatives lie in $S p(2, F) \Gamma$ and they are conjugate by θ-invariant elements to the diagonal element $t^{*}=(t, \tau t, \sigma \tau t, \sigma t ; e)$ in the diagonal torus T^{*}. For our integrals to be non zero Γe must lie in R^{\times}「and then the integrals are independent of $e \Gamma$ so we omit e from the notations. Now t lies in $E^{\times} \Gamma$ and we write it as $t=a+b \sqrt{D} \Gamma$ where $a=\alpha_{1}+\alpha_{2} \sqrt{A}, b=\beta_{1}+\beta_{2} \sqrt{A} ; \alpha_{i}, \beta_{i} \in F$. Then $\tau t=\tau a+\tau b \sqrt{D}, \sigma t=a-b \sqrt{D} \Gamma$ and $\tau a=\alpha_{1}-\alpha_{2} \sqrt{A}$. The norm map maps t^{*} to $N t^{*}=\left(x_{1}=e t \tau t, x_{2}=e t \sigma \tau t, \sigma x_{2}=e \tau t \sigma t, \sigma x_{1}=e \sigma t \tau \sigma t ; e^{2}\right)$.

Note that t^{*} lies in $S p(2) \Gamma$ thus $t \sigma t \tau t \sigma \tau t=1 \Gamma$ and we omit e from the notations. Then we have

$$
x_{1}=t \tau t=a \tau a+b \tau b D+(a \tau b+b \tau a) \sqrt{D}=A_{1}+B_{1} \sqrt{D}
$$

and

$$
x_{2}=t \sigma \tau t=a \tau a-b \tau b D+\left(\frac{b \tau a-a \tau b}{\sqrt{A}}\right) \sqrt{A D}=A_{2}+B_{2} \sqrt{A D}
$$

where A_{i}, B_{i} lie in F. Further $\Gamma 1=x_{1} \sigma x_{1}=A_{1}^{2}-B_{1}^{2} D \Gamma$ and $1=x_{2} \tau x_{2}=A_{2}^{2}-B_{2}^{2} A D$. Since t is topologically unipotent Γ so is a Гand $|b D|<1$ Гhence α_{1} is topologically unipotent $\Gamma\left|A \alpha_{2}\right|<1$ and $|b D|<1$.

We proceed to relate the numbers associated with the norm map.

1. Lemma. If $N_{i}=\operatorname{ord}_{F} B_{i}(i=1,2), n=\operatorname{ord}_{3} b, \chi=\operatorname{ord}_{3}(a-\tau a)$ and $X=\operatorname{ord}_{F}\left(A_{1}-\right.$ $\left.A_{2}\right)$, then $n=\frac{1}{e} \min \left(2 N_{1}, 2 N_{2}+\operatorname{ord} A\right), \chi=\frac{1}{e}\left(\operatorname{ord}_{F} A+2 \operatorname{ord}_{F} D+2 N_{1}+2 N_{2}\right)=\frac{1}{e}(1+$ $\left.\operatorname{ord}_{F} D+2 N_{1}+2 N_{2}\right), \operatorname{ord}_{F} \beta_{i}=N_{i}(i=1,2)$, and $X=\operatorname{ord}_{F} D+$ en. Here $e=e\left(E / E_{3}\right)=$ $e\left(E_{1} / F\right)$, ord $=\operatorname{ord}_{F}, \operatorname{ord}_{3}=\operatorname{ord}_{E_{3}}$.

Proof. Note that $n=\operatorname{ord}_{3} b=\operatorname{ord}_{3}\left(\beta_{1}+\beta_{2} \sqrt{A}\right)=\frac{1}{e} \min \left(2 \operatorname{ord}_{F} \beta_{1}, 2 \operatorname{ord}_{F} \beta_{2}+\operatorname{ord}_{F} A\right)$ since $\operatorname{ord}_{3}\left(\pi_{F}\right)=\operatorname{ord}_{3}\left(\pi_{3}^{2 / e}\right)=2 / e$ so that $\operatorname{ord}_{3}(x)=\frac{2}{e} \operatorname{ord}_{F}(x)$ for $x \in F^{\times}$. Further we have $\chi=\operatorname{ord}_{3}(a-\tau a)=\operatorname{ord}_{3}\left(\alpha_{2} \sqrt{A}\right)=\frac{1}{e}\left(\operatorname{ord}_{F} A+2 \operatorname{ord}_{F} \alpha_{2}\right)$ Гand noting that $A_{1}+A_{2}=2 a \tau a$ is a unit「also

$$
\begin{aligned}
X & =\operatorname{ord}_{F}\left(A_{1}-A_{2}\right)=\operatorname{ord}_{F}\left(A_{1}^{2}-A_{2}^{2}\right)=\operatorname{ord}_{F}\left(B_{1}^{2} D-B_{2}^{2} A D\right) \\
& =\operatorname{ord}_{F} D+\min \left(2 N_{1}, \operatorname{ord}_{F} A+2 N_{2}\right)=\operatorname{ord}_{F}(D b \tau b)=\operatorname{ord}_{F} D+e \operatorname{ord}_{3}(b) \\
& =\operatorname{ord}_{F} D+\min \left(2 \operatorname{ord}_{F} \beta_{1}, \operatorname{ord}_{F} A+2 \operatorname{ord}_{F} \beta_{2}\right)=\operatorname{ord}_{F} D+e n .
\end{aligned}
$$

Hence $\left\{\operatorname{ord}_{F} \beta_{1}, \operatorname{ord}_{F} \beta_{2}\right\}=\left\{N_{1}, N_{2}\right\} \Gamma$ with $\operatorname{ord}_{F} \beta_{i}=N_{i}(i=1,2)$ if $\operatorname{ord}_{F} A=1$. In fact Γ if $\left|\beta_{2}\right|=\left|B_{1}\right|=\left|\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2} A\right| \Gamma$ since $\left|A \alpha_{2}\right|<1=\left|\alpha_{i}\right| \Gamma$ we must have $\left|\beta_{1}\right|=\left|\beta_{2}\right| \Gamma$ hence $\left|B_{i}\right|=\left|\beta_{i}\right|$ also for $A \in R^{\times}$.

Now $\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right)$ lies in $S L\left(2, E_{3}\right)$ Chence

$$
1=a^{2}-b^{2} D=\alpha_{1}^{2}+\alpha_{2}^{2} A+2 \alpha_{1} \alpha_{2} \sqrt{A}-\left(\beta_{1}^{2}+\beta_{2}^{2} A+2 \beta_{1} \beta_{2} \sqrt{A}\right) D
$$

$$
=\alpha_{1}^{2}+\alpha_{2}^{2} A-\left(\beta_{1}^{2}+\beta_{2}^{2} A\right) D+2\left(\alpha_{1} \alpha_{2}-\beta_{1} \beta_{2} D\right) \sqrt{A}
$$

implies that $\alpha_{2}=\beta_{1} \beta_{2} D / \alpha_{1}$. Since α_{1} is a unit Γ the expression for χ follows.
The computation of the stable θ-orbital integral for an element of type (III) follows closely the computation of the stable orbital integral of the norm of an element of type (II). In both cases the integral is a sum $\Phi_{1_{K}}\left(\begin{array}{ll}\mathbf{a} \mathbf{b} D \\ \mathbf{b} & \mathbf{a}\end{array}\right)+\Phi_{1_{K}}\left(\begin{array}{cc}\mathbf{a} & \mathbf{b} D \rho \\ \mathbf{b} / \rho & \mathbf{a}\end{array}\right)$ over $\rho \in E_{3}^{\times} / N_{E / E_{3}} E^{\times}$Гthe difference being that in case (II) the integration is performed over $G S p(2, F) \Gamma$ while in case (III) the integration is over $S p(2, F)$. However Γ the result in case (III) is exactly the same as in case (II) Γ since $T_{S} \backslash S p(2, F)=T \backslash T \cdot S p(2, F)$ is $T \backslash G S p(2, F)$ where $T_{S}=T \cap S p(2, F)$. Indeed Γ $\operatorname{det} T=\left\{a \sigma a \tau a \sigma \tau a ; a \in E^{\times}\right\}=N_{E / F} E^{\times}=F^{\times 2}$.
2. Lemma. The stable θ-orbital integral of a strongly θ-regular topologically unipotent θ-fixed element of $G L(4, F) \times R^{\times}$is equal to

$$
2 q_{0}^{2 n+1} \cdot \frac{1-q_{0}^{-n-1}}{1-q_{0}^{-1}}\left(\frac{q_{0}^{\chi}}{q_{0}-1}-\frac{q_{0}^{n+1}}{q_{0}^{3}-1}-\frac{1+q_{0}^{-n-1}}{q_{0}^{3}-1}\right)
$$

when E / E_{3} is ramified, while when E / E_{3} is unramified the integral is equal to

$$
\begin{aligned}
& \frac{q+1}{(q-1)^{2}} q^{n}\left[\delta(n \text { is even })\left(q^{\frac{\chi+1}{2}}-\frac{2}{q+1} q^{\frac{\chi+1-n}{2}}+\frac{q-1}{q+1} q^{\frac{n}{2}}\right)\right. \\
& \quad+\left(q^{\frac{\chi+1}{2}}-q^{\frac{\chi-n}{2}}\right) \delta(n \text { is odd })-\frac{2}{q-1} \frac{q^{3([n / 2]+1)}-1}{q^{3}-1}
\end{aligned}
$$

Proof. When E / E_{3} is ramified Γ the computation is immediately adapted from the case of the norm of an element of type (II) Гand we obtain the expression (**) of Section IГexcept that in our notations (N, X) have to be replaced by (n, χ). Similarly Γ when E / E_{3} is unramified Γ the expression of the lemma appears in the part dealing with the computation of the stable orbital integral of the norm of an element of type (II) Гin Section JГexcept that our current notations are (n, χ) instead of (N, X).

Similarly The computation of the stable orbital integral of the norm of an element of type (III) is immediately reduced to the computation of the stable θ-orbital integral of an element of type (II). Of course Γ the θ-integral ranges over $S p(2, F) \Gamma$ and the stable θ-integral is a sum over 4θ-conjugacy classes.

The orbital integral of the norm of an element of type (III) is already stable Γ and the integration ranges over $G S p(2, F)$. In fact the orbital integral over $G S p(2, F)$ is a stable orbital integral over $S p(2, F) \Gamma$ and each of the conjugacy classes in the stable orbit in $S p(2, F)$ is represented by conjugation within $G S p(2, F)$. Moreover $\Gamma T_{S} \backslash S p(2, F)=T \backslash T \cdot S p(2, F) \Gamma$ and $[G S p(2, F): T \cdot S p(2, F)]=\left[F^{\times}: F^{\times 2}\right]=4 \Gamma$ since the factors of similitude of $t \in T$ with eigenvalues $(a, b, \sigma b, \sigma a), a \in E_{1}^{\times}, b \in E_{2}^{\times}, a \sigma a=b \sigma b \Gamma$ are in $N_{E_{1} / F} E_{1}^{\times} \cap N_{E_{2} / F} E_{2}^{\times}=$ $N_{E / F} E^{\times}=F^{\times 2} \Gamma$ while those of $G S p(2, F)$ are in F^{\times}. Consequently Γ we obtain
3. Lemma. The orbital integral of the norm of a strongly θ-regular topologically unipotent element of type (III) is equal to

$$
4 q_{0}^{N+N^{\prime}+2}\left(q_{0}-1\right)^{-2}\left(1-q_{0}^{-N-1}\right)\left(q_{0}^{X}-q_{0}^{-N^{\prime}-1} \frac{1+q_{0}^{1+n}+q_{0}^{2+2 N}}{1+q_{0}+q_{0}^{2}}\right)
$$

where $N=\min \left(N_{1}, N_{2}\right), N^{\prime}=\max \left(N_{1}, N_{2}\right)$, in the case where E / E_{3} is ramified, while when E / E_{3} is unramified, the integral is

$$
2(q-1)^{-2}\left[(q+1) q^{2+N_{1}+3 N_{2}}-(q+1) q^{1+N_{1}+2 N_{2}}-2 \frac{q-1}{q^{3}-1}\left(q^{3+3 N_{2}}-1\right)\right]
$$

if $N_{2}<N_{1}$, while if $N_{1} \leq N_{2}$ it is

$$
2(q-1)^{-2}\left[(q+1) q^{2+3 N_{1}+N_{2}}-2 q^{1+2 N_{1}+N_{2}}+\frac{q-1}{q^{3}-1}\left(2-\left(q^{3}+1\right) q^{3 N_{1}}\right)\right] .
$$

Proof. When E / E_{3} is ramifiedTour expression is obtained from (*) of Section I on replacing $n_{1} \leq n_{2}$ there by $N \leq N^{\prime}$ here Γ and χ by X. When E / E_{3} is unramified Γ our expressions are obtained from $(*)$ and $(* *)$ of Section JГon replacing n_{1}, n_{2} there by N_{1}, N_{2} here.

To compare the stable θ-orbital integral and the stable orbital integral when $e=2$ Гnote that $\operatorname{ord}_{F} A=0$ and so $\chi=1+N_{1}+N_{2}$ and $n=\min \left(N_{1}, N_{2}\right)=N \Gamma$ and $X=1+2 n$. Put $n^{\prime}=\max \left(N_{1}, N_{2}\right)$. The θ-expression is then

$$
2 q_{0}^{2 n+2}\left(q_{0}-1\right)^{-1}\left(1-q_{0}^{-n-1}\right)\left(q_{0}^{3}-1\right)^{-1}\left(\frac{q_{0}^{3}-1}{q_{0}-1} \cdot q_{0}^{1+n+n^{\prime}}-q_{0}^{n+1}-1-q_{0}^{-n-1}\right)
$$

and the integral of the norm is twice that.
When $e=1 \Gamma \operatorname{ord}_{F} A=1 \Gamma$ we have $X=n=\min \left(2 N_{1}, 1+2 N_{2}\right)$ and $\chi=1+2 N_{1}+2 N_{2}$. When $N_{2}<N_{1}$ we have that $X=n=1+2 N_{2}$ is oddГand the θ-expression is

$$
\frac{q+1}{(q-1)^{2}} q^{1+2 N_{2}}\left(q^{1+N_{1}+N_{2}}-q^{N_{1}}\right)-\frac{2}{q-1} \frac{q^{3\left(N_{2}+1\right)}-1}{q^{3}-1},
$$

while the integral at the norm is twice that. When $N_{1} \leq N_{2}, X=n=2 N_{1} \Gamma$ the θ-integral is

$$
\frac{q+1}{(q-1)^{2}} q^{2 N_{1}}\left(q^{1+N_{1}+N_{2}}-\frac{2}{q+1} q^{1+N_{2}}+\frac{q-1}{q+1} q^{N_{1}}\right)-\frac{2}{q-1} \frac{q^{3 N_{1}+3}-1}{q^{3}-1},
$$

while the integral of the norm is twice this expression.
We are then done once we show that in the case of type (III) Гthe measure factor is $\frac{1}{2}$.
4. Lemma. For tori T of type (III), the measure factor $\left[T^{* \theta}(R):(1+\theta) T^{*}(R)\right] /\left[T_{H}^{*}(R)\right.$: $\left.N\left(T^{*}(R)\right)\right]$ is $\frac{1}{2}$.

Proof. We first compute the index in $T_{H}^{*}(R)=\left\{(x, y, \sigma y, \sigma x) ; x \in R_{1}^{\times}, y \in R_{2}^{\times}, x \sigma x=y \sigma y\right\}$ of the image $\left\{N(a, \tau a, \sigma \tau a, \sigma a)=(a \tau a, a \sigma \tau a, \tau a \sigma a, \sigma a \sigma \tau a) ; a \in R_{E}^{\times}\right\}$of $T^{*}(R)$ under N. Thus we need to solve in $a \in R_{E}^{\times}$the equation $x / \sigma y=a / \sigma a$. Since $(x / \sigma y) \sigma(x / \sigma y)=1 \Gamma$ there is a solution a in $E^{\times}$$\Gamma$ and as usual we note that the index in $\left\{a / \sigma a ; a \in E^{\times}\right\}$of $\left\{a / \sigma a ; a \in R_{E}^{\times}\right\}$ is the ramification index $e\left(E / E_{3}\right) \Gamma$ where $E_{3}=E^{\sigma}$.

Given a solution $a \in R_{E}^{\times} \Gamma$ put $x^{\prime}=x / a \tau a, y^{\prime}=y / a \sigma \tau a$. Then $x^{\prime}=\sigma y^{\prime} \in R_{1}^{\times} \cap R_{2}^{\times}=R^{\times} \Gamma$ and it remains to find $b \in R_{E}^{\times}$such that $x^{\prime}\left(\in R^{\times}\right)$is equal to $N(b, \tau b, \sigma \tau b, \sigma b) \Gamma$ thus $x^{\prime}=b \tau b=$ $b \sigma \tau b=\tau b \sigma b=\sigma b \sigma \tau b \Gamma$ or $\tau b=\sigma \tau b=\sigma b=b$. Hence only the x^{\prime} in $R^{\times 2}$ are obtained by the norm Γ and we pick the factor $\left[R^{\times}: R^{\times 2}\right]$ in the index of the image of the norm in $T_{H}^{*}(R)$. Thus $\left[T_{H}^{*}(R): N\left(T^{*}(R)\right)\right]=2 e\left(E / E_{3}\right)$.

The index in $T^{* \theta}(R)=\left\{(x, \tau x, \sigma \tau x, \sigma x) ; x \in R_{E}^{\times}, x \sigma x=1\right\}$ of the image $(1+\theta) T^{*}(R)=$ $\left\{(1+\theta)(a, \tau a, \sigma \tau a, \sigma a)=(a / \sigma a, \tau a / \sigma \tau a, \sigma \tau a / \tau a, \sigma a / a) ; a \in R_{E}^{\times}\right\}$of $T^{*}(R)$ under $(1+\theta)$ is computed next. Since $x \sigma x=1 \Gamma$ there is a in E^{\times}with $x=a / \sigma a$. We can solve in $a \in R_{E}^{\times}$ only up to the index $e\left(E / E_{3}\right)$. Then the quotient $e\left(E / E_{3}\right) / 2 e\left(E / E_{3}\right)$ is $1 / 2 \Gamma$ and the lemma follows.

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the θ-orbital integrals will now be used to compute the unstable $\Gamma \kappa$ - θ-orbital integrals Γ at a strongly θ-regular topologically θ-unipotent element $t^{*}=$ $(t, \tau t, \sigma \tau t, \sigma t)$ of type (III). The character κ is the $\neq 1$ character on the group $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$ of θ-conjugacy classes within the stable θ-conjugacy class of t^{*}. The associated endoscopic group is $\mathbf{C}=(G L(2) \times G L(2))^{\prime}$. The norm $N_{C} t^{*}$ is $\left(\left(\begin{array}{cc}t \tau t & 0 \\ 0 & \sigma(t \tau t)\end{array}\right),\left(\begin{array}{cc}t \sigma \tau t & 0 \\ 0 & \tau t \sigma t\end{array}\right)\right)$. Recall that $x_{1}=t \tau t=A_{1}+B_{1} \sqrt{D}$ lies in E_{1}^{\times}Гand $x_{2}=t \sigma \tau t=A_{2}+B_{2} \sqrt{A D}$ lies in E_{2}^{\times}. The Jacobian is

$$
\Delta_{G, C}\left(t^{*}\right)=|(t-\sigma t) \tau(t-\sigma t)|_{F} /|t \tau t|_{F}=|b \tau b D|_{F}=|b|_{3}|D|_{F}=q^{-n}|D|_{F}
$$

as $t=a+b \sqrt{D}, \sigma t=a-b \sqrt{D}, n=\operatorname{ord}_{3}(b) \Gamma$ thus it is q_{0}^{-n} when $|D|_{F}=1$ (as then $\left.q=q_{0}\right) \Gamma$ and $q_{0}^{-2 n-1}$ when $|D|_{F}=q_{0}^{-1}$ (as then $q=q_{0}^{2}$; recall that $E_{3}=F(\sqrt{A})=E^{\sigma}$ and $E_{1}=F(\sqrt{D})=$ E^{τ}).

The orbital integral of $1_{K_{C}}$ on C at $N_{C} t^{*}$ is the product of two integrals. If $N_{i}=$ ord $B_{i} \Gamma$ Lemma I.I. 2 asserts that one of the factors Γ the orbital integral of 1_{K} on $G L(2, F) \Gamma a t$ the class with eigenvalues x_{2} and $\sigma x_{2} \Gamma$ as E_{2} / F is ramified Γ is $\left(q_{0}^{N_{2}+1}-1\right) /\left(q_{0}-1\right)$. The other factor is such an integral at the class with eigenvalues x_{1} and σx_{1} in E_{1}. Then it is $\left(q_{0}^{N_{1}+1}-1\right) /\left(q_{0}-1\right)$ if E_{1} / F is ramified Γ and $\left(\left(q_{0}+1\right) q_{0}^{N_{1}}-2\right) /\left(q_{0}-1\right)$ if E_{1} / F is unramified.

Theorem. Let t^{*} be a topologically θ-unipotent strongly θ-regular element of type (III). Then

$$
\kappa((t-\sigma t) / 2 \sqrt{D}) \Delta_{G, C}\left(t^{*}\right) \Phi_{1_{K}}^{\kappa}\left(t^{*} \theta\right)=\Phi_{1_{K_{C}}}^{C}\left(N_{C} t^{*}\right)
$$

Proof. Consider first the case where E / E_{3} is ramified. Then E_{1} / F is ramified $\Gamma \operatorname{ord}(D)=1 \Gamma$ and since E / E_{3} is ramified $\Gamma N_{E / E_{3}} E^{\times}=R_{3}^{\times 2} \pi^{\mathbb{Z}} \Gamma$ thus ρ ranges over $R_{3}^{\times} / R_{3}^{\times 2} \Gamma$ and the unstable
θ-orbital integral of type (III) Γ which is described also as the unstable orbital integral of type (II) Γ is a sum over ρ of $\kappa(\rho)$ Гas well as sums over $\nu(0 \leq \nu \leq n)$ and $m(0 \leq m \leq \chi)$ as in the stable case. The sum over $m(0 \leq m \leq \nu)$ is zero since the only dependence on ρ is via $\kappa(\rho) \Gamma$ and $\sum_{\rho} \kappa(\rho)=0$. On the range $m(\nu<m \leq \chi-\nu) \Gamma$ we have the requirement $u \in B R_{3}^{\times 2} \Gamma$ thus $\kappa(\rho)=\kappa(B)=\kappa(b)=\kappa((t-\sigma t) / 2 \sqrt{D})$ there (as $\kappa\left(\boldsymbol{\pi}_{3}\right)=1$). The κ - θ-integral is then

$$
\begin{aligned}
\kappa & (B) \sum_{0 \leq \nu \leq n} q^{n-\nu} \sum_{\nu<m \leq \chi-\nu} 2 q_{0}^{m} q^{\nu} \\
& =2 \kappa(B) q^{n} q_{0}\left(q_{0}-1\right)^{-1} \sum_{0 \leq \nu \leq n}\left(q_{0}^{\chi-\nu}-q_{0}^{\nu}\right) \\
& =2 \kappa(B) q^{n} q_{0}\left(q_{0}-1\right)^{-1}\left[q_{0}^{\chi+1}\left(1-q_{0}^{-n-1}\right) /\left(1-q_{0}^{-1}\right)-\left(q_{0}^{n+1}-1\right) /\left(q_{0}-1\right)\right] \\
& =2 \kappa(B) q_{0}^{2 n+1}\left(q_{0}-1\right)^{-2}\left(q_{0}^{\chi-n}-1\right)\left(q_{0}^{n+1}-1\right) .
\end{aligned}
$$

Since $n=\min \left(N_{1}, N_{2}\right) \Gamma$ and $\chi=1+N_{1}+N_{2} \Gamma$ the set $\{n+1, \chi-n\}$ is $\left\{N_{1}+1, N_{2}+1\right\} \Gamma$ and the theorem follows when E / E_{3} is ramified (the factor 2 is due to choice of transported measure).

Next we consider the case where E / E_{3} is unramified Γ in which case $q=q_{0}$ and ρ ranges over a set $\left\{1, \pi_{3}\right\}$ of representatives for $E_{3}^{\times} / N_{E / E_{3}} E^{\times}=R_{3}^{\times} \pi_{3}^{\mathbb{Z}} / R_{3}^{\times} \pi_{3}^{2 \mathbb{Z}}$. The unstableГor κ - θ integral Γ contains a factor $(-1)^{\bar{\rho}}=(-1)^{j}=(-1)^{n-\nu}$. Otherwise it is the same as described in the proof of Lemma J. 2Γ namely $\sum_{0 \leq \nu \leq n} \sum_{0 \leq m^{\prime}=2 m \leq \chi-1}(-q)^{n-\nu} *$. As there Γ we write this as a sum of two terms. The first is

$$
\begin{aligned}
& \sum_{0 \leq \nu \leq n} \sum_{0 \leq m^{\prime} \leq \nu}=\sum_{0 \leq m^{\prime} \leq n} q^{3 m^{\prime} / 2}\left(\sum_{\nu=n} 1+\left(1+q^{-1}\right) \sum_{m^{\prime} \leq \nu<n}(-q)^{n-\nu}\right) \\
& =\sum_{0 \leq m \leq n / 2} q^{3 m}\left(1+\left(1+q^{-1}\right) \sum_{0<\nu \leq n-m^{\prime}}(-q)^{\nu}\right)=\sum_{0 \leq m \leq n / 2} q^{3 m}(-q)^{n-m^{\prime}} \\
& =(-q)^{n} \sum_{0 \leq m \leq n / 2} q^{m}=(-q)^{n}\left(q^{[n / 2]+1}-1\right) /(q-1) .
\end{aligned}
$$

The second is the product of $(-1)^{j}=(-1)^{n-\nu^{\prime}}=(-1)^{n} \Gamma$ as ν^{\prime} is even Γ and the second term in the proof of Lemma J.2 namely it is

$$
\begin{aligned}
\frac{(-q)^{n}}{q-1}\{ & \delta(2 \mid n)\left[\frac{q+1}{q-1}\left(q^{(\chi+1-n) / 2}-1\right)\left(q^{n / 2}-1\right)+q^{(\chi+1-n) / 2}-q^{n / 2+1}\right] \\
& \left.+(1-\delta(2 \mid n))\left[\frac{q+1}{q-1}\left(q^{(\chi-n) / 2}-1\right)\left(q^{(n+1) / 2}-1\right)\right]\right\}
\end{aligned}
$$

Recall that $\chi=1+2 N_{1}+2 N_{2}$ Гand $n=\min \left(2 N_{1}, 2 N_{2}+1\right)$ Гas $e=e\left(E / E_{3}\right)=1$ Гand ord $A=1$. Then n is even if $n=2 N_{1}$ Гand the sum is $q^{n} /(q-1)$ times

$$
\begin{aligned}
q^{N_{1}+1} & -1+\frac{q+1}{q-1}\left(q^{1+N_{2}}-1\right)\left(q^{N_{1}}-1\right)+q^{1+N_{2}}-q^{1+N_{1}} \\
& =\left((q+1) q^{N_{1}}-2\right)\left(q^{N_{2}+1}-1\right) /(q-1)
\end{aligned}
$$

as required. When n is odd Γ then $n=2 N_{2}+1 \Gamma$ and we get the product of $(-q)^{n} /(q-1)$ and

$$
q^{N_{2}+1}-1+\frac{q+1}{q-1}\left(q^{N_{1}}-1\right)\left(q^{N_{2}+1}-1\right)
$$

This is the same expression as for even $n \Gamma$ so that we are done.

M. Comparison in case (IV).

Strongly θ-regular elements of type (IV) lie in the stable θ-orbits of elements $t^{*}=$ $\left(t, \sigma t, \sigma^{3} t, \sigma^{2} t ; e\right)$ in the diagonal F-torus T^{*}. This torus is isomorphic to $E^{\times} \Gamma$ where E is an extension of F of degree 4Γ which is not the compositum of the quadratic extensions of F. To study the orbital integrals of 1_{K} we may and do as usual assume that $e=1 \Gamma$ and omit e from the notations. Recall that E is a quadratic extension $E_{3}(\sqrt{D})=F(\sqrt{D})$ of a quadratic extension $E_{3}=F(\sqrt{A})$ of $F \Gamma$ which can be described as follows.

The element A is either a uniformizer $\boldsymbol{\pi}$ in $R \subset F$ or a unit $\varepsilon \in R^{\times}-R^{\times 2} \Gamma$ taken to be -1 if $-1 \notin R^{\times 2}$. The element $D \in R_{3}-R_{3}^{2}$ can be described as $D=\alpha+\beta \sqrt{A}$ with $\alpha=0, \beta=1$ if $A=\pi ; \alpha=0, \beta=1$ or $\pi \Gamma$ if $-1 \in R^{\times 2}$ and $A \in R^{\times}-R^{\times 2} ;(\alpha, \beta) \in R^{\times 2}$ or $\in\left(\pi R^{\times}\right)^{2}$ if $A=-1 \in R^{\times}-R^{\times 2}$.

The Galois closure \tilde{E} of E / F is E unless $A=\pi$ and $-1 \notin R^{\times 2} \Gamma$ in which case \tilde{E} / E is quadratic and $\operatorname{Gal}(\tilde{E} / F)=D_{4}$. The field embeddings $E \hookrightarrow \tilde{E}$ which fix F are generated by $\sigma, \sigma(\sqrt{D})=\sqrt{\sigma D}, \sigma^{2}(\sqrt{D})=-\sqrt{D}, \sigma \sqrt{A}=-\sqrt{A}$. Writing $t=a+b \sqrt{D} \Gamma$ with $a=a_{1}+a_{2} \sqrt{A}$ and $b=b_{1}+b_{2} \sqrt{A} \Gamma$ we have $\sigma a=a_{1}-a_{2} \sqrt{A}$ and $\sigma b=b_{1}-b_{2} \sqrt{A}$.

1. Lemma. The parameters $\chi=\operatorname{ord}_{3}(a-\sigma a)$ and $n=\operatorname{ord}_{3}(b)$ associated with the strongly θ regular topologically unipotent elements of type (IV) are equal to the corresponding parameters X and N associated with the norm $N t$ of t. Further, $\chi \geq 2 n+\operatorname{ord}_{3} D$.

Proof. The parameter $\chi=\operatorname{ord}_{3}(a-\sigma a)=\operatorname{ord}_{3}\left(a_{2} \sqrt{A}\right)$ is $\operatorname{ord}_{3}\left(a_{2}\right)$ if $A \in R_{3}^{\times} \Gamma$ and $1+$ $\operatorname{ord}_{3}\left(a_{2}\right)=1+2 \operatorname{ord}_{F}\left(a_{2}\right)$ if $A=\pi_{F}=\pi_{3}^{2}\left(\right.$ then $\operatorname{ord}_{3}=2 \operatorname{ord}_{F} \Gamma$ we usually omit the subscript F). The parameter $n=\operatorname{ord}_{3}(b)=\operatorname{ord}_{3}\left(b_{1}+b_{2} \sqrt{A}\right)=\min \left(\operatorname{ord}_{3}\left(b_{1}\right), \operatorname{ord}_{3}\left(b_{2} \sqrt{A}\right)\right)$ is $\min \left(\operatorname{ord}_{F}\left(b_{1}\right), \operatorname{ord}_{F}\left(b_{2}\right)\right)$ if $A \in R^{\times} \Gamma$ and $\min \left(2 \operatorname{ord}_{F}\left(b_{1}\right), 1+2 \operatorname{ord}_{F}\left(b_{2}\right)\right)$ if $A=\boldsymbol{\pi}_{F}$.

The norm $N t^{*}$ of t^{*} is (we put $e=1$ and omit it from the notations) equal to ($x=$ $t \sigma t, t \sigma^{3} t, \sigma t \sigma^{2} t, \sigma^{2} t \sigma^{3} t$). We claim that the element $N t^{*}$ is of type (IV) Гassociated with an extension E^{\prime} of degree 4 of F. This E^{\prime} is Galois and it coincides with $E \Gamma$ unless $A=\pi$ and $-1 \notin R^{\times 2}$. In this last case $\Gamma E^{\prime}=E_{3}^{\prime}\left(\sqrt{D^{\prime}}\right)=F\left(\sqrt{D^{\prime}}\right)$ and $E_{3}^{\prime}=F\left(\sqrt{A^{\prime}}\right) \Gamma$ where $A^{\prime}=-4 \pi$ and $D^{\prime}=\sqrt{A^{\prime}} \Gamma$ and E^{\prime} / F is not Galois.

To verify this Γ put $\zeta=\sqrt{\sigma D} / \sqrt{D} \Gamma$ and note that
$x=t \sigma t=(a+b \sqrt{D})(\sigma a+\sigma b \sqrt{\sigma D})=(a \sigma a+\zeta b \sigma b D)+(b \sigma a+\zeta a \sigma b) \sqrt{D}=A_{*}+B_{*}(1+\zeta) \sqrt{D}$
defines elements A_{*} and B_{*}. These A_{*} and B_{*} lie in E_{3}^{\prime} when $A=\pi$ and $-1 \notin R^{\times 2} \Gamma$ since then $\zeta=\sqrt{-1}, 2 \zeta D=\sqrt{-4 \pi},(1-\zeta) /(1+\zeta)=-\zeta=-\sqrt{-1} \Gamma$ and

$$
B_{*}=(b \sigma a+\zeta a \sigma b) /(1+\zeta)=\left(a_{1} b_{1}-a_{2} b_{2} A\right)+\left(a_{1} b_{2}-a_{2} b_{1}\right) \frac{1-\zeta}{1+\zeta} \sqrt{A}
$$

Further $x \in E^{\prime} \Gamma$ since $(1+\zeta)^{2} D=2 \zeta D=\sqrt{-4 \pi}$.
In all other cases we define E_{3}^{\prime} to be E_{3} and E^{\prime} to be E. In fact Γ if $A=\pi$ and $-1 \in R^{\times 2} \Gamma$ or $A \in R^{\times}$and $-1 \in R^{\times 2} \Gamma$ we have that $\zeta=\sqrt{-1} \in R^{\times}$.

In the remaining case $A=-1 \in R^{\times}-R^{\times 2} \Gamma$ and D (or D / π) lies in $R_{3}^{\times}-R_{3}^{\times 2} \Gamma$ hence so does σD (or $\sigma D / \pi) \Gamma$ and so $\sigma D / D$ lies in $R_{3}^{\times 2} \Gamma$ and ζ lies in R_{3}^{\times}. Then $E_{3}=F(\zeta D)$ and $E=E_{3}((1+\zeta) \sqrt{D})$.

When computing the parameters X, N associated with $A_{*}, B_{*} \Gamma$ the index 3 refers to E_{3}^{\prime}.
Let us now show that $n=N$ Гnamely that

$$
|b|_{3}=\left|b_{1}+b_{2} \sqrt{A}\right|_{3} \text { is }\left|\left(a_{1} b_{1}-a_{2} b_{2} A\right)+\left(a_{1} b_{2}-a_{2} b_{1}\right) \frac{1-\zeta}{1+\zeta} \sqrt{A}\right|_{3}=\left|B_{*}\right|_{3}
$$

Since $t=a+b \sqrt{D}$ is topologically unipotent Γ we have that $a=a_{1}+a_{2} \sqrt{A}$ is topologically unipotent Γ and $|b|<1$ if $|D|=1$. Hence a_{1} is topologically unipotent Γ and $\left|a_{2}\right|<1$ if $|A|=1$. Suppose that $|A|=1$. If $\left|b_{1}\right| \leq\left|b_{2}\right|$ then $|b|=\left|b_{2}\right|$ and $\left|B_{*}\right|=\left|b_{2}\right|$ (of course Γ $|1-\zeta|=|1+\zeta|) \Gamma$ and if $\left|b_{1}\right|>\left|b_{2}\right|$ then $|b|=\left|b_{1}\right|=\left|B_{*}\right|$. Suppose that $|A|=|\pi|$. If $\left|b_{1}\right| \geq\left|b_{2}\right|$ then $|b|=\left|b_{1}\right|=\left|B_{*}\right|$ Гand if $\left|b_{1}\right|<\left|b_{2}\right|$ then $|b|=\left|b_{2} \sqrt{A}\right|=\left|B_{*}\right|$.

FinallyГlet us show that $\chi=X$ Гnamely that $|a-\sigma a|_{3}=\left|a_{2} \sqrt{A}\right|_{3}$ is equal to $\left|A_{*}-\sigma A_{*}\right|_{3}=$ $|b \sigma b \zeta D|_{3}$. For that note that the element $t=a+b \sqrt{D}$ of type (IV) is represented by a matrix $\binom{\mathbf{a} \mathbf{b D}}{\mathbf{b} \mathbf{a}}$ in $G L\left(2, E_{3}\right)^{\prime} \Gamma$ whose determinant lies in F^{\times}. Thus $t \sigma^{2} t$ lies in F^{\times}. Since

$$
t \sigma^{2} t=a^{2}-b^{2} D=a_{1}^{2}+a_{2}^{2} A+2 a_{1} a_{2} \sqrt{A}-\left(b_{1}^{2}+b_{2}^{2} A+2 b_{1} b_{2} \sqrt{A}\right) D
$$

and $D=\Pi(\alpha+\beta \sqrt{A})$ with $\Pi=1$ or $\pi \Gamma$ it follows that the coefficient of \sqrt{A} is zero Γ hence $\left|a_{2}\right|=\left|2 a_{1} a_{2}\right|$ equals $|\Pi| \cdot\left|\left(b_{1}^{2}+b_{2}^{2} A\right) \beta+2 b_{1} b_{2} \alpha\right|$.

There are three cases to be considered. If $A=\pi$ then $\alpha=0$ and $\beta=1, \Pi=1 \Gamma$ so $\left|b_{1}^{2}+b_{2}^{2} \pi\right|=\left|b_{1}^{2}-b_{2}^{2} \pi\right|=|b \sigma b|$ implies that $\left|a_{2} \sqrt{A}\right|=|b \sigma b \zeta D|$. If $A \in R^{\times}$and $-1 \in R^{\times 2} \Gamma$ then $D=\Pi \sqrt{A} \Gamma$ and $\left|\Pi\left(b_{1}^{2}+b_{2}^{2} A\right)\right|=\left|\Pi\left(b_{1}^{2}-b_{2}^{2} A\right)\right|=|\zeta D b \sigma b|$. If $A=-1 \in R^{\times}-R^{\times 2} \Gamma$ then $D=\Pi(\alpha+\beta \sqrt{-1})$ with $\alpha, \beta \in R^{\times 2} \Gamma$ and we claim that $\left|\left(b_{1}^{2}-b_{2}^{2}\right) \beta+2 b_{1} b_{2} \alpha\right|$ is equal to $|b \sigma b|=\left|b_{1}^{2}+b_{2}^{2}\right|=\max \left(\left|b_{1}^{2}\right|,\left|b_{2}^{2}\right|\right)$. This is obvious when $\left|b_{1}\right| \neq\left|b_{2}\right|$ or when $\left|b_{1}\right|=\left|b_{2}\right|$ and $\left|b_{1}^{2}-b_{2}^{2}\right|<\left|b_{1}\right|^{2}$.

Suppose that $\left|b_{1}\right|=\left|b_{2}\right|=1 \Gamma$ put $x=b_{1} / b_{2}$ and $\gamma=\alpha / \beta$. To show: $\left|x^{2}+2 \gamma x-1\right|$ is 1 . This quantity can be expressed as $\left|(x+\gamma)^{2}-\gamma^{2}-1\right|$ Гor $\left|(\beta x+\alpha)^{2}-\alpha^{2}-\beta^{2}\right|$ Гor $\left|D_{1} \sigma D_{1}-(\alpha+\beta x)^{2}\right| \Gamma$ where $D_{1}=\alpha+\beta \sqrt{-1}$. Now $D_{1} \in R_{3}^{\times}-R_{3}^{\times 2} \Gamma$ and $N_{E_{3} / F} D_{1} \notin R^{\times 2}$ (otherwise $N_{E_{3} / F} R_{3}^{\times}=$ $R^{\times 2}$ एbut E_{3} / F is unramified so $N_{E_{3} / F} R_{3}^{\times}=R^{\times}$). Hence $\left|D_{1} \sigma D_{1}-y^{2}\right|=1$ for any $y \in R \Gamma$ and we are done.

The final claim of the lemma follows from the fact that

$$
a^{2}-b^{2} D=t \sigma^{2} t=\sigma\left(t \sigma^{2} t\right)=\sigma a^{2}-\sigma b^{2} \sigma D .
$$

This implies that $a^{2}-\sigma a^{2}=\sigma b^{2} \sigma D-b^{2} D=D\left(\zeta^{2} \sigma b^{2}-b^{2}\right)$. Since $t=a+b \sqrt{D}$ is topologically unipotent $\Gamma|a+\sigma a|=1$. Hence $|a-\sigma a| \leq|D||b|^{2} \Gamma$ namely $\chi \geq 2 n+\operatorname{ord}_{3} D$.

We proceed to compute the orbital integral of the function 1_{K} at a regular absolutely unipotent element u of $\operatorname{GSp}(2, F)$. [This element is the norm of an absolutely unipotent strongly θ-regular element t of $G L(4, F) \times F^{\times} \Gamma$ the computation of whose stable θ-orbital integral - which is the analogous case of $u_{\rho} \Gamma \rho \in E_{3}^{\times} / N_{E / E_{3}} E^{\times} \Gamma$ in $S p(2, F)$ - will be reduced to that of u later below Γ but we also deal with it parenthetically now].

Note that the stable orbit of u reduces to a single orbit. The element u can be presented as $\left(\begin{array}{c}\mathbf{a} \mathbf{b D} \\ \mathbf{b}\end{array} \mathbf{a} \mathbf{a} . h^{-1}\left(t, \sigma t, \sigma^{3} t, \sigma^{2} t\right) h, t \in F(\sqrt{D})\right.$ with $t \sigma^{2} t=\sigma t \sigma^{3} t, t=a+b \sqrt{D} \Gamma$ and $\mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} / A \\ a_{2} & a_{1}\end{array}\right)$ if $a=a_{1}+a_{2} / \sqrt{A}$ lies in $E_{3}=F(\sqrt{A})$ (similarly for $\left.b=b_{1}+b_{2} / \sqrt{A} ; a_{i}, b_{i} \in F\right)$. If $D=\alpha+\beta / \sqrt{A} \Gamma$ we put $\mathbf{D}=\left(\begin{array}{cc}\alpha & \beta / A \\ \beta & \alpha\end{array}\right)$. $\left[u_{\rho}=\left(\begin{array}{cc}\mathbf{a} & \mathbf{b D} \boldsymbol{\rho} \\ \mathbf{b} \boldsymbol{\rho}^{-1} & \mathbf{a}\end{array}\right)\right.$ with $\left.t \sigma^{2} t=1\right]$. As in the study of the case (II) Γ the centralizer T^{\prime} of u in $G S p(2, F)$ lies in $C_{A}=\left\{\left(\begin{array}{ll}\mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d}\end{array}\right) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L\left(2, E_{3}\right)^{\prime}\right\} \Gamma$ where the prime indicates determinant in F^{\times}. [For $u_{\rho} \Gamma$ replace T^{\prime} by $T_{\rho}^{1} \Gamma C_{A}$ by $C_{A}^{1} \Gamma G L^{\prime}$ by $S L \Gamma K$ by K^{1} below Γ and R_{E}^{\prime} by R_{E}^{1}].
2. Lemma. The integral $\Phi_{1_{K}}^{G S p(2, F)}(u)$ is equal to $\sum_{m=0}^{\infty}\left[K_{0}: K_{m}\right] \int_{T \backslash C_{A}} 1_{K_{m}}\left(h^{-1} u h\right) d h$. Here $K_{m}=G L\left(2, R_{3}(m)\right)^{\prime}$, where $R_{3}(m)=R+\pi^{m} \sqrt{A} R=R+\pi^{m} R_{3}$.

Proof. The decomposition $G=G S p(2, F)=\underset{m \geq 0}{\bigcup} C_{A} u_{m} K, K=G S p(2, R)$ Гimplies that

$$
\int_{T \backslash G} 1_{K}\left(g^{-1} u g\right) d g=\sum_{m=0}^{\infty}|K|_{G} \int_{T \backslash C_{A} / C_{A} \cap u_{m} K u_{m}^{-1}} 1_{K}\left(u_{m}^{-1} h^{-1} u h u_{m}\right) d h .
$$

Put $K_{m}^{A}=C_{A} \cap u_{m} K u_{m}^{-1}$. The integrand on the right is non zero precisely when $h^{-1} u h \in$ $u_{m} K u_{m}^{-1} \cap C_{A}$ Гso we obtain

$$
=\sum_{m \geq 0}|K|_{G}\left|K_{m}^{A}\right|_{C_{A}}^{-1} \int_{T \backslash C_{A}} 1_{K_{m}^{A}}\left(h^{-1} u h\right) d h=\sum_{m \geq 0}\left[K_{0}: K_{m}\right] \int_{T \backslash C_{A}} 1_{K_{m}}\left(h^{-1} u h\right) d h .
$$

The decomposition $C_{A}=\cup_{r} T^{\prime} r K^{\prime}$ can be used to rewrite our integral as

$$
=\sum_{m \geq 0} \sum_{r}\left[T_{0}^{\prime}: T^{\prime} \cap r K^{\prime} r^{-1}\right]\left[K_{0}: K_{m}\right] \int_{K_{0}} 1_{K_{m}}\left(k^{-1} r^{-1} u r k\right) d k,
$$

where $T_{0}^{\prime}=T^{\prime} \cap K^{\prime}=T^{\prime}(R) \simeq R_{E}^{\prime \times}$. Here $R_{E}^{\prime}=\left\{x \in R_{E}^{\times} ; N_{E / E_{3}} x \in F^{\times}\right\}$. As usual Γ $q=q_{3}=q_{E_{3}}$ denotes the residual cardinality of E_{3}. Put $e=e\left(E / E_{3}\right)$ for the ramification index of E / E_{3}. Denote by π_{3} a uniformizer of R_{3}. It is taken to be $D=\pi \varepsilon_{3} \Gamma \varepsilon_{3} \in R_{3}^{\times}-R_{3}^{\times 2} \Gamma$ if E_{3} / F is unramified and further E / E_{3} is ramified; then $\boldsymbol{\pi}_{E}=\sqrt{-D}$ has norm $N_{E / E_{3}} \boldsymbol{\pi}_{E}=D=\boldsymbol{\pi} \varepsilon_{3}$.
3. Lemma. When E / E_{3} is ramified, we have $G L\left(2, E_{3}\right)^{\prime}=\cup_{j \geq 0} T^{\prime} r_{j} K^{\prime}, K^{\prime}=G L\left(2, R_{3}\right)^{\prime}$, where $r_{j} \in T\left(\begin{array}{cc}1 & 0 \\ 0 & \pi_{3}^{j}\end{array}\right)$ has determinant 1 , and T is the centralizer of T^{\prime} in $G L\left(2, E_{3}\right)$; here $\boldsymbol{\pi}_{3}$ is $D \in \operatorname{det} T$ (if $\pi_{E}=\sqrt{-D}$, then $N_{E / E_{3}} \boldsymbol{\pi}_{E}=D$). If E / E_{3} is unramified then (E_{3} / F is
unramified and) $G L\left(2, E_{3}\right)^{\prime}=\cup T^{\prime} r_{j, \varepsilon} K^{\prime}$, union over $j \geq 0$ and over $\varepsilon \in R_{3}^{\times} / R_{3}^{\times 2}$ if $j \geq 1$, where $r_{j, \varepsilon}=t_{\varepsilon}\left(\begin{array}{cc}1 & 0 \\ 0 & \varepsilon \pi_{3}^{j}\end{array}\right)$, $\operatorname{det}\left(t_{\varepsilon}\right)=\varepsilon^{-1}$. Further, the index $\left[T_{0}^{\prime}: r_{j} K^{\prime} r_{j}^{-1} \cap T^{\prime}\right]$ is q^{j} if $j=0$ or E / E_{3} is ramified, and it is $\frac{q+1}{2 q} q^{j}$ if E / E_{3} is unramified and $j \geq 1$.
[Remark. The case of $S L\left(2, E_{3}\right)$ is dealt with in Lemma I.I.3. If E / E_{3} is ramified and E_{3} / F is unramified Γ then $\boldsymbol{\pi}_{3}=D=\boldsymbol{\pi} \varepsilon_{3} \in \operatorname{det} T_{\rho}$. If E / E_{3} is unramified then $S L\left(2, E_{3}\right)=\cup T_{\rho}^{1} r_{j \varepsilon} K^{1} \Gamma$ $j \geq 0 \Gamma 2$ divides $j-\bar{\rho} \Gamma$ where $\bar{\rho}=\operatorname{ord}_{3} \rho \Gamma$ and $\left.r_{j \varepsilon}=t_{\varepsilon} \operatorname{diag}\left(\pi_{3}^{-(j-\bar{\rho}) / 2}, \varepsilon \boldsymbol{\pi}_{3}^{(j-\bar{\rho}) / 2}\right)\right]$.

Proof. We use the disjoint decomposition $G L\left(2, E_{3}\right)=\cup_{j \geq 0} T r_{j}^{\prime} K, r_{j}^{\prime}=\operatorname{diag}\left(1, \pi_{3}^{j}\right)$. Here $T=\left\{\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right)\right\} \Gamma a, b \in E_{3}$. When $E=E_{3}(\sqrt{D}) / E_{3}$ is ramified Γ we can take $\pi_{E}=\sqrt{-D} \Gamma$ then $N_{E / E_{3}}(\sqrt{-D})=D=\pi_{3}$ is a uniformizer of E_{3}. As $\operatorname{det} T=N_{E / E_{3}} E^{\times}$contains $\pi_{3}^{\mathbb{Z}} \operatorname{\Gamma if} h=\operatorname{trk}$ lies in $G L\left(2, E_{3}\right)^{\prime}$ then we may assume that $\operatorname{det} h=\|h\|$ lies in $R^{\times} \Gamma$ and there is some $t_{0} \in T$ with $\left\|t_{0} r\right\|=1$. Then $\|t\| \in R_{3}^{\times} \cap N_{E / E_{3}} E^{\times}=R_{3}^{\times 2} \Gamma$ so $\|t\|=\varepsilon^{2}$ for some $\varepsilon \in R^{\times} \Gamma$ and $h=\varepsilon^{-1} t \cdot t_{0} r \cdot \varepsilon k,\left\|\varepsilon^{-1} t\right\|=1$ and $\|\varepsilon k\| \in R^{\times}$.

When E / E_{3} is unramified then so is $E_{3} / F \Gamma$ and $\pi_{3}=\pi\left(=\pi_{F}\right)$. Since $N_{E / E_{3}} E^{\times}=\pi^{2 \mathbb{Z}} R_{3}^{\times} \Gamma$ if $h=t r k \in G L\left(2, E_{3}\right)^{\prime}$ then by changing t we may assume that $\|h\|=\|r\|=\pi^{j}$. Now k can be changed by $r^{-1} t r \in K$ Sso $\|k\| \in R_{3}^{\times}$can be changed by $\left\|r^{-1} t r\right\|=N_{E / E_{3}}\left(R_{3}+\pi_{3}^{j} \sqrt{D} R_{3}\right)^{\times} \Gamma$ which is R_{3}^{\times}if $j=0 \Gamma$ and $R_{3}^{\times 2}$ if $j \geq 1$.

The intersection $T^{\prime} \cap r_{j} K^{\prime} r_{j}^{-1}=\left\{t \in T^{\prime} ; r^{-1} t r \in K^{\prime}\right\}$ consists of the $a+b \sqrt{D} \in E^{\times}$ with $\left(\begin{array}{cc}1 & 0 \\ 0 & \varepsilon^{-1} \boldsymbol{\pi}_{3}^{-j}\end{array}\right)\left(\begin{array}{cc}a & b D \\ b & a\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & \varepsilon \boldsymbol{\pi}_{3}^{j}\end{array}\right)=\left(\begin{array}{cc}a & b D \varepsilon \boldsymbol{\pi}_{3}^{j} \\ \varepsilon^{-1} b \boldsymbol{\pi}_{3}^{-j} & a\end{array}\right)$ in $K \Gamma$ thus $b \in \boldsymbol{\pi}_{3}^{j} R_{3} \Gamma$ namely it is $R_{E}(j)^{\times} \cap$ $R_{E}^{\prime}, R_{E}(j)=R_{3}+\pi_{3}^{j} R_{E}=R_{3}+\pi_{3}^{j} \sqrt{D} R_{3}$. Note that $R_{E}^{\prime}=\left\{x \in R_{E}^{\times} ; N_{E / E_{3}} x \in R^{\times}\right\}$contains $\operatorname{ker} N_{E / E_{3}}$. Put $R_{E}(j)^{\prime}=R_{E}(j)^{\times} \cap R_{E}^{\prime}$. When $e=2$ or $j \geq 1, N R_{E}^{\times}=N R_{E}(j)^{\times}=R_{3}^{\times 2} \Gamma$ where $N=N_{E / E_{3}}$; when $e=1$ and $j=0 \Gamma$ we have $N R_{E}^{\times}=R_{3}^{\times}$. The index of the lemma is the kernel in the following exact sequence:

$$
1 \rightarrow R_{E}^{\prime} / R_{E}(j)^{\prime} \rightarrow R_{E}^{\times} / R_{E}(j)^{\times} \rightarrow R_{E}^{\times} / R_{E}^{\prime} R_{E}(j)^{\times} \rightarrow 1
$$

The term on the right is isomorphic via the norm N to $N R_{E}^{\times} / N R_{E}^{\times} \cap R^{\times} \cdot N R_{E}(j)^{\times} \Gamma$ which is trivial if $e=2$ or $j=0 \Gamma$ since then $N R_{E}(j)^{\times}=N R_{E}^{\times} \Gamma$ while if $e=1$ and $j \geq 1 \Gamma$ it is the group $R_{3}^{\times} / R^{\times} R_{3}^{\times 2} \simeq \mathbb{Z} / 2$. Consequently it remains to compute

$$
\left[R_{E}^{\times}: R_{E}(j)^{\times}\right]=\left[R_{E}^{\times}: 1+\pi_{3}^{j} R_{E}\right] /\left[R_{E}(j)^{\times}: 1+\pi_{3}^{j} R_{E}\right]
$$

The denominator here is $\left[R_{3}^{\times}: R_{3}^{\times} \cap\left(1+\pi_{3}^{j} R_{E}\right)\right]=\left[R_{3}^{\times}: 1+\pi_{3}^{j} R_{3}\right]=(q-1) q^{j-1} \Gamma$ when $j \geq 1$. To compute the numerator Tnote that when $e=2, \boldsymbol{\pi}_{3}=\boldsymbol{\pi}_{E}^{2}$ and $q_{E}=q_{3}=q$ Гso the numerator is $(q-1) q^{2 j-1}$; when $e=1, \boldsymbol{\pi}_{E}=\pi_{3}$ and $q_{E}=q_{3}^{2}=q^{2} \Gamma$ so the numerator is $\left(q^{2}-1\right) q^{2(j-1)}$. The lemma follows.

Our orbital integral then takes the form

$$
\int_{T \backslash G} 1_{K}\left(g^{-1} u g\right) d g=\sum_{m \geq 0} \sum_{j, \varepsilon}\left[R_{E}^{\prime}: R_{E}(j)^{\prime}\right]\left[K_{0}: K_{m}\right] \int_{K_{0}} 1_{K_{m}}\left(k^{-1} r_{j, \varepsilon}^{-1} u r_{j, \varepsilon} k\right) d k
$$

YUVAL Z. FLICKER

If the integrand on the right is non zero then $u \in T^{\prime} \cap r_{j \varepsilon} K r_{j \varepsilon}^{-1}=R_{E}(j)^{\prime}$. Further $\Gamma\left[K_{0}\right.$: $\left.K_{m}\right] \int_{K_{0}} d k$ can be written as $\int_{K_{0} / K_{m}} d k \Gamma$ and this last integral is in fact a sum. To describe this sumए put $S_{m}=R_{3} / \pi^{m} R_{3} \supset R_{m}=R / \pi^{m} R=R_{3}(m) / \pi^{m} R_{3} \Gamma$ where $R_{3}(m)=R+$ $\boldsymbol{\pi}^{m} R_{3}$. Recall that $K_{m}=G L\left(2, R_{3}(m)\right)^{\prime}$. Put $K\left(\boldsymbol{\pi}^{m}\right)=\left\{k \in G L\left(2, R_{3}\right)^{\prime} ; k \equiv I\left(\bmod \boldsymbol{\pi}^{m}\right)\right\}$. Then $K_{m} / K\left(\boldsymbol{\pi}^{m}\right)=G L\left(2, R_{m}\right)(m \geq 1)$ and $K_{0} / K\left(\boldsymbol{\pi}^{m}\right)=G L\left(2, S_{m}\right)^{\prime} \Gamma$ where the last prime indicates determinant in R_{m}. In these notations Γ we have
4. Lemma. The integral $\int_{K_{0} / K_{m}} 1_{K_{m}}\left(k^{-1} r_{j, \varepsilon}^{-1} u r_{j, \varepsilon} k\right) d k$ is equal to the cardinality of the set

$$
L_{m}^{\prime}=\left\{y \in G L\left(2, S_{m}\right)^{\prime} / G L\left(2, R_{m}\right) ; y^{-1} r_{j, \varepsilon}^{-1} u r_{j, \varepsilon} y \in G L\left(2, R_{m}\right)\right\}
$$

[Remark. In the case of $S p$ Гreplace u by u_{ρ} Гand note that $G L\left(2, S_{m}\right)^{\prime} / G L\left(2, R_{m}\right)$ is $S L\left(2, S_{m}\right) / S L\left(2, R_{m}\right)$ Гso the same answer is obtained].
5. Lemma. $\# L_{m}=e_{3} \cdot \# L_{m}^{\prime}$ where $e_{3}=e\left(E_{3} / F\right)$ is the ramification index of E_{3} / F, and $L_{m}=\left\{x \in S L\left(2, S_{m}\right) ; \sigma x=x^{-1}, x \bar{u}_{j, \varepsilon} x^{-1}=\sigma\left(\bar{u}_{j, \varepsilon}\right)\right\}$, where $\bar{u}_{j, \varepsilon}$ is the image of $r_{j, \varepsilon}^{-1} u r_{j, \varepsilon}$ in $G L\left(2, S_{m}\right)^{\prime}$.
Proof. The map $y \mapsto x=\sigma(y) y^{-1}$ is an injection of L_{m}^{\prime} in L_{m}. Indeed Γ if $\sigma\left(y_{1}\right) y_{1}^{-1}=\sigma\left(y_{2}\right) y_{2}^{-1}$ then $\sigma\left(y_{1}^{-1} y_{2}\right)=y_{1}^{-1} y_{2}$ lies in $G L\left(2, R_{m}\right)$. The map is surjective if $e_{3}=1$. Indeed Γ in this case the map $G L\left(2, R_{3}\right)^{\prime} \rightarrow\left\{x \in S L\left(2, R_{3}\right) ; \sigma x=x^{-1}\right\} \Gamma$ by $y \mapsto \sigma(y) y^{-1} \Gamma$ is onto by Hensel's Lemma. When $e_{3}=2 \Gamma$ we claim that L_{m} is the disjoint union of the sets $\operatorname{Im}\left(L_{m}^{\prime}\right)$ and $-\operatorname{Im}\left(L_{m}^{\prime}\right)$. Indeed Γ when E_{3} / F is ramified Γ we have $\sigma x \equiv x\left(\bmod \boldsymbol{\pi}_{3}\right)$. If $\sigma x=x^{-1} \Gamma$ then $x^{2} \equiv I\left(\bmod \boldsymbol{\pi}_{3}\right)$. Since $\|x\|=1 \Gamma$ this implies that $x \equiv \pm I\left(\bmod \boldsymbol{\pi}_{3}\right)$. Clearly $\Gamma x \in L_{m}$ if and only if $-x \in L_{m}$. Now $x \equiv I\left(\bmod \boldsymbol{\pi}_{3}\right)$ if and only if $x=\sigma(y) y^{-1} \Gamma$ for some y in $G L\left(2, S_{m}\right)^{\prime} \Gamma$ again by Hensel's Lemma.

Our aim is then to determine when is L_{m} non-empty Γ and to compute its cardinality. Recall that $b=B \pi_{3}^{N} \Gamma$ and $r_{j \varepsilon}=\operatorname{diag}\left(1, \varepsilon \boldsymbol{\pi}_{3}^{j}\right) \Gamma$ so we put $b^{\prime}=B^{\prime} \boldsymbol{\pi}_{3}^{\nu}, \nu=N-j$ and $B^{\prime}=B / \varepsilon \Gamma$ and $D^{\prime}=D \varepsilon^{2} \pi_{3}^{2 j}$. [In the $S p$ case: Recall that $b=B \pi_{3}^{N} \Gamma \bar{\rho}=u \pi_{3}^{\bar{\rho}} \Gamma$ and $r_{j \varepsilon}=\operatorname{diag}\left(1, \varepsilon\left(\varepsilon_{3} \pi_{3}\right)^{j-\bar{\rho}}\right) \Gamma$ where $\varepsilon_{3}=1$ unless E / E_{3} is ramified $\Gamma E_{3} / F$ is unramified Γ and then $\boldsymbol{\pi}_{3}$ is $\boldsymbol{\pi}$. So we put $b^{\prime}=$ $B^{\prime} \boldsymbol{\pi}_{3}^{\nu} \Gamma \nu=N-j$ Гand $B^{\prime}=B / \varepsilon \varepsilon_{3}^{j} u\left(\varepsilon_{3}=1=\varepsilon\right.$ if E / E_{3} is ramified) Γ and $\left.D^{\prime}=D \varepsilon^{2} u^{2}\left(\varepsilon_{3} \pi_{3}\right)^{2 j}\right]$. Note that $\bar{b}^{\prime} \neq 0$ in $S_{m}=R_{3} / \pi^{m} R_{3}=R_{3} / \pi_{3}^{e_{3} m} R_{3}$ precisely when $\nu<m^{\prime}=m e_{3}$.
6. Lemma. The set L_{m}^{\prime} is non empty precisely when $0 \leq \nu \leq N, 0 \leq m^{\prime}=e_{3} m \leq X=$ $\operatorname{ord}_{3}(a-\sigma a)$. In this case, if $m^{\prime}>\nu$ then we have that $\nu+m^{\prime} \leq X$ as well as: ν is even when E_{3} / F is ramified; $\varepsilon \in B R_{3}^{\times 2}$ and $j \geq 1$ (namely $\nu<N$) when E / F is unramified $\left[\varepsilon \in u B \varepsilon_{3}^{j} R_{3}^{\times 2}\right.$ and $\nu<N$ when E / F is unramified, while if E_{3} / F is unramified and E / E_{3} is ramified, then $\left.u \in B \varepsilon_{3}^{j} R_{3}^{\times 2}\right]$.

If L_{m}^{\prime} is non empty, its cardinality is as follows. $\# L_{0}^{\prime}=1$; if $1 \leq m^{\prime} \leq \nu$ then L_{m}^{\prime} has cardinality $q^{3 m^{\prime} / 2}$ if $e_{3}=2$, and $q^{3 m^{\prime} / 2}\left(1+q^{-1}\right)$ if $e_{3}=1$; if $\nu<m^{\prime} \leq X-\nu$ then $\# L_{m}^{\prime}=\left(2 / e_{3}\right) q_{0}^{m} q^{\nu}$ if E / F is ramified or $\nu<N$.
 Taking traces we conclude that $\bar{a}=\sigma \bar{a}$ lies in $R_{m} \Gamma$ and since π is $\pi_{3}^{e_{3}} \Gamma$ we have $0 \leq m^{\prime} \leq X$.

Clearly $\# L_{0}^{\prime}=1 \Gamma$ while when $1 \leq m^{\prime} \leq \nu$ we have $\bar{b}^{\prime}=0$ Гand $L_{m}^{\prime}=G L\left(2, S_{m}\right)^{\prime} / G L\left(2, R_{m}\right)=$ $S L\left(2, S_{m}\right) / S L\left(2, R_{m}\right)$. Recall that $\# S L\left(2, R_{m}\right)=\left(q_{0}^{2}-1\right) q_{0}^{3 m-2}=\left(q_{0}^{2}-1\right) q_{0}^{3\left(m^{\prime} / e_{3}\right)-2} \Gamma$ as $R_{m}=R / \pi^{m} R, m^{\prime}=m e_{3}$. Also $S_{m}=R_{3} / \pi_{3}^{m^{\prime}} R_{3}$ Thence $\# S L\left(2, S_{m}\right)=\left(q^{2}-1\right) q^{3 m^{\prime}-2}$. When $e_{3}=1, q=q_{0}^{2} \Gamma$ and $\# L_{m}^{\prime}=(q+1) q^{3 m^{\prime} / 2-1}$. When $e_{3}=2, q=q_{0} \Gamma$ and $\# L_{m}^{\prime}=q^{3 m^{\prime} / 2}$. Consider then from now on the case $m^{\prime}>\nu$ Гnamely $\bar{b} \neq 0$ in S_{m}.

Suppose that x lies in L_{m}. From $\|x\|=1$ and $\sigma x=x^{-1}$ we deduce that

$$
\left(\begin{array}{cc}
\sigma x_{1} & \sigma x_{2} \\
\sigma x_{3} & \sigma x_{4}
\end{array}\right)=\left(\begin{array}{cc}
x_{4} & -x_{2} \\
-x_{3} & x_{1}
\end{array}\right), \quad \text { thus } x=\left(\begin{array}{cc}
x_{1} & r_{2} \sqrt{A} \\
r_{3} \sqrt{A} & \sigma x_{1}
\end{array}\right)
$$

with $x_{1} \in S_{m}$ and $r_{2}, r_{3} \in R_{m}$. The relation $x\left(\bar{u}_{j \varepsilon}-\bar{a}\right)=\sigma\left(\bar{u}_{j \varepsilon}-\bar{a}\right) x$ implies

$$
\begin{aligned}
& \left(\begin{array}{cc}
\bar{b}^{\prime} r_{2} \sqrt{A} & x_{1} \bar{b}^{\prime} \bar{D}^{\prime} \\
\bar{b} \sigma\left(x_{1}\right) & \bar{b}^{\prime} \bar{D}^{\prime} r_{3} \sqrt{A}
\end{array}\right)=\left(\begin{array}{cc}
x_{1} & r_{2} \sqrt{A} \\
r_{3} \sqrt{A} & \sigma\left(x_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
0 & \bar{b}^{\prime} \bar{D}^{\prime} \\
\bar{b}^{\prime} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma \bar{b}^{\prime} \cdot \sigma \bar{D}^{\prime} \\
\sigma \bar{b}^{\prime} & 0
\end{array}\right)\left(\begin{array}{cc}
x_{1} & r_{2} \sqrt{A} \\
r_{3} \sqrt{A} & \sigma\left(x_{1}\right)
\end{array}\right)=\left(\begin{array}{cc}
\sigma\left(\bar{b}^{\prime}\right) \sigma\left(\bar{D}^{\prime}\right) r_{3} \sqrt{A} & \sigma\left(x_{1}\right) \sigma\left(\bar{b}^{\prime}\right) \sigma\left(\bar{D}^{\prime}\right) \\
x_{1} \sigma\left(\bar{b}^{\prime}\right) & \sigma\left(\bar{b}^{\prime}\right) r_{2} \sqrt{A}
\end{array}\right) .
\end{aligned}
$$

This relation consists of four relations Γ which we denote by $(u, v)=$ (row Γ column), $1 \leq u, v \leq 2$.
We claim that there is $\eta^{\prime}=\sigma(\eta) / \eta$ With $\eta \in S_{m}^{\times}$Гand even $\eta \in S_{m}^{\times 2}$ unless E / F is unramified and $j=0 \Gamma$ such that x lies in $\left(\begin{array}{cc}1 & 0 \\ 0 & \eta^{\prime}\end{array}\right) Z_{G L\left(2, S_{m}\right)}\left(\bar{u}_{j \varepsilon}\right) \Gamma$ namely $\sigma \bar{u}_{j \varepsilon}=\left(\begin{array}{cc}1 & 0 \\ 0 & \eta^{\prime}\end{array}\right) \bar{u}_{j \varepsilon}\left(\begin{array}{cc}1 & 0 \\ 0 & \eta^{\prime}\end{array}\right)^{-1} \Gamma$ or $\left(\begin{array}{ll}1 & 0 \\ 0 & \eta\end{array}\right)^{-1} \bar{u}_{j \varepsilon}\left(\begin{array}{ll}1 & 0 \\ 0 & \eta\end{array}\right) \in G L\left(2, R_{m}\right)$. For this purpose Γ note that the relation $(2,1)$ implies that $\sigma x_{1} \equiv x_{1} \sigma\left(\bar{b}^{\prime}\right) / \bar{b}^{\prime}\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-\nu}\right)$ Twhile (2,2) implies that $r_{2} \sqrt{A} \equiv r_{3} \sqrt{A} \cdot \bar{D}^{\prime} \bar{b}^{\prime} / \sigma\left(\bar{b}^{\prime}\right)\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-\nu}\right)$. Put $\eta^{\prime}=\sigma\left(\bar{b}^{\prime}\right) / \bar{b}^{\prime} \in S_{m}^{\times}$. In other words Γ for some f, g, g^{\prime} in R_{3} we have

$$
\begin{aligned}
x & =\left(\begin{array}{cc}
x_{1} & r_{3} \sqrt{A \bar{D}^{\prime} \bar{b}^{\prime} / \sigma\left(\bar{b}^{\prime}\right)+\pi_{3}^{m^{\prime}-\nu} f} \\
r_{3} \sqrt{A} & x_{1} \sigma\left(\bar{b}^{\prime}\right) / \bar{b}^{\prime}+\boldsymbol{\pi}_{3}^{m^{\prime}-\nu} g^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & \eta^{\prime}
\end{array}\right)\left(\begin{array}{cc}
x_{1} & \left(\bar{b}^{\prime} / \sigma \bar{b}^{\prime}\right) r_{3} \sqrt{A} \cdot \bar{D}^{\prime}+\boldsymbol{\pi}_{3}^{m^{\prime}-\nu} f \\
\left(\bar{b}^{\prime} / \sigma \bar{b}^{\prime}\right) r_{3} \sqrt{A} & x_{1}+\boldsymbol{\pi}_{3}^{m^{\prime}-\nu} g
\end{array}\right) .
\end{aligned}
$$

If E_{3} / F is unramified then $\boldsymbol{\pi}_{3}=\boldsymbol{\pi}, \bar{b}^{\prime}=\bar{B}^{\prime} \boldsymbol{\pi}^{\nu}$ Гand so $\eta^{\prime}=\sigma\left(\bar{B}^{\prime}\right) / \bar{B}^{\prime}$. Using $\|x\|=1$ we note that

$$
\bar{b}^{\prime} / \sigma \bar{b}^{\prime}=x_{1} \cdot\left(\bar{b}^{\prime} / \sigma \bar{b}^{\prime}\right) \sigma x_{1}-\left(\bar{b}^{\prime} / \sigma \bar{b}^{\prime}\right) r_{2} \sqrt{A} \cdot r_{3} \sqrt{A}
$$

Again $(2,1):\left(\bar{b}^{\prime} / \sigma \bar{b}^{\prime}\right) \sigma x_{1} \equiv x_{1} \Gamma$ and $(1,1):\left(\bar{b}^{\prime} / \sigma \bar{b}^{\prime}\right) r_{2} \sqrt{A} \equiv \sigma\left(\bar{D}^{\prime}\right) r_{3} \sqrt{A} \Gamma$ imply that $\bar{b}^{\prime} / \sigma \bar{b}^{\prime}$ lies in $x_{1}^{2}-r_{3}^{2} A \sigma\left(\bar{D}^{\prime}\right)+\pi_{3}^{m^{\prime}-\nu} S_{m} \Gamma$ which is $x_{1}^{2}=\pi_{3} S_{m}$ unless E / F is unramified and $j=0$. In this case $(E / F$ unramified and $j=0) x_{1}$ lies in $S_{m}^{\times} \Gamma$ and $(2,1)$ implies that $\sigma \bar{b}^{\prime} / \bar{b}^{\prime} \equiv$ $\sigma x_{1} / x_{1}\left(\bmod \boldsymbol{\pi}_{3}^{\nu^{\prime}-m}\right)$. Together with $\bar{b}^{\prime} / \sigma \bar{b}^{\prime} \equiv x_{1}^{2} \Gamma$ we obtain $x_{1} \sigma x_{1} \equiv 1\left(\bmod \boldsymbol{\pi}_{3}\right)$. If $x_{1}=$ $\alpha_{1}+\beta_{1} \sqrt{A}, A=\pi \Gamma$ then $\alpha_{1}^{2} \equiv 1(\bmod \boldsymbol{\pi}) \Gamma$ and $\eta^{\prime}=\sigma x_{1} / x_{1}=\sigma \eta / \eta, \eta=1+\left(\beta_{1} / \alpha_{1}\right) \sqrt{A} \in S_{m}^{\times 2}$.

If E_{3} / F is unramified Γ the norm map $N=N_{E_{3} / F}$ induces a surjection from $\mathbb{F}_{q}^{\times} \Gamma$ where \mathbb{F}_{q} is the residue field of $R_{3} \Gamma$ to $\mathbb{F}_{q_{0}}^{\times} \Gamma$ where $\mathbb{F}_{q_{0}}$ is the residue field of R. Note that $q=q_{3}$ is q_{0}^{2} here. Hence $\operatorname{ker}\left(N \mid R_{3}^{\times}\right)$has index $q_{0}+1$ in R_{3}^{\times} so it is contained in the subgroup $R_{3}^{\times 2}$ of index 2 in R_{3}^{\times} Thence $x_{1} \in S_{m}^{\times 2}$ (unless E / F is unramified and $j=0$).

In particular Γ if E_{3} / F is ramified Γ since $\bar{b}^{\prime}=\bar{B}^{\prime} \boldsymbol{\pi}_{3}^{\nu},(2,1)$ implies that $x_{1} / \sigma x_{1} \equiv\left(\bar{B}^{\prime} / \sigma \bar{B}^{\prime}\right)$ $(-1)^{\nu}$. As $S_{m}^{\times} \cap R_{m} \sqrt{A}$ is empty $\operatorname{Re}\left(x_{1} / \bar{B}^{\prime}\right)=x_{1}{/ \bar{B}^{\prime}}^{\prime}+\sigma\left(x_{1} / \bar{B}^{\prime}\right)$ is non zero Γ and equal to itself times $(-1)^{\nu}$. Then ν is even when $e_{3}=2$.

Let us show that if $m^{\prime}>2 N-\nu+\operatorname{ord}_{3} D(\geq \nu) \Gamma$ then $m^{\prime} \leq X-\nu$. We shall use the auxiliary result Γ that there is $\eta \in S_{m}^{\times}$such that $\left(\begin{array}{cc}1 & 0 \\ 0 & \eta\end{array}\right)\left(\begin{array}{c}\bar{a} \bar{b}^{\prime} \\ \bar{b}^{\prime} \bar{D}^{\prime} \\ \bar{a}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & \eta\end{array}\right)^{-1}$ is in $G L\left(2, R_{m}\right)$. Namely $\eta \bar{b}^{\prime}=\sigma\left(\eta \bar{b}^{\prime}\right)$ and $\bar{b}^{\prime} \bar{D}^{\prime} / \eta=\sigma\left(\bar{b}^{\prime} \bar{D}^{\prime} / \eta\right)$. Recall that $b^{\prime}=(B / \varepsilon) \pi_{3}^{\nu}$ and $D^{\prime}=D \varepsilon^{2} \pi_{3}^{2 j} \Gamma$ so $b^{\prime} D^{\prime}=$ $D B \varepsilon \pi_{3}^{2 N-\nu}$. $\quad\left[b^{\prime}=\left(B / \varepsilon u \varepsilon_{3}^{j}\right) \pi_{3}^{\nu} \Gamma D^{\prime}=D \varepsilon^{2} u^{2}\left(\varepsilon_{3} \pi_{3}\right)^{2 j} \Gamma b^{\prime} D^{\prime}=B D \varepsilon u \varepsilon_{3}^{j} \pi_{3}^{2 N-\nu}\right]$. If $m^{\prime}>\nu \Gamma$ then $(B / \varepsilon) / \sigma(B / \varepsilon) \equiv \sigma \eta / \eta\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-\nu}\right)$. If $m^{\prime}>2 N-\nu+\operatorname{ord}_{3} D \Gamma$ then $B D \varepsilon / \tau(B D \varepsilon) \equiv$ $\eta / \sigma \eta\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-\left(2 N-\nu+\operatorname{ord}_{3} D\right)}\right)$. [Replace ε by $\left.\varepsilon u \varepsilon_{3}^{j}\right]$. Since $m^{\prime}-\nu>m^{\prime}-\left(2 N-\nu+\operatorname{ord}_{3} D\right) \Gamma$ together we have $D B^{2} / \sigma\left(D B^{2}\right) \equiv 1\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-\left(2 N-\nu+\operatorname{ord}_{3} D\right)}\right)$ Гnamely $(a-\sigma a)(a+\sigma a)=a^{2}-$ $\sigma a^{2} \equiv D b^{2}-\sigma\left(D b^{2}\right) \equiv 0\left(\bmod \pi_{3}^{m^{\prime}+\nu}\right)$. Since a is topologically unipotent $\Gamma|a-\sigma a| \leq|a+\sigma a|=1 \Gamma$ and so $X \geq m^{\prime}+\nu$ as asserted. In particular $\Gamma X \geq 2 N+\operatorname{ord}_{3} D$.

In fact Γ unless E / F is unramified and $j=0 \Gamma$ we have that η lies in $S_{m}^{\times 2}$. Then $m^{\prime}>\nu$ implies that $\eta \bar{B} / \varepsilon \in R_{m}^{\times} \Gamma$ or $\varepsilon \in \bar{B} \eta R_{m}^{\times} \subset \bar{B} S_{m}^{\times 2} R_{m}^{\times}$. [Replace ε by $\varepsilon u \varepsilon_{3}^{j}$]. If $e_{3}=2$ then $R_{m}^{\times} S_{m}^{\times 2}$ is S_{m}^{\times}and no new information on ε is obtained. But when $e_{3}=1$ we have $R_{m}^{\times} S_{m}^{\times 2}=S_{m}^{\times 2}$. Hence when $j \geq 1$ and E / F is unramified Γ there are two choices for $\varepsilon \Gamma$ but only one contributes to our orbital integral Γ namely $\varepsilon \in \bar{B} S_{m}^{\times 2} \Gamma$ or $\varepsilon \in B R_{3}^{\times 2}$ (the two possibilities for ε were in $R_{3}^{\times} / R_{3}^{\times 2}$). [Replace ε by $\varepsilon u \varepsilon_{3}^{j}$]. Note that in case (IV) if $e\left(E / E_{3}\right)=1$ then $e\left(E_{3} / F\right)=1$ $\left(e\left(E / E_{3}\right)=1\right.$ and $e\left(E_{3} / F\right)=2$ is case (II)). If $e\left(E / E_{3}\right)=2$ or $j=0 \Gamma$ then ε can be taken to be any representative of $R_{3}^{\times} / R_{3}^{\times}$[so we obtain no constraint on ε. [If $e\left(E / E E_{3}\right)=2$ then $\varepsilon=1$ and we get $\left.u \in B \varepsilon_{3}^{j} R_{3}^{\times 2}\right]$.

It remains to compute the cardinality of L_{m} when $\nu<m^{\prime} \leq \chi-\nu$. First ΓL_{m} consists of
 $\bar{B}^{\prime} r_{1}(1+\delta), \delta \in \pi_{3}^{m^{\prime}-\nu} S_{m}$. Here we used the relation $r_{2} \sqrt{A} \equiv r_{3} \sqrt{A} \cdot \bar{D}^{\prime} \bar{b}^{\prime} / \sigma \bar{b}^{\prime}\left(\bmod \boldsymbol{\pi}_{3}^{m^{\prime}-\nu}\right) \Gamma$ and $x_{1} / \bar{B}^{\prime}=r_{1}+\pi_{3}^{m^{\prime}-\nu} S_{m}$ for some $r_{1} \in R_{m}$. Consequently ΓL_{m} is the set of $\left(r_{1}, r_{3}, a, \delta\right) \in R_{m}^{2} \times$ $\left(\boldsymbol{\pi}_{3}^{m^{\prime}-\nu} S_{m}\right)^{2}$ Гsuch that $\sigma a=-a \Gamma$ and $r_{1}^{2} \bar{B}^{\prime} \sigma \bar{B}^{\prime}(1+\delta)(1+\sigma \delta)-r_{3}^{2} A\left(\bar{B}^{\prime} / \sigma \bar{B}^{\prime}\right) \bar{D}^{\prime}-a r_{3} \sqrt{A}=1 \Gamma$ taken under the quotient by the equivalence relation $\left(r_{1}, \delta\right) \sim\left(r_{1}^{\prime}, \delta^{\prime}\right)$ if $r_{1}(1+\delta)=r_{1}^{\prime}\left(1+\delta^{\prime}\right) \Gamma$ in other words we take the quotient by $1+R_{m} \cap \pi_{3}^{m^{\prime}-\nu} S_{m}$.

To count the number of elements in L_{m} Гwe need to solve the defining equation. Thus we take any $r_{3} \in R_{m}, \delta \in \pi_{3}^{m^{\prime}-\nu} R_{3} / \pi_{3}^{m^{\prime}} R_{3}=R_{3} / \pi_{3}^{\nu} R_{3} \Gamma$ and $a=\alpha \sqrt{A}, \alpha$ in $R_{m} \cap \pi_{3}^{m^{\prime}-\nu-\operatorname{ord}_{3}(\sqrt{A})} S_{m} \simeq$ $R_{m} \cap \boldsymbol{\pi}_{3}^{m^{\prime}-\nu} S_{m}$ (when $e_{3}=1, A \in R^{\times}$; when $e_{3}=2, \nu$ is even and $A=\boldsymbol{\pi}=\boldsymbol{\pi}_{3}^{2}$). If $j \geq 1$ or E / F is ramified Γ we saw above that $\bar{b}^{\prime} / \sigma \bar{b}^{\prime}=x_{1}^{2}+\pi_{3} S_{m}$. Since $x_{1}=\bar{B}^{\prime} r_{1}+\pi_{3}^{m^{\prime}-\nu} S_{m} \Gamma$ we have $\bar{B}^{\prime} / \sigma \bar{B}^{\prime} \equiv \bar{B}^{\prime 2} r_{1}^{2}$ Гnamely $1 \equiv \bar{B}^{\prime} \sigma \bar{B}^{\prime} r_{1}^{2} \Gamma$ so that there are two solutions in r_{1} to the equation which defines L_{m} (as L_{m} is non empty; note that $N_{E_{3} / F} R_{3}^{\times}=R^{\times e_{3}} \Gamma R^{\times}$is contained in $R_{3}^{\times 2 / e_{3}}$). We conclude that L_{m} consists of $2 q_{0}^{m} q^{\nu}$ elements (2 for $r_{1} \Gamma q^{\nu}$ for $\delta \Gamma q_{0}^{m}$ for $r_{3} \Gamma a$ cancels the relation $\sim)$. This completes the proof of the lemma when $j \geq 1$ or E / F is ramified.

Suppose now that $j=0$ and E / F is unramified (and $m^{\prime}>\nu$). We claim that L_{m} is empty. If not Γ let x be in L_{m}. The relations $(1,1)$ and $(2,2)$ imply that $r_{2} \sqrt{A} \equiv r_{3} \sqrt{A} \cdot D b / \sigma b \equiv$ $r_{3} \sqrt{A} \cdot \sigma D \sigma b / b\left(\bmod \boldsymbol{\pi}_{3}^{\nu^{\prime}-m}\right)$. Note that $D^{\prime}=D$ and $b^{\prime}=b, B^{\prime}=B \Gamma$ when $j=0$. If $r_{3} \neq 0$
in $R_{m} \Gamma$ then $(b / \sigma b)^{2} D \equiv \sigma D=\zeta^{2} D \Gamma$ where $\zeta=\sqrt{\sigma D / D} \in R_{3}^{\times}$. Hence $\sigma b / b= \pm \zeta \Gamma$ and so $b=r \sqrt{D}, r \in R$ (or $b=r / \sqrt{D}$). This is impossible Γ since $b \in R_{3}$ (and $\sqrt{D} \notin R_{3}$). If $r_{3}=0$ in $R_{m} \Gamma$ then $r_{2}=0$ in $R_{m} \Gamma$ and $\|x\|=1$ implies that $1 \equiv x_{1} \sigma x_{1} \Gamma$ hence $x_{1} \in S_{m}^{\times}$. Then $(2,1)$ implies that $b / \sigma b \equiv x_{1} / \sigma x_{1} \Gamma$ and $(1,2)$ that $b / \sigma b \equiv\left(\sigma x_{1} / x_{1}\right)(\sigma D / D)$. Together $(b / \sigma b)^{2} \equiv \sigma D / D$. But $\sigma D / D=\zeta^{2} \Gamma$ so $\sigma b / b= \pm \zeta= \pm \sigma \sqrt{D} / \sqrt{D} \Gamma$ so $b=r \sqrt{D}$ or $b=r / \sqrt{D} \Gamma$ with $r \in R \Gamma$ and $b \notin R_{3} \Gamma$ a contradiction. The lemma follows.

This completes our discussion of the orbital integral in case (IV). The twisted θ-orbital integral of a strongly θ-regular topologically unipotent element of type (IV) is a sum of two integrals Γ which can be reduced as usual to orbital integrals $\Phi_{1_{K}}^{S p(2, F)}\left(t_{\rho}\right)$ in $S p(2, F)$. The sum of these integrals is the stable orbital integral of 1_{K} at t_{1} (or $\left.t_{\rho}, \rho \in E_{3}^{\times} / N_{E / E_{3}} E^{\times}\right) \Gamma$ on $S p(2, F)$. It coincides with the orbital integral of 1_{K} at any element in the stable orbit Γ on $G S p(2, F)$ (the stable orbit on $S p(2, F)$ is the intersection with $S p(2, F)$ of the orbit in $G S p(2, F))$. Consequently Γ to show that $\Phi_{1_{K}}^{G L(4, F) \times G L(1, F), s t}(t \theta)$ is equal to $\Phi_{1_{K}}^{G S p(2, F)}(N t) \Gamma$ we simply need to observe that both $\Phi_{1_{K}}^{G S p(2, F)}(t)$ and $\Phi_{1_{K}}^{G S p(2, F)}(N t)$ depend only on the parameters N and X attached to $N t$ (and n, χ attached to t). Since $n=N$ and $\chi=X \Gamma$ the comparison is complete「once we show that the measure factor in the case of type (IV) is equal to one. This we do next.
7. Lemma. For tori of type (IV), the measure factor $\left[T^{* \theta}(R):(1+\theta) T^{*}(R)\right] /\left[T_{H}^{*}(R)\right.$: $N T^{*}(R)$] is equal to 1 .

Proof. First we compute the index in $T_{H}^{*}(R)=\left\{\left(x, \sigma^{3} x, \sigma x, \sigma^{2} x\right) ; x \in R_{E^{\prime}}^{\times} ; x \sigma^{2} x=\sigma\left(x \sigma^{2} x\right)\right\}$ of the image $N T^{*}(R)=\left\{N\left(a, \sigma a, \sigma^{3} a, \sigma^{2} a\right)=\left(a \sigma a, a \sigma^{3} a, \sigma a \sigma^{2} a, \sigma^{3} a \sigma^{2} a\right) ; a \in R_{E}^{\times}\right\}$of $T^{*}(R)$.

Note that the extension E / F of degree 4 is Galois Γ in which case $E^{\prime}=E \Gamma$ except in the totally ramified case Γ where $E=F(\sqrt{\sqrt{\pi}}) \Gamma$ and $-1 \notin R^{\times 2}$. In this case $\sigma \sqrt{\pi}=-\sqrt{\pi}$ and $\sigma \sqrt{\sqrt{\pi}}=\zeta \sqrt{\sqrt{\pi}} \Gamma$ where $\zeta=\sqrt{-1} \notin R_{E}^{\times} \Gamma$ and $E^{\prime}=F(\sqrt{\sqrt{-\pi}})$. Let us verify this Γ namely that if $a \in E \Gamma$ then $a \sigma a \in E^{\prime}$. Write $a=a_{1}+a_{2} \sqrt{\sqrt{\pi}} \Gamma$ with $a_{i}=b_{i}+c_{i} \sqrt{\pi}$. Then $a \sigma a=\left(a_{1}+a_{2} \sqrt{\sqrt{\boldsymbol{\pi}}}\right)\left(\bar{a}_{1}+\bar{a}_{2} \sqrt{\sqrt{-\boldsymbol{\pi}}}\right)=a_{1} \bar{a}_{1}+a_{2} \bar{a}_{2} \sqrt{-\boldsymbol{\pi}}+\left(\bar{a}_{1} a_{2}+\zeta a_{1} \bar{a}_{2}\right) \sqrt{\sqrt{\boldsymbol{\pi}}} \Gamma$ where $\bar{a}_{i}=b_{i}-c_{i} \sqrt{\pi}$. So $a_{i} \bar{a}_{i} \in F^{\times} \Gamma$ we write $\sqrt{\sqrt{\pi}}$ as the product of $\sqrt{\sqrt{-\pi}}$ and $a \sqrt{\zeta} \Gamma$ and it remains to show that $\left(\bar{a}_{1} a_{2}+\zeta a_{1} \bar{a}_{2}\right) / \sqrt{\zeta}$ lies in $F(\sqrt{-\pi})$. Note that since $-1 \notin R^{\times 2}$ Cone of 2 and -2 is in $R^{\times 2} \Gamma$ and $\zeta=((1 \pm \zeta) / \sqrt{ \pm 2})^{2}$. To simplify the notations Γ suppose that $2 \in R^{\times 2}$. Then $\sqrt{\zeta}=(1+\zeta) / \sqrt{2} \Gamma$ and $1 / \sqrt{\zeta}=(1-\zeta) / \sqrt{2}$. Then the sum of

$$
\bar{a}_{1} a_{2}(1-\zeta)=\left(b_{1}-c_{1} \sqrt{\boldsymbol{\pi}}\right)\left(b_{2}+c_{2} \sqrt{\boldsymbol{\pi}}\right)(1-\zeta)=\left(b_{1} b_{2}-c_{1} c_{2} \boldsymbol{\pi}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \sqrt{\pi}\right)(1-\zeta)
$$

and

$$
a_{1} \bar{a}_{2}(1+\zeta)=\left(b_{1}+c_{1} \sqrt{\boldsymbol{\pi}}\right)\left(b_{2}-c_{2} \sqrt{\boldsymbol{\pi}}\right)(1+\zeta)=\left(b_{1} b_{2}-c_{1} c_{2} \boldsymbol{\pi}-\left(b_{1} c_{2}-b_{2} c_{1}\right) \sqrt{\boldsymbol{\pi}}\right)(1+\zeta)
$$

is $2 b_{1} b_{2}-2 c_{1} c_{2} \boldsymbol{\pi}-2\left(b_{1} c_{2}-b_{2} c_{1}\right) \sqrt{-\boldsymbol{\pi}}$. It lies in $F(\sqrt{-\boldsymbol{\pi}})$ as required.
Thus we need to solve in $a \in R_{E}^{\times}$the equation $x=a \sigma a \Gamma$ where $x \in R_{E^{\prime}}^{\times}$satisfies $x \sigma^{2} x=$ $\sigma\left(x \sigma^{2} x\right)$. For this Γ note that the product $a \sigma^{2} a \sigma\left(a \sigma^{2} a\right),\left(a \in R_{E}^{\times}\right) \Gamma$ ranges over $R^{\times 4}$ when
$D=\sqrt{\pi}$ Гover $R^{\times 2}$ when E / E_{3} is ramified and E_{3} / F is unramified $\left(D \in R^{\times}\right)$ Гover R^{\times}if E / F is unramified (we simply use the fact that in a quadratic extension $K / k \Gamma N_{K / k} R_{K}^{\times}$is R_{k}^{\times}if K / k is unramified Γ and $R_{k}^{\times 2}$ if K / k is ramified Γ or $R_{k}^{\times e(K / k)}$ in general). For the same reason Γ $x \sigma^{2} x,\left(x \in R_{E}^{\times}\right)$Гranges over $R_{3}^{\times 2}$ if E / E_{3} is ramified Γ and over R_{3}^{\times}if E / E_{3} is unramified. If further $x \sigma^{2} x$ is fixed under σ Then the σ-fixed $x \sigma^{2} x$ ranges over: $R^{\times 2}$ if E / E_{3} and E_{3} / F are both ramified ΓR^{\times}if E_{3} / F is unramified. Indeed $\Gamma(\alpha+\beta \sqrt{D})^{2}=\alpha^{2}+\beta^{2} D+2 \alpha \beta \sqrt{D}$ is σ-fixed precisely when $\alpha \beta=0$. When $D=\pi \Gamma \alpha+\beta \sqrt{D} \in R_{3}^{\times}$only when $\alpha \in R^{\times}, \beta \in R \Gamma$ thus we have $\beta=0$ Гand the σ-fixed elements of $R_{3}^{\times 2}$ are $R^{\times 2}$. If $D \in R^{\times}$then the σ-fixed elements of $R_{3}^{\times 2}$ are $R^{\times 2} \cup D R^{\times 2}=R^{\times}$. In conclusion Γ the index $\left[T_{H}^{*}(R): N T^{*}(R)\right]$ is equal to $1=\left[R^{\times}: R^{\times}\right]$ when E / F is unramified Γ to $\left[R^{\times}: R^{\times 2}\right]=2$ when $D \in R^{\times}$and E / E_{3} is ramified Γ and to [$\left.R^{\times 2}: R^{\times 4}\right]=2$ when both E_{3} / F and E / E_{3} are ramified Γ namely to the ramification index $e\left(E / E_{3}\right)$ in all cases.

We also need to compute the index in $T^{* \theta}(R)=\left\{\left(x, \sigma x, \sigma^{3} x, \sigma^{2} x\right) ; x \in R_{E}^{\times}, x \sigma^{2} x=1\right\}$ of

$$
(1+\theta) T^{*}(R)=\left\{(1+\theta)\left(a, \sigma a, \sigma^{3} a, \sigma^{2} a\right)=\left(a / \sigma^{2} a, \sigma a / \sigma^{3} a, \sigma^{3} a / \sigma a, \sigma^{2} a / a\right) ; a \in R_{3}^{\times}\right\}
$$

Since $x \sigma^{2} x=1 \Gamma$ there is a solution $a \in E^{\times}$to $x=a / \sigma^{2} a \Gamma$ and as usual Γ the index of $\left\{a / \sigma^{2} a ; a \in\right.$ $\left.R_{E}^{\times}\right\}$in $\left\{a / \sigma^{2} a ; a \in E^{\times}\right\}$is $e\left(E / E_{3}\right)$. The lemma follows.

With this the comparison in the case of type (IV) is complete. But for completeness「and possible future applications we now write out this integral. I am grateful to J.G.M. Mars for pointing out errors in an earlier version of the formulae below Γ and suggesting corrections. It is best to deal separately with three cases: When $e\left(E / E_{3}\right)=e\left(E_{3} / F\right)=2 \Gamma$ when $e\left(E / E_{3}\right)=$ $2, e\left(E_{3} / F\right)=1$ Гand when $e(E / F)=1$.

The stable θ-orbital integral of 1_{K} at a strongly θ-regular topologically unipotent element $u=\theta(u)$ of $G L(4, F) \times G L(1, F)$ of type (IV) Γ with invariants $n, \chi \Gamma$ is given by the following expressions.

If $e\left(E_{3} / F\right)=2 \Gamma$ then $e\left(E / E_{3}\right)=2 \Gamma$ and we get a sum over $m^{\prime}=2 m$ and $0 \leq \nu \leq n$ Гof $q^{n-\nu}$ times: $q^{3 m^{\prime} / 2}=q^{3 m}$ if $1 \leq m^{\prime} \leq \nu$ Гand $q_{0}^{m} q^{\nu^{\prime}}$ if $\nu^{\prime}=2 \nu$ and $\nu^{\prime}<m^{\prime} \leq \chi-\nu^{\prime}$. Since $q=q_{0}$ (also note that $\chi=2 n+1$ in this case) Dour sum is

$$
\begin{aligned}
& q^{n} \sum_{0 \leq \nu \leq n} q^{-\nu} \sum_{0 \leq m<\nu / 2} q^{3 m}+q^{n} \sum_{0 \leq \nu \leq n / 2}\left(\sum_{\nu \leq m \leq \chi / 2-\nu} q^{m}\right) \\
& =\sum_{0 \leq m \leq(n-1) / 2} q^{3 m} \sum_{0 \leq j \leq n-2 m-1} q^{j}+q^{n} \sum_{0 \leq \nu \leq n / 2} \frac{q^{[\chi / 2]+1-\nu}-q^{\nu}}{q-1} \\
& =\frac{q^{n}\left(q^{[(n+1) / 2]}-1\right)}{(q-1)^{2}}-\frac{q^{3[(n+1) / 2]}-1}{(q-1)\left(q^{3}-1\right)}+q^{n} \frac{\left(q^{1+[\chi / 2]-[n / 2]}-1\right)\left(q^{[n / 2]+1}-1\right)}{(q-1)^{2}} .
\end{aligned}
$$

If $e\left(E_{3} / F\right)=1$ and $e\left(E / E_{3}\right)=2 \Gamma$ we have $q=q_{0}^{2} \Gamma$ and $m^{\prime}=m$. Our sum is then over $m(0 \leq m \leq \chi)$ and $\nu(0 \leq \nu \leq n)$ of the product of $q^{n-\nu} \Gamma$ and of: 1 if $m=0 \Gamma\left(1+q^{-1}\right) q^{3 m / 2}$ if $1 \leq m \leq \nu, 2 q^{\nu+m / 2}$ if $\nu<m \leq \chi-\nu$. (Note that $\chi=2 n+1$ in this case). Namely we have

$$
\sum_{0 \leq \nu \leq n} q^{n-\nu}\left[1+\left(1+q^{-1}\right) \sum_{1 \leq m \leq \nu} q^{3 m / 2}+2 q^{\nu} \sum_{\nu<m \leq \chi-\nu} q^{m / 2}\right]
$$

which is

$$
\frac{q^{n+1}-1}{q-1}+\frac{q^{1 / 2}(q+1)}{q^{3 / 2}-1}\left[q^{n} \frac{q^{(n+1) / 2}-1}{q^{1 / 2}-1}-\frac{q^{n+1}-1}{q-1}\right]+\frac{q^{n+\frac{1}{2}}\left(q^{(n+1) / 2}-1\right)\left(q^{(\chi-n) / 2}-1\right)}{\left(q^{1 / 2}-1\right)^{2}}
$$

Finally Γ when E / F is unramified $\Gamma q=q_{0}^{2} \Gamma m^{\prime}=m$ and the sum ranges over $0 \leq \nu \leq n \Gamma$ and $0 \leq m \leq \chi-\nu$. (In this case $\chi=2 n$). It takes the form

$$
\begin{aligned}
\frac{q+1}{q} \sum_{0 \leq \nu<n} q^{n-\nu} & \left(1+\sum_{1 \leq m \leq \nu}\left(1+q^{-1}\right) q^{3 m / 2}+q^{\nu} \sum_{\nu<m \leq \chi-\nu} q_{0}^{m}\right)+1+\sum_{1 \leq m \leq n}\left(1+q^{-1}\right) q^{3 m / 2} \\
= & \frac{(q+1) q^{n}-2}{q-1}+\frac{q^{n-\frac{1}{2}}(q+1)\left(q^{n / 2}-1\right)\left(q^{(\chi-n+1) / 2}-1\right)}{\left(q^{1 / 2}-1\right)^{2}} \\
& +\frac{q^{1 / 2}(q+1)^{2}}{\left(q^{3 / 2}-1\right)}\left[q^{n-1} \frac{q^{n / 2}-1}{q^{1 / 2}-1}-\frac{q^{n}-1}{q-1}\right]+q^{1 / 2}(q+1) \frac{q^{3 n / 2}-1}{q^{3 / 2}-1}
\end{aligned}
$$

To repeat Γ we have no use for these explicit expressions Γ except the observation that the final expression depends only on the parameters n and χ attached to $u \Gamma$ since the parameters N and X attached to the norm $N u$ of u are equal to n, χ.

This completes our discussion of the comparison of the stable θ-orbital integral of 1_{K} at the strongly θ-regular element us $\theta=s \theta u$ of $G L(4, R) \times G L(1, R) \Gamma$ with the stable orbital integral of 1_{K} at the norm $N(u s)$ of $u s \Gamma$ in the case where $s=I$. It remains to compare these integrals when s is not (stably) θ-conjugate to the identity.

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The computations of the θ-orbital integrals of a strongly θ-regular topologically unipotent element $t^{\prime}=h^{-1} t^{*} \theta(h), t^{*}=\left(t, \sigma t, \sigma^{3} t, \sigma^{2} t\right) \Gamma$ of type (IV) Γ can be used to compute the κ - θ orbital integral too. In this case κ is the non trivial character of the group $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$Гand it defines the endoscopic group $\mathbf{C}_{3}=\mathbf{C}_{E_{3}}$. The Jacobian factor is

$$
\Delta_{G, C_{3}}\left(t, \sigma t, \sigma^{3} t, \sigma^{2} t\right)=\left|\frac{\left(t-\sigma^{2} t\right)^{2} \sigma\left(t-\sigma^{2} t\right)^{2}}{t \sigma t \sigma^{2} t \sigma^{3} t}\right|_{F}^{1 / 2}=|b \sqrt{D}|_{3}=q^{-n}|D|_{3}^{1 / 2}
$$

Note that $|b|_{3}=q^{-n} \Gamma$ as $n=\operatorname{ord}_{3}(b) \Gamma$ while $|D|=1$ when E / E_{3} is unramified Γ or $|D|_{3}=q^{-1}$ when E / E_{3} is ramified.

Theorem. If $t^{\prime}=h^{-1} t^{*} \theta(h)$ is a strongly θ-regular topologically unipotent element of type (IV), then $\Phi_{1_{K}}^{\kappa}\left(t^{\prime} \theta\right)$ is 0 if E_{3} / F is ramified, while if E_{3} / F is unramified then

$$
\Delta_{G, C_{3}}\left(t^{*}\right) \kappa\left(\left(t-\sigma^{2} t\right) / 2 \sqrt{D}\right) \Phi_{1_{K}}^{\kappa}(t \theta)=\Phi_{1_{K_{3}}}^{C_{3}}\left(N_{C_{3}} t^{*}\right) .
$$

Proof. Note that $\kappa\left(\left(t-\sigma^{2} t\right) / 2 \sqrt{D}\right)=\chi_{E / E_{3}}(b)=\chi_{E / E_{3}}\left(B \pi_{3}^{n}\right)$. When E / E_{3} is ramified and E_{3} / F is unramified Γ we take $D=-\pi \varepsilon_{3}\left(\varepsilon_{3} \in R_{3}^{\times}-R_{3}^{\times 2}\right) \Gamma$ then $N_{E / E_{3}}(\sqrt{D})=\pi \varepsilon_{3} \Gamma$ and so
$N_{E / E_{3}} E^{\times}=\left(\boldsymbol{\pi} \varepsilon_{3}\right)^{\mathbb{Z}} R_{3}^{\times 2} \Gamma$ and $\chi_{E / E_{3}}: E_{3}^{\times} / N_{E / E_{3}} E^{\times} \xrightarrow{\sim}\{ \pm 1\}$ has $\chi_{E / E_{3}}\left(\varepsilon_{3}\right)=\chi_{E / E_{3}}(\boldsymbol{\pi})=$ -1. Then $\chi_{E / E_{3}}\left(B \pi_{3}^{n}\right)=\chi_{E / E_{3}}(b)(-1)^{n}$. When E / F is unramified $\Gamma D=\varepsilon_{3}, N_{E / E_{3}} R_{E}^{\times}=$ $R_{3}^{\times}, \chi_{E / E_{3}}(B)=1, \chi_{E / E_{3}}\left(\pi_{3}\right)=-1 \Gamma$ and $\chi_{E / E_{3}}\left(B \pi_{3}^{n}\right)=(-1)^{n}$. Moreover Γ the norm $N_{C_{3}} t^{*}$ is the elliptic element in $C_{3}=G L\left(2, E_{3}\right)$ with eigenvalues $x=t \sigma t$ and $\sigma^{2} x$. As $x=A_{*}+$ $B_{*}(1+\zeta) \sqrt{D}$ and $\left|B_{*}\right|_{3}=q^{-n}$ by Lemma 1Γ Lemma I.I. 2 implies that the right hand side is $\left(q^{n+1}-1\right) /(q-1)$ when E / E_{3} is ramified Γ and it is $\left((q+1) q^{n}-2\right) /(q-1)$ when E / E_{3} is unramified. We then turn now to the computation of $\Phi_{1_{K}}^{\kappa}(t \theta)$.

When E / E_{3} and E_{3} / F are both ramified Γ as $N_{E / E_{3}} E^{\times}=\pi_{3}^{\mathbb{Z}} R_{3}^{\times 2} \Gamma$ the unstable θ-integral includes a sum over $\rho \in E_{3}^{\times} / N_{E / E_{3}} E^{\times}=R_{3}^{\times} / R_{3}^{\times 2}$ of $\kappa(\rho)$ while no other term depends on ρ. Hence $\kappa(1)+\kappa\left(\varepsilon_{3}\right)=0$ Гand $\Phi_{1_{K}}^{\kappa}(t \theta)$ is zero in this case.

When E / E_{3} is ramified and E_{3} / F is unramified Γ in addition to the sums over ν and m which appear in the stable θ-orbital integral Γ we have an additional sum over $\rho=u \in$ $E_{3}^{\times} / N_{E / E_{3}} E^{\times}=R_{3}^{\times} / R_{3}^{\times 2} \Gamma$ of $\kappa(u)$ times the terms indexed by ν, m (and we need to divide at the end by 2Γ a measure factor). If $0 \leq m \leq \nu \Gamma$ the term indexed by ν, m is independent of $u \Gamma$ and $\kappa(1)+\kappa\left(\varepsilon_{3}\right)=0\left(\varepsilon_{3} \in R_{3}^{\times}-R_{3}^{\times 2}\right)$. If $\nu<m \leq \chi-\nu \Gamma$ then we have the relation $u \in B \varepsilon_{3}^{j} R_{3}^{\times 2} \Gamma$ and $\kappa\left(\varepsilon_{3}\right)=-1$ Thence $\kappa(u)=\kappa(B) \kappa\left(\varepsilon_{3}\right)^{j}=\kappa(B)(-1)^{j}$. The κ - θ-orbital integral is then

$$
\begin{aligned}
\kappa(B) & \sum_{0 \leq \nu \leq n} \sum_{\nu<m \leq \chi-\nu}(-q)^{n-\nu} 2 q^{\nu} q_{0}^{m}=2 \kappa(B)(-q)^{n} \sum_{0 \leq \nu \leq n}(-1)^{\nu}\left(q_{0}^{\chi-\nu+1}-q_{0}^{\nu+1}\right) /\left(q_{0}-1\right) \\
& =\left(2 \kappa(B)(-q)^{n} q_{0} /\left(q_{0}-1\right)\right)\left(q_{0}^{\chi} \frac{1-\left(-q_{0}\right)^{-n-1}}{1-\left(-q_{0}\right)^{-1}}-\frac{\left(-q_{0}\right)^{n+1}-1}{-q_{0}-1}\right) \\
& =2 \kappa(B) q_{0}(-q)^{n}\left(1-q_{0}^{\chi-n}(-1)^{n}\right)\left(1+q_{0}^{n+1}(-1)^{n}\right) /\left(1-q_{0}^{2}\right) \\
& =2 \kappa(B) q_{0}(-q)^{n}\left(q^{n+1}-1\right) /(q-1),
\end{aligned}
$$

since $q=q_{0}^{2}$ and $\chi=2 n+1$ in our case. The theorem follows in this case too.
It remains to deal with the case where E / F is unramified. Since $N_{E / E_{3}} E^{\times}=R_{3}^{\times} \pi_{3}^{2 \mathbb{Z}}$ we have that $\rho=\pi^{\bar{\rho}}, \bar{\rho}$ ranges over $\{0,1\}$. The decomposition of $S L\left(2, E_{3}\right)$ was such that $j \geq 0$ and 2 divides $j-\bar{\rho}$ Гand when $j \geq 1$ we have the additional sum over $\varepsilon \in R_{3}^{\times} / R_{3}^{\times 2}$. In summary we have a sum over $\nu(0 \leq \nu \leq n) \Gamma$ of 1 if $\nu=n \Gamma$ and of $((q+1) / 2 q)(-q)^{n-\nu}$ if $0 \leq \nu<n \Gamma$ and a sum over m Гof 1 if $m=0$ of $q_{0}^{3 m}\left(1+q^{-1}\right)$ if $1 \leq m \leq \nu \Gamma$ both terms are multiplied by 2 (two ε 's) if $\nu<N \Gamma$ and of $2 q_{0}^{m} q^{\nu}$ if $\nu<m \leq \chi-\nu$ Гin which case $\varepsilon \in B R_{3}^{\times 2}$ (so we have only one ε). In other words we have the sum of

$$
\left(\sum_{\nu=n} 1+\sum_{0 \leq \nu<n}(q+1) q^{-1}(-q)^{n-\nu}\right)\left(\sum_{m=0} 1+q^{-1}(q+1) \sum_{1 \leq m \leq \nu} q_{0}^{3 m}\right)
$$

and

$$
\sum_{0 \leq \nu<n} \frac{q+1}{2 q}(-q)^{n-\nu} \sum_{\nu<m \leq \chi-\nu} 2 q_{0}^{m} q^{\nu}
$$

(since $\chi=2 n$ Гthe sum in the last row can extend to $0 \leq \nu \leq n$). The first sum adds up to

$$
\sum_{0 \leq m \leq n} \sum_{m \leq \nu \leq n}=\left(\sum_{m=0} 1+\frac{q+1}{q} \sum_{1 \leq m \leq n} q_{0}^{3 m}\right)\left(\sum_{\nu=n} 1+\frac{q+1}{q} \sum_{m \leq \nu<n}(-q)^{n-\nu}\right) .
$$

The inner sum is $(-q)^{n-m} \Gamma$ so we get

$$
\begin{aligned}
(-q)^{n} & +\frac{q+1}{q}(-q)^{n} \sum_{1 \leq m \leq n}\left(-q_{0}\right)^{m}=(-q)^{n}\left(1+\frac{(q+1)}{q_{0}} \frac{\left(\left(-q_{0}\right)^{n}-1\right)}{q_{0}+1}\right) \\
& =\frac{(-q)^{n}}{q_{0}+1}\left(\frac{q+1}{q_{0}}\left(-q_{0}\right)^{n}+1-q_{0}^{-1}\right)
\end{aligned}
$$

The second sum adds up to

$$
(q+1) q^{-1}(-q)^{n} \sum_{0 \leq \nu<n}(-1)^{\nu} \sum_{\nu<m \leq \chi-\nu} q_{0}^{m}=\frac{(q+1)(-q)^{n}}{q_{0}\left(q_{0}-1\right)} \sum_{0 \leq \nu \leq n}\left(\left(-q_{0}\right)^{\chi-\nu}-\left(-q_{0}\right)^{\nu}\right)
$$

As $\chi=2 n \Gamma$ the inner sum is $\left(\left(-q_{0}\right)^{n}-1\right) \sum_{0 \leq \nu \leq n}\left(-q_{0}\right)^{\nu} \Gamma$ and we finally get

$$
\frac{(q+1)(-q)^{n}}{\left(q_{0}+1\right) q_{0}\left(q_{0}-1\right)}\left(q_{0}^{2 n+1}+\left(-q_{0}\right)^{n+1}+\left(-q_{0}\right)^{n}-1\right) .
$$

The sum of our two sums is

$$
\begin{aligned}
\frac{(-q)^{n}}{q_{0}+1} & {\left[\frac{q+1}{q_{0}-1} q_{0}^{2 n}+\frac{(q+1)\left(1-q_{0}\right)}{q_{0}\left(q_{0}-1\right)}\left(-q_{0}\right)^{n}-\frac{q+1}{q_{0}\left(q_{0}-1\right)}+1-q_{0}^{-1}+\frac{q+1}{q_{0}}\left(-q_{0}\right)^{n}\right] } \\
& =(-q)^{n} \frac{(q+1) q^{n}-2}{q-1}
\end{aligned}
$$

since $q=q_{0}^{2} \Gamma$ as required.

PART III. Semi simple reduction.

A. Review.

To compute the stable θ-orbital integral of 1_{K} at a strongly θ-regular element t in $G=$ $G L(4, R) \times G L(1, R)$ एwe may assume that the centralizer $T=Z_{G}(t)$ of t in G is a θ-invariant torus in G Гand so the centralizer $Z_{G}(t \theta)$ of $t \theta$ in G is the centralizer T^{θ} of θ in T. Decomposing $t \theta$ as $t \theta=u \cdot s \theta=s \theta \cdot u$ Гa product of an absolutely semi simple element $s \theta$ and a topologically unipotent element $u \Gamma$ which commute with each other Γ we deduce that $u \in T^{\theta}$. We have $\Phi_{1_{K}}^{G}(t \theta)=\Phi_{1_{K}}^{G}(u s \theta)=\Phi_{1_{Z_{K}(s \theta)}}^{Z_{G}(s \theta)}(u)$; moreover Γ when t, t^{\prime} are stably θ-conjugate Γ so are $s, s^{\prime} \Gamma$ and if $s=s^{\prime} \Gamma$ then u, u^{\prime} are stably θ-conjugate. Here $t^{\prime} \theta=u^{\prime} s^{\prime} \theta=s^{\prime} \theta \cdot u^{\prime}$.

The decomposition of the norm $N T$ of t is $N s \cdot N u=N u \cdot N s \Gamma$ where $N s$ is absolutely semi simple and $N u$ is topologically unipotent. Indeed Γ we expressed the tori T in the form $h^{-1} T^{*} h \Gamma$ where T^{*} is the diagonal torus and $h=\theta(h) \in \mathbf{G}$. Correspondingly $t=h^{-1} t^{*} h, s=$ $h^{-1} s^{*} h, u=h^{-1} u^{*} h \Gamma$ and the norm is defined by $N(a, b, c, d ; e)=\left(a b e, a c e, b d e, c d e ; a b c d e^{2}\right) \Gamma$ namely it is defined purely in terms of the (absolutely semi simple in the case of s^{*} Гtopologically unipotent in the case of u^{*}) entries of s^{*}, u^{*}. Hence $\Phi_{1_{K}}^{H}(N t)=\Phi_{1_{Z_{K}(N s)}}^{Z_{H}(N s)}(N u) \Gamma$ and we are then reduced to the study of $\Phi_{1_{K}}^{Z_{G}(s \theta)}(u)$ and $\Phi_{1_{K}}^{Z_{H}(N s)}(u)$.

We shall then distinguish the cases according to the values taken by $N s^{*}$. The main case is that of $N s=I$ Cdealt with above; here s is θ-conjugate to I and $Z_{G}(\theta)=S p(2, F)$. We shall proceed now to deal with each of the θ-elliptic tori「of types (I) - (IV) Γ and list the various possibilities for $N s^{*}$ other than I. Then we compute $Z_{G}(s \theta)\left(\subset Z_{G}(s \theta(s))\right)$ and the integral $\Phi_{1_{K}}^{Z_{G}(s \theta)}(u)$ Гas well as the centralizer $Z_{H}(N s)$ and the integral $\Phi_{1_{K}}^{Z_{H}(N s)}(N u)$. Fortunately the centralizer $Z_{G}(s \theta)$ and $Z_{H}(N s)$ are just various forms of groups closely related with $G L(2, F) \Gamma$ whose orbital integrals are well known. To simplify the notations we note that the entry e in $G L(1, F)$ must be in $G L(1, R)$ for our integrals to be non zero and then our integrals are independent of this e. Hence we take $e=1 \Gamma$ and omit it from the notations.

B. Case of torus of type (I).

In our usual notations $\Gamma s=h^{-1}\left(s_{1}, s_{2}, \sigma s_{2}, \sigma s_{1}\right) h \Gamma$ and so $s \theta(s)=h^{-1}\left(s_{1} / \sigma s_{1}, s_{2} / \sigma s_{2}\right.$, $\left.\sigma s_{2} / s_{2}, \sigma s_{1} / s_{1}\right) h \Gamma$ where $\sigma h \cdot h^{-1}=\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)=(14)(23)$.
(1) Suppose that $s_{1} / \sigma s_{1}=s_{2} / \sigma s_{2} \neq \pm 1$. Then $Z_{\mathbf{G}(E)}(s \theta(s))$ consists of $h^{-1}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right) h ; A, B \in$ $G L(2, E)$. The subgroup $Z_{\mathbf{G}(E)}(s \theta)$ consists of $g=h^{-1}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right) h$ with $g s \theta(g)^{-1}=s\left(=h^{-1} s^{*} h\right)$. Putting $f=-s_{2} / s_{1}=-\sigma s_{2} / \sigma s_{1} \in R^{\times} \Gamma$ this relation amounts to $B=$ $\|A\|^{-1}\left(\begin{array}{cc}1 & 0 \\ 0 & f\end{array}\right)^{-1} A\left(\begin{array}{ll}1 & 0 \\ 0 & f\end{array}\right)$. The group $Z_{G}(s \theta)$ of F-rational points is determined by the relation $h^{-1}\left(\begin{array}{cc}A & 0 \\ 0 & \|A\|^{-1} \tilde{f}^{-1} A \tilde{f}\end{array}\right) h=\sigma h^{-1}\left(\begin{array}{c}\sigma A \\ 0\end{array}\|\sigma A\|^{-1} \tilde{f} \cdot \sigma A \cdot \tilde{f}\right) \sigma h \Gamma$ which amounts to $\|A\| \cdot\|\sigma A\|=1 \Gamma$ and $\|A\| \sigma A=\tilde{f} w A w \tilde{f}^{-1} \Gamma \tilde{f}=\left(\begin{array}{ll}1 & 0 \\ 0 & f\end{array}\right)$. Consequently $\|A\|=\alpha / \sigma \alpha$ for some $\alpha \in E^{\times} \Gamma$ and $A^{\prime}=\alpha^{-1} A$ satisfies $\sigma A^{\prime}=\tilde{f} w A^{\prime} w \tilde{f}^{-1} \Gamma$ so $A^{\prime}=\left(\begin{array}{cc}\sigma a & \sigma b \\ f \sigma b & \sigma a\end{array}\right)$ ranges over a group which is F-isomorphic to $G L(2, F)^{\prime}$ if $f \in N_{E / F} E^{\times}$Tor over an anisotropic inner form $D^{\prime \times}$ thereof if $f \in F-N_{E / F} E$. Here the prime indicates: determinant in $N_{E / F} E^{\times}$. Indeed Γ the determinant of $\alpha^{-1} A$ is $1 / \alpha \sigma \alpha$.

The topologically unipotent element $u=h^{-1}\left(u_{1}, u_{2}, \sigma u_{2}, \sigma u_{1}\right) h$ lies in $Z_{G}(s \theta)$. It commutes with $s \theta \Gamma$ and with $s \in T \Gamma$ hence with θ. Also $h=\theta(h)$. Hence $u_{1} \sigma u_{1}=1, u_{2} \sigma u_{2}=1 \Gamma$ and so $u_{i}=\alpha_{i} / \sigma \alpha_{i}$ Гand $A=\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{2}\end{array}\right)$ has $\|A\|=\frac{\alpha_{1} \alpha_{2}}{\sigma\left(\alpha_{1} \alpha_{2}\right)}$. Then $\alpha^{-1} A=\left(\begin{array}{cc}1 / \alpha_{2} \sigma \alpha_{1} & 0 \\ 0 & 1 / \alpha_{1} \sigma \alpha_{2}\end{array}\right)$.

The stable θ-orbital integral is the sum of θ-orbital integrals Γ parametrized by $\left(F^{\times} / N E^{\times}\right)^{2}$. Let us show that precisely two such θ-orbits intersect K. Recall that if $t \theta=u s \theta=s \theta u$ and $t^{\prime} \theta=u^{\prime} s^{\prime} \theta=s^{\prime} \theta u^{\prime}$ are stably θ-conjugate then so are $s \theta, s^{\prime} \theta \Gamma$ and if $s=s^{\prime}$ then u, u^{\prime} are.

Lemma. Only one θ-conjugacy class in the stable θ-conjugacy class of s intersects K.
Proof. The element $s_{1}=x+y \sqrt{D} \in R_{E}^{\times}\left(x, y \in R ; D \in R^{\times}\right.$or $\left.\pi R^{\times}\right)$is absolutely semi simple. Hence $|x|=|y|=|D|=1$. Indeed Γ if $|y D|<1$ then $x \in R^{\times}$(since $s_{1} \in R_{E}^{\times}$) and $s_{1}=x(1+y \sqrt{D} / x)$ has a non trivial topologically unipotent part $1+y \sqrt{D} / x$ Гcontrary to the uniqueness of the decomposition into absolutely semi simple and topologically unipotent parts. Moreover $\Gamma|x|=1$. Indeed Γ if $|x|<1 \Gamma$ then $s_{1}=y \sqrt{D}(1+x / y \sqrt{D})$ again has a non trivial topologically unipotent part. Now the group $F^{\times} / N E^{\times}$is represented by $R=$ $1, \pi$ Гand the θ-conjugacy classes within the stable θ-conjugacy class of s are represented by $\left[\left(\begin{array}{cc}x & y D R_{1} \\ y / R_{1} & x\end{array}\right),\left(\begin{array}{cc}x & y D R_{2} \\ y / R_{2} & x\end{array}\right)\right], R_{1}, R_{2} \in\{1, \boldsymbol{\pi}\}$. By Part IГProposition H.3Гthe θ-conjugacy class does not intersect K unless it is represented by $s\left(R_{1}=R_{2}=1\right)$.

Consequently the θ-conjugacy classes of $t \theta=u s \theta$ which contribute to the stable θ-orbital integral of 1_{K} have absolutely semi simple part represented by $s \theta$. They are represented by $t \theta=u s \theta=s \theta u$ and $t^{\prime} \theta=u^{\prime} s \theta=s \theta u^{\prime} \Gamma$ when u and u^{\prime} are topologically unipotent stably conjugate elements of $Z_{G}(s \theta)$. As noted above $\Gamma Z_{G}(s \theta)$ is F-isomorphic to (an inner form of) $G L(2, F)^{\prime}$. A regular elliptic element of this group has two conjugacy classes within its stable conjugacy class Γ parametrized by $F^{\times} / N E^{\times}$. In fact the stable class is the intersection with $G L(2, F)^{\prime}$ of the orbit in $G L(2, F)$. We conclude that (when the stable integral is non zero Γ E / F is unramified and)

$$
\Phi_{1_{K}}^{G, s t}(u s \theta)=\Phi_{1_{Z_{K}(s \theta)}^{\left(Z_{G}(s \theta), s t\right.}}^{Z_{1}}(u)=\Phi_{1_{K}}^{G L(2, F)}(u),
$$

where the last u is the conjugacy class in $G L(2, F)$ determined by the eigenvalues $1 / \alpha_{2} \sigma \alpha_{1}$, $1 / \alpha_{1} \sigma \alpha_{2}$ Гwhere $u_{i}=\alpha_{i} / \sigma \alpha_{i}$.

We now turn to the norm of $s=h^{-1} s^{*} h$. It is determined by $N s^{*}=\left(s_{1} s_{2}, s_{1} \sigma s_{2}, s_{2} \sigma s_{1}\right.$, $\left.\sigma\left(s_{1} s_{2}\right)\right) \Gamma$ which is $s_{1} \sigma s_{2}\left(s_{2} / \sigma s_{2}, 1,1, \sigma s_{2} / s_{2}\right) \Gamma$ since $s_{2} \sigma s_{1}=s_{1} \sigma s_{2} \in R^{\times}$. Note that $s_{1} / \sigma s_{2}=$ $x_{1}+y_{1} \sqrt{D}$ is absolutely semi simple $(\neq \pm 1) \Gamma$ hence x_{1}, y_{1} lie in R^{\times}. The stable conjugacy class of $N s$ consists of a single conjugacy class Γ represented (in $G S p(2, F)$) by (the product of $s_{2} \sigma s_{1} \in R^{\times}$with) $\left.\left[\begin{array}{cc}x_{1} & y_{1} D \\ y_{1} & x_{1}\end{array}\right), I\right]$. The centralizer of $N s$ is

$$
\begin{aligned}
& Z_{G S p(2, F)}(N s)=\left\{[t, A] ; t \in T, A \in G L(2, F)^{\prime},\|t\|=\|A\|\right\}, \\
& T=\left\{\left(\begin{array}{cc}
x^{\prime} & y^{\prime} D \\
y^{\prime} & x^{\prime}
\end{array}\right) \in G L(2, F)^{\prime}\right\} .
\end{aligned}
$$

The norm $N u$ of u lies in $Z_{G S p(2, F)}(N s)$; it is determined by $N u^{*}=\left(u_{1} u_{2}, u_{1} \sigma u_{2}, u_{2} \sigma u_{1}\right.$, $\left.\sigma\left(u_{1} u_{2}\right)\right) \Gamma$ and we have $u_{i} \sigma u_{i}=1$. The " t " part of $N u^{*}$ is determined by $\left(u_{1} u_{2}, \sigma\left(u_{1} u_{2}\right)\right)$.

The " A " part is determined by the eigenvalues $\left(u_{1} \sigma u_{2}, u_{2} \sigma u_{1}\right)=\left(u_{1} / u_{2}, u_{2} / u_{1}\right)$. The two conjugacy classes of $N t$ within its stable conjugacy class are represented by $N s N u$ and $N s N u^{\prime} \Gamma$ where the "A" parts of $N u, N u^{\prime} \Gamma$ denoted $A, A^{\prime} \Gamma$ are stably conjugate Γ but not conjugate Γ in $G L(2, F)^{\prime}$. It follows that

$$
\Phi_{1_{K}}^{G S p(2, F)}(N s N u)^{s t}=\Phi_{1_{Z_{K}(N s)}}^{Z_{G s p(2, F)}(N s)}(N u)^{s t}=\Phi_{1_{K}}^{G L(2, F)}\left(u_{1} / u_{2}, u_{2} / u_{1}\right)
$$

The last term is the orbital integral of 1_{K} on $G L(2, F)$ at the elliptic regular orbit with eigenvalues $u_{1} / u_{2}, u_{2} / u_{1}$.

To compare our orbital integrals on $G L(2, F)$ of 1_{K} Гat the class determined by the eigenvalues $\left(u_{1} / u_{2}, u_{2} / u_{1}\right) \Gamma$ and $\left(u_{1}, u_{2}\right)$ in the θ-case Γ note that we have seen above that the integral is given by an explicit expression Γ depending only on $\left|u_{1} / u_{2}-u_{2} / u_{1}\right| \Gamma$ respectively $\left|u_{1}-u_{2}\right|$. Since $\left|u_{1}\right|=\left|u_{2}\right|=1$ (u is topologically unipotent) Γ these two terms are equal Γ and so are our stable θ - and stable orbital integrals Γ when $s_{1} / \sigma s_{1}=s_{2} / \sigma s_{2} \neq \pm 1$.
(2) The second case to be considered is when $s_{1} / \sigma s_{1}=\sigma s_{2} / s_{2} \neq \pm 1$. In this case $Z_{\mathbf{G}(E)}(s \theta(s))$ consists of $g=h^{-1}(23)\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)(23) h,(23)=\operatorname{diag}(1, w, 1)$. Then $Z_{\mathbf{G}(E)}(s \theta)$ consists of g with $g s \theta(g)^{-1}=s=h^{-1} s^{*} h$ एthus

$$
(23)\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)(23) s^{*}\left(\begin{array}{cc}
0 & w \\
w & 0
\end{array}\right)(23)\left(\begin{array}{cc}
{ }^{t} A & 0 \\
0 & t_{B}
\end{array}\right)(23)\left(\begin{array}{cc}
0 & w \\
-w & 0
\end{array}\right)=s^{*},
$$

namely if $\tilde{f}=\left(\begin{array}{ll}1 & 0 \\ 0 & f\end{array}\right)$ with $f=\sigma s_{1} / s_{2}=s_{1} / \sigma s_{2} \in R^{\times} \Gamma$ then $B=\left(\begin{array}{cc}s_{2} & 0 \\ 0 & \sigma s_{1}\end{array}\right) w \varepsilon^{t} A^{-1} \varepsilon w\left(\begin{array}{cc}s_{2} & 0 \\ 0 & \sigma s_{1}\end{array}\right)^{-1}$ $=\|A\|^{-1} \tilde{f} A \tilde{f}^{-1}$.

Now $Z_{G}(s \theta)$ consists of $h^{-1}(23)\left(\begin{array}{cc}A & 0 \\ 0 & \|A\|^{-1} \tilde{f} A \tilde{f}^{-1}\end{array}\right)(23) h$ which are equal to

$$
\sigma h^{-1}(23) \operatorname{diag}\left(\sigma A,\|\sigma A\|^{-1} \tilde{f} \cdot \sigma A \cdot \tilde{f}^{-1}\right)(23) \sigma h
$$

Since $\sigma h \cdot h^{-1}=\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)$ Гand so $(23) \sigma h \cdot h^{-1}(23)=\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right) \Gamma$ this relation amounts to $\|A\| \cdot\|\sigma A\|=1$ and $A=\|A\| \tilde{f}^{-1} w \sigma A w \tilde{f}$. Then $\|A\|=\alpha / \sigma \alpha, \alpha \in E^{\times} \Gamma$ and $A^{\prime}=\alpha^{-1} A=\binom{a}{f^{-1} \sigma b \sigma a}$. As in the previous case we see that there is only one θ-orbit of s in its stable θ-orbit which intersects K. It is represented by (23) diag $\left(\left(\begin{array}{cc}x & y \\ y & x\end{array}\right), f\left(\begin{array}{cc}x & -y D \\ -y & x\end{array}\right)\right)(23) \Gamma$ if $s_{1}=x+y \sqrt{D} \Gamma$ and $|x|=|y|=|D|=1$. The θ-orbits within the stable θ-orbit of $t \theta=s \theta \cdot u$ are two Γ the other is $t^{\prime} \theta=s \theta \cdot u^{\prime} \Gamma$ where u, u^{\prime} are stably conjugate in the group whose F-points are $\left(\begin{array}{cc}a & b \\ f^{-1} \sigma b & \sigma a\end{array}\right) \in$ $G L(2, E)$ (thus this group is $G L(2, F)^{\prime}$ or an anisotropic inner form $D^{\prime \times}$ Гdepending on whether $f \in N E^{\times}$or $\left.f \notin N E^{\times}\right)$. Note that $u=h^{-1}(23)\left(u_{1}, \sigma u_{2}, u_{2}, \sigma u_{1}\right)(23) h \Gamma$ and $u_{i} \sigma u_{i}=1$. If $u_{i}=\alpha_{i} / \sigma \alpha_{i}, A=\left(\begin{array}{cc}u_{1} & 0 \\ 0 & \sigma u_{2}\end{array}\right), A^{\prime}=\frac{1}{\alpha} A=\left(\begin{array}{cc}1 / \sigma\left(\alpha_{1} \alpha_{2}\right) & 0 \\ 0 & 1 / \alpha_{1} \alpha_{2}\end{array}\right) \Gamma$ then

$$
\Phi_{1_{K}}^{G, s t}(u s \theta)=\Phi_{1_{Z_{K}(s \theta)}}^{Z_{G}(s \theta), s t}(u)=\Phi_{1_{K}}^{G L(2, F)}\left(A^{\prime}\right)
$$

Here we noted that the stable orbital integral in $G L(2, F)^{\prime}$ of the elliptic regular element with the same eigenvalues as A^{\prime} 「is equal to the orbital integral in $G L(2, F)$ of the orbit determined by A^{\prime}.

The norm of $t \theta=u s \theta$ is determined by $N s^{*} N u^{*}$. Here $N s^{*}=\left(s_{1} s_{2}, s_{1} \sigma s_{2}, s_{2} \sigma s_{1}, \sigma\left(s_{1} s_{2}\right)\right)$ is the product of $s_{1} s_{2}=\sigma\left(s_{1} s_{2}\right) \in R^{\times}$with $\left(1, \sigma s_{2} / s_{2}, s_{2} / \sigma s_{2}, 1\right)$. Since $\sigma s_{1} / s_{1}=\left(\sigma s_{2} / s_{2}\right)^{-1}$ $\neq \pm 1$ lies in $E^{1}-F \cap E^{1} \Gamma$ we have that $Z_{G S p}(N s)=\left\{[A, t] ; A \in G L(2, F)^{\prime}, t \in T,\|A\|=\right.$ $\|t\|\}, T=\left\{\left(\begin{array}{cc}x & y D \\ y & x\end{array}\right) \in G L(2, F)\right\}$. The stable θ-orbit of $N s$ consists of a single orbit Γ which intersects K as can be shown by the arguments of the previous case. There are two orbits in the stable orbit of $N s N u$. They are represented by the two orbits in the stable orbit of A_{u} in $G L(2, F)^{\prime} \Gamma$ where $N u$ is $\left[A_{u}, t\right]$. In other words Γ

$$
\Phi_{1_{K}}^{G S p(2, F), s t}(N s N u)=\Phi_{1_{Z_{K}(N s)}}^{Z_{G S p(2, F)}(N s), s t}(N u)=\Phi_{1_{K}}^{G L(2, F)}\left(A_{u}\right)
$$

Now A_{u} is the elliptic regular orbit in $G L(2, F)$ with eigenvalues $u_{1} u_{2}, \sigma\left(u_{1} u_{2}\right) \Gamma$ so the last orbital integral is given by a closed formula depending on $\left|u_{1} u_{2}-\sigma\left(u_{1} u_{2}\right)\right|$. In the θ-case Γ the final orbital integral on $G L(2, F)$ is given by the same formula depending on $\left|u_{1}-\sigma u_{2}\right|$. But $\sigma u_{i}=u_{i}^{-1}$ and u_{i} are topologically unipotent. Hence $\left|u_{1} u_{2}-1 / u_{1} u_{2}\right|=\left|\left(u_{1} u_{2}\right)^{2}-1\right|=$ $\left|u_{1} u_{2}-1\right|=\left|u_{1}-u_{2}^{-1}\right| \Gamma$ and the equality of the stable integral at $N(u s)$ with the stable θ-integral at us follows.
(3) The third case to be considered is that when $s_{1} / \sigma s_{1}=\sigma s_{2} / s_{2}=-1$. In this case $\sigma s_{1}=-s_{1}=-x \sqrt{D}$ and $\sigma s_{2}=-s_{2}=-y \sqrt{D} \Gamma$ and s can be represented by $s=\left(\begin{array}{ccc}0 & 0 & y D \\ 0 & y D \\ x & 0 & \\ x & & 0\end{array}\right)$. Only one θ-conjugacy orbit in the stable θ-conjugacy class of s intersects K. It is the one represented by $s \Gamma$ thus $|x|=|y|=|D|=1$; all other θ-orbits are represented by $\left(\begin{array}{cccc}0 & 0 & y D R_{1} & \\ & y D R_{1} \\ y / R_{1} & 0 & 0\end{array}\right), R_{i} \in\{1, \boldsymbol{\pi}\}$. The centralizer $Z_{\mathbf{G}}(s \theta)$ of $s \theta$ in \mathbf{G} consists of $g=$ $h^{-1} g_{1} h$ with $g s \theta(g)^{-1}=s$. It is then isomorphic to $S O\left(\begin{array}{lll}0 & & \\ 0 & y & x \\ y & y & 0 \\ x\end{array}\right)$ (recall that $\theta(g, e)=$ $(\theta(g), e\|g\|)$. This group is isomorphic to $(G L(2) \times G L(2))^{\prime} \Gamma$ where the prime denotes the group of pairs $\left(x_{1}, x_{2}\right)$ with equal determinants. An isomorphism is given by mapping $\left(x_{1}=\right.$ $\left.\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right), x_{2}\right)$ to $\left\|x_{2}\right\|^{-1}\left(\begin{array}{ll}a_{1} x_{2} & b_{1} x_{2} \\ c_{1} x_{2} & d_{1} x_{2}\end{array}\right)$. In particular Γ an elliptic conjugacy class with eigenvalues $\left(\left(\begin{array}{cc}\alpha_{1} & 0 \\ 0 & \sigma \alpha_{1}\end{array}\right),\left(\begin{array}{cc}\beta_{1} & 0 \\ 0 & \sigma \beta_{1}\end{array}\right)\right)$ will be mapped to the class of $\left(\alpha_{1} / \sigma \beta_{1}, \alpha_{1} / \beta_{1}, \sigma \alpha_{1} / \sigma \beta_{1}, \sigma \alpha_{1} / \beta_{1}\right)$. There are two conjugacy classes within the stable conjugacy class of an elliptic regular element in $(G L(2, F) \times G L(2, F))^{\prime}$. Indeed Γ if T is the centralizer of this element Γ we need to compute $H^{1}(F, T)=H^{-1}\left(\operatorname{Gal}(E / F), X_{*}(T)\right) \Gamma$ where $X_{*}(T)=\left\{X=\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in\right.$ $\left.\mathbb{Z}^{4} ; x_{1}+x_{2}=y_{1}+y_{2}\right\} \Gamma$ and $\sigma X=\left(x_{2}, x_{1}, y_{2}, y_{1}\right)$. Thus we need to compute the quotient of the group of $X \in X_{*}(T) \Gamma$ with the property $N X=0 \Gamma$ where $N X=X+\sigma X \Gamma$ by the span of $X-\sigma X=\left(x_{1}-x_{2}, x_{2}-x_{1}, y_{1}-y_{2}, y_{2}-y_{1}\right)$. Note that $y_{1}+y_{2}=x_{1}+x_{2}$ implies that $y_{1}-y_{2}=x_{1}+x_{2}-2 y_{2}=\left(x_{1}-x_{2}\right)-2 x_{2}-2 y_{2}$. Hence our quotient is $\mathbb{Z} / 2 \mathbb{Z} \Gamma$ as asserted. Now if $t \theta=s \theta u=u s \theta \Gamma$ then $u=h^{-1} u^{*} h$ lies in the centralizer $Z_{G}(s \theta)=S O(2,2)=$ $(G L(2, F) \times G L(2, F))^{\prime}$. Since u commutes with $s \Gamma$ it commutes with θ. Also $\theta(h)=h \Gamma$ hence $\theta\left(u^{*}\right)=u^{*} \Gamma$ and as $u^{*}=\left(u_{1}, u_{2}, \sigma u_{2}, \sigma u_{1}\right) \Gamma$ we have $u_{1} \sigma u_{1}=1=u_{2} \sigma u_{2}$. Consequently the θ-conjugacy classes within the stable θ-conjugacy class of $t \theta=u s \theta \Gamma$ which intersect $K \Gamma$ are given by $u s \theta$ and $u^{\prime} s \theta \Gamma$ where u, u^{\prime} represent the two conjugacy classes within the stable conjugacy class of u in $(G L(2, F) \times G L(2, F))^{\prime}$. This last stable class is the intersection
with $(G L(2, F) \times G L(2, F))^{\prime}$ of the orbit in $G L(2, F) \times G L(2, F)$ which is determined by the eigenvalues $\left(\left(\alpha_{1}, \sigma \alpha_{1}\right) ;\left(\beta_{1}, \sigma \beta_{1}\right)\right)$ with $\alpha_{1} \sigma \alpha_{1}=\beta_{1} \sigma \beta_{1} \Gamma$ and $u_{1}=\alpha_{1} / \sigma \beta_{1}, u_{2}=\alpha_{1} / \beta_{1}$ (thus $\left.u_{1} u_{2}=\alpha_{1} / \sigma \alpha_{1}, u_{1} / u_{2}=\beta_{1} / \sigma \beta_{1}\right)$. We conclude that

$$
\Phi_{1_{K}}^{G, s t}(u s \theta)=\Phi_{1_{Z_{k}(s \theta)}}^{Z_{G}(s \theta), s t}(u)=\Phi_{1_{K}}^{G L(2, F) \times G L(2, F)}\left(\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \sigma \alpha_{1}
\end{array}\right),\left(\begin{array}{cc}
\beta_{1} & 0 \\
0 & \sigma \beta_{1}
\end{array}\right)\right) .
$$

Consider next the norm $N(u s) \Gamma$ which is determined by $N u^{*} \cdot N s^{*}$. For $N s^{*}$ we have $N(\operatorname{diag}(\sqrt{D}(x, y,-y,-x)))=x y D \operatorname{diag}(1,-1,-1,1)$. Its centralizer $Z_{G S p(N s)}$ in $G S p(2, F)$ is $(G L(2, F) \times G L(2, F))^{\prime} \Gamma$ consisting of the matrices $\left[g_{1}, g_{2}\right]$. The norm

$$
N u^{*}=N\left(u_{1}, u_{2}, \sigma u_{2}, \sigma u_{1}\right) \quad \text { is } \quad\left(u_{1} u_{2}, u_{1} \sigma u_{2}, \sigma u_{1} \cdot u_{2}, \sigma\left(u_{1} u_{2}\right)\right) .
$$

There are two conjugacy classes in the stable class of $N s \cdot N u$ in $G S p(2, F) \Gamma$ given by $N s \cdot U \Gamma$ where U is the intersection of the orbit of $N u$ in $G L(2, F) \times G L(2, F) \Gamma$ with $(G L(2, F) \times$ $G L(2, F))^{\prime}$. Hence our stable orbital integral is

$$
\begin{aligned}
& \Phi_{1_{K}}^{G S p(2, F), s t}(N s \cdot N u)=\Phi_{1_{Z_{K}(N s)}}^{Z_{G S p(2, F)}(N s), s t}(N u) \\
& =\Phi_{K}^{G L(2, F) \times G L(2, F)}\left(\left(\begin{array}{cc}
u_{1} u_{2} & 0 \\
0 & \sigma\left(u_{1} u_{2}\right)
\end{array}\right),\left(\begin{array}{cc}
u_{1} \cdot \sigma u_{2} & 0 \\
0 & u_{2} \cdot \sigma u_{1}
\end{array}\right)\right) .
\end{aligned}
$$

On the right we wrote the eigenvalues which determine the orbit Γ not a representative in $G L(2, F)$.

We can now compare the stable with the θ-stable orbital integral. Both are given by explicit closed formulae Γ which depend only on the Δ-factor Γ which in the θ-case is the product of

$$
\left|\left(\frac{\alpha_{1}}{\sigma \alpha_{1}}-1\right)\left(\frac{\sigma \alpha_{1}}{\alpha_{1}}-1\right)\right|^{1 / 2}=\left|\left(u_{1} u_{2}-1\right) \sigma\left(u_{1} u_{2}-1\right)\right|^{1 / 2}=\left|\left(u_{1} u_{2}\right)^{2}-1\right|=\left|u_{1} u_{2}-\sigma\left(u_{1} u_{2}\right)\right|
$$

and
$\left|\left(\frac{\beta_{1}}{\sigma \beta_{1}}-1\right)\left(\frac{\sigma \beta_{1}}{\beta_{1}}-1\right)\right|^{1 / 2}=\left|\left(\frac{u_{1}}{u_{2}}-1\right)\left(\frac{u_{2}}{u_{1}}-1\right)\right|^{1 / 2}=\left|\left(\frac{u_{1}}{u_{2}}\right)^{2}-1\right|=\left|\frac{u_{1}}{u_{2}}-\frac{u_{2}}{u_{1}}\right|=\left|u_{1} \sigma u_{2}-u_{2} \sigma u_{1}\right|$,
since u_{i} are topologically unipotent and $u_{i} \sigma u_{i}=1$. But the product of the right hand sides is the factor which appears in the non twisted case and our comparison is then complete.

This completes our discussion of the proof of the Theorem for elements of type (I). We dealt with $t \theta=u s \theta$ according to the values taken by $s \theta(s)$. The main case is that where the orbit of $s \theta(s)$ contains the identity. Above we dealt with the cases where $s \theta(s)$ is $-I \Gamma$ or its eigenvalues take precisely two values $\left(\left(t_{1}, t_{1}, t_{1}^{-1}, t_{1}^{-1}\right)\right.$ or $\left.\left(t_{1}, t_{1}^{-1}, t_{1}, t_{1}^{-1}\right)\right)$. The remaining cases are where the eigenvalues of $s \theta(s)$ take the form $(1,-1,-1,1),\left(1, t, t^{-1}, 1\right)$, $\left(-1, t, t^{-1},-1\right),\left(t_{1}, t_{2}, t_{2}^{-1}, t_{1}^{-1}\right) \Gamma$ with $t, t_{i} \neq \pm 1$. They can similarly be handled. The centralizer will even be of smaller rank. We leave these cases to the reader.

C. Case of torus of type (II).

In this case E is the composition of the quadratic extensions of F which are $E_{1}=F(\sqrt{D})=$ $E^{\tau}, E_{2}=F(\sqrt{A D})=E^{\sigma \tau}, E_{3}=F(\sqrt{A})=E^{\sigma} \Gamma$ and the θ-conjugacy classes within the stable θ-conjugacy class of $s=h^{-1} s^{*} h=h^{-1}\left(s_{1}, s_{2}, \tau s_{2}, \sigma s_{1}\right) h \Gamma$ a θ-elliptic strongly θ-regular element of type (II) Γ are represented by $\left[\left(\begin{array}{cc}a_{1} & a_{2} D R_{1} \\ a_{2} / R_{1} & a_{1}\end{array}\right),\left(\begin{array}{cc}b_{1} & b_{2} A D R_{2} \\ b_{2} / R_{2} & b_{1}\end{array}\right)\right], R_{1} \in F^{\times} / N_{E_{1} / F} E_{1}^{\times}, R_{2} \in$ $F^{\times} / N_{E_{2} / F} E_{2}^{\times}$. Further $h=\theta(h)=\left[h_{D}^{\prime}, h_{A D}^{\prime}\right] \Gamma$ where $h_{D}^{\prime}=\left(\begin{array}{cc}-1 / 2 \sqrt{D} & -1 / 2 \\ 1 & -\sqrt{D}\end{array}\right) \Gamma$ and $s_{1}=a_{1}+$ $a_{2} \sqrt{D} \in E_{1}^{\times}, s_{2}=b_{1}+b_{2} \sqrt{A D} \in E_{2}^{\times}$. Now we consider such $t \theta=u s \theta=s \theta u \Gamma$ where $s \theta$ is absolutely semi simple. So is $(s \theta)^{2}=s \theta(s)=h^{-1}\left(s_{1} / \sigma s_{1}, s_{2} / \tau s_{2}, \tau s_{2} / s_{2}, \sigma s_{1} / s_{1}\right) h$. Since $\operatorname{val}(A D)=1, s_{2} / \tau s_{2}$ must be 1. Indeed Γ had it been -1Γ we would have had that $s_{2}=\alpha \sqrt{A D}, \alpha \in F^{\times}$Cbut then s_{2} cannot be a unit. Note that $\alpha+\beta \sqrt{\pi}$ can be absolutely semi-simple only when $\beta=0, \alpha \in R^{\times}$. Then Γ multiplying s by the scalar s_{2}^{-1} in $R^{\times} \Gamma$ we may assume that $s_{2}=1$. The case where $s_{1} / \sigma s_{1}=1$ is the main case Γ considered in Part II above. Suppose that $s_{1} / \sigma s_{1} \neq 1$. As we just noted ΓD must then be a unit. Put $s_{1}=\alpha+\beta \sqrt{D}$. If $\alpha=0$ (and $|\beta|=1) \Gamma$ then $s_{1} / \sigma s_{1}=-1$. Otherwise Γ since $s_{1} / \sigma s_{1}$ is absolutely semi simple we have that both α, β lie in R^{\times}.

In the first case Γ where $s_{1} / \sigma s_{1}=-1 \Gamma$ we have $s^{*} \theta\left(s^{*}\right)=(-1,1,1,-1) \Gamma$ and $Z_{\mathbf{G}}(s \theta(s))=$ $\left\{h^{-1}[A, B] h\right\}$. Then $Z_{\mathbf{G}}(s \theta)$ is the set of $g=h^{-1} g_{1} h \Gamma$ such that $\|g\|=1$ and $g s \theta(g)^{-1}=$
 $[A, B], B \varepsilon w^{t} B=\varepsilon w \Gamma$ namely $B \in S L(2) \Gamma$ and $A w^{t} A=w$. Since $\|A\|=\left\|g_{1}\right\| /\|B\|=1 \Gamma$ we have $A=\varepsilon A \varepsilon=\operatorname{diag}\left(a, a^{-1}\right)$. In summary $Z_{\mathbf{G}}(s \theta)=\left\{h^{-1} \operatorname{diag}\left(a, B, a^{-1}\right) h ; a \in G L(1), B \in\right.$ $S L(2)\}$. In the second case the same is true Γ since $s_{1} / \sigma s_{1} \neq \pm 1$ implies that $Z_{\mathbf{G}}(s \theta(s))=$ $\left\{h^{-1}\left[\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right), B\right] h\right\}$ Fhence $Z_{\mathbf{G}}(s \theta)=\left\{h^{-1}\left[\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right), B\right] h ; a \in G L(1), B \in S L(2)\right\}$ (using $\|g\|=1$). To find the rational pointsएnote that $\tau h \cdot h^{-1}=\left[I,\left(\begin{array}{c}0 \\ -2 \sqrt{A D} \\ 1 / 2 \sqrt{A D}\end{array}\right)\right] \Gamma$ and that $\sigma \tau h \cdot h^{-1}=$ $\left[\left(\begin{array}{c}0 \\ -2 \sqrt{D} \\ 0\end{array}\right), I\right]$. The relation $g=\sigma \tau g$ then translates into $B=\sigma \tau B \in S L\left(2, E_{2}\right) \Gamma$ and $a \sigma \tau a=1$. The relation $g=\tau g$ implies $a=\tau a \in E_{1}^{\times} \Gamma$ and $\tau B=d w B w d^{-1} \Gamma$ where $d=$ $\operatorname{diag}(1 / 2 \sqrt{A D},-2 \sqrt{A D})$. Hence $B=\left(\begin{array}{cc}x & y \\ -4 A D \tau y & \tau x\end{array}\right)$. Since $-A D=N_{E_{2} / F}(\sqrt{A D}) \Gamma B$ ranges over the group $S L(2, F)$. In conclusion Γ the stable θ-orbital integral is

$$
\Phi_{1_{K}}^{G, s t}(u s \theta)=\Phi_{1_{Z_{K}(s \theta)}}^{Z_{G}(s \theta), s t}(u)=\Phi_{1_{K}}^{S L(2, F), s t}\left(\begin{array}{cc}
u_{2} & 0 \\
0 & \tau u_{2}
\end{array}\right)=\Phi_{1_{K}}^{G L(2, F)}\left(\begin{array}{cc}
u_{2} & 0 \\
0 & \tau u_{2}
\end{array}\right) .
$$

Indeed $\Gamma u=h^{-1}\left(u_{1}, u_{2}, \tau u_{2}, \sigma u_{1}\right) h$ has "B" part $\left(u_{2}, \tau u_{2}\right) \Gamma$ which in the last integral above is interpreted as the conjugacy class in $G L(2, F)$ with eigenvalues $u_{2}, \tau u_{2}$. This integral is given by an explicit expression Γ depending on $\left|u_{2}-\tau u_{2}\right|$.

The norm of t lies in a torus of type (II) in $G S p(2, F) \Gamma$ whose elements are of the form $\left(\begin{array}{c}\mathbf{\mathbf { b R } ^ { - 1 }} \stackrel{\mathbf{b}}{\mathbf{a}} \mathbf{a} \mathbf{a}\end{array}\right) \Gamma$ where R ranges over a set of representatives for $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$. We have that $D \in R^{\times}$Гhence $A=\pi$ Thence $E_{3}=F(\sqrt{A})$ is ramified over F and E / E_{3} is unramified Γ and so R ranges over $\left\{1, \pi_{3}=\sqrt{A}\right\}$. Now the norm $N s$ of $s=\tilde{h}^{-1} s^{*} \tilde{h}, s^{*}=\left(s_{1}, s_{2}, \tau s_{2}, \sigma s_{1}\right) \Gamma$ is $h^{-1}\left(s_{1} s_{2}, s_{1} \tau s_{2}, \sigma s_{1} \cdot s_{2}, \sigma s_{1} \cdot \tau s_{2}\right) h$; but $s_{2}=1 \Gamma$ so this is $h^{-1}\left(\begin{array}{cc}s_{1} & 0 \\ 0 & \sigma s_{1}\end{array}\right) h=\left(\begin{array}{c}\alpha \beta D \\ \beta\end{array} \alpha\right.$
conjugate but not conjugate is represented by $\left(\underset{\beta \mathbf{R}^{-1}}{\alpha} \underset{\alpha}{\beta D \mathbf{R}}\right)$. Here we denoted by \tilde{h} the h used above in the description of representatives for the θ-conjugacy classes Γ and use h to denote $h=\left(\begin{array}{cc}-1 / 2 \sqrt{A} & 0 \\ 0 & I\end{array}\right)\left(\begin{array}{cc}h_{A} & 0 \\ 0 & \varepsilon h_{A} \varepsilon\end{array}\right)\left(\begin{array}{cc}-1 / 2 \sqrt{D} & -1 / 2 \\ 1 & -\sqrt{D}\end{array}\right) \Gamma$ which realizes the torus of type (II) in $\operatorname{GSp}(2, F)$. Since $\beta \in R^{\times}, D \in R^{\times}$and α is 0 or in $R^{\times},\left(\begin{array}{cc}\alpha & \beta D \\ \beta & \alpha\end{array}\right)$ lies in K. Its non-conjugate but stably conjugate orbit Γ represented by $\left(\begin{array}{c}\alpha \\ \beta \mathbf{R}^{-1}\end{array} \underset{\alpha}{\beta D \mathbf{R}}\right.$), $\mathbf{R}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array} 0\right.$ I.H.3 [and the fact that $N s$ is absolutely semi simple). Hence the stable orbital integral of 1_{K} at $N(s u)$ will be reduced to a single orbital integral.

The centralizer $Z_{\boldsymbol{G S} \boldsymbol{p}}(N s)$ of $N s=h^{-1}(\alpha+\beta \sqrt{D}, \alpha-\beta \sqrt{D}) h \Gamma$ consists of

$$
\begin{aligned}
g & =h^{-1}\left(\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right) h=\lambda h^{-1}\left(\begin{array}{cc}
0 & -w \\
w & 0
\end{array}\right)\left(\begin{array}{cc}
{ }^{t} X^{-1} & 0 \\
0 & { }^{t} Y^{-1}
\end{array}\right)\left(\begin{array}{cc}
0 & w \\
-w & 0
\end{array}\right) h \\
& =h^{-1}\left(\begin{array}{cc}
X & 0 \\
0 & \lambda w^{t} X^{-1} w
\end{array}\right) h=h^{-1}\left(\begin{array}{cc}
X & 0 \\
0 & \lambda\|X\|^{-1} \varepsilon X \varepsilon
\end{array}\right) h .
\end{aligned}
$$

To find the rational points n note that as $h_{A}=\left(\begin{array}{cc}1 & \sqrt{A} \\ 1 & -\sqrt{A}\end{array}\right), \tau h_{A} \cdot h_{A}^{-1}=w \Gamma$ and $\tau h \cdot h^{-1}=\left(\begin{array}{cc}-w & 0 \\ 0 & -w\end{array}\right)$. The relation $g=\tau g$ then reads $\tau X=w X w \Gamma$ hence also $\|X\|=\|\tau X\| \Gamma$ and $\lambda=\tau \lambda \in E_{1}^{\times}$. Further we have $\sigma h \cdot h^{-1}=\left(\begin{array}{cc}0 \\ 4 \sqrt{A D \varepsilon w} & -w \varepsilon / 4 \sqrt{A D} \\ 0\end{array}\right)$. Hence $g=\sigma g$ implies $\sigma X=\lambda\|X\|^{-1} w X w$ and that $\|X\| \cdot\|\sigma X\|=\lambda \sigma \lambda$. We then write $\lambda /\|X\|=v / \sigma v$ with $v \in E_{1}^{\times}$. Since $E_{1}=$ $F(\sqrt{D}) / F$ is unramified Γ we may and do take v in R_{1}^{\times}. Then $\sigma(v X)=w \cdot v X \cdot w \Gamma$ and so $\sigma \tau(v X)=v X$ lies in $G L\left(2, E_{2}\right) \Gamma$ and $\tau(v X)=w \cdot v X \cdot w$ further implies that $v X$ ranges over a group F-isomorphic to $G L(2, F)$ (namely $\left(\begin{array}{cc}a & b \\ \tau b & \tau a\end{array}\right), a, b$ in E_{2}). In particular Γ for our $u^{*}=$ $\left(u_{1}, u_{2}, \tau u_{2}, \sigma u_{1}\right) \Gamma$ we have $N u=h^{-1}\left(u_{1} u_{2}, u_{1} \tau u_{2}, u_{2} \sigma u_{1}, \tau u_{2} \sigma u_{1}\right) h \Gamma$ whose "X" is $u_{1}\left(\begin{array}{cc}u_{2} & 0 \\ 0 & \tau u_{2}\end{array}\right) \Gamma$ and $\|X\|=u_{1}^{2}, v=u_{1}^{-1}, \lambda=1$ (thus $N u=h^{-1}\left(\begin{array}{cc}X & 0 \\ 0 & u_{1}^{-2} X\end{array}\right) h$). The stable orbital integral of 1_{K} at $N s N u$ is then

$$
\Phi_{1_{K}}^{G S p, s t}(N s N u)=\Phi_{1_{Z_{K}(N s)}}^{Z_{G S p}(N s), s t}(N u)=\Phi_{1_{K}}^{G L(2, F)}\left(\left(\begin{array}{cc}
u_{2} & 0 \\
0 & \tau u_{2}
\end{array}\right)\right)
$$

Again this is given by an explicit formula Γ depending only on $\left|u_{2}-\tau u_{2}\right| \Gamma$ and the equality of the stable θ-integral with the stable integral follows.

D. Case of torus of type (III).

In this case E again is the compositum of the quadratic extensions $E_{1}=F(\sqrt{D})=E^{\tau} \Gamma$ $E_{2}=F(\sqrt{A D})=E^{\sigma \tau} \Gamma E_{3}=F(\sqrt{A})=E^{\sigma} \Gamma$ of $F \Gamma$ and the θ-conjugacy classes within a strongly θ-regular stable θ-orbit are represented by $t_{1}=h^{-1} t^{*} h=\left(\begin{array}{c}\mathbf{a} \\ \mathbf{b} \mathbf{R}^{-1} \\ \mathbf{b} D \mathbf{R} \\ \mathbf{a}\end{array}\right)$ with $R=1$ or $R \in E_{3}-N_{E / E_{3}} E$. Here $t^{*}=(t, \tau t, \sigma \tau t, \sigma t), t=a+b \sqrt{D}, a=a_{1}+a_{2} \sqrt{A}, b=b_{1}+$ $b_{2} \sqrt{A}, a_{i}, b_{i} \in F$. Further Γh is such that $\theta(h)=h, \tau(h) h^{-1}=\left(\begin{array}{cc}-w & 0 \\ 0 & -w\end{array}\right) \Gamma$ and $\sigma(h) h^{-1}=$ $\left(\begin{array}{cc}-1 / 4 \sqrt{A D} & 0 \\ 0 & 4 \sqrt{A D}\end{array}\right)\left({ }_{\varepsilon w}{ }^{w \varepsilon}\right)$. As usual we distinguish the cases according to the values of

$$
s_{1} \theta\left(s_{1}\right)=h^{-1}(s / \sigma s, \tau(s / \sigma s), \sigma \tau(s / \tau s), \sigma(s / \tau s)) h
$$

where $t_{1} \theta=u_{1} s_{1} \theta=s_{1} \theta u_{1}$ is the decomposition of t_{1} into a product of commuting absolutely semi simple $s_{1} \theta \Gamma$ and topologically unipotent u_{1} Гelements. Also $s_{1}=h^{-1}(s, \tau s, \sigma \tau s, \sigma s) h$. Now $s_{1} \theta\left(s_{1}\right)$ is absolutely semi simpleГhence so is $s / \sigma s=a^{\prime}+b^{\prime} \sqrt{D}\left(a^{\prime}, b^{\prime} \in R_{3}\right)$. If $D=\pi\left(A \in R^{\times}\right) \Gamma$ then $b^{\prime}=0 \Gamma$ and so $a^{\prime}= \pm 1$. If $\sigma s=-s \Gamma$ then $s=b \sqrt{D}$ and $s_{1} \notin K$. Hence $\sigma s=s$ is the case where $s_{1} \theta\left(s_{1}\right)=I \Gamma$ which is handled above. Hence $D \in R^{\times} \Gamma$ and $A=\pi \Gamma$ so E / E_{3} is unramified Γ and F ranges over $\left\{1, \boldsymbol{\pi}_{3}\right\}$. Then we write $\sigma s / s=x+y \sqrt{A}\left(x, y \in R_{1}\right) \Gamma$ and conclude again that $y=0$ (since $\sigma s / s$ is absolutely semi simple and $A=\pi)$. hence $\tau(\sigma s / s)=\sigma s / s \in R_{1}^{\times}$. The cases to be considered are $s / \sigma s=1$ - but this is the main case considered above - or $\sigma s=-s$ Гor $\sigma s / s \neq \pm 1$.

If $\sigma s=-s \Gamma$ then $s=b \sqrt{D}, \sigma b=b=b_{1}+b_{2} \sqrt{A} \in R_{3}^{\times} \Gamma$ from which it follows that the stable θ-conjugacy class of s_{1} intersects K in a single θ-conjugacy class Γ represented by s_{1} with $R=1$. The centralizer $Z_{\mathbf{G}}(s \theta)$ consists of $g=h^{-1} g_{1} h \Gamma$ such that $\|g\|=1$ and $g s_{1} \theta(g)^{-1}=s_{1}=h^{-1} s^{*} h$. The last relation can be read as $g_{1} s^{*}\left(\begin{array}{cc}0 & -w \\ w & 0\end{array}\right)^{t} g_{1}=s^{*}\left(\begin{array}{cc}0 & -w \\ w & 0\end{array}\right)$. Hence $Z_{\mathbf{G}}(s \theta)$ is the group of $g=h^{-1} x g_{2} x^{-1} h$ एwhere $x=(b, \tau b, 1,1)$ Гand $g_{2}=\left(B, B^{\prime}\right)$ in $S O\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)$. The relation $\|g\|=1$ implies that g_{2} indeed lies in the special orthogonal group. Note that $\|B\|=\left\|B^{\prime}\right\|$.

Next we determine the rational points $Z_{G}(s \theta)$. The relation $\tau(h) h^{-1}=\left(\begin{array}{cc}-w & 0 \\ 0 & -w\end{array}\right)$ implies that if $g=\tau g \Gamma$ and $g_{2}=\left(B, B^{\prime}\right) \Gamma$ then $\tau g_{2}=\tau\left(B, B^{\prime}\right)=(B, w B w) \Gamma$ since $\left(\begin{array}{cc}-w & 0 \\ 0 & -w\end{array}\right)$ is (I, w) under the isomorphism $S O\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right) \simeq(G L(2) \times G L(2))^{\prime} / Z$. Thus $B \in G L\left(2, E_{1}\right) \Gamma$ and B^{\prime} lies in a group isomorphic to $G L\left(2, E_{1}\right)$. Further Γ the relation $g=\sigma g$ can be expressed as $\sigma\left(B, B^{\prime}\right)=\operatorname{Int}(x)\left(B, B^{\prime}\right) \Gamma$ where $x=\left(\left(\begin{array}{cc}1 & 0 \\ 0 & b \tau b\end{array}\right),\left(\begin{array}{cc}\tau b & 0 \\ 0 & b\end{array}\right)\right)\left(\left(\begin{array}{cc}-1 / 4 \sqrt{A D} & 0 \\ 0 & 4 \sqrt{A D}\end{array}\right), I\right)(w \varepsilon, \varepsilon w) \Gamma$ since $\operatorname{diag}\left(b^{-1}, \tau b^{-1}, \tau b, b\right)=\left(\left(\begin{array}{cc}1 & 0 \\ 0 & b \tau b\end{array}\right),\left(\begin{array}{cc}\tau b & 0 \\ 0 & b\end{array}\right)\right)$. It follows that B takes the form $\left(\begin{array}{c}\alpha \\ 16 b \tau b A D \sigma \beta \\ \sigma \alpha\end{array}\right) \Gamma$
 satisfy $\|B\|=\left\|B^{\prime}\right\|$. The element $u=h^{-1} u^{*} h, u^{*}=(u, \tau u, \sigma \tau u, \sigma u) \Gamma$ commutes with $\theta \Gamma$ hence $u \sigma u=1$. Then there is $v \in R_{E}^{\times}$with $u=v / \sigma v \Gamma$ and as an element of $S O\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right), u^{*}$ can be expressed as $v^{*}=\left(\left(\begin{array}{cc}v \tau v & 0 \\ 0 & \sigma(v \tau v)\end{array}\right),\left(\begin{array}{cc}v \sigma \tau v & 0 \\ 0 & \tau v \sigma v\end{array}\right)\right.$. As noted above Γ there is only one θ-conjugacy class in the stable θ-class of $t_{1} \theta=u_{1} s_{1} \theta \Gamma$ which intersects K. Moreover Γ there is only one conjugacy class in the stable conjugacy class of v^{*} in $(G L(2, F) \times G L(2, F))^{\prime}$. Indeed Γ if T is the centralizer of v^{*} in this group $\Gamma H^{1}(F, T)$ is the quotient of $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{Z}^{4}$ with $x_{1}+x_{2}=0=x_{3}+x_{4}\left(\tau X=\left(x_{1}, x_{2}, x_{4}, x_{3}\right), \sigma X=\left(x_{2}, x_{1}, x_{4}, x_{3}\right)\right.$, and $N X=X+\sigma X+$ $\tau X+\sigma \tau X$ is 0$) \Gamma$ by the span of $X-\tau X=(0,0, y,-y) \Gamma \sigma X-\tau X=(x,-x, 0,0) \Gamma$ namely it is zero. Hence

$$
\Phi_{1_{K}}^{G, s t}(u s \theta)=\Phi_{1_{K}}^{G L(2, F) \times G L(2, F)}\left(\left(\begin{array}{cc}
v \tau v & 0 \\
0 & \sigma(v \tau v)
\end{array}\right),\left(\begin{array}{cc}
v \sigma \tau v & 0 \\
0 & \tau v \sigma v
\end{array}\right)\right)
$$

is a product of two orbital integrals on $G L(2, F)$ Гwhich depend on the factors

$$
|v \tau v-\sigma(v \tau v)|=|u \tau u-1|, \text { and }|v \sigma \tau v-\tau v \sigma v|=|u / \tau u-1|
$$

The norm $N s_{1}$ is determined by $N s_{1}^{*}=(s \tau s, s \sigma \tau s, \tau s \sigma s, \sigma \tau s \sigma s)=b \tau b D(1,-1,-1,1)$. Hence the centralizer $Z_{\boldsymbol{G} \boldsymbol{S} \boldsymbol{p}}\left(N s_{1}\right)=Z_{\boldsymbol{G} \boldsymbol{S} \boldsymbol{p}}\left(\begin{array}{cc}\varepsilon & 0 \\ 0 & -\varepsilon\end{array}\right)$ consists of $\left[B, B^{\prime}\right]$ with $\|B\|=\left\|B^{\prime}\right\|$. The
element $u^{*}=(u, \tau u, \sigma \tau u, \sigma u)$ has norm $N u^{*}=(u \tau u, u \sigma \tau u, \tau u \sigma u, \sigma u \sigma \tau u)=\left[\begin{array}{cc}u \tau u & 0 \\ 0 & \sigma u \sigma \tau u\end{array}\right)$, $\left(\begin{array}{cc}u \sigma \tau u & 0 \\ 0 & \tau u \sigma u\end{array}\right)$. The stable conjugacy class of an element of type (III) in $G S p(2, F)$ consists of a single conjugacy class. We conclude that

$$
\Phi_{1_{K}}^{G S p(2, F)}\left(N s_{1} N u_{1}\right)=\Phi_{1_{K}}^{G L(2, F) \times G L(2, F)}\left(\left(\begin{array}{cc}
u \tau u & 0 \\
0 & \sigma(u \tau u)
\end{array}\right),\left(\begin{array}{cc}
u \sigma \tau u & 0 \\
0 & \tau u \sigma u
\end{array}\right)\right)
$$

is a product of two orbital integrals on $G L(2, F) \Gamma$ which depend on the factors $|u \tau u-\sigma(u \tau u)|=$ $\left|(u \tau u)^{2}-1\right|=|u \tau u-1|$ Гand $|u \sigma \tau u-\sigma(u \sigma \tau u)|=\left|(u \sigma \tau u)^{2}-1\right|=|u \sigma \tau u-1|=|u / \tau u-1|$. Here we used the fact that $u \sigma u=1 \Gamma$ and that u is topologically unipotent Γ so that $|u \tau u+1|=1$. This completes the comparison when $\sigma s=-s$.

The remaining case is when $\sigma s / s \neq \pm 1$. Since $\tau(\sigma s / s)=\sigma s / s \Gamma$ we have that $s_{1} \theta\left(s_{1}\right)=$ $h^{-1}(s / \sigma s, s / \sigma s, \sigma s / s, \sigma s / s) h \Gamma$ and so $Z_{\mathbf{G}}\left(s_{1} \theta\left(s_{1}\right)\right)=\left\{h^{-1}\left(\begin{array}{cc}B & 0 \\ 0 & B^{\prime}\end{array}\right) h\right\}$. Further $Z_{\mathbf{G}}\left(s_{1} \theta\right)$ is the set of $g=h^{-1} g_{1} h, g_{1}=\left(\begin{array}{cc}B & 0 \\ 0 & B^{\prime}\end{array}\right) \Gamma$ with $\|g\|=1$ and $g s_{1} \theta(g)^{-1}=s_{1}$. This translates to $\left(\|B\| \cdot\left\|B^{\prime}\right\|=1\right.$ and $) B\left(\begin{array}{cc}0 & s \\ \tau s & 0\end{array}\right)^{t} B^{\prime}=\left(\begin{array}{cc}0 & s \\ \tau s & 0\end{array}\right) \Gamma$ thus $B^{\prime}=\left(\begin{array}{cc}\tau s & 0 \\ 0 & s\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{t} B^{-1}\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}\tau s & 0 \\ 0 & s\end{array}\right)^{-1}=$ $\|B\|^{-1}\left(\begin{array}{cc}\tau s & 0 \\ 0 & -s\end{array}\right) B\left(\begin{array}{cc}\tau s & 0 \\ 0 & -s\end{array}\right)^{-1}$. Note that $s / \tau s=\sigma(s / \tau s)$. Thus $Z_{\mathbf{G}}\left(s_{1} \theta\right)$ consists of $g=h^{-1} \operatorname{diag}\left(B,\|B\|^{-1}\left(\begin{array}{cc}\tau s & 0 \\ 0 & -s\end{array}\right) B\left(\begin{array}{cc}\tau s & 0 \\ 0 & -s\end{array}\right)^{-1}\right) h$.

The rational points on this group $\Gamma Z_{G}\left(s_{1} \theta\right) \Gamma$ are obtained on solving $g=\tau g$ and $g=$ σg. Since $\tau(h) h^{-1}=\left(\begin{array}{cc}-w & 0 \\ 0 & -w\end{array}\right) \Gamma$ we have $\tau B=w B w \Gamma$ thus B lies in a group isomorphic to $G L\left(2, E_{1}\right)$. The equation $g=\sigma g$ leads to $\left(\sigma B, \sigma B^{\prime}\right)=\left(w \varepsilon B^{\prime} \varepsilon w, \varepsilon w B w \varepsilon\right) \Gamma$ or to $\sigma \tau B=$ $\|B\|^{-1}\left(\begin{array}{cc}\tau s & 0 \\ 0 & s\end{array}\right) B\left(\begin{array}{cc}\tau s & 0 \\ 0 & s\end{array}\right)^{-1}$ Cand $\|B\|=\|\tau B\|=\|\sigma \tau B\|^{-1}$. Hence $\|B\|=v / \sigma v, v=\tau v \Gamma v$ can be taken to be a unit since E_{1} / F is unramified. So $\sigma \tau\left(v^{-1} B\right)=\left(\begin{array}{cc}\tau s & 0 \\ 0 & s\end{array}\right) v^{-1} B\left(\begin{array}{cc}\tau s & 0 \\ 0 & s\end{array}\right)^{-1} \Gamma$ and $v^{-1} B$ lies in a group isomorphic to $G L(2, F)$. Now $u_{1}=h^{-1}(u, \tau u, \sigma \tau u, \sigma u) h \Gamma$ so $B=\left(\begin{array}{cc}u & 0 \\ 0 & \tau u\end{array}\right)$ Гand

$$
\Phi_{1_{K}}^{G, s t}\left(u_{1} s_{1} \theta\right)=\Phi_{1_{K}}^{G L(2, F)}(B)
$$

depends only on $|u-\tau u|$.
The norm of s_{1} is obtained from $N s_{1}^{*}=(s \tau s, s \sigma \tau s, \tau s \sigma s, \sigma \tau s \cdot \sigma s)$. The two middle entries are equal Γ hence $Z_{\boldsymbol{G S} \boldsymbol{p}}\left(N s_{1}\right)=\left\{g=h^{-1} \operatorname{diag}(a, B, b) h ; a b=\|B\|\right\}$. Here $h=\left[h_{D}^{\prime}, h_{A D}^{\prime}\right]$ Ssince $N s_{1} N u_{1}$ is an element of type (III) in $G S p(2, F)$. Since $\sigma \tau(h) h^{-1}=\left(\begin{array}{cc}0 & 1 / 2 \sqrt{D} \\ -2 \sqrt{D} & 0\end{array}\right) \Gamma$ $Z_{G S p}(N s)$ consists of g with $b=\sigma \tau a$ and $B \in G L\left(2, E_{2}\right)$. The relation

$$
\tau(h) h^{-1}=\left(\begin{array}{ccc}
1 & & \\
& 0 & 1 / 2 \sqrt{A} \\
& -2 \sqrt{A} & 0 \\
& 0 & \\
&
\end{array}\right)
$$

further implies that $a=\tau a$ and B ranges over the matrices $B=\left(\begin{array}{cc}\alpha & \beta \\ -4 A \tau \beta & \tau \alpha\end{array}\right)$ with $\|B\|=a \sigma a$. The stable conjugacy class of $N u$ in $Z_{G S p}(N s)$ consists of a single conjugacy class (the corresponding $H^{1}(T)$ is $\left\{X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) ; N X=0\right\} /\langle X-\tau X, X-\sigma X\rangle \Gamma$ where $\tau X=$
$\left(x_{1}, x_{3}, x_{2}, x_{4}\right), \sigma X=\left(x_{4}, x_{3}, x_{2}, x_{1}\right)$ Гthus it is zero $)$. Now $N u$ is $h^{-1}(u \tau u, u \sigma \tau u, \tau u \sigma u, \sigma \tau u \sigma u) h \Gamma$ with $B=\left(\begin{array}{cc}u \sigma \tau u & 0 \\ 0 & \tau u \sigma u\end{array}\right)$. Then

$$
\Phi_{1_{K}}^{G S p(2, F)}\left(N s_{1} N u_{1}\right)=\Phi_{1_{K}}^{G L(2, F)}\left(\left(\begin{array}{cc}
u \sigma \tau u & 0 \\
0 & \tau u \sigma u
\end{array}\right)\right)
$$

and this integral on $G L(2, F)$ is determined by the factor $|u \sigma \tau u-\tau u \sigma u| \Gamma$ which is equal to $|u / \tau u-\tau u / u|=\left|u^{2}-(\tau u)^{2}\right|=|u-\tau u| \Gamma$ since $u \sigma u=1$ and u is topologically unipotent. This is the factor obtained in the twisted caseГand so the comparison is complete for strongly θ-regular elements of type (III).

E. Case of torus of type (IV).

In this case $E=F(\sqrt{D})$ is a quadratic extension of $E_{3}=F(\sqrt{A}) \Gamma$ which is a quadratic extension of F. There are three cases: $A=\pi$ and $D=\sqrt{\pi} ;-1 \in R^{\times 2}, A \in R^{\times}$and $D=\sqrt{A}$ or $\boldsymbol{\pi} \sqrt{A} ;-1 \notin R^{\times 2}, A=-1 \Gamma$ and $D=\alpha+\beta \sqrt{A} \in R_{3}-R_{3}^{2} \Gamma$ with $\alpha, \beta \in R^{\times}$or $\boldsymbol{\pi} R^{\times}$. In all cases $\sigma \sqrt{D}=\sqrt{\sigma D}, \sigma^{2} \sqrt{D}=-\sqrt{D}, \sigma^{3} \sqrt{D}=-\sqrt{\sigma D}, \sigma \sqrt{A}=-\sqrt{A} \Gamma$ so E_{3} is the fixed field of σ^{2} in E. The strongly θ-regular θ-orbits are represented by $t_{1}=h^{-1} t^{*} h=\left(\begin{array}{c}\mathbf{a} \\ \mathbf{b R}\end{array} \mathbf{b D R}^{-1} \mathbf{a} . t^{*}=\right.$ $\left(t, \sigma t, \sigma^{3} t, \sigma^{2} t\right), t=a+b \sqrt{D}, \mathbf{a}=\left(\begin{array}{cc}a_{1} & a_{2} A \\ a_{2} & a_{1}\end{array}\right)$ if $a=a_{1}+a_{2} \sqrt{A}, \mathbf{D}=\left(\begin{array}{cc}\alpha & \beta A \\ \beta & \alpha\end{array}\right)$ if $D=\alpha+\beta \sqrt{A}, \mathbf{R}=$ $\left(\begin{array}{cc}R_{1} & R_{2} A \\ R_{2} & R_{1}\end{array}\right)$ for $R=R_{1}+R_{2} \sqrt{A} \Gamma$ taken over a set of representatives for $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$. Note that $\theta(h)=h$ Гand $\sigma(h) h^{-1}$ is $(1,1 / 4 \sqrt{A D},-4 \sqrt{A D}, 1)(2431)$ Fwhere (2431) denotes the matrix with rows $(0,1,0,0),(0,0,0,1),(1,0,0,0),(0,0,1,0)$. As usual Γ we consider the decomposition $t_{1} \theta=s_{1} \theta u_{1}=u_{1} s_{1} \theta$ Гand $s_{1} \theta\left(s_{1}\right)=h^{-1}\left(s / \sigma^{2} s, \sigma\left(s / \sigma^{2} s\right), \sigma\left(\sigma^{2} s / s\right), \sigma^{2} s / s\right) h$. If $\sigma^{2}\left(s / \sigma^{2} s\right)=$ $s / \sigma^{2} s$ then it is ± 1.

Consider first the case where $s / \sigma^{2} s \neq \pm 1$. Then $\sigma\left(s / \sigma^{2} s\right) \neq s / \sigma^{2} s, \sigma^{2} s / s \Gamma$ hence the eigenvalues of $s_{1} \theta\left(s_{1}\right)$ are distinct. Moreover $\Gamma s / \sigma^{2} s=a^{\prime}+b^{\prime} \sqrt{D}$ with $b^{\prime} \in R_{3}^{\times}$and $D \in R_{3}^{\times} \Gamma$ since $s / \sigma^{2} s$ is absolutely semi simple and it is not in R_{3}^{\times}. Then $s=a+b \sqrt{D}, a, b, D \in$ $R_{3}^{\times}, s_{1}=\left(\begin{array}{c}\mathbf{a} \mathbf{b D R} \\ \mathbf{b R}^{-1} \\ \mathbf{a}\end{array}\right)$ lies in K for $R=1(\mathbf{R}=I)$ Cbut when $R \neq 1$ in $E_{3}^{\times} / N_{E / E_{3}} E^{\times}$(which is represented by $\left\{1, \pi_{3}\right\} \Gamma$ since E / E_{3} is unramified) Γ the θ-conjugacy class does not intersect K. Thus the stable θ-orbital integral reduces to a single θ-orbital integral.

Now the eigenvalues of $s_{1} \theta\left(s_{1}\right)$ are distinct Γ hence $Z_{\mathbf{G}}\left(s_{1} \theta\left(s_{1}\right)\right)=\left\{h^{-1} d h ; d=\right.$ diagonal in $\mathbf{G}\} \Gamma$ and $Z_{\mathbf{G}}\left(s_{1} \theta\right)$ consists of $h^{-1} g_{1} h, g_{1}$ is diagonal matrix with $g_{1}=\theta\left(g_{1}\right) \Gamma$ namely $g_{1}=$ $\left(x, y, y^{-1}, x^{-1}\right)$. The rational points are given by $\sigma g=g \Gamma$ thus $\sigma\left(x, y, y^{-1}, x^{-1}\right)=(2431)$ $\left(x, y, y^{-1}, x^{-1}\right)=(y, 1 / x, x, 1 / y)$ Гand so $g=h^{-1}(x, \sigma x, 1 / \sigma x, 1 / x) h, x \in E^{\times}$with $x \sigma^{2} x=1$. The absolutely unipotent element u_{1} has the form $u_{1}=h^{-1}\left(u, \sigma u, \sigma^{3} u, \sigma^{2} u\right) h \Gamma$ where $u \sigma^{2} u=1$. Then

$$
\Phi_{1_{K}}^{G, s t}\left(u_{1} s_{1} \theta\right)=\Phi_{1_{G L\left(1, R_{E}\right)^{\prime}}^{G L(1, E)^{\prime}}}(u)=1
$$

where the prime indicates here the property $x \sigma^{2} x=1$.
The norm $N s_{1}$ of $s_{1}=h^{-1} s^{*} h$ is obtained from $N s^{*}=\left(s \sigma s, s \sigma^{3} s, \sigma s \sigma^{2} s, \sigma^{3} s \sigma^{2} s\right) \Gamma$ which has distinct eigenvalues $\left(s \neq \sigma^{2} s \Gamma\right.$ hence $\sigma s \neq \sigma^{3} s \Gamma$ and $\left.s / \sigma^{2} s \neq \sigma\left(s / \sigma^{2} s\right), \sigma\left(\sigma^{2} s / s\right)\right)$. The centralizer in $\boldsymbol{G S P}(2)$ is then h^{-1} (diagonal) $h \Gamma$ and $N u^{*}$ is $\left(u \sigma u, \sigma^{3}(u \sigma u), \sigma(u \sigma u), \sigma^{2}(u \sigma u)\right)$.
 $\left.\left.\sigma^{2} x\right) h ; x \in E^{\times}, x \sigma^{2} x=1\right\}$. This establishes the matching in the case where $s / \sigma^{2} s \neq \pm 1$.

The case where $\sigma^{2} s / s=1$ is the main case $\left(s_{1}=1\right)$ considered first. So it remains to deal with the case where $\sigma^{2} s=-s$. Here $s=b \sqrt{D} \Gamma$ and b, D lie in R_{3}^{\times}. Hence E / E_{3} is unramified Γ $\left\{1, \boldsymbol{\pi}_{3}\right\}$ represents the θ-conjugacy class within the stable θ-class $\Gamma s_{1}=\left(\begin{array}{cc}0 & \mathbf{b D} \\ \mathbf{b} & 0\end{array}\right)$ lies in $K \Gamma$ but the θ-orbit of $\left(\begin{array}{cc}0 & \mathbf{b D R} \\ \mathbf{b R} \mathbf{R}^{-1} & 0\end{array}\right)$ does not intersect $K \Gamma$ and our stable θ-orbital integral reduces to the θ-orbital integral of 1_{K} at s_{1}. Now $Z_{\mathbf{G}}(s \theta)$ is the set of $g=h^{-1} g_{1} h$ with $\|g\|=1$ and $g s \theta(g)^{-1}=s=h^{-1} s^{*} h \Gamma$ thus $g_{1} s^{*}\left(\begin{array}{cc}0 & w \\ -w & 0\end{array}\right)^{t} g_{1}=s^{*}\left(\begin{array}{cc}0 & w \\ -w & 0\end{array}\right)$. Since $\sigma^{2} s=-s \Gamma$ we have that $s^{*}=\left(s, \sigma s, \sigma^{3} s, \sigma^{2} s\right)$ is $(s, \sigma s,-\sigma s,-s) \Gamma$ hence $Z_{\mathbf{G}}(s \theta)$ consists of $g=h^{-1} S g_{1} S^{-1} h \Gamma$ where $S=(s, \sigma s, 1,1)$ and $g_{1}\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)^{t} g_{1}=\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right),\left\|g_{1}\right\|=1$. Thus g_{1} lies in $S O\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right) \Gamma$ and under the usual isomorphism with $(G L(2) \times G L(2))^{\prime} / Z \Gamma$ we write $g_{1}=\left(B, B^{\prime}\right)$. The group $Z_{G}(s \theta)$ of rational points is obtained on solving $g=\sigma g$. Thus $\sigma g_{1}=X g_{1} X^{-1} \Gamma$ where

$$
\begin{aligned}
X & =\left(\begin{array}{cccc}
\sigma s & & & 0 \\
& s & 0 & \\
0 & 0 & 1 & \\
0
\end{array}\right)^{-1}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / 4 \sqrt{A D} \\
-4 \sqrt{A D} & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
s & & \\
& \sigma s & 0 \\
& 0 & 1
\end{array}\right. \\
0 & \\
& =\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
& 1 & 0 & \\
0 & & & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & & 0 & 0 \\
-4 s \sqrt{A D} & 0 & \\
0 & 0 & -1 / 4 s \sqrt{A D} & \\
0 & 0 & 1 & \\
& 1 & 0 & \\
0 & & & 1
\end{array}\right)\left(\begin{array}{cc}
w & 0 \\
0 & w
\end{array}\right)
\end{aligned}
$$

Consequently $\sigma\left(B, B^{\prime}\right)=\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -4 s \sqrt{A D}\end{array}\right) w B^{\prime} w\left(\begin{array}{cc}1 & 0 \\ 0 & -4 s \sqrt{A D}\end{array}\right)^{-1},\left(\begin{array}{cc}-4 s \sqrt{A D} & 0 \\ 0 & 1\end{array}\right) B\left(\begin{array}{cc}-4 s \sqrt{A D} & 0 \\ 0 & 1\end{array}\right)^{-1}\right)$ Гand $\sigma^{2} B=d w B w d^{-1} \Gamma$ where $d=\operatorname{diag}(1,-16 s \sigma s A \sqrt{D \sigma D})$. In conclusion ΓB lies in a group isomorphic to $G L\left(2, E_{3}\right)^{\prime} \Gamma$ where the prime means determinant in F^{\times}. If g lies in $Z_{G}(s \theta) \Gamma$ then in $g_{1}=\left(B, B^{\prime}\right) \Gamma B^{\prime}$ is determined by B. Hence $Z_{G}(s \theta)$ is isomorphic to $G L\left(2, E_{3}\right)^{\prime}$. Moreover Γ $u_{1}=h^{-1} u^{*} h$ Гand $u^{*}=\left(u, \sigma u, \sigma^{3} u, \sigma^{2} u\right), u \sigma^{2} u=1$. Choose $v \in R_{E}^{\times}$with $v / \sigma^{2} v=u$; it exists since E / E_{3} is unramified. Under the isomorphism of $S O\left(\begin{array}{cc}0 & w \\ w & 0\end{array}\right)$ with $(G L(2) \times G L(2))^{\prime} / Z \Gamma$ u^{*} is $\left(\left(\begin{array}{cc}u \sigma u & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}u & 0 \\ 0 & \sigma u\end{array}\right)\right) \Gamma$ and σu^{*} is $\left(\left(\begin{array}{cc}\sigma u / u & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}\sigma u & 0 \\ 0 & 1 / u\end{array}\right)\right)=\left(w\left(\begin{array}{cc}u & 0 \\ 0 & \sigma u\end{array}\right) w,\left(\begin{array}{cc}u \sigma u & 0 \\ 0 & 1\end{array}\right)\right)$ (thus indeed $\left.u_{1} \in Z_{G}\left(s_{1} \theta\right)\right)$. Then

$$
\Phi_{1_{K}}^{G, s t}\left(u_{1} s_{1} \theta\right)=\Phi_{1_{G L\left(2, R_{3}\right)^{\prime}}^{G L\left(2, E_{3}\right)^{\prime}}}\left(\left(\begin{array}{cc}
v \sigma v & 0 \\
0 & \sigma^{2} v \sigma^{3} v
\end{array}\right)\right)
$$

This is an orbital integral of 1_{K} on $G L\left(2, E_{3}\right)$ (K is the maximal compact $G L\left(2, R_{3}\right)$ of $G L\left(2, E_{3}\right)$ on the right) Γ and it is given by a closed formula depending only on

$$
\left|v \sigma v-\sigma^{2} v \sigma^{3} v\right|_{E_{3}}=|u \sigma u-1|_{E_{3}}=|u \sigma u-1|_{F}|u / \sigma u-1|_{F},
$$

since $u \sigma^{2} u=1$ and $|x|_{E_{3}}=\left|N_{E_{3} / F} x\right|_{F}=|x \sigma x|_{F}$.
The norm $N s$ is $h^{-1}\left(s \sigma s, \sigma^{3}(s \sigma s), \sigma(s \sigma s), \sigma^{2}(s \sigma s)\right) h \Gamma$ which is equal to $h^{-1} s \sigma s(1,-1,-1,1) h$ since $\sigma s^{2}=-s$. Hence $Z_{\boldsymbol{G} \boldsymbol{S} \boldsymbol{p}}(N s)$ consists of $g=h^{-1}\left[B, B^{\prime}\right] h,\|B\|=\left\|B^{\prime}\right\|$ Гand is isomorphic to $(G L(2) \times G L(2))^{\prime}$. To determine its rational points $\Gamma Z_{G S p}(N s) \Gamma$ we consider the g fixed by σ. The relation $\sigma^{2} g=g$ (on considering $\sigma^{2}(h) h^{-1}$) leads to the statement that B, B^{\prime} lie in a group isomorphic to $G L\left(2, E_{3}\right)$.

Since $\sigma h \cdot h^{-1} \Gamma$ up to a multiple by a diagonal matrix Γ is $\left(\begin{array}{ccc}0 & w \\ w & 0\end{array}\right)\left(\begin{array}{cc}1 & \\ w & w \\ 0 & 1\end{array}\right) \Gamma$ and $\left(\begin{array}{lll}1 & 0 \\ & w & \\ 0 & & 1\end{array}\right)$ acts on (B, B^{\prime}) by mapping it to $\left(B^{\prime}, B\right) \Gamma$ we conclude that the relation $\sigma g=g$ has the solutions $h^{-1}\left[B, B^{\prime}\right] h \Gamma B^{\prime}$ determined by $B \Gamma$ and B ranging over a group isomorphic to $G L\left(2, E_{3}\right)^{\prime}$ (prime $=$ determinant in $\left.F^{\times}\right)$. The norm of u_{1} is $N u=h^{-1}\left(u \sigma u, u \sigma^{3} u, \sigma u \sigma^{2} u, \sigma^{2} u \sigma^{3} u\right) h \Gamma$ thus the B here has the eigenvalues $u / \sigma u, \sigma u / u$. We conclude that

$$
\Phi_{1_{K}}^{G S p(2, F)}\left(N s_{1} N u_{1}\right)=\Phi_{1_{K}}^{G L\left(2, E_{3}\right)}\left(\left(\begin{array}{cc}
u / \sigma u & 0 \\
0 & \sigma u / u
\end{array}\right)\right)
$$

and this integral over $G L\left(2, E_{3}\right)$ is given by the usual formula Γ which depends explicitly on the factor

$$
|u / \sigma u-\sigma u / u|_{E_{3}}=|u / \sigma u-1|_{E_{3}}=|u / \sigma u-1|_{F}|u \sigma u-1|_{F}
$$

(since u is topologically unipotent and $u \sigma^{2} u=1$). This factor is the same as in the θ-case Γ and the matching of the stable orbital integrals follow in all cases.

References

[AC] J. ArthurГL. ClozelГ Simple algebras, base change, and the advanced theory of the trace formula ГAnn. of Math. Study 120 (1989).
[BZ] J. BernsteinГA. Zelevinskii「Representations of the group $G L(n, F)$ where F is a nonarchimedean local fieldГ Uspekhi Mat. Nauk 31 (1976)Г5-70.
[B] A. BorelГ Automorphic L-functionsГ Proc. Sympos. Pure Math. 33 (1979)ГII 27-63.
[BJ] A. BorelГН. JacquetГAutomorphic forms and automorphic representations Γ Proc. Sympos. Pure Math. 33 (1979)ГI 189-202.
[F1] Y. FlickerГTransfer of orbital integrals and division algebras ГJ. Ramanujan math. soc. 5 (1990)Г107-122.
[F2] - COn endo-lifting; Compos. Math. 67 (1988)Г271-300.
[F3] - Regular trace formula and base-change lifting Γ Amer. J. Math. 110 (1988) Γ 739-764.
[F4] $-\Gamma$ Regular trace formula and base change for $G L(n) \Gamma$ Annales Inst. Fourier 40 (1990)Г1-30.
[F5] - COn the Symmetric Square: Orbital integralsГ Math. Annalen 279 (1987)Г173191.
[F6] - COn the Symmetric Square; Total global comparisonГJ. Funct. Anal. 122 (1994) Г 255-278.
[F7] - COn the symmetric square. Unit elementsГPacific J. Math. 175 (1996)Г507-526.
[F8] - EElementary proof of the fundamental lemma for a unitary group Γ Canad. J. Math. Γ (1998).
[F9] - Report on the fundamental lemma for $G L(4)$ and $G S p(2) \Gamma$ in Automorphic Forms on Algebraic GroupsГProc. Conf. held at RIMS 1996.
[FK1] Y. FlickerГD. KazhdanГMetaplectic correspondenceГ Publ. Math. IHES 64 (1987)Г 53-110.
[FK2] -ГA simple trace formulaГ J. Analyse Math. 50 (1988)Г189-200.
[H1] T. Hales Γ The twisted endoscopy of $G L(4)$ and $G L(5)$: transfer of Shalika germs Γ Duke Math. J. 76 (1994)Г595-632.
[H2] -ГThe fundamental lemma for Sp(4) Г Proc. AMS 125 (1997)Г301-305.
[K] D. KazhdanГOn lifting; in Lie Groups representations IIГLecture Notes in Mathematics 5 Springer-VerlagГNew-York 1041 (1984)Г209-249.
[Ko] R. KottwitzГBase change for unit elements of Hecke algebrasГCompos. Math. 60 (1986)Г237-250.
[KS] R. KottwitzГD. ShelstadГTwisted endoscoруГІГІІ; preprints.
[MS] A. MuraseГT. SuganoГShintani function and its application to automorphic L functions for classical groupsГ Math. Ann. 299 (1994)Г17-56.
[R] L. Ribes Γ Introduction to profinite groups and Galois cohomology CQueen 's Papers in Pure and Applied Math. 24 (1970).
[S] J.-P. SerreГCohomologie Galoisienne Γ Lecture Notes in Mathematics 5 ГSpringerVerlag「New York (1994).
[T] J. TateГNumber theoretic backgroundГ Proc. Sympos. Pure Math. 33 (1979)ГII 27-63.
[Ti] J. TitsГReductive groups over local fieldsए Proc. Sympos. Pure Math. 33 (1979)Г I 29-69.
[W1] J.-L. WaldspurgerГSur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamentalГ Canad. J. Math. 43 (1991)Г852-896.
[W2] - [Le lemme fondamental implique le transfertГ Compos. Math. 105 (1997)Г153236.
[W3] - ГHomogeneité de certaines distributions sur les groupes p-adiques Γ Publ. Math. IHES 81 (1995)Г25-72.
[We] R. WeissauerГA special case of the Fundamental Lemma ІГІІГІІІ; preprints.

Department of MathematicsГThe Ohio State UniversityГColumbusГOH 43210-1174;
Email: flicker@math.ohio-state.edu

