
Introduction.

Langlands' principle of functoriality [B] conjectures that there is a parametrization of the

set RepF (G) of admissible [BZ] or automorphic [BJ] representations of a reductive group G

over a local or global �eld F , by admissible homomorphisms � :WF ! ĜoWF . Here WF is

a form of the Weil group [T] of F , and Ĝ is the connected (complex) Langlands dual group

[B] of G, on which WF acts via the absolute Galois group of F . If H is another reductive

group over F and there is an admissible map Ĥ o WF ! Ĝ o WF , then composing with

�H :WF ! Ĥ oWF we get � :WF ! ĜoWF , and by the functoriality conjecture we would

expect a \lifting" map RepF (H)!RepF (G).

The trace formula has been used to establish the lifting in a few cases. For a test func-

tion f = 
fv 2 C1
c (G(A )), the convolution operator r(f) maps � in L2(G(F )nG(A )) to

the function whose value at h 2 G(A ) is
R
G(A)

f(g)�(hg)dg. It is an integral operator with

kernel Kf (x; y) which has geometric expansion
P

2G(F ) f(x
�1y), and spectral expansionP

�

P
� r(f)�(x)�(y). Here � ranges over the set of the irreducible direct summands of L2

as a module under the action of G(A ) by multiplication on the right, and � ranges over an

orthonormal basis of smooth vectors. Integrating over x = y 2 G(F )nG(A ) we obtain the trace
formula

P
� tr�(f) =

P
G=��f (). Here G= � denotes the set of conjugacy classes in G(F ),

and �f () =
R
G(A)=Z()

f(xx�1)dx is an orbital integral of f . In this outline we ignore all

questions of convergence, which make the development of the trace formula such a formidable

task.

To develop a theory of liftings of representations from the group H to G, one develops a

trace formula for a test function fH on H(A ), of the form
P

�H
tr�H(fH) =

P
H=� �fH (H).

One then tries to compare the geometric sides of the two trace formulae. For this one needs:

(1) A notion of a norm map N : fG= �g ! fH= �g, sending a stable conjugacy class  in

G(F ) to H in H(F ), locally and globally. This has been de�ned by Kottwitz-Shelstad [KS]

in our context.

(2) A statement of transfer of orbital integrals, asserting that given a test function f 2
C1
c (G(F )), where F is a local �eld, there exists a test function fH , and given fH there is an

f , with \matching orbital integrals", namely �f () = �fH (N).

The global test function f is a product of local functions which are almost all the unit

element 1K of the Hecke algebra of spherical (bi-invariant by a standard maximal compact

subgroup K of the local group G(F ) (K is hyperspecial, [Ti, 3.9.1]) functions on G(F ). Hence

one must have also the statement that:

(3) �1K () = �1KH
(N) for all (regular) . This statement is called the fundamental

lemma. It is a necessary initial point for the comparison to exist.

Further, the admissible map Ĥ o WF ! Ĝ o WF de�nes a lifting map for unrami�ed

representations from H(F ) to G(F ), and via the Satake transform a dual map from the Hecke

algebra of G (locally) to the Hecke algebra of H, and one needs:

(4) An extended fundamental lemma, relating the orbital integrals of the corresponding

spherical functions.
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The statements (4) and (2) follow { or should follow { from (3); perhaps (2) implies (3).

Once all this is accomplished, the spectral sides of the trace formulae are equal for su�ciently

many corresponding test functions, which are used to isolate individual contributions to the

formula, and thus derive the lifting of global and local representations.

The technique of comparison of trace formulae has been applied to lift representations

of the multiplicative group of a central simple algebra of degree n, to GL(n). Note that

inner forms of G all have the same dual group Ĝ. This is due to Jacquet-Langlands for

n = 2, Deligne-Kazhdan for all n and local as well as automorphic representations with two

supercuspidal components, and [FK2] with \one" rather than \two" such constraints (see

[F1] for the special case of a division algebra). However, in this case the two groups under

comparison are isomorphic for almost all completions of the global �eld F , and the fundamental

lemma holds automatically.

The next case of such a comparison concerns endoscopy for G = GL(n; F ), where H =

GL(m;E), E=F is a cyclic �eld extension of degree n=m. Labesse-Langlands dealt with

n = 2, Kazhdan [K] with all n and m = 1, and Waldspurger [W1] with the general case.

The fundamental lemma in this endoscopic case implies the fundamental lemma needed to

establish the metaplectic correspondence of [FK1], between GL(n) and any central topological

covering group of it. This lifting generalizes Shimura's in the case of n = 2. The extended

fundamental lemma follows (as in [F2]) from the fundamental lemma of [W1] by means of

the (simple) regular functions technique introduced in [FK1], or alternatively by using the

spherical functions technique of Clozel.

For a cyclic extension E=F one has the base change lifting from H(F ) to H(E). Viewing

H(E) as the group of F -points of the F -group G = ResE=F H obtained by restricting scalars

from E to F , the lifting is compatible with the diagonal map of Ĥ oWF to Ĝ oWF . Here

Ĝ is a product of [E : F ] copies of Ĥ, on which WF acts via its quotient Gal(E=F ). H. Saito

used (in the context of modular forms) the twisted (by a generator � of the Galois group

Gal(E=F )) trace formula
P

tr�(f�) =
P

�f (�), for the convolution operator r(f�). Here

the twisted orbital integrals are
R
f(x�1�(x))dx. For n = 2 the base change lifting for GL(n)

has been carried out by Saito, Shintani, Langlands, and for general n by Arthur-Clozel [AC].

The stable fundamental lemma, matching stable orbital integrals and stable twisted ones, has

been proven by Kottwitz [Ko] for any G. Regular functions are used in [F3] to give a simple

proof of the (unconditional) base change lifting for GL(2), and in [F4] for cusp forms on GL(n)

with a supercuspidal component.

Naturally one can consider actions other than that of the Galois group. Twisting by the

outer automorphism �(g) = tg�1 (t for \transpose") of GL(n) would lead to liftings from

symplectic and orthogonal groups to GL(n). The �rst example in this line concerns the

symmetric square lifting [F6] from H = SL(2) to G = PGL(3), which is associated with the

dual group homomorphism embedding Ĥ = PGL(2; C ) = SO(3; C ) = Ĝ�̂ in Ĝ = SL(3; C ).

Here Ĥ = ZĜ(�̂) is a twisted endoscopic group. More generally, for n � 3, Ĝ = GL(n; C ),

�(g) = J tg�1J�1 for some symmetric or anti-symmetric matrix J , since Ĥ = Sp(n=2; C ) or

SO(n; C ), one expects to obtain liftings from orthogonal or symplectic groups to the general

linear group. The purpose of this work is to prove the fundamental lemma in the next case,

of GL(4), by means of a new technique, which also provides a more elementary proof in other
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(known) cases, and a hope for extension.

The orbital integral
R
G
1K(x

�1x)dx is the number of cosets xK in G=K (G is a p-adic

group andK denotes a hyperspecial maximal compact subgroup), which are �xed by the action

of . Since G=K is the Bruhat-Tits building of G, Langlands interpreted the computation of

the orbital integral as a problem of counting points on the building. This led to a satisfactory

proof of the stable fundamental lemma for base change [Ko], and to a counting proof for

the symmetric square lifting [F5, x4]. Langlands and Shelstad then studied the asymptotic

expansion of orbital integrals of general (C1
c ) functions for a general G on developing an

\Igusa data" approach, and Hales [H1] in the context of Sp(2). The recent coherence result of

Waldspurger [W3] for the unit element 1K (and standard endoscopy) is used in [H2] to deduce

from [H1] the fundamental lemma for Sp(2).

Our { elementary { approach is entirely di�erent. It involves neither buildings nor germs.

Our expression for the orbital integral is entirely explicit. Our results for 1K in the context of

GSp(2) and Sp(2) imply { using the reduction of Waldspurger [W2] { the transfer of general

functions on GSp(2) and Sp(2) to their endoscopic groups, recovering the results of [H1] and

[H2]. Further, we prove the fundamental lemma in the twisted case.

To start with, we note that a useful reduction of the computation of the orbital integral

of 1K at an element k of K is given by Kazhdan's decomposition [K] of k as a commuting

product of an absolutely semi-simple element s, and a topologically unipotent element u. The

integral is then reduced to that of u, where G and K are replaced by the centralizers of s in

these groups. A twisted analogue of this result is developed in [F7], where { taking the group

to be the semi direct product of PGL(3; F ) and the group generated by the twisting � { the

twisted orbital integrals of 1K are reduced to orbital integrals on forms of GL(2), which can

be directly computed, and compared with the orbital integrals on the \lifted" groups (SL(2)

and PGL(2)). This reduction is carried out in the context of GL(4) rather than GL(3) in the

present work. It permits us to compare the resulting integrals on the group Sp(2) of �xed

points of �(g) = J tg�1J�1 on GL(4), with the integrals of 1K on GSp(2) at the norm of the

element u.

The basic idea for the computation of the non twisted orbital integrals comes from the

work of Weissauer [We]. Since the orbital integral is an integral over TnG=K, where T is the

centralizer of our regular element in G, it su�ces to �nd a double coset decomposition for

HnG=K, for a subgroup H of G which contains T , and then the computation of the orbital

integral is reduced to one on the subgroup H, which should be simpler than G. Weissauer

[We] proved the fundamental lemma for GSp(2) and its endoscopic group SO(4). We prove

here this lemma from GL(4) to all of its twisted endoscopic groups, including GSp(2), using

this approach. Of course here we consider all tori T of GSp(2), not only those which transfer

to its endoscopic group, and compute the norm map.

Our work is entirely explicit. We exhibit a set of representatives for the twisted conjugacy

classes in G, in families of types which we call (I), (II), (III), and (IV). We list those in the same

stable twisted conjugacy class. The listing is done on computing the Galois hypercohomology

groups used in [KS], or simply on using low brow Galois cohomology, but it is important for us

to exhibit explicit representatives, not just to describe the abstract structure of the conjugacy

classes within the stable class. Further we describe the norm map explicitly for each type,
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and �nd representatives for the stable conjugacy classes and the conjugacy classes in it, for

GSp(2). The stable orbital integral is simply the sum over the orbits in the stable orbit.

Thus our computations can be used to compute the unstable orbital integrals. In the case of

GSp(2) we recover the results of Weissauer [We]. In the twisted case, this is done here too

for all unstable twisted endoscopic groups. We compute all unstable orbital integrals of 1K on

the group Sp(2), which has more endoscopic groups than GSp(2), and deduce all endoscopic

transfers of orbital integrals.

In [F8] we obtain a double coset decompositions in the context of (U(2)� U(1))nU(3)=K,

where U denote unitary groups of a quadratic �eld extension E=F , and use these to prove the

fundamental lemma for U(2; 1) and its endoscopic group U(1; 1)�U(1), for a torus T split over

E, a quadratic unrami�ed extension of F , and for a torus T which splits over a biquadratic

extension of F .

The results and techniques of this work were described in the talk [F9] at the conference

\Automorphic Forms on Algebraic Groups", RIMS 1995. At the end of my talk Takayuki

Oda pointed out that results of Murase and Sugano [MS] on double coset decompositions of

the form HnG=K existed for all classical quasi-split groups, and our direct and elementary

approach might extend to deal with twisted GL(n) for all n, namely with all symplectic and

orthogonal groups.

This work started and was completed at Mannheim, supported by DAAD and the Humboldt

Stiftung. I wish to express my very deep gratitude to Rainer Weissauer for his hospitality,

inspiration and help, to J.-L. Waldspurger for locating an error at my request, and to J.G.M.

Mars for developing an alternative technique { based on usage of lattices { and verifying that

the result of our computations coincide.

Our work concerns an example, and we worked out all related objects. It will be useful

to list here informally the main objects. These are the twisted elliptic endoscopic groups;

the elliptic twisted stable conjugacy classes, listed according to the elliptic tori T ; the group

structure of the conjugacy classes within the stable conjugacy classes; the characters � on

these groups, and the endoscopic groups attached to a regular element of T and to �. The

\fundamental lemma" takes the form: the �-linear combination of �-orbital integrals of the

unit element 1K at a �-regular element t { multiplied by a suitable transfer factor { is equal

to the stable (trivial �) orbital integral of 1K on the �-endoscopic group determined by t and

� at the norm of t.

Thus our group isG = GL(4)�GL(1); our automorphism is �(g; x) = (J tg�1J�1; x det(g)).

In Section I.F (i.e. Section F of Part I) we show that the stable �-endoscopic group is H =

GSp(2). It would have been Sp(2) had we taken G = GL(4). But while GSp(2) has only one

elliptic endoscopic group: (GL(2) � GL(2))=GL(1), Sp(2) has the elliptic endoscopic groups

(GL(2)�GL(2))0=GL(1) (the prime indicates: equal determinants), ResE=F GL(2)0=GL(1) for
each quadratic extension E=F (its group of F -points is GL(2; E)0=F�, the prime indicates:
determinant in F�), SL(2) � U(1; E=F ) for each quadratic extension E=F (its group of F -

points is SL(2; E)� E1, E1 = kerNormE=F ). The unstable �-endoscopic groups are \of type

I.F.2": C = (GL(2) � GL(2))0 and CE = ResE=F GL(2)
0 for each quadratic extension E=F ,

and \of type I.F.3": C+ = GL(2; F )� E1, again all [E : F ] = 2.

The �-elliptic strongly �-regular elements are classi�ed in Section I.D according to tori of
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types (I), (II), (III), (IV) in GSp(2). We list the tori of GSp(2) reversing the order of (II) and

(III), so that the norm map from G to H = GSp(2) preserves the type. Tori of type (I) are

isomorphic to E��E�, [E : F ] = 2, those of type (II) are ' E�
1 �E�

2 , [Ei : F ] = 2, E1 6' E2,

E2=F rami�ed. They lie in the group C0 of F -rational points in C0 ' (GL(2) � GL(2))0,

where C0 is the group of [( a b

c d
); (

� �

 �
)] =

 
a 0 0 b

0 � � 0

0  � 0

c 0 0 d

!
2 H. Tori of type (III) are isomorphic

to E�, where E = E1E2 is a biquadratic extension ([Ei : F ] = 2) of F . The choice of the

quadratic extensions E1, E2, E3 of F , is implicit in our presentation of the tori. Tori of type

(IV) are isomorphic to E�, where E is a cyclic or a non Galois extension of F of degree 4. Put

E3 = F (
p
A), A 2 F�F 2, for the quadratic extension of F in E. These tori embed in the group

CA ' GL(2; E3)
0 of rational points over E3 of the group CA of ( a b

c d
) 2 H = GSp(2), where

a = (
a1 a2
a2A a1

), b = : : : : The double coset decompositions (see Section I.J) of C0nGSp(2; F )=K,

CAnGSp(2; F )=K, and the analogues with Sp(2) instead of GSp(2), play key roles in our

analysis.

The �-conjugacy classes within a stable �-conjugacy class of a �-elliptic strongly �-regular

element are the following groups. When the class is of type (I), the group is F�=NE=FE
� �

F�=NE=FE
�. Type (II): F�=NE1=FE

�
1 �F�=NE2=FE

�
2 . Types (III) and (IV):E

�
3 =NE=E3

E�
3 .

The � combinations of �-orbital integrals of 1K are related to stable orbital integrals of 1K on

the �-endoscopic groups determined as follows. If � is trivial, we are in the stable case, and

GSp(2) is obtained. In type (I), � = �1��2. If both �i 6= 1, the group isC = (GL(2)�GL(2))0.
If precisely one of the �i is non trivial, then the group is C+ = GL(2)� U(1; E=F ) if E=F is

unrami�ed, but the �-�-integral vanishes when E=F is rami�ed: this is a general phenomenon,

that the integral of 1K would vanish when it should relate to a rami�ed endoscopic group.

In type (II), � = �1 � �2. If both �i 6= 1, the group is CE3
= ResE3=F GL(2)

0 when E3=F

is unrami�ed; the integral vanishes when E3=F is rami�ed. If �1 6= 1, �2 = 1, and E1=F is

unrami�ed, the group is C+ = GL(2)� U(1; E1=F ), but the �-integral vanishes when E1=F

is rami�ed. In type (III), if � 6= 1, the group is C. In type (IV), if � 6= 1, the group is CE3

when E3=F is unrami�ed; the �-integral vanishes when E3=F is rami�ed.

To repeat, elliptic conjugacy classes in C = (GL(2) � GL(2))0 lie in E�
1 � E�

2 come from

type (I) when E1 = E2, and from type (III) if E1 6= E2. Those in CE3
= ResE3=F GL(2)

0 lie
in a quadratic extension E of the quadratic extension E3 of F ; they come from type (II) if E

is biquadratic (=E1E2) over F , and from type (IV) if E is cyclic or non Galois over F . An

elliptic conjugacy classes in C+ = GL(2)�U(1; E1=F ), unrami�ed E1=F , de�nes a quadratic

extension E2=F (in its GL(2) part); it comes from type (I) if E1 = E2, and from type (II) if

E1 6= E2, and a � = �1 � �2 with only one non trivial factor.

Our analysis applies to establish the fundamental lemma for the group Sp(2), except that

types (II) and (III) need to change names, as they are interchanged under the norm map. The

lists of endoscopic groups, elliptic elements, � and even statement of results are essentially

the same, since the �-integrals on G are integrals on Sp(2; F ). The analysis in the case of

GSp(2; F ) is simpler, there is a unique endoscopic group, essentially GL(2)�GL(2), and tori

of type (I), (II), yield the tori E� �E� and E�
1 � E�

2 of the endoscopic group.
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PART I. Preparations.

A. Statement of Theorem.

Let R denote the ring of integers in a local non archimedean �eld F . Let G be the F -

group G1 � Gm, where G1 = GL(4) and Gm = GL(1). Put tg1 for the transpose of g1 2
G1. De�ne w = ( 0 1

1 0
), J = (

0 w

�w 0
), �(g1) = J tg�1

1 J�1, and �(g1; e) =
�
�(g1); ekg1k

�
for

g = (g1; e) 2 G; kg1k denotes the determinant of g1. Put H = GSp(2) = GSp(J) for the

group fg1 2 G1; �(g1) = eg1 for some e = e(g1) 2 GL(1)g of symplectic similitudes. We write

G = G(F ) and H = H(F ) for the groups of F -points, and K = G(R) and KH = H(R) for

the standard maximal compact subgroups. Similarly we have G1; K1; : : : .

We choose Haar measures dg; dh; : : : on G; H; : : : , and denote by 1K = 1KG
the quotient

by the volume jKj of K of the characteristic function of K = KG in G, by 1KH
the analogous

object for KH , 1K1
for K1 in G1, etc. Then 1K lies in the space C1

c (G) of locally constant

compactly supported functions on G. We often omit the subscript of K, when it is clear

from the context. Identify C1
c (G) with C1

c (G�) by f(g) = f(g�), put Int(g)(t�) = gt�g�1 =

gt�(g�1)�, and introduce the orbital integral

�Gf (t�) = �Gf (t�; dG=dZG(t�)) =

Z
G=ZG(t�)

f((Int(g))(t�))dg=dZG(t�)

of f 2 C1
c (G) at t�; t 2 G (it is also called the �-orbital integral of f at t). Here

ZG(t�) = fg 2 G; Int(g)(t�) = t�g

is the �-centralizer of t in G, or the centralizer of t� in G.

The elements t; t0 of G are called stably �-conjugate if t0� = Int(g)(t�) for some g 2 G(=

G(F ), F = algebraic closure of F ). There are �nitely many �-conjugacy classes
�
Int(g)(t�); g 2

G
�
in a stable �-conjugacy class, and we de�ne the stable orbital integral �

G;st
f (t�) of f at

t� to be the sum
P

�Gf (t
0�) over a set of representatives t0 for the �-conjugacy classes within

the stable �-conjugacy class of t (in G). Note that ZG(t�) and ZG(t
0�) are isomorphic when

t; t0 are stably �-conjugate, this isomorphism is used to relate the measures on these groups.

Similarly we have the stable orbital integral �
H;st
f (h; dH=dZH(h)) of f 2 C1

c (H) at h 2 H.

The purpose of this paper is to prove the following.

Theorem. For any strongly �-regular t 2 G we have

�
G;st
1K

(t�; dG=dT �) = �
H;st
1KH

(Nt; dH=dT � � (1 + �) �N�1):

An element t of G is called �-semi-simple if t� is semi-simple in the group Go h�i (� is an
automorphism of G of order two). Such an element is called �-regular if ZG(t�)

0, the connected

component of the identity in ZG(t�), is a torus. Further it is called strongly �-regular if ZG(t�)

is abelian. In this case ZG
�
ZG(t�)

0
�
is a maximal torus T in G which is stable under Int(t�),

and ZG(t�) = TInt(t�) (see Kottwitz-Shelstad [KS, 3.3]). According to [KS, Lemma 3.2.A(a)],

we may assume that the strongly �-regular t lies in a �-stable F -torus T. Thus t 2 T = �(T ).
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To de�ne the norm map { which appears in the statement of the Theorem { following

[KS] we �x a �-stable F -pair (T�;B�) consisting of a minimal �-stable F -parabolic subgroup

B� of G, and a maximal �-stable F -torus T� in B�. Namely we take B� to be the upper

triangular subgroup of G, and T� to be the diagonal subgroup (thus T� = T�
1 �Gm). Any

two �-stable F -tori T� and T are �-conjugate in G, thus given T (T� is �xed) there is h 2 G
with T = h�1T��(h), and in particular t� 2 T� such that t = h�1t��(h). The norm of t is

de�ned to be the stable conjugacy class in H which is conjugate to Nt� over F , where Nt� is
de�ned as follows.

Put V = (1� �)T� and U = T�
� = T�=V. Here T� consists of (a; b; c; d; e)

(= (diag(a; b; c; d); e)), and �(a; b; c; d; e) = (d�1; c�1; b�1; a�1; eabcd). Then V consists of

(�; �; �; �; 1=��). Choose the isomorphism N : U ~!T�
H given by

(x; y; z; t;w)modf(�; �; �; �; 1=��)g 7! (xyw; xzw; tyw; tzw;xyztw2) = (a; b; e=b; e=a; e):

It is surjective since (b; a=b; 1; e=a; 1) 7! (a; b; e=b; e=a; e). Of course T�
H is the diagonal sub-

group in H, and any torus TH in H is conjugate to T�
H over F . The stable conjugacy class

of a regular element in H is the intersection with H of its conjugacy class over F . The choice

of the isomorphism U ~!T�
H is dictated by dual groups considerations, namely that H is an

endoscopic group in G; this we explain in Section F below.

The orbital integrals on G = GL(4; F ) and H = GSp(2; F ) depend on a choice of Haar

measures. These are chosen compatibly, as follows. A Haar measure is unique up to a scalar,

determined by the volume of the maximal compact subgroup. The function 1KG
is the unit

element in the Hecke algebra Cc(KGnG=KG), thus it is the quotient of the characteristic

function of KG in G by the volume of KG. The product 1KG
dG is the constant measure with

support KG and total volume 1; it is independent of the choice of the Haar measure dG. Thus

we may and do assume that jKGj = 1 and 1KG
is the characteristic function of KG. This

simpli�es our computations below. The same comment applies to 1KH
dH .

It remains to relate the measures on ZG(t�) and on ZH(Nt), for a strongly �-regular element

t in G. We shall use the observation that if N : T1 ! T2 is an epimorphism of F -tori with

kernel T0, and if dTi denotes the Haar measure on Ti = Ti(F ) which assigns the maximal

compact subgroup Ti(R) the volume jTi(R)j = dTi
�
Ti(R)

�
one, then dT1 = �N�(dT2) for some

� > 0, where N�(dT2) = dT2 �N is the measure on T1 obtained from dT2 via N . Computing

the volume of T1(R) we see that � = [T2(R) : N
�
T1(R)

�
]. We shall relate an orbital integral

�(dG2
; dT2) with �(dG2

; dT2 �N) = ��(dG1
; dT1)

�
Ti � Gi(i = 1; 2)

�
.

Applying this principle to the norm map N : T� ! T�
H , where T

�
H = f(x; y; z; t);xt = yz)g,

de�ned by N(x; y; z; t) = (xy; xz; yt; zt), whose kernel is V, we see that dT� = [T �H(R) :

N
�
T �(R)

�
]dT�H � N . Applying the principle to the map 1 + � : T� ! T��, whose kernel is

V, where �(x; y; z; t) = (t�1; z�1; y�1; x�1), thus (1 + �)(x; y; z; t) = (x=t; y=z; z=y; t=x), and

T�� = f(x; y; y�1; x�1)g, we see that dT� = [T ��(R) : (1 + �)
�
T �(R)

�
]dT�� � (1 + �). In

conclusion

dT�� � (1 + �) =
[T �H(R) : N

�
T �(R)

�
]

[T ��(R) : (1 + �)T �(R)]
dT�H �N;

and the (stable) �-orbital integral �(1KdG; dT��) on G is related to the (stable) orbital integral�
[T ��(R) : (1+�)T �(R)]=[T �H(R) : N

�
T �(R)

�
]
�
�(1KdH ; dTH ) = �

�
1KdH ; dT�� �(1+�)�N�1

�
:
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This is the relation of measures which appears in the Theorem. We shall see below that ZG(t�)

takes the form T �� (up to isomorphism; T �� = �-�xed points in T �), and the measure used

in the integration over H is pulled back from the measure dT�� on T �� via the isomorphism

T�
H

N

~ T�=V
1+�

~�!T��. The factor [T ��(R) : (1 + �)
�
T �(R)

�
]=[T �H(R) : N

�
T �(R)

�
] which relates

dTH with dT � � (1 + �) �N�1, will be computed for each torus considered in the course of the

proof below.

B. Stable conjugacy.

Let us recall the structure of the set of (F -rational) conjugacy classes within the stable

(F -) conjugacy class of a regular element t in H. By de�nition, the centralizer ZH(t) of t in

H is a maximal F -torus TH . The elements t; t0 of H are conjugate if there is g in H with

t0 = Int(g�1)t(= g�1tg). They are stably conjugate if there is such g in H
�
= H(F )

�
. Then

g� = g�(g�1) lies in TH for every � in the Galois group � = Gal(F=F ), and g 7! f� 7! g�g
de�nes an isomorphism from the set of conjugacy classes within the stable conjugacy class of

t to the pointed set D(TH=F ) = ker[H1(F;TH)! H1(F;H)]. In our case H1(F;H) is trivial,

hence D(TH=F ) is a group.

1. Lemma. The set of stable conjugacy classes of F -tori in H injects naturally in the image

in H1(F;W ) of ker[H1(F;N) ! H1(F;H)], where N = Norm(T�
H ;H), and W is the Weyl

group of T�
H in H. This map is an isomorphism when H is quasi-split. Note that the image is

H1(F;W ) when H1(F;H) is trivial, and H1(F;W ) is the group of continuous homomorphisms

� : �!W , when � acts trivially on W .

Proof. Indeed, the tori T and T�
H are conjugate in H, thus T = g�1T�

Hg for some g in H.

For any t in T there is t� in T�
H with t = g�1t�g. For t in T , �g�1�t��g = �t = t = g�1t�g,

thus �t� = g�1
� t�g� 2 T�

H , and g� 2 Norm(T�
H ;H). Since t (and so t�) is regular, g�

is uniquely determined modulo T�
H , namely in W . For a general t� in T�

H we then have

�(g�1t�g) = g�1
�
g�(g�1)

�
�(t�)

�
�(g)g�1

�
g, so that the induced action on T�

H is given by

��(t�) = Int(g�)
�
�(t�)

�
. The cocycle � = �(T ) : � ! W is given by �(�) = g�modT

�
H .

It determines T up to stable conjugacy. Conversely, a fg�g in ker[H1(F;N) ! H1(F;H)]

determines an action ��(t�) = Int(g�)
�
�(t�)

�
on T�

H . By a well-known theorem of Steinberg,

when H is quasi split over F , an F -conjugacy class in H of a regular t� contains a rational

element h�1t�h (in H), whose centralizer is an F -torus which de�nes g�. �

In our case of H = GSp(2), the Weyl group W is the dihedral group D4, generated by

the reections s1 = (12)(34) and s2 = (23). Its other elements are 1; (12)(34)(23) = (3421)

(which takes 1 to 2, 2 to 4, 4 to 3, 3 to 1), (23)(12)(34) = (2431), (23)(3421) = (42)(31),

(3421)2 = (23)(41), (23)(23)(41) = (41). Let us list the F -tori T according to the subgroups

of W , the split torus corresponding to f1g, and conclude the following.

2. Lemma. We have that H1(F;T) is trivial except when �(�) is the subgroup of W of the

form h(14)(23)i or h(14)(23); (12)(34); (13)(24)i, where H1(F;T) = Z=2.

Proof. Recall that if TH splits over the Galois extension E of F then H1(F;TH) =

H1
�
Gal(E=F );T�

H(E)
�
, where T�

H(E) = fdiag(a; b; �=b; �=a); a; b; � 2 E�g, and Gal(E=F )
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acts via �. Thus H1 is the quotient of the group C1 of cocycles: a� 2 T�
H(E) with a1 = 1 and

a�� = a��
�(a� ) for all �; � 2 Gal(E=F ), by the group of coboundaries: c��(c�1); c 2 T�

H(E).

Here �� = �(�) � �, thus ��(a) = g� � �a � g�1
� if �(�) = Int(g�). When �(�) = f1g, the group

H1 is trivial since E = F . The other cases are:

(1) �(�) = h(23)i; [E : F ] = 2; a� = (a; b; �=b; �=a) with a��
�(a�) = I satis�es a�a = 1,

��� = 1, b�� = �b. Choosing �; � 2 E� with a = �=��; � = �b�1, we have � = �=��,

and c = (�; 1; �; �=�) satis�es c��(c)�1 = a�. Hence H
1 is trivial. The same result holds for

�(�) = h(14)i.
(2) �(�) = h(12)(34)i; [E : F ] = 2; a� satis�es a�b = 1, and ��� = 1. Choosing � 2 E� with

� = �=��, we have that c = (a; 1; �; �=a) satis�es c��(c�1) = a�. Hence H
1 is trivial.

(3) �(�) = h(13)(24)i; [E : F ] = 2; a� satis�es ��� = 1 and b = ��a. Take � 2 E� with

� = �=��, and c = (a; �; 1; �=a). Then c��(c�1) = a� and H1 is trivial.

These tori are not elliptic { their quotient by the center of H is not compact. The elliptic

tori are:

(I) �(�) = h(14)(23)i; [E : F ] = 2; a� satis�es � = b=�b = a=�a = ���1. Thus a=b 2 F�. If c =
(1; �; 1=��a; 1=�a), then c��(c�1) = (a; a���; �=a���; �=a). Then H1 = fa�g=fc��(c)�1g =
F�=NE=FE

�.
(II) �(�) = h(14)(23); (12)(34); (13)(24)i; E is the composition of the di�erent quadratic ex-

tensions E1; E2; E3 of F , and so Gal(E=F ) = Z=2� Z=2 is generated by � and � whose �xed

�elds are E3 = Eh�i, E2 = Eh��i, E1 = Eh�i. Say �(�) = (14)(23) and �(�) = (12)(34).

Then a� = c��(c�1), as seen in (2) above. We shall replace the cocycle fa�g by the equivalent
fa�c�1��(c)g. Then we may assume that a� = I. The relation a� = a��

�(a� ) = a�� =

a�� = a��
�(a�) = ��(a�) implies that a� = (a; �a; �=�a; �=a)(a 2 E�; � 2 E�

1 ). The relation

a��
�(a�) = I implies that � = a=�a. Hence a=�a = � = �� = �a=��a, and a��a = �a�a lies

in F�. Since NE1=FE
�
1 6= NE2=FE

�
2 and F�=NEi=FE

�
i is of order two, a��a can take any

value in F�. For c = (�; ��; �=�a; �=�), � = �� 2 E�
1 , we have c�

�(c)�1 = (d; �d; �=�d; �=d)

with d = ���=�� and � = �=�� = d=�d. However, d��d 2 NE1=FE
�
1 , since ����(���) 2

NE=FE
� and ��� 2 NE1=FE

�
1 . Hence H

1 = F�=NE1=FE
�
1 .

(III) �(�) = h(14); (23)i, again E = E1E2 and Gal(E=F ) = Z=2� Z=2 is generated by � and

� whose �xed �elds are E3 = Eh�i; E2 = Eh��i and E1 = Eh�i, and �(�) = (23); �(��) =

(14). Using (1) above we may replace fa�g by an equivalent cocycle with a�1 = I, where

�1 = �� . Then a� = ��1 (a� ) (since a��
�(a�1) = a� = a�1�

�
1 (a� )), hence b = �1b 2 E�

2 and

� = a�1a 2 NE=E2
E�. Further I = a��

�(a� ) implies that a�a = 1 and � = b=�b. Take

� 2 E� with a = �=�� and c = (�; 1; ��1�; �1�). Since c = ��1 (c) we can replace fa�g by
fa�c�1��(c)g, to assume that a� has a = 1. Thus a� = (1; b; 1=b; 1) and b = �1b = �b. Now

taking c = (�; �; ��1�=�; �1�) with � = �� and � = �1�, we have c = ��1 c, and c��c�1 =

(1; ���=��1�; ��1�=���; 1). Since ��� ranges over NE2=FE
�
2 and ��1� over NE1=FE

�
1 ; E1 6=

E2, and F�=NEi=FE
�
i have order two, we conclude that a� = c��c�1 for some � 2 E�

1 ; � 2
E�
2 , hence H

1 is trivial.

Remark. In the situation of (II) and (III), where E is the composition of the quadratic exten-

sions of F , we have NE=FE
� = F�2, hence NE3=F followed by inclusion yields the isomor-

phism E�
3 =NE=E3

E� ~!NE3=FE
�
3 =F

�2 ,! F�=NE1=FE
�
1 . Indeed, NE=FE

� � NE=FE
�
i =
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(NEi=FE
�
i )

2 implies NE=FE
� � F�2, and NE=FE

� = NEi=FNE=EiE
� � NEi=FE

�
i implies

NE=FE
� � F�2, since NE1=FE

�
1 \NE3=FE

�
3 = F�2.

(IV) �(�) contains an element of order 4. There are two cases here. If �(�) = W , then the

splitting �eld E is a Galois extension of F with Galois group W = D4. Suppose �(�1) =

(23) and �(�2) = (14). As in (III), we can multiply the cocycle by a coboundary so that

a�1 = I = a�2 , and so a�1�2 = I = a�2�1 . If �(�) = (3421); �(�2) = �(�1)�(�2), and

I = a�2 = a��
�(a�) = (a; b; �=b; �=a)(��=�b; �a; ��=�a; �b). Then b�a = 1 = ���, and

�b = a��, thus � = a=�b = a�2(a), and a�(a)�2(a)�3(a) = 1, so that a = �=�3� for some

� 2 E�. Now a� = (a; 1=�a; 1=�3a; �2a), and c is equal to ��2(c) (thus a�2 = a�2c�
�2(c�1))

if c = (�; �; �2�; �2�) and ��2� = ��2�. As c��(c)�1 = (�=�3�; �=��; �2�=�3�; �2�=��),

we have a� = c��(c)�1 for � = �. Then H1 is trivial.

The other case is when �(�) is Z=4, say �(�) = (3421). The splitting �eld E is a cyclic

extension of F of degree 4. Put E3 = Eh�2i. By case (I), we may assume that a�2 =

(1; f; f�1; 1); f 2 E�
3 =NE=E3

E� (as �(�2) = (14)(23)). If a� = (a; b; �=b; �=a) then a�2 =

a��
�(a�) = (a��=�b; b�a; ���=b�a; ��b=a). Hence a = �b=��; ��� = 1, and b�a = f . Hence

�� = �b=a; � = b=�3a = f=�(a)�3(a), and a� =
�
a; f=�a; 1=�3a; f=a�(a)�3(a)

�
. The relation

a�2 = a��
�(a�) amounts to f�(f) = a�(a)�2(a)�3(a), hence f 2 NE=E3

E�, we may assume

f = 1, and we are done as in the case where �(�) contains an element of order four. �

There is an easier way of computing the Galois cohomology groups above, using the Tate-

Nakayama duality, which identi�es H1(F;TH) with the Tate cohomology group

Ĥ�1
�
F;X�(TH)

�
. The group X�(TH) of cocharacters is f(x; y; z� y; z� x); x; y; z 2 Zg, and

Ĥ�1 is the quotient of fX 2 X�(TH);NX = 0g, where N is the norm from a splitting �eld of

F to F , by the span of X � �X;X 2 X�(TH); � 2 �. Thus for example in case (IV), NX = 0

means z = 0, and X � (3421)X = (x+ y � z; y � x; x� y; z � x� y), hence Ĥ�1 = f0g, while
in case (I) again NX = 0 means z = 0, but X � (14)(23)X = (2x� z; 2y � z; z � 2y; z � 2x),

hence Ĥ�1 = Z=2. But for our integral evaluations we need to choose representatives for

Z=2 = F�=NE�, not only to know their cardinality.

A standard integration formula from the group to a Levi subgroup containing the torus in

question, reduces the study of orbital integrals of regular elements to that of the study in the

case of elliptic elements, and their centralizers, the elliptic tori. These are the cases (I { IV).

C. Explicit representatives.

We proceed to describe a set of representatives for t 2 TH and for their stably conjugate

but not conjugate elements.

Example. Case of SL(2). As a preliminary example, let us consider the case of an elliptic

torus T in G = SL(2)=F which splits over the quadratic extension E = F (
p
D) of F . If T�

is the diagonal torus, then a representative of such T is T = h�1
D T�hD; hD = ( 1

p
D

1 �
p
D
). Note

that h0D = diag(khDk�1; 1)hD, where khDk = dethD, lies in SL(2; E). If � is the generator

of Gal(E=F ), then �(hD) = hD""" = whD; """ = (
1 0

0 �1
); w = ( 0 1

1 0
). The elements of T are

t = h�1
D ahD(a 2 T�), and we have �t = h�1

D w�(a)whD, hence the action of � on T induces

the action ��(a) = Int(w)
�
�(a)

�
on T�.
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If t; t1 2 G are stably conjugate then t1 = g�1tg = �g�1 � t � �g, hence g� = g�(g)�1 =

h�1
D a�hD lies in T (= ZG(t);�t = t and �t1 = t1 since t; t1 2 G). Now 1 = g��(g�) =

Int(h�1
D )
�
a�w�(a�)w

�
= a��(a�)

�1, thus a� = diag(R;R�1) with R = �R 2 F�. Of course
the cocycle g� or a� 2 T�, can be modi�ed by c��(c)�1 = (; �1)(�; ��1), hence R ranges

over F�=NE=FE
�. The relation g�(g)�1 = h�1

D a�hD = h�1
D a�w�(hD) implies

hDg = a�w�(hDg) = (
x y

z t
) = ( 0 R

R�1 0
)( x y

z t
) = ( Rz Rt

xR�1 yR�1
) = (Rz Rt

z t
)

where we wrote x for �x. To have g of determinant 1 we note that 1 = jjgjj = �R(zt�zt)=2
p
D

has the solution z = 1 and t = �
p
D=R. Then

g = gR =
1

2
p
D
(
p
D
p
D

1 �1
)(R

p
D

1 �
p
D=R

) =
1

2
(
R+1 (R�1)

p
D

R�1p
D

R+1
)( 1 0

0 R�1
) 2 SL(2; E):

Moreover,

t = ( a bD
b a

); t1 = g�1tg = ( 1 0

0 R
)( a bD

b a
)( 1 0

0 R�1
) = ( a bD=R

Rb a
)

make a complete set of representatives for the conjugacy classes within the stable conjugacy

class of t 2 T � G.

We shall next similarly describe representatives for the elliptic elements in H = GSp(2; F ),

and for elements stably conjugate but not conjugate to these representatives.

Notation. Write
h
( a b

c d
); (

� �

 �
)
i
for

 
a 0 0 b

0 � � 0

0  � 0

c 0 0 �

!
.

The tori TH of H = GSp(2) of type (I) split over a quadratic extension E = F (
p
D) of F ,

whose Galois group is generated by �.

1. Lemma. A torus TH of type (I) is given by

TH = eh0D�1T�
H
eh0D = ft = [a;b] = eh0D�1(a; b; �b; �a)eh0D;

a = (
a1 a2D

a2 a1
);b = ( b1 b2Db2 b1

); kak = kbkg;

where a = a1 + a2
p
D; b = b1 + b2

p
D, and eh0D = [h0D; h

0
D]. Moreover t1 = Int(eg�1)t =

Int
�
[I; (

1 0

0 R
)]
�
t; R 2 F � NE=FE, is stably conjugate but not conjugate to t in H, whereeg = [I; g], and g = gR is as described in the example of SL(2) above.

Proof. In the proof of Lemma B.2, case (I), we saw that if t1 = eg�1teg and t are stably

conjugate then eg� = eg�(eg)�1 = eh�1
D a�ehD, with ehD = [hD; hD] and a� = (1; R;R�1; 1); R 2

F�=NE=FE
�. Since �(ehD)eh�1

D = ( 0 w

w 0
), we need to solve the equation ehDeg = a�(

0 w

w 0
)�(ehDeg)

in eg 2 H(E). Using the g 2 SL(2; E) found in the discussion of SL(2) above, clearly eg =

diag(1; g; 1) is a solution. �

The H-tori TH of type (II) and (III) split over a biquadratic extension E = E1E2, E3 =

F (
p
A) is the �xed �eld of � in E, E1 = F (

p
D) is the �xed �eld of � in E; E2 = F (

p
AD) is

assumed to be rami�ed over F , and A;D are normalized to be integral of minimal order such

that E1; E2; E3 are the three quadratic extensions of F .
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2. Lemma. A torus TH of type (III) is given by

TH = h�1T�
Hh = ft = [a;b] = h�1(a; b; �b; �a)h;

a = (
a1 a2D

a2 a1
);b = ( b1 b2ADb2 b1

); kak = kbkg;

a = a1 + a2
p
D; b = b1 + b2

p
AD; h = [h0D; h

0
AD]:

Proof. By Lemma B.2, case III, the stable conjugacy class of such t consists of a single conju-

gacy class. �

3. Lemma. A torus TH of type (II) is given by TH = h�1T�
Hh, where h = (

hA 0

0 """hA"""
)( I

p
D

I �
p
D
).

It consists of t = ( a bD
b a

); a = (
a1 a2A

a2 a1
);b = (

b1 b2A

b2 b1
), and t = h�1(t; �t; ��t; �t)h, where as a

scalar t = a+ b
p
D; �t = �a+ �b

p
D; �t = a� b

p
D, and t�t 2 F�. Take R 2 E�

3 such that

(NE3=FR =2 NE1=FE
�
1 namely) R =2 NE=E3

E�. If R = R1 + R2

p
A, put R = (

R1 R2A

R2 R1
). Put

g = gR = 1
2
( R+I (R�I)

p
D

(R�I)=
p
D R+I

)( I 0

0 R�1
). Then g lies in Sp(2; E), and g�1tg = ( a bDR�1

Rb a
)

is stably conjugate but not conjugate to t.

Proof. Since �(h)h�1 = (
hA 0

0 """hA"""
)( 0 I

I 0
)(

h
�1
A 0

0 """h�1A """
) = ( 0 w"""

"""w 0
), we have �(�) = �� = (14)(23),

indeed �(h�1th) = h�1h�(h)�1�(t)�(h)h�1h. Similarly, since �(h)h�1 =

(
hA"""h

�1
A 0

0 """hA"""h
�1
A
"""
) = (

w 0

0 �w ), � acts on T
�
H as (12)(34). Then TH = h�1T�

Hh;T
�
H = diagonal

subgroup, is indeed of type (II), and it consists of

h�1(t; �t; ��t; �t)h = h�1
D (

h
�1
A (t;�t)hA 0

0 h
�1
A (�t;��t)hA

)hD = ( a bD
b a

);

where

h�1
A ( t 0

0 �t
)hA =

1

2
(
t+�t (t��t)

p
A

t��tp
A

t+�t
) = ( a1+b1

p
D (a2+b2

p
D)A

a2+b2
p
D a1+b1

p
D

):

If t1 = g�1tg is stably conjugate to t then g� = g�(g�1) = h�1a�h de�nes a cocycle which

was analyzed in Lemma B.2, proof of case (II). Thus we can take a� = I, and so g� = I

and �(g) = g, �(g�) = g�, while a� = ��(a�) = (R; �R; 1=�R; 1=R), with R ranging over

R = �R 2 E�
3 =NE=E3

E� (thus NE3=FR does not lie in NE1=FE
�
1 unless R 2 NE=E3

E�).
Since h = (

0 w"""

w""" 0
)�h, we then need to solve the equation g�(g)�1 = h�1a�(

0 w"""

"""w 0
)�(h), or

hg = a�(
0 w"""

"""w 0
)�(hg). The g in the statement of the lemma is a solution:

1

2
( hA 0

0 """hA"""
)hD(

R+I (R�I)
p
D

(R�I)=
p
D R+I

)

= (
0 (R;�R)w"""

"""(�R�1;R�1)w 0
)( hA 0

0 """hA"""
)hD(

I 0

0 �I )
1

2
( R+I �(R+I)

p
D

�(R�I)=
p
D R+I

)

since

h�1
A (R 0

0 �R
)whA = R"""; and (R R

p
D

I �
p
D
) = ( I 0

0 """
)( 0 R"""

�R�1""" 0
)( I 0

0 """
)(R R

p
D

I �
p
D
)(

I 0

0 �I )
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(and """R�1 = �R�1 � """). Finally note that t lies in GSp(2; F ) when

t�(t�1) = ( a bD
b a

)(
0 w

�w 0
)(

ta tb

Dtb ta
)( 0 �w

w 0
) =

�
a2�b2D (ba�ab)D
ba�ab a2�b2D

�
is a scalar in F� (note that wtaw = a), thus t�(t) 2 F�. �

A torus TH of type (IV) is associated with a quadratic extension F (
p
D) = E3(

p
D) of

E3 = F (
p
A), where D = �+ �

p
A 2 E3 and A 2 F �F 2. The extension E3(

p
D)=F is cyclic

or non Galois, and the group of �eld homomorphisms E3(
p
D)! F over F is generated by �,

which maps �
p
A = �

p
A, and �

p
D =

p
�D; �2

p
D = �

p
D; �3

p
D = �

p
�D. Then E3 is

the �xed �eld of �2 in E3(
p
D).

4. Lemma. A torus TH of type (IV) is given by TH = h�1T�
Hh; h = (�4

p
AD; 4

p
A�D;w)�1

ehD( hA 0

0 hA
);ehD = (23)

�
(
hD 0

0 �hD
)
�
: It consists of ( a bD

b a
) = h�1(t; �t; �3t; �2t)h; t 2 F (

p
D)

with t�2t = �t�3t. Here, if t = a+ b
p
D; a = a1+a2

p
A, then a = (

a1 a2A

a2 a1
)
�
and b = (

b1 b2A

b2 b1
)

if b = b1 + b2
p
A
�
, and �t = �a+ �b

p
�D; �2t = a� b

p
D; �3t = �a� �b

p
�D.

Proof. Note that �(hA) = whA, hence �(hA)h
�1
A = w. Then �(h)h�1 is equal to 0 1 0 0

0 0 0 1=4
p
AD

�4
p
AD 0 0 0

0 0 1 0

!
:

If t = h�1t�h, then �(t) = h�1 � h�(h)�1 � �(t�) � �(h)h�1 � h; and so the induced action on

the diagonal subgroup T�
H is ��(a; b; c; d) = (�c; �a; �d; �b), thus � = (3421), and T�

H(F ) =

f(t; �t; �3t; �2t)g. Stable conjugacy reduces to conjugacy in case (IV). �

D. Stable �-conjugacy.

Similarly, we describe the (F -rational) �-conjugacy classes within the stable (F -) �-conjugacy

class of a strongly �-regular element t in G. Fix a �-invariant F -torus T�; in fact we take T� to
be the diagonal subgroup. The stable �-conjugacy class of t in G intersects T� ([KS, Lemma
3.2.A]). Hence there is h 2 G and t� 2 T�, such that t = h�1t��(h). The centralizers are

related by ZG(t�) = h�1ZG(t
��)h. Further ZG(t��) = T��, the centralizer of ZG(t�) in G is

an F -torus T which is �t = Int(t) � � invariant, and ZG(t�) = T�t . The �-conjugacy classes

within the stable �-conjugacy class of t can be classi�ed as follows.

(1) Suppose that t1 = g�1t�(g) and t are stably �-conjugate in G. Then g� = g�(g)�1 2
ZG(t�) = T �t . The set D(F; �; t) = ker[H1(F;T�t) ! H1(F;G)] parametrizes, via (t1; t) 7!
f� 7! g�g, the �-conjugacy classes within the stable �-conjugacy class of t. The Galois action

on T; �(t) = �
�
h�1t��(h)

�
= h�1 �h�(h)�1 ��(t�) � �

�
�(h)h�1

�
�(h) induces a Galois action ��

on T�, given by ��(t�) = h�(h)�1�(t�)�
�
�(h)h�1

�
, and H1(F;T�t) = H1(F;T��).

(2) The norm map N : T� ! T�
H factorizes via the projection T� ! T�=V;V = (1 � �)T�,

and the isomorphismU = T�
� = T�=V ~!T�

H . Suppose that the norm Nt� of t� 2 T� is de�ned
over F . Then for each � 2 � there is ` 2 T� such that ��(t�) = `t��(`)�1. Then

h�1t��(h) = t = �(t) = �h�1 � �t� � �(�h) = �(h)�1`t��
�
`�1�(h)

�
;
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hence

t� = h�` � t� � �(h�`)�1; h� = h�(h)�1;

and h�` 2 ZG(t
��) = T��, so that h� 2 T�. Moreover, (1 � �)(h�) = t��(t�)�1. Hence

(h�; t
�) lies in H1(F;T� 1���! T�), in a subset isomorphic to H1(F;T� 1���! V); this invariant

parametrizes the (strongly �-regular) �-conjugacy classes which have the same norm. See [KS,

Appendix A], or Section G below, for a de�nition and properties of these hypercohomology

groups; the lines preceding [KS, Lemma 6.3.A], for the de�nition of obs(�); [KS, 6.2], for the

de�nition of inv0(�; �0); and [KS, page prior to Theorem 5.1D], for the de�nition of inv(�; �0):
if t1 = g�1t�(g) as in (1) above, then Tt = ZG(ZG(t�)

0) is a maximal torus in G. Denote

its inverse image under the natural homomorphism � : Gsc ! G by Tsc
t (Gsc is the simply

connected covering F -group of the derived group of G), and write g = �(g1)z, g1 in Gsc, z

in Z(G). Then �(g1)g
�1
1 lies in Tsc

t , (1 � �t)�(�(g1)g
�1
1 ) = �(b)b�1, where b = �(z)z�1 =

(1 � �t)(z
�1) 2 Vt = (1 � �t)(Tt). Hence (� 7! �(g1)g

�1
1 ; b) de�nes the element inv(t; t1) of

H1(F;Tsc
t

(1��t)���! Vt). It parametrizes the �-conjugacy classes under Gsc within the stable �-

conjugacy class of t. The image in H1(F;Tt
1��t�! Vt), under the map [T

sc
t ! Vt]! [Tt ! Vt]

(induced by � : Tsc
t ! Tt), is denoted inv0(t; t1). It parametrizes the �-conjugacy classes

within the stable �-conjugacy class of t, as noted in (1) above.

Note that there is an exact sequence

H0(F;T�) = T�� = T � 1���! H0(F;V) = V ! H1(F;T� 1���! V)! H1(F;T�) 1���! H1(F;V):

Moreover, the exact sequence 1! T�� ! T� 1���! V! 1 induces the exact sequence

H0(F;T�) 1���! H0(F;V)! H1(F;T��)! H1(F;T�) 1���! H1(F;V):

Hence, H1(F;T��) = H1(F;T� 1���! V) and D(F; �; t) is ker[H1(F;T��) ! H1(F;G)] '
ker[H1(F;T� 1���! V)! H1(F;G)].

In our case the group H1(F;G) is trivial
�
G = GL(4) � GL(1)

�
, and so is H1(F;T�).

Hence D(F; �; t) = H1(F;T��) = H1(F;T� 1���! V) = V=(1� �)T �. The �-invariant F -tori T
determine homomorphisms � : �! W (T��;G�) = W (T�;G)�. We proceed to describe a set

of representatives for the F -tori T in G, and the groups H1(F;T� ! V) = H1(F;T��) which
parametrize the �-conjugacy classes within the stable �-conjugacy classes of strongly �-regular

elements in G, which are represented by elements of T . Since W (T�;G)� = W (T�
H ;H), our

list of �-invariant tori T is obtained from the list of tori TH , where T is the centralizer of TH .

A useful fact would be that we can choose h 2 G such that �(h) = h. Then the sta-

ble �-conjugacy classes of strongly �-regular elements are represented by t = h�1t��(h) =

h�1t�h; t� 2 T�, and we also exhibit a complete list of representatives for the �-conjugacy

classes within the stable �-conjugacy class of such a strongly �-regular element t.

The following is a list of the �-invariant F -tori in G up to F -isomorphism; they are

parametrized by the homomorphisms � : � ! W = W (T��;G�) = W (T�;G)�. Note that

G� = Sp(2). Further we compute H1(F;T��) = H1(F;T� 1���! V), we give an explicit realiza-

tion of T = h�1T�h (and h = �(h)), and for t 2 T , strongly �-regular, a set of representatives



MATCHING OF ORBITAL INTEGRALS ON GL(4) AND GSp(2) 15

in G for the �-conjugacy classes in the stable �-conjugacy class of t. Note that the only sig-

ni�cant di�erence from the non twisted case is that we work with G� = Sp(2) instead of with

H = GSp(2).

Let us clarify that t 2 G is strongly �-regular means that t = h�1t��(h); h 2 G, where

t� is such that ZG(t
��) is T��. Then ZG(t�) = h�1ZG(t

��)h is the torus TInt(t)��, where
T is ZG

�
ZG(t�)

�
, an Int(t) � �-invariant maximal torus in G. If u = h�1u�h 2 T , where

u� 2 T ��reg, then h��(u
�)h�1

� = u� = �(u�) = �(h�)�(u
�)�(h�)�1 implies that h� = h�(h�1) is

a �-invariant element in the Weyl group W (T�;G) of T�, hence it can be represented by an

element of W = W (T��;G��), and the tori T in G so obtained de�ne � : � ! W . Hence we

consider the centralizers of the tori in G��.
As in the case of H = GSp(2), we denote by ~E a minimal splitting �eld for the torus T in

G. The torus T is associated with a homomorphism � : � = Gal( ~E=F ) ! W . Usually ~E is

E. Recall: V = f(�; �; �; �; 1=��)g.
(1) When �(�) = h(12)(34)i; [E : F ] = 2; T � = T�(F ) consists of f(a; �a; b; �b; e); a; b 2 E�; e 2
F�g, where � generates Gal(E=F ). Then V = V(F ) consists of f(�; ��; ��; �; 1=���);� 2
E�g, and (1 � �)T � = f(a�b; b�a; b�a; a�b; 1=a�ab�b); a; b 2 E�g. Hence H1(T � ! V ) =

V=(1� �)T � is f1g. Further, T �� = f(a; �a; 1=�a; 1=a; e); a 2 E�; e 2 F�g. Hence H1(T ��) =
Ĥ�1(T ��) is

fX = (x; y;�y;�x; z);X+�X = 0; i:e: :x+y = 0 = zg=hX��X = (x�y; y�x; : : : ; 0)i = f0g:

Similarly, if �(�) = h(13)(24)i, then T � = f(a; b; �a; �b; e); a; b 2 E�; e 2 F�g; V =

f(a; b; �a = b; �b = a; 1=a�a)g, and (1 � �)T � = f(a�b; b�a; b�a; a�b; 1=ab�a�b)g, so that

H1(T � ! V ) = f1g. Further, T �� = f(a; 1=�a; �a; 1=a; e)g and H1(T ��) = Ĥ�1(T ��) consists
of

fX = (x; y;�y;�x; z);x� y = 0 = zg=h(x; y;�y;�x; z)� (�y;�x; x; y; z)i = f0g:

(2) �(�) = h(23)i; [E : F ] = 2; T � = f(a; b; �b; d; e); b 2 E�; a; d; e 2 F�g; V = f(a; b; b; a;
1=ab)g; (1� �)T � = f(ad; b�b; b�b; ad; 1=adb�b)g, so that H1(T � ! V ) = F�=NE=FE

�. Fur-
ther, T �� is f(a; b; �b = 1=b; 1=a; e); b 2 E�; a; e 2 F�g, and H1(T ��) is the quotient of

fx = (a; b; 1=b; 1=a; e);x�x = 1; i.e., a�a = 1; e�e = 1; �b = b; a; b; e 2 E�g by fx�(x)�1g,
thus it is F�=NE�, by Hilbert Theorem 90.

(3) The analogous result holds when �(�) = h(14)i : H1(T ��) = fx = (a; 1; 1; 1=a; 1); a 2
F�=NE�g.

The tori T of (1); (2); (3) are not �-anisotropic, namely T � contains the split torus

f(z; z; 1=z; 1=z; 1)g
�
and f(z; 1=z; z; 1=z; 1)g

�
, f(z; 1; 1; 1=z; 1)g and f(1; z; 1=z; 1; 1)g, and

Z(G�) = f(�I; t); t 2 F�g, as the center of Sp(2; F ) is f�Ig.
In case (2) the torus T can be presented as T = h�1T�h; h = [I; h0D], if E = F (

p
D); D 2

F �F 2, and h0D = ( khDk
�1 0

0 1
)hD; hD = ( 1

p
D

1 �
p
D
): Then h = �(h), and Int

�
h�(h)�1

�
= (23); T

consists of t =
�h
( a 0

0 d
);b
i
; e
�
;b = (

b1 b2D

b2 b1
) if b = b1 + b2

p
D, and a stably �-conjugate but

not �-conjugate element to t is given by

g�1tg; g = [I; gR]; gR =
1

2

�
R+1 (R�1)

p
D

(R�1)=
p
D R+1

�
( 1 0

0 R�1
);
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thus b of t is replaced by (
b1 b2D=R

b2R b1
).

In case (3), g = [gR; I], where R 2 F �NE=FE, and T = f
�h
b; (

a 0

0 d
)
i
; e
�
; ad � b�b = 1g.

The �-elliptic tori are the following.

(I) �(�) = h(14)(23)i; [E : F ] = 2; T � = f(a; b; �b; �a; e); a; b 2 E�; e 2 F�g; (1 � �)T � =

f(a�a; b�b; b�b; a�a; 1=a�ab�b)g, and V = f(a; b; �b = b; �a = a; 1=ab)g: Hence H1(T � !
V ) = F�=NF� �F�=NF�: Further, T �� = f(a; b; �b = 1=b; �a = 1=a; e); a; b 2 E�; e 2 F�g,
and H1(T ��) is the quotient of fx = (a; b; 1=b; 1=a; e);x�x= 1, thus e�e = 1, and a = �a; b =

�b, in F�g by fx�(x)�1 = (a�a; b�b; : : : ; e=�e)g, thus it is (F�=NE�)2.

In case (I), T = h�1T�h, where h = [h0D; h
0
D], consists of ([a;b]; e); a = (

a1 a2D

a2 a1
) if a =

a1 + a2
p
D in E�, and a�a � b�b = 1, and representatives for the �-conjugacy classes within

the stable �-conjugacy class of t are given by t1 = g�1tg; g = [gR; gS], where R; S range over

F�=NE=FE
�. Then t1 is obtained from t on replacing a by (

a1 a2DR

a2=R a1
) and b by (

b1 b2DS

b2=S b1
).

(II) �(�) = h�(��) = (14); �(�) = (23)i, the splitting �eld of T is E = E1E2, where

E1 = F (
p
D); E2 = F (

p
AD); E3 = F (

p
A) are the di�erent quadratic extensions of F . The

extension E2=F is assumed to be rami�ed, and Gal(E=F ) is generated by �; �; �� whose

�xed �elds are E1 = Eh�i, E2 = Eh��i, E3 = Eh�i. Then T � = f(a; b; �b; �a; e); a 2
E�
1 ; b 2 E�

2 ; e 2 F�g; V = f(a; b; �b = b; �a = a; 1=ab); a; b 2 F�g, and (1 � �)T � =

f(a�a; b�b; b�b; a�a; 1=a�ab�b)g. Hence H1(T� ! V) = F�=NE1=FE
�
1 � F�=NE2=FE

�
2 . Fur-

ther, T �� = f(a; b; �b = 1=b; �a = 1=a; e); a 2 E�
1 ; b 2 E�

2 ; e 2 F�g, and additively, H1(T��) is
the quotient of f(x; y;�y;�x; 0)g by hX��X = (2x; 0; 0;�2x; 0); X��X = (0; 2y;�2y; 0; 0)i,
namely it is Z=2� Z=2.

Let us compute H1(T ��) explicitly. Consider a cocycle fa�g. If a�� = (a; b; 1=b; 1=a; e)

and a� = (c; d; 1=d; 1=c; f), then a��
�(a�) = 1 implies b��b = 1; e��e = 1; c�c = 1, hence

b = �=���; e = "=��"; c = =�, and g = (; �; ��1; �1; ") has the property that the cocycle

fa�g�1�(g)g, renamed fa�g, has a�� = (a; 1; 1; a�1; 1) and a� = (1; b; b�1; 1; e), where a =

��a; b = �b; e�e = 1. The relation a����
�(a� ) = a��

�(a�� ) implies a = �a; b = ��b; e =

��e. Hence e = "=�"; " = ��" 2 E�
2 , and a; b 2 F�. If g = (�; �; ��1; ��1; "), with

� 2 E�
1 , � 2 E�

2 , then g��g�1 = (���; 1; 1; 1=���; 1) and g�g�1 = (1; ���; 1=���; 1; e).

Hence the class of the cocycle fa�g is determined by a 2 F�=NE1=FE
�
1 ; b 2 F�=NE2=FE

�
2 ,

and H1(T��) = F�=NE1=FE
�
1 � F�=NE2=FE

�
2 .

The torus T is T = h�1T�h; h = [h0D; h
0
AD] if E1 = F (

p
D); E2 = F (

p
AD), and T consists

of t = h�1t�h = ([a;b]; e); a = (
a1 a2D

a2 a1
);b = (

b1 b2AD

b2 b1
), if a = a1 + a2

p
D; b = b1 + b2

p
AD.

Here t� = (a; b; �b; �a; e); a 2 E�
1 ; b 2 E�

2 ; e 2 F�. A complete set of representatives for

the �-conjugacy classes within the stable �-conjugacy class of t is given by g�1tg, where

g = [gR; gS]; R 2 F�=NE1=FE
�
1 ; S 2 F�=NE2=FE

�
2 . Note that g = �(g), and that g�1tg is

obtained from t on replacing a by (
a1 a2DR

a2=R a1
) and b by (

b1 b2ADS

b2=S b1
).

(III) �(�) = h�(�) = (12)(34); �(�) = (14)(23)i, the splitting �eld of T is E = E1E2, where

E1; E2; E3 are the three quadratic extensions of F , Gal(E=F ) is generated by � and � , of order

two, with E3 = Eh�i = F (
p
A), E1 = Eh�i = F (

p
D). Then T � = f(a; �a; ��a; �a; e); a 2

E�; e 2 F�g; V = f(a; �a; ��a = �a; �a = a; 1=a�a); a 2 E�
3 g and (1��)T � = f(a�a; �a��a; : : : ;
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1=a�a�a��a); a 2 E�g. ThenH1(T� ! V) = E�
3 =NE=E3

E� = F�=NE1=FE
�
1 (see Remark in

Section B). Further, T �� is f(a; �a; ��a = 1=�a; �a = 1=a; e); a 2 E�g, and additively,H1(T��)
is the quotient of f(x; y;�y;�x; 0)g by h(x � y; y � x; : : : ); (2x; 2y; : : :)i = h(x; y; : : : );x �
ymod2i, namely it is Z=2.

To compute H1(T��) directly, let fa�g be a cocycle. Then a� = (a1; a2; a
�1
2 ; a�1

1 ; e); a� =

(b1; b2; b
�1
2 ; b�1

1 ; f). The relation 1 = a��
�(a� ) implies that b1�b2 = 1, and f�f = 1, thus

f = "=�", and a� = b�1��(b), where b = (b�1
1 ; 1; �; b1; "

�1). We replace a� by a�b�
�(b�1),

to get a� = I. Then a� = ��(a�), so a� = (a1; �a1; �a
�1
1 ; a�1

1 ; e), e = �e. The relation

I = a��
�(a�), implies that a1 = �a1 2 E�

3 and e�e = 1. Replacing a� by a�c�
�(c�1) with

c = ��(c) = (�; ��; ���1; ��1; "); " 2 E�
1 with e = "=�", we see that the class of fa�g is

determined by a1 2 E�
3 =NE=E3

E�.

The torus T = h�1T�h is de�ned by h = (  0

0 1
)h0, where  = 1=4

p
AD and

h0 = (
hA 0

0 """hA"""
)( I

p
D

I �
p
D
)

is the h used in the Lemma C.3 which deals with the torus TH of type (II). Again �� =

Int
�
�(h)h�1

�
= (14)(23) and �� = Int

�
�(h)h�1

�
= (12)(34). The advantage of our h over h0

is that �(h) = h. Then T = h�1T �h consists of t = h�1(t; �t; ��t; �t; e)h=
�
( a bD
b a

); e
�
, in the

notations of that Lemma. To �nd an element t1 = g�1t�(g) which is stably �-conjugate but

not �-conjugate to t, we need to solve g� = g�(g�1) = h0�1a�h
0 = h0�1a�(

0 w"""

"""w 0
)�h0, namely

h0g = a�(
0 w"""

"""w 0
)�(h0g), where a� = (R; �R; �R�1; R�1). Here R 2 E�

3 =NE=E3
E�. A solution

is given by the gR of Lemma C.3, as veri�ed there. Note that �(gR) = gR, and that t1 is given

by ( a bDR�1

Rb a
) (and that bR = Rb).

(IV) �(�) contains �(�) = (3421), and T is isomorphic to the multiplicative group E� of

an extension E = F (
p
D) = E3(

p
D) of F of degree 4, where E3 = F (

p
A) is a quadratic

extension of F (A 2 F � F 2; D = � + �
p
A 2 E3). The Galois closure eE=F of F (

p
D)=F

is E = F (
p
D) when F (

p
D)=F is cyclic, and eE = F (

p
D; �) when F (

p
D)=F is not Galois;

here �2 = �1, and Gal( eE=F ) is the dihedral group D4. We have �
p
D =

p
�D; �2

p
D =

�
p
D; �3

p
D = �

p
�D; �

p
A = �

p
A.

In the D4-case, the group Gal( eE=F ) contains also the element � of order two with �� =

��; �
p
A =

p
A. In this case we take D =

p
A, and so ��� = � . Further, if ��� = � , then

x = ��; �� and �2� solve the equation �x� = x too, and they are all of order 2. Renaming

� we may assume that �(�) = (23) (the other possibilities are (43)(21); (42)(13); (14)). In

all cases E3 is the �xed �eld of �2 in E = E3(
p
D), and T � = f(a; �a; �3a; �2a; e); a 2

E�; e 2 F�g. Further V = f(a; �a; �3a = �a; �2a = a; 1=a�a); a 2 E�
3 g, and (1 � �)T � =

f(a�2a; �a�3a; �a�3a; a�2a; 1=a�a�2a�3a)g. Hence H1(T� ! V) = E�
3 =NE=E3

E�.

Further T �� = f(a; �a; �3a = 1=�a; �2a = 1=a; e); a 2 E�; e 2 F�g, and additivelyH1(T��)
is the quotient of f(x; y;�y;�x; 0)g by h(x � y; y � x; : : : ); (0; 2y;�2y; 0; 0)i, namely Z=2.

Explicitly, a cocycle in H1(T��) is a� = (e; f; f�1; e�1) with 1 = a�4 = a��
�(a� )��2(a�)

��3(a�), namely e=�2e = �f=�3f , thus e�3f 2 E�
3 . If b� = (c; d; d�1; c�1) then b��

�(b�1
� ) =

(c�d; d=�c; �c=d; 1=c�d). We can �rst assume that f = 1, then the choice of d = �c shows that

the class of a� depends on e, which we now denote by R, in E�
3 =NE=E3

E�.
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The torus T takes the form h�1T�h, where { as in the Lemma C.4 which dealt with

tori TH of type (IV) { h is diag(�1=4
p
AD; 1=4

p
A�D;w)ehD diag(hA; hA), where ehD =

Int
�
(1; w; 1)

�
(hD; �hD). Then �(h) � h�1 =

 0 1 0 0

0 0 0 1=4
p
AD

�1=4
p
AD 0 0 0

0 0 1 0

!
, and �(h) = h. To �nd

t1 = g�1t�(g) which is stable �-conjugate but not �-conjugate to t, as usual we need to solve:

hg = a�h�(h)
�1�(hg). A solution is given by

g = gR =
1

2
(

R+I (R�I)
p
D

p
D

p
D

(R�I)(
p
D
�1

)(
p
D
�1

)(
p
D
�1

) R+I
)( I 0

0 R�1
);

where R = h�1
A (R 0

0 �R
)hA = (

R1 R2A

R2 R1
) if R = R1 +R2

p
A in E�

3 , and
p
D
p
D
p
D = h�1

A (
p
D 0

0
p
�D

)hA

has inverse (
p
D
�1
)(

p
D
�1
)(

p
D
�1
). Further, t1 = g�1t�(g) = ( I 0

0 R
)( a bD
b a

)( I 0

0 R�1
) = ( a bDR�1

Rb a
), and

�(gR) = gR. When solving our equation it is convenient to rewrite it as:

eg = � hA 0
0 hA

�
g
�
hA 0
0 hA

��1

= eh�1
D

�
�4

p
AD 0

4
p
A�D

0 w

��
�R=4

p
AD 0

I
0 4

p
AD=R

� 0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

!
�

1=4
p
A�D 0

1=4
p
AD

0 w

�
�(ehD)�(eg)�w 0

0 w

�

=

"eh�1
D

 
R 0

1
R�1

0 1

!ehD
#�

w 0

0 w

�
�(eg)�w 0

0 w

�
;

and further as ((23) stands for (1; w; 1)):

(23)~g(23) =

�
1
2
(R+R�1) 1

2
(R�R�1)

p
D 0

1
2
(R�R�1)=

p
D 1

2
(R+R�1) 0

0 0 I

��
0 I

I 0

�
� ((23)~g(23))

�
0 I

I 0

�
=
�
X Y

Z T

�
=
�
E 0

0 I

��
�T �Z

�Y �X

�
=
�

X Y

�Y �X

�
:

Then X = E�2X. As E = t�1 1
2
(R+R

�1 R�R�1
R�R�1 R+R�1

)t = t�1��1(R 0

0 R�1
)�t; � = (

1 1

�1 1
); t = (

1 0

0
p
D
),

we need to solve

�tX = (R 0
0 R�1 )�t�

2X = (R 0
0 R�1 )(�w)�

2(�tX) = ( a b

c d
)

= ( 0 �R
�R�10 )( �

2a �2b
�2c �2d

) = ( �R�2c �R�2d
��2a=R ��2b=R ):

Choosing a = e and b =
p
D, we get X = 1

2
(

R+1 (1�R�1)
p
D

(R�1)=
p
D 1+R�1

). Note that g�(g�1) =

diag(kXk; k�Xk). We choose X to have determinant 1, so that �(g) = g lies in Sp(2; E). Also

we take Y = 0: Then g = (
hA 0

0 hA
)
�1
(23)(X 0

0 �X
)(23)(

hA 0

0 hA
) is as asserted.
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E. Useful facts.

We collect here the following observations, used below.

Remark. For A 2 F � F 2, we introduce the subgroup CA of ( a b
c d

) 2 H = GSp(2), where

a = (
a1 a2
a2A a1

), b = : : : : We shall use below the observation that the tori TH of type (II) and

(IV) embed in CA. Moreover, CA is naturally isomorphic to GL
�
2; F (

p
A)
�0
, the group of

( a b

c d
) 2 GL

�
2; F (

p
A)
�
with ad� bc 2 F�. The isomorphism is given by a 7! a = a1 + a2

p
A.

Also let C0 be the group of [( a b

c d
); (

� �

 �
)] =

 
a 0 0 b

0 � � 0

0  � 0

c 0 0 d

!
2 H. The group C0 is isomorphic to

GL(2; F � F )0 = f(g; g0) =
�
( a b

c d
); (

� �

 �
)
�
; det g = det g0g. The tori TH of type (I) and (III)

(and (2), (3)) naturally embed in C0.

Remark. The norm map N : T � ! T �H is de�ned by X = (x; y; z; t;w) 7! (xyw; xzw; tyw;

tzw;xyztw2) = NX. If � = (23), then �X has the norm (xzw; xyw; ztw; tyw;xyztw2) =

�NX, where � = (12)(34). If � = (14) then � = (13)(24), if � = (12)(34) then � = (23), if

� = (13)(24) then � = (14), if � = (14)(23) then � = (14)(23), if � = (3421) then � = (2431).

Our numbering of the tori TH and T is such that the norm preserves the type, thus the

norm of T� of type (II) is T�
H of type (II), and not of type (III), although the centralizer in

G = GL(4)�GL(1) of a torus of type (III) in H = GSp(2) is a torus of type (II).

For tori of type (IV) it will be useful to note the following. Assume the residual characteristic

is odd.

Lemma. If E is an extension of F of degree 4 which is not a compositum of two quadratic

extensions, then E = F (
p
D); D = �+�

p
A;�; � 2 F;A 2 F�F 2; D 2 E3�E2

3 ; E3 = F (
p
A),

and we have the following possibilities. If A = ��� then D =
p
���. If �1 2 R�2 and A 2 R�,

then D =
p
A or ���

p
A. If A = �1 2 R��R�2, then �; � 2 R� or �; � 2 �R�. The extension

F (
p
D)=F is Galois, cyclic with Galois group Z=4, unless it is completely rami�ed (A = ���)

and �1 =2 R�2.

Proof. Denote by � a fourth root of 1. An extension E3 of degree two of F is given by

E3 = F (
p
A) for some A 2 F � F 2. An extension of degree two of E3 is given by E3(

p
D)

with D 2 E3�E2
3 . Denote by ��� a generator of the maximal ideal in the (local) ring of integers

R of F , and by " a non square unit (" 2 R� � R�2). There are three quadratic extensions

of F : two are rami�ed, namely F (
p
���)=F; F (

p
"���)=F , and one is unrami�ed: F (

p
")=F . The

extensions of degree four of F are as follows.

(i) Suppose that A = ��� and E3 = F (
p
���) = F (

p
"2���) is rami�ed over F . A quadratic rami�ed

extension of E3 is de�ned by D =
p
��� or "

p
���; indeed R�=(1 + ���R) ' R�

3 =(1 + ���3R3), where

R3 is the ring of integers in E3, and ���3 is a uniformizer. In particular �1 is a square in R�

if and only if it is a square in F (
p
D). The �eld homomorphisms of F (

p
D) into a Galois

closure, which �x F , are generated by � which maps
p
A to �

p
A, and

p
D to �

p
D. Then

F (
p
D)=F is Galois, cyclic with Galois group Z=4, when � 2 R�, and it is non Galois when

� =2 R�. In this case F (�;
p
D)=F is Galois with group D4, generated by �

�
�(
p
D) = �

p
D
�

and an endomorphism � which �xes
p
D and maps � to ��.



20 YUVAL Z. FLICKER

(ii) If A = ���, thus E3 = F (
p
���) is rami�ed, but E3(

p
D)=E3 is unrami�ed, we can take D

to be a non square unit in E�
3 , namely a non square unit " in R�. Hence F (

p
���;
p
") is the

compositum of two quadratic extensions of F , and its Galois group is Z=2� Z=2.

(iii) Suppose that A = ", so that E3 = F (
p
A) is unrami�ed over F . The rami�ed quadratic

extensions of E3 are E3(
p
���) (in which case Gal

�
E3(
p
���)=F

�
= Z=2� Z=2) and E3(

p
���"3),

where "3 2 R�
3 �R�2

3 . Indeed, ��� generates the maximal ideal in the ring R3 of integers of the

unrami�ed extension E3 of F . The extension E3(
p
"3���) of F is cyclic with Galois group Z=4,

generated by �, described as follows.

If � 2 R� then "3 =
p
", and �(

p
"3���) = �

p
"3���. Then �(���"3) = ����"3, �2(

p
���"3) = �

p
���"3.

Note that
p
" is not a square in E�

3 . Indeed, if
p
" = (a + b

p
")2 = a2 + b2" + 2ab

p
" with

a; b 2 F , then b = 1=2a, and �a2 = b2" = "=4a2, so that
p
" = 2�a2 would lie in F�.

If � =2 R� take " = �1, then � 2 R�
3 and �� = ��, but � 2 R�2

3 . Indeed, since �1 =2 R�2,

either 2 or �2 lies in R�2, and � =
�
(1 � �)=

p
�2
�2
. Take "3 = a + b� 2 R3 � R2

3, and put

"3 = a � b�. Then �
p
���"3 =

p
���"3; �

p
���"3 = �p���"3; �2

p
���"3 = �p���"3; �3

p
���"3 = �

p
���"3.

Note that "3="3 lies in R�2
3 .

(iv) If A = " and E3 = F (
p
A) is unrami�ed over F , and D = "3 2 R3�R2

3 so that E3(
p
D)=E3

is unrami�ed, then E3(
p
D)=F is Galois with cyclic group Z=4. It is the unique unrami�ed

extension of F of degree 4. If �1 2 R�2, " 2 R� � R�2 and "3 =
p
" is then in R3 � R�

3 ,

and �
p
"3 = �

p
"3 generates the Galois group. If �1 =2 R�2 take " = �1, and "3 2 R�

3 �R�2
3 .

Then the Galois group is generated by �
p
"3 =

p
"3 and �

p
"3 = �

p
"3, where "3 = a� b� if

"3 = a+ b�; a; b 2 R. �

Remark. Twisted endoscopic groups are de�ned in [KS, 2.1]. Let us recall this de�nition.

Let us begin with a review of L-groups. Let G be a connected reductive group over a

local �eld F of characteristic 0. Write � for Gal(F=F ) and WF for the absolute Weil group

of F . Denote by Ĝ the Langlands dual group of G. By de�nition there is an identi�cation

�G : 	_(G) �! 	(Ĝ), where 	_(G) (resp. 	(Ĝ)) is the dual based root datum of G (resp.

based root datum of Ĝ).

An action � : � ! Aut(Ĝ) of � on Ĝ is called an L-action if it preserves some splitting

splĜ = (B̂; T̂ ; fX�_g�) of Ĝ. If this is the case then we call splĜ a �-splitting for � and form

the L-group by Ĝo�WF , where WF acts through � via �. If the composition �
��! Aut(Ĝ)�

Out(Ĝ) coincides (under the identi�cation �G) with the �-action on 	
_(G), then this L-group

is that of G. This � is usually denoted by �G. A triple (splĜ; �G; �G) of this type is called an

L-group data for G (sometimes (Ĝ; �G; �G) is refered to as L-group data, but the inclusion of

a �-splitting in the data is convenient).

A tuple (H;H; s; �) is said in [KS, 2.1] to be an endoscopic data for G and �(2 AutG) if

[KS, 2.1.i] (1 � i � 4) hold. Here [KS, 2.1.1] is: H is a quasisplit F -group. Fix L-group data

(splĤ ; �H ; �H) for H. The second ingredient H is a split extension 1 ! Ĥ ! H ! WF ! 1:

Hence we can choose a section c :WF ,!H of this extension. Consider Ĥ as a closed subgroup

of H. Then we have a WF -action �c on Ĥ: de�ne �c(w) to be Int(c(w))jĤ : Of course this

is not necessarily an L-action (i.e. it might not preserve any splitting of Ĥ). But we have a
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unique family fhw 2 Ĥad;w 2 WFg such that �c(w)(splĤ) = Int(hw)(splĤ) for all w 2 WF :

This gives the L-action �H : WF 3 w 7! Int(h�1
w ) � �c(w) 2 Aut(Ĥ); which does not depend

on the choice of c :WF ,!H. Then [KS, 2.1.2] is: �H coincides with �H .

Let us clarify (I wish to thank Takuya Kon-no for this explanation) that H need not be

isomorphic to LH under this requirement. Note that for w;w0 2WF we have

Int(hww0) � �H(ww0) = �c(ww
0) = �c(w) � �c(w0)

= Int(hw) � �H(w) � Int(hw0) � �H(w�1)�H(w)�H(w
0) = Int(hw�H(w)(hw0)) � �H(ww0):

That is, fhw;w 2WFg is a Ĥad-valued 1-cocycle. It de�nes a class in H1(F; Ĥad). This class

is trivial if and only if there exists some h 2 Ĥad such that hw = h�1w(h) for all w 2 WF .

Equivalently, �c(w) = Int(h�1w(h)) � �H(w) = Int(h�1) � �H(w) � Int(h) for all w 2 WF : But

this amounts to the fact that �c is an L-action (it preserves the splitting Int(h�1)(splĤ)). In

this case we have (from �H = �H) H ' LH. Of course one can �nd examples for the situation

H 6' LH when H1(F; Ĥad) is non-trivial.

Finally, [KS, 2.1.3] requires that the element s 2 Ĝ is such that s�̂ be semi-simple in Ĝo �̂,

and [KS, 2.1.4] that � : H ! LG be an L-homomorphism, whose image �(H) is contained in

the group of �xed points ZLG(s
L�) in LG of Int(s) �L�, where L�(g�w) = �̂(g)�w, and that

� map Ĥ isomorphically onto the identity component ZĜ(s�̂)
0 of the group ZĜ(s�̂) of �xed

points of Int(s) � �̂ in Ĝ.

F. Endoscopic groups.

Our Theorem is the \fundamental lemma" for the lifting of representations from GSp(2) to

GL(4). It is compatible with a dual group situation, which we proceed to describe.

LetG be the F -groupG1�Gm, whereG1 = GL(4) andGm = GL(1). Let Ĝ = Ĝ1�Ĝm =

GL(4; C ) � GL(1; C ) be its connected dual group. Put w = (
0 1

1 0
) and J = (

0 w

�w 0
), and

�̂(g1) = �(g1) = J tg�1
1 J�1 for g1 2 G1, where

tg1 is the transpose of g1. For g = (g1; t) in

Ĝ, write �̂(g) = �̂(g1; t) =
�
t�(g1); t). This is an automorphism of Ĝ of order 2. We often

attach a subscript 1 to indicate the GL(4)-component of an object in G = GL(4) � GL(1),

and sometimes abuse notations and ignore the GL(1)-component.

Denote by T̂ the diagonal subgroup in Ĝ (thus T̂ = T̂1 � C �), and by T� the diagonal

subgroup of G. Let B̂ and B be the upper triangular subgroups in Ĝ and G. Then the

group X�(T̂ ) = Hom(Gm; T̂ ) = f(a; b; c; d; e)g is isomorphic to X�(T�) = Hom(T�;Gm), and

X�(T̂ ) = f(x; y; z; t;u)g = X�(T�). The automorphism �̂ induces an automorphism � on G

(�xing B), given on T� as follows.

�
�(x; y; z; t;u)

�
(a; b; c; d; e) = (x; y; z; t;u)

�
�̂(a; b; c; d; e)

�
= (x; y; z; t;u)(e=d; e=c; e=b; e=a; e) = a�tb�zc�yd�xex+y+z+t+u

= (�t;�z;�y;�x; x+ y + z + t+ u)(a; b; c; d; e):

Then for (g; t) 2 G; �(g; t) =
�
�(g); tkgk), where kgk denotes the determinant of g.
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We are concerned with lifting of representations and transfer of orbital integrals between

G and its endoscopic groups, in fact its twisted (by �) such groups. The twisted endoscopic

groups of (Ĝ; �̂) are determined by Ĥ = ZĜ(ŝ�̂)
0 (superscript zero for \connected component

of the identity"), where this centralizer is

ZĜ(ŝ�̂) = f(x; t) 2 Ĝ;xŝ�(x)
�1 = tŝg � ZGL(4;C)

�
ŝ�̂(ŝ)

�
�GL(1; C );

and by a Galois action � : � = Gal(F=F ) ! ZĜ(ŝ�̂). Here ŝ is a semi-simple element in Ĝ

(which can and will be taken to be ŝ = (ŝ1; 1)
�
, which can and will be taken to be diagonal,

chosen up to �̂-conjugacy, namely T̂ 3 ŝ � gŝ�̂(g�1). Using a diagonal g we conclude that

ŝ = diag(1; 1; c; d). Taking g to be a representative in Ĝ of the reections (23); (14); (12)(34)

in the Weyl group of Ĝ (these elements are �xed by �̂), we conclude that the �̂-conjugacy class

of ŝ does not change if c is replaced by c�1, d by d�1, and (c; d) by (d; c). Let us list the

possibilities. Recall ([KS, 2.1]) that an endoscopic group H is called elliptic if
�
Z(Ĥ)�)0 is

contained in the center Z(Ĝ) of Ĝ.

A list of the twisted endoscopic groups of (Ĝ; �̂) is as follows.

1. ŝ = I; ZĜ(�̂) = GSp(2; C ) is connected, hence equal to Ĥ, the Galois action is trivial, and

the endoscopic group is H = GSp(2) over F . Since Z(Ĥ) = C � = Z(Ĝ); H is elliptic.

An endoscopic group C of H is determined by a semi-simple (diagonal, up to conju-

gacy) element s in Ĥ. The only proper elliptic endoscopic group of H is determined by

s = diag(1;�1;�1; 1), whose centralizer in Ĥ is Ĉ0 =

 � 0 0 �
0 � � 0

0 � � 0

� 0 0 �

!
= f(a; b) 2 GL(2; C )2 ;

det a = det bg. Note that the connected component of Z(Ĉ0) = hZ(Ĥ); si is Z(Ĥ), so that

C0 is elliptic. Also, X�(T̂0) = f(a; b; c; d); a + d = b + cg = X�(T �0 ) has dual X�(T �0 ) =

X�(T̂0) = f(x; y; z; t)=(u;�u;�u; u)g, hence C0 = GL(2) � GL(2)=GL(1), where GL(1) em-

beds via u 7! (u; u�1).

The dual group of H0 = Sp(2) is Ĥ0 = PGSp(2; C ). Its proper elliptic endoscopic groups

are obtained as follows. (i) The centralizer of s = diag(1;�1;�1; 1) in Ĥ0 is generated by

the reection diag(w;w) and its connected component Ĉ0=Ẑ = (GL(2; C ) � GL(2; C ))0=C � ,
the prime indicates equal determinants. The corresponding endoscopic group is (GL(2) �
GL(2))0=GL(1), unless there is a quadratic extension E=F whose Galois group permutes

the two factors, in which case ResE=F GL(2)
0=GL(1) is obtained (its group of F -points is

GL(2; E)0=F�, where the prime indicates here determinant in F�). (ii) The centralizer of

s1 = diag(1; 1;�1;�1) in Ĥ0 is generated by (
0 """

�""" 0
) (where """ = (

1 0

0 �1
)) and its connected

component Ĉ0
1 = fdiag(x; �"""x"""); x 2 PGL(2; C ); � 2 C

�g. The endoscopic group is elliptic

only when there is a quadratic extension E=F such that Gal(E=F ) acts via Int(
0 """

�""" 0
) on this

connected component, thus by �(x; �) = (x; ��1) on (x; �) 2 PGL(2; C ) � C
� , and then the

endoscopic group is SL(2)� U(1; E=F ), where U(1; E=F ) is the unitary group with F -points

E1 = fx 2 E�;xx = 1g.
2. ŝ = (

I 0

0 �I ); ZĜ(ŝ�̂) = GO
�
( 0 w

w 0
); C
�
is f(x; t) 2 Ĝ;x( 0 w

w 0
)tx( 0 w

w 0
) = tg. It is isomorphic
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to

h
�
A;B = ( a b

c d
)
�
=
�
( aA bA"""

c"""A d"""A"""
); kABk

�
; (diag(1; w; 1); 1)i = h

�
(A 0

0 t"""A"""
); tkAk

�
; (diag(1; w; 1); 1)i;

which has connected component Ĉ = GL(2; C )2=C � , with C � embedding via z 7! (z; z�1).

Note that Z(Ĉ) = C � is Z(Ĝ), hence C is elliptic. Now

X�(T �C) = X�(T̂C) = f(a; b; c; d)=(u; u;u�1; u�1)g

has dual X�(T �C) = X�(T̂C) = f(x; y; z; t);x + y = z + tg; thus C =
�
GL(2) � GL(2)

�0
,

where the prime means the subgroup of (A;B) with kAk = kBk, when � acts trivially. If

there is a quadratic �eld extension E=F and �(�) 2 diag(1; w; 1)Ĉ for � in Gal(E=F ), then

� acts on C = CE = ResE=F GL(2)
0 by permuting the two factors. In particular, CE =

CE(F ) = GL(2; E)0, the prime indicating determinant in F�. Note that the centralizer of

(""";""") in Ĉ = GL(2; C )2=C � is generated by the diagonals and (w;w), hence C has no elliptic

endoscopic groups.

3. ŝ = diag(1; 1; 1;�1), ZĜ(ŝ�̂) = h(diag(a;B; b); kBk); (�; 1); � =
�

0 0 1

0 I 0

1 0 0

�
; B 2 GL(2; C );

a; b 2 C � ; ab = kBki has connected component Ĉ+ = (GL(2; C ) � GL(1; C )2)0 (the prime

indicates (a;B; b) with ab = kBk), with center Z(Ĉ+) = C �2 , which will not be ellip-

tic unless the Galois action is non trivial, namely there is a quadratic extension E=F with

�(�) = �, h�i = Gal(E=F ). In this case
�
Z(Ĉ+)

�
�0

= C � is Z(Ĝ). We have X�(T̂+) =

f(a; b; c; b + c � a; b + c)g = X�(T �+); with dual X�(T̂+) = f(x; y; z; t;w)g=f(u; v; v; u;�u�
v)g= f(x; y; z; t)g=f(u;�u;�u; u)g = X�(T �+). We conclude that C+ = CE

+ = (GL(2) �
ResE=F GL(1))=GL(1), GL(1) embeds as (z; z

�1), and C+ = C+(F ) = GL(2; F )�E�=F� '
GL(2; F )�E1.

4. ŝ = ( I 0

0 cI
); c 6= �1; ZĜ(ŝ�̂) = h

�
(A 0

0 t"""A"""
); tkAk

�
i is connected but not elliptic.

5. ŝ = diag(1; 1; 1; d); d 6= �1; ZĜ(ŝ�̂) = h
�
diag(a;A; kAk=a; kAk

�
i is connected but not

elliptic.

6. ŝ = diag(1; 1;�1; d); d 6= �1; ZĜ(ŝ�̂) = h
�
diag(a; b; t=b; t=a); t

�
;
�
diag(1; w; 1); 1

�
i is not

elliptic.

7. ŝ = diag(1; 1; c; d); c2 6= 1 6= d2; c 6= d; d�1; ZĜ(ŝ�̂) = h
�
diag(a; b; t=b; t=a); t

�
i is connected

but not elliptic.

The norm map is de�ned as follows. Put V = (1� �)T� and U = T�
� = T�=V. Since T�

consists of (a; b; c; d; e) and �(a; b; c; d; e) = (d�1; c�1; b�1; a�1; eabcd), we have that V consists

of (�; �; �; �; 1=��). The isomorphism Û = T̂ �̂ ' T̂H , where T
�
H is the diagonal torus in

H = GSp(2), de�nes a morphism

X�(T�)! X�(T�)=X�(V) = X�(T̂ )=X�(V̂ ) = X�(Û = T̂ �) = X�(T̂H)
�! X�(T�

H);

the last arrow being de�ned by

(x; y; z; t;w) 7! (x+ y + w; x+ z + w; t+ y + w; t+ z + w;x+ y + z + t+ 2w);
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and a norm map N : T� ! T�
H , given by

(x; y; z; t;w)mod(�; �; �; �; 1=��) 7! (xyw; xzw; tyw; tzw;xyztw2) = (a; b; e=b; e=a; e);

which is surjective since (b; a=b; 1; e=a; 1) 7! (a; b; e=b; e=a; e).

To describe the norm for the twisted endoscopic group C (of (2) above), note that T̂C
�! T̂H

by ((a; d); (b; c)) 7! (ab; ac; bd; cd). Hence X�(T̂H)
�! X�(T̂C) via (x; y; z; t)modf(�; �; �; �)g

7!
�
(x + y; z + t); (x+ z; y + t)

�
, and the composition X�(T�) ! X�(T̂H) ' X�(T̂C) de�nes

the norm map

NC : T� ! T�
C ; (x; y; z; t;w) 7!

�
(xyw; ztw); (xzw; ytw)

��
=
�
( xyw 0

0 ztw
); (

xzw 0

0 ytw
)
��
:

Let us also describe the norm map for the twisted endoscopic group C+ of (3) above. Since

the map X�(T̂ �̂)
�! X�(T �+) is the identity, the norm is de�ned by

N : X�(T�)! X�(T�)=X�(V) = X�(T̂ )=X�(V̂ ) = X�(Û = T̂ � = T̂+) = X�(T�
+);

N(x; y; z; t) = (x; y; z; t)mod(u; u�1; u�1; u):

G. Instability.

Recall that the set of �-conjugacy classes within the stable �-conjugacy class of a strongly

�-regular element t in G is parametrized by the set D(F; �; t) = ker[H1(F;T� 1���! V) !
H1(F;G)] = ker[H1(F;T��) ! H1(F;G)], which is a group in our case, as H1(F;G) is

trivial. There is an exact sequence

H0(F;T�) = T � 1���! H0(F;V) = V ! D(F; �; t)! H1(F;T�) 1���! H1(F;V):

In our case of G = GL(4) � GL(1), we have H1(F;T�) = f1g for all tori (or Galois actions,
namely subgroups of the symmetric group S4 on four letters), hence D(F; �; t) = V=(1� �)T �.

There is a dual �ve term exact sequence, useful when stabilizing the twisted trace formula.

Let � : V̂ ! T̂ be the homomorphism dual to T� 1���! V. Thus � : X�(V̂ ) = X�(V) !
X�(T�) = X�(T̂ ) takes � = (x; y; z; t;w) to

�
�(�)

�
(a; b; c; d; e) = �(ad; bc; bc; ad; 1=abcd) =

(ad)x+t�w(bc)y+z�w. Namely, � takes (x; y; z; t;w) in V̂ = T̂ =Û = T̂ =T̂ �̂ to (xt=w; yz=w; yz=w;

xt=w; 1) in T̂ . Recall that T̂ �̂ = f(a; b; e=b; e=a; e)g.
To obtain the dual sequence recall the Langlands isomorphism H1(WF ; T̂ ) =

Homcts(T; C
� ) (T = T(F ); [KS, about a page after Lemma A.3.A]), and its hypercohomology

analogue ([KS, Lemma A.3.B]): H1(WF ; V̂
��! T̂ ) is isomorphic to the group K(F; �; T �) of

characters Homcts

�
H1(F;T� 1���! V); C�

�
. Since the Weil group WF of F acts on T̂ and V̂

via the Galois group � = Gal(F=F ), one has

H0(WF ; V̂ ) = V̂ � ��! H0(WF ; T̂ ) = T̂� ! K(F; �; T �)! H1(WF ; V̂ )
��! H1(WF ; T̂ ):

Here K(F; �; T �) = H1(WF ; V̂
��! T̂ ). This is the exact sequence [KS, A.1.1], for � : V̂ ! T̂ ,

which is dual to the previous �ve terms exact sequence for 1� � : T� ! V.

For each F -torus T in G, and a strongly �-regular element t in T , we can make the:
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De�nition. The stable �-orbital integral �st is the sum of the �-orbital integrals on the �-

conjugacy classes within the stable �-conjugacy class of t.

The set of such �-conjugacy classes (for some t) is parametrized by the group H1(F;T� 1���!
V) = H1(F;T��) computed above. For each character � of this group (into the group of roots

of unity in C �), we can also make the:

De�nition. The �-orbital integral is the linear combination of the �-orbital integrals weighted

by the values of � at the element of H1(F;T� ! V) parametrizing the �-conjugacy class.

These weighted (by �) combinations of the �-orbital integrals are to be compared with

stable orbital integrals on the �-endoscopic groups H of (G; �). The �-endoscopic group

H is determined from �, by [KS, Lemma 7.2.A], via the surjection H1(WF ; V̂
��! T̂ ) !

Homcts

�
H1(F;T� 1���! V); C�

�
(see [KS, Lemma A.3.B]). Recall ([KS, A.1]) that:

De�nition. The �rst hypercohomology group H1(G;A
f�! B) of the short complex A

f�! B

of abelian G-modules in degrees 0 and 1, is the quotient of the group of 1-hypercocycles, by

the subgroup of 1-hypercoboundaries. A 1-hypercocycle is a pair (a; b) with a being a 1-cocycle

of G in A, and b 2 B such that f(a) = @b (@b is the 1-cocycle � 7! b�1�(b) of G in B). A

1-hypercoboundary is a pair
�
@a; f(a)

�
; a 2 A.

Thus H1(WF ; V̂
��! T̂ ) consists of elements represented by pairs (a; b); a 2 H1(WK=F ; V̂ ),

whereK=F is a Galois extension over which T splits and V̂ = T̂ =Û ; Û = (T̂ �̂)0. Here � : V̂ ! T̂

is the map dual to 1 � � : T� ! V, thus �(x; y; z; t;w) = (xt=w; yz=w; yz=w; xt=w; 1), and

b 2 T̂ satis�es �(a) = @b. The �-endoscopic group H has a dual group whose connected

component Ĥ is ZĜ(b�̂)
0, the connected centralizer of b�̂ in Ĝ ([KS, Lemma 7.2.A]).

We proceed to describe the 1-hypercocycles representing the non trivial characters

� on H1(F;T� 1���! V). The listing is as above, except that H1(T� ! V) is trivial in the case

(1). Since V embeds in T, we have that H1(F;T� 1���! V) embeds in H1(F;T� 1���! T), and

we extend � to a character of the bigger group.

(2) Here �(�) = h�(�) = (23)i, T splits over the quadratic extension E=F , V = fx =

(�; �; �; �; 1=��);�; � 2 F�g, (1 � �)T � = fx 2 V ;� 2 F�; � 2 NE=FE
�g, then � 6= 1 on

H1(T� ! V) is given by �(x) = �E=F (�), where �E=F is the non trivial character on F� which

is trivial on NE�. Extend �E=F to a character � on E�. Then � extends to H1(T� ! T�) by
(�; �; ��; �; e) 7! �(�). Recall that we have an exact sequence 1! E� ! WE=F ! h�i ! 1,

in fact WE=F = hz 2 E�; �;�2 2 F � NE; �z = z�i. Now a 2 H1(WE=F ; T̂ ) is given by a

function a :WE=F ! T̂ satisfying in particular a��(az) = a�z = az� = aza�, thus �(az) = az.

Take az =
�
1; �(z); �(z); 1

�
. Then a�2 = (1;�1;�1; 1). Take a� = (1; 1;�1; 1) 2 T̂ (then

a�2 = a��(a�), as � = (23)). By de�nition of �, we have �(a�) = (1;�1;�1; 1) (the 5th entry

is 1 if it is not explicitly written out). For b = (1; 1;�1; 1) 2 T̂ , �b = (1;�1; 1; 1), and @b(�) =
b�1�b is equal to �(a�). Then (a; b) 2 H1(T̂

��! T̂ ) represents �. Now ZĜ(b�̂) � ZĜ
�
b�̂(b)

�
,
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and b�̂b = (1;�1;�1; 1), hence Ĥ = ZĜ(b�̂)
0 is

(  � 0 0 �

0 a 0 0

0 0 b 0

 0 0 �

!
; t

!
; ab = t = �� � �

)
. Note

that T is not elliptic, so H is contained in a Levi subgroup of a (maximal) parabolic subgroup

of G.

(3) The case of �(�) = h� = �(14)i is similarly handled.
(I) Here �(�) = h�(�) = (14)(23)i; V = fx = (�; �; �� = �; �� = �; 1=��)g and since V=(1�
�)T � = (F�=NE�)2, there are 4 �'s, 3 non trivial. Two of these can be dealt with as in case

(2) above (i.e. when � is x 7! �E=F (�); the case when � is x 7! �E=F (�) is analogous to

the case where � = (14) as in (3)). But now � acts (non trivially) by permuting the two one

parameter multiplicative entries in Ĥ, thus we obtain the elliptic �-endoscopic group H = CE
+

of type (3) in Section F.

The remaining � on V=(1 � �)T � is given by x 7! �E=F (��). Choosing extensions �1; �2
of �E=F to E�, we extend � to T � by x = (�; �; ��; ��; e) 2 T � 7! �1(�)�2(�). As in case

(2), we de�ne a 1-cocycle a of WE=F in T̂ by az =
�
�1(z); �2(z); �2(�z); �1(�z)

�
(z 2 E�),

then a�2 = �I, since �1(�
2) = �1. An a� which satis�es a��(a�) = a�2 = �I is given

by a� = (1; 1;�1;�1) 2 T̂ , and so �(a�) = �I. Choosing b = (1; 1;�1;�1) 2 T̂ , we have

�b = (�1;�1; 1; 1), and @b(�) = b�1�b = �I. Note that the norm N maps (x; y; z; t) in T to

((xy; zt); (xz; yt)) in TC , and � = (14)(23) then acts on TC by �((a; b); (c; d)) = ((b; a); (d; c)).

Then � does not permute the two factors in C = (GL(2) � GL(2))0, and we obtain the

endoscopic group C of type (2) (see Section F). The other two � correspond to the elliptic

�-endoscopic groups of type (3), as noted above.

(II) Here �(�) = h�(��) = (14); �(�) = (23)i, and there are three non trivial characters �

of V=(1 � �)T �, given at x = (�; �; �� = �; �� = �; 1=��) in V by �E=E1
(�); �E=E2

(�);

�E=E1
(�)�E=E2

(�), where T splits over E=F , and E1 = Eh�i; E2 = Eh��i. The �rst two

characters are dealt with as in case (I) ((2), and (3)). To deal with the last case, extend

�E=E1
to a character �1 on E�, and �E=E2

to a character �2 on E�. We get a character

(�; �; ��; ��; e) 7! �1(�)�2(�) of T . A 1-cocycle of WE=F in T̂ is given by

az =
�
�1(z); �2(z); �2(�z); �1(�z)

�
; a� = (1; 1; 1;�1) 2 T̂ ; a� = (1; 1;�1; 1) 2 T̂ ;

and b = (1; 1;�1;�1) 2 T̂ satis�es �(a�) = (�1; 1; 1;�1) = @b(�), �(a� ) = (1;�1;�1; 1) =
@b(�); the �-endoscopic group of type (2) is obtained.

Note that � acts on T̂C by mapping ((u; v); (x; y)) = ((
u 0

0 v
); (

x 0

0 y
)) = diag(ux; vx; uy; vy)

to ((x; y); (u; v)), hence (A;B) 2 ZĜ(ŝ�̂) to (B;A); � maps it to ((v; u); (y; x)), and �� to

((y; x); (v; u)). Thus the endoscopic group is CE3
, as E3 = E�. Its group of rational points is

GL(2; E3)
0.

(III) Here �(�) = h�(�) = (12)(34); �(�) = (14)(23)i, and the non trivial character � of

V=(1� �)T � is given by x = (�; ��; ��� = ��; �� = �; 1=���) 7! �E=E3
(�); � 2 E3 = Eh�i.

It extends to a character x = (�; ��; ���; ��; e) 7! �(x), if � extends �E=E3
from E�

3 to E�.
A corresponding (a; b) 2 H1(T̂ ! T̂ ) is given by az =

�
�(z); �(�z); �(��z); �(�z)

�
; z 2 E�.

Since �2 2 E3 � NE=E3
E, we have a�2 = (�1;�1;�1;�1), and a� = (1; 1;�1;�1) 2 T̂
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solves a��(a�) = a�2 . Then �(a�) = �I = @b(�) for b = (1; 1;�1;�1) 2 T̂ . Further, �2 2
E1(�NE=E1

E); �(�2) = �2; �2�(�2) 2 NE=E3
E�, hence a�2 =

�
�(�2); �

�
�(�2)

�
; 1=�

�
�(�2)

�
;

1=�(�2)
�
, and a� =

�
�(�2); 1; 1; 1=�(�2)

�
satis�es a��(a� ) = a�2

�
�
�
�(�2)

�
= �(�2)

�
and

a��(a�) = a�� = a�� = a��(a� ). Moreover, �(a� ) = I = @b(�). The �-endoscopic group

de�ned by b = (1; 1;�1;�1) is of type (2).
Now � acts on T̂C by mapping ((u; v); (x; y)) to ((v; u); (x; y)); �� maps it to ((u; v); (y; x)),

and � to ((v; u); (y; x)), thus the endoscopic group is C = (GL(2)�GL(2))0.
(IV) Suppose that �(�) = h�(�) = (3421)i, T � = fx = (�; ��; �3�; �2�; e);� 2 E�; e 2 F�g,
V = fx = (�; ��; �3� = ��; �2� = �; 1=���);� 2 E�

3 )g, and � 6= 1 is given by x(2 V=(1 �
�)T �) 7! �E=E3

(�); �E=E3
being the non trivial character of E�

3 which is trivial on NE=E3
E�.

Choosing an extension � of �E=E3
to E�, we can extend � to T � (and H1(T � ! T �)) by

x 7! �(�). A corresponding element of H1(T̂
��! T̂ ) is a pair (a; b), where a is a 1-cocycle of

WE=F in T̂ . Note that 1! E� !WE=E3
! h�2i ! 1, where (�2)2 2 E3�NE=E3

E. Put az =�
�(z); �(�z); �(�3z); �(�2z); 1

�
. As �4 2 E3 �NE=E3

E, and �(�4) � �4 2 NE=E3
E�, we have

�(�4) = �1 and �
�
�(�4)

�
�(�4) = 1. Then a�4 = (�1;�1;�1;�1). From a�4 = a�2�

2(a�2),

if a�2 = (a; b; c; d), then ad = �1 = bc. Then a�2 = (1; 1;�1;�1) = a��(a�) = (ac; ba; cd; db)

has the solution a� = (1; 1; 1;�1) 2 T̂ . Also �(a�) = (�1; 1; 1;�1). If b = (a0; b0; c0; d0); �b =
(c0; a0; d0; b0), and @b(�) = (c0=a0; a0=b0; d0=c0; b0=d0) has to be �(a�), then a solution is given by

b = (1; 1;�1;�1) 2 T̂ .
The centralizer ZĜ(b�̂) is the group GO( 0 w

w 0
) of orthogonal similitudes of the symmetric

matrix ( 0 w

w 0
). This group is isomorphic to

�
GL(2; C ) �GL(2; C )

�
=C � via

�
g; g1 = ( a b

c d
)
�
7!
�
ag bg"""

c"""g d"""g"""

�
; """ =

�
1 0

0 �1

�
; w = (

0 1

1 0
);

where the similitude factor is det g1 � det g. This is the �-endoscopic group (2).

Note that � acts on T̂C by mapping ((u; v); (x; y)) to ((y; x); (u; v)), and �2 then maps it to

((v; u); (y; x)). The endoscopic group is then CE3
, E3 = E�2 .

Suppose that �(�) = W = h�(�) = (12)(34); �(�) = (23)i. Then ��� = (14), a splitting

�eld of T is E=F , and E1 denotes the �xed �eld of ��� in E. The non trivial character � of

V=(1� �)T � is given by x = (�; ��; ��� = ��; ���� = �; 1=���) 7! �E=E1
(�). It extends to

T � by x = (�; ��; ���; ����; e) 7! �(�), where � extends �E=E1
from E�

1 to E�. A 1-cocycle

of WE=F in T̂ is given as follows. At z 2 E�, put az =
�
�(z); �

�
�(z)

�
; �
�
��(z)

�
; �
�
���(z)

��
.

Then a(���)2 = (�1; 1; 1;�1). Hence a��� = (1; 1; 1;�1) = a��(a��) = a��(a� )��(a�) =

(a; b; c; d)(�; �; �; )(c; a; d; b) has a solution a� = I; a� = (1; 1;�1; 1) 2 T̂ , and �(a� ) =

(1;�1;�1; 1). Then b = (1; 1;�1;�1) 2 T̂ satis�es @b(�) = I; @b(�) = (1;�1;�1; 1); @b(���) =
�(a���) = (�1; 1; 1;�1), and the corresponding �-endoscopic group is of type (2).

In the comparison of the unstable (�-)�-orbital integral at a strongly �-regular element t,

and the stable orbital integral on the endoscopic group H� determined by �, a transfer factor

appears. It is a product of a sign and of a Jacobian factor �G;H� = �G=�H� , denoted �IV
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in [KS, 4.5], which we proceed to describe in the main cases. Thus

�G(t
��) = j det

�
1� Ad(t�)�

�
jLieG=LieT�j1=2F

is = �H(Nt�) = j det
�
1 � Ad(Nt�)

�
jLieH=LieZH(Nt�)j1=2F . If t� = diag(x; y; z; t); Nt� =

NH t
� = (xy; xz; yt; zt). Here H = GSp(2); ZH(Nt�) is the diagonal, and Lie(H)=LieZH(Nt�)

is the direct sum Lie(N) � Lie(N), the upper and lower nilpotent subgroups. On Lie(N) = 
0 x1 y1 z1
0 0 t1 y1
0 0 0 �x1
0 0 0 0

!
, det

�
1� Ad(a; b; c; d)

�
is (1� a=b)(1� a=c)(1� a=d)(1� b=c). On Lie(N) the

same factor, but with (a; b; c; d) replaced by (a�1; b�1; c�1; d�1), is obtained. Hence

�G(t
��) = j(x� t)(y � z)(xy � zt)(xz � yt)jF =jxyztj3=2F :

For � = 1, we have �G(t
��) = �H(Nt�). For � 6= 1 which de�nes the endoscopic group C,

the norm NGt
� is

�
( xy 0

0 zt
); (

xz 0

0 yt
)
�
, and

�C(NCt
�) = j(1� xy

zt
)(1� zt

xy
)(1� xz

yt
)(1� yt

xz
)j1=2F = j(xy � zt)(xz � yt)jF=jxyztjF :

Then

�G;C(t
�) = �G(t

��)=�C(NCt
�) = j(x� t)(y � z)jF =jxyztj1=2F :

For � 6= 1 which de�nes the endoscopic group C+, the norm NC+
t� is

(x; y; z; t)mod(u; 1=u; 1=u; u); and �C+
(NC+

t�) = j(y � z)2=yzj1=2F ;

so that

�G;C+
(t�) = j(x� t)(xy � zt)(xz � yt)jF=jxtj3=2F jyzjF :

H. Kazhdan's decomposition.

A main ingredient in our proof of the matching is the (twisted analogue [F7] of) Kazhdan's

decomposition [K, p. 226], which we now recall. Let H be a connected reductive R-group,

where R is the ring of integers of F , and put H = H(F ); KH = H(R).

De�nition ([K]). An element k 2 H is called absolutely semi simple if ka = 1 for some

positive integer a which is prime to the residual characteristic p of R. A k 2 H is called

topologically unipotent if kq
N ! 1 as N ! 1; q = #(R=���R); ��� generates the maximal ideal

in R.

1. Proposition ([K]). Any element k 2 KH has a unique decomposition k = su = us, where

s is absolutely semi simple, u is topologically unipotent, and s; u lie in KH . For any k 2 KH

and x 2 H, if Int(x)k(= xkx�1) lies in KH , then x is in KHZH(s), where ZH(s) denotes the

centralizer of s in H. �

In fact [K] proves this only for H = GL(n), but since s is de�ned as a limit of a sequence

of the form kq
m

, both s and u lie in KH .

The twisted analogue which we need is reproduced next (from [F7]). Let G be a reductive

connected R-group and � an automorphism of G = G(F ) of order `
�
(`; p) = 1

�
, whose

restriction to K = G(R) is an automorphism of K of order `. Denote by hK; �i the group
generated by K and �.
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De�nition. The element k� of G� � hG; �i is called absolutely semi-simple if (k�)a = 1 for

some positive integer a indivisible by p.

2. Proposition ([F7, Proposition 2]). Any k� 2 K� has a unique decomposition k� =

s� �u = u � s� with absolutely semi simple s� (called the absolutely semi simple part of k�) and

topologically unipotent u (named the topologically unipotent part of k�). Both s and u lie in

K. In particular, ZG(s� � u) lies in ZG(s�). �

3. Proposition ([F7, Proposition 3]). Given k 2 K, put ~�(h) = s�(h)s�1, where k� =

s� � u. This ~� is an automorphism of order ` on ZK
�
(s�)`

�
. Suppose that the �rst cohomology

set H1
�
h~�i; ZK

�
(s�)`

��
, of the group h~�i generated by ~�, with coe�cients in the centralizer

ZK
�
(s�)`

�
in K, injects in H1

�
h~�i; ZG

�
(s�)`

��
. Then any x 2 G such that Int(x)(k�) is in

K�, must lie in KZG(s�). �

The supposition of this proposition can be veri�ed for our group G = GL(4; F )�GL(1; F )
and our automorphism � in the same way it is veri�ed in [F7] for GL(3; F ). Note also (see

[F7]) that if the elements k� = s� � u and k0� = s0� � u0 of K� are conjugate by G(F ) (F is

a separable closure of F ) then so are s� and s0�, and if s = s0 then u; u0 are conjugate in

ZG(F )(s�).

Our argument uses the function

1s�(u) = jK=K \ ZG(s�)j1K(s� � u) =
Z
K=K\ZG(s�)

1K
�
Int(x)(s� � u)

�
dx:

Then the orbital integral �1K (k�) =
R
G=ZG(k�)

1K(Int(x)(k�))dx is equal { by Proposition 3 {

to
R
ZG(s�)=ZG(s��u) 1s�(Int(x)u)dx = �1s�(u); the orbital integral of the characteristic function

1s� of the compact subgroup ZK(s�) = K \ ZG(s�) of ZG(s�) (multiplied by jK=ZK(s�)j) at
the topologically unipotent element u in ZK(s�).

Since (k�)2 = s�(s) � u2, where in our case �(g; t) =
�
�(g); t detg); g 2 GL(4; F ); t 2 F�,

�(g) = J tg�1J�1, we shall deal with various cases according to the values of s�(s) (s denotes

also the GL(4; F )-component of s).

4. Lemma. If x = s�(s) has the eigenvalue �, then it has the eigenvalue ��1 too.

Proof. If � 6= 0 is a vector with tx� = ��, then �(x)J� = J tx�1J�1 � J� = ��1J�, and

s�(x)s�1 = x: �

Then s�(s) has eigenvalues (�; ��1; �; ��1). The main case to be considered is when s�(s) =

I. Then sJ ts�1J�1 = I implies sJ = J ts = �t(sJ) is anti symmetric, and

ZG(s�) = f(g; t); (g; t)(s; 1)(�(g)�1; t�1 det g�1) = (s; 1);

thus det g = 1 and gsJ tg = sJg = Sp(sJ)�GL(1):

Any anti symmetric matrix sJ is similar to J , namely there exists some h in GL(4; F ) with

sJ = hJ th, thus s = h�(h)�1, and Sp(sJ) = hSp(J)h�1, thus we may assume s = I.



30 YUVAL Z. FLICKER

I. Decompositions for GL(2).

Before we start computing the orbital integrals of 1K on GSp(2; F ) and the �-orbital inte-

grals of 1K on GL(4; F ), let us compute the analogous integral for GL(2; F ). Let D 2 F �F 2

with jDj = 1 or j���j. Denote by T the torus T = f( a bD
b a

) 2 GL(2; F )g; put K = GL(2; R),

w = (
0 1

1 0
); """ = (

1 0

0 �1
), D = ( 0 D

1 0
), kgk denotes det g.

1. Lemma. We have a disjoint decomposition G = GL(2; F ) = [
m�0

T ( 1 0

0 ���m
)K.

Proof. Consider the embedding TnG ,! X(D) = fx 2 G; kxk = �D; (w"""x)2 = D (equiv-

alently: tx = x)g, by g 7! """wg�1Dg = kgk�1 tg"""wDg. Any x 2 X(D) has the form

x = k(
� 0

0 �
)k0 with j�j � j�j; k; k0 2 K. If j�j = j�j then j�j = 1; x 2 K;w"""x is semi simple�

(w"""x)2 = D
�
with eigenvalues �1; �2; �1�2 = �D and �2

1 = �2
2 = D, thus �1 = ��2 =

p
D.

Then there exists k1 in K with w"""x = k�2
1 Dk1, and Tk1 7! x = """wk�1

1 Dk1. If j�j < j�j then
x = k(

� 0

0 �
)k0 = tk0( � 0

0 �
)tk implies t(tkk

0�1) = (
� 0

0 �
)tkk

0�1(
� 0

0 �
)�1, thus tkk

0�1 = (
k1 k2

k2�=� k4
),

where k1; k4 are units, hence { putting �
0 = k1�kk0k and �0 = (k4� � k1�(k2=k1)

2)kk0k { we
have

k(
� 0

0 �
)k0 = tk0( k1 k2�=�

k2 k4
)(

� 0

0 �
)k0 = kk00k�1 tk00( �

0 0

0 �0
)k00;

where k00 = ( 1 k2=k1
0 1

)k0, and j�0j = j�j, j�0j = j�j: Since

(�ab)�1( 0 a
b 0

)(
0 1

�1 0
)( 0 D

1 0
)( 0 b

a 0
) = (

aD=b 0

0 �b=a );

any (�; �) with j�j < j�j; �� = �D, is obtained from (a; b) with jaj < jbj. As T ( 0 b

a 0
)K =

T ( b 0

0 a
)K = T (

1 0

0 ���m
)K for some m � 1, we are done. �

Denote by 1K the (quotient by the volume jKj of K of the) characteristic function of K in

G, by e the rami�cation index of E = F (
p
D) over F , by q the cardinality of R=���R, and by

qE = q2=e the cardinality of RE=���ERE ;��� = ���eE . Put ord("���
n) = n; j"j = 1; j"���nj = q�n. Fix

 = �+ �
p
D with � 6= 0 in E;�; � 2 F . Write  = (

� �D

� �
) 2 T .

2. Lemma. The integral
R
TnG 1K(g

�1g)dg is equal to
q�1+2=e

q�1
j�j�1 � 2=e

q�1
.

Proof. If f 2 C1
c (TnG), thenZ

TnG
f(g)dg =

X
m�0

Z
K\( 1 0

0 ����m
)T (

1 0

0 ���m
)nK

f
�
( 1 0

0 ���m
)k
�
dk:

But K\( 1 0

0 ����m
)T ( 1 0

0 ���m
) = f( a bD���m

����mb a
) 2 Kg = Int( 1 0

0 ����m
)f( a bD

b a
); jbj � j���jmg is RE(m)�,

where RE(m) = fa + b
p
D; jaj � 1; jbj � j���mjg = R + ���mRE = R + R���m

p
D: Put also

R�
E = fa+ b

p
D; a2 � b2D 2 R�g. ThenZ

TnG
1K(g

�1g)dg =
X
m�0

[R�
E : RE(m)�]1K(

� �D���m

�����m �
):
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This sum ranges over 0 � m � ord(�) = B. The index is computed as follows:

[R�
E : RE(m)�] = [R�

E : 1 + ���mRE ]=[RE(m)� : 1 + ���mRE ]

=
(qE � 1)qem�1

E

(q � 1)qm�1
=

8><
>:

1; if e = 1;m = 0,

(q + 1)qm�1; if e = 1;m � 1,

qm; if e = 2;

since RE(m)�=(1 + ���mRE) ' R�=R� \ (1 + ���mRE); qE = q2=e;��� = ���eE . Then the integral is

equal (when e = 2) to:

=
X

0�m�B
qm =

qB+1 � 1

q � 1
=

qj�j�1 � 1

q � 1
=

q

q � 1
j�j�1 � 1

q � 1
;

and to

= 1 + (q + 1)
X

1�m�B
qm�1 = 1 + (q + 1)

qm � 1

q � 1
=

q + 1

q � 1
j�j�1 � 2

q � 1

when e = 1. �

We shall also need an analogous decomposition for SL(2; F ). For D 2 F � F 2 put E =

F (
p
D). The torus T = f( a bD

b a
) 2 GL(2; F )g is isomorphic to E�. For � 2 F� put T � =

(
1 0

0 �
)�1T (

1 0

0 �
) = f( a bD�

b=� a
)g. Write �D� (a+b

p
D) = (

a bD�

b=� a
). Put T

�
0 = T �\SL(2; F ); K0 =

K \ SL(2; F ). As usual, ��� is a generator of the maximal ideal in the ring R of integers in F ,

and " is a unit, in R�. Write � = ord(�) thus j�j = j���j�. Fix � 2 f1;���g if E=F is unrami�ed,

and � 2 f1; "g = R�=R�2 if E=F is rami�ed.

3. Lemma. If E=F is unrami�ed then SL(2; F ) is the disjoint union over the set of j � 0

such that 2 divides j��, and over " 2 R�=R�2 if j > 0 and " = 1 if j = 0, of the sets T
�
0 rj;"K0,

where rj;" = t" diag(���
�(j��)=2; "���(j��)=2), and where t" is an element of T � with determinant

kt"k = "�1. If E=F is rami�ed then the union SL(2; F ) = [j�0T
�
0 rjK0 is disjoint, where

rj = �D� (���
�j
E ) diag(1;���j);���E =

p
����;D = ����.

Proof. We have a disjoint union GL(2; F ) = [
j�0

T ( 1 0

0 ���j
)K = [

j�0
T �( 1 0

0 ���j��
)K, for any � = u����

in F�(u 2 R�). When E=F is unrami�ed, ���j�� lies in R�NE=FE
�� = det(T �K)

�
precisely

when 2 divides j � �. In this case, rj = diag(����(j��)=2;���(j��)=2) lies in T � diag(1;���j��)
\ SL(2; F ). If trjk lies in SL(2; F ), then ktk lies in R�, in fact multiplying t by " 2 R� we

may assume that ktk ranges over R�=R�2. Note that ktk = NE=F

�
(�D� )

�1(t)
�
. Since E=F is

unrami�ed, we have NE=FR
�
E = R�, where RE is the ring of integers in E. Hence for any "

in R� there is t" in T � with kt"k = "�1, and we may assume that t = t0t" 2 T �0 t". Then trjk

lies in T
�
0 t"rj diag(1; ")K0.

If j = 0, then T
�
0 t"(

1 0

0 "
)K0 = T

�
0K0. Otherwise the cosets T

�
0 t"rj(

1 0

0 "
)K0 and T

�
0 rjK0 are

disjoint, since r�1
j tt"rj 2 K0(

1 0

0 "
) implies that " = ktt"k 2 R�2 when j > 0. In particular,

when � = 1, and " 2 R� � R�2, t" is not in K.
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If E=F is rami�ed we can choose the uniformizer ���E in RE � E to be
p
����, and D

to be ����, so that NE=F���E is ���. Then GL(2; F ) = [
j�0

T ��D� (���
�j
E )(

1 0

0 ���j
)K. If trjk lies in

SL(2; F ) then ktk 2 R� \ NE=FE
� = R�2. Hence t = t0""" with kt0k = 1 and """ 2 R�, and

SL(2; F ) = [
j�0

T
�
0 rjK0. �

4. Corollary. For f 2 C1
c

�
SL(2; F )

�
, since SL(2; F ) = [

r2R
T0rK0, we have

Z
SL(2;F )

f(h)dh =
X
r2R
jT0 \ rK0r

�1j�1
T0

Z
T0

dt

Z
K0

f(trk)dk

=
X
r2R
jR�

T j�1[R�
T : T0 \ rK0r

�1]

Z
T0

dt

Z
K0

f(trk)dk;

where RT = T0(R) = T0 \K0. �

Yet another analogue is when E1 = F (
p
D) and E3 = F (

p
A) are two quadratic extensions

of F , one of which is rami�ed while the other is not. A prime indicates determinant in

F�, for GL(2; E3)
0; K 0�K = GL(2; R3)

�
; T 0� ( T� is the torus (

a bD�

b=� a
) in GL(2; E3) which

is isomorphic to E�; E = E1E3). We normalize A;D; � to be integral of minimal order, �

represents E�
3 =NE=E3

E�, and we write � = u���
�
3, � = ord3 �, u 2 R�

3 . Of course, R3 is the

ring RE3
of integers in E3, and ���3 denotes ���E3

.

5. Lemma. We have a disjoint decomposition GL(2; E3)
0 = [T 0�rjK 0, where j � 0 and

rj 2 T�(
1 0

0 ���
j
3
) if E=E3 is rami�ed (E1=F is rami�ed), while when E=E3 is unrami�ed, the

summation ranges over j � 0 such that j � � is even, and rj = ���
�(j��)=2
3

�
1 0

0 ���
j��
3

�
.

Proof. We use GL(2; E3) = [j�0T�(
1 0

0 ���
j��
3

)K. When E=E3 is rami�ed, � = 0;���3 = �D 2 F�

and ���E =
p
D, so that NE=E3

(���E) = ���3. Hence if h = trk 2 GL(2; E3)
0 we may assume

that khk 2 R�, and rewrite h as h = tt0rk for some t0 2 T� with kt0rk = 1. Then ktk 2
R�
3 \NE=E3

E� = R�2
3 , so there is " 2 R�

3 with ktk = "2, and we can write h = "�1t � t0r � "k,
with k"�1tk = 1 and k"kk 2 R�.

When E=E3 is unrami�ed, and h = trk 2 GL(2; E3)
0; r = (

1 0

0 ���
j��
3

), since ktk 2 NE=E3
E�

= ���2Z3 R�
3 , and ���F = ���23 (since E3=F is rami�ed), we must have that j � � is even. We may

assume that khk lies in R�, take rj as in the lemma, and modify k by a scalar in R�
3 . Then

kkk is represented by R�
3 =R

�2
3 , namely by R�, since R�

3 = R�2
3 R� when E3=F is rami�ed

(a+ b
p
��� = a(1 + b

a

p
���) 2 R�R�2

3 ). �

J. Decomposition for Sp(2).

In computing the orbital integrals of 1K on H = GSp(2; F ), we shall use the following

decomposition.



MATCHING OF ORBITAL INTEGRALS ON GL(4) AND GSp(2) 33

1. Lemma. We have a disjoint decomposition H = GSp(2; F ) = [
n�0

KunCA = [
n�0

CAunK,

where A 2 F � F 2; un =

0
@ 1 0 0 ����n=A

0 1 0 0

0 0 1 0

0 0 0 1

1
A, CA =

n
( a b
c d

) 2 H; a = (
a1 a2
Aa2 a1

);b = : : :
o
, K =

GSp(2; R), and jAj = 1 or = j���j.

Proof. It su�ces to show one of these decompositions, since u�1
n = (�I 0

0 I
)un(

�I 0

0 I
). Write

g1 � g if g1 2 KgCA. Using GL(2; F ) = [
m�0

n
( a bA
b a

)
o
( 1 0

0 ���m
)GL(2; R)

= [
m�0

GL(2; R)(
1 0

0 ���m
)
n
( a b

bA a
)
o
, we conclude that any g 2 H = KP , where P is the Siegel

parabolic, of type (2; 2), has

g �
�
Y 0

0 wtY �1w

��
I X

0 I

�
�
 

1 0

0 ���n
0

0 ����n 0

0 1

!0B@
1 0 0 ����i=A
0 1 0 0

0 0 1 0

0 0 0 1

1
CA

2 K

0
B@
1 0 0 ����j=A
0 1 0 0

0 0 1 0

0 0 0 1

1
CACA:

The last relation (2) is clear when n = 0, where j = i. If i = 0 < n then j = n, since

0
B@
1 1=A

���n 0

0 ����n

0 1

1
CA
0
B@

1 0 0 (1 + ����n)=A
0 1 1 + ����n 0

0 ���n 0 0

A���n 0 0 0

1
CA
0
B@
1 �����n=A

1 0

0 1

0 1

1
CA

=

0
B@
1 + ���n 0 0 0

0 ���n ���n + 1 0

0 1 0 0

���nA 0 0 �1

1
CA :

Note that

0
@ 1 A�1

1 0

0 1

0 1

1
A =

 
1 0

1 �1

0 1

0 1

!0@ 1 A�1

1 1

0 1

0 1

1
A 2 KCA. If i � 2n we reduce to i = 0 < n

to get j = n, since0
B@
1 0

���n 0

0 ����n

0 1

1
CA
0
B@
1 0 0 ����i=A
0 1 0 0

0 0 1 0

0 0 0 1

1
CA �

0
B@
1 0

���n

����n

1

1
CA
0
B@
1

1 �����i
0 1

0 1

1
CA

=

0
B@
1 0

1 ����2n�i
0 1

0 1

1
CA
0
B@
1 0

���n 0

0 ����n

0 1

1
CA �

0
B@
1 0

���n 0

0 ����n

0 1

1
CA :
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When i > 2n we obtain j = i� n, since

0
B@
1 0 0 ����i=A

���n 0 0

0 ����n 0

0 1

1
CA
0
B@

����n 0 0 1

0 ����n A 0

0 ���i(1� ����n) ����n 0

���i(1� ����n)A 0 0 ����n

1
CA
0
@ 1 ���n�i=A

1 0

0 1
0 1

1
A

=

0
B@

1 0 0 1� ���n�i=A
0 1 ���nA 0

0 ���i�n(1� ����n) �1 0

���i(1� ����n)A 0 0 ����n

1
CA
0
@ 1 ���n�i=A

1 0

0 1
0 1

1
A

=

0
B@

1 0 0 1

0 1 ���nA 0

0 ���i�n(1� ����n) �1 0

A���i(1� ����n) 0 0 �1

1
CA 2 K:

In order to verify that the union is disjoint, we need to show that unhu
�1
m 2 K for h 2 CA

implies that m = n. Thus

K 3

0
@ 1 ����n=A

1 0

0 1
0 1

1
A
0
B@

a1 a2 b1 b2
a2A a1 b2A b1
c1 c2 d1 d2
c2A c1 d2A d1

1
CA
0
@ 1 �����m=A

1 0

0 1
0 1

1
A

=

0
B@
a1 + c2���

�n a2 + c1���
�n=A b1 + d2���

�n b2 + d1���
�n=A� ����m(a1 + c2���

�n)=A
Aa2 a1 Ab2 b1 � a2���

�m

c1 c2 d1 d2 � c1���
�m=A

Ac2 c1 Ad2 d1 � c2���
�m

1
CA :

If m = 0 and n � 1, using the top row we see that jc2j < 1; jc1j < 1; jd2j < 1; jd1j < 1; but

then considering the bottom two rows we see that the last matrix is not in K, hence n = m if

m = 0.

If n 6= m, without loss of generality 1 � n < m. Using the right column: c2 2 ���mR; c1 2
���mR; a2 2 ���m�nA�1R (since b1 2 ����nA�1R by top row, third entry, and third entry of

bottom row). Then a1 is a unit (the last three entries in the �rst column are in ���R), hence the

fourth entry of top row, x, has absolute value ja1����mA�1j > 1, contradiction. Then n = m

as asserted. �

There is an analogous decomposition for Sp(2; F ).

2. Lemma. We have a disjoint decomposition Sp(2; F ) = [
m�0

C1
AumK

1, where the super-

script 1 stands for the subgroup of elements with determinant one.

Proof. We can write K = [( I 0

0 r
)K1, union over r 2 R�, and CA = [C1

A(
I 0

0 �
); � 2 F�. Then

CAumK is a union of C1
A(

I 0

0 �
)um(

I 0

0 r
)K1, and such a coset lies in Sp(2; F ) (thus ( I 0

0 �
)um(

I 0

0 r
)

lies in Sp(2; F )) only when �r = 1. Writing ( I 0

0 r2
) = r( r

�1 0

0 r
), and noting that ( r

�1 0

0 r
) lies in
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K1 and C1
A, we have Sp(2; F ) = [C1

A(
I 0

0 r�1
)um(

I 0

0 r
)K1, where r ranges over R�=R�2. Note

that instead of um we can work with u0m = ( I X
0 I

); X = ( 0 0

����m 0
), since the quotient of the two

elements lies in C1
A. It remains to note that

0
@ 1 0

1 �����m
0 1

0 1

1
A
0
B@

0 1 �����mr 0

A 0 0 �����mr
����mc 0 0 �r
0 ����mc �rA 0

1
CA
0
@ 1 0

1 r����m

0 1
0 1

1
A

=

0
B@

0 1 0 0

A+ c 0 0 0

�c���m 0 0 �r
0 �c���m �cr � rA 0

1
CA

lies in K1 when c = �r�1�A (we choose r 2 R� with c 6= 0). Hence C1
A(

I 0

0 r�1
)um(

I 0

0 r
)K1 =

C1
AumK

1, and the lemma follows. �

Put K = GSp(2; R); KA
m = CA \ umKu�1

m , and CA = GL
�
2; F (

p
A)
�0

for the group of

g 2 GL
�
2; F (

p
A)
�
with determinant in F�. We write a = a1 + a2=

p
A for an element of

F (
p
A); a1; a2 2 F , and de�ne

�

�
a b

c d

�
=

0
B@

a1 a2=A b2 b1
a2 a1 b1A b2
c2=A c1=A d1 d2=A

c1 c2=A d2 d1

1
CA :

3. Lemma. The map �m : CA = GL
�
2; F (

p
A)
�0 ! CA;

�m : ( a b

c d
) 7! �

�
(
1 0

0 A���m
)(

1 0

�1 1
)(

1 0

0
p
A
)( a b

c d
)(

1 0

0 1=
p
A
)(

1 0

1 1
)(

1 0

0 1=A���m
)
�
;

is an isomorphism which maps Km = GL
�
2; RF (

p
A)(m)

�0
onto KA

m. Here RF (
p
A)(m) =

R+ ���m
p
AR = R+ ���mRF (

p
A), and as usual, prime indicates \determinant in F�".

Proof. Note that

um�

��
1 0

0 A���m

��
a b

c d

��
1 0

0 ����mA�1

��
u�1
m =

0
@ 1 ����mA�1

1 0

0 1
0 1

1
A

0
B@

a1 a2=A b2=A���
m b1=A���

m

a2 a1 b1=���
m b2=A���

m

c2���
m c1���

m d1 d2=A

c1A���
m c2���

m d2 d1

1
CA
0
@ 1 �A�1����m

1 0

0 1
0 1

1
A

=

0
B@
a1 + c1 (a2 + c2)=A (b2 + d2)=A���

m (b1 + d1 � a1 � c1)=A���
m

a2 a1 b1=���
m (b2 � a2)=A���

m

c2���
m c1���

m d1 (d2 � c2)=A

c1A���
m c2���

m d2 d1 � c1

1
CA
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lies in K precisely when a1; a2; d1; d2; c1 2 R; a2 + c2; c2 � d2 2 AR; b2 + d2; a2 � b2; Ab1; b1 +

d1 � a1 � c1 2 A���mR, in particular a1; a2; b1; b2; c1; c2; d1; d2 2 R. Replacing ( a b

c d
) by�

1 0

�1 1

��
a b

c d

��
1 0

1 1

�
=

�
a+ b b

c� a+ d� b d� b

�
;

namely replacing a by a+b, d by d�b, c by c�a+d�b (so a+c becomes c+d, c�d becomes c�a),
this condition becomes: a1; a2; b1; b2; c1; c2; d1; d2 2 R; c2 + d2; a2 � c2 2 AR; d2; a2; Ab1; c1 2
A���mR, and in fact the conditions c2+d2; a2�c2 2 AR can then be replaced by c2 2 AR. Next
we further replace ( a b

c d
) by (

1 0

0
p
A
)( a b

c d
)(

1 0

0 1=
p
A
) = ( a b=

p
A

c
p
A d

), where b=
p
A = b2=A+b1=

p
A,

c
p
A = c2 + c1A=

p
A. Thus we replace b1 by b2=A; b2 by b1, c1 by c2, c2 by c1A. Then the

condition changes to: a1; a2; b1; c2; d1; d2 2 R; c1 2 R; d2; a2; b2; c2 2 A���mR. This is the claim
of the lemma. �

Denote by T� = f( a bD�

b=� a
)g an elliptic torus in GL(2; E3). Thus a; b 2 E3; D 2 E3 � E2

3

will be assumed to lie in R3 and to have minimal order in R3 = RE3
, and � is taken in a set

of (two) representatives (including 1) for E�
3 =NE=E3

E�, again � 6= 1 will be taken in R3 to

have minimal order. Here E = E3(
p
D), and E3 = F (

p
A). Write ~CA for GL

�
2; F (

p
A)
�
, and

recall that CA = fg 2 ~CA; kgk 2 F�g. Also � = ord �.

4. Lemma. When E=E3 is rami�ed we have CA = [
j�0

T 0�rjK
0, where rj 2 T�(

1 0

0 ���
j
3
) has

krjk = 1. When E=E3 is unrami�ed, CA = [
j
T 0�rjK

0 (j � 0; j � � is even), where rj =

���
�(j��)=2
3 (

1 0

0 ���
j��
3

).

Proof. We have ~CA = GL(2; E3) = [
j�0

T�(
1 0

0 ���
j��
3

)K, K = GL(2; R3), ���3 = ���E3
. When E=E3

is rami�ed we choose ���3 = �D = NE=E3
(���E);���E =

p
D. If h = trk 2 ~CA, r = (

1 0

0 ���
j��
3

),

changing t in T� we may assume khk 2 R�, and that there is t0 2 T� with kt0rk = 1. Then

h = tt0rk, so that ktk 2 R�
3 \ NE=E3

E� = R�2
3 , and ktk = "�2 for some " 2 R�

3 . Then

h = "t � t0r � "�1k, k"tk = 1, k"�1kk 2 R�, as required.

When E=E3 is unrami�ed, if h = trk 2 CA where r = (
1 0

0 �
j��
3

), since NE=E3
E� is ���2Z3 R�

3 ,

we have that j � � must be even (note that ���F = ���23). We can then assume that khk 2 R�.
Further, changing t in h = trk, where r = ���

�(j��)=2
3 (

1 0

0 ���
j��
3

) and khk 2 R�, we may change

kkk 2 R�
3 by an element of R�2

3 (= scalar in T�). But R�
3 = R�2

3 R�, since a + b
p
A =

a(1 + b
a

p
A) 2 R�R�2

3 when A = ���F (E3 = F (
p
A) is rami�ed over F if E=E3 is unrami�ed,

E = E3(
p
D), since A;D are non squares in R, and AD has order 1). Hence we may assume

that kkk 2 R� so that k 2 K 0, as required. �

We need an analogous result for A 2 F�2. Note that for A 2 F �F 2, the subgroup CA of H

is isomorphic to GL(2; E)0; E = F (
p
A), where the prime indicates elements with determinant

in F�. The isomorphism is given by a 7! ~a = a1 + a2
p
A. Let

C0 =

(h
( a b

c d
); (

� �

 �
)
i
=

 
a 0 0 b

0 � � 0

0  � 0

c 0 0 d

!
2 H

)
;
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it is isomorphic to the group GL(2; F � F )0 = f(g; g0) =
�
( a b

c d
); (

� �

 �
)
�
; det g = det g0g. Put

z(m) =

0
@ 1 0 ����m 0

0 1 0 ����m

0 0 1 0

0 0 0 1

1
A :

5. Lemma. We have a disjoint decomposition H = GSp(2; F ) = [m�0Kz(m)C0.

Proof. Using the decomposition H = KNM where NM is the Heisenberg parabolic, of type

(1; 2; 1), we have H = K

 
1 � � �
1 0 �
0 1 �

0 1

!
C0, and representatives for KnH=C0 are given by

0
B@
1 ����n ����m ����n�m

0 1 0 ����m

0 0 1 �����n
0 0 0 1

1
CA ;m � n:

But this is equal to0
B@
1 0

1 0

����m�n �1
0 �1

1
CA
0
B@
1 0 �����m 0

0 1 0 �����m
0 0 1 0

0 0 0 1

1
CA
0
B@
1 ����n�m

1 0

����m�n �1
0 �1

1
CA :

To verify that the union is disjoint, it su�ces to show that if0
B@
1 0 ����m 0

0 1 0 ����m

0 0 1 0

0 0 0 1

1
CA
0
B@
a 0 0 b

0 � � 0

0  � 0

c 0 0 d

1
CA
0
B@
1 0 �����n 0

0 1 0 �����n
0 0 1 0

0 0 0 1

1
CA

=

0
B@

a ����m �����m � a����n b� ����m�n

c����m � � � c����m�n d����m � �����n

0  � �����n
c 0 �c����n d

1
CA

lies in K, then m = n. If n = 0 < m, then ; �; c; d 2 ���mR, but this is impossible (bottom row

in ���R). Without loss of generality 0 < n < m. Then c 2 ���mR implies d 2 R� (bottom row).

Since � 2 R, the last entry on the second row, d����m � �����n, is not in R, contradiction. We

conclude that m = n, and the union is indeed disjoint. �

Put H1 = Sp(2; F ), C1
0 = C0 \H1 ' C1 = SL(2; F )� SL(2; F ); K1 = K \H1.

6. Lemma. H1 = [
m�0

C1
0z(m)K1, where the union is disjoint.

Proof. We have H = [
m�0

C0z(m)K. Then hz(m)k 2 H1 implies that h = [a; b] with kak =
kbk 2 R�, and kkk = kak�2 2 R�2. Multiplying a; b by " 2 R� and k by "�1, we have
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that kak 2 R�=R�2. Then H1 = [
m�0

"2R�=R�2
C1
0x

�1z(m)xK1. where x = diag(1; "; 1; "). But

x�1z(m)x = z(m). The lemma follows. �

Denote by �m :
�
GL(2; F )�GL(2; F )

�0 ! C0, where the prime indicates the subgroup of

pairs (A;B) with kAk = kBk, the isomorphism �m
�
(A;B)

�
= ( I 0

0 ���m
)[A;"""wBw"""]( I 0

0 ����m
). It

maps C1 = SL(2; F )� SL(2; F ) onto C1
0 .

7. Lemma. �m maps K1
m = f(A;B) 2 SL(2; R)�SL(2; R);A�"""B""" 2 ���mM2(R)g isomorphi-

cally to K
C1
0

m = C1
0 \ z(m)K1z(m)�1, and Km = f(A;B) 2 (GL(2; R)�GL(2; R))0;A�"""B""" 2

���mM2(R)g onto KC0
m = C0 \ z(m)Kz(m)�1. Note that K1

m = Km \ C1
0 .

Proof. Multiply:

z(m)�1

�
I 0

0 ���m

�0B@
a 0 0 b

0 � � 0

0 �� � 0

c 0 0 d

1
CA� I 0

0 ����m

�
z(m)

=

0
B@
1 0 �����m 0

0 1 0 �����m
0 0 1 0

0 0 0 1

1
CA
0
B@

a 0 0 b����m

0 � �����m 0

0 �����m � 0

c���m 0 0 d

1
CA
0
B@
1 0 ����m 0

0 1 0 ����m

0 0 1 0

0 0 0 1

1
CA

=

0
B@

a � (a� �)����m (b+ �)����m

�c � �( + c)����m (� � d)����m

0 �����m � ��
c���m 0 c d

1
CA :

This lies in K1 precisely when a; b; c; d; �; �; ; � lie in R, a� �; b+ �; c+ ; d� �, lie in ���mR,

and ( a b

c d
); (

� �

 �
), have determinant 1. �
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PART II. Main comparison.

A. Strategy.

Let us review our strategy in computing the �-orbital integrals of 1K . It is based on

the twisted Kazhdan decomposition. Given a semi-simple t� 2 K o h�i; G = GL(4; F ) �
GL(1; F ); K = GL(4; R)� GL(1; R), it has the decomposition t� = u � s� = s� � u, where s�
is absolutely semi simple, and u is topologically unipotent. Then �G1K (t�) = �

ZG(s�)
1ZK(s�)

(u). The

associated stable �-orbital integral we wish to relate to the stable orbital integral �
H;st
1KH

(Nt),

where H is the endoscopic group GSp(2; F ), and Nt is the stable orbit of the norm of t. To

compute the norm we write t = h�1t��(h), where h 2 G
�
= G(F )

�
, and t� 2 T �, where T� is

the diagonal subgroup and T � = T��. On T � the norm is de�ned by T � ! T �=(1��)T � ' T �H ,
thus N(a; b; c; d; e) = (abe; ace; bde; cde; e2abcd). A �-semi-simple t (t� is semi simple in Goh�i)
is called strongly �-regular if ZG(t�) is abelian, in which case the centralizer ZG(ZG(t�)

0) of

ZG(t�)
0 in G is an F -torus T in G which is invariant under Int(t) � �, and ZG(t�) = T Int(t)��.

The �-orbit of t intersects T �, thus there is h 2 G and t� 2 T � with t = h�1t��(h), and
ZG(t�) = h�1ZG(t

��)h = h�1T ��h. Then T = ZG(h
�1T ��h) = h�1T �h, and ZG(t�) =

T Int(t)�� consists of the x 2 T with t�(x)t�1 = x, thus x�1t�(x) = t.

An F -torus T in G is determined by h 2 G and the Galois action on T�. Namely, for

t = h�1t�h 2 T = h�1T �h we have h�1t�h = t = �t = �h�1�t��h, and so �t� = h�1
� t�h�,

where Int(h�1
� ) 2 Norm(T �; G) has the image w� in W =W (T �; G)

= Norm(T �; G)=Cent(T �; G). If T � is a �-invariant F -torus, taking t� 2 T �� we conclude

that Int(h�1
� ) = Int

�
�(h�)

�1
�
, thus w� 2 W �, and the torus determines a cocycle hw�i in

H1(F;W �). We denoted the homomorphism � ! W �, � 7! w�, by �, and classi�ed the tori

according to the image of � : Gal(F=F )!W �, as types (1) { (3) and (I) { (IV). We explicitly

realized T in the form T = h�1T �h, with h = �(h). Thus in each stable �-conjugacy class

of strongly �-regular elements we have a representative t = h�1t�h, and further we found

representatives for the �-conjugacy classes within its stable �-conjugacy class, of the form

g�1tg; g = gR with g = �(g).

A �-semi-simple t 2 G is called �-elliptic if ZG(t�)
0=Z(G)0 is anisotropic. The associated

tori T = ZG
�
ZG(t�)

0
�
are called �-elliptic. A complete set of representatives for the �-elliptic

tori is given by the tori of type (I)-(IV). The computations of �-orbital integrals of non �-

elliptic strongly �-regular elements can be reduced { using a standard integration formula {

to the case of the �-elliptic elements, so we deal only with t in tori T of types (I) - (IV).

B. Twisted orbital integrals of type (I).

Let u = �(u) be a topologically unipotent element in GL(4; R)�GL(1; R). Then �G1K (u�) =
�
ZG(�)
1ZK(�)

(u), where ZG(�) = H1 = Sp(2; F ) and ZK(�) = K1 = K\H1. We compute the value

of this integral at u in a torus of type (I). To consider also the integrals at stably �-conjugate

but not �-conjugate elements, we look at a complete set of representatives, parametrized by

�1; �2. Here �i 2 f1;���g if E=F is unrami�ed, and �i 2 f1; "g = R�=R�2 if E=F is rami�ed.

Thus take t� in the torus T 1
� = ft� = [�D�1(a1 + b1

p
D); �D�2(a2 + b2

p
D)] 2 C1

0g, where
�D� (a+ b

p
D) = (

a bD�

b=� a
). If E1 = fx 2 E�;NE=Fx = 1g, then T 1

� is isomorphic to E1 �E1.
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By Lemma I.J.6 we have

�H
1

1K1
(t�) =

Z
T 1
� nH1

1K1(g�1t�g)dg

=
X
m�0

jK1jH1

Z
T 1
� nC1

0=C
1
0\z(m)K1z(m)�1

1K1

�
z(m)�1h�1t�hz(m)

�
dh:

The integrand in the last integral is non zero precisely when h�1t�h lies in z(m)K1z(m)�1

\C1
0 = K

C1
0

m : Hence we get

=
X
m�0

jK1jH1

Z
T 1
� nC1

0=K
C1
0

m

1
K
C1
0

m

(h�1
0 t�h0)dh0:

Using Lemma I.J.7 we have an isomorphism �m : C1 ! C1
0 (�m(h) = h0), �m(K

1
m) = K

C1
0

m .

De�ne x� by �m(x�) = t�, and note that T 1
� = ZC1

0
(t�). Hence our expression is

=
X
m�0

jK1jH1

Z
ZC1(x�)nC1=K1

m

1�m(K1
m)(�m(h)

�1�m(x�)�m(h))dh

=
X
m�0

[K1
0 : K

1
m]

Z
ZC1 (x�)nC1

1K1
m
(h�1x�h)dh:

Next we change variables on C1 = SL(2; F )� SL(2; F ). If m is even,

h 7! (I; w""")
��

���m=2 0

0 ����m=2

�
;
�
���m=2 0

0 ����m=2

��
h

sends h�1x�h to h�1((
1 0

0 ���m
); (

1 0

0 ���m
))(I;"""w)x�(I; w""")((

1 0

0 ����m
); (

1 0

0 ����m
))h = h�1t0�h, where

t0� = (t�1 ; t�2) 2 C1, t�i = �D�i(ai + bi
p
D).

Ifm is odd, and E=F is unrami�ed, h 7! (I; w""")
��

���(m+i)=2 0

0 ����(m+i)=2

�
;
�
���(m+j)=2 0

0 ����(m+j)=2

��
h

sends h�1x�h to h�1((
1 0

0 ���i
); (

1 0

0 ���j
))t0�((

1 0

0 ����i
); (

1 0

0 ����j
))h, where i; j 2 f�1g, i is taken to be

1 if �1 = ��� and �1 if �1 = 1 (j = 1 if �2 = ��� and j = �1 if �2 = 1). Then h�1x�h is mapped

to h�1t0~�h, where if � = (�1; �2) then ~� = (~�1; ~�2), and ~�i is de�ned by f�i; ~�ig = f1;���g.
If m is odd, and E=F is rami�ed, we take

h 7! (I; w""")
��

���(m+1)=2 0

0 ����(m+1)=2

�
;
�
���(m+1)=2 0

0 ����(m+1)=2

��
(w"""; w""")h;

which maps h�1x�h to h�1t0~�h, where ~�i = �1=�i (�i 7! ~�i is a permutation, trivial if �1 2
R�2, of R�=R�2).

Put �m = � if m is even, and �m = ~� if m is odd. We get

=
X
m�0

[K1
0 : K

1
m]

Z
T 1
�m

nC1

1K1
m
(h�1t�mh)dh:
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Using the double coset decomposition for SL(2; F ) of Lemma I.I.3 we get

=
X
m�0

X
r2R�m

[R1
T : T 1

�m
\ rK1

0r
�1][K1

0 : K1
m]

Z
K1
0

1K1
m
(k�1r�1t�mrk)dk:

Here R1
T = T 1

�m
\K1

0 = T 1
�m
(R). Let j signify (j1; j2). To simplify the notations we write �

for �m until the index m is explicitly needed.

By Lemma I.I.3, the representatives r 2 R� have the form (when E=F is unrami�ed)

r = rj = t"1 diag(���
�(j1��1)=2; "1���(j1��1)=2)� t"2 diag(���

�(j2��2)=2; "2���(j2��2)=2);

j1; j2 � 0; j1� �1 and j2� �2 are even, t"i 2 �D�i(E�) has determinant "�1
i , and "i ranges over

R�=R�2 if ji > 0, it is "i = 1 if ji = 0. When E=F is rami�ed the representatives take the

form

r = rj = �D�1(���
�j1
E )( 1 0

0 ���j1
)� �D�1(���

�j2
E )( 1 0

0 ���j2
) (j1; j2 � 0):

1. Lemma. The index [R1
T : T 1

� \ rjK
1
0r
�1
j ] is the product of qj1+j2 and : 1 if E=F is

rami�ed or j1 = j2 = 0, q+1
2q

if E=F is unrami�ed and either j1 = 0 or j2 = 0; ( q+1
2q

)2 if E=F

is unrami�ed and j1j2 � 1.

Proof. The intersection T 1
� \ rK1

0r
�1 consists of t� 2 T 1

� such that r�1t�r lies in K1
0 . But

r�1
j t�rj = (

1 0
0 "

�1
1 ����(j1��1) )(

a1 b1D�1
b1=�1 a1

)( 1 0
0 "1���

j1��1 )� : : :

= ( a1 b1D�1"1���
j1��1

"
�1
1 b1�

�1
1 ����(j1��1) a1

)� : : : :

Then r�1t�r 2 K1
0 means that bi 2 ���jiR. Hence T 1

� \ rK1
0r
�1 is isomorphic to RE(j1)

1 �
RE(j2)

1. Here RE(j) = R + ���jRE = R + ���j
p
DR � RE = R+

p
DR, and the superscript 1

indicates the subgroup of elements with norm NE=F equal to 1.

To compute the index we use the exact sequence

1! R1
E=RE(j)

1 ! R�
E=RE(j)

� ! R�
E=R

1
ERE(j)

� ! 1:

Via the norm N = NE=F , we have the isomorphism R�
E=R

1
ERE(j)

� ~!NR�
E=NRE(j)

�. The

last group is R�=R�2 if E=F is unrami�ed and j � 1; it is trivial if E=F is rami�ed or j = 0.

Further, we have

[RE(j)
� : 1 + ���jRE ] = [R� : R� \ (1 + ���jRE)] = [R� : 1 + ���jR] = (q � 1)qj�1:

Hence [R�
E : RE(j)

�] = [R�
E : 1 + ���jRE ]=[RE(j)

� : 1 + ���jRE ] is

= (q2 � 1)q2(j�1)=(q � 1)qj�1 = (q + 1)qj�1

when E=F is unrami�ed and j � 1, since ���E = ��� and qE = q2. When E=F is rami�ed it is

= (q � 1)q2j�1=(q � 1)qj�1 = qj
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(j � 0), since ���2E = ��� and qE = q. Then [R1
T : T 1

� \ rjK1
0r
�1
j ] is the product of [R�

E :

RE(j1)
�]; [R�

E : RE(j2)
�], and 1 (if E=F is rami�ed or j1 = j2 = 0), 1

2
(if E=F is unrami�ed

and either j1 = 0 or j2 = 0), or 1
4
(if E=F is unrami�ed and j1j2 � 1). �

PutRm = R=���mR; K
1

m = K1
m=K(���m), where againK1

m = f(A;B) 2 SL(2; R)�SL(2; R);A
� """B"""(mod���m)g, and K(���m) = f(A;B) 2 SL(2; R)2;A � I; B � I(mod���m)g. Then

K
1

m = f(A;"""A""");A 2 SL(2; Rm)g. Here m � 1. Also put K
1

0 = K1
0=K(���m) = SL(2; Rm) �

SL(2; Rm).

2. Lemma. We have that [K1
0 : K1

m]
R
K1
0

1K1
m
(k�1r�1t�mrk)dk is equal to the cardinality of

L1
m = L1

m;�m
= fy 2 K1

0=K
1

m; y
�1r�1t�mry 2 K

1

mg:

Proof. The integral can be expressed asZ
K1
0=K

1
m

1K1
m
(k�1r�1t�mrk)dk = #fkK1

m 2 K1
0=K

1
m; k

�1r�1t�mrk 2 K1
mg = #L1

m:

�

To compute the cardinality #L1
m of L1

m, introduce Ni = ord(bi) and a unit Bi with bi =

Bi���
Ni(i = 1; 2); �i = Ni � ji; b

0
i = (Bi="iui)���

�i (where �i = ui���
�i), and Di = D"2i u

2
i���

2ji .

Further, put X = ord(a1 � a2), and write a for the image of a in Rm. Then t�;r = r�1t�r =

(
a1 b

0
1D1

b01 a1
)� (

a2 b
0
2D2

b02 a2
). Also put d(A) for (A;"""A"""). When �1 = �2, we write � for this value.

3. Lemma. The set L1
m is non empty precisely when (1) 0 � m � X, (2) �i � 0, (3)

�1 < m if and only if �2 < m, in which case �1 = �2 and we write � for the common value,

(4) if � < m, and �1 < N1 or �2 < N2 or E=F is rami�ed, then u1=u2 2 B1"1
B2"2

R�2, (5) if

m > 2Ni � �i + ordD (� �i, thus �1 = �2) for some i(= 1; 2), then N1 = N2 (the common

value is denoted by N), and m+ � � X.

If the set L1
m is non empty then its cardinality is: 1, if m = 0; (q2 � 1)q3m�2, if 1 � m �

min(�1; �2) (thus b
0
i = 0); 2qm+2�, if � < m, and E=F is rami�ed or �1 < N1 or �2 < N2;

(q + 1)qm+2��1, if � < m and E=F is unrami�ed and �1 = N1 and �2 = N2.

Proof. The set L1
m is isomorphic to the set of y in SL(2; Rm)�SL(2; Rm)=d

�
SL(2; Rm)

�
, such

that y�1r�1t�ry lies in d
�
SL(2; Rm)

�
. This is isomorphic to the set of (

x1 x2
x3 x4

) in SL(2; Rm)

with �
a1 b

0
1D1

b
0
1 a1

��
x1 x2
x3 x4

�
=

�
x1 x2
x3 x4

��
a2 b

0
2D2

b
0
2 a2

�
:(�)

If L1
m is non empty, comparing the traces of the two components of r�1t�r, we obtain a1 = a2,

thus 0 � m � X = ord(a1 � a2). Consequently (�) holds with a1 and a2 replaced by 0. Then

b
0
1 = 0 if and only if b

0
2 = 0, namely �1 � m if and only if �2 � m.
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Multiplying out the matrices in (�), we see that L1
m is then the set of (x1; x2; x3; x4) 2 R4

m

with x1x4 � x2x3 = 1, which satisfy

b
0
1D1x3 = b

0
2x2; b

0
1D1x4 = x1b

0
2D2

x1b
0
1 = x4b

0
2; x2b

0
1 = x3b

0
2D2:

If �1 < m, thus b
0
1 6= 0, and jb02j < jb01j, then the last relation implies that jx2j < 1, while the

third relation implies that jx1j < 1. Here we write jxj < 1 if a representative in R of x in Rm

has this property. This contradicts x1x4� x2x3 = 1. Hence, when �1 < m or �2 < m; �1 = �2.

The quantitative part of the lemma is clear when m = 0. When b
0
i = 0 we simply have that

L1
m = SL(2; Rm). The cardinality of this group is (q2� 1)q when m = 1 and so R=��� is a �eld.

For m � 1, apply induction on m using the natural surjection SL(2; Rm) ! SL(2; Rm�1).

Suppose then that � = �1 = �2 < m. Now for each solution x of (�) there are a2; a02; a4 in R� ,

such that on putting � = (B1="1u1)=(B2="2u2), we have�
x1 x2
x3 x4

�
=

�
x1 (D1x3 + ���m��a2)�
x3 (x1 + ���m��a4)�

�

=

�
x1 x3D1

x3 x1

��
1 ���m��A2

0 1 + ���m��A4

��
1 0

0 �

�

on using the �rst and third relations in (�), and�
x1 x2
x3 x4

�
=

�
x1 (D2x3 + ���m��a02)�

�1

x3 (x1 + ���m��a4)�

�

=

�
x1 D2x3�

�2

x3 x1

��
1 ���m��A02
0 1 + ���m��A04

��
1 0

0 �

�

on using the fourth and third relations in (�), where A2; A4; A
0
2; A

0
4 2 R� are de�ned by�

x1 x3D1

x3 x1

��
A2

A4

�
=

�
a2
a4

�
;

�
x1 x3D2�

�2

x3 x1

��
A02
A04

�
=

�
a02�

�2

a4

�
:

Since x1x4 � x2x3 = 1 and 1 + ���m��A4 2 R�2
m , � lies in each of the groups

ND1
= fy 2 R�

m; y = x21 � x23D"
2
1u

2
1���

2j1g; ND2
= fy 2 R�

m; y = x21 � x23D"
2
2���

2j2��2g:

The intersection ND = ND1
\ ND2

is R�2
m if j1 > 0 or j2 > 0 or D =2 R�, it is R�

m if

j1 = 0; j2 = 0, and D 2 R�. Since � = (B1="1u1)=(B2="2u2), the 4th qualitative claim of the

lemma follows.

When � < m, the cardinality of L1
m is the product of the cardinalities of the sets fA2 2

Rm=���
�Rm ' R=����Rg and fx1; x3 2 Rm;x

2
1 � D1x

2
3 and x21 � D2�

�2x23 2 1 + ���m��Rmg.
The �rst set has cardinality q� . The second has cardinality

#fx1; x3 2 Rm;x
2
1 �D1x

2
3 and x21 �D2�

�2x23 2 NDg=[ND : 1 + ���m��Rm]:
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The denominator here is

[R� : 1 + ���m��R]=[R�
m : ND] = (q � 1)qm���1=[R�

m : ND]:

Hence the cardinality of L1
m is

[R�
m : ND]

q2��m+1

q � 1
�
�
q2m � q2(m�1); if D1 2 R� and D2 2 R�;

(q � 1)qm�1 � qm; if D1 2 ���R or D2 2 ���R.

Hence, when � < m, if E=F is rami�ed (D 2 ���R) or j1 > 0(�1 < N1) or j2 > 0, this is

2qm+2� , while if E=F is unrami�ed (D 2 R�) and j1 = 0, j2 = 0, we have ND = R�
m, and the

cardinality of L1
m is (q + 1)qm+2��1. This completes the quantitative part of the lemma.

If x1 or x4 are not units, then x1x4 � x2x3 = 1 implies that x2; x3 2 R�. When �1 = �2 =

� < m, the relations (�) imply that D1; D2 are units, hence j1 = j2 = 0, namely N1 = �1 =

�2 = N2, and that mod���m�� , we have � = b
0
1=b

0
2 = (b

0
2D2)=(b

0
1D1), or (D1=D2)�

2 = 1, or

(B1=B2)
2 � 1 (mod���m��).

If x1 and x4 are units then we have � = x4=x1 = b
0
1=b

0
2 (mod���m��) and �b

0
1D1 = b

0
2D2.

This last relation implies that: m > 2N1 � �1 + ordD(� �1, so �1 = �2) if and only if

2N2� �2+ordD < m, and if this happens then N1 = N2; the common value is denoted by N .

Further, if 2N � � + ordD < m, then m > 0 and X(� m) > 0. The relation �b
0
1D1 = b

0
2D2

can now be rewritten as asserting that

� � B2"2u2

B1"1u1
(mod���m�2N+��ordD):

Together with � = (B1="1u1)=(B2="2u2), we obtain that (B2=B1)
2 � 1(mod���m�2N+��ordD).

Thus we have this last relation when x1; x4 are units, and when they are not. Since Bi are

units, we rewrite the relation as m � 2N + � � ordD � ord(B2
1 � B2

2), namely as m + � �
ord

�
D(b21 � b22)

�
= ord(a21 � a22) = X. Indeed, since t� is topologically unipotent, we cannot

have ja1+ a2j < 1. Finally note that ja1 � a2j = ja21 � a22j = jDb21 �Db22j � max(jDb21j; jDb22j),
hence X � ordD + 2min(N1; N2). �

C. Orbital integrals of type (I).

We computed above the orbital integrals on the twisted conjugacy classes within the stable

�-conjugacy class of a strongly �-regular element (which is topologically unipotent and �-�xed)

u = t� = h�1t�h, where t� = (t1; t2; �t2; �t1; e); t1 = a1 + b1
p
D; t2 = a2 + b2

p
D. The norm

Nu of u is the stable conjugacy class of (t1t2e; t1�t2e; t2�t1e; �t1�t2e; e
2t1t2�t1�t2), or Nt�,

in H. This stable conjugacy class is of type (I). Put x� = Nt�. Consider x� = h�1x�h of type

(I), with x� = (x1; x2; �x2; �x1; e), in H. Its stable class consists of two conjugacy classes,

parametrized by �(2 f1;���g if E=F is unrami�ed, 2 f1; "g = R�=R�2 if E=F is rami�ed), in

the torus

T� = fx� = [�D(�1 + �1
p
D); �D� (�2 + �2

p
D)] 2 C0g
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in H = GSp(2; F ). We write x1 = �1 + �1
p
D, x2 = �2 + �2

p
D (�i; �i 2 F ). Then we have

to compute �H1K (x�)

=

Z
T�nH

1K(g
�1x�g)dg =

X
m�0

jKjH
Z
T�nC0=C0\z(m)Kz(m)�1

1K
�
z(m)�1h�1x�hz(m)

�
dh:

The last equality follows from the disjoint decomposition H = [
m�0

C0z(m)K of Lemma I.J.5.

The integrand in the last integral is non zero precisely when h�1x�h lies in z(m)Kz(m)�1\
C0 = KC0

m . Since [K : KC0
m ] = [K0 : Km] (by Lemma I.J.7), we get

=
X
m�0

[K0 : Km]

Z
T�nC0

1Km
(h�1x�h)dh:

In contrast to the case considered in the last section, where we worked in SL(2)� SL(2), the

change of variables (which led to the introduction of ~� and tm there) does not change our x�.

Using a partition C0 =
�
GL(2; F )�GL(2; F )

�0
= [

r2R
T�rK0, this can be written as

=
X
m�0

X
r2R�

[RT : T� \ rK0r
�1][K0 : Km]

Z
K0

1Km
(k�1r�1x�rk)dk;

where RT = T�\K0 = T�(R). Recall that � = u����, thus � = ord(�) is 0 when E=F is rami�ed,

and it is 0 or 1 when E=F is unrami�ed.

1. Lemma. A set of representatives R� for T�nC0=K0 is given by [rj1 ; rj2 ]; ji � 0; rj1 =

�D(
p
�����j1)( 1 0

0 ���j1
); rj2 = �D� (

p
�����j2)( 1 0

0 ���j2
), when E=F is rami�ed. When E=F is unram-

i�ed, it is given by I �����(j2��)=2( 1 0

0 ���j2��
)(j2 � 0; j2� � even), ����j1=2( 1 0

0 ���j1
)� I(j1 > 0, even

j1), ���
�[j1=2]( 1 0

0 ���j1
) � �D� ("

0)����[(j2��)=2]( 1 0

0 "�j2��
) (j1; j2 > 0, even j1 � j2 + �; " ranges over

R�=R�2; "0 2 R�
E with norm NE=F "

0 = "�1). Here [�] denotes the maximal integer bounded

by �.

Proof. Using the double coset decomposition (Lemma I.I.1) for T�nGL(2; F )=K, we can write

C0 =
�
GL(2; F )�GL(2; F )

�0
= [j1;j2�0

�
T1(

1 0

0 ���j1
)K � T�(

1 0

0 ���j2��
)K
�0
:

If E=F is rami�ed then � = 0, E = F (
p
����), and k�D� (

p
����)k = NE=F (

p
����) = ���, so

that rj1 ; rj2 have determinant one, and C0 = [
j1;j2�0

(T1rj1K � T�rj2K)0. We naturally denote

T� � C0 also as (T1�T�)0 �
�
GL(2; F )�GL(2; F )

�0
. We still have to show that C0 = [T� �rj1�

rj2 �K0. For that, note that if kt1rj1k1k = kt2rj2k2k, then kk1k�1
2 k lies in R�\NE=FE

� = R�2.

Then t1 can be multiplied by a scalar in R�, so that kk1k = kk2k, namely [k1; k2] lies in K0,

and so also [t1; t2] lies in T� � C0 � H, as asserted.

If E=F is unrami�ed, we need to consider the conditions implied by the equation

kt1( 1 0

0 ���j1
)k1k = kt2( 1 0

0 ���j2��
)k2k. These are: j���j1�j2+�j 2 R�NE=FE

�, thus j1�j2+� is even.
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We would like k = k1k
�1
2 to have determinant 1, and we can modify k by multiplication by " 2

R� (thus kkk ranges over R�=R�2), or by ( 1 0

0 ����j1
)t( 1 0

0 ���j1
) 2 K or (

1 0

0 ��1����(j2��) )t(
1 0

0 ����j2�� ) 2
K, t 2 T1, whose determinants are in R�2 if j1 > 0 (resp. j2 > 0), or in NE=FR

�
E = R�

otherwise. We then obtain the representatives of the lemma, which lie in C0. To repeat, if

j1j2 = 0 then " = 1, if j1j2 6= 0 then " ranges over R�=R�2 and j1 � j2 + � is even. �

2. Lemma. The index [RT : T� \ rK0r
�1] is the product of qj1+j2 and: 1 if E=F is rami�ed

or j1 = 0 = j2; (q+ 1)=q if E=F is unrami�ed, and either j1 = 0 or j2 = 0; 1
2
( q+1

q
)2 if E=F is

unrami�ed and j1j2 6= 0.

Proof. The intersection T� \ rK0r
�1 consists of x� such that r�1x�r lies in K0. Since

r�1x�r = ( �1 �1D���
j1

�1=���
j1 �1

)� ( �2 �2D��"���j2��
�2=(����

j2��") �2
);

it follows that T�\rK0r
�1 is isomorphic to

�
RE(j1)

��RE(j2)
��0, where RE(j) = R+���jRE ,

and the prime indicates (x; y) with NE=Fx = NE=F y. Since RT is (R�
E �R�

E)
0 under the same

isomorphism, we are to compute the cardinality of the kernel in the exact sequence

1! (R�
E � R�

E)
0=
�
RE(j1)

� � RE(j2)
��0 ! R�

E � R�
E=RE(j1)

� � RE(j2)
�

! R�
E � R�

E=(R
�
E � R�

E)
0�RE(j1)

� � RE(j2)
��! 1:

For the middle term, note that [R�
E : RE(j)

�] is 1 if j = 0 and it is the quotient of [R�
E :

1 + ���jRE ] by [R� : 1 + ���jR] = (q � 1)qj�1 when j � 1. When E=F is rami�ed then ���2E = ���

and qE = q so that the quotient is (q � 1)q2j�1=(q � 1)qj�1 = qj . When E=F is unrami�ed,

���E = ��� and qE = q2, so that the quotient is (q2 � 1)q2(j�1)=(q � 1)qj�1 = (q + 1)qj�1.

It remains to compute the cardinality of the image in the short exact sequence. This set

is isomorphic to its image under the norm map N = NE=F . The cardinality of NR�
E �

NR�
E=f(x; x)g �NRE(j1)

� �NRE(j2)
� is 1 if E=F is rami�ed or j1j2 = 0, and it is [NR�

E :

R�2
E ] = 2 if E=F is unrami�ed and j1j2 � 1. �

As usual write Rm = R=���mR; �i = B0
i���
ni (B0

i in R
�, integral ni), �i = ni�ji(i = 1; 2); �01 =

B0
1���

�1 ; �02 = (B0
2="u)���

�2 (where � = u����), D1 = D���2j1 ; D2 = Du2"2���2j2 ; � = ord(�1 � �2); �

for the image of � 2 R in Rm, d(A) for (A;"""A"""). If �1 = �2, put � for the common value.

3. Lemma. The integral [K0 : Km]
R
K0

1Km
(k�1r�1x�rk)dk is equal to the cardinality of

Lm = fy 2
�
GL(2; Rm)�GL(2; Rm)

�0
=d
�
GL(2; Rm)

�
; y�1r�1x�ry 2 d

�
GL(2; Rm)

�
g:

If this set is non empty then 0 � m � �, and �1 � m if and only if �2 � m. If �1 < m or

�2 < m then �1 = �2.

Proof. Since

Lm = f( x1 x2x3 x4
) 2 SL(2; Rm); (

�1 �
0
1D1

�
0
1 �1

)(
x1 x2
x3 x4

) = (
x1 x2
x3 x4

)(
�2 �

0
2D2

�
0
2 �2

)g;

the proof is exactly the same as in Section B, where the group was Sp(2; F ) rather than

GSp(2; F ). �
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4. Lemma. If Lm is non empty, then its cardinality is: 1 if m = 0; (q2� 1)q3m�2 if 1 � m �
min(�1; �2) (thus �

0
i = 0); 2qm+2�, if � < m, and E=F is rami�ed or �1 < n1 or �2 < n2;

(q + 1)qm+2��1 if � < m; �1 = n1; �2 = n2, and E=F is unrami�ed.

Proof. Since Lm ' L1
m, the proof is the same as in the case of Sp(2; F ). �

5. Lemma. Suppose that � < m. If 2ni � � + ordD < m for some i(= 1; 2), then n1 = n2
(the common value is then denoted by n), and (0 � � < m � � and) m + � � �. Further,

B0
1=B

0
2 2 "uR�2 unless �1 = n1; �2 = n2, and E=F is unrami�ed. Note that when E=F is

rami�ed, " = 1 and � = u.

Proof. The proof proceeds exactly the same as in the case of Sp(2; F ), to show that m+ � �
ord

�
D(�21 � �22)

�
= ord(�2

1 � �2
2). It remains to show that � = ord(�1 � �2) is equal to

ord
�
D(�21 � �22)

�
. For this, recall that x1 = t1t2 = �1 + �1

p
D; x2 = t1�t2 = �2 + �2

p
D, t1

and t2 are units, and so if tr = 1 + �, then

j�1 � �2j2 = j trx1 � trx2j2 = j tr(t1t2)� tr(t1�t2)j2 = j(t1 � �t1)(t2 � �t2)j2jt1t2j2

= j(x1 � �x2)(x1 � x2)j2 = j
�
(�1 � �2) + (�1 + �2)

p
D
��
(�1 � �2) + (�1 � �2)

p
D
�
j2

= j
�
(�1 � �2)

2 � (�1 + �2)
2D
��
(�1 � �2)

2 � (�1 � �2)
2D
�
j:

Note that 0 � � < m � �, so that j�1 � �2j < 1. If j�1 � �2j � j�1 � �2j < 1 then

j(�1��2)
2� (�1+ �2)

2Dj = 1, and so jDj = 1 and j�1+ �2j = 1, hence j�ij = 1 and n = 0, so

� = 0 and � � m is our claim. The last sentence is valid with �2 replaced by ��2. It remains
to deal with the case where j�1 � �2j > j�1 � �2j. Then j�1 � �2j = jD(�21 � �22)j, as was to
be shown. �

D. Comparison in stable case (I), E=F unrami�ed.

Let us summarize the result of the computation of the stable twisted orbital integral in

Section B. It is

�
G;st
1K

(u�) = �
ZG(�);st
1Z

K(�)
(u) =

X
�

X
m�0

X
r2R�m

[R1
T : T 1

�m
\ rK1

0r
�1]#L1

m;�m
;

where u = t� = h�1t�h is topologically unipotent. Recall that L1
m;�m

depends on m and �m,

but for each m, the set f�mg is the same as the set of �. Hence we replace �m by � in the

triple sum above.

Put N = min(N1; N2), where Ni = ord(bi). In the case where E=F is unrami�ed, � =

(�1; �2); �i 2 f1;���g; ui = 1, and the sum over r is a sum over j1; j2 � 0 such that j1��1; j2��2
are even, and over "i in R�=R�2 if ji > 0. When j1 > 0 or j2 > 0, and � = �1 = �2 < m, we

have "1"2 2 B1B2R
�2. In other words, we have a sum over �i = Ni�ji (i = 1; 2), 0 � �i � Ni,

and over "i 2 R�=R�2 if �i < Ni for i = 1; 2. (If �i = Ni for some i, then "i 2 R�=R�).
Then we need to sum over m. We have the range 0 � m � min(�1; �2), then the range

�(= �1 = �2) < m � 2N � � (since ordD = 0 when E=F is unrami�ed (�i < m implies

�1 = �2)), and the range 2N � � < m � X � � (2N � � < m implies � < m;N1 = N2, and
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m � X � �). Let �(m = 0) = �(m; 0) be 0 if m 6= 0 and 1 if m 6= 0, and �(m � 1) be 0 if

m < 1 and 1 if m � 1. Thus we get the sum of three expressions:

X
0��1�N1

X
0��2�N2

X
0�m�min(�1;�2)

=
X

0�m�N

�
�(m = 0) + �(m � 1)(1� q�2)q3m

�� X
m��1<N1

X
m��2<N2

4(
q + 1

2q
)2qN1��1+N2��2 +

X
m��1<N1

2
q + 1

2q
qN1��1 +

X
m��2<N2

2
q + 1

2q
qN2��2 + 1

�
;

X
0���N

X
�<m�2N��

2(
q + 1

2q
)2qN1+N2�2� � 2qm+2� ;

�(N1; N2)
X

0���N

X
2N��<m�X��

= �(N1; N2)[
X

N<m�X�N

q + 1

q
q2N+m

+
X

0��<N

X
2N��<m�X��

2(
q + 1

2q
)2q2N�2� � 2qm+2� ]:

To compute the �rst expression, note that

q + 1

q

X
m��1<N1

qN1��1 + 1 = 1 + (q + 1)

N1�1�mX
�1=0

q�1 = 1 +
q + 1

q � 1
(qN1�m � 1)

=
q + 1

q � 1
qN1�m � 2

q � 1
:

Hence [: : : ] is

[
�q + 1

q � 1
qN1�m � 2

q � 1

��q + 1

q � 1
qN2�m � 2

q � 1

�
]:

So the �rst expression is

�q + 1

q � 1
qN1 � 2

q � 1

��q + 1

q � 1
qN2 � 2

q � 1

�
+

X
1�m�N

q�2(q2 � 1)

(q � 1)2

�
(q + 1)2qN1+N2+m � 2(q + 1)(qN1 + qN2)q2m + 4q3m

�

= (q � 1)�2[
�
(q + 1)qN1 � 2)((q + 1)qN2 � 2

�
] +

q�1(q + 1)

q � 1
[
(q + 1)2

q � 1
qN1+N2(qN � 1)

� 2q(q + 1)

q2 � 1
(qN1 + qN2)(q2N � 1) +

4q2

q3 � 1
(q3N � 1)]:
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The second expression is

qN1+N2�1(q + 1)2
X

0���N

X
�<m�2N��

qm�1 = qN1+N2�1(q + 1)2
X

0���N
q�

X
0�m<2N�2�

qm

= qN1+N2�1 (q + 1)2

q � 1

X
0���N

(qN � 1)q� = qN1+N2�1(
q + 1

q � 1
)2(qN � 1)(qN+1 � 1):

The third expression is the product of �(N1; N2) and the sum of

(q + 1)2q2N�1
X

0��<N

X
2N��<m�X��

qm�1 =
(q + 1)2

q � 1
q2N�1

X
0��<N

(qX � q2N )q��

=
(q + 1)2

(q � 1)2
q2N (qX � q2N )(1� q�N );

and of
(q + 1)

q � 1
q2N (qX�N � qN );

namely it is

�(N1; N2)(q � 1)�2[(qX�N � qN )qN1+N2(q + 1)
�
q � 1 + (q + 1)(qN � 1)

�
]:

A pleasant surprise is that the stable orbital integral �
GSp(2;F );st
1K

(Nt�) takes precisely the

same form. Indeed, we have in this case a sum over � 2 f1;���g, a sum over j1; j2 � 0 such that

j1 � (j2 � �) is even, and a sum over " 2 R�=R�2 when j1j2 � 1. When � = �1 = �2 < m,

and j1j2 � 1, there is a condition " 2 (B0
1=B

0
2)R

�2. In other words we have a sum over

�i = ni � ji(i = 1; 2); 0 � �i � ni, and over " 2 R�=R�2 if m � �i < ni(i = 1; 2). The

sum over m is cut into three ranges, as in the twisted case. Exactly the same expressions are

obtained, but for slightly di�erent reasons. In the �rst range, the coe�cient 4 � ( q+1
2q

)2 of the

twisted case becomes 2 � 1
2
( q+1

q
)2; and 2 � q+1

2q
is the index q+1

q
. Similarly in the second and

third ranges, 2 � ( q+1
2q

)2 is 1
2
( q+1

q
)2. Writing in the non twisted case n1; n2; n and � for the

integers denoted by N1; N2; N;X in the twisted case, we obtain

(q � 1)�2
��
(q + 1)qn1 � 2

��
(q + 1)qn2 � 2

�
+ (q + 1)3qn1+n2�1(qn � 1)

� 2(q + 1)(qn1 + qn2)(q2n � 1) +
4q(q + 1)

q2 + q + 1
(q3n � 1) + (q + 1)2qn1+n2�1(qn � 1)(qn+1 � 1)

+ �(n1; n2)(q + 1)qn1+n2(q��n � qn)
�
q � 1 + (q + 1)(qn � 1)

�	
:

Notations. For the actual comparison, we use the following notations: t� = (t1; t2; �t2; �t1)

(the last { �fth { component e, has to be a unit in R�, and will not a�ect otherwise the value

of the integral), and Nt� = (x1 = t1t2; x2 = t1�t2; �x2; �x1). Further, t1 = a1 + b1
p
D; t2 =

a2 + b2
p
D;Ni = ord(bi), and ni = ord(�i), where

x1 = �1 + �1
p
D = t1t2 = a1a2 +Db1b2 +

p
D(a2b1 + a1b2)

x2 = �2 + �2
p
D = t1�t2 = a1a2 �Db1b2 +

p
D(a2b1 � a1b2):
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Also, � = ord(�1 � �2) = ord(2Db1b2) = ordD + N1 + N2. Note that t� is topologically

unipotent, hence a1; a2 are units. Since the value of the �-orbital integral is not changed if

in t� the entry t2 is multiplied by �1, (so is �t2), we may assume that ja1 � a2j � ja1 + a2j,
namely that ja1 + a2j = 1. Then

X = ord(a1 � a2) = ord[(a21 � a22)(a
2
2 � b22D)] = ordfD[(b21 � b22)a

2
2 � b22(a

2
2 � a21)]g

= ordD(b21a
2
2 � a21b

2
2) = ordD�1�2 = ordD + n1 + n2:

Further, if N1 < N2, since a1; a2 are units, we have n1 = n2 = n = N1. If n1 < n2 then

N1 = N2 = N = n1. Otherwise n1 = n2 = n = N = N1 = N2 and X = �, in which case the

two expressions to be compared are obviously equal. By symmetry, it su�ces to perform the

comparison when n1 < n2, thus n2 > n1 = n = N1 = N2, � = 2N and X = n1 + n2.

The �rst, \twisted", expression, multiplied by (q � 1)2, is equal to

A =
�
(q + 1)qn � 2

��
(q + 1)qn � 2

�
+ (1 + q�1)[(q + 1)2q2n(qn � 1)� 4qn+1(q2n � 1)

+
4q2(q � 1)

q3 � 1
(q3n � 1)] + (q + 1)2q2n�1(qn � 1)(qn+1 � 1)

+ (q + 1)q2n(qn2 � qn)
�
(q + 1)qn � 2

�
:

The last summand appears since N1 = N2(= n).

This we compare with the second, untwisted integral, which, multiplied by (q � 1)2, is

a =
�
(q + 1)qn � 2

��
(q + 1)qn2 � 2

�
+ (1 + q�1)[(q + 1)2qn+n2(qn � 1)

� 2q(qn + qn2)(q2n � 1) +
4q2(q � 1)

q3 � 1
(q3n � 1)]

+ (q + 1)2qn+n2�1(qn � 1)(qn+1 � 1):

The contribution from the third range is zero since n2 6= n1(= n).

A simple subtraction yields

A� a = (qn � qn2)[(q + 1)
�
(q + 1)qn � 2

�
+ (1 + q�1)[(q + 1)2(qn � 1)qn � 2q(q2n � 1)]

+ (q + 1)2qn�1(qn � 1)(qn+1 � 1)� (q + 1)q2n
�
(q + 1)qn � 2

�
]

= (qn � qn2)(q + 1)[
�
(q + 1)qn � 2

�
(1� q2n) + (q + 1)2qn�1(qn � 1)� 2q2n

+ 2 + (q + 1)qn�1(qn � 1)(qn+1 � 1)];

and this is 0 (on opening parenthesis in [: : : ]). This completes the comparison in case (I), when

E=F is unrami�ed, once we show that the measure factor which appears in the statement of

the theorem is 1 in our case, of type (I), E=F unrami�ed.

Lemma. In the case of tori of type (I), the measure factor

[T ��(R) : (1 + �)
�
T �(R)

�
]=[T �H(R) : N

�
T �(R)

�
]
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is equal to the rami�cation index e(E=F ) of E over F .

Proof. The norm map N takes (a; b; �b; �a) 2 T �(R) (thus a; b 2 R�
E) to (ab; a�b; b�a; �a�b) in

T �H(R). To measure the index of the image in T
�
H(R) = f(x; y; �y; �x);x; y 2 R�

E ; x�x = y�yg,
we need to solve x = ab; y = a�b in a; b 2 R�

E , given x; y 2 R�
E ; x�x = y�y. It su�ces to solve

in b 2 R�
E the equation b=�b = x=y, where (x=y)�(x=y) = 1. By Hilbert theorem 90, there is

a solution b in E�. If E=F is unrami�ed, ���E = ���, and if b = B���n is a solution (B 2 R�
E),

then so is B 2 R�
E . However, if E=F is rami�ed, ����E = ����E , hence z = u���nE(u 2 R�

E)

has z=�z = (�1)nu=�u. Writing u = � + ����E in R�
E , we have � 2 R� and � 2 R, hence

u=�u � 1(mod���E), and the index of R1
E = fu=�u;u 2 R�

Eg in E1 = fz=�z; z 2 E�g is
2 = e(E=F ). Hence [T �H(R) : N

�
T �(R)

�
] is e(E=F ).

Similarly we need to compute the index in T ��(R) = f(x; y; �y; �x);x; y 2 R�
E ; x�x = 1 =

y�yg of the image under (1+�) of T �(R), thus of (1+�)(a; b; �b; �a) = (a=�a; b=�b; �b=b; �a=a).

Again [E1 : R1
E ] = e(E=F ), hence [T ��(R) : (1+ �)T �(R)] = e(E=F )2, and the measure factor

is e(E=F ). �

This computation is naturally used also in the case where E=F is rami�ed, which we consider

next.

E. Comparison in stable case (I), E=F rami�ed.

Here ord(D) = 1. The twisted orbital integral is a sum over � = (�1; �2); �i 2 R�=R�2; (�i
= ui 2 f1; "g and �i = 0), and over j1; j2 � 0 (these parametrize the representatives r 2 R�),

of the product of the index qj1+j2 , and the quantity: 1 if m = 0; (q2 � 1)q3m�2 if 1 � m �
min(�1; �2); 2q

m+2� if �i < m (for some i, but then � = �1 = �2, and m + � � X, and

�1=�2 = u1=u2 2
�
B1=B2)R

�2
�
. In this last range: � < m � X � �. Note that when

2Ni � � + 1 < m for some i, we have N1 = N2. Without loss of generality assume that

N1 � N2. Thus we get 4q
N1+N2 times the sum of

A =
X

0��1�N1

X
0��2�N2

q��1��2 =
1� q�N1�1

1� q�1
� 1� q�N2�1

1� q�1

=
q2

(q � 1)2
(1� q�N1�1)(1� q�N2�1);

B = (1� q�2)
X

0��1�N1

X
0��2�N2

q��1��2
X

1�m�min(�1;�2)

q3m

=
(1� q�2)q3

q3 � 1

X
0��1�N1

0��2�N2

q��1��2(q3min(�1;�2) � 1)

=
q(q2 � 1)

q3 � 1

� X
0��1�N1

q��1
X

0��2��1
(q2�2 � q��2) +

X
0��1�N1

(q2�1 � q��1)
X

�1<�2�N2

q��2
�
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(here we used N1 � N2)

=
q(q2 � 1)

q3 � 1

X
0��1�N1

�
q��1(

q2�1+2 � 1

q2 � 1
� q��1�1

q�1 � 1
) + (q2�1 � q��1)

q�N2�1 � q��1�1

q�1 � 1

�

=
q(q2 � 1)

q3 � 1

X
0��1�N1

�q�1+2 � q��1

q2 � 1
� q1��1 � q�2�1

q � 1
� q�N2

q � 1
(q2�1 � q��1) +

q�1 � q�2�1

q � 1

�

=
q(q2 � 1)

q3 � 1

X
0��1�N1

�
q�1(

q2

q2 � 1
+

1

q � 1
)� q�N2

q � 1
q2�1 � q��1(

1

q2 � 1
+

q

q � 1
� q�N2

q � 1
)
�

=
q(q2 � 1)

q3 � 1

�qN1+1

q � 1
� q

2 + q + 1

q2 � 1
� q2N1+2 � 1

q2 � 1
� q

�N2

q � 1
� 1� q�N1�1

1� q�1
(
q2 + q + 1

q2 � 1
� q�N2

q � 1
)
�

=
q(q2 � 1)

q3 � 1
� 1� q�N1�1

(q � 1)2
(
q3 � 1

q2 � 1
qN1+1 � q2N1�N2+2(1 + q�N1�1)

q + 1
� q(q3 � 1)

q2 � 1
+ q�N2+1);

and (since 4qm+2�qj1+j2 = 4qN1+N2qm)

C =
X

0���min(N1;N2)

X
�<m�X��

qm =
q

q � 1

X
0���N1

(qX�� � q�)

=
q

q � 1
(qX

1� q�N1�1

1� q�1
� qN1+1 � 1

q � 1
):

Then A+ C + B is

q2

(q � 1)2
(1� q�N1�1)

�
(1� q�N2�1) + (qX � qN1)+

�
qN1 � q � 1

q3 � 1
q2N1�N2+1(1 + q�N1�1)� 1 +

q2 � 1

q3 � 1
q�N2

��
=

q2

(q � 1)2
(1� q�N1�1)

�
qX � q�N2

�1
q
� q2 � 1

q3 � 1
+

q � 1

q3 � 1
(q2N1+1 + qN1)

��

=
q2

(q � 1)2
(1� q�N1�1)

�
qX � q � 1

q3 � 1
q�N2�1(1 + qN1+1 + q2N1+2)

�
:

The product of this with 4qN1+N2 is the product of 4q2=(q � 1)2 and

qN1+N2(1� q�N1�1)(qX � q�N2�1 1 + q1+N1 + q2+2N1

1 + q + q2
):

This is the stable twisted orbital integral of 1K at the strongly �-regular topologically

unipotent element t� = h�1t�h under consideration. The stable orbital integral of 1K in

GSp(2; F ) at its norm is computed similarly. The only di�erences are that there are only

two conjugacy classes in the stable class of the norm, parametrized by � which ranges over a
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set f1; "g of representatives for R�=R�2. The constraint �1=�2 = u1=u2 2 B1B2R
�2 in the

twisted case (of Sp(2; F )) is now replaced by � = u 2 B0
1B

0
2R

�2. Hence we obtain 1
2
of the

expression which was computed in the evaluation of the stable orbital integral of type (I) of

1K on Sp(2; F ). Hence we obtain 1
2
of exactly the same expression obtained in the twisted

case, except that the parameters N1; N2; X of t� = h�1t�h will be denoted by n1; n2; � in the

case of its norm. As in the unrami�ed case we have � = ordD + N1 + N2; ordD = 1, and

X = ordD + n1 + n2. If N1 < N2 then n1 = n2 = N1; if n1 < n2 then N1 = N2 = n1. When

n1 = n2 and N1 = N2 we have n1 = n2 = N1 = N2 and X = �, then the comparison follows

at once. When N1 < N2 the twisted expression is 4q2=(q � 1)2 times

qN1+N2(1� q�N1�1)(q1+2N1 � q�N2�1 1 + q1+N1 + q2+2N1

1 + q + q2
):

The expression for the non twisted integral at the norm is the product of 2q2=(q � 1)2 and

q2N1(1� q�N1�1)(q1+N1+N2 � q�N1�1 1 + q1+N1 + q2+2N1

1 + q + q2
):

Multiplying the last expressions by the measure factor 2 = e(E=F ), as computed in the Lemma

of Section D, we conclude that these expressions are equal. The case where n1 < n2 follows

(e.g. on interchanging n's and N 's). The comparison is then complete in Case (I).

F. Endoscopy for H = GSp(2), type (I).

The computations of the orbital integrals of 1K can be used to compare the unstable orbital

integral of 1K at an element of type (I) or (II), where there are two conjugacy classes in the

stable conjugacy class, with the orbital integral of 1K on the proper endoscopic group C0 ofH.

The unstable orbital integral is a di�erence of the two orbital integrals, multiplied by a transfer

factor. These objects are as follows. The dual group Ĥ of H = GSp(2) is GSp(2; C ), and its

principal endoscopic group has dual which is the centralizer Ĉ0 = ZĤ
�
diag(1;�1;�1; 1)

�
'�

GL(2; C ) �GL(2; C )
�0
. Thus C0 =

�
GL(2)�GL(2)

�
=f(z; z�1)g.

Let TH be a maximal torus in H. Its group of cocharacters is X�(TH) = f(x1; y1; y2; x2);
x1 + x2 = y1 + y2g. Its dual group is X�(TH) = X�(T̂H) = f(z1; t1; t2; z2)g=h(z;�z;�z; z)i.
The xi; yi; zi; ti are in Z; T̂H denotes a maximal torus in Ĥ; T̂0 in Ĉ0, T0 in C0. The group

X�(T̂0) = f(x1; y1; y2; x2);x1 + x2 = y1 + y2g is isomorphic to X�(T̂H), via X�(T̂H) ~!X�(T̂0);
(z1; t1; t2; z2) 7! (z1+t1; z1+t2; t1+z2; t2+z2). The dual map, fromX�(T0) = f(u1; v1; v2; u2)g
=h(z;�z;�z; z)i to X�(TH), is given by (u1; v1; : : : ) 7! (u1+ v1; u1+ v2; v1+u2; v2+u2). The

tori T0 and TH are determined by their cocharacter groups, thus we obtain an isomorphism,

T0 ! TH ;
�
(
u1 0

0 u2
); (

v1 0

0 v2
)
�
=(z; z�1) 7! diag(x1 = u1v1; x2 = u1v2; x

0
2 = u2v1; x

0
1 = u2v2).

The dual group data includes a choice of a set of positive roots � > 0, so that we have a

discriminantD(t) =
Q
�>0

j1��(t)j on t 2 T. In particular, onT0 we haveD0

�
(
u1 0

0 u2
); (

v1 0

0 v2
)
�
=

j1� u1=u2jj1� v1=v2j, and on TH we have

DH

�
diag(x1; x2; x

0
2; x

0
1)
�
= j1� x1=x2jj1� x1=x

0
2jj1� x2=x

0
2jj1� x1=x

0
1j:
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The quotient is

DH(u1v1; u1v2; u2v1; u2v2)=D0

�
(
u1 0

0 u2
); (

v1 0

0 v2
)
�
= j1� x1=x

0
1jj1� x2=x

0
2j:

In the case of tori of type (I) the isomorphism T0 ~!TH yields a map of F -rational points

� : T0 ! TH , induced from
�
(
t1 0

0 �t1
); (

t2 0

0 �t2
)
�
=(z; z�1) 7! x� = diag(x1 = t1t2; x2 =

t1�t2; �x2; �x1). If xi = �i + �i
p
D, then x = [x1;x2] = h�1x�h, where h = [h0D; h

0
D],

lies in TH
�
= fh�1(y1; y2; �y2; �y1)h; yi 2 E�g

�
, and a stably conjugate but non conjugate

element is given by xR = [x1R;x2], where x1R = (
�1 �1DR

�1R
�1 �1

); R 2 F��NE=FE
�. Then the

unstable orbital integral is �us1K (x) = �1K (x) � �1K (xR). For emphasis, we sometimes write

KH for K of H, and K0 for the standard maximal compact of C0.

The orbital integrals on H and C0 depend on a choice of Haar measures, which we choose in

a compatible way, as follows. Denote by t0 a regular element in T0 � C0, and x = �(t0) for its

image under � : T0 ! TH � H. We have �C0

1K0
(t0) =

R
T0nC0

1K0
(g�1t0g)dC0

(g)=dT0. Here dC0

is a Haar measure on C0, while dT0 is one on T0. A Haar measure is unique up to a scalar, deter-

mined by the volume of the maximal compact subgroup. The function 1K0
is the unit element

in the Hecke algebra Cc(K0nC0=K0), thus it is the quotient of the characteristic function of K0

in C0 by the volume jK0j of K0 according to dC0
. In particular, the measure 1K0

dC0
is inde-

pendent of the choice of jK0j: the integral
R
C0

1K0
dC0

is 1. We can then assume that jK0j = 1,

so that 1K0
is the characteristic function of K0 in C0. This is used in all of our computations

above, to simplify the notations. Similarly �H1KH
(x) is

R
THnH 1KH

(h�1xh)dH(h)=dTH , and we

may assume that jKH j1H = 1 and 1KH
is the characteristic function of KH in H. The problem

is to relate the measures dTH and dT0 . This we do by means of the morphism � : T0 ! TH .

Given a measure dTH on TH , we can de�ne a measure ��(dTH ) = dTH �� on T0. Then there is

� > 0 such that dT0 is ��
�(dTH ). The factor � is given by the following computation, in which

RT0 ; RTH , denote the maximal compact subgroups in T0; TH , and jRT0 j; jRTH j their volumes.
Thus

jRT0 j = dT0(RT0) = �dTH
�
�(RT0)

�
= �jRTH j=[RTH : �(RT0))];

and � = [RTH : �(RT0)]jRT0 j=jRTH j, or [RTH : �(RT0)], if we take { as we do { dT0 and dTH
to be normalized by jRT0 j = 1; jRTH j = 1. Then dT0 = [RTH : �(RT0)]�

�(dTH ), and we relate

�H1KH
(x; dH=dTH ) with [RTH : �(RT0)]�

C0

1K0
(t0; dC0

=dT0).

1. Theorem. Let E=F be a quadratic extension, and x = h�1(x1; x2; �x2; �x1)h a regular

element of type (I) (thus x1�x1 = x2�x2) in GSp(2; F ). Introduce t1; t2 2 E� by t1=�t1 =

x1=�x2; t2=�t2 = x1=x2. Suppose that t1; t2 are units, in R�
E . Let �E=F be the non trivial

character on F�=NE=FE
�. Then

�E=F
�
(x1 � �x1)(x2 � �x2)=D

�
j1� x1=�x1jj1� x2=�x2j�H;us1KH

(x; dH=dTH )

= [RTH : �(RT0)]�
C0

1K0

��
( t1 0
0 �t1

); ( t2 0
0 �t2

)
�
; dC0

=dT0

�
= �C0

1K0

��
( t1 0
0 �t1

); ( t2 0
0 �t2

)
�
; dC0

=��(dTH )
�
:
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Proof. To compute the right side recall that if t = a+b
p
D; t = ( a bD

b a
), then on G = GL(2; F )

we haveZ
TnG

1K(g
�1tg)dg = 1R�

E
(t)(q � 1)�1

�
qj(t� �t)=

p
Dj�1 � 1; D 2 ���R�;

(q + 1)j(t� �t)=
p
Dj�1 � 2; D 2 R�:

Recall that x1 = t1t2, x2 = t1�t2, xi = �i+�i
p
D, �i = B0

i���
ni , B0

i 2 R�, put n = min(n1; n2),

j�1 � �2j = q��. Suppose that x is absolutely unipotent. Then � > 0, and we have:

2. Lemma. The unordered pair fj(t1��t1)=
p
Dj�1; j(t2��t2)=

p
Dj�1g equals fqn; q��njDjg.

Proof. This is the statement n = N and � = N1 + N2 + ordD, proven in \Notations" of

Section D. Here is an alternative proof. The product of the two terms is indeed q�D, since

q�� = j�1 � �2j = jx1 + �x1 � x2 � �x2j
= jt1t2 + �t1�t2 � t1�t2 � t2�t1j = jt1 � �t1jjt2 � �t2j:

This is also equal to

= jx1 � �x2jjx1 � x2j = j(�1 � �2)
2 � (�1 + �2)

2Dj1=2j(�1 � �2)
2 � (�1 � �2)

2Dj1=2:

If j�1 � �2j < j�1 � �2j for both choices of sign then the two factors are j(�1 + �2)
p
Dj and

j(�1 � �2)
p
Dj, one of which has to be q�nj

p
Dj, as required. Note that n1 < n2 implies

2n1 + ordD = �. If j�1 � �2j � j�1 � �2j < 1 for some choice of sign, then the identity

displayed above implies that j�1 � �2j = 1 and jDj = 1, thus j�1j = j�2j = 1, so n1 = n2 = 0,

and one of the two factors is equal to 1. The lemma follows. �

In conclusion, the orbital integral on C0 is the product of 1R�
E
(t1)1R�

E
(t2) and

(q � 1)�2(qn+1 � 1)(q��n � 1); D 2 ���R�;

(q � 1)�2
�
(q + 1)qn � 2

��
(q + 1)q��n � 2

�
; D 2 R�:

Let us consider �rst the case where E=F is unrami�ed, thus D 2 R�. Here the factor

j1�x1=�x1jj1�x2=�x2j = jx1��x1jjx2��x2j = j�1�2Dj is q�n1�n2 . Further, NE=FR
�
E = R�,

and NE=FE
� = R����2Z, hence �E=F is the character on E� which is trivial on R�, and takes

the value �1 at ���. Then �E=F
�
(x1 � �x1)(x2 � �x2)=D

�
= �E=F (�1�2) = (�1)n1+n2 , and

the transfer factor is (�q)�n1�n2 . The unstable orbital integral �H;us1K
(x) is a di�erence of two

sums, each of which was computed in the case of the stable orbital integral, which is the sum

of the two integrals in question. These two orbital integrals are parametrized by �, ranging

over the set f1;���g of representatives for F�=NE=FE
�, with � = ����; � 2 f0; 1g. The sum (over

j1; j2 � 0, with 2 dividing j1� (j2� �)) has now the coe�cient (�1)� (the coe�cient was 1 in
the stable case), which is equal to (�1)j1+j2 = (�1)n1��1+n2��2 .

Consequently the unstable orbital integral is the sum of the following three sums.X
0��1�n1

X
0��2�n2

X
0�m�min(�1;�2)

=
X

0�m�n

�
�(m = 0) + �(m � 1)(1� q�2)q3m

�
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[
X

m��1<n1
m��2<n2

2 � 1
2
� (q + 1

q
)2(�q)n1��1+n2��2 +

X
m��1<n1

q + 1

q
(�q)n1��1

+
X

m��2<n2

q + 1

q
(�q)n2��2 + 1];

X
0���n

X
�<m�2n��

1

2
(
q + 1

q
)2(�q)n1+n2�2� � 2qm+2� ;

�(n1; n2)
X

0���n

X
2n��<m����

= �(n1; n2)[
X

0��<n

X
2n��<m����

1

2
(
q + 1

q
)2q2n�2� � 2qm+2� +

X
n<m���n

q + 1

q
q2n+m]:

The [: : : ] in the �rst sum is

(q + 1)2
X

0�ji<ni�m
(�q)j1+j2 � (q + 1)

X
0�j1<n1�m

(�q)j1 � (q + 1)
X

0�j2<n2�m
(�q)j2 + 1

= (�q)n1+n2�2m:

Hence the �rst sum is

(�q)n1+n2
�
1 + (1� q�2)

X
0<m�n

qm
�
= (�q)n1+n2

�
1 + (1 + q�1)(qn � 1)

�
:

The second sum is

(�q)n1+n2(q + 1

q
)2
X

0���n
[q�+1

X
0�m<2n�2�

qm]:

Here [: : : ] is q�+1(q2n�2� � 1)=(q � 1) =
�
q=(q � 1)

�
(q2n�� � q�). Hence

P
0���n

[: : : ] is�
q=(q � 1)

�
(qn � 1) times

P
0���n

q� = (qn+1 � 1)=(q � 1), and we get

(�q)n1+n2 (q + 1)2

(q � 1)2q
(q2n+1 � qn+1 � qn + 1):

In the third sum n = n1 = n2. It is the sum of two terms, namely

(
q + 1

q
)2q2n

X
0��<n

q2n��+1(q��2n � 1)=(q � 1) = (
q + 1

q
)2q2nqn+2 qn � 1

(q � 1)2
(q��2n � 1)
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and
q + 1

q
q2n � qn+1 q

��2n � 1

q � 1
:

The third sum is then

(�q)n1+n2 q + 1

(q � 1)2q
qn+1(q��2n � 1)(qn+1 + qn � 2):

When n1 < n2 we have n = n1 and � = 2n, and the sum of the three sums is

(�1)n1+n2(q � 1)�2[(q � 1)2 + q�1(q + 1)(qn � 1)f(q � 1)2 + (q + 1)(qn+1 � 1)g];

and [: : : ] is
�
(q + 1)qn � 2

�2
. If (n =)n1 = n2, we need to add the third sum (which is zero

when n1 6= n2), thus to [: : : ] we add
�
(q + 1)qn � 2)(q + 1)qn(q��2n � 1). Hence in all cases

(n1 = n2 or n1 6= n2), the unstable orbital integral adds up to

(�q)n1+n2(q � 1)�2
�
(q + 1)qn � 2)

�
(q + 1)q��n � 2

�
:

Since the transfer factor is (�q)�n1�n2 , our comparison is complete in the case where E=F is

unrami�ed.

Next we consider the case where E=F is rami�ed, thus D 2 ���R�.
The factor j1� x1=�x1jj1� x2=�x2j = j�1�2Dj is q�n1�n2�1. Further NE=FE

� = R�2���Z,

so that �E=F is trivial at ���(= nE=F���E ;���E =
p
����, thus we take D = ����) and its restric-

tion to R� has the kernel R�2. Since (xi � �xi)=
p
D = �i = B0

i���
ni , the transfer factor is

�E=F (B
0
1B

0
2)q

�n1�n2�1. The unstable orbital integral is a di�erence of two integrals, indexed

by � which ranges over a set of representatives f1; ug for R�=R�2(= F�=NE=FE
�). The

stable orbital integral was a sum, over �, of the two integrals. We expressed each of these

two integrals as sums, of terms denoted above by A;B;C, which are also sums, over di�erent

domains of summation. Over the domains of summation of A and B, the contributions as-

sociated to � = 1 and � = u are equal, yielding a factor 2 in the computation of the stable

integral, and a factor 0 in the case of the unstable integral. Over the domain of summation of

C, namely 0 � � � n = min(n1; n2) and � < m � �� �, we have the condition � 2 B0
1B

0
2R

�2.

In the computation of the stable integral we obtained in C a coe�cient 1: precisely one of

the � 2 f1; ug satis�es � 2 B0
1B

0
2R

�2. In the unstable case the contribution appears in the

positive (resp. negative) integral if �E=F (B
0
1B

0
2) is 1 (resp. �1). Hence the unstable orbital

integral is �E=F (B
0
1B

0
2) � 2qn1+n2 � C, where we recall that

C = q(q � 1)�2(q��n � 1)(qn+1 � 1):

Multiplying by the transfer factor �E=F (B
0
1B

0
2)q

�n1�n2�1 we are left with 2(q � 1)�2(q��n �
1)(qn+1�1), which is the orbital integral of 1K on C0 in the case where E=F is rami�ed, using

the following.
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3. Lemma. The index [RTH : �(RT0)] is 1 if E=F is unrami�ed, and 2 if E=F is rami�ed.

Proof. Recall that �
�
(t1; �t1); (t2; �t2)

�
= (x1 = t1t2; x2 = t1�t2; �x2; �x1). Thus given x1; x2

in R�
E , we look for solutions t1; t2 in R�

E for the equations x1 = t1t2; x2 = t1�t2. It su�ces

to solve x1=x2 = t2=�t2 in t2 2 R�
E . Denote by E1 the group fx=�x;x 2 E�g. When

E=F is unrami�ed, E1 is equal to fx=�x;x 2 R�
Eg, so t2 exists. When E=F is rami�ed,

write x = t���nE ; t 2 R�
E . Then x=�x = u=�u(�1)n, and since u=�u � 1(mod���E), the group

fx=�x;x 2 R�
Eg has index 2 in E1, and x1=x2 = t2=�t2 has a solution in t2 2 R�

E if x1 � x2,

but not when x1 � �x2(mod���E). Note that x1=x2 � �1(mod���E), since x1�x1 = x2�x2
implies that x1=x2 ��(x1=x2) = 1; if x1=x2 = a+ b

p
D then a2� b2D = 1, and a2 � 1(mod���),

so x1=x2 � a(mod���E) � �1(mod���E). The lemma follows. �

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the �-orbital integrals can be used to compute the unstable �-�-

orbital integrals, at a strongly �-regular topologically �-unipotent element t� = (t1; t2; �t2; �t1)

(thus t�� is topologically unipotent) of type (I). The character � is de�ned on the group

(F�=NE=FE
�)2 of �-conjugacy classes within the stable �-conjugacy class of t�. Thus � =

�1 � �2; �i on F�=NE=FE
�. The stable case is that where �i = 1; i = 1; 2. The endoscopic

group associated with � with �i 6= 1(i = 1; 2) is C =
�
GL(2) � GL(2)

�0
. We deal with this

case now. The norm NCt
� is

�
(
t1t2 0

0 �(t1t2)
); (

t1�t2 0

0 t2�t1
)
�
. If ti = ai + bi

p
D, then �G;C(t

�) =

j(t1 � �t1)(t2 � �t2)jF=jt1�t1 � t2�t2j1=2F = jb1b2DjF . If Ni = ord(bi); ni = ord(�i), where

x1 = t1t2 = �1 + �1
p
D; x2 = t1�t2 = �2 + �2

p
D, then the orbital integral �1KC

(NCt
�)

of 1KC
on C at the norm NCt

� is a product of two integrals of 1K on GL(2; F ) at the

conjugacy classes with eigenvalues (x1; �x1) and (x2; �x2). By Lemma F.2, this integral is

the product of (qN1+1 � 1)(q � 1)�1 and (qN2+1 � 1)(q � 1)�1 when E=F is rami�ed, and of�
(q � 1)qN1 � 2

�
(q � 1)�1 and

�
(q � 1)qN2 � 2

�
(q � 1)�1 when E=F is unrami�ed.

Theorem. Let t� be a topologically �-unipotent strongly �-regular element of type (I). Then

�1
�
(t1 � �t1)=2

p
D
�
�2
�
(t2 � �t2)=2

p
D
�
�G;C(t

�)��1K (t
��) = �C1KC

(NCt
�):

Proof. When E=F is unrami�ed, �i ranges over f1;���g, which represents F�=NE=FE
�, and

then �i
�
(ti � �ti)=2

p
D
�
= �i(bi) = (�1)Ni . When E=F is rami�ed, �i ranges over a set

f1; "g of representatives for R�=R�2(= F�=NE=FE
�); �i(���) = 1, and since bi = Bi���

Ni , the

factor �i
�
(ti � �ti)=2

p
D
�
= �i(bi) is �i(Bi). The �-�-orbital integral is a sum no di�erent

than the stable orbital integral, except that the summation over �1 and �2 in F�=NE=FE
�

is now weighted by the sign �1(�1)�2(�2). Indeed, recall that �m is � if m is even, but it is

~� = (~�1; ~�2) if m is odd, where f�i; ~�ig = f1;���g if E=F is unrami�ed, and �i 7! ~�i = �1=�i is
a permutation of R�=R�2 if E=F is rami�ed. Hence in our sum

X
�

�1(�1)�2(�2)
X
m�0

X
r2R�m

[R1
T : T 1

�m
\ rK0r

�1]#L1
m;�m

;
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replacing �m by � changes neither the factor #L1
m;�m

nor the index [: : : ]. The indexing set

R�m is not changed either, when E=F is rami�ed. However, when E=F is unrami�ed, R�,

de�ned by ji � �i(mod 2), is changed when � is replaced by �m. In this unrami�ed case we

may replace �m by � provided we multiply each summand by (�1)m(�1)m = 1. The weighted

sum thus obtained is precisely the same as that obtained in the proof of Theorem F.1, which

deals with endoscopy for H = GSp(2), type (I), and computes the unstable orbital integral of

type (I). The theorem follows. �

Twisted endoscopic group of type I.F.3, E=F unrami�ed.

When E=F is unrami�ed, the orbital integral of 1K on the twisted endoscopic group of

type (3) of Section I.F is ((q + 1)jb2j�1 � 2)=(q � 1), jbij = q�Ni . It has to be divided by

the factor �G;C+
(t�) = j(x � t)(xy � zt)(xz � yt)j=(jxtj3=2jyzj) = jx � xjjxy � xyjjxy � yxj

(see the last lines of Sections I.F and I.G). Here x = a1 + b1
p
D and y = a2 + b2

p
D are

topologically unipotent, which means that they lie in 1+���RE . Then ord((xy�xy)(xy�yx)) =
ord(a21b

2
2 � a22b

2
1) = ord(b22 � b21) = ord(a21 � a22) = X. Hence the inverse of the �-factor is

qN1+X . We show below that the �-orbital integral is (�q)N1+X((q + 1)qN2 � 2)=(q � 1). Put

�G;C+
(u) = �E((x � x)(xy � xy)(xy � yx)), where �E(R

�
E���

n
E) = (�1)n. We conclude the

following.

Theorem. Let u be a topologically �-unipotent strongly �-regular element of type (I). Then

�G;C+
(u)�G;C+

(u)�G;�1K
(u�) = �

C+

1K
(u)

if E=F is unrami�ed, while when E=F is rami�ed, the left side vanishes.

Proof. The computation of the twisted orbital integral is as in Section D. The �-orbital integral

is

�
G;�
1K

(u�) = �
ZG(�);�
1Z

K(�)
(u) =

X
�

�(�)
X
m�0

X
r2R�m

[R1
T : T 1

�m
\ rK1

0r
�1]#L1

m;�m
;

where u = h�1t�h is topologically unipotent. Put N = min(N1; N2), where Ni = ord(bi).

The factor #L1
m;�m

is equal to #L1
m;�, and the index [: : : ] is independent of �. When E=F is

rami�ed we also have R�m = R�, hence the sum vanishes. In the case where E=F is unrami�ed,

� = (�1; �2); �i 2 f1;���g; ui = 1, and �m is � if m is even, but it is ~� = (~�1; ~�2) if m is odd,

where f�i; ~�ig = f1;���g. The indexing set R�m , de�ned by ji � �i(mod2) is changed when �m
is replaced by �. Hence we can replace �m by � at the price of multiplying each summand by

(�1)m.
The sum over r is a sum over j1; j2 � 0 such that j1 � �1; j2 � �2 are even, and over "i in

R�=R�2 if ji > 0. When j1 > 0 or j2 > 0, and � = �1 = �2 < m, we have "1"2 2 B1B2R
�2.

In other words, we have a sum over �i = Ni� ji (i = 1; 2), 0 � �i � Ni, and over "i 2 R�=R�2

if �i < Ni for i = 1; 2. (If �i = Ni for some i, then "i 2 R�=R�).
Then we need to sum over m. We have the range 0 � m � min(�1; �2), then the range

�(= �1 = �2) < m � 2N � � (since ordD = 0 when E=F is unrami�ed (�i < m implies

�1 = �2)), and the range 2N � � < m � X � � (2N � � < m implies � < m;N1 = N2, and
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m � X � �). Let �(m = 0) = �(m; 0) be 0 if m 6= 0 and 1 if m 6= 0, and �(m � 1) be 0 if

m < 1 and 1 if m � 1.

Thus we get the sum of three expressions:X
0��1�N1

X
0��2�N2

X
0�m�min(�1;�2)

=
X

0�m�N
(�1)m

�
�(m = 0) + �(m � 1)(1� q�2)q3m

�� X
m��1<N1

X
m��2<N2

4(
q + 1

2q
)2(�q)N1��1qN2��2 +

X
m��1<N1

2
q + 1

2q
(�q)N1��1 +

X
m��2<N2

2
q + 1

2q
qN2��2 + 1

�
;

X
0���N

X
�<m�2N��

2(
q + 1

2q
)2(�q)N1��qN2�� � 2(�q)m+2� ;

�(N1; N2)
X

0���N

X
2N��<m�X��

= �(N1; N2)[
X

N<m�X�N

q + 1

q
q2N (�q)m

+
X

0��<N

X
2N��<m�X��

2(
q + 1

2q
)2(�q2)N�� � 2(�q)m+2� ]:

To compute the �rst expression, note that

q + 1

q

X
m��1<N1

(�q)N1��1 + 1 = 1� (q + 1)
X

0�j<N1�m
(�q)j = (�q)N1�m;

and

q + 1

q

X
m��2<N2

qN2��2 + 1 = 1 + (q + 1)
X

0�j<N2�m
qj = 1 +

q + 1

q � 1
(qN2�m � 1)

=
q + 1

q � 1
qN2�m � 2

q � 1
:

Hence (�1)m[: : : ] is

(�q)N1q�m
�q + 1

q � 1
qN2�m � 2

q � 1

�
=

(�q)N1

q � 1

�
(q + 1)qN2�2m � 2q�m

�
:

So the �rst expression is

(�q)N1

q � 1

�
(q + 1)qN2 � 2 + (1� q�2)

X
1�m�N

�
(q + 1)qN2+m � 2q2m)

�
:

Since
P

N�n<M xn = (xM � xN )=(x� 1), the sum is

q(q + 1)qN2
qN � 1

q � 1
� 2q2

q2N � 1

q2 � 1
:
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We then get
(�q)N1

q � 1
[(q + 1)qN2 + (q + 1)2qN2�1(qN � 1)� 2q2N ]:

The second expression is the product of (�q)N1qN2�1(q + 1)2 and

�
X

0���N
(�1)�

X
�<m�2N��

(�q)m�1 =
X

0���N
(q2N�� � q�)=(q + 1):

But

(qN � 1)
X

0���N
q� = (qN � 1)(qN+1 � 1)=(q � 1);

hence we get
(�q)N1

q � 1
qN2�1(q + 1)(q2N+1 � (1 + q)qN + 1):

The sum of the �rst and second expressions is (�q)N1q2N ((q + 1)qN2 � 2)=(q � 1).

The third expression is the product of �(N1; N2) and the sum of

� q�1(q + 1)2(�q2)N
X

0��<N
(�1)�

X
2N��<m�X��

(�q)m�1

= q�1(q + 1)(�q2)N
X

0��<N
((�q)X � q2N )q��

= �q + 1

q � 1
(�q2)N ((�q)X � q2N )(q�N � 1) =

q + 1

q � 1
(�q)N ((�q)X � q2N )(qN � 1);

and of q2N ((�q)X�N � (�q)N ): Since X = 2N when N1 6= N2, it is

(�q)N ((�q)X � q2N )((q + 1)qN � 2)=(q � 1):

The sum of the three terms is (�q)N1(�q)X [(q + 1)qN2 � 2]=(q � 1): This completes the

proof of the theorem, as noted before its statement. �

G. Twisted orbital integrals of type (II).

The stable �-orbital integral �
G;st
1K

(u�) of a type (II) strongly �-regular topologically unipo-

tent element u = �(u) in G = GL(4; F )�F� is equal to the stable orbital integral �
Sp(2;F );st

11
K

(u)

at u 2 H1 = Sp(2; F ). We proceed to compute this integral. Let us recall our notations,

in the case of type (II). There are three distinct quadratic extensions E1 = F (
p
D); E2 =

F (
p
AD); E3 = F (

p
A) of F , two rami�ed and one unrami�ed, and we take E2 to be rami�ed,

and normalize A;D to be integral (in R) of minimal order, thus the set fA;Dg consists of a
unit and a uniformizer. The Galois group of E = E1E2 over F is Z=2� Z=2, generated by

�; � , such that E1 is the �xed �eld of � in E, and E2 = Eh��i.
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The torus T is de�ned by the Galois action �, thus � acts on T� as (23) and �� as (14).

The torus T = h�1T �h can be realized as [�D(a1 + b1
p
D); �AD(a2 + b2

p
AD)]. A complete

set of representatives for the �-conjugacy classes within the stable �-conjugacy class is given

by s� = [�D�1(a1+ b1
p
D); �AD�2 (a2+ b2

p
AD)], where �1 ranges over F

�=NE1=FE
�
1 and �2 over

F�=NE2=FE
�
2 . Here �

D
� (a1 + b1

p
D) = (

a1 b1D�

b1=� a1
). Then s� = h�1(a; b; �b; �a; e)h; a 2 E�

1 ;

b 2 E�
2 ; e 2 F�. Put T 1

� for the torus (i.e. centralizer) containing s�, in H1 = Sp(2; F ).

There are two cases to consider. The rami�ed case is when E1=F is rami�ed, namelyD = ���F
and A is a unit (in R��R�2), so that E3=F is unrami�ed. In this case �1 = u1���

�1 , �1 = ord �1,

ranges over R�=R�2, thus �1 = 0. The unrami�ed case is when E1=F is unrami�ed, thus D

is a non square unit in R�, and A = ���F , so that E3=F is rami�ed. In this case �1 ranges over

f1;���g, so �1 over f0; 1g, and u1 = 1. In both cases E2=F is rami�ed; so �2 ranges over a set

f1; "g of representatives for R�=R�2, and �2 = ord �2 is 0.

The computation of the orbital integral �
Sp(2;F )
1K1

(s�) proceeds as in case (I). We use the

double coset decomposition H1 = Sp(2; F ) = [
m�0

C1
0z(m)K1, of Lemma I.J.6, to get

�H
1

1K1
(s�) =

Z
T 1
� nH1

1K1(g�1s�g)dg

=
X
m�0

jK1jH1

Z
T 1
� nC1

0=C
1
0\z(m)K1z(m)�1

1K1

�
z(m)�1h�1s�hz(m)

�
dh:

The integrand in the last integral is non zero precisely when h�1t�h lies in z(m)K1z(m)�1

\C1
0 = K

C1
0

m : Hence we get

=
X
m�0

jK1jH1

Z
T 1
� nC1

0=K
C1
0

m

1
K
C1
0

m

(h�1
0 s�h0)dh0:

Using Lemma I.J.7 we have an isomorphism �m : C1 ! C1
0 (�m(h) = h0), �m(K

1
m) = K

C1
0

m .

De�ne x� by �m(x�) = s�, and note that T� = ZC1
0
(s�). Hence our expression is

=
X
m�0

jK1jH1

Z
ZC1(x�)nC1=K1

m

1�m(K1
m)(�m(h)

�1�m(x�)�m(h))dh

=
X
m�0

[K1
0 : K

1
m]

Z
ZC1 (x�)nC1

1K1
m
(h�1x�h)dh:

Next we change variables on C1 = SL(2; F )� SL(2; F ). If m is even,

h 7! (I; w""")
��

���m=2 0

0 ����m=2

�
;
�
���m=2 0

0 ����m=2

��
h

sends h�1x�h to h�1((
1 0

0 ���m
); (

1 0

0 ���m
))(I;"""w)x�(I; w""")((

1 0

0 ����m
); (

1 0

0 ����m
))h = h�1s0�h, where

s0� = (s�1 ; s�2) 2 C1, s�1 = �D�1(a1 + b1
p
D), s�2 = �AD�2 (a2 + b2

p
AD).
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If m is odd, and E1=F is unrami�ed,

h 7! (I; w""")
��

���(m+i)=2 0

0 ����(m+i)=2

�
;
�
���(m+1)=2 0

0 ����(m+1)=2

��
(I; w""")h

sends h�1x�h to h
�1(( 1 0

0 ���i
); """w( 1 0

0 ���
))s0�((

1 0

0 ����i
); ( 1 0

0 ����1
)w""")h, where i is taken to be 1 if �1 = ���

and �1 if �1 = 1. Then h�1x�h is mapped to h�1s0~�h, where if � = (�1; �2) then ~� = (~�1; ~�2),

and ~�1 is de�ned by f�1; ~�1g = f1;���g, and �2 7! ~�2 = �1=D�2 is a permutation (trivial if

�1 62 R�2) of R�=R�2.

If m is odd, and E1=F is rami�ed, we take

h 7! (I; w""")
��

���(m+1)=2 0

0 ����(m+1)=2

�
;
�
���(m+1)=2 0

0 ����(m+1)=2

��
(w"""; w""")h;

which maps h�1x�h to h�1s0~�h, where �1 7! ~�1 = �1=�1 is a permutation, trivial if �1 2 R�2,

of R�=R�2, and �2 7! ~�2 = �1=A�2 is a permutation (trivial if �1 62 R�2) of R�=R�2.

Put �m = � if m is even, and �m = ~� if m is odd. We get

=
X
m�0

[K1
0 : K

1
m]

Z
T�mnC1

1K1
m
(h�1s�mh)dh:

Using the double coset decomposition for SL(2; F ) of Lemma I.I.3 we get

=
X
m�0

X
r2R�m

[R1
T : T 1

�m
\ rK1

0r
�1][K1

0 : K1
m]

Z
K1
0

1K1
m
(k�1r�1s�mrk)dk:

Here R1
T = T 1

�m
\K1

0 = T 1
�m
(R). Let j signify (j1; j2). To simplify the notations we write �

for �m until the index m is explicitly needed.

The decomposition of Lemma I.I.3 is SL(2; F ) = [
j�0

T 1
� �

D
� (���

�j
E )(

1 0

0 ���
j
F
)K1 if E1 = F (

p
D) is

rami�ed over F (and ���E =
p����F ). It is SL(2; F ) = [T 1

� t"(
���
�(j��)=2
F 0

0 "���
(j��)=2
F

)K1, union over

j � 0 such that j � � is even, and over " 2 R�=R�2 when j � 1, if E1=F is unrami�ed. Here

T 1
� = �D� (E

1
1); E1 = F (

p
D) and E1

1 is the group of x 2 E�
1 with norm NE1=Fx = 1. Further

t" 2 T� = �D� (E
�
1 ) is an element with determinant "�1. Of course, here K1 = SL(2; R).

Consequently the representatives r 2 R�

�
� = (�1; �2)

�
take the form

r = �D�1(���
�j1
1 )(

1 0

0 ("0���F )
j1 )� �AD�2 (����j22 )(

1 0

0 ���
j2
F
); j1; j2 � 0;

when E1=F is rami�ed (���1 =
p�"0��� and ���2 =

p
���� denote uniformizers of E1 and E2, where

"0 2 R��R�2). When E1=F is unrami�ed, the representatives r are t"(
���
�(j1��1)=2
F

0

0 "���
(j1��1)=2
F

)

��AD�2 (���
�j2
2 )(

1 0

0 ���
j2
F
), where j1; j2 � 0; j1 � �1 is even, " ranges over R�=R�2 if j1 � 1, and

t" 2 �D�1(E
�
1 ) has determinant "

�1. Write q0 for the residual cardinality #R=���FR of F , and

q = q3 for #R3=���3R3.
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1. Lemma. The index [R1
T 1
�
: T 1

� \ rK1
0r
�1] is equal to q

j1+j2
0 if E1=F is rami�ed or j1 = 0,

and to q
j1+j2
0 (q0 + 1)=2q0 if E1=F is unrami�ed (then q = q0) and j1 � 1.

Proof. This is proven as in the case of type (I), see Lemma B.1, on noting that T 1
� \rK1

0r
�1 =

RE1
(j1)

1 � RE2
(j2)

1; RE(j) = R+ ���
j
FRE , and R1

T 1
�
= R1

E1
� R1

E2
. �

2. Lemma. The integral
R
K1
0=K

1
m
1K1

m
(k�1r�1s�rk)dk is equal to the cardinality of the set

L1
m = L1

m;� = fx = (
x1 x2
x3 x4

) 2 SL(2; Rm); (
a1 b

0
1D

0
1

b
0
1 a1

)(
x1 x2
x3 x4

) = (
x1 x2
x3 x4

)(
a2 b

0
2D

0
2

b
0
2 a2

)g:

Here we put Rm = R=���mF R; a denotes the image in Rm of a in R. Suppose that bi =

Bi���
Ni
F ; �i = ui���

�i
F , and "1 = "

j1
0 when e(E1=F ) = 2 or j1 = 0, and "1 = "(2 R�=R�2) when

e(E1=F ) = 1 and j1 � 1, so "1 = "(r); r 2 R�, and "2 = 1. Then we write b0i = (Bi="iui)���
�i
F ,

where �i = Ni � ji; (i = 1; 2), and D0
i = Di"

2
i u

2
i���

2ji
F , where D1 = D;D2 = AD.

Proof. As in case (I), see Lemma B.2, recall that d(A) = (A;"""A"""), and note that K1
0=K

1
m

=SL(2; Rm)� SL(2; Rm)=d
�
SL(2; Rm)

�
. �

Put X = ord(a1 � a2).

3. Lemma. The set L1
m is non empty precisely when the following conditions are satis�ed:

(1) 0 � m � X: (2) �i � 0: (3) m � �1 if and only if m � �2. (4) If �1 < m or �2 < m then

�1 = �2; we denote then the common value by �. (5) If � < m then (B1="1u1)=(B2=u2) 2 R�2.

(6) Further, if � < m then m � 2Ni � � + ordDi(i = 1; 2).

If L1
m is non empty, then its cardinality is: 1 if m = 0; (q20 � 1)q3m�2

0 if 1 � m � �1
(equivalently: 1 � m � �2); 2q

m+2�
0 if � < m.

Proof. If L1
m is not empty, then comparing the traces of (

ai b
0
iD

0
i

b
0
i ai

), i = 1; 2, we get a1 = a2,

hence 0 � m � X = ord(a1 � a2). We then replace a0i by 0 in the equation de�ning L1
m, and

conclude that b
0
1 = 0 if and only if b

0
2 = 0, thus m � �1 precisely when m � �2.

The same equation shows that if b
0
i 6= 0 for some i, so �i < m, then jb01j = jb02j, namely

�1 = �2. The common value is denoted then by �. Assume that �(= �1 = �2) < m. The set

L1
m consists of all (x1; x2; x3; x4) 2 R4

m with x1x4 � x2x3 = 1, satisfying

b
0
1D

0
1x3 = b

0
2x2; b

0
1D

0
1x4 = b

0
2D

0
2x1; b

0
1x2 = b

0
2D

0
2x3; b

0
1x1 = b

0
2x4:

Put � = (B1="1u1)=(B2=u2). Then for each

�
x1 x2
x3 x4

�
in L1

m there are a2; a4 2 Rm with

(
x1 x2
x3 x4

) = (
x1 �

�1(D02x3+���
m��a2

x3 �(x1+���
m��
F

a4)
) = ( x1 �

�2x3D
0
2

x3 x1
)(

1 ���m��
F

A2

0 1+���m��
F

A4
)(

1 0

0 �
);

where A2; A4 are de�ned (in Rm) by ( �
�2a2
a4

) = ( x1 �
�2x3D

0
2

x3 x1
)(

A2

A4
). Since the determinant is

one, � lies in ND2
= fy 2 R�

m; y = x21 � x23AD
B2
2

B2
1

"21u
2
1���

2N2�2�2
F g, which is R�2

m since jADj < 1.

This is (5) of the lemma.
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If x lies in L1
m, then x1; x4 are units. Otherwise x2; x3 are units, and since we are assuming

that � < m, the conditions that x satis�es imply that D0
1 and D0

2 are units, but AD is not

a unit. Since x1; x4 are units, if b
0
1D1 or b

0
2D2 6= 0, namely m > 2Ni � �i + ordDi for some

i = 1; 2, then �b
0
1D

0
1 = b

0
2D

0
2 (mod ���m) implies that N1 = N2 and ordAD = ordD, thus

ordA = 0, and B2
1D1 � B2

2D2 (mod (���m�(2Ni��i))
�
. But A is not a square (D2=D1 = A), we

obtain a contradiction, and we conclude (6) of the lemma, namely that b
0
iDi = 0(i = 1; 2).

The cardinality of L1
m is clearly 1 when m = 0, and it is #SL(2; Rm) = (q20 � 1)q3m�2

0

when b
0
i = 0, namely �i � m(i = 1; 2). If � < m, the cardinality of L1

m is the product of

the cardinalities of the sets fA2 2 Rm=���
�
FRm ' R=����FRg and fx1; x3 2 Rm;x

2
1 � D1x

2
3 2

1 + ���m��F Rmg. The cardinality of the �rst set is q� . The second has cardinality

#fx1; x3 2 Rm;x
2
1 �D1x

2
3 2 R�2

m g=[R�2
m : 1 + ���m��F Rm]:

The denominator is [R� : 1 + ���m��R]=[R�
m : R�2

m ] = 1
2
(q0 � 1)qm���1

0 . Hence the cardinality

of L1
m is 2(q0 � 1)�1q2��m+1

0 � (q0 � 1)qm�1
0 � qm0 = 2qm+2�

0 , as asserted. �

H. Orbital integrals of type (II).

We need to compare the stable �-orbital integral of 1K at a topologically unipotent strongly

�-regular element u = h�1t�h of type (II), computed above, with the stable orbital integral

of 1K at the norm Nu of u. We compute this integral next. This norm Nu = h�1Nt�h is

also of type (II) in our listing of elliptic conjugacy classes in H = GSp(2; F ). There are two

conjugacy classes in the stable conjugacy class of a regular element of type (II), represented here

by s� = (
a bD���

����1b a
). We write a = (

a1 a2=A

a2 a1
) if a = a1 + a2=

p
A lies in E3 = F (

p
A) = Eh�i,

similarly for b;���, where � ranges over a set of representatives for E�
3 =NE=E3

E�, say 1 and an

element of minimal order in R3 = RE3
. The centralizer T� of s��� in H = GSp(2; F ) lies in the

subgroup

CA = f( a b
c d

); ( a b

c d
) 2 GL(2; E3)

0g;
the prime indicates: determinant in F�.

1. Lemma. The integral �
GSp(2;F )
1K

(s�) is equal to
1P
m=0

[K0 : Km]
R
T�nCA 1Km

(h�1s�h)dh.

Here CA = GL
�
2; F (

p
A)
�0

and Km = GL
�
2; RE3

(m)
�0
, where RE3

(m) = R + ���m
p
AR =

R+ ���mRE3
, and s� = (

a bD�

��1b a
).

Proof. Using the decomposition H = GSp(2; F ) = [
m�0

CAumK;K = GSp(2; R) of Lemma

I.J.1, we deduce thatZ
T�nGSp(2;F )

1K(g
�1s�g)dg =

1X
m=0

jKjH
Z
T�nCA=CA\umKu�1m

1K(u
�1
m h�1s�hum)dh:

Put KA
m = CA \ umKu�1

m . The integrand on the right is non zero precisely when h�1s�h 2
umKu�1

m \CA, so we obtain

=
X
m�0

jKjH
Z
T�nCA=KA

m

1KA
m
(h�1

0 s�h0)dh0:
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Next we use the isomorphism �m : CA ! CA (�m(h) = h0) of Lemma I.J.3, which asserts

that �m(Km) = KA
m. De�ne x� by �m(x�) = s�. We obtain

=
X
m�0

jKjH
Z
ZCA (x�)nCA=Km

1�m(Km)(�m(h)
�1�m(x�)�m(h))dh;

in which we can erase �m everywhere. Changing variables h 7! ( 1 0

1 1
)(

1 0

0 1=A���m
)h on CA, we

obtain

=
X
m�0

[K0 : Km]

Z
T�nCA

1Km
(h�1s�h)dh:

�

Using the decomposition CA = [rT 0�rK 0, our integral takes the form

=
X
m�0

X
r

[T 00 : T
0
� \ rK 0r�1][K0 : Km]

Z
K0

1Km
(k�1r�1s�rk)dk;

where T 00 = T 0� \K 0 = T 0�(R) = R0
E . Here R

0
E = fx 2 R�

E ;NE=E3
x 2 F�g.

Recall that q = q3 = qE3
denotes the residual cardinality of E3.

2. Lemma. The index [T 00 : T
0
� \ rK 0r�1] is equal to qj if E=E3 is rami�ed or j = 0, and to

(q + 1)qj�1 if E=E3 is unrami�ed and j � 1, where r = rj;� = tj;�(
1 0

0 ���
j��
3

).

Proof. The intersection T 0� \ rK 0r�1 ' ft 2 T 0�; r�1tr 2 K 0g is

fa+ b
p
D 2 T 0�; (

1 0

0 ���
�(j��)
3

)(
a bD�

b=� a
)(

1 0

0 ���
j��
3

) = (
a bD����

j��
3

(b=�)���
�(j��)
3 a

) 2 K 0g;

which is R0
E\RE(j)

�, where RE(j) = R3+���
j
3RE = R3+

p
D���

j
3R3; R3 = RE3

, since b 2 ���j3R3.

Put RE(j)
0 for R0

E \ RE(j)
�. Consider the exact sequence

1! R0
E=RE(j)

0 ! R�
E=RE(j)

� ! R�
E=R

0
ERE(j)

� ! 1:

The last group is isomorphic, via the norm mapN = NE=E3
, toNR�

E=NR�
E\R� �NRE(j)

�.
Indeed, the kernel of the normmap is contained inR0

E . When E=E3 is rami�ed we haveNR�
E =

NRE(j)
�. When E=E3 is unrami�ed, we have NR�

E = R�
3 , and NRE(j)

� = R�2
3 (j � 1).

Moreover, R�
3 = R�R�2

3 , since a+ b
p
���F = a(1+ b

a

p
���F ) (a; b;2 R;E3=F is rami�ed). Hence

[R0
E : RE(j)

0] = [R�
E : RE(j)

�] = [R�
E : 1 + ���

j
3RE ]=[RE(j)

� : 1 + ���
j
3RE ]:

The denominator here is [R�
3 : R�

3 \(1+���
j
3RE)] = [R�

3 : 1+���
j
3R3] = (q�1)qj�1; q = q3. When

E=E3 is rami�ed, qE = q, hence the numerator is (q � 1)q2j�1 (since ���3 = ���2E). When E=E3

is unrami�ed, qE = q2 and ���3 = ���E , hence the numerator is (q
2 � 1)q2(j�1). The quotient is

as stated in the lemma. �

Consider the ring Sm = R3=���
m
F R3, and the subring Rm = (R + ���mF R3)=���

m
F R3 = R=���mF R.

If K(���mF ) = fk 2 GL(2; R3); k � 1(���mF )g, and Km = GL
�
2; R3(m)

�0
, where R3(m) = R +

���mF R3, then Km=K(���mF ) = GL(2; Rm) and K0=K(���mF ) = GL(2; Sm)
0. The prime indicates

determinant in R�
m. We emphasize that R3 = RE3

is the ring of integers in R3, while Rm is a

�nite ring (m � 1); they should not be confused with each other when m = 3.
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3. Lemma. The integral
R
K0=Km

1Km
(k�1r�1

j� s�rj�k)dk is equal to the cardinality of the set

L0m = fy 2 GL(2; Sm)0=GL(2; Rm); y
�1r�1

j� s�rj�y 2 GL(2; Rm)g;

where s� = r�1
j� s�rj� = (

a bD����
j��
3

(b=�)���
�(j��)
3 a

). Consequently, if L0m is not empty, then 0 � j �
N = ord3(b) = ordE3

(b). �

4. Lemma. The map L0m ! Lm = fx 2 SL(2; Sm); �x = x�1; xs�;rx
�1 = �(s�;r)g; y 7!

x = �(y)y�1, is injective. It is surjective if E=E3 is rami�ed, while the image has index two

if E=E3 is unrami�ed. In particular #L0m = 1
2
e(E=E3) � #Lm, where e = e(E=E3) is the

rami�cation index of E=E3.

Proof. For the injectivity, if �(y1)y
�1
1 = �(y2)y

�1
2 then �(y�1

1 y2) = y�1
1 y2 2 GL(2; Rm).

If E=E3 is rami�ed then E3=F is unrami�ed, and the map GL(2; R3)
0 ! fx = �(x)�1 2

SL(2; R3)g, y 7! x = �(y)y�1, is onto by Hensel's Lemma. If E=E3 is unrami�ed then E3=F

is rami�ed, hence �(x) � x(mod���3). Thus �(x) = x�1 implies that x2 � 1(mod���3), and

since kxk = 1, that x � �I(mod���3). Namely x 2 Lm if and only if �x 2 Lm. Further,

x � I(mod���3) if and only if x = �(y)y�1 for some y 2 GL(2; Sm)
0. Hence Lm is the disjoint

union of image(L0m) and �image(L0m). �

Remark. Put b = B���N3 ; B 2 R�
3 , and if � = u���

�
3; u 2 R�

3 , we put b0 = (B=u)����3 , where

� = N � j (satis�es 0 � � � N if #Lm 6= 0). Put m0 for 2m=e; e = e(E=E3). Then b0 6= 0 in

Sm = R3=���
m
F R3 = R3=���

2m=e
3 R3 precisely when � < m0 = 2m=e. Let a be the image in Rm of

a 2 R3.

5. Lemma. The set Lm is non empty precisely when 0 � � � N; 0 � m0 � X = ord3(a��a),
and whenm0 > � we further have that there exists " 2 S�2

m such that �s�;r = (
1 0

0 "=�"
)s�;r(

1 0

0 �"="
),

thus ( 1 0

0 "
)s�;r(

1 0

0 "
)�1 lies in GL(2; Rm) or equivalently that � +m0 � X, and u 2 BS�2

m when

E=E3 is rami�ed, and � is even when E=E3 is unrami�ed.

Proof. Suppose that x = (
x1 x2
x3 x4

) lies in Lm, thus kxk = 1 and �x = x�1, and xs�rx
�1 = �(s�r),

where s�;r = ( a b
0
D
0

b
0

a
), and D0 = Du2���

2j
3 . Taking traces we conclude that a = �a lies in Rm.

Hence 0 � m0 � X = ord3
�
a � �a

�
, and when b

0
= 0 we are done. Suppose, from now on,

that b
0 6= 0, namely m0 > �. As �x = x�1 and kxk = 1, we have (

�x1 �x2
�x3 �x4

) = (
x4 �x2
�x3 x1

). Hence

there are r2; r3 in Rm, such that x = ( x1 r2
p
A

r3
p
A �x1

). The relation xs�rx
�1 = �(s�r), but with

a replaced by 0 (since a = �a), is:

( x1 r2
p
A

r3
p
A �x1

)( 0 b
0
D
0

b
0

0
) = x(s�r � a) = �(s�r � a)x = ( 0 �b

0
�D

0

�b
0

0
)( x1 r2

p
A

r3
p
A �x1

);

namely

�
b
0
r2
p
A x1b

0
D
0

b
0
�x1 b

0
D
0
r3
p
A

�
=
�
�b��D0�r3

p
A �b

0��D0��x1
�b
0�x1 �b

0�r2
p
A

�
:(�)
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Then x1 2 S�m, otherwise (since kxk = 1) A; r2; r3 2 R�
m, hence D 2 ���FR

� and so

D0 2 ���3Sm, contradicting the relation obtained on comparing the entries on second row

and second column. We denote this location by (2; 2). In fact this relation, (2; 2), shows that

r2
p
A = b

0

�b
0D

0
r3
p
A+ ���m

0��
3 Sm. Hence

x =
�

x1 r3D
0p
A

x1
�x1

+���m
0��

3 Sm

r3
p
A �x1

�
= ( 1 0

0 "
)
� x1

x1
�x1

r3D
0p
A+���

m0��
3 Sm

x1
�x1

r3
p
A x1

�
;

where " = �x1=x1, lies in ( 1 0

0 "
)ZGL(2;Sm)(s�;r).

Since � < m0 we have

b
0
=�b

0
= x1 � (b

0
=�b

0
)�x1 � (b

0
=�b)r2

p
Ar3
p
A = x21 � r23A�(D

0
) + ���m

0��
3 Sm = x21 + ���3Sm:

The �rst equality follows from k( x1 r2
p
A

r3
p
A �x1

)k = 1, the second uses the relations obtained

on comparing the entries at the locations (2; 1) and (1; 1), and the last follows since E=F is

rami�ed (thus jA�(D)j < 1). Further, from (2; 1) we have b
0
=�b

0
= x1=�x1+���m

0��
3 Sm. Hence

x1�x1 � 1(mod���3). If E=E3 is unrami�ed, then A =2 R�, hence x1 = � + �
p
A; x1�x1 =

�2 � �2A � 1 implies that � � �I and � � 0(mod���3). Then ��1x1 2 S�2
m , and " =

�(��1x1)=�
�1x1 is as required.

If E=E3 is rami�ed then E3=F is unrami�ed, R�
3 = ker(NE3=F jR�

3 ) ' R� (NE3=F : R�
3 ! R�

is surjective), hence ker(NE3=F jR�
3 ) has index q0�1 in R�

3 , and so it is contained in the index

2 subgroup R�2
3 of R�

3 , hence x1�x1 � 1 (mod���3) implies that x1 2 R�2
3 , as required. In the

lemma, x1 (or �
�1x1 when E=E3 is unrami�ed) is denoted by ", as we do from now on.

Suppose again that b
0 6= 0 in Sm, thus � < m0. The relation (2; 1), and ����3 = (�1)e���3; b0 =

(B=u)����3 , imply that �(")=" � b
0
=�b

0 � (�1)�e(B=u)=�(B=u)(mod���m0��
3 ). When E=E3 is

rami�ed (e = 2), we deduce that "B=u 2 R�
m, namely u 2 B"R�

m � BS�2
m R�

m = BS�m.
When E=E3 is unrami�ed (" = 1), E3=F is rami�ed, hence S�m \ Rm

p
A is empty, hence

Re("B=u) = "B=u+�("B=u) is non zero in Rm, and Re("B=u) = (�1)�eRe
�
�("B=u)

�
implies

that (�1)� = 0, thus � is even. Hence �(")=" � (B=u)=�(B=u) (mod���m
0��

3 ), and the relation

(1; 2) implies that

DBu=�(DBu) � "=�"(mod���
m0�(2N��+ordD)
3 )

provided that m0 > 2N��+ordD(� �). The two relations together imply that DB2=�(DB2)

� 1(mod���
m0�(2N��+ordD)
3 ), namely D(B2��B2) � 0(mod���m

0+��2N
3 ). But then ja+�aj = 1,

since s� is topologically unipotent, and

(a� �a)(a+ �a) = a2 � �a2 = D(b2 � �b2) � 0(mod���m
0+�

3 )

implies that m0 + � � X, as required. �

As usual, q0 is qF ; q = q3 is qE3
, and e = e(E=E3).
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6. Lemma. When L0m is non empty, its cardinality is: 1 if m = 0; q3m
0=2 if e = 1, and

(q + 1)q3m
0=2�1 if e = 2, when 1 � m0 � �; eqm0 q

� when � < m0.

Proof. This is clear when m = 0, and #L0m is the cardinality of GL(2; Sm)
0=GL(2; Rm) '

SL(2; Sm)=SL(2; Rm) where b
0
= 0, namely 1 � m0 � �. Recall that Rm = R=���mF R, and

#SL(2; Rm) = (q20 � 1)q3m�2
0 = (q20 � 1)q

3em0=2�2
0 . Also Sm = R3=���

m0
3 R3, and #SL(2; Sm) =

(q2�1)q3m0�2. When e = 1; q = q0, and the quotient is q
3m0=2(m0 = 2m). When e = 2; q = q20 ,

and the quotient is (q + 1)q3m
0=2�1(m0 = m). From now on we then assume that � < m0. In

the notations of the previous proof, the set Lm consists of the

x =

 
x1

b
0

�b
0D

0 � r3
p
A+ a

r3
p
A �x1

!

with kxk = 1, where r3 2 Rm; a 2 ���m
0��

3 Sm lies in Rm

p
A too (since kxk = 1, and b

0

�b
0D

0
lies

in Rm by (1; 2) and (2; 1)), and x1 = (B=u)r2(1 + �), where r1 2 Rm and � 2 ���m0��
3 Sm, since

by (2; 1) we have x1=(B=u) = r1 + ���m
0��

3 Sm; r1 2 Rm.

In other words, Lm is the set of 4-tuples (r1; r3; a; �) 2 R2
m�(���m

0��
3 Sm)

2, such that �a = �a,
and r21(B=u)�(B=u)(1+�)(1+��)�r23A� b

0

�b
0D

0�ar3
p
A = 1, subject to the equivalence relation

(r1; �) � (r01; �
0) if r1(1+�) = r01(1+�

0). Namely we take the quotient of the set of such 4-tuples
by the group 1 + RmA���

m0��
3 Sm.

To compute the cardinality of this quotient, take r3 2 Rm, � 2 ���m
0��

3 R3=���
m0
3 R3 =

R3=���
�
3R3, a = �

p
A, � 2 Rm \���m

0���ord3
p
A

3 Sm ' Rm \���m
0��

3 Sm (when e = 2; A 2 R� is a

unit; when e = 1, � is even, and A = ���F = ���23). Now put B0 = B=u, and recall from the proof

of Lemma 5 that B
0
=�B

0 � x21 (mod ���3), hence B
0
=�B

0
is a square, in S�2

m . More precisely,

x1 � B
0
r1, so B

0
�B

0 � (B
0
=�B

0
)(�B

0
)2 = (B

0
�B

0
)2r21, and r21B

0
�B

0 � 1, and B
0
�B

0 2 R�2
m .

Since jADj < 1 and jaj < 1, there are always two solutions in r1. The number of �'s is

the same as that of the equivalence relation by which we divide. We obtain that #Lm is

2qm0 q
� (number of r1's, number of r3 2 Rm, number of � 2 R3=���

��
3 R3). We are done since

#Lm = 2 �#L0m=e. �

I. Comparison in case (II), E=E3 rami�ed (e = 2).

We compare the stable �-orbital integral of 1K at u = s� = [�D�1(�1 + �1
p
D); �AD�2 (�2 +

�2
p
AD], a topologically unipotent �-�xed element of the form h�1

� t�h�, where t� =
(t1; t2; � t2; �t1; e) in Sp(2) (the integral vanishes unless e 2 R�, as we now assume, and then

it is independent of e), with the stable orbital integral of 1K at the stable orbit of the norm

Nt� = (x1; �x1; ��x1; �x1) in GSp(2; F ). Here t1 = �1 + �1
p
D, and t2 = �2 + �2

p
AD.

The assumption that e = 2 implies that A 2 R� and D = ���F , and we have �2
1 � �21D =

1 = �2
2 � �22AD. By the de�nition of the norm, x1 = t1t2 (�x1 = t1�t2; ��x1 = t2�t1, and

�x1 = �t1�t2). Hence x1 = �1�2+D�1�2
p
A+(�2�1+�1�2

p
A)
p
D = a1+b1

p
D. We denote

ni = ordF (�i). Hence X = ord3(a1 � �a1) = ord3(D
p
A�1�2) = 1 + n1 + n2 (E3 = F (

p
A)
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is unrami�ed over F ). Further � = ordF (�1 � �2) = ordF (�
2
1 � �2

2) = ordF (AD�
2
2 �D�21) =

1 + 2min(n1; n2), and N = ord3(b1) = ord3(�2�1 + �1�2
p
A) = min(n1; n2), since �1; �2 are

units.

When e = 1, namely when E=E3 is unrami�ed, we have D 2 R� and A = ���F , thus

���23 = ���F , and then we have that � = ordF (�1 � �2) = min(2n1; 1 + 2n2); X = 1 + 2n1 + 2n2,

and N = min(2n1; 1 + 2n2) = �.

We shall use this for the actual comparison, but let us �rst compute.

1. Lemma. Put n01 = min(n1; n2), n
0
2 = max(n1; n2). When E=E3 is rami�ed, the stable

�-orbital integral of 1K at a strongly �-regular topologically unipotent element of type (II) is

equal to

4qn1+n20

q20
(q0 � 1)2

(1� q�n1�1
0 )(q� � q�n2�1

0

1 + q1+n10 + q2+2n1
0

1 + q0 + q20
):(�)

Proof. Let us summarize the result of the computation of the stable twisted orbital integral

in Section G. It is

�
G;st
1K

(u�) = �
ZG(�);st
1Z

K(�)
(u) =

X
�

X
m�0

X
r2R�m

[R1
T : T 1

�m
\ rK1

0r
�1]#L1

m;�m
;

where u = t� = h�1t�h is topologically unipotent. Recall that L1
m;�m

depends on m and �m,

but for each m, the set f�mg is the same as the set of �. Hence we replace �m by � in the

triple sum above.

In this case there is no ", we have summation over 0 � �1 � n1 and 0 � �2 � n2, and over

0 � m � �(= 1+min(2n1; 2n2)). Also m � �1 if and only if m � �2, and if m > �1 or �2 then

�1 = �2 is named �, and m is bounded by min
�
2n1 + ordD� �; 2n2+ ord(AD)� �

�
= �� �.

On this last range we have the relation u1=u2 2 (B1=B2)R
�2. Then the cardinality of the �'s

is 2, instead of 4, on this range. Then the stable �-orbital integral of 1K at a strongly �-regular

topologically unipotent element of type (II) is:

4qn1+n20

� X
0��1�n1

q��10

X
0��2�n2

q��20 + (1� q�2
0 )

X
0��1�n1

q��10

X
0��2�n2

q��2
X

1�m�min(�1;�2)

q3m0

+
X

0���min(n1;n2)

X
�<m����

qm0
�

= 4qn1+n20

�1� q�n1�1
0

1� q�1
0

� 1� q�n2�1
0

1� q�1
0

+ q0(q
2
0 � 1)

X
0��1�n1
0��2�n2

q��10 q��20

q
3min(�1;�2)
0 � 1

q30 � 1
+

X
0���min(n1;n2)

q
���+1
0 � q�+1

0

q0 � 1

�
:

Assume (without loss of generality) that n1 � n2, and note that our expression is precisely

that of case (I) for rami�ed E=F . The lemma follows. �
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2. Lemma. When E=E3 is rami�ed, the stable orbital integral of 1K at a topologically unipo-

tent regular element of type (II) in GSp(2; F ), is

2q2N+1
0

1� q�N�1
0

1� q�1
0

� qX0
q0 � 1

� qN+1
0

q30 � 1
� 1 + q�N�1

0

q30 � 1

�
:(��)

Proof. The integral is the sum over � = u 2 E�
3 =NE=E3

E�, which can be assumed to be 1 and

a (non square) unit in R�
3 in the case where E=E3 is rami�ed, e = 2. Then we have a sum

over 0 � � � N and a sum over m(� X� �). Note that m0 = m and q = q20 when e = 2. Also,

in the range � < m � X � �, we have that u 2 BR�2
3 , namely the sum over � = u reduces to

a single term. The stable orbital integral is thenX
0���N

qN��
�
2 + 2

X
1�m��

(1 + q�1)q3m0 +
X

�<m�X��
eqm0 q

�
�

= 2qN
�1� q�N�1

1� q�1
+
(q + 1)q0

q30 � 1

X
0���N

q��(q3�=2 � 1) +
1

q0 � 1

X
0���N

(qX��+1
0 � q�+1

0 )
�

= 2qN
�1� q�N�1

1� q�1
+
(1 + q)q0

q30 � 1

�qN+1
0 � 1

q0 � 1
� 1� q�N�1

1� q�1

�

+
1

q0 � 1

�
qX+1
0

1� q�N�1
0

1� q�1
0

� q0
qN+1
0 � 1

q0 � 1

��

= 2q2N0 � 1� q�N�1
0

1� q�1
0

�1 + q�N�1
0

1 + q�1
0

+
q30 + q0

q30 � 1

�
qN0 �

1 + q�N�1
0

1 + q�1
0

�
+

1

q0 � 1

�
qX+1
0 � qN+1

0

��
:

The [: : : ] here is

1

q0 � 1
qX+1
0 + qN+1

0

�q20 + 1

q30 � 1
� 1

q0 � 1

�
+
1 + q�N�1

0

1 + q�1
0

�
1� q30 + q0

q30 � 1

�
:

Hence our stable integral is as stated in the lemma. �

Since we are evaluating our stable integral at the stable orbit of Nu or Nt�, we can take

X = 1 + n1 + n2, and N = n1 if n1 � n2, as we assume. Then the stable integral is

=
2q2n1+2

0

(q0 � 1)2
(1� q�n1�1

0 )
�
q1+n1+n20 � q0 � 1

q30 � 1
(qn1+1

0 + 1 + q�n1�1
0 )

�
=

2q2+n1+n20 (1� q�n1�1
0 )

(q0 � 1)2

�
q1+2n1
0 � q0 � 1

q30 � 1
q�n2�1
0 (1 + qn1+1

0 + q2n1+2
0 )

�
:

Multiplied by 2, the stable orbital integral is equal to the stable �-orbital integral computed

above, since � = 1 + 2n1 as n1 � n2.

Thus it remains to show
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3. Lemma. The measure factor [T ��(R) : (1 + �)
�
T �(R)

�
]=[T �H(R) : N

�
T �(R)

�
] is equal to 2

for tori T of type (II).

Proof. The normmapN takes (a; b; �b; �a) in T �(R), thus a 2 R�
1 ; b 2 R�

2 to (ab; a�b; b�a; �a�b)

in T �H(R), which consists of (x; �x; ��x; �x); x 2 R�
E with x�x = �(x�x) 2 R�

1 . Thus we need

to solve in a 2 R�
1 the equation a=�a = x=��x

�
= �(x=��x);2 E1

1 = fy=�y; y 2 E�
1 g
�
.

As in the proof of the corresponding Lemma for tori of type (I), we have [E1
1 : R1

1] =

e(E1=F ). Put b = x=a. Then ��(b) = ��(x=a) = ��(x)=�a = x=a = b lies in R�
2 . Hence

[T �H(R) : N
�
T �(R)

�
] = e(E1=F ).

Next we compute the index in T ��(R) = f(x; y; �y; �x);x 2 R1
1; y 2 R1

2 (thus y 2 R�
2 ; y�y =

1)g of (1+ �)T �(R) = f(1+ �)(a; b; �b; �a) = (a=�a; b=�b; �b=b; �a=a); a 2 R�
1 ; b 2 R�

2 g. Since
E2=F is rami�ed, [E1

2 : R1
2] = e(E2=F ) = 2, we conclude that [T ��(R) : (1 + �)T �(R)] =

2e(E1=F ). The quotient by e(E1=F ) is 2, and the lemma follows. �

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the �-orbital integrals permits us to compute the unstable, �-

�-orbital integrals, too. Let � be the character which de�nes the endoscopic group C3 = CE3
.

It is a character on the group of �-conjugacy classes within the stable �-conjugacy class of the

topologically unipotent element t� = (t1; t2; �t2; �t1) of type (II). This group is F
�=NE1=FE

�
1 �

F�=NE2=FE
�
2 , so � is a product �1 � �2. As E2 = F (

p
����), we have NE2=FE

�
2 = ���ZR�2,

hence �2(���) = 1 and �2("0) = �1, where "0 2 R� � R�2. Further, when E1=F is rami�ed,

E1 = F (
p�"0���), hence NE1=FE

�
1 = ("0���)

ZR�2, and so �1("0) = �1(���) = �1. This de�nes

the quadratic characters �i 6= 1, and �. The Jacobian factor is (when jt1j = jt2j = 1, e = 2)

�G;C3
(t1; t2; �t2; �t1) = j

(t1 � �t1)
2(t2 � �t2)

2

t1�t1 � t2�t2
j1=2F = j�1�2D

p
AjF = q�1�n1�n2

0 :

Theorem. If t = h�1t��(h) is a strongly �-regular topologically unipotent element of type (II),

E3=F is unrami�ed, and � is the character associated with the endoscopic group C3, then

��G;C3
(t�)�1

�
(t1 � �t1)=2

p
D
�
�2
�
(t2 � �t2)=2

p
AD

�
��1K (t�) = �C3

1K3
(NC3

t�):

When E3=F is rami�ed, ��1K (t�) = 0:

Proof. The last assertion is proven in the next section. Suppose E3=F is unrami�ed. Then the

�1�2 factor on the left is �1(�1)�2(�2) = �1(B1)�1(���
n1)�2(B2) = �0(B1B2)(�1)n1 , where �0

is the non trivial character on R�=R�2. Recall that �m is � if m is even, but it is ~� = (~�1; ~�2)

if m is odd, where �i 7! ~�i = �1=�i and �2 7! ~�2 = �1=A�2 are permutations of R�=R�2 if

E=F is rami�ed. Hence in our sumX
�

�1(�1)�2(�2)
X
m�0

X
r2R�m

[R1
T : T 1

�m
\ rK0r

�1]#L1
m;�m

;

replacing �m by � does not change the index [: : : ], but it a�ects the part of the factor #L1
m;�m

described by Lemma G.3(5): the corresponding summands will have to be multiplied by (�1)m.
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The �-�-orbital integral is the sum of

� X
u1;u22R�=R�2

�0(u1u2)
� X
0��1�n1
0��2�n2

qn1��1+n2��20

�
�(m = 0) + (1� q�2

0 )
X

1�m�min(�1;�2)

q3m0
�
;

which is zero, and

X
0���n

qn1+n2�2�
0

X
�<m����

2qm+2�
0

X
u1;u2

�0(u1u2)(�1)m:

Here n = min(n1; n2), and u1; u2 range over R
�=R�2, subject to the relation (Lemma G.3) that

u1u2 2 B1B2"
n1��
0 (there are two such pairs). The factor (�1)m comes from from changing

R�m to R�. The last displayed sum is then

4�0(B1B2)(�q0)n1qn20
X

0���n
(�1)� q0

q0 + 1
((�q0)��� � (�q0)�)

= 4(q0 + 1)�1�0(B1B2)(�1)n1q1+n1+n20

X
0���n

[(�q0)�q��0 � q�0 ]:

The last sum is

(�q0)�
�
1� q�n�1

0

�
=(1� q�1

0 )�
�
qn+1
0 � 1

�
=(q0 � 1)

=
�
qn+1
0 � 1

�
(q
��n
0 (�1)� � 1

�
=(q0 � 1):

The left side of the expression of the theorem is then (note that � = 2n + 1; q = q20) �4(q �
1)�1(qn+1 � 1). The measure factor is 4, and the right hand side is an orbital integral on

GL(2; E3) at the elliptic element with eigenvalues x1; �x1, with parameter N = n. Since

E=E3 is rami�ed, by Lemma I.I.2 this orbital integral is (q
N+1 � 1)=(q� 1), and we are done.

�

Remark. If E3=F is unrami�ed and precisely one of �1; �2, is non trivial, the same computation

shows that the associated �-�-orbital integral is zero. Such � de�nes the rami�ed twisted

endoscopic group C+ of type (3) in Section I.F (namely C+ = GL(2; F ) � E1
1 , and E1=F is

rami�ed). This veri�es the \rami�ed" claim of the Theorem of the next Section.

J. Comparison in case (II), E=E3 unrami�ed (e = 1).

In this case E1=F is unrami�ed, E3=F is rami�ed and so q = q0, and the stable �-orbital

integral is given by a summation over 0 � �1 � n1 and 0 � �2 � n2, over " 2 R�=R�2 if

�1 < n1, over �2 = u2 2 R�=R�2, and �1 = ����1(u1 = 1), �1 is 0 or 1, subject to the condition

that j1 � �1 be even. Further, when �1 < m or �2 < m then �1 = �2 is denoted by �, and

"=u2 2 (B1=B2)R
�2, and m � min

�
2n1 � � + ordD; 2n2 � � + ord(AD)

�
. Here D 2 R� and

A = ���F , and as we saw � = min(2n1; 1 + 2n2), so m � � � � when � < m. Then we obtain

the following.
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1. Lemma. The stable �-orbital integral of 1K at a topologically unipotent strongly �-regular

element u of type (II) is given { when E=E3 is unrami�ed { by

2(q � 1)�2[(q + 1)q2+n1+3n2 � (q + 1)q1+n1+2n2 � 2(q � 1)

q3 � 1
(q3n2+3 � 1)](�)

when n2 < n1, and by

2(q � 1)�2[�2q1+2n1+n2 + (q + 1)q1+3n1+n2 +
q � 1

q3 � 1

�
2� (q3 + 1)q3n1

�
](��)

when n1 � n2.

Proof. Recall that L1
m;�m

depends on m and �m, but for each m, the set f�mg is the same as
the set of �. Hence we replace �m by � in the triple sum above. Our integral is the sum of

2
X

0��1�n1
0��2�n2

qn1��1+n2��2
�
�(�1 = n1) + �(�1 < n1)2 �

q + 1

2q

��
1 +

X
1�m�min(�1;�2)

(1� q�2)q3m
�

and

2
X

0���n
qn1+n2�2�

�
�(�1 = n1) +

q + 1

2q
�(�1 < n1)

� X
�<m����

2qm+2� ;

where n = min(n1; n2). The �rst sum can also be written as

2
X

0�m�n
#L1

m

� X
m��2�n2

qn2��2
�� X

�1=n1

1 + (1 + q�1)
X

m��1<n1
qn1��1

�

=2[(q � 1)�2(qn2+1 � 1)
�
(q + 1)qn1 � 2

�
+ (1� q�2)

X
1�m�n

q3m � q
n2�m+1 � 1

q � 1
� (q + 1)qn1�m � 2

q � 1
]

=2(q � 1)�2[(q + 1)qn1+n2+1 � (q + 1)qn1 � 2qn2+1 + 2

+ (1� q�2)
X

1�m�n

�
(q + 1)qn1+n2+m+1 � (q + 1)qn1+2m � 2qn2+2m+1 + 2q3m

�
]:

The inner sum here is

q + 1

q � 1
q2+n1+n2(qn � 1)� q + 1

q2 � 1
qn1+2(q2n � 1)� 2

q3+n2

q2 � 1
(q2n � 1) +

2q3

q3 � 1
(q3n � 1);

so we get

2(q � 1)�2[(q + 1)qn1+n2+1 � (q + 1)qn1 � 2qn2+1 + 2 + (q + 1)2qn1+n2(qn � 1)

� (q + 1)qn1(q2n � 1)� 2qn2+1(q2n � 1) +
2q(q2 � 1)

q3 � 1
(q3n � 1)]:
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To compute the second sum, note that m > �1 if and only if m > �2, and then �1 = �2 is

denoted by �, and there are two possibilities. If n1 � n2 then � = 2n1, and there is no m with

n1 < m � � � n1; hence � < n = n1 in this case. If n2 < n1 then � = 1 + 2n2 and n = n2,

and the m with n2 < m � 1 + n2 is m = 1 + n2. Hence the second sum takes the form

2(q + 1)qn1+n2
X

0��<n

q��� � q�

q � 1
+ 2�(n2 < n1)q

n1+n2(q + 1)qn2

= 2
q + 1

q � 1
qn1+n2

�
q�

1� q�n

1� q�1
� qn � 1

q � 1

�
+ 2�(n2 < n1)(q + 1)qn1+2n2

= 2
q + 1

(q � 1)2
qn1+n2(qn � 1)(q�+1�n � 1) + 2�(n2 < n1)(q + 1)qn1+2n2 :

We deal separately with the two cases. When n2 < n1; � = 1 + 2n2 and n = n2, thus

�+ 1� n = 2 + n2, our integral is

2(q � 1)�2[(q + 1)qn1+n2+1 � (q + 1)qn1 � 2qn2+1 + 2

+(q + 1)2qn1+2n2 � (q + 1)2qn1+n2 � (q + 1)qn1+2n2

+(q + 1)qn1 � 2q1+3n2 + 2qn2+1 +
2q(q2 � 1)

q3 � 1
(q3n2 � 1)

+(q + 1)
�
q2+n1+3n2 � q2+n1+2n2 � qn1+2n2 + qn1+n2 + (q � 1)2qn1+2n2

�
]:

Collecting the coe�cients of qn1+n2 ; qn1+2n2 ; qn1+3n2 , we obtain (�) of the lemma.
When n1 � n2; � = 2n1(= N); n = n1; �+ 1� n = 1 + n1, the integral is equal to

2(q � 1)�2[(q + 1)qn1+n2+1 � (q + 1)qn1 � 2qn2+1 + 2 + (q + 1)2qn1+n2(qn1 � 1)

� (q + 1)qn1(q2n1 � 1)� 2qn2+1(q2n1 � 1)

+
2q(q2 � 1)

q3 � 1
(q3n1 � 1) + (q + 1)qn1+n2(q2n1+1 � qn1+1 � qn1 + 1)]:

Collecting the coe�cients of qn1+n2 ; q2n1+n2 ; q3n1+n2 ; q3n1 , we obtain (��) of the lemma. �

To complement Lemma 1, we need to compute the stable orbital integral of 1K at the norm

Nu, which is a topologically unipotent regular element in GSp(2; F ) of type (II), in our case

e = 1, that is E=E3 is unrami�ed, q = q0.

2. Lemma. The stable orbital integral of 1K at the topologically unipotent regular element

Nu in GSp(2; F ) of type (II), when E=E3 is unrami�ed, is given by

q + 1

(q � 1)2
qN [�(2jN)

�
q
X+1
2 � 2

q + 1
q
X+1�N

2 +
q � 1

q + 1
q
N
2

�
+
�
1� �(2jN)

�
q
X�N

2 (q
N+1
2 � 1)]

� 2

q � 1

q3([N=2]+1) � 1

q3 � 1
:
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Proof. Here � ranges over E�
3 =NE=E3

E�, thus � = ���
�
3 with � = 0; 1. There is a sum over

�(0 � � � N) such that N � � � � is even, so the sums over � and � are combined to a single

sum over �(0 � � � N). Further, we have a sum over the even m0(= 2m) with 0 � m0 � X,

but X = 1 + 2n1 + 2n2 when e = 1, thus 0 � m0 � X � 1. When � < m0 we have that

m0 � X � �, and � is even; thus � < m0 � X � 1 � �, as �;m0 are even and X is odd. The

stable integral is thenX
0���N

X
0�m0=2m�X�1

qN��
�
�(� = N) + (1 + q�1)�(� < N)

�
�
q3m

0=2�(0 � m0 � �) + q�+m
0=2�(� < m0 � X � 1� �; � even)

�
:

It is the sum ofX
0���N

X
0�m0��

=
X

0�m0�N
q3m

0=2
� X
�=N

1 + (1 + q�1)
X

m0��<N
qN��

�

=
X

0�m�N=2
q3m

�
1 +

q + 1

q � 1
(qN�2m � 1)

�

=
q + 1

(q � 1)2
qN (q[N=2]+1 � 1)� 2

q � 1

q3([N=2]+1) � 1

q3 � 1
;

and, writing �0 = 2� for the even � when � < m0 � X � 1� �,X
0��0<N

X
�0<m0�X�1��0

q�
0+m0=2 � qN��0(1 + q�1) + �(N is even) �

X
N<m0�X�1�N

qN+m0=2

=
X

0��<N=2

X
�<m�X�1

2
��

qN+m(1 + q�1) + �(2jN)
X

N=2<m�X�1
2

�N
2

qN+m

= qN
q + 1

q � 1

X
0��<N=2

(q
X�1
2

�� � q�) + �(2jN)qN (q � 1)�1
�
q
X+1
2

�N
2 � q

N
2
+1
�

= �(2jN)
qN

q � 1

�q + 1

q � 1

�
q
X+1
2 (1� q�N=2)� (qN=2 � 1)

�
+ q

X+1
2

�N
2 � q

N
2
+1
�

+
�
1� �(2jN)

� qN

q � 1
� q + 1

q � 1

�
q
X+1
2 (1� q�

N+1
2 )� (q

N+1
2 � 1)

�
:

This completes the proof of the lemma. �

We can now complete the comparison of the �-stable and stable integrals.

When N is odd
�
�(2jN) = 0

�
, since N = min(2n1; 1+2n2), we have that N = 1+2n2, and

n2 < n1, as well as (X � 1)=2 = n1 + n2, so that we obtain

q + 1

(q � 1)2
q1+2n2+n1(qn2+1 � 1)� 2

q � 1

q3(n2+1) � 1

q3 � 1
;
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which is half the expression for the stable �-orbital integral when n2 < n1.

When N is even, N = 2n1; n1 � n2, the stable orbital integral is

q + 1

(q � 1)2
[q1+3n1+n2 � 2

q + 1
q1+2n1+n2 ] +

1

q � 1
[
2� 2q3n1+3

q3 � 1
+ q3n1 ];

which is equal to half the expression for the stable �-orbital integral when n1 � n2. Since the

measure factor is equal to 2, the comparison is complete in the case of type (II).

Proof of Theorem I when E3=F is rami�ed. The computations are the same as in the stable

case of Lemma 1, except that both �i are now non trivial. In this case E1=F is unrami�ed,

thus ���1 = ���, hence NE1=FE
�
1 is R����2Z, and �1(u���

j1) = (�1)j1(u 2 R�). The �-�-orbital

integral is then the sum of

X
�1;�2

(�q0)n1��1qn2��20

X
u2

�2(u2)
�
�(�1 = n1) + (1 + q�1

0 )�(�1 < n1)
�

�
1 + (1� q�2)

X
1�m�min(�1;�2)

(�q0)3m
�
;

(0 � �i � ni), which is 0 since u2 ranges over R
�=R�2, and

X
0���n

(�1)��n1qn1+n2�2�
�X
u2

�2(u2) � �(�1 = n1)

+
X
u2

�2(u2)
X

"2u2B1B2R�2

1

2
(1 + q�1)�(�1 < n1)

� X
�<m����

2(�q)m+2�

which is also zero (since " is determined by u2, leaving us with the sum
P
u2

�2(u2) over R
�=R�2,

which is zero). �

Remark. If E1=F is unrami�ed, �1 = 1 and �2 6= 1, the corresponding �-�-orbital integral is

zero by the same argument. The only change will be that the powers of (�1) { introduced by

�1 6= 1 { need to be replaced by 1.

Unstable twisted case. Twisted endoscopic group of type I.F.3.

The explicit computation of the �-orbital integrals can be used to compute the unstable �-�-

orbital integrals, at a strongly �-regular topologically �-unipotent element t� = (t1; t2; � t2; �t1)

(thus t�� is topologically unipotent) of type (II). The character � is de�ned on the group

F�=NE1=FE
�
1 � F�=NE2=FE

�
2 of �-conjugacy classes within the stable �-conjugacy class of

t�. Thus � = �1 � �2, �1 6= 1 on F�=NE1=FE
�
1 , and �2 = 1. The stable case is that where

�i = 1; i = 1; 2. The endoscopic group associated with � is C+, with C+ = GL(2; F )�E1
1 . As

noted at the end of Section I.F, the GL(2)-part of the norm NC+
t� is diag(t2; � t2). Recall that

t2 2 E�
2 , and E2=F is rami�ed. Hence by Lemma I.I.2, the orbital integral �1K (diag(t2; �t2))

is equal to (qj�2j�1�1)=(q�1) = (qn2+1�1)=(q�1). As usual, t1 = �1+�1
p
D and t2 = �2+
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�2
p
AD are units, and j�ij = q�ni . Then �G;C+

(t�) = j(t1��t1)(t1t2��t1�t2)(t1�t2�t2�t1)jF
(recall that this factor is computed at the end of Section I.G) is equal to jD

p
D�1((�2�1)

2 �
(�1�2)

2A)j (recall that E1 = F (
p
D) = E� and E3 = F (

p
A) = E�). As noted in the Remark

at the end of Section I, the �-�-orbital integral vanishes when E1=F is rami�ed. Assume that

E1=F is unrami�ed. Then �G;C+
(t�) is q�n1�2n2�1 if n2 < n1, but it is q

�3n1 if n2 � n1. We

claim the following.

Theorem. Let t� be a topologically �-unipotent strongly �-regular element of type (II), E1=F

is unrami�ed, �1 6= 1 and �2 = 1. Then the �-�-orbital integral of 1K is related to the orbital

integral of 1KC+
on the twisted endoscopic group of type (3) of Section I.F, by

�1
�
((t1 � �t1)=

p
D)(t1t2 � �t1�t2)(t1�t2 � t2�t1)

�
�G;C+

(t�)��1K (t
��) = �

C+

1KC+
(NC+

t�):

When E1=F is rami�ed, ��1K (t
��) = 0.

Proof. The computations are the same as in the stable case of Lemma 1, except that now

�1 6= 1 and �2 = 1. Recall that q = q0. Our integral is the sum of

2
X

0��1�n1
0��2�n2

(�q)n1��1qn2��2
�
�(�1 = n1)+�(�1 < n1)2�

q + 1

2q

��
1+

X
1�m�min(�1;�2)

(1�q�2)(�q)3m
�

and

2
X

0���n
(�q)n1��qn2��

�
�(�1 = n1) +

q + 1

2q
�(�1 < n1)

� X
�<m����

2(�q)m+2� ;

where n = min(n1; n2). The �rst sum can also be written as

2
X

0�m�n
(�1)m#L1

m

� X
m��2�n2

qn2��2
�� X

�1=n1

1 + (1 + q�1)
X

m��1<n1
(�q)n1��1

�
:

Here [: : : ] = (�q)n1�m. Hence we get

= 2(q � 1)�1(�q)n1 [qn2+1 � 1 + (q2 � 1)q�2
X

1�m�n
(qn2+1qm � q2m)]

= 2(q � 1)�1(�q)n1 [qn+n2(q + 1)� q2n � qn2 ]:

To compute the second sum, note that m > �1 if and only if m > �2, and then �1 = �2 is

denoted by �, and there are two possibilities. If n1 � n2 then � = 2n1, and there is no m with

n1 < m � � � n1; hence � < n = n1 in this case. If n2 < n1 then � = 1 + 2n2 and n = n2,

and the m with n2 < m � 1 + n2 is m = 1 + n2. Hence the second sum takes the form

�2(q + 1)qn1+n2
X

0��<n

(�q)��� � (�q)�
�q � 1

(�1)n1�� + 2�(n2 < n1)q
n1+n2(q + 1)qn2(�1)n1+1
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= 2(�1)n1qn1+n2
�
(�q)� 1� q�n

1� q�1
� qn � 1

q � 1

�
+ 2�(n2 < n1)(q + 1)qn1+2n2(�1)n1+1

= 2(�1)n1qn1+n2(qn � 1)((�q)�q1�n � 1) + 2�(n2 < n1)(q + 1)qn1+2n2(�1)n1+1:

We deal separately with the two cases. When n2 < n1; � = 1 + 2n2 and n = n2, thus our

integral is the sum of 2(q� 1)�1(�q)n1q2n2 [q� q�n2 ] and �2(q� 1)�1(�q)n1q2n2 [qn2+2� q2+
1� q�n2 + q2 � 1]. Namely it is �2(q � 1)�1(�q)n1q1+2n2 [qn2+1 � 1].

When n1 � n2; � = 2n1(= N); n = n1; � + 1 � n = 1 + n1, the integral is equal to

2(q � 1)�1(�q)n1 [qn1+n2(q + 1) � q2n1 � qn2 + qn2(qn1 � 1)(q1+n1 � 1)]. This is equal to

2(q � 1)�1(�q)3n1 [q1+n2 � 1].

This �-�-orbital integral relates to the orbital integral of 1KC+
on the twisted endoscopic

group of type (3) of Section I.F as asserted in the theorem in view of the observations stated

prior to the statement of the theorem.. �

K. Endoscopy for GSp(2), type (II).

In the case of tori of type (II) the isomorphism T0 ! TH yields a map of F -rational points

T0 ! TH , determined by � :
�
(
t1 0

0 �t1
); (

t2 0

0 �t2
)
�
7! diag(x1 = t1t2; �x1 = t1�t2; ��x1 = �t1 �

t2; �x1 = �t1 � �t2). Here t1 2 E�
1 ; E1 = F (

p
D) = E� , and t2 2 E�

2 ; E2 = F (
p
AD) = E�� .

As in the discussion of the stable orbital integrals of elements of type (II), we write

t1 = �1 + �1
p
D; t2 = �2 + �2

p
DA; x1 = a1 + b1

p
D 2 E�(a1; b1 2 E�

3 ; E3 = F (
p
A) = E�);

and we recall that the numbersN = ord3(b1), X = ord3(a1��a1), � = ordF (�1��2), are equal

to min(n1; n2), 1+n1+n2; 1+2N , when D 2 ���R�, and to �; 1+2n1+2n2; min(2n1; 1+2n2),

when D 2 R�.
A set of representatives for the conjugacy classes within the stable conjugacy class de-

termined by (x1; �x1; ��x1; �x1) is given by x(R) = (
a1 b1DR

b1R
�1 a1

), where R ranges over

E�
3 =NE=E3

E�. The unstable orbital integral is the di�erence of the orbital integral at x(1)

(with positive sign) and the orbital integral at x(R); R 6= 1 (in E�
3 =NE=E3

E�). Recall also that
the norm map NE3=F , followed by the inclusion, induces an isomorphism E�

3 =NE=E3
E� !

NE3=FE
�
3 =NE=FE

� ,! F�=NE1=FE
�
1 (further inducing the isomorphism R�

3 =NE=E3
R�
E !

NE3=FR
�
3 =NE=FR

�
E ~!R�=NE1=FR

�
1 when E=E3 is rami�ed).

1. Theorem. Let E be the compositum of the quadratic extensions (E1; E2; E3) of F , and

x = h�1(x1; �x1; ��x1; �x1)h a regular element of type (II) in GSp(2; F ) (thus x1�x1 2 E�
1 ).

Introduce t1 2 E�
1 ; t2 2 E�

2 , by t1=�t1 = x1=��x1; t2=�t2 = x1=�x1. Suppose that t1 2
R�
1 ; t2 2 R�

2 , are units. Let �E1=F be the non trivial character on F�=NE1=FE
�
1 . Then

�E1=F

�
(x1 � �x1)(�x1 � ��x1)=D

�
j1� x1=�x1jj1� �x1=��x1j�H;us1K

(x)

= [RTH : �(RT0)]�
C0

1K

�
(
t1 0

0 �t1
); (

t2 0

0 �t2
)
�
:
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The measures are related as in the case of tori of type (I).

Proof. Let us �rst clarify that the absolute value j � j = j � jF is an extension of the absolute

value on F� normalized as usual by j���F j = q�1
0 ; q0 = #(R=���FR); R = RF . We write q for

q3 = qE3
, and note that

j���3j = j���3�(���3)j1=2 =
�
j���F j1=2 = q

�1=2
0 (E3=F rami�ed )

j���F j = q�1
0 (E3=F unrami�ed )

�
= q�1=2:

As in the case of type (I) above, to compute the right side in the theorem, we use the formula for

the orbital integral on GL(2; F ). We then compute the factors which appear in that formula.

2. Lemma. The unordered pair fj(t1 � �t1)=
p
Dj�1; j(t2 � �t2)=

p
D)j�1g is equal to

fqN=2; q(X�N)=2jDjg.

Proof. The product of the two terms is equal to qX=2jDj, since

q�X=2 = ja1 � �a1j = jx1 + �x1 � �x1 � ��x1j = jt1t2 + �t1�t2 � t1�t2 � t2�t1j
= j(t1 � �t1)(t2 � �t2)j:

The last two factors are given by

jt2 � �t2j = jx1 � �x1j = j(a1 � �a1)
2 � (b1 � �b1)

2Dj1=2

and

jt1 � �t1j = jx1 � ��x1j = j(a1 � �a1)
2 � (b1 + �b1)

2Dj1=2:

If jb1 � �b1j > ja1 � �a1j for both choices of sign, then j(ti � �ti)=
p
Dj = jb1 � �b1j (for the

right choice of sign), and one of jb1 + �b1j or jb1 � �b1j is equal to jb1j = q�N=2, as required.
If there is a choice of sign such that jb1 � �b1j � ja1 � �a1j, then jb1 � �b1j = 1 = jDj; N = 0,

and j(ti � �ti)=
p
Dj = 1 for some i, and the lemma follows in this case too. �

Remark. If D 2 R�, namely E1=F is unrami�ed, since t1 2 E�
1 we have jt1 � �t1j 2 qZ0 = qZ.

Indeed q = q0 as E3=F is rami�ed. In this case X is odd, hence j(t1� �t1)
p
Dj�1 is qN=2 if N

is even, and q(X�N)=2 if N is odd.

3. Corollary. The integral �C0

1K

�
(
t1 0

0 �t1
); (

t2 0

0 �t2
)
�
is the product of

1R�1
(t1)1R�2

(t2)(q0 � 1)�2

with �
(q + 1)qN=2 � 2)(q � q(X�N�1)=2 � 1

�
; if jDj = 1; N is even;�

(q + 1)q(X�N)=2 � 2)(q � q(N�1)=2 � 1
�
; if D 2 R�; N is odd;

(q(1+N)=2 � 1)(q(X�N)=2 � 1); if D 2 ���R� (jDj = q�1=2):
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Proof. Note that when jDj = 1; A = ��� and jAj = q�1=2, hence j(t2 � �t2)=
p
ADj�1 is

q(X�N�1)=2 when N is even, and q(N�1)=2 when N is odd. �

Remark. The transfer factor is the product of j1 � x1=�x1jj1 � �x1=��x1j = jb�bDj and
�E1=F

�
(x1��x1)(�x1���x1)=D

�
= �E1=F (b�b) (since jx1j = 1 and the residual characteristic

is odd).

We now turn to the computation of the unstable orbital integral in the case where E=E3

is rami�ed. As in the computation of the stable integral, we have a sum over � 2 f1; ug,
where u 2 R�

3 �R�2
3 . While in the stable case both terms indexed by 1 and u appeared with

coe�cient 1, in the unstable case the term associated with � = 1 has coe�cient 1, while that

associated with � = u has coe�cient �1. Only in the range � < m � X � � there appears a

di�erence between these two terms. Namely in this range we have the condition � 2 BR�2
3 ,

and so only one of f1; ug makes a contribution. For m with m � � both of f1; ug contribute
and cancel each other. Thus the unstable orbital integral is given by the sum

�E1=F (B�B)2q
N

X
0���N

X
�<m�X��

qm0 :

The double sum here is

(q0 � 1)�1
X

0���N
(qX+1��

0 � q�+1
0 ) =

q0

(q0 � 1)2
(qX�N0 � 1)(qN+1

0 � 1):

This is the product of q0 = q1=2 and the orbital integral �C0

1K
of the Corollary above. Since

b = B���N3 , jb�bDj = q�Nq�1
0 , in fact ���3 = ���F and ���F = NE1=F���1, as ���1 =

p
D and D = ����F .

Hence the transfer factor is �E1=F (B�B)q
�Nq�1

0 , and the product of the transfer factor with

the unstable integral is indeed the integral �C0

1K
, as asserted.

Finally we consider the case where E=E3 is unrami�ed, thus D 2 R�. Again we have a sum
over � in E�

3 =NE=E3
E�, parametrizing the two integrals which make the stable and unstable

orbital integrals. A set of representatives for E�
3 =NE=E3

E� is given by f1;���3g, and as usual

we write � = ���
�
3, thus � 2 f0; 1g. The orbital integral is a sum over �(0 � � � N) such that

N � � � � is even. In the stable case, both sums were added and thus combined to a single

sum over �(0 � � � N). Now in the unstable case, we need to multiply the contribution by

(�1)� = (�1)N�� before adding up the sum. The unstable integral is then

X
0���N

X
0�m0=2m�X�1

(�q)N��
�
�(� = N) + (1 + q�1)�(� < N)

�
�
q3m

0=2�(0 � m0 � �) + q�+m
0=2�(� < m0 � X � 1� �; � even)

�
:

This is the sum of two terms. The �rst is

X
0���N

X
0�m0��

=
X

0�m0�N
q3m

0=2(
X
�=N

1 + (1 + q�1)
X

m0��<N
(�q)N��):
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The inner (: : : ) is (�q)N�m0
, so the sum is (�q)N

P
0�m�N=2

qm = (�q)N (q� 1)�1(q1+[N=2]�1),

where [X] is the biggest integer bounded by the real number X.

Writing �0 = 2� for the even � when � < m0 � X � 1� �, the second term isX
0��0<N

X
�0<m0�X�1��0

q�
0+m0=2(�q)N��0(1 + q�1) + �(N is even)

X
N<m0�X�1�N

qN+m0=2

=
X

0��<N=2

X
�<m� 1

2
(X�1)��

(1 + q�1)(�1)NqN+m + �(2jN)
X

N=2<m�1
2
(X�1)� 1

2
N

qN+m

=
�
1� �(2jN)

�(�q)N (q + 1)

(q � 1)2
(q

1
2
(X�N) � 1)(q

1
2
(N+1) � 1)

+ �(2jN)(q � 1)�2(�q)N
�
(q + 1)q

1
2
(X+1) � 2q

1
2
(X+1�N) � (q2 + 1)qN=2 + q + 1

�
;

where the last equality follows at once from the corresponding computation in the stable case.

The sum of these two terms, when N is odd, is

(�q)N
(q � 1)2

(q
1
2
(N+1) � 1)

�
(q + 1)q

1
2
(X�N) � 2

�
;

while when N is even it is

(�q)N
(q � 1)2

�
(q + 1)qN=2 � 2

�
(q(X�N+1)=2 � 1):

The transfer factor is the product of jDj = 1; jb�bj = q�N (as j���3j = q�1=2), and �E1=F (b�b) =

�E1=F (���
N ) = (�1)N , since ���3 =

p
A;A = ����, and so NE3=F���3 = ���. In view of the Corollary

above, our comparison is complete for regular elements of type (II), once we prove:

4. Lemma. The index [RTH : �(RT0)] is 1 if E1=F is unrami�ed, and 2 if E1=F is rami�ed.

Proof. Recall that �
�
(t1; �t1); (t2; �t2)

�
= (x1 = t1t2; �x1 = t1�t2; ��x1 = �t1 � t2; �x1 =

�t1�t2), with t1 2 E1 = F (
p
D) = E� , and t2 2 E2 = F (

p
AD) = E�� . Note that x1�x1 =

�(x1�x1) implies that (x1=��x1)�(x1=��x1) = 1, hence x1=��x1 = t1=�t1 has a solution in

t1 2 E�
1 , and our index computation is the question whether there exists a solution t1 in

R�
1 . Indeed, if such a unit solution t1 is found, we can de�ne the unit t2 = x1=t1, which

satis�es ��(x1=t1) = ��x1=�t1 = x1=t1 = t2 2 E�
2 . In the proof of the analogous Lemma in

the case of elements of type (I) we have seen that t1 2 R�
1 exists if E1=F is unrami�ed, and

that ft1=�t1; t1 2 R�
1 g has index 2 in ft1=�t1; t1 2 E�

1 g when E1=F is rami�ed. The lemma

follows, as does the Theorem, transferring the orbital integrals of 1K on H = GSp(2; F ) to its

endoscopic group C0 = GL(2; F )�GL(2; F )=f(z; z�1); z 2 F�g. �

L. Comparison in case (III).

In this case the norm map goes in the opposite direction than in case (II), and we shall

reduce the computations here to those of case (II). Let us recall the notations. The three
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quadratic extensions of F are E1 = F (
p
D), E2 = F (

p
AD); E3 = F (

p
A); E2=F is rami�ed,

A and D are integral of minimal order, E = E3(
p
D) has Galois group Z=2� Z=2 generated

by �; � such that E3 = Eh�i; E1 = Eh�i; E2 = Eh��i. The two �-conjugacy classes in the stable
�-conjugacy class of a strongly �-regular element of type (III) are represented by (

a bD���

����1b a
); �

ranges over a set of representatives for E�
3 =NE=E3

E�, including 1 and an element in R3 of

minimal order.

Our element is moreover topologically unipotent, and it commutes with �, thus these rep-

resentatives lie in Sp(2; F ), and they are conjugate by �-invariant elements to the diagonal

element t� = (t; �t; ��t; �t; e) in the diagonal torus T �. For our integrals to be non zero, e must
lie in R�, and then the integrals are independent of e, so we omit e from the notations. Now t

lies in E�, and we write it as t = a+ b
p
D, where a = �1+ �2

p
A; b = �1+ �2

p
A;�i; �i 2 F .

Then �t = �a + �b
p
D; �t = a � b

p
D, and �a = �1 � �2

p
A. The norm map maps t� to

Nt� = (x1 = et�t; x2 = et��t; �x2 = e�t�t; �x1 = e�t��t; e2).

Note that t� lies in Sp(2), thus t�t�t��t = 1, and we omit e from the notations. Then we

have

x1 = t�t = a�a+ b�bD + (a�b+ b�a)
p
D = A1 + B1

p
D;

and

x2 = t��t = a�a� b�bD + (
b�a� a�bp

A
)
p
AD = A2 +B2

p
AD;

where Ai; Bi lie in F . Further, 1 = x1�x1 = A2
1�B2

1D, and 1 = x2�x2 = A2
2�B2

2AD. Since t

is topologically unipotent, so is a, and jbDj < 1, hence �1 is topologically unipotent, jA�2j < 1

and jbDj < 1.

We proceed to relate the numbers associated with the norm map.

1. Lemma. If Ni = ordF Bi(i = 1; 2); n = ord3 b; � = ord3(a � �a) and X = ordF (A1 �
A2), then n = 1

e
min(2N1; 2N2 + ordA); � = 1

e
(ordF A + 2ordF D + 2N1 + 2N2) =

1
e
(1 +

ordF D + 2N1 + 2N2); ordF �i = Ni(i = 1; 2), and X = ordF D + en. Here e = e(E=E3) =

e(E1=F ); ord = ordF ; ord3 = ordE3
.

Proof. Note that n = ord3 b = ord3(�1 + �2
p
A) = 1

e
min(2 ordF �1; 2 ordF �2 + ordF A), since

ord3(���F ) = ord3(���
2=e
3 ) = 2=e so that ord3(x) = 2

e
ordF (x) for x 2 F�. Further we have

� = ord3(a� �a) = ord3(�2

p
A) = 1

e
(ordF A+2ordF �2), and noting that A1 +A2 = 2a�a is

a unit, also

X = ordF (A1 �A2) = ordF (A
2
1 � A2

2) = ordF (B
2
1D �B2

2AD)

= ordF D +min(2N1; ordF A+ 2N2) = ordF (Db�b) = ordF D + e ord3(b)

= ordF D +min(2 ordF �1; ordF A+ 2ordF �2) = ordF D + en:

Hence fordF �1; ordF �2g = fN1; N2g, with ordF �i = Ni(i = 1; 2) if ordF A = 1. In fact,

if j�2j = jB1j = j�1�1 � �2�2Aj, since jA�2j < 1 = j�ij, we must have j�1j = j�2j, hence
jBij = j�ij also for A 2 R�.

Now ( a bD

b a
) lies in SL(2; E3), hence

1 = a2 � b2D = �2
1 + �2

2A+ 2�1�2

p
A� (�21 + �22A+ 2�1�2

p
A)D
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= �2
1 + �2

2A� (�21 + �22A)D + 2(�1�2 � �1�2D)
p
A

implies that �2 = �1�2D=�1. Since �1 is a unit, the expression for � follows. �

The computation of the stable �-orbital integral for an element of type (III) follows closely

the computation of the stable orbital integral of the norm of an element of type (II). In both

cases the integral is a sum �1K (
a bD

b a
) +�1K (

a bD�

b=� a
) over � 2 E�

3 =NE=E3
E�, the di�erence

being that in case (II) the integration is performed over GSp(2; F ), while in case (III) the

integration is over Sp(2; F ). However, the result in case (III) is exactly the same as in case

(II), since TSnSp(2; F ) = TnT � Sp(2; F ) is TnGSp(2; F ) where TS = T \ Sp(2; F ). Indeed,

detT = fa�a�a��a; a 2 E�g = NE=FE
� = F�2:

2. Lemma. The stable �-orbital integral of a strongly �-regular topologically unipotent �-�xed

element of GL(4; F )� R� is equal to

2q2n+1
0 � 1� q�n�1

0

1� q�1
0

� q
�
0

q0 � 1
� qn+1

0

q30 � 1
� 1 + q�n�1

0

q30 � 1

�

when E=E3 is rami�ed, while when E=E3 is unrami�ed the integral is equal to

q + 1

(q � 1)2
qn[�(n is even)(q

�+1
2 � 2

q + 1
q
�+1�n

2 +
q � 1

q + 1
q
n
2 )

+ (q
�+1
2 � q

��n
2 )�(n is odd)� 2

q � 1

q3([n=2]+1) � 1

q3 � 1
:

Proof. When E=E3 is rami�ed, the computation is immediately adapted from the case of the

norm of an element of type (II), and we obtain the expression (��) of Section I, except that

in our notations (N;X) have to be replaced by (n; �). Similarly, when E=E3 is unrami�ed,

the expression of the lemma appears in the part dealing with the computation of the stable

orbital integral of the norm of an element of type (II), in Section J, except that our current

notations are (n; �) instead of (N;X). �

Similarly, the computation of the stable orbital integral of the norm of an element of type

(III) is immediately reduced to the computation of the stable �-orbital integral of an element

of type (II). Of course, the �-integral ranges over Sp(2; F ), and the stable �-integral is a sum

over 4 �-conjugacy classes.

The orbital integral of the norm of an element of type (III) is already stable, and the

integration ranges over GSp(2; F ). In fact the orbital integral over GSp(2; F ) is a stable

orbital integral over Sp(2; F ), and each of the conjugacy classes in the stable orbit in Sp(2; F )

is represented by conjugation within GSp(2; F ). Moreover, TSnSp(2; F ) = TnT � Sp(2; F ),
and [GSp(2; F ) : T � Sp(2; F )] = [F� : F�2] = 4, since the factors of similitude of t 2 T

with eigenvalues (a; b; �b; �a); a 2 E�
1 ; b 2 E�

2 ; a�a = b�b, are in NE1=FE
�
1 \ NE2=FE

�
2 =

NE=FE
� = F�2, while those of GSp(2; F ) are in F�. Consequently, we obtain
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3. Lemma. The orbital integral of the norm of a strongly �-regular topologically unipotent

element of type (III) is equal to

4qN+N 0+2
0 (q0 � 1)�2(1� q�N�1

0 )
�
qX0 � q�N

0�1
0

1 + q1+n0 + q2+2N
0

1 + q0 + q20

�

where N = min(N1; N2); N
0 = max(N1; N2), in the case where E=E3 is rami�ed, while when

E=E3 is unrami�ed, the integral is

2(q � 1)�2[(q + 1)q2+N1+3N2 � (q + 1)q1+N1+2N2 � 2
q � 1

q3 � 1
(q3+3N2 � 1)]

if N2 < N1, while if N1 � N2 it is

2(q � 1)�2[(q + 1)q2+3N1+N2 � 2q1+2N1+N2 +
q � 1

q3 � 1

�
2� (q3 + 1)q3N1

�
]:

Proof. When E=E3 is rami�ed, our expression is obtained from (�) of Section I on replacing

n1 � n2 there by N � N 0 here, and � by X. When E=E3 is unrami�ed, our expressions are

obtained from (�) and (��) of Section J, on replacing n1; n2 there by N1; N2 here. �

To compare the stable �-orbital integral and the stable orbital integral when e = 2, note

that ordF A = 0 and so � = 1 + N1 + N2 and n = min(N1; N2) = N , and X = 1 + 2n. Put

n0 = max(N1; N2). The �-expression is then

2q2n+2
0 (q0 � 1)�1(1� q�n�1

0 )(q30 � 1)�1(
q30 � 1

q0 � 1
� q1+n+n00 � qn+1

0 � 1� q�n�1
0 );

and the integral of the norm is twice that.

When e = 1, ordF A = 1, we have X = n = min(2N1; 1 + 2N2) and � = 1 + 2N1 + 2N2.

When N2 < N1 we have that X = n = 1 + 2N2 is odd, and the �-expression is

q + 1

(q � 1)2
q1+2N2(q1+N1+N2 � qN1)� 2

q � 1

q3(N2+1) � 1

q3 � 1
;

while the integral at the norm is twice that. When N1 � N2; X = n = 2N1, the �-integral is

q + 1

(q � 1)2
q2N1

�
q1+N1+N2 � 2

q + 1
q1+N2 +

q � 1

q + 1
qN1
�
� 2

q � 1

q3N1+3 � 1

q3 � 1
;

while the integral of the norm is twice this expression.

We are then done once we show that in the case of type (III), the measure factor is 1
2
.
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4. Lemma. For tori T of type (III), the measure factor [T ��(R) : (1 + �)T �(R)]=[T �H(R) :
N
�
T �(R)

�
] is 1

2
.

Proof. We �rst compute the index in T �H(R) = f(x; y; �y; �x);x 2 R�
1 ; y 2 R�

2 ; x�x = y�yg of
the image fN(a; �a; ��a; �a) = (a�a; a��a; �a�a; �a��a); a 2 R�

Eg of T �(R) under N . Thus

we need to solve in a 2 R�
E the equation x=�y = a=�a. Since (x=�y)�(x=�y) = 1, there is a

solution a in E�, and as usual we note that the index in fa=�a; a 2 E�g of fa=�a; a 2 R�
Eg

is the rami�cation index e(E=E3), where E3 = E�.

Given a solution a 2 R�
E , put x

0 = x=a�a; y0 = y=a��a. Then x0 = �y0 2 R�
1 \ R�

2 = R�,
and it remains to �nd b 2 R�

E such that x0(2 R�) is equal to N(b; �b; ��b; �b), thus x0 = b�b =

b��b = �b�b = �b��b, or �b = ��b = �b = b. Hence only the x0 in R�2 are obtained by the

norm, and we pick the factor [R� : R�2] in the index of the image of the norm in T �H(R).
Thus [T �H(R) : N

�
T �(R)

�
] = 2e(E=E3).

The index in T ��(R) = f(x; �x; ��x; �x);x 2 R�
E ; x�x = 1g of the image (1 + �)T �(R) =

f(1 + �)(a; �a; ��a; �a) = (a=�a; �a=��a; ��a=�a; �a=a); a 2 R�
Eg of T �(R) under (1 + �) is

computed next. Since x�x = 1, there is a in E� with x = a=�a. We can solve in a 2 R�
E

only up to the index e(E=E3). Then the quotient e(E=E3)=2e(E=E3) is 1=2, and the lemma

follows. �

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The explicit computation of the �-orbital integrals will now be used to compute the un-

stable, �-�-orbital integrals, at a strongly �-regular topologically �-unipotent element t� =

(t; �t; ��t; �t) of type (III). The character � is the 6= 1 character on the group E�
3 =NE=E3

E�

of �-conjugacy classes within the stable �-conjugacy class of t�. The associated endoscopic

group is C =
�
GL(2) � GL(2)

�0
. The norm NCt

� is
�
(
t�t 0

0 �(t�t)
); ( t��t 0

0 �t�t
)
�
. Recall that

x1 = t�t = A1+B1

p
D lies in E�

1 , and x2 = t��t = A2+B2

p
AD lies in E�

2 . The Jacobian is

�G;C(t
�) = j(t� �t)�(t� �t)jF=jt�tjF = jb�bDjF = jbj3jDjF = q�njDjF

as t = a+b
p
D; �t = a�b

p
D;n = ord3(b), thus it is q

�n
0 when jDjF = 1 (as then q = q0), and

q�2n�1
0 when jDjF = q�1

0 (as then q = q20 ; recall that E3 = F (
p
A) = E� and E1 = F (

p
D) =

E� ).

The orbital integral of 1KC
on C at NCt

� is the product of two integrals. If Ni = ordBi,

Lemma I.I.2 asserts that one of the factors, the orbital integral of 1K on GL(2; F ), at the class

with eigenvalues x2 and �x2, as E2=F is rami�ed, is (qN2+1
0 � 1)=(q0� 1). The other factor is

such an integral at the class with eigenvalues x1 and �x1 in E1. Then it is (qN1+1
0 �1)=(q0�1)

if E1=F is rami�ed, and
�
(q0 + 1)qN1

0 � 2)=(q0 � 1) if E1=F is unrami�ed.

Theorem. Let t� be a topologically �-unipotent strongly �-regular element of type (III). Then

�
�
(t� �t)=2

p
D
�
�G;C(t

�)��1K (t
��) = �C1KC

(NCt
�):

Proof. Consider �rst the case where E=E3 is rami�ed. Then E1=F is rami�ed, ord(D) = 1,

and since E=E3 is rami�ed, NE=E3
E� = R�2

3 ���Z, thus � ranges over R�
3 =R

�2
3 , and the unstable
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�-orbital integral of type (III), which is described also as the unstable orbital integral of type

(II), is a sum over � of �(�), as well as sums over �(0 � � � n) and m(0 � m � �) as in the

stable case. The sum over m(0 � m � �) is zero since the only dependence on � is via �(�),

and
P

� �(�) = 0. On the range m(� < m � �� �), we have the requirement u 2 BR�2
3 , thus

�(�) = �(B) = �(b) = �
�
(t� �t)=2

p
D
�
there (as �(���3) = 1). The �-�-integral is then

�(B)
X

0���n
qn��

X
�<m����

2qm0 q
�

= 2�(B)qnq0(q0 � 1)�1
X

0���n
(q
���
0 � q�0 )

= 2�(B)qnq0(q0 � 1)�1
�
q
�+1
0 (1� q�n�1

0 )=(1� q�1
0 )� (qn+1

0 � 1)=(q0 � 1)
�

= 2�(B)q2n+1
0 (q0 � 1)�2(q

��n
0 � 1)(qn+1

0 � 1):

Since n = min(N1; N2), and � = 1 + N1 + N2, the set fn + 1; � � ng is fN1 + 1; N2 + 1g,
and the theorem follows when E=E3 is rami�ed (the factor 2 is due to choice of transported

measure).

Next we consider the case where E=E3 is unrami�ed, in which case q = q0 and � ranges

over a set f1;���3g of representatives for E�
3 =NE=E3

E� = R�
3 ���

Z
3=R

�
3 ���

2Z
3 . The unstable, or �-�-

integral, contains a factor (�1)� = (�1)j = (�1)n�� . Otherwise it is the same as described in

the proof of Lemma J.2, namely
P

0���n
P

0�m0=2m���1(�q)n���. As there, we write this

as a sum of two terms. The �rst isX
0���n

X
0�m0��

=
X

0�m0�n
q3m

0=2
�X
�=n

1 + (1 + q�1)
X

m0��<n
(�q)n��

�
=

X
0�m�n=2

q3m
�
1 + (1 + q�1)

X
0<��n�m0

(�q)�
�
=

X
0�m�n=2

q3m(�q)n�m0

= (�q)n
X

0�m�n=2
qm = (�q)n(q[n=2]+1 � 1)=(q � 1):

The second is the product of (�1)j = (�1)n��0 = (�1)n, as �0 is even, and the second term

in the proof of Lemma J.2, namely it is

(�q)n
q � 1

�
�(2jn)[q + 1

q � 1
(q(�+1�n)=2 � 1)(qn=2 � 1) + q(�+1�n)=2 � qn=2+1]

+
�
1� �(2jn)

�
[
q + 1

q � 1
(q(��n)=2 � 1)(q(n+1)=2 � 1)]

	
:

Recall that � = 1+2N1+2N2, and n = min(2N1; 2N2+1), as e = e(E=E3) = 1, and ordA = 1.

Then n is even if n = 2N1, and the sum is qn=(q � 1) times

qN1+1 � 1 +
q + 1

q � 1
(q1+N2 � 1)(qN1 � 1) + q1+N2 � q1+N1

=
�
(q + 1)qN1 � 2

�
(qN2+1 � 1)=(q � 1);
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as required. When n is odd, then n = 2N2 + 1, and we get the product of (�q)n=(q � 1) and

qN2+1 � 1 +
q + 1

q � 1
(qN1 � 1)(qN2+1 � 1):

This is the same expression as for even n, so that we are done. �

M. Comparison in case (IV).

Strongly �-regular elements of type (IV) lie in the stable �-orbits of elements t� =
(t; �t; �3t; �2t; e) in the diagonal F -torus T �. This torus is isomorphic to E�, where E is an

extension of F of degree 4, which is not the compositum of the quadratic extensions of F .

To study the orbital integrals of 1K we may and do as usual assume that e = 1, and omit e

from the notations. Recall that E is a quadratic extension E3(
p
D) = F (

p
D) of a quadratic

extension E3 = F (
p
A) of F , which can be described as follows.

The element A is either a uniformizer ��� in R � F or a unit " 2 R� �R�2, taken to be �1
if �1 =2 R�2. The element D 2 R3 �R2

3 can be described as D = �+ �
p
A with � = 0; � = 1

if A = ���; � = 0; � = 1 or ���, if �1 2 R�2 and A 2 R� � R�2; (�; �) 2 R�2 or 2 (���R�)2 if

A = �1 2 R� � R�2.

The Galois closure ~E of E=F is E unless A = ��� and �1 =2 R�2, in which case ~E=E is

quadratic and Gal( ~E=F ) = D4. The �eld embeddings E ,! ~E which �x F are generated by

�; �(
p
D) =

p
�D; �2(

p
D) = �

p
D; �
p
A = �

p
A. Writing t = a+ b

p
D, with a = a1+a2

p
A

and b = b1 + b2
p
A, we have �a = a1 � a2

p
A and �b = b1 � b2

p
A.

1. Lemma. The parameters � = ord3(a��a) and n = ord3(b) associated with the strongly �-

regular topologically unipotent elements of type (IV) are equal to the corresponding parameters

X and N associated with the norm Nt of t. Further, � � 2n+ ord3D.

Proof. The parameter � = ord3(a � �a) = ord3(a2
p
A) is ord3(a2) if A 2 R�

3 , and 1 +

ord3(a2) = 1 + 2 ordF (a2) if A = ���F = ���23 (then ord3 = 2ordF , we usually omit the sub-

script F ). The parameter n = ord3(b) = ord3(b1 + b2
p
A) = min

�
ord3(b1); ord3(b2

p
A)
�
is

min
�
ordF (b1); ordF (b2)

�
if A 2 R�, and min

�
2 ordF (b1); 1 + 2 ordF (b2)

�
if A = ���F .

The norm Nt� of t� is (we put e = 1 and omit it from the notations) equal to (x =

t�t; t�3t; �t�2t; �2t�3t). We claim that the element Nt� is of type (IV), associated with an

extension E0 of degree 4 of F . This E0 is Galois and it coincides with E, unless A = ��� and

�1 =2 R�2. In this last case, E0 = E0
3(
p
D0) = F (

p
D0) and E0

3 = F (
p
A0), where A0 = �4���

and D0 =
p
A0, and E0=F is not Galois.

To verify this, put � =
p
�D=
p
D, and note that

x = t�t = (a+ b
p
D)(�a+�b

p
�D) = (a�a+ �b�bD)+ (b�a+ �a�b)

p
D = A�+B�(1+ �)

p
D

de�nes elements A� and B�. These A� and B� lie in E0
3 when A = ��� and �1 =2 R�2, since

then � =
p
�1; 2�D =

p
�4���; (1� �)=(1 + �) = �� = �

p
�1, and

B� = (b�a+ �a�b)=(1 + �) = (a1b1 � a2b2A) + (a1b2 � a2b1)
1� �

1 + �

p
A:
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Further x 2 E0, since (1 + �)2D = 2�D =
p
�4���.

In all other cases we de�ne E0
3 to be E3 and E0 to be E. In fact, if A = ��� and �1 2 R�2,

or A 2 R� and �1 2 R�2, we have that � =
p
�1 2 R�.

In the remaining case A = �1 2 R� � R�2, and D (or D=���) lies in R�
3 � R�2

3 , hence so

does �D (or �D=���), and so �D=D lies in R�2
3 , and � lies in R�

3 . Then E3 = F (�D) and

E = E3

�
(1 + �)

p
D
�
.

When computing the parameters X;N associated with A�; B�, the index 3 refers to E0
3.

Let us now show that n = N , namely that

jbj3 = jb1 + b2
p
Aj3 is j(a1b1 � a2b2A) + (a1b2 � a2b1)

1� �

1 + �

p
Aj3 = jB�j3:

Since t = a + b
p
D is topologically unipotent, we have that a = a1 + a2

p
A is topologically

unipotent, and jbj < 1 if jDj = 1. Hence a1 is topologically unipotent, and ja2j < 1 if

jAj = 1. Suppose that jAj = 1. If jb1j � jb2j then jbj = jb2j and jB�j = jb2j (of course,
j1� �j = j1 + �j), and if jb1j > jb2j then jbj = jb1j = jB�j. Suppose that jAj = j���j. If jb1j � jb2j
then jbj = jb1j = jB�j, and if jb1j < jb2j then jbj = jb2

p
Aj = jB�j.

Finally, let us show that � = X, namely that ja��aj3 = ja2
p
Aj3 is equal to jA���A�j3 =

jb�b�Dj3. For that note that the element t = a+ b
p
D of type (IV) is represented by a matrix

( a bD
b a

) in GL(2; E3)
0, whose determinant lies in F�. Thus t�2t lies in F�. Since

t�2t = a2 � b2D = a21 + a22A+ 2a1a2
p
A� (b21 + b22A+ 2b1b2

p
A)D;

and D = �(� + �
p
A) with � = 1 or ���, it follows that the coe�cient of

p
A is zero, hence

ja2j = j2a1a2j equalsj�j � j(b21 + b22A)� + 2b1b2�j.
There are three cases to be considered. If A = ��� then � = 0 and � = 1;� = 1, so

jb21 + b22���j = jb21 � b22���j = jb�bj implies that ja2
p
Aj = jb�b�Dj. If A 2 R� and �1 2 R�2,

then D = �
p
A, and j�(b21 + b22A)j = j�(b21 � b22A)j = j�Db�bj. If A = �1 2 R� � R�2,

then D = �(� + �
p
�1) with �; � 2 R�2, and we claim that j(b21 � b22)� + 2b1b2�j is equal

to jb�bj = jb21 + b22j = max(jb21j; jb22j). This is obvious when jb1j 6= jb2j or when jb1j = jb2j and
jb21 � b22j < jb1j2.

Suppose that jb1j = jb2j = 1, put x = b1=b2 and  = �=�. To show: jx2+2x�1j is 1. This
quantity can be expressed as j(x+)2�2�1j, or j(�x+�)2��2��2j, or jD1�D1�(�+�x)2j,
where D1 = �+ �

p
�1. Now D1 2 R�

3 � R�2
3 , and NE3=FD1 =2 R�2 (otherwise NE3=FR

�
3 =

R�2, but E3=F is unrami�ed so NE3=FR
�
3 = R�). Hence jD1�D1 � y2j = 1 for any y 2 R,

and we are done.

The �nal claim of the lemma follows from the fact that

a2 � b2D = t�2t = �(t�2t) = �a2 � �b2�D:

This implies that a2��a2 = �b2�D�b2D = D(�2�b2�b2). Since t = a+b
p
D is topologically

unipotent, ja+ �aj = 1. Hence ja� �aj � jDjjbj2, namely � � 2n+ ord3D. �
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We proceed to compute the orbital integral of the function 1K at a regular absolutely

unipotent element u of GSp(2; F ). [This element is the norm of an absolutely unipotent

strongly �-regular element t of GL(4; F ) � F�, the computation of whose stable �-orbital

integral { which is the analogous case of u�, � 2 E�
3 =NE=E3

E�, in Sp(2; F ) { will be reduced

to that of u later below, but we also deal with it parenthetically now].

Note that the stable orbit of u reduces to a single orbit. The element u can be presented as

( a bD
b a

) = h�1(t; �t; �3t; �2t)h; t 2 F (
p
D) with t�2t = �t�3t; t = a+b

p
D, and a = (

a1 a2=A

a2 a1
) if

a = a1+a2=
p
A lies inE3 = F (

p
A) (similarly for b = b1+b2=

p
A; ai; bi 2 F ). IfD = �+�=

p
A,

we put D = (
� �=A

� �
). [u� = (

a bD���

b����1 a
) with t�2t = 1]. As in the study of the case (II), the

centralizer T 0 of u in GSp(2; F ) lies in CA = f( a b
c d

); ( a b

c d
) 2 GL(2; E3)

0g, where the prime

indicates determinant in F�. [For u�, replace T
0 by T 1

� , CA by C1
A, GL

0 by SL, K by K1

below, and R0
E by R1

E ].

2. Lemma. The integral �
GSp(2;F )
1K

(u) is equal to
1P
m=0

[K0 : Km]
R
TnCA 1Km

(h�1uh)dh. Here

Km = GL
�
2; R3(m)

�0
, where R3(m) = R+ ���m

p
AR = R+ ���mR3.

Proof. The decomposition G = GSp(2; F ) = [
m�0

CAumK;K = GSp(2; R), implies that

Z
TnG

1K(g
�1ug)dg =

1X
m=0

jKjG
Z
TnCA=CA\umKu�1m

1K(u
�1
m h�1uhum)dh:

Put KA
m = CA \ umKu�1

m . The integrand on the right is non zero precisely when h�1uh 2
umKu�1

m \ CA, so we obtain

=
X
m�0

jKjGjKA
mj�1

CA

Z
TnCA

1KA
m
(h�1uh)dh =

X
m�0

[K0 : Km]

Z
TnCA

1Km
(h�1uh)dh:

�

The decomposition CA = [rT 0rK 0 can be used to rewrite our integral as

=
X
m�0

X
r

[T 00 : T
0 \ rK 0r�1][K0 : Km]

Z
K0

1Km
(k�1r�1urk)dk;

where T 00 = T 0 \ K 0 = T 0(R) ' R0�
E . Here R0

E = fx 2 R�
E ;NE=E3

x 2 F�g. As usual,

q = q3 = qE3
denotes the residual cardinality of E3. Put e = e(E=E3) for the rami�cation index

of E=E3. Denote by ���3 a uniformizer of R3. It is taken to be D = ���"3, "3 2 R�
3 �R�2

3 , if E3=F

is unrami�ed and further E=E3 is rami�ed; then ���E =
p
�D has norm NE=E3

���E = D = ���"3.

3. Lemma. When E=E3 is rami�ed, we have GL(2; E3)
0 = [j�0T

0rjK 0; K 0 = GL(2; R3)
0,

where rj 2 T (
1 0

0 ���
j
3
) has determinant 1, and T is the centralizer of T 0 in GL(2; E3); here ���3

is D 2 detT (if ���E =
p
�D, then NE=E3

���E = D). If E=E3 is unrami�ed then (E3=F is
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unrami�ed and) GL(2; E3)
0 = [T 0rj;"K 0, union over j � 0 and over " 2 R�

3 =R
�2
3 if j � 1,

where rj;" = t"(
1 0

0 "���
j
3
), det(t") = "�1. Further, the index [T 00 : rjK

0r�1
j \ T 0] is qj if j = 0 or

E=E3 is rami�ed, and it is q+1
2q

qj if E=E3 is unrami�ed and j � 1.

[Remark. The case of SL(2; E3) is dealt with in Lemma I.I.3. If E=E3 is rami�ed and E3=F is

unrami�ed, then ���3 = D = ���"3 2 detT�. If E=E3 is unrami�ed then SL(2; E3) = [T 1
� rj "K

1,

j � 0, 2 divides j � �, where � = ord3 �, and rj " = t" diag(���
�(j��)=2
3 ; "���

(j��)=2
3 )].

Proof. We use the disjoint decomposition GL(2; E3) = [j�0Tr
0
jK; r0j = diag(1;���

j
3). Here

T = f( a bD
b a

)g, a; b 2 E3. When E = E3(
p
D)=E3 is rami�ed, we can take ���E =

p
�D, then

NE=E3
(
p
�D) = D = ���3 is a uniformizer of E3. As detT = NE=E3

E� contains ���Z3 , if h = trk

lies in GL(2; E3)
0 then we may assume that deth = khk lies in R�, and there is some t0 2 T

with kt0rk = 1. Then ktk 2 R�
3 \ NE=E3

E� = R�2
3 , so ktk = "2 for some " 2 R�, and

h = "�1t � t0r � "k; k"�1tk = 1 and k"kk 2 R�.
When E=E3 is unrami�ed then so is E3=F , and ���3 = ���(= ���F ). Since NE=E3

E� = ���2ZR�
3 ,

if h = trk 2 GL(2; E3)
0 then by changing t we may assume that khk = krk = ���j . Now k can

be changed by r�1tr 2 K, so kkk 2 R�
3 can be changed by kr�1trk = NE=E3

(R3+���
j
3

p
DR3)

�,
which is R�

3 if j = 0, and R�2
3 if j � 1.

The intersection T 0 \ rjK
0r�1
j = ft 2 T 0; r�1tr 2 K 0g consists of the a + b

p
D 2 E�

with (
1 0

0 "�1����j3
)( a bD

b a
)(

1 0

0 "���
j
3
) = (

a bD"���
j
3

"�1b����j3 a
) in K, thus b 2 ���j3R3, namely it is RE(j)

� \
R0
E ; RE(j) = R3+���

j
3RE = R3+���

j
3

p
DR3. Note that R

0
E = fx 2 R�

E ;NE=E3
x 2 R�g contains

kerNE=E3
. Put RE(j)

0 = RE(j)
� \ R0

E . When e = 2 or j � 1; NR�
E = NRE(j)

� = R�2
3 ,

where N = NE=E3
; when e = 1 and j = 0, we have NR�

E = R�
3 . The index of the lemma is

the kernel in the following exact sequence:

1! R0
E=RE(j)

0 ! R�
E=RE(j)

� ! R�
E=R

0
ERE(j)

� ! 1:

The term on the right is isomorphic via the norm N to NR�
E=NR�

E \R� �NRE(j)
�, which is

trivial if e = 2 or j = 0, since then NRE(j)
� = NR�

E , while if e = 1 and j � 1, it is the group

R�
3 =R

�R�2
3 ' Z=2. Consequently it remains to compute

[R�
E : RE(j)

�] = [R�
E : 1 + ���

j
3RE ]=[RE(j)

� : 1 + ���
j
3RE ]:

The denominator here is [R�
3 : R�

3 \ (1+���
j
3RE)] = [R�

3 : 1+���
j
3R3] = (q� 1)qj�1, when j � 1.

To compute the numerator, note that when e = 2;���3 = ���2E and qE = q3 = q, so the numerator

is (q � 1)q2j�1; when e = 1;���E = ���3 and qE = q23 = q2, so the numerator is (q2 � 1)q2(j�1).

The lemma follows. �

Our orbital integral then takes the formZ
TnG

1K(g
�1ug)dg =

X
m�0

X
j;"

[R0
E : RE(j)

0][K0 : Km]

Z
K0

1Km
(k�1r�1

j;"urj;"k)dk:
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If the integrand on the right is non zero then u 2 T 0 \ rj"Kr�1
j" = RE(j)

0. Further, [K0 :

Km]
R
K0

dk can be written as
R
K0=Km

dk, and this last integral is in fact a sum. To describe

this sum, put Sm = R3=���
mR3 � Rm = R=���mR = R3(m)=���mR3, where R3(m) = R +

���mR3. Recall that Km = GL
�
2; R3(m)

�0
. Put K(���m) = fk 2 GL(2; R3)

0; k � I(mod���m)g.
Then Km=K(���m) = GL(2; Rm)(m � 1) and K0=K(���m) = GL(2; Sm)

0, where the last prime
indicates determinant in Rm. In these notations, we have

4. Lemma. The integral
R
K0=Km

1Km
(k�1r�1

j;"urj;"k)dk is equal to the cardinality of the set

L0m = fy 2 GL(2; Sm)0=GL(2; Rm); y
�1r�1

j;"urj;"y 2 GL(2; Rm)g:
�

[Remark. In the case of Sp, replace u by u�, and note that GL(2; Sm)
0=GL(2; Rm) is

SL(2; Sm)=SL(2; Rm), so the same answer is obtained].

5. Lemma. #Lm = e3 � #L0m where e3 = e(E3=F ) is the rami�cation index of E3=F , and

Lm = fx 2 SL(2; Sm);�x = x�1; xuj;"x
�1 = �(uj;")g, where uj;" is the image of r�1

j;"urj;" in

GL(2; Sm)
0.

Proof. The map y 7! x = �(y)y�1 is an injection of L0m in Lm. Indeed, if �(y1)y
�1
1 = �(y2)y

�1
2

then �(y�1
1 y2) = y�1

1 y2 lies in GL(2; Rm). The map is surjective if e3 = 1. Indeed, in this

case the map GL(2; R3)
0 ! fx 2 SL(2; R3);�x = x�1g, by y 7! �(y)y�1, is onto by Hensel's

Lemma. When e3 = 2, we claim that Lm is the disjoint union of the sets Im(L0m) and

� Im(L0m). Indeed, when E3=F is rami�ed, we have �x � x(mod���3). If �x = x�1, then

x2 � I(mod���3). Since kxk = 1, this implies that x � �I(mod���3). Clearly, x 2 Lm if and

only if �x 2 Lm. Now x � I(mod���3) if and only if x = �(y)y�1, for some y in GL(2; Sm)
0,

again by Hensel's Lemma. �

Our aim is then to determine when is Lm non-empty, and to compute its cardinality. Recall

that b = B���N3 , and rj" = diag(1; "���
j
3), so we put b0 = B0����3 ; � = N � j and B0 = B=", and

D0 = D"2���
2j
3 . [In the Sp case: Recall that b = B���N3 , � = u���

�
3, and rj " = diag(1; "("3���3)

j��),
where "3 = 1 unless E=E3 is rami�ed, E3=F is unrami�ed, and then ���3 is ���. So we put b0 =
B0����3 , � = N�j, and B0 = B=""

j
3u ("3 = 1 = " if E=E3 is rami�ed), and D

0 = D"2u2("3���3)
2j].

Note that b
0 6= 0 in Sm = R3=���

mR3 = R3=���
e3m
3 R3 precisely when � < m0 = me3.

6. Lemma. The set L0m is non empty precisely when 0 � � � N; 0 � m0 = e3m � X =

ord3(a � �a). In this case, if m0 > � then we have that � + m0 � X as well as: � is even

when E3=F is rami�ed; " 2 BR�2
3 and j � 1 (namely � < N) when E=F is unrami�ed

[" 2 uB"j3R�2
3 and � < N when E=F is unrami�ed, while if E3=F is unrami�ed and E=E3 is

rami�ed, then u 2 B"j3R�2
3 ].

If L0m is non empty, its cardinality is as follows. #L00 = 1; if 1 � m0 � � then L0m
has cardinality q3m

0=2 if e3 = 2, and q3m
0=2(1 + q�1) if e3 = 1; if � < m0 � X � � then

#L0m = (2=e3)q
m
0 q

� if E=F is rami�ed or � < N .

Proof. The element uj;" is ( a b
0
D

b
0

a
), hence 0 � � � N . If x 2 Lm then xuj;"x

�1 = �(uj").

Taking traces we conclude that a = �a lies in Rm, and since ��� is ���e33 , we have 0 � m0 � X.
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Clearly #L00 = 1, while when 1 � m0 � � we have b
0
= 0, and L0m = GL(2; Sm)

0=GL(2; Rm) =

SL(2; Sm)=SL(2; Rm). Recall that #SL(2; Rm) = (q20 � 1)q3m�2
0 = (q20 � 1)q

3(m0=e3)�2
0 , as

Rm = R=���mR;m0 = me3. Also Sm = R3=���
m0
3 R3, hence #SL(2; Sm) = (q2 � 1)q3m

0�2. When

e3 = 1; q = q20, and #L0m = (q + 1)q3m
0=2�1. When e3 = 2; q = q0, and #L0m = q3m

0=2.

Consider then from now on the case m0 > �, namely b 6= 0 in Sm.

Suppose that x lies in Lm. From kxk = 1 and �x = x�1 we deduce that�
�x1 �x2
�x3 �x4

�
=

�
x4 �x2
�x3 x1

�
; thus x =

�
x1 r2

p
A

r3
p
A �x1

�

with x1 2 Sm and r2; r3 2 Rm. The relation x(uj" � a) = �(uj" � a)x implies�
b
0
r2
p
A x1b

0
D
0

b�(x1) b
0
D
0
r3
p
A

�
=

�
x1 r2

p
A

r3
p
A �(x1)

��
0 b

0
D
0

b
0

0

�

=

�
0 �b

0 � �D0

�b
0

0

��
x1 r2

p
A

r3
p
A �(x1)

�
=

�
�(b

0
)�(D

0
)r3
p
A �(x1)�(b

0
)�(D

0
)

x1�(b
0
) �(b

0
)r2
p
A

�
:

This relation consists of four relations, which we denote by (u; v) = (row, column); 1 � u; v � 2.

We claim that there is �0 = �(�)=�, with � 2 S�m, and even � 2 S�2
m unless E=F is unrami�ed

and j = 0, such that x lies in (
1 0

0 �0 )ZGL(2;Sm)(uj"), namely �uj" = (
1 0

0 �0 )uj"(
1 0

0 �0 )
�1, or

(
1 0

0 �
)�1uj"(

1 0

0 �
) 2 GL(2; Rm). For this purpose, note that the relation (2; 1) implies that

�x1 � x1�(b
0
)=b

0
(mod���m

0��
3 ), while (2; 2) implies that r2

p
A � r3

p
A�D0

b
0
=�(b

0
)(mod���m

0��
3 ).

Put �0 = �(b
0
)=b

0 2 S�m. In other words, for some f; g; g0 in R3 we have

x =

�
x1 r3

p
AD

0
b
0
=�(b

0
) + ���m

0��
3 f

r3
p
A x1�(b

0
)=b

0
+ ���m

0��
3 g0

�

=

�
1 0

0 �0

��
x1 (b

0
=�b

0
)r3
p
A �D0

+ ���m
0��

3 f

(b
0
=�b

0
)r3
p
A x1 + ���m

0��
3 g

�
:

If E3=F is unrami�ed then ���3 = ���; b
0
= B

0
���� , and so �0 = �(B

0
)=B

0
. Using kxk = 1 we

note that

b
0
=�b

0
= x1 � (b

0
=�b

0
)�x1 � (b

0
=�b

0
)r2
p
A � r3

p
A:

Again (2; 1): (b
0
=�b

0
)�x1 � x1, and (1; 1): (b

0
=�b

0
)r2
p
A � �(D

0
)r3
p
A, imply that b

0
=�b

0

lies in x21 � r23A�(D
0
) + ���m

0��
3 Sm, which is x21 = ���3Sm unless E=F is unrami�ed and j = 0.

In this case (E=F unrami�ed and j = 0) x1 lies in S�m, and (2; 1) implies that �b
0
=b
0 �

�x1=x1(mod���
�0�m
3 ). Together with b

0
=�b

0 � x21, we obtain x1�x1 � 1(mod���3). If x1 =

�1 + �1
p
A;A = ���, then �2

1 � 1(mod���), and �0 = �x1=x1 = ��=�; � = 1+ (�1=�1)
p
A 2 S�2

m .

If E3=F is unrami�ed, the norm map N = NE3=F induces a surjection from F�q , where Fq is
the residue �eld of R3, to F

�
q0
, where Fq0 is the residue �eld of R. Note that q = q3 is q

2
0 here.

Hence ker(N jR�
3 ) has index q0+1 in R�

3 , so it is contained in the subgroup R�2
3 of index 2 in

R�
3 , hence x1 2 S�2

m (unless E=F is unrami�ed and j = 0).
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In particular, if E3=F is rami�ed, since b
0
= B

0
����3 ; (2; 1) implies that x1=�x1 � (B

0
=�B

0
)

(�1)� . As S�m \ Rm

p
A is empty, Re(x1=B

0
) = x1=B

0
+ �(x1=B

0
) is non zero, and equal to

itself times (�1)� . Then � is even when e3 = 2.

Let us show that if m0 > 2N � � + ord3D(� �), then m0 � X � �. We shall use the

auxiliary result, that there is � 2 S�m such that (
1 0

0 �
)( a b

0
D
0

b
0

a
)(

1 0

0 �
)�1 is in GL(2; Rm). Namely

�b
0
= �(�b

0
) and b

0
D
0
=� = �(b

0
D
0
=�). Recall that b0 = (B=")����3 and D0 = D"2���

2j
3 , so b0D0 =

DB"���2N��3 . [b0 = (B="u"
j
3)���

�
3 , D

0 = D"2u2("3���3)
2j, b0D0 = BD"u"

j
3���

2N��
3 ]. If m0 > �,

then (B=")=�(B=") � ��=�(mod���m
0��

3 ). If m0 > 2N � � + ord3D, then BD"=�(BD") �
�=��(mod���

m0�(2N��+ord3D)
3 ). [Replace " by "u"

j
3]. Since m

0 � � > m0 � (2N � � + ord3D),

together we have DB2=�(DB2) � 1(mod���
m0�(2N��+ord3D)
3 ), namely (a��a)(a+�a) = a2�

�a2 � Db2��(Db2) � 0(mod���m
0+�

3 ). Since a is topologically unipotent, ja��aj � ja+�aj = 1,

and so X � m0 + � as asserted. In particular, X � 2N + ord3D.

In fact, unless E=F is unrami�ed and j = 0, we have that � lies in S�2
m . Thenm0 > � implies

that �B=" 2 R�
m, or " 2 B�R�

m � BS�2
m R�

m. [Replace " by "u"
j
3]. If e3 = 2 then R�

mS
�2
m

is S�m and no new information on " is obtained. But when e3 = 1 we have R�
mS

�2
m = S�2

m .

Hence when j � 1 and E=F is unrami�ed, there are two choices for ", but only one contributes

to our orbital integral, namely " 2 BS�2
m , or " 2 BR�2

3 (the two possibilities for " were in

R�
3 =R

�2
3 ). [Replace " by "u"

j
3]. Note that in case (IV), if e(E=E3) = 1 then e(E3=F ) = 1

(e(E=E3) = 1 and e(E3=F ) = 2 is case (II)). If e(E=E3) = 2 or j = 0, then " can be taken to

be any representative of R�
3 =R

�
3 , so we obtain no constraint on ". [If e(E=E3) = 2 then " = 1

and we get u 2 B"j3R�2
3 ].

It remains to compute the cardinality of Lm when � < m0 � � � �. First, Lm consists of

x = ( x1 (B
0
=�B

0
)D

0
r3
p
A+a

r3
p
A �x1

) such that kxk = 1; a 2 ���m
0��

3 Sm \ Rm

p
A; r1; r3 2 Rm; x1 =

B
0
r1(1+�); � 2 ���m

0��
3 Sm. Here we used the relation r2

p
A � r3

p
A�D0

b
0
=�b

0
(mod���m

0��
3 ), and

x1=B
0
= r1+���m

0��
3 Sm for some r1 2 Rm. Consequently, Lm is the set of (r1; r3; a; �) 2 R2

m�
(���m

0��
3 Sm)

2, such that �a = �a, and r21B
0
�B

0
(1+ �)(1+��)� r23A(B

0
=�B

0
)D

0� ar3
p
A = 1,

taken under the quotient by the equivalence relation (r1; �) � (r01; �
0) if r1(1 + �) = r01(1 + �0),

in other words we take the quotient by 1 + Rm \ ���m
0��

3 Sm.

To count the number of elements in Lm, we need to solve the de�ning equation. Thus we take

any r3 2 Rm; � 2 ���m
0��

3 R3=���
m0
3 R3 = R3=���

�
3R3, and a = �

p
A;� in Rm\���m

0���ord3(
p
A)

3 Sm '
Rm \ ���m

0��
3 Sm (when e3 = 1; A 2 R�; when e3 = 2; � is even and A = ��� = ���23). If j � 1

or E=F is rami�ed, we saw above that b
0
=�b

0
= x21 + ���3Sm. Since x1 = B

0
r1 + ���m

0��
3 Sm,

we have B
0
=�B

0 � B
02
r21, namely 1 � B

0
�B

0
r21, so that there are two solutions in r1 to the

equation which de�nes Lm (as Lm is non empty; note that NE3=FR
�
3 = R�e3 , R� is contained

in R
� 2=e3
3 ). We conclude that Lm consists of 2qm0 q

� elements (2 for r1, q
� for �, qm0 for r3, a

cancels the relation �). This completes the proof of the lemma when j � 1 or E=F is rami�ed.

Suppose now that j = 0 and E=F is unrami�ed (and m0 > �). We claim that Lm is empty.

If not, let x be in Lm. The relations (1; 1) and (2; 2) imply that r2
p
A � r3

p
A � Db=�b �

r3
p
A � �D�b=b(mod����0�m3 ). Note that D0 = D and b0 = b; B0 = B, when j = 0. If r3 6= 0
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in Rm, then (b=�b)2D � �D = �2D, where � =
p
�D=D 2 R�

3 . Hence �b=b = ��, and
so b = r

p
D; r 2 R (or b = r=

p
D). This is impossible, since b 2 R3 (and

p
D =2 R3). If

r3 = 0 in Rm, then r2 = 0 in Rm, and kxk = 1 implies that 1 � x1�x1, hence x1 2 S�m.
Then (2; 1) implies that b=�b � x1=�x1, and (1; 2) that b=�b � (�x1=x1)(�D=D). Together

(b=�b)2 � �D=D. But �D=D = �2, so �b=b = �� = ��
p
D=
p
D, so b = r

p
D or b = r=

p
D,

with r 2 R, and b =2 R3, a contradiction. The lemma follows. �

This completes our discussion of the orbital integral in case (IV). The twisted �-orbital

integral of a strongly �-regular topologically unipotent element of type (IV) is a sum of two

integrals, which can be reduced as usual to orbital integrals �
Sp(2;F )
1K

(t�) in Sp(2; F ). The

sum of these integrals is the stable orbital integral of 1K at t1 (or t�; � 2 E�
3 =NE=E3

E�),
on Sp(2; F ). It coincides with the orbital integral of 1K at any element in the stable orbit,

on GSp(2; F ) (the stable orbit on Sp(2; F ) is the intersection with Sp(2; F ) of the orbit in

GSp(2; F ) ). Consequently, to show that �
GL(4;F )�GL(1;F );st
1K

(t�) is equal to �
GSp(2;F )
1K

(Nt),

we simply need to observe that both �
GSp(2;F )
1K

(t) and �
GSp(2;F )
1K

(Nt) depend only on the

parameters N and X attached to Nt (and n; � attached to t). Since n = N and � = X, the

comparison is complete, once we show that the measure factor in the case of type (IV) is equal

to one. This we do next.

7. Lemma. For tori of type (IV), the measure factor [T ��(R) : (1 + �)T �(R)]=[T �H(R) :

NT �(R)] is equal to 1.

Proof. First we compute the index in T �H(R) = f(x; �3x; �x; �2x);x 2 R�
E0 ;x�

2x = �(x�2x)g
of the image NT �(R) = fN(a; �a; �3a; �2a) = (a�a; a�3a; �a�2a; �3a�2a); a 2 R�

Eg of T �(R).
Note that the extension E=F of degree 4 is Galois, in which case E0 = E, except in

the totally rami�ed case, where E = F (
pp

���), and �1 =2 R�2. In this case �
p
��� = �p���

and �
pp

��� = �
pp

���, where � =
p
�1 =2 R�

E , and E0 = F (
pp
����). Let us verify this,

namely that if a 2 E, then a�a 2 E0. Write a = a1 + a2
pp

���, with ai = bi + ci
p
���. Then

a�a =
�
a1 + a2

pp
���
��
a1 + a2

pp
����
�
= a1a1 + a2a2

p
���� + (a1a2 + �a1a2)

pp
���, where

ai = bi � ci
p
���. So aiai 2 F�, we write

pp
��� as the product of

pp
���� and a

p
�, and it

remains to show that (a1a2+ �a1a2)=
p
� lies in F (

p
����). Note that since �1 =2 R�2, one of 2

and �2 is in R�2, and � =
�
(1� �)=

p
�2
�2
. To simplify the notations, suppose that 2 2 R�2.

Then
p
� = (1 + �)=

p
2, and 1=

p
� = (1� �)=

p
2. Then the sum of

a1a2(1� �) = (b1 � c1
p
���)(b2 + c2

p
���)(1� �) =

�
b1b2 � c1c2��� + (b1c2 � b2c1)

p
���
�
(1� �)

and

a1a2(1 + �) = (b1 + c1
p
���)(b2 � c2

p
���)(1 + �) =

�
b1b2 � c1c2��� � (b1c2 � b2c1)

p
���
�
(1 + �)

is 2b1b2 � 2c1c2��� � 2(b1c2 � b2c1)
p
����. It lies in F (

p
����) as required.

Thus we need to solve in a 2 R�
E the equation x = a�a, where x 2 R�

E0 satis�es x�
2x =

�(x�2x). For this, note that the product a�2a�(a�2a); (a 2 R�
E), ranges over R�4 when
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D =
p
���, over R�2 when E=E3 is rami�ed and E3=F is unrami�ed (D 2 R�), over R� if E=F

is unrami�ed (we simply use the fact that in a quadratic extension K=k, NK=kR
�
K is R�

k if

K=k is unrami�ed, and R�2
k if K=k is rami�ed, or R

�e(K=k)
k in general). For the same reason,

x�2x; (x 2 R�
E), ranges over R

�2
3 if E=E3 is rami�ed, and over R�

3 if E=E3 is unrami�ed. If

further x�2x is �xed under �, then the �-�xed x�2x ranges over: R�2 if E=E3 and E3=F are

both rami�ed, R� if E3=F is unrami�ed. Indeed, (�+�
p
D)2 = �2+�2D+2��

p
D is �-�xed

precisely when �� = 0. When D = ���, �+�
p
D 2 R�

3 only when � 2 R�; � 2 R, thus we have
� = 0, and the �-�xed elements of R�2

3 are R�2. If D 2 R� then the �-�xed elements of R�2
3

are R�2 [DR�2 = R�. In conclusion, the index [T �H(R) : NT �(R)] is equal to 1 = [R� : R�]
when E=F is unrami�ed, to [R� : R�2] = 2 when D 2 R� and E=E3 is rami�ed, and to

[R�2 : R�4] = 2 when both E3=F and E=E3 are rami�ed, namely to the rami�cation index

e(E=E3) in all cases.

We also need to compute the index in T ��(R) = f(x; �x; �3x; �2x);x 2 R�
E ; x�

2x = 1g of
(1 + �)T �(R) = f(1 + �)(a; �a; �3a; �2a) = (a=�2a; �a=�3a; �3a=�a; �2a=a); a 2 R�

3 g:
Since x�2x = 1, there is a solution a 2 E� to x = a=�2a, and as usual, the index of fa=�2a; a 2
R�
Eg in fa=�2a; a 2 E�g is e(E=E3). The lemma follows. �

With this, the comparison in the case of type (IV) is complete. But for completeness, and

possible future applications, we now write out this integral. I am grateful to J.G.M. Mars for

pointing out errors in an earlier version of the formulae below, and suggesting corrections. It

is best to deal separately with three cases: When e(E=E3) = e(E3=F ) = 2, when e(E=E3) =

2; e(E3=F ) = 1, and when e(E=F ) = 1.

The stable �-orbital integral of 1K at a strongly �-regular topologically unipotent element

u = �(u) of GL(4; F )� GL(1; F ) of type (IV), with invariants n; �, is given by the following

expressions.

If e(E3=F ) = 2, then e(E=E3) = 2, and we get a sum over m0 = 2m and 0 � � � n, of qn��

times: q3m
0=2 = q3m if 1 � m0 � �, and qm0 q

�0 if �0 = 2� and �0 < m0 � � � �0. Since q = q0
(also note that � = 2n+ 1 in this case), our sum is

qn
X

0���n
q��

X
0�m<�=2

q3m + qn
X

0���n=2

� X
��m��=2��

qm
�

=
X

0�m�(n�1)=2

q3m
X

0�j�n�2m�1

qj + qn
X

0���n=2

q[�=2]+1�� � q�

q � 1

=
qn(q[(n+1)=2] � 1)

(q � 1)2
� q3[(n+1)=2] � 1

(q � 1)(q3 � 1)
+ qn

(q1+[�=2]�[n=2] � 1)(q[n=2]+1 � 1)

(q � 1)2
:

If e(E3=F ) = 1 and e(E=E3) = 2, we have q = q20 , and m0 = m. Our sum is then over

m(0 � m � �) and �(0 � � � n) of the product of qn�� , and of: 1 if m = 0, (1 + q�1)q3m=2 if

1 � m � �; 2q�+m=2 if � < m � �� �. (Note that � = 2n+ 1 in this case). Namely we have

X
0���n

qn��

2
41 + (1 + q�1)

X
1�m��

q3m=2 + 2q�
X

�<m����
qm=2

3
5 ;
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which is

qn+1 � 1

q � 1
+
q1=2(q + 1)

q3=2 � 1

�
qn
q(n+1)=2 � 1

q1=2 � 1
� qn+1 � 1

q � 1

�
+
qn+

1
2 (q(n+1)=2 � 1)(q(��n)=2 � 1)

(q1=2 � 1)2
:

Finally, when E=F is unrami�ed, q = q20 , m
0 = m and the sum ranges over 0 � � � n, and

0 � m � �� �. (In this case � = 2n). It takes the form

q + 1

q

X
0��<n

qn��
�
1 +

X
1�m��

(1 + q�1)q3m=2 + q�
X

�<m����
qm0
�
+ 1 +

X
1�m�n

(1 + q�1)q3m=2

=
(q + 1)qn � 2

q � 1
+
qn�

1
2 (q + 1)(qn=2 � 1)(q(��n+1)=2 � 1)

(q1=2 � 1)2

+
q1=2(q + 1)2

(q3=2 � 1)

�
qn�1 q

n=2 � 1

q1=2 � 1
� qn � 1

q � 1

�
+ q1=2(q + 1)

q3n=2 � 1

q3=2 � 1
:

To repeat, we have no use for these explicit expressions, except the observation that the �nal

expression depends only on the parameters n and � attached to u, since the parameters N

and X attached to the norm Nu of u are equal to n; �.

This completes our discussion of the comparison of the stable �-orbital integral of 1K at the

strongly �-regular element us� = s�u of GL(4; R)�GL(1; R), with the stable orbital integral

of 1K at the norm N(us) of us, in the case where s = I. It remains to compare these integrals

when s is not (stably) �-conjugate to the identity.

Unstable twisted case. Twisted endoscopic group of type I.F.2.

The computations of the �-orbital integrals of a strongly �-regular topologically unipotent

element t0 = h�1t��(h); t� = (t; �t; �3t; �2t), of type (IV), can be used to compute the �-�-

orbital integral too. In this case � is the non trivial character of the group E�
3 =NE=E3

E�, and
it de�nes the endoscopic group C3 = CE3

. The Jacobian factor is

�G;C3
(t; �t; �3t; �2t) = j (t� �2t)2�(t� �2t)2

t�t�2t�3t
j1=2F = jb

p
Dj3 = q�njDj1=23 :

Note that jbj3 = q�n, as n = ord3(b), while jDj = 1 when E=E3 is unrami�ed, or jDj3 = q�1

when E=E3 is rami�ed.

Theorem. If t0 = h�1t��(h) is a strongly �-regular topologically unipotent element of type

(IV), then ��1K (t
0�) is 0 if E3=F is rami�ed, while if E3=F is unrami�ed then

�G;C3
(t�)�

�
(t� �2t)=2

p
D
�
��1K (t�) = �C3

1K3
(NC3

t�):

Proof. Note that �
�
(t� �2t)=2

p
D
�
= �E=E3

(b) = �E=E3
(B���n3 ). When E=E3 is rami�ed and

E3=F is unrami�ed, we take D = ����"3("3 2 R�
3 � R�2

3 ), then NE=E3
(
p
D) = ���"3, and so
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NE=E3
E� = (���"3)

ZR�2
3 , and �E=E3

: E�
3 =NE=E3

E� ~!f�1g has �E=E3
("3) = �E=E3

(���) =

�1. Then �E=E3
(B���n3 ) = �E=E3

(b)(�1)n. When E=F is unrami�ed, D = "3; NE=E3
R�
E =

R�
3 ; �E=E3

(B) = 1; �E=E3
(���3) = �1, and �E=E3

(B���n3 ) = (�1)n. Moreover, the norm NC3
t�

is the elliptic element in C3 = GL(2; E3) with eigenvalues x = t�t and �2x. As x = A� +
B�(1 + �)

p
D and jB�j3 = q�n by Lemma 1, Lemma I.I.2 implies that the right hand side is

(qn+1 � 1)=(q � 1) when E=E3 is rami�ed, and it is
�
(q + 1)qn � 2

�
=(q � 1) when E=E3 is

unrami�ed. We then turn now to the computation of ��1K (t�).

When E=E3 and E3=F are both rami�ed, as NE=E3
E� = ���Z3R

�2
3 , the unstable �-integral

includes a sum over � 2 E�
3 =NE=E3

E� = R�
3 =R

�2
3 of �(�), while no other term depends on �.

Hence �(1) + �("3) = 0, and ��1K (t�) is zero in this case.

When E=E3 is rami�ed and E3=F is unrami�ed, in addition to the sums over � and

m which appear in the stable �-orbital integral, we have an additional sum over � = u 2
E�
3 =NE=E3

E� = R�
3 =R

�2
3 , of �(u) times the terms indexed by �;m (and we need to divide at

the end by 2, a measure factor). If 0 � m � �, the term indexed by �;m is independent of u,

and �(1)+�("3) = 0("3 2 R�
3 �R�2

3 ). If � < m � ���, then we have the relation u 2 B"j3R�2
3 ,

and �("3) = �1, hence �(u) = �(B)�("3)
j = �(B)(�1)j. The �-�-orbital integral is then

�(B)
X

0���n

X
�<m����

(�q)n��2q�qm0 = 2�(B)(�q)n
X

0���n
(�1)�(q���+1

0 � q�+1
0 )=(q0 � 1)

=
�
2�(B)(�q)nq0=(q0 � 1)

��
q
�
0

1� (�q0)�n�1

1� (�q0)�1
� (�q0)n+1 � 1

�q0 � 1

�
= 2�(B)q0(�q)n

�
1� q

��n
0 (�1)n

��
1 + qn+1

0 (�1)n
�
=(1� q20)

= 2�(B)q0(�q)n(qn+1 � 1)=(q � 1);

since q = q20 and � = 2n+ 1 in our case. The theorem follows in this case too.

It remains to deal with the case where E=F is unrami�ed. Since NE=E3
E� = R�

3 ���
2Z
3 we

have that � = ����; � ranges over f0; 1g. The decomposition of SL(2; E3) was such that j � 0

and 2 divides j��, and when j � 1 we have the additional sum over " 2 R�
3 =R

�2
3 . In summary

we have a sum over �(0 � � � n), of 1 if � = n, and of
�
(q+ 1)=2q

�
(�q)n�� if 0 � � < n, and

a sum over m, of 1 if m = 0, of q3m0 (1 + q�1) if 1 � m � �, both terms are multiplied by 2

(two "'s) if � < N , and of 2qm0 q
� if � < m � �� �, in which case " 2 BR�2

3 (so we have only

one "). In other words we have the sum of�X
�=n

1 +
X

0��<n
(q + 1)q�1(�q)n��

�� X
m=0

1 + q�1(q + 1)
X

1�m��
q3m0

�

and X
0��<n

q + 1

2q
(�q)n��

X
�<m����

2qm0 q
�

(since � = 2n, the sum in the last row can extend to 0 � � � n). The �rst sum adds up toX
0�m�n

X
m���n

=
� X
m=0

1 +
q + 1

q

X
1�m�n

q3m0
��X

�=n

1 +
q + 1

q

X
m��<n

(�q)n��
�
:
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The inner sum is (�q)n�m, so we get

(�q)n + q + 1

q
(�q)n

X
1�m�n

(�q0)m = (�q)n
�
1 +

(q + 1)

q0

�
(�q0)n � 1

�
q0 + 1

�

=
(�q)n
q0 + 1

�q + 1

q0
(�q0)n + 1� q�1

0

�
:

The second sum adds up to

(q + 1)q�1(�q)n
X

0��<n
(�1)�

X
�<m����

qm0 =
(q + 1)(�q)n
q0(q0 � 1)

X
0���n

�
(�q0)��� � (�q0)�

�
:

As � = 2n, the inner sum is
�
(�q0)n � 1

�P
0���n(�q0)� , and we �nally get

(q + 1)(�q)n
(q0 + 1)q0(q0 � 1)

�
q2n+1
0 + (�q0)n+1 + (�q0)n � 1

�
:

The sum of our two sums is

(�q)n
q0 + 1

�
q + 1

q0 � 1
q2n0 +

(q + 1)(1� q0)

q0(q0 � 1)
(�q0)n �

q + 1

q0(q0 � 1)
+ 1� q�1

0 +
q + 1

q0
(�q0)n

�

= (�q)n (q + 1)qn � 2

q � 1
;

since q = q20 , as required. �
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PART III. Semi simple reduction.

A. Review.

To compute the stable �-orbital integral of 1K at a strongly �-regular element t in G =

GL(4; R)�GL(1; R), we may assume that the centralizer T = ZG(t) of t in G is a �-invariant

torus in G, and so the centralizer ZG(t�) of t� in G is the centralizer T � of � in T . Decomposing

t� as t� = u �s� = s� �u, a product of an absolutely semi simple element s� and a topologically
unipotent element u, which commute with each other, we deduce that u 2 T �. We have

�G1K (t�) = �G1K (us�) = �
ZG(s�)
1ZK(s�)

(u); moreover, when t; t0 are stably �-conjugate, so are s; s0,
and if s = s0, then u; u0 are stably �-conjugate. Here t0� = u0s0� = s0� � u0.

The decomposition of the norm NT of t is Ns � Nu = Nu � Ns, where Ns is absolutely

semi simple and Nu is topologically unipotent. Indeed, we expressed the tori T in the form

h�1T �h, where T � is the diagonal torus and h = �(h) 2 G. Correspondingly t = h�1t�h; s =
h�1s�h; u = h�1u�h, and the norm is de�ned by N(a; b; c; d; e) = (abe; ace; bde; cde; abcde2),

namely it is de�ned purely in terms of the (absolutely semi simple in the case of s�, topologically
unipotent in the case of u�) entries of s�; u�. Hence �H1K (Nt) = �

ZH(Ns)
1ZK(Ns)

(Nu), and we are

then reduced to the study of �
ZG(s�)
1K

(u) and �
ZH(Ns)
1K

(u).

We shall then distinguish the cases according to the values taken by Ns�. The main case is
that of Ns = I, dealt with above; here s is �-conjugate to I and ZG(�) = Sp(2; F ). We shall

proceed now to deal with each of the �-elliptic tori, of types (I) { (IV), and list the various

possibilities for Ns� other than I. Then we compute ZG(s�)
�
� ZG

�
s�(s)

��
and the integral

�
ZG(s�)
1K

(u), as well as the centralizer ZH(Ns) and the integral �
ZH(Ns)
1K

(Nu). Fortunately the

centralizer ZG(s�) and ZH(Ns) are just various forms of groups closely related with GL(2; F ),

whose orbital integrals are well known. To simplify the notations we note that the entry e

in GL(1; F ) must be in GL(1; R) for our integrals to be non zero, and then our integrals are

independent of this e. Hence we take e = 1, and omit it from the notations.

B. Case of torus of type (I).

In our usual notations, s = h�1(s1; s2; �s2; �s1)h, and so s�(s) = h�1(s1=�s1; s2=�s2;

�s2=s2; �s1=s1)h, where �h � h�1 = ( 0 w

w 0
) = (14)(23).

(1) Suppose that s1=�s1 = s2=�s2 6= �1. Then ZG(E)

�
s�(s)

�
consists of h�1(A 0

0 B
)h;A;B 2

GL(2; E). The subgroup ZG(E)(s�) consists of g = h�1(A 0

0 B
)h with gs�(g)�1 = s(= h�1s�h).

Putting f = �s2=s1 = ��s2=�s1 2 R�, this relation amounts to B =

kAk�1(
1 0

0 f
)�1A(

1 0

0 f
). The group ZG(s�) of F -rational points is determined by the relation

h�1(
A 0

0 kAk�1 ~f�1A ~f
)h = �h�1(

�A 0

0 k�Ak�1 ~f ��A� ~f )�h, which amounts to kAk � k�Ak = 1, and

kAk�A = ~fwAw ~f�1, ~f = (
1 0

0 f
). Consequently kAk = �=�� for some � 2 E�, and A0 = ��1A

satis�es �A0 = ~fwA0w ~f�1, so A0 = (
�a �b

f�b �a
) ranges over a group which is F -isomorphic to

GL(2; F )0 if f 2 NE=FE
�, or over an anisotropic inner form D0� thereof if f 2 F �NE=FE.

Here the prime indicates: determinant in NE=FE
�. Indeed, the determinant of ��1A is

1=���.
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The topologically unipotent element u = h�1(u1; u2; �u2; �u1)h lies in ZG(s�). It commutes

with s�, and with s 2 T , hence with �. Also h = �(h). Hence u1�u1 = 1; u2�u2 = 1, and so

ui = �i=��i, and A = (
u1 0

0 u2
) has kAk = �1�2

�(�1�2)
. Then ��1A = (

1=�2��1 0

0 1=�1��2
).

The stable �-orbital integral is the sum of �-orbital integrals, parametrized by (F�=NE�)2.
Let us show that precisely two such �-orbits intersect K. Recall that if t� = us� = s�u and

t0� = u0s0� = s0�u0 are stably �-conjugate then so are s�; s0�, and if s = s0 then u; u0 are.

Lemma. Only one �-conjugacy class in the stable �-conjugacy class of s intersects K.

Proof. The element s1 = x + y
p
D 2 R�

E(x; y 2 R;D 2 R� or ���R�) is absolutely semi

simple. Hence jxj = jyj = jDj = 1. Indeed, if jyDj < 1 then x 2 R� (since s1 2 R�
E) and

s1 = x(1 + y
p
D=x) has a non trivial topologically unipotent part 1 + y

p
D=x, contrary to

the uniqueness of the decomposition into absolutely semi simple and topologically unipotent

parts. Moreover, jxj = 1. Indeed, if jxj < 1, then s1 = y
p
D(1 + x=y

p
D) again has a

non trivial topologically unipotent part. Now the group F�=NE� is represented by R =

1;���, and the �-conjugacy classes within the stable �-conjugacy class of s are represented by

[(
x yDR1

y=R1 x
); (

x yDR2

y=R2 x
)]; R1; R2 2 f1;���g. By Part I, Proposition H.3, the �-conjugacy class

does not intersect K unless it is represented by s(R1 = R2 = 1). �

Consequently the �-conjugacy classes of t� = us� which contribute to the stable �-orbital

integral of 1K have absolutely semi simple part represented by s�. They are represented by

t� = us� = s�u and t0� = u0s� = s�u0, when u and u0 are topologically unipotent stably

conjugate elements of ZG(s�). As noted above, ZG(s�) is F -isomorphic to (an inner form of)

GL(2; F )0. A regular elliptic element of this group has two conjugacy classes within its stable

conjugacy class, parametrized by F�=NE�. In fact the stable class is the intersection with

GL(2; F )0 of the orbit in GL(2; F ). We conclude that (when the stable integral is non zero,

E=F is unrami�ed and)

�
G;st
1K

(us�) = �
ZG(s�);st
1ZK(s�)

(u) = �
GL(2;F )
1K

(u);

where the last u is the conjugacy class in GL(2; F ) determined by the eigenvalues 1=�2��1;

1=�1��2, where ui = �i=��i.

We now turn to the norm of s = h�1s�h. It is determined by Ns� =
�
s1s2; s1�s2; s2�s1;

�(s1s2)
�
, which is s1�s2(s2=�s2; 1; 1; �s2=s2), since s2�s1 = s1�s2 2 R�. Note that s1=�s2 =

x1 + y1
p
D is absolutely semi simple (6= �1), hence x1; y1 lie in R�. The stable conjugacy

class of Ns consists of a single conjugacy class, represented (in GSp(2; F )) by (the product of

s2�s1 2 R� with) [(
x1 y1D

y1 x1
); I]. The centralizer of Ns is

ZGSp(2;F )(Ns) = f[t; A]; t 2 T;A 2 GL(2; F )0; ktk = kAkg;

T = f( x
0 y0D
y0 x0

) 2 GL(2; F )0g:

The norm Nu of u lies in ZGSp(2;F )(Ns); it is determined by Nu� =
�
u1u2; u1�u2; u2�u1;

�(u1u2)
�
, and we have ui�ui = 1. The \t" part of Nu� is determined by

�
u1u2; �(u1u2)

�
.
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The \A" part is determined by the eigenvalues (u1�u2; u2�u1) = (u1=u2; u2=u1). The two

conjugacy classes of Nt within its stable conjugacy class are represented by NsNu and NsNu0,
where the \A" parts of Nu;Nu0, denoted A;A0, are stably conjugate, but not conjugate, in

GL(2; F )0. It follows that

�
GSp(2;F )
1K

(NsNu)st = �
ZGsp(2;F )(Ns)

1ZK(Ns)
(Nu)st = �

GL(2;F )
1K

(u1=u2; u2=u1):

The last term is the orbital integral of 1K on GL(2; F ) at the elliptic regular orbit with

eigenvalues u1=u2; u2=u1.

To compare our orbital integrals on GL(2; F ) of 1K , at the class determined by the eigenval-

ues (u1=u2; u2=u1), and (u1; u2) in the �-case, note that we have seen above that the integral

is given by an explicit expression, depending only on ju1=u2 � u2=u1j, respectively ju1 � u2j.
Since ju1j = ju2j = 1 (u is topologically unipotent), these two terms are equal, and so are our

stable �- and stable orbital integrals, when s1=�s1 = s2=�s2 6= �1.
(2) The second case to be considered is when s1=�s1 = �s2=s2 6= �1. In this case ZG(E)

�
s�(s)

�
consists of g = h�1(23)(A 0

0 B
)(23)h; (23) = diag(1; w; 1). Then ZG(E)(s�) consists of g with

gs�(g)�1 = s = h�1s�h, thus

(23)(A 0

0 B
)(23)s�( 0 w

w 0
)(23)(

tA 0

0 tB
)(23)(

0 w

�w 0
) = s�;

namely if ~f = (
1 0

0 f
) with f = �s1=s2 = s1=�s2 2 R�, then B = (

s2 0

0 �s1
)w"tA�1"w(

s2 0

0 �s1
)�1

= kAk�1 ~fA ~f�1.

Now ZG(s�) consists of h
�1(23)(

A 0

0 kAk�1 ~fA ~f�1 )(23)h which are equal to

�h�1(23) diag(�A; k�Ak�1 ~f � �A � ~f�1)(23)�h:

Since �h�h�1 = ( 0 w

w 0
), and so (23)�h�h�1(23) = ( 0 w

w 0
), this relation amounts to kAk�k�Ak = 1

and A = kAk ~f�1w�Aw ~f . Then kAk = �=��; � 2 E�, and A0 = ��1A = (
a b

f�1�b �a
). As

in the previous case we see that there is only one �-orbit of s in its stable �-orbit which

intersects K. It is represented by (23) diag
�
(
x yD

y x
); f(

x �yD
�y x

)
�
(23), if s1 = x + y

p
D, and

jxj = jyj = jDj = 1. The �-orbits within the stable �-orbit of t� = s� � u are two, the other is

t0� = s� � u0, where u; u0 are stably conjugate in the group whose F -points are (
a b

f�1�b �a ) 2
GL(2; E) (thus this group is GL(2; F )0 or an anisotropic inner formD0�, depending on whether
f 2 NE� or f =2 NE�). Note that u = h�1(23)(u1; �u2; u2; �u1)(23)h, and ui�ui = 1. If

ui = �i=��i; A = (
u1 0

0 �u2
); A0 = 1

�
A = (

1=�(�1�2) 0

0 1=�1�2
), then

�
G;st
1K

(us�) = �
ZG(s�);st
1ZK(s�)

(u) = �
GL(2;F )
1K

(A0):

Here we noted that the stable orbital integral in GL(2; F )0 of the elliptic regular element with
the same eigenvalues as A0, is equal to the orbital integral in GL(2; F ) of the orbit determined
by A0.
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The norm of t� = us� is determined by Ns�Nu�. Here Ns� =
�
s1s2; s1�s2; s2�s1; �(s1s2)

�
is the product of s1s2 = �(s1s2) 2 R� with (1; �s2=s2; s2=�s2; 1). Since �s1=s1 = (�s2=s2)

�1

6= �1 lies in E1 � F \ E1, we have that ZGSp(Ns) = f[A; t];A 2 GL(2; F )0; t 2 T; kAk =
ktkg; T = f( x yD

y x
) 2 GL(2; F )g. The stable �-orbit of Ns consists of a single orbit, which

intersects K as can be shown by the arguments of the previous case. There are two orbits in

the stable orbit of NsNu. They are represented by the two orbits in the stable orbit of Au in

GL(2; F )0, where Nu is [Au; t]. In other words,

�
GSp(2;F );st
1K

(NsNu) = �
ZGSp(2;F)(Ns);st

1ZK(Ns)
(Nu) = �

GL(2;F )
1K

(Au):

Now Au is the elliptic regular orbit in GL(2; F ) with eigenvalues u1u2; �(u1u2), so the last

orbital integral is given by a closed formula depending on ju1u2 � �(u1u2)j. In the �-case,

the �nal orbital integral on GL(2; F ) is given by the same formula, depending on ju1 � �u2j.
But �ui = u�1

i and ui are topologically unipotent. Hence ju1u2 � 1=u1u2j = j(u1u2)2 � 1j =
ju1u2 � 1j = ju1 � u�1

2 j, and the equality of the stable integral at N(us) with the stable

�-integral at us follows.

(3) The third case to be considered is that when s1=�s1 = �s2=s2 = �1. In this case

�s1 = �s1 = �x
p
D and �s2 = �s2 = �y

p
D, and s can be represented by s =

� 0 xD
0 yD

y 0
x 0

�
.

Only one �-conjugacy orbit in the stable �-conjugacy class of s intersects K. It is the

one represented by s, thus jxj = jyj = jDj = 1; all other �-orbits are represented by� 0 xDR1

0 yDR1

y=R1 0
x=R2 0

�
; Ri 2 f1;���g. The centralizer ZG(s�) of s� in G consists of g =

h�1g1h with gs�(g)�1 = s. It is then isomorphic to SO
� 0 x

0 y

y 0
x 0

�
(recall that �(g; e) =�

�(g); ekgk
�
. This group is isomorphic to

�
GL(2) � GL(2)

�0
, where the prime denotes the

group of pairs (x1; x2) with equal determinants. An isomorphism is given by mapping
�
x1 =

(
a1 b1
c1 d1

); x2
�
to kx2k�1(

a1x2 b1x2
c1x2 d1x2

). In particular, an elliptic conjugacy class with eigenval-

ues
�
(
�1 0

0 ��1
); (

�1 0

0 ��1
)
�
will be mapped to the class of (�1=��1; �1=�1; ��1=��1; ��1=�1).

There are two conjugacy classes within the stable conjugacy class of an elliptic regular el-

ement in
�
GL(2; F ) � GL(2; F )

�0
. Indeed, if T is the centralizer of this element, we need

to compute H1(F; T ) = H�1
�
Gal(E=F ); X�(T )

�
, where X�(T ) = fX = (x1; x2; y1; y2) 2

Z4;x1 + x2 = y1 + y2g, and �X = (x2; x1; y2; y1). Thus we need to compute the quotient

of the group of X 2 X�(T ), with the property NX = 0, where NX = X + �X, by the

span of X � �X = (x1 � x2; x2 � x1; y1 � y2; y2 � y1). Note that y1 + y2 = x1 + x2 implies

that y1 � y2 = x1 + x2 � 2y2 = (x1 � x2) � 2x2 � 2y2. Hence our quotient is Z=2Z, as as-

serted. Now if t� = s�u = us�, then u = h�1u�h lies in the centralizer ZG(s�) = SO(2; 2) =�
GL(2; F ) � GL(2; F )

�0
. Since u commutes with s, it commutes with �. Also �(h) = h,

hence �(u�) = u�, and as u� = (u1; u2; �u2; �u1), we have u1�u1 = 1 = u2�u2. Consequently

the �-conjugacy classes within the stable �-conjugacy class of t� = us�, which intersect K,

are given by us� and u0s�, where u; u0 represent the two conjugacy classes within the sta-

ble conjugacy class of u in
�
GL(2; F ) � GL(2; F )

�0
. This last stable class is the intersection
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with
�
GL(2; F )�GL(2; F )

�0
of the orbit in GL(2; F )�GL(2; F ) which is determined by the

eigenvalues
�
(�1; ��1); (�1; ��1)

�
with �1��1 = �1��1, and u1 = �1=��1; u2 = �1=�1 (thus

u1u2 = �1=��1; u1=u2 = �1=��1). We conclude that

�G;st1K
(us�) = �

ZG(s�);st
1Zk(s�)

(u) = �
GL(2;F )�GL(2;F )
1K

�
(
�1 0

0 ��1
); (

�1 0

0 ��1
)
�
:

Consider next the norm N(us), which is determined by Nu� � Ns�. For Ns� we have

N
�
diag

�p
D(x; y;�y;�x)

��
= xyD diag(1;�1;�1; 1). Its centralizer ZGSp(Ns) in GSp(2; F )

is
�
GL(2; F )�GL(2; F )

�0
, consisting of the matrices [g1; g2]. The norm

Nu� = N(u1; u2; �u2; �u1) is
�
u1u2; u1�u2; �u1 � u2; �(u1u2)

�
:

There are two conjugacy classes in the stable class of Ns �Nu in GSp(2; F ), given by Ns � U ,
where U is the intersection of the orbit of Nu in GL(2; F ) � GL(2; F ), with

�
GL(2; F ) �

GL(2; F )
�0
. Hence our stable orbital integral is

�
GSp(2;F );st
1K

(Ns �Nu) = �
ZGSp(2;F)(Ns);st

1ZK(Ns)
(Nu)

= �
GL(2;F )�GL(2;F )

K

�
(
u1u2 0

0 �(u1u2)
); (

u1��u2 0

0 u2��u1 )
�
:

On the right we wrote the eigenvalues which determine the orbit, not a representative in

GL(2; F ).

We can now compare the stable with the �-stable orbital integral. Both are given by explicit

closed formulae, which depend only on the �-factor, which in the �-case is the product of

j( �1

��1

� 1)(
��1

�1

� 1)j1=2 = j(u1u2 � 1)�(u1u2 � 1)j1=2 = j(u1u2)2 � 1j = ju1u2 � �(u1u2)j

and

j( �1
��1
� 1)(��1

�1
� 1)j1=2 = j(u1

u2
� 1)(u2

u1
� 1)j1=2 = j(u1

u2
)2� 1j = ju1

u2
� u2

u1
j = ju1�u2�u2�u1j;

since ui are topologically unipotent and ui�ui = 1. But the product of the right hand sides is

the factor which appears in the non twisted case, and our comparison is then complete.

This completes our discussion of the proof of the Theorem for elements of type (I). We

dealt with t� = us� according to the values taken by s�(s). The main case is that where

the orbit of s�(s) contains the identity. Above we dealt with the cases where s�(s) is �I,
or its eigenvalues take precisely two values

�
(t1; t1; t

�1
1 ; t�1

1 ) or (t1; t
�1
1 ; t1; t

�1
1 )
�
. The re-

maining cases are where the eigenvalues of s�(s) take the form (1;�1;�1; 1); (1; t; t�1; 1);

(�1; t; t�1;�1); (t1; t2; t�1
2 ; t�1

1 ), with t; ti 6= �1. They can similarly be handled. The central-

izer will even be of smaller rank. We leave these cases to the reader.
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C. Case of torus of type (II).

In this case E is the composition of the quadratic extensions of F , which are E1 = F (
p
D) =

E� ; E2 = F (
p
AD) = E�� ; E3 = F (

p
A) = E�, and the �-conjugacy classes within the stable

�-conjugacy class of s = h�1s�h = h�1(s1; s2; �s2; �s1)h, a �-elliptic strongly �-regular element

of type (II), are represented by [(
a1 a2DR1

a2=R1 a1
); (

b1 b2ADR2

b2=R2 b1
)]; R1 2 F�=NE1=FE

�
1 ; R2 2

F�=NE2=FE
�
2 . Further h = �(h) = [h0D; h

0
AD], where h

0
D = (�1=2

p
D �1=2

1 �
p
D
), and s1 = a1 +

a2
p
D 2 E�

1 ; s2 = b1 + b2
p
AD 2 E�

2 . Now we consider such t� = us� = s�u, where

s� is absolutely semi simple. So is (s�)2 = s�(s) = h�1(s1=�s1; s2=�s2; �s2=s2; �s1=s1)h.

Since val(AD) = 1; s2=�s2 must be 1. Indeed, had it been �1, we would have had that

s2 = �
p
AD;� 2 F�, but then s2 cannot be a unit. Note that � + �

p
��� can be absolutely

semi-simple only when � = 0; � 2 R�. Then, multiplying s by the scalar s�1
2 in R�, we may

assume that s2 = 1. The case where s1=�s1 = 1 is the main case, considered in Part II above.

Suppose that s1=�s1 6= 1. As we just noted, D must then be a unit. Put s1 = � + �
p
D. If

� = 0 (and j�j = 1), then s1=�s1 = �1. Otherwise, since s1=�s1 is absolutely semi simple, we
have that both �; � lie in R�.

In the �rst case, where s1=�s1 = �1, we have s��(s�) = (�1; 1; 1;�1), and ZG
�
s�(s)

�
=

fh�1[A;B]hg. Then ZG(s�) is the set of g = h�1g1h, such that kgk = 1 and gs�(g)�1 =

s = h�1s�h. The last relation is g1

� 0 �
p
D

1

�1

�
p
D 0

�
tg1 =

� 0 �
p
D

1

�1

�
p
D 0

�
, or, since g1 =

[A;B]; B"wtB = "w, namely B 2 SL(2), and AwtA = w. Since kAk = kg1k=kBk = 1, we

have A = "A" = diag(a; a�1). In summary, ZG(s�) = fh�1 diag(a;B; a�1)h; a 2 GL(1); B 2
SL(2)g. In the second case the same is true, since s1=�s1 6= �1 implies that ZG

�
s�(s)

�
=

fh�1[( a 0

0 b
); B]hg, hence ZG(s�) = fh�1[( a 0

0 a�1
); B]h; a 2 GL(1); B 2 SL(2)g (using kgk = 1).

To �nd the rational points, note that �h � h�1 = [I; ( 0 1=2
p
AD

�2
p
AD 0

)], and that ��h � h�1 =

[( 0 1=2
p
D

�2
p
D 0

); I]. The relation g = ��g then translates into B = ��B 2 SL(2; E2), and

a��a = 1. The relation g = �g implies a = �a 2 E�
1 , and �B = dwBwd�1, where d =

diag(1=2
p
AD;�2

p
AD). Hence B = (

x y

�4AD�y �x ). Since �AD = NE2=F (
p
AD), B ranges

over the group SL(2; F ). In conclusion, the stable �-orbital integral is

�
G;st
1K

(us�) = �
ZG(s�);st
1ZK(s�)

(u) = �
SL(2;F );st
1K

�
u2 0

0 �u2

�
= �

GL(2;F )
1K

�
u2 0

0 �u2

�
:

Indeed, u = h�1(u1; u2; �u2; �u1)h has \B" part (u2; �u2), which in the last integral above is

interpreted as the conjugacy class in GL(2; F ) with eigenvalues u2; �u2. This integral is given

by an explicit expression, depending on ju2 � �u2j.
The norm of t lies in a torus of type (II) in GSp(2; F ), whose elements are of the form

( a bDR

bR�1 a
), where R ranges over a set of representatives for E�

3 =NE=E3
E�. We have that

D 2 R�, hence A = ���, hence E3 = F (
p
A) is rami�ed over F and E=E3 is unrami�ed, and

so R ranges over f1;���3 =
p
Ag. Now the norm Ns of s = ~h�1s�~h; s� = (s1; s2; �s2; �s1), is

h�1(s1s2; s1�s2; �s1 �s2; �s1 ��s2)h; but s2 = 1, so this is h�1(
s1 0

0 �s1
)h = (

� �D

� �
), whose stably
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conjugate but not conjugate is represented by (
� �DR

�R�1 �
). Here we denoted by ~h the h used

above in the description of representatives for the �-conjugacy classes, and use h to denote

h = (�1=2
p
A 0

0 I
)(

hA 0

0 "hA"
)(�1=2

p
D �1=2

1 �
p
D
), which realizes the torus of type (II) in GSp(2; F ).

Since � 2 R�; D 2 R� and � is 0 or in R�; ( � �D

� �
) lies in K. Its non-conjugate but stably

conjugate orbit, represented by (
� �DR

�R�1 �
);R = (

0 ���

1 0
), does not intersect K (use Proposition

I.H.3, and the fact that Ns is absolutely semi simple). Hence the stable orbital integral of 1K
at N(su) will be reduced to a single orbital integral.

The centralizer ZGSpGSpGSp(Ns) of Ns = h�1(�+ �
p
D;�� �

p
D)h, consists of

g = h�1

�
X 0

0 Y

�
h = �h�1

�
0 �w
w 0

��
tX�1 0

0 tY �1

��
0 w

�w 0

�
h

= h�1

�
X 0

0 �wtX�1w

�
h = h�1

�
X 0

0 �kXk�1"X"

�
h:

To �nd the rational points, note that as hA = ( 1
p
A

1 �
p
A
); �hA �h�1

A = w, and �h�h�1 = (
�w 0

0 �w ).

The relation g = �g then reads �X = wXw, hence also kXk = k�Xk, and � = �� 2 E�
1 .

Further we have �h � h�1 = ( 0 �w"=4
p
AD

4
p
AD"w 0

). Hence g = �g implies �X = �kXk�1wXw

and that kXk � k�Xk = ���. We then write �=kXk = v=�v with v 2 E�
1 . Since E1 =

F (
p
D)=F is unrami�ed, we may and do take v in R�

1 . Then �(vX) = w � vX � w, and so

��(vX) = vX lies in GL(2; E2), and �(vX) = w � vX � w further implies that vX ranges over

a group F -isomorphic to GL(2; F ) (namely ( a b

�b �a
); a; b in E2). In particular, for our u� =

(u1; u2; �u2; �u1), we have Nu = h�1(u1u2; u1�u2; u2�u1; �u2�u1)h, whose \X" is u1(
u2 0

0 �u2
),

and kXk = u21; v = u�1
1 ; � = 1 (thus Nu = h�1(

X 0

0 u�21 X
)h). The stable orbital integral of 1K

at NsNu is then

�
GSp;st
1K

(NsNu) = �
ZGSp(Ns);st
1ZK(Ns)

(Nu) = �
GL(2;F )
1K

�
(
u2 0

0 �u2
)
�
:

Again this is given by an explicit formula, depending only on ju2 � �u2j, and the equality of

the stable �-integral with the stable integral follows.

D. Case of torus of type (III).

In this case E again is the compositum of the quadratic extensions E1 = F (
p
D) = E� ,

E2 = F (
p
AD) = E�� , E3 = F (

p
A) = E�, of F , and the �-conjugacy classes within a

strongly �-regular stable �-orbit are represented by t1 = h�1t�h = ( a bDR

bR�1 a
) with R = 1

or R 2 E3 � NE=E3
E. Here t� = (t; �t; ��t; �t); t = a + b

p
D; a = a1 + a2

p
A; b = b1 +

b2
p
A; ai; bi 2 F . Further, h is such that �(h) = h; �(h)h�1 = (

�w 0

0 �w ), and �(h)h�1 =

(�1=4
p
AD 0

0 4
p
AD

)(
w"

"w
). As usual we distinguish the cases according to the values of

s1�(s1) = h�1
�
s=�s; �(s=�s); ��(s=�s); �(s=�s)

�
h;
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where t1� = u1s1� = s1�u1 is the decomposition of t1 into a product of commuting absolutely

semi simple s1�, and topologically unipotent u1, elements. Also s1 = h�1(s; �s; ��s; �s)h. Now

s1�(s1) is absolutely semi simple, hence so is s=�s = a0+b0
p
D(a0; b0 2 R3). If D = ���(A 2 R�),

then b0 = 0, and so a0 = �1. If �s = �s, then s = b
p
D and s1 =2 K. Hence �s = s is the case

where s1�(s1) = I, which is handled above. Hence D 2 R�, and A = ���, so E=E3 is unrami�ed,

and F ranges over f1;���3g. Then we write �s=s = x + y
p
A(x; y 2 R1), and conclude again

that y = 0 (since �s=s is absolutely semi simple and A = ���), hence �(�s=s) = �s=s 2 R�
1 .

The cases to be considered are s=�s = 1 { but this is the main case considered above { or

�s = �s, or �s=s 6= �1.
If �s = �s, then s = b

p
D; �b = b = b1 + b2

p
A 2 R�

3 , from which it follows that

the stable �-conjugacy class of s1 intersects K in a single �-conjugacy class, represented by

s1 with R = 1. The centralizer ZG(s�) consists of g = h�1g1h, such that kgk = 1 and

gs1�(g)
�1 = s1 = h�1s�h. The last relation can be read as g1s�(

0 �w
w 0

)tg1 = s�( 0 �w
w 0

). Hence

ZG(s�) is the group of g = h�1xg2x
�1h, where x = (b; �b; 1; 1), and g2 = (B;B0) in SO( 0 w

w 0
).

The relation kgk = 1 implies that g2 indeed lies in the special orthogonal group. Note that

kBk = kB0k.
Next we determine the rational points ZG(s�). The relation �(h)h�1 = (

�w 0

0 �w ) implies

that if g = �g, and g2 = (B;B0), then �g2 = �(B;B0) = (B;wBw), since (
�w 0

0 �w ) is (I; w)

under the isomorphism SO(
0 w

w 0
) '

�
GL(2) � GL(2)

�0
=Z. Thus B 2 GL(2; E1), and B0

lies in a group isomorphic to GL(2; E1). Further, the relation g = �g can be expressed

as �(B;B0) = Int(x)(B;B0), where x =
�
( 1 0

0 b�b
); ( �b 0

0 b
)
��
(�1=4

p
AD 0

0 4
p
AD

); I
�
(w"; "w), since

diag(b�1; �b�1; �b; b) =
�
( 1 0

0 b�b
); ( �b 0

0 b
)
�
. It follows that B takes the form (

� �

16b�bAD�� ��
),

and B0 is (
x y

��(y)b=�b �x ), namely B;B0 range over groups isomorphic to GL(2; F ), and they

satisfy kBk = kB0k. The element u = h�1u�h; u� = (u; �u; ��u; �u), commutes with �, hence

u�u = 1. Then there is v 2 R�
E with u = v=�v, and as an element of SO( 0 w

w 0
); u� can be

expressed as v� =
�
(
v�v 0

0 �(v�v)
); (

v��v 0

0 �v�v
)
�
. As noted above, there is only one �-conjugacy

class in the stable �-class of t1� = u1s1�, which intersects K. Moreover, there is only one

conjugacy class in the stable conjugacy class of v� in
�
GL(2; F )�GL(2; F )

�0
. Indeed, if T is

the centralizer of v� in this group, H1(F; T ) is the quotient of X = (x1; x2; x3; x4) 2 Z
4 with

x1 + x2 = 0 = x3 + x4
�
�X = (x1; x2; x4; x3); �X = (x2; x1; x4; x3); and NX = X + �X +

�X + ��X is 0
�
, by the span of X � �X = (0; 0; y;�y), �X � �X = (x;�x; 0; 0), namely it is

zero. Hence

�
G;st
1K

(us�) = �
GL(2;F )�GL(2;F )
1K

 �
v�v 0

0 �(v�v)

�
;

�
v��v 0

0 �v�v

�!

is a product of two orbital integrals on GL(2; F ), which depend on the factors

jv�v � �(v�v)j = ju�u� 1j; and jv��v � �v�vj = ju=�u� 1j:

The norm Ns1 is determined by Ns�1 = (s�s; s��s; �s�s; ��s�s) = b�bD(1;�1;�1; 1).
Hence the centralizer ZGSpGSpGSp(Ns1) = ZGSpGSpGSp(

" 0

0 �" ) consists of [B;B
0] with kBk = kB0k. The
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element u� = (u; �u; ��u; �u) has norm Nu� = (u�u; u��u; �u�u; �u��u) = [( u�u 0

0 �u��u
);

(
u��u 0

0 �u�u
)]. The stable conjugacy class of an element of type (III) in GSp(2; F ) consists of

a single conjugacy class. We conclude that

�
GSp(2;F )
1K

(Ns1Nu1) = �
GL(2;F )�GL(2;F )
1K

 �
u�u 0

0 �(u�u)

�
;

�
u��u 0

0 �u�u

�!

is a product of two orbital integrals on GL(2; F ), which depend on the factors ju�u��(u�u)j =
j(u�u)2�1j = ju�u�1j, and ju��u��(u��u)j = j(u��u)2�1j = ju��u�1j = ju=�u�1j. Here
we used the fact that u�u = 1, and that u is topologically unipotent, so that ju�u + 1j = 1.

This completes the comparison when �s = �s.
The remaining case is when �s=s 6= �1. Since �(�s=s) = �s=s, we have that s1�(s1) =

h�1(s=�s; s=�s; �s=s; �s=s)h, and so ZG
�
s1�(s1)

�
= fh�1(B 0

0 B0
)hg. Further ZG(s1�) is the

set of g = h�1g1h; g1 = (B 0

0 B0
), with kgk = 1 and gs1�(g)

�1 = s1. This translates to

(kBk � kB0k = 1 and) B( 0 s

�s 0
)tB0 = ( 0 s

�s 0
), thus B0 = ( �s 0

0 s
)( 0 1

1 0
)tB�1( 0 1

1 0
)( �s 0

0 s
)�1 =

kBk�1(
�s 0

0 �s )B(
�s 0

0 �s )
�1. Note that s=�s = �(s=�s). Thus ZG(s1�) consists of

g = h�1 diag
�
B; kBk�1(

�s 0

0 �s )B(
�s 0

0 �s )
�1
�
h.

The rational points on this group, ZG(s1�), are obtained on solving g = �g and g =

�g. Since �(h)h�1 = (
�w 0

0 �w ), we have �B = wBw, thus B lies in a group isomorphic

to GL(2; E1). The equation g = �g leads to (�B; �B0) = (w"B0"w; "wBw"), or to ��B =

kBk�1( �s 0

0 s
)B( �s 0

0 s
)�1, and kBk = k�Bk = k��Bk�1. Hence kBk = v=�v; v = �v, v can be

taken to be a unit since E1=F is unrami�ed. So ��(v�1B) = (
�s 0

0 s
)v�1B(

�s 0

0 s
)�1, and v�1B

lies in a group isomorphic to GL(2; F ). Now u1 = h�1(u; �u; ��u; �u)h, so B = ( u 0

0 �u
), and

�
G;st
1K

(u1s1�) = �
GL(2;F )
1K

(B)

depends only on ju� �uj.
The norm of s1 is obtained from Ns�1 = (s�s; s��s; �s�s; ��s � �s). The two middle entries

are equal, hence ZGSpGSpGSp(Ns1) = fg = h�1 diag(a;B; b)h; ab = kBkg. Here h = [h0D; h
0
AD], since

Ns1Nu1 is an element of type (III) in GSp(2; F ). Since ��(h)h�1 =
� 0 1=2

p
D

I

�2
p
D 0

�
,

ZGSp(Ns) consists of g with b = ��a and B 2 GL(2; E2). The relation

�(h)h�1 =

 1

0 1=2
p
A

�2
p
A 0

1

!

further implies that a = �a and B ranges over the matrices B =
� � �

�4A�� ��

�
with kBk = a�a.

The stable conjugacy class of Nu in ZGSp(Ns) consists of a single conjugacy class (the

corresponding H1(T ) is fX = (x1; x2; x3; x4);NX = 0g=hX � �X;X � �Xi, where �X =
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(x1; x3; x2; x4); �X = (x4; x3; x2; x1), thus it is zero). NowNu is h�1(u�u; u��u; �u�u; ��u�u)h,

with B =
�
u��u 0

0 �u�u

�
. Then

�
GSp(2;F )
1K

(Ns1Nu1) = �
GL(2;F )
1K

 �
u��u 0

0 �u�u

�!
;

and this integral on GL(2; F ) is determined by the factor ju��u � �u�uj, which is equal to

ju=�u � �u=uj = ju2 � (�u)2j = ju � �uj, since u�u = 1 and u is topologically unipotent.

This is the factor obtained in the twisted case, and so the comparison is complete for strongly

�-regular elements of type (III).

E. Case of torus of type (IV).

In this case E = F (
p
D) is a quadratic extension of E3 = F (

p
A), which is a quadratic

extension of F . There are three cases: A = ��� and D =
p
���;�1 2 R�2; A 2 R� and D =

p
A

or ���
p
A;�1 =2 R�2; A = �1, and D = � + �

p
A 2 R3 � R2

3, with �; � 2 R� or ���R�. In all

cases �
p
D =

p
�D; �2

p
D = �

p
D; �3

p
D = �

p
�D; �

p
A = �

p
A, so E3 is the �xed �eld of

�2 in E. The strongly �-regular �-orbits are represented by t1 = h�1t�h = ( a bDR�1

bR a
); t� =

(t; �t; �3t; �2t); t = a+b
p
D; a = (

a1 a2A

a2 a1
) if a = a1+a2

p
A;D = (

� �A

� �
) if D = �+�

p
A;R =

(
R1 R2A

R2 R1
) for R = R1 + R2

p
A, taken over a set of representatives for E�

3 =NE=E3
E�. Note

that �(h) = h, and �(h)h�1 is (1; 1=4
p
AD;�4

p
AD; 1)(2431), where (2431) denotes the matrix

with rows (0; 1; 0; 0); (0; 0; 0; 1); (1; 0; 0; 0); (0; 0; 1; 0). As usual, we consider the decomposition

t1� = s1�u1 = u1s1�, and s1�(s1) = h�1
�
s=�2s; �(s=�2s); �(�2s=s); �2s=s

�
h. If �2(s=�2s) =

s=�2s then it is �1.
Consider �rst the case where s=�2s 6= �1. Then �(s=�2s) 6= s=�2s; �2s=s, hence the

eigenvalues of s1�(s1) are distinct. Moreover, s=�2s = a0 + b0
p
D with b0 2 R�

3 and D 2 R�
3 ,

since s=�2s is absolutely semi simple and it is not in R�
3 . Then s = a + b

p
D; a; b;D 2

R�
3 ; s1 = ( a bDR

bR�1 a
) lies in K for R = 1(R = I), but when R 6= 1 in E�

3 =NE=E3
E� (which

is represented by f1;���3g, since E=E3 is unrami�ed), the �-conjugacy class does not intersect

K. Thus the stable �-orbital integral reduces to a single �-orbital integral.

Now the eigenvalues of s1�(s1) are distinct, hence ZG
�
s1�(s1)

�
= fh�1dh; d = diagonal

in Gg, and ZG(s1�) consists of h
�1g1h; g1 is diagonal matrix with g1 = �(g1), namely g1 =

(x; y; y�1; x�1). The rational points are given by �g = g, thus �(x; y; y�1; x�1) = (2431)

(x; y; y�1; x�1) = (y; 1=x; x; 1=y), and so g = h�1(x; �x; 1=�x; 1=x)h; x 2 E� with x�2x = 1.

The absolutely unipotent element u1 has the form u1 = h�1(u; �u; �3u; �2u)h, where u�2u = 1.

Then

�G;st1K
(u1s1�) = �

GL(1;E)0

1GL(1;RE)0
(u) = 1;

where the prime indicates here the property x�2x = 1.

The norm Ns1 of s1 = h�1s�h is obtained from Ns� = (s�s; s�3s; �s�2s; �3s�2s), which

has distinct eigenvalues
�
s 6= �2s, hence �s 6= �3s, and s=�2s 6= �(s=�2s); �(�2s=s)

�
. The

centralizer in GSpGSpGSp(2) is then h�1(diagonal)h, and Nu� is
�
u�u; �3(u�u); �(u�u); �2(u�u)

�
.
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Then �
GSp(2;F )
1K

(Ns1Nu1) = �
GL(1;E)0

1GL(1;RE)0
(u�u) = 1, since ZGSp(2;F )(Ns) = fh�1(x; �3x; �x;

�2x)h;x 2 E�; x�2x = 1g. This establishes the matching in the case where s=�2s 6= �1.
The case where �2s=s = 1 is the main case (s1 = 1) considered �rst. So it remains to deal

with the case where �2s = �s. Here s = b
p
D, and b;D lie in R�

3 . Hence E=E3 is unrami�ed,

f1;���3g represents the �-conjugacy class within the stable �-class, s1 = ( 0 bD
b 0

) lies in K, but

the �-orbit of ( 0 bDR

bR�1 0
) does not intersect K, and our stable �-orbital integral reduces to

the �-orbital integral of 1K at s1. Now ZG(s�) is the set of g = h�1g1h with kgk = 1 and

gs�(g)�1 = s = h�1s�h, thus g1s�(
0 w

�w 0
)tg1 = s�( 0 w

�w 0
). Since �2s = �s, we have that

s� = (s; �s; �3s; �2s) is (s; �s;��s;�s), hence ZG(s�) consists of g = h�1Sg1S
�1h, where

S = (s; �s; 1; 1) and g1(
0 w

w 0
)tg1 = ( 0 w

w 0
); kg1k = 1. Thus g1 lies in SO( 0 w

w 0
), and under the

usual isomorphism with
�
GL(2) � GL(2)

�0
=Z, we write g1 = (B;B0). The group ZG(s�) of

rational points is obtained on solving g = �g. Thus �g1 = Xg1X
�1, where

X =

0
B@
�s 0

s 0

0 1
0 1

1
CA
�1
0
BB@

0 1 0 0

0 0 0 1=4
p
AD

�4
p
AD 0 0 0

0 0 0 1

1
CCA
0
B@
s 0

�s 0

0 1
0 1

1
CA

=

0
B@
1 0

0 1

1 0
0 1

1
CA
0
B@
1 0
�4s
p
AD 0

0 �1=4s
p
AD

0 1

1
CA�w 0

0 w

�

=

0
B@
1 0

0 1

1 0
0 1

1
CA
 �
�4s
p
AD 0

0 1

�
;

�
1 0

0 �4s
p
AD

�!
(�I; w):

Consequently �(B;B0) =
�
(
1 0

0 �4s
p
AD

)wB0w( 1 0

0 �4s
p
AD

)�1; (�4s
p
AD 0

0 1
)B(�4s

p
AD 0

0 1
)�1
�
, and

�2B = dwBwd�1, where d = diag(1;�16s�sA
p
D�D). In conclusion, B lies in a group

isomorphic to GL(2; E3)
0, where the prime means determinant in F�. If g lies in ZG(s�), then

in g1 = (B;B0), B0 is determined by B. Hence ZG(s�) is isomorphic to GL(2; E3)
0. Moreover,

u1 = h�1u�h, and u� = (u; �u; �3u; �2u); u�2u = 1. Choose v 2 R�
E with v=�2v = u; it exists

since E=E3 is unrami�ed. Under the isomorphism of SO(
0 w

w 0
) with

�
GL(2) � GL(2)

�0
=Z,

u� is
�
( u�u 0

0 1
); ( u 0

0 �u
)
�
, and �u� is

�
( �u=u 0

0 1
); (

�u 0

0 1=u
)
�
=
�
w( u 0

0 �u
)w; ( u�u 0

0 1
)
�
(thus indeed

u1 2 ZG(s1�)
�
. Then

�
G;st
1K

(u1s1�) = �
GL(2;E3)

0

1GL(2;R3)0

 �
v�v 0

0 �2v�3v

�!
:

This is an orbital integral of 1K on GL(2; E3) (K is the maximal compact GL(2; R3) of

GL(2; E3) on the right), and it is given by a closed formula, depending only on

jv�v � �2v�3vjE3
= ju�u� 1jE3

= ju�u� 1jF ju=�u� 1jF ;
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since u�2u = 1 and jxjE3
= jNE3=FxjF = jx�xjF .

The normNs is h�1
�
s�s; �3(s�s); �(s�s); �2(s�s)

�
h, which is equal to h�1s�s(1;�1;�1; 1)h

since �s2 = �s. Hence ZGSpGSpGSp(Ns) consists of g = h�1[B;B0]h; kBk = kB0k, and is isomorphic

to
�
GL(2)�GL(2)

�0
. To determine its rational points, ZGSp(Ns), we consider the g �xed by

�. The relation �2g = g (on considering �2(h)h�1) leads to the statement that B;B0 lie in a

group isomorphic to GL(2; E3).

Since �h � h�1, up to a multiple by a diagonal matrix, is
�
0 w

w 0

�� 1 0

w

0 1

�
, and

� 1 0

w

0 1

�
acts

on (B;B0) by mapping it to (B0; B), we conclude that the relation �g = g has the solutions

h�1[B;B0]h, B0 determined by B, and B ranging over a group isomorphic to GL(2; E3)
0 (prime

= determinant in F�). The norm of u1 is Nu = h�1(u�u; u�3u; �u�2u; �2u�3u)h, thus the

B here has the eigenvalues u=�u; �u=u. We conclude that

�
GSp(2;F )
1K

(Ns1Nu1) = �
GL(2;E3)
1K

 �
u=�u 0

0 �u=u

�!
;

and this integral over GL(2; E3) is given by the usual formula, which depends explicitly on

the factor

ju=�u� �u=ujE3
= ju=�u� 1jE3

= ju=�u� 1jF ju�u� 1jF
(since u is topologically unipotent and u�2u = 1). This factor is the same as in the �-case,

and the matching of the stable orbital integrals follow in all cases.
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