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0. Introduction 

Let F be a local or global field of characteristic 0. Let F be an algebraic closure of F. 
For any field extension K of F in F put G(K) = PGL(3, K), H(K) = SL(2, K), HI(K ) 

0 
=PGL(2,K), G=G(F), It=It(F), HI=HI(F) ,  J = \  / 1 - 1  , and a(g) 

= j tg -  1j for g in G. The elements fi, 8' of G(F) are called (stably) a-conjugate if there 
is h in G(F) (resp. G) with ~' = h~a(h- 1). Conjugacy and stable conjugacy is defined 
analogously for H(F) and III(F ) on omitting a. 

In Sect. 1 we show that the map N described in (1)-(5) below is a well-defined 
bijection, called the norm map, from the set of stable a-conjugacy classes in G(F), to 
the set of stable conjugacy classes in It(F). We also define a surjection N1 from the 
subset of this set described in (1), (2), (3), (4), to the set of stable conjugacy classes in 
Hi(F). In the case (4) N1 actually relates conjugacy classes. Let ~ be an element of 
G(F). The set of eigenvalues of ~a(~) is of the form {2, 1,2-1}. 

(1) If 6a(~) = 1, put N~5 = 1 and NI~ = 1. 
(2) If 6a(6) is a non-trivial unipotent, let N6 and NI~ be the non-trivial 

unipotent classes. 
(3) If the eigenvalues 2, 1, 2-1 of 6a(6) are distinct, let N6 be the class in H(F) 

determined by the eigenvalues 2, 2-1, and NI6 the class in Hi(F) with eigenvalues 
4,1. 

P u t e = ( 0 1  ~ ) . F o r h = (  a bd),puthl= 0 I . 
c 0 

(4) If 8a(~) = hi, h = ( - 1). non-trivial unipotent in GL(2, F), put N8 = h, and 

NI~= (01 ; ) i f  ~=(ae),, with a =  ( i  0 ~), ~=0. 

(5) If fia(6)=hl, hae - 1  in GL(2,F), put N6=  - 1 .  
In Sects. 2 and 3, F is a local field, f is a smooth (namely locally constant i fF is 

non-archimedean) compactly supported function on G(F), fo is such a function on 
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Ho(F)=H(F), f~ on H,(F). Put 

(~I(~) = S f(g  -16tr(g)), ~fo(7) = S fo(g -17g) 
G~(F)\G(F) Hv(F)\H(F) 

and a similar definition for Os1(7), where H~(F) is the centralizer of 7 in H(F) and 
Gg(F) is the a-centralizer of (f in G(F). If N6 4:1 put 

E 
6" 

The sum ranges over a set of representatives for the a-conjugacy classes in the 
stable a-conjugacy class of 6. If N6 = 1 put 

Y 

The definition of ~ is given in Sect. 1 ; it is too long to recall here. ~o(?)  is given by 
~Io(?') for all ~. These orbital integrals depend on a choice of Haar  measures. 

For  a suitable choice of measures, studied in Sect. 2, implicit in our notations, we 
say that f and fo have matching orbital integrals if they satisfy the relation ~1~o(7 ) 
= ~((f)  for all ?, 6 with ? = Nr. In this case we write fo = 2*(f). Proposition 3.1.1 
asserts that for each f there exists fo, and for each fo there exists f, with 
f0 =2*(f ) .  

If &r(6) has distinct eigenvalues 2, 1, 2-1, put 

�9 E 
We write f l  = 2*(f)  if a' 

~yl(Y) = I(1 + 2) (1 + ),- 1)11/2~ab(6). 

for all ~ = N~5 with distinct eigenvalues, for suitably related measures. Proposi- 
tion 3.5.1 asserts that for each f there is f l ,  and for each f l  there is f, with f l=2*(f ) .  
The values of the integrals at the singular set are given in 3.6.1 and 3.7. 

In Sect. 4, F is a local non-archimedean field with ring R of integers, K = G(R), 
Ko = H(R); f, fo are the characteristic functions of  K, K o divided by the volumes of 
K, K0. The main result, Proposit ion 4.5, asserts that fo = 2*(f), more precisely that 
~Y~(6) = ~o(7) whenever ~ = N6 is elliptic regular (the case of split 7 is easy; it is 
given in I-11). This result is extended to all spherical functions in [2, Sect. 2]. In [4] 
it is shown that f~ = 2*(f) for the above f, if f~ is the characteristic function of 
Kt  =Hi(R) ,  divided by the volume of K1. The methods of 1,4] are completely 
different from those of the present article. They are global, and rely on the trace 
formula of [3] and some of the (weaker) results of I-2]. The main theorem of the 
theory is proven in 1-2] in a special case, and in 1,5] in general, using our results here. 
The present paper is the initial part of our symmetric square project. For  a general 
introduction to this project see I1 ]; for the final statement of the symmetric square 
theorem, which implies the multiplicity one theorem for all cuspidal represen- 
tations of SL(2) and the rigidity theorem for packets of SL(2), see 1,5]. 

1. Norm Map 

1.1. Conjugacy. Let F be a local or  global field of characteristic 0, fix an algebraic 
c losure / r  of F, G an algebraic group defined over F [so G = G(F--)] and G(F) the 
F-rational points of G, a an automorphism of G defined over F. The elements 6, 6' 
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of G(F) are called a-conjugate if there is h in G(F) with 6' = h fa (h -  1). They are called 
stably a-conjugate if there is h in G with 6' = hra(h- 1). The term (stable) conjugacy 
(no mention of a) is employed if a is the trivial automorphism. 

The stable a-conjugates of 6 in G(F) are described by the set A(6) ofg in G with 
gila(g- 1) in G(F). The map A(6) ~ , Hi(F, G]), where Gg = {g in G; gfa(g- 1) = 6}, 
by g ~  {z~-~,g, = g -  'z(g)}, factors through 

I , D(6) ", H~(F, G~) , H~(F, G), 

where the double coset space D(6)= G(F)\A(6)/G~ parametrizes the a-conjugacy 
classes within the stable a-conjugacy class of 6. 

The above definitions will be used with G = PGL(3) and the (involution) outer (0 10) ) automorphism a(g) = j t g -  1 j t :  transpose; - 1: inverse; J = - 1 , 

1 
and also with H = Ho = SL(2), H 1 = PGL(2)= SO(3) and the trivial a. If y lies in H 
(or H1) then Hr denotes the centralizer of 7 in H. 

Our purpose is to define maps N and N, from the set of stable a-conjugacy 
classes in G(F) to the sets of stable conjugacy classes in H(F) and Hi(F), and study 
their properties. Note that if 6, 6' are (stably) a-conjugate then 6a(6), 6'a(6') are 
(stably) conjugate. 

1.2. Identity. If 6a(6)= 1 we write N6= 1 and N16= 1. Then 6J ='(6J) is sym- 
metric, any two symmetric matrices are equivalent over F, hence for each 6' with 
6'a(6')= 1 there is S in G with 6J = Sr'J'S, so that ~ = S6'a(S-1) and the 6 with 
6a(6) = 1 form a single stable a-conjugacy class. 

For such 6 the a-centralizer Gg is (PO(3,fJ)=)SO(3,M), the (projective=) 
special orthogonal group with respect to the form M. Replacing 6 by a a-conjugate 
ura(u- 1) or 6J by urJru, implies replacing Gg by its conjugate uGgu- 1. Hence i fF  is 

or p-adic then there are two a-conjugacy classes in the stable a-conjugacy class 
of the 6 with N6 = 1, corresponding to the split and non-split forms M. Put 
x(6)=l if G~=SO(3,rJ) splits and x ( 6 ) = - I  if it is anisotropic. If  we put 
~ = N r ( =  1) then there is a natural surjection ~o:Hr~Gg with kernel { + 1}. q~ is 
not always defined over F, see (3.3). 

1.3 Unipotent. If 6a(6) is unipotent but not 1 we check by matrix multiplication ( (, 0 
that it is a regular unipotent not conjugate to 0 1 . Alternatively, 

0 0 
~(6)v = v if and only i f ( M -  t(M))w = 0, where w = t(M)-, v. Thus the 1-eigenspace of 
6e(6) has the same dimension as the zero-eigenspace of the skew-symmetric matrix 
6J-~(6J), namely 1 or 3, and 6a(~)~ ] is regular unipotent. Up to stable 

~r-conjugacy we may assume that 6a(6)= 0 1 , a a-invariant matrix. 

0 0 
Hence 6 commutes with a(6) and 6a(~), and it is unipotent of the form 

<! :t 
x y 

1 . These make a single a-conjugacy class. The a-centralizer G~ is the 
0 
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additive group ~o, Hi(F, ffia) is trivial, hence there is a unique a-conjugacy class of 
6 with 6a(6) = unipotent 4:1, and we put N6 = unipotent [in H(F)]. If y = N6 then 
H~ = { _ 1} x ~a and there is a natural surjection q~:Hr~G~ with kernel { + 1}. 

1.4 Negative I. If 6 lies in GL(3, F) then 6a(tS) lies in SL(3, F). If 6a(6) has the 
eigenvalue 2 so does t(ra(6)). Hence for some vector v we have 2v=t(ra(6))v 
=Jr-aJt6v and 6Jtr-aj .  6Jr=2-1 .  My, so that 6a(6) has the eigenvalue 2-1. 
Hence one of the eigenvalues of 6a(6) is 1, and the cases where all three eigenvalues 
are 1 were dealt with in (1.2) and (1.3). It remains to deal with the cases where two 
eigenvalues are not 1. Replacing fia(fi) by a conjugate, hence fi by a a-conjugate, we 

mayassumethatJa(6)isof theformh~,whereforanyh=(~ bd)inGL(2),weput 

ha= 1 . 
0 

Since 6.1 takes ;t-eigenvectors of t(Sa(6)) to 2-a-eigenvectors of 6a(6), the 

assumption ~a(6)= h a implies that M fixes the subspaces * , . So does & 
0 

Hence multiplying by a scalar we have ~ = aa for some a in GL(2). 

1.4.1. Note that if e = and ~ = (ae)~, then N~ = hi, where h = aew~a- new 

= deta a2, and w= 

1.4.2. Ifr '  = (a'e)a and 6' = #-  ara(~) [hence 6'a(6') = 8-  ara(6)# and # = bl for some 
1 

b in GL(2)], then a'e = b- aaewtb- aw and a' = b- aa(ew)'b- a(ew)- 1 = det----b b - lab. 

Hence 6, 6' are (stably) a-conjugate if and only if a, a' are projectively (stably) 
conjugate. 

1.4.3. If 6a(6)= ha and h = - I  in GL(2) then a 2= det a(6 = (ae)a) and a is a scalar 
/ 

(~ ~) .  We put N r = - I ,  and note that all 6 with N 6 = - I  form a single 
\ v  

a-conjugacy class, since 

/ V \  o " 

1.4.4. If 6a(6)=h~ and h = - u n i p o t e n t r  in GL(2), then up to conjugacy 

h : - ( 1 0  21), hence a=u -a (10 1) with ct~F • u e F  • But a is equal to 

1 (  0 ~ ) -a  (10 7 ) ( 0  ~) '  hence projectively conjugate to (10 7 ) "  Now 

(10 1 ) a n d ( ~  fll)(~t, fleF•176176176176 uarein 
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F • they are clearly stably conjugate. Hence the a-conjugacy classes within the 
single stable a-conjugacy class of our 6 are parametrized by F x/F x z. If 6 = (ae)l, 

\ 

( i  n c t )  ~t~0, we let N6 be the stable conjugacy class ofh  in H(F), and define 
a--- 1 ' \ v  / 

N16 to be the conjugacy class in Hi(F) of elements which generate F(V~ ) over F, 

and the quotient ofwhose eigenvalues i s -  1. Such an element of GL(2)is (~  0)" 

1.5. Regulars. If the eigenvalues 2, 1, 2-1 of 6a(6) are distinct then they lie in a 
quadratic extension of F (or in F) and define a stable conjugacy class N6 in H(F) 
(with eigenvalues 2, 2 -1) and a (stable) conjugacy class N~5 in H~(F) [with 
eigenvalues 2, 1, 2-1 in S0(3, F) or 2, 1 in PGL(2, F)]. Given 2 there exist ~, fl in 
F(2) • with ~/fl = - 2; here fl = ~ and we use Hilbert Theorem 90 if 2 r F. The pair a, 
fl is determined up to a multiple by a scalar u in F • The matrix 6a(6) (6 = (ae)O has 

eigenvalues 2, 1, 2 -  t / ff  a has eigenvalues ~, fl so that dTtJa a 2 has eigenvalues - ~/fl, 

-fl/a. Hence the norm map is onto the set of regular elements of H(F), and the 6 in 
G(F) with regular N5 make a single stable a-conjugacy class, as a and ua (u in F x) 
are projectively stably conjugate. 1 

But a and a' = u - l a  are projectively conjugate only if u - l a =  -d--e-(-~b-lab for 

some b in GL(2,F). Then u 2 = d e tb  z, and u =  __+detb. If u = - d e t b  then - a  
= b-~ab, a has eigenvalues V, -~ ,  and h = I does not have eigenvalues different 
than 1. Hence u = detb, a = b-Xab and u = detb lies in Nx/rK x, where K = F(a). It 
follows that in the unique stable a-conjugacy class of 6 with regular 6a(6) the 
a-conjugacy classes are parametrized by u in F • • K =F(&r(6)). A set of 
representatives is given by 6 =(uae)t. 

Corollary. Let F be a global field, u a place of F, and 6, 6' stably a-conjugate but non 
a-conjugate elements of G(F). Then there is a place v 4: u of F such that 6, 6' are not 
a-conjugate in G(Fv). 

1.6. Kappa. If N6 is regular then N $ =  1, where $=�89 + t(fJ)]J. We define x(6) to 
be K($) [see (1.2)], namely I if S0(3, ~J) is split and - 1  otherwise. Note  that if 
6a(5) = 1 then 5J = t(rJ) and $ =  6; the present definition then generalizes the one of 
(1.2). 

1.6.1. x depends only on the a-conjugacy class of 6. Indeed if 6 is replaced by 
fl6gtflJ then 6J + t(ag) is replaced by 

flfJtfl + flJtf'fl = fl[6J +'(5J)] 'fl ,  

and the form 6J + t(fJ) splits if and only if f i lm + '(M)]tfl does. 

1.6.2. Ifr ,  6' are stably a-conjugate with regular norm, but  they are not conjugate, 
then the forms SJ and $'J are not equivalent [see (1.5)], and x(6') = - x(5). Thus if 
6 =-(ae) 1 and 6 '=  (uae)~, then x(6')= X(u)x(6), Z being the quadratic character of F • 
trivial on NK • K = F(fa(6)). 

1.6.3. If Nr=~ is regular in H(F) then Gg~-Hr Indeed, if g - l&r (g )=5  then 
g-16a(f)g=fa(6); if 6=(ae)~ then g=bl and b-lab=a,  since 6a(f)=ht, 
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- 1 a2 Hence b-  laewrb- 1we = a, namely d - ~  b- lab = 1, so that det b = 1. It 
h =  deta " 

is clear that H r = Ha .  

It is clear that Hr = G~ also in the cases (1.4.3), (1.4.4). 

1.7. Lemma. Suppose that J is a linear algebraic group, defined over a local field F, 
in the matrix algebra M, ~ is in J(F) and e in the centralizer Ja(F) of 6 in J(F) is near 
1. Then J~a ( Ja. 

Proof. J acts on M by inner automorphisms, and M = 09M(2) if we enlarge F; the 
sum is over the eigenvalues 2 of ~ and M(2) is the corresponding eigenspace. J~ is 
the intersection of J and M(1). Since e lies in J,(F), e6 leaves each M(2) invariant. Ire 
is near 1 all fixed vectors of e3 lie in M(1). Indeed, if v lies in M(2), then v = e l .  v 
= 2e. v and 2-1 is an eigenvalue of e. This is impossible if 2 4= 1 and e is near 1. But 
then J~  C J c~ M(1) = J,, as required. 

Applying the lemma with J =  G>~{1,a} and ~ in G(F), we have: 

1.7.1. Corollary. I f  e in G~(F) is near 1 then G~ C G~. 

1.8. Lemma. I f  N6 = 1, e ~ G~(F) is near 1 and N(e6) has distinct eigenvalues, then 
~:(~)  = ~:(~). 

Proof. e6J + t(e6J) = efJ + t ( t~Jt8  - 1)  = e6J + e- 1 t ( ~ j )  = ( g  + ~ - 1)6j. x(e6) is 1 if and 
only if G~'~+,-~)~/2 splits; but this is contained in G~ by Corollary 1.7.1. Hence the 
two special orthogonal groups split together. 

1.9. Lemma. I f  N 6 = - - I ;  e, ~' in G~(F)~-H(F) are stably conjugate but not 
conjugate, and N(etS) has distinct eigenvalues, then x(et$)= -x(e'~). 

Proof.Wemayassumethat~=el,  e= ( - :  O) 1 ' and then e = al, e' = a'~, with a, a' 

in SL(2, F). e6 and e'~ are a-conjugate (and define equivalent forms) if and only ira 
and a' are conjugate (not only projectively conjugate, since N(e6) has distinct 
eigenvalues). 

2. D i f f e r e n t i a l  F o r m s  

2.1. To compare orbital integrals on different groups we need to compare Haar 
measures, or differential forms which we always take to be invariant of highest 
degree. To introduce these differential forms we need to recall the construction 
from I9, Lemma 6.1]. Let II~o be the additive group and ( : H ~  the trace map. If7 
has distinct eigenvalues 3,1, 72 =3,11, then the differential d( of ~ at 7 is given by 

dT__~_~ d3,___L~ dT__~ = (7~ -- 3,2) d3,___~ 
d(=d3,1+d3,2=d3,1- 72 =71 3,1 --7~1 71 71' 

and it is non-zero. At a neighborhood of 3, with 3,1=72 we may assume that 

7 = (  a bd)with a•O, d=(l+bc)/a; then ( ( 7 ) = a + d  has the differential 
\ - -  

(1 -- a -  2(1 + bc))da + c db + b dc. It vanishes only if a 2 = 1 + bc, b = 0, c = 0, namely 
a a 

at 7 = +-I. The subset H,  of H where d( is non-zero is called the regular set. 
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Fix (non-zero invariant) differential forms con and # (of highest degrees 3 and 1) 
on H and ~a. # defines a non-zero invariant form ogv(#) on Hr (which is 

independent~176176 1 0 7 1  - x)" If7 is stably 1 

conjugate to ~' then o~,(/~) is obtained from ogr(#) by transport of structure. The 
fibers of ~ are the stable conjugacy classes in H~ and the quotient of co n by kt defines 
an invariant form on the fibers of ( in H,. 

In [9, Sect. 6], the corresponding map ~is from GL(2) to X = ~ ,  by ~'(y) =(trT, 

detT)=(a+d, ad-bc) . I thas2x4di f ferent ia l ( ld  0 0 1 a ) ' ( d a  - c  - b  db dc dd), 

which is non-singular if one of a - d ,  b, c is non-zero. The singular set consists of the 
scalars. Our ~%(/0 is denoted there by r/~. 

2.2. Similarly, let r : G ~  be defined by 3(6) = trN6. To compute its differential 
note that 3(6)+ 1 = tr(fJt6 - 1j). Then d~ is the trace of the differential of the map 
6w_~fj~6-1j, which is 

But 

hence 

d6" J '6-1j  + 6J" d('6 - 1). j .  

0 = dI = d(33-1) =_ d6" 6- a + 8" d6-1, 

d b - l = _ f - X . d 6 . 6 - 1 ,  

and 

t r [ j J  �9 i f -  1. d(t6), t 6 -1 .  j ]  = t r [ J6 -1 ,  d6" 3-1J~6] = tr[d6 �9 3-1.  j t f j  6-1]. 

So 

63 = tr d J [ a ( b ) - j -  la(b- 1)8- 1"]. 

Then de is non-zero for all d8 only if 6a(6) = (6a(6))- 1 has square 1, hence has 
eigenvalues 1 or - I. Since 3a(6) has determinant I, it is semi-simple and N6 is + I. 
We conclude that the regular set G, of G of 6 where d~ 4:0 consists of all 6 with 
Nb# +_I. 

The fibers of ~ on the regular set G, are stable a-conjugacy classes. We fix an 
invariant differential form co a of highest degree on G. As above/~ determines an 
invariant form co~(p) of maximal degree on Gg. If 8' is stably a-conjugate to 6 then 
G~, is isomorphic to G~ over i v and oa(/t) transforms to a form ogn,(/~) of G~,. 

2.3. The map ~o : Hv~G ~ of(1.2) and (1.6.3) can be used to pull back the form con(#) 
to a form q~*(~o6(#) ) on H r The comparison is given by 

2.3.1. Lemma. The form ~0"(o~(/0) is equal to �89 

2.4. The trace map (1 : H1 = SO(3)~$a  is smooth on the regular set H~r of  71 with 
distinct eigenvalues, and cow(#) can be introduced for such 71- Note that the 
centralizer HI~, of 71 in H1 is isomorphic to G~. The pullback of og~(p) to H ~ ,  is 
denoted again by wa(#). 
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2.4.1. Lemma. I f  7t = N1~5 has distinct eigenvalues 1, 7', 7" =7'- ~ (see (1.5)) then 
o~,(#) = 2(1 + 7')(1 + 7")~o~(#). 

The two lemmas are verified below. 

2.5. Suppose that (5 x ~ is semi-simple in G>~(tO (hence 7 =N(5 and Y~ =N~(5 are 
semi-simple in H and Hi). Choose a neighborhood X a of the trivial coset G~ in 
G~\G, a section s : G~\G ~ G, and a neighborhood Ya of the identity in G~ so that the 
morphism Ya x X~-~G, (e,g)~-~s(g)-16&r(s(g)) is an immersion (its differential is 
non-singular at each point). For  a local field F the map Ya(F) x X~(F)~G(F) is an 
analytic isomorphism onto an open subset of G(F). X~, Y~, X~,  Y~, can be 
introduced for 7 in H, y~ in Hi.  

2.6 [,emma. Locally the invariant form o~ on G can be taken to be O(e)o~] ̂  o~ 2, 
where co t is an invariant form of maximal degree on G~, (I) 2 a highest degree invariant 
form on G~k G, and O(e) is the determinant of the transformation 1-Ad(efi x (r) on the 
Lie algebra Lie(G~kG) of G~\G. 

Proof. To compute the differential we introduce an extension F(~/) of F, the 
quotient of the polynomial ring F[x] by the ideal (x2). For  any algebraic group J 
over F there is an exact sequence 

0-~Lie J(F)-~ J(F(rl))--, J(F)~ 1, 

with maps X~-~ 1 + r/X, h(1 + tiX)~--~h. To study the map (e, h)~-~h- ~. e6 x tr. h (e in 
G~, h in G~kG) we replace h by (1 + ~/Y)h, where Y is in Lie(G~kG), and 6~ x tr by 
(6~ x tr) (1 + ~/X). Then h-  t .  et~ x a .  h becomes 

h-1(1 -~lY)(66 x tr)(1 + t/X) (1 +~lr)h 

= h  -1 .  6~ x tr. (1 - r / .  Ad(e6 x tr)Y) (1 + t/(X + Y))h 

= h-  t- 66 x a" [1 + ~/(X + [1-Ad(66 x a)] Y)]. h. 

Here we used the relation (1 +~lY)- l=l-~lY ,  and Ye=e. Ade. Y Then 

~o~(X + Y) = o~l(X) ^ co2([1-Ad(e(~ x a)] Y) 

= 8(6)" (~l(X) A o)2(g), 

as required. 

2.7. Let ~ ' :G~- ,~o  be ~'(6)=~(e~5)=trN(6~5). Then ~', #, and oJ~ can be used as 
above to define a form o~',(/~) on the centralizer of e in G~, which is equal to G~, by 
Corollary 1.7.1 if e is near 1. One has o~',(/~) = O(e)o~sa(p ). 

Similarly we have con = 0(~/)o~ ^ co 2, con, = 01(t/1)~1 ^ co 2, where 0(~/) and 01(~h) 
are the functions det[l-Ad(r/7)]rien~\u, det[l-Ad(~/17a)]Lien:~:\n~ , on H~ and HI~. 
The maps ('(r/) = tr(~/7), ('1 (r/1) = tr(~/171) are used to define t,',(#), oY,~(/~), and we have 

2.8. If 7 = N(5, 71 = NI~ and 8 is in G~, then ~t5o-(~6)= 626~(fi) and e commutes with 
&r(t~), so that N(etS)= t/7 (~/in H~), Nl(66)= ~/171 (th in H 1 ~). To compute O(e), 0(~/), 
0t(th) we may assume that ~, hence t/, el, is semi-simple, since these functions 
depend only on the semi-simple parts of ~, t/, r/t in their Jordan decomposition. 
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Further, we can work  over  the algebraic closure F, and take ~ to be the diagonal  
matrix (a, b, c). Then  e can also be taken to  be diagonal;  hence e = (d, 1, d -  1) since it 
lies in Gg. If the eigenvalues of  N(e6) are denoted  by ill,/32 = ill-1, then it is easily 
checked that:  

2.8.1. If 7 = 1 then Off/)= 1 and 

0(0=2(1 +d)(1 +d-~)(1 + d2) (1 + d -2 ) .  

2.8.2. If 7 = - 1 then Off/) = 1 and 

o ( 0  = 20  + d ~) (1 + d -  ~). 
2.8.3. If 7 4= _+ 1 then Ox(rh)=(1 -/31)(1 --/32), 

o(0=2(1-/3~)(1-/3~), 0(~)=(1-/3,~)(1-/3~). 
2.9. To  verify the lemmas it suffices to take the s tandard  form # = dx on ~a. If Nb  
has distinct eigenvalues then G~ is abelian, one-dimensional ,  and i somorphic  to H~ 
and to H l w  As in (2.1) we compute  

d/31 
(r = d e ' =  (/3, - / 3 2 ) / 3 - 7  

d/31 
But co~ = e ~ for some constant  e. It is the produc t  of  co',(#) and the quot ien t  

co~/(~')*(#) = e/(/31 -/32) of  one-forms on G~ and ~ .  The same computa t ion  yields 
the same value for co',(#) and co',:(#). So it remains to no te  that  O(e)/0(~/)--2 and 
O(O/01ffh)=2(l+/31)(l+f12), and /3i=7i when e = l ,  to  have Lemmas  (2.3.1), 
(2.4.1) for 6 with N64: +_I. 

2.10. If 7 = N 6  is I or - - I  then the ep imorphism q~:H~G~, q~(~/1)=e, satisfies 
r/-- N(~p(r/1)) = r/] with a = 4 if y = I and a = 2 if 7 = - I. Indeed,  if 7 = I we may  take 
6 = I and 

t h = ( 0  aO1)~Hr 

= SL21Y-~ 1 E G~ -~ 1 ~-r]'= 
a -  4 a - 4  �9 a -  

If ~ = _ I we may  take ~ = (o i) 
(: 0) 

= S L  2 ~-~ 1 
a - i  

and 

G ~ *  1 = t / =  
a _  2 a - 2  �9 
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f f  _ _  Given e near I we may choose r/~ near 1: then H.~ r = H~r and G~a-(P(H,~r). All we 
need to show is that ~o*(co',(/0)=a2co',(/~) at a unipotent ~ in G~, for then 
O(eko*(co~(t~)) = a20(r/)co,r(/z), and at e = 1, 2~o*(co~(/~))= cov(/z). 

Let O,, O,~, O~ be the conjugacy classes oft/, rh, e. Since we have a commutative 
diagram 

H,~r\H r ~- 0,~ ~ H r 
~ y  ,~ , 

G ~ \ ~ ' ~ O ~  ~ G~ 

the pullback ~o*(co',(/0) of the form co'~(/0 on O,~ is a form on H,I r defined by the 
function r ~ o : H v ~  a and the form r on H r. Note that if 2(~h)= ~/], then 

'(r )) = tr N(e6) = tr ~/7 = tr(~] ?) = ~'(2(~/~)). 

There is also a commutative diagram 

H.~r\nr~o.~ ~ H r 

-~ J, ~ ,L ~. , 

H ,r \H r ~ O .  ~ H r 

hence q~*(co'~(#))=2*(co'~(/O). But 

(1 - ~ o )  (1 - ~ o )  
~*(co'.(~))/co'.(~) = ~*(~*(co~))/~*(co~) = o(,t)/O(~l) = ~ i : ~ - / ~ )  

is equal to a 2 as fl1~1, as required. 

3. Orbital Integrals 

3.1. Let F be a local field. The highest degree invariant differential form ~oo 
determines a Haar  measure on G(F). A maximal degree invariant form co~ on G~ 
determines a measure on G~,(F) for any fi' in G(F) stably a-conjugate to 5. The two 
forms determine a measure on the quotient G~,(F)\G(I O. Let f be a smooth 
compactly supported function on G(F), and put 

r = r co~, co~) = ~ f ( g -  15a(g))" 

If N5 # 1 put 

~0)--- ~(~; co,, co~)= Y. 't'sO'). 

The sum is over a set of representatives for the a-conjugacy classes in the stable 
a-conjugacy class of 6. If N~ = 1 put 

~0)= E ~:O')r 

If fo is a smooth compactly supported function on H(F) define 

~so(7) = ~yo(Y; cot, c~ = ~ fo(g- 17g), 
Hv(F)\H(F) 



On the Symmetric Square: Orbital Integrals 183 

and 

0). Z 

If 7 = N b  then there is q~:Hf--r,G~, and we take 0)~=[kercp]-l~p*(0)~). If the 
functions f and fo satisfy the relation 

�9 ~o(?; %,0)u)=  y~o; 0)z, 0)H) 

for all 7, 6 with 7 = N6, we write fo = 2*(f). 

3.1.1 Proposition. For each f there is fo with fo = 2*(f). For each fo there is f 
with fo = ).*(f). 
3.2. Applying partition of unity and translating, when passing from f to fo (resp. 
fo to f )  we may assume that f (resp. fo) is supported in a small neighborhood of a 
semi-simple element 6 o (resp. 7o)- The lemma is proved by dealing with the various 
possible 70, 6o. If 6o and 70 are such that 70 = N6o is non-scalar then the proof is 
simple, and it remains to deal with 7o = - I  and 7o--1. 

Suppose that ?o = - 1 .  Given f and t/1 in H~o(F)=H(F ), put a=r and 
define [after choosing a section s of Ggo(F)\G(F ) in G(F)] 

(3.2.1) f~(rh) = ~ f(g-la6oa(g)) 0)G, 
G~o (F)\G(F) 0)60 

and 

(3.2.2) fo(qTo) = f~;(t/,) (771 = / ~  - l ( t / ) )  

if t / is near I; note that 2:~/1--.r/=t/] [see (2.10)] has an analytic inverse; put 
fo(~7o) = 0 otherwise. Note that ~o(H)= Ggo , that q~(HTi ) = (G~o), = Q%o if ~/'~ is near 
1 and e '= q~(q~), and that 0)n=0)~o = q~*(0)ao), 0)71 = tP*(0)~o), 0)7=0)71, yields 

$t . __ q~fo(tlTo, 0)7, C%o)- • I fo(h- ,q,?oh) r 
r I' Hn,(F)\H(F ) (-0 7 

= I f (h- %o = % ,  0) o) 
71 H~I(F)\H(F) (DTt 

= E ~ ~ f (g -  '~p(h- lt/'lh)boa(g)) c%~ cog 
7't HnI(F)\H(F) G~o(F)\G(F) (D71 O)6o 

= ~. ~. f (g -  xe'foa(g)) cog = r c~ 0)G). 
e' G~, 6o(F)\G(F) 0)e~o 

Here ~/is near I, and ~/' ranges over a set of representative for the conjugacy classes 
within the stable conjugacy class of q. r/' can be taken to be near 1; the same 
comment applies to t/'v Then g6o ranges over a set of representatives for the 
o-conjugacy classes within the stable a-conjugacy class of ~6 o. Note  that r/7 o 
--N(efio), so that fo is the desired function. 

Conversely, given fo with support near 7o, (3.2.2) defines f~ for t h near 1, and f 
is defined by 

f (s(g)- 1 ~6 oa(S(g))) = f~(t/,)fl(g), 
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3.4 Corol lary.  
with 

where fl is a smooth compactly supported function on G~o(F)\G(F ) with 

fl(g)dg = 1. 

3.3. Suppose that 7 = 1, and replace H by an inner form H' if necessary, so that 
q) :H'~G~ is defined over F. Then ~0 :H'(F)~G~(F) is a local isomorphism and 
(3.2.1) defines a function f~ on H'(F). Ifr h 4: ___ I then (p restricted to H,~ = H',~ is not 
~o,~:H,~--*(G~)~=G,~, but its square. Here we take ~h near +1. Hence ca~ 
=x~p,(ca~o); we have taken c%o=�89 ). As in (3.2) we have 

~s~(~h, ca,~,%o) = s(~ o, ~O~o, 

Both sides are 0 when r/~ is not close to +__I. Since 2 : rh~ t / ' = r /~  (a=4)  has an 
analytic inverse on H'(F) in a neighborhood of I, we may define a function fd' on 
H'(F) by f~'(r/')=f~(~h). As is well-known, the orbital integrals of fd' can be 
transferred to H(F). This is clear if H' is isomorphic to H over F. Otherwise there 
exists fo on H(F) with 

~y]o(~; ca,, ca~)= a~s~(~/'; ca~,, c0~,) 

when t / in H(F) is regular and corresponds to ~/' in H'(F), and with 

~]o(,/; ca., ca,~) = 0 

if t/ has distinct eigenvalues in F • or it is a scalar multiple of a non-trivial 
unipotent. In this case fo(+  I )=  - fd ' (  + I). This is the required fo- The passage 
back from fo to f is done as in (3.2), but we have to choose go with Nr = I so that 
X(~o)= 1. 

If  f, fo are compactly supported smooth functions on G(F), H(F) 

for all 7 = N6 with distinct eigenvalues, then 2*( f )=  fo. 

Proof. Choose f~ with f~ = 2*(f). Then the stable orbital integrals of f o -  f6 are 0 
on the regular semi-simple set, hence identically 0, since the germs of ~)~ at u = +_ / 

, 1 
are scalar multiples of fo(u) and g~]o(U(o 11) ) .  

3.5. Analogous discussion has to be carried out for the transfer of functions from 
G(F) to HI(F)=SO(3,F). If 7=N16 has eigenvalues 1, 7', 7" with 7'4:7" put 

~b(~)= ~b(~,ca~, ca~)= I2 ~(~')r ca~, ca~). 

If f l  is a smooth compactly supported function on H~(F) then 

%,(7) = ~.rx(7; car, can) = I A(h -  ~Th), 
H 1 -t(F)\H l (F) 

for all regular semi-simple 7. We say that fx =-X*(f) if 

�9 s,(~) = I(1 + 7') (1 + 7")1'/~ ~-'~(,~) 
for all ? =N~8 with distinct eigenvalues, where ca~ = ~0*(ca~) and q):H~v-~G ~. 
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3.5.1 Proposition. For each f there is f l ,  and for each fl  there is f, with 
f1-21(f)"  

This is easily verified for a function f with support near 60 and a function f t  
with support near 70, if 70 =N15o has distinct eigenvalues, due to Lemma 2.4.1. 
The difficulty is when NSo is - I ,  for then there are several conjugacy classes in 
Hi(F) of elements 70 with eigenvalues 1, - 1, - 1. For each quadratic extension of 

( (0 ~) inGL(2'F)'OinFbutn~ F there,, is such 70 in HI(F ) with representative 1 

in F2). The lemma defines ~71(7; ~%,com) at any 7 in Hi(F) with distinct 
/ 

eigenvalues; it is 0 unless the eigenvalues of V are close to those of 70. It has to be 
shown that the function ~y~(7) is smooth at 70 to use the classification theorem of 
orbital integrals on Hi(F) to deduce the existence of f l .  Namely, we have to 
establish the smoothness at 70 of the sum 

of (3.2), multiplied by 

I(1 + 7')(1 + 7")1 x/; = 17"1 x/211 +Y'l. 

Here ~o(~/~) = e', tp:H ~ G~, and the product is smooth by, e.g., Proposition 2 on p. 231 
of [-6], as required. Note that the eigenvalues 7', 7'- ~ of 7 = N(~3o) are near - 1. 

3.6. It was noted above that there is a natural bijection between the conjugacy 
classes of 7 in Hi(F) with eigenvalues 1, - 1 ,  - 1  and the quotient F • • 2. The 
a-conjugacy classes of 6 in G(F) with N6 equals the product of - 1 and a non-trivial 
unipotent are also parametrized by F• • The Hilbert symbol defines a 
pairing, which we denote by (7, 5). 

3.6.1 Proposition. If  7 in HI(F ) has eigenvalues 1, -1 ,  -1 ,  and fl =2*(f) ,  then 

lim I(1 + ~'~)(1 + 7~)11/2(J)f , (71;  (D~,,(//), O)H, ) = Z ( ~ ,  5)~-l)f( ~ ;  0)~(/2), f,t)G). 
~l- 'Y 6 

The sum is over a-conjugacy classes of 6 in G(F) with N6 = -1  times a non-trivial 
unipotent. The eigenvalues ofT1 are 1, 7~, ?'~- 

Proof As in (3.5) the expression on the left is 

1(I + 7'0 (1 + ~)11/:~y,(T,; or.(#), ~onl) = ~ b ( 6  ~ ; ~%,(#), ~ )  

where 6 t = e6o and N6 t = Y 1. If ~p(t/'~)= e', q~:H ~ Ggo, by Lemma 2.3.1 this is equal 
to (the sum is over the conjugacy classes ff'~ in the stable class) 

Z x(q~(~)6o)~:~(~'~; ~o,~(~). ~o.). 

t/' 1 is a regular element of H(F), and lies in some torus T(F). 
The right side 

Z (~.6)%(5; ~o~(~).o~) 
{~; b?~ = - unip * - I} 

is equal to 

)h 
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where 6 = ~o(rh)6o, and the sum ranges over the non-trivial unipotent classes t h in 
H(F). It suffices to show the equality of the two sums only for f supported on a 
small neighborhood of 6 '=  q~(t/'06o, where 6' is close to 6 = ~o(th)6o, where t h is a 
non-trivial unipotent in H(F). 

So we may assume that 

(01~ 60 = 1 
1 

where x E F •  r/1 = (10 

, 6 = 1 3o ,  61 = 1 3o,  
(xg 

x )  e is near 0, ~/,1= (0e ax)  where 0~2(1- gx)= 1 since 

1 - e x e F  • 2 as e is small; we may assume that a is also a square, since it is close to 
1. It has to be shown that: when N6~ =71~7 ,  and 61 is near 6, namely r/'~ lies in 

the centralizer/-/v(F) of ? in I-I(F) as N61 = tl'~ 2 , and it is near rh, then 

x(6') = (?,  6>. But 

o t �89 E6 's  + ' ( 6 ' s ) ]  = - i , 

hence x(6') = (x, - e). The centralizer H v of 7 splits over F(2) with 22 - c = 0 for some 
c in F • hence (7, 6)  = (c, x). But r/'l lies in H v only if (2-1)2  _ ex = 0 splits in F(2), 
namely if ex/c is a square in F • Hence 

<~,, 65  = (x, c) = (x, ex)  = (x, - e) = ~:(61), 

as required. 

3.7 Proposition. I f  2 * ( f ) = f l  then fl(1)=12l}Z~j,(6), where the sum is over the 
o-conjugacy classes of 6 with N6 = 1. I f  7 = N6 is a non-trivial unipotent then 

(3.7.1) ~ s l ( ? ;  c~ coil1) = 121~s(6; c%(/~), c%) .  

Proof If N6 = 1 and f~ is defined by (3.2.1) then 

~b(~6 ;  (-Oe~, O-)G):/~(6)~fb(~] 1 ; O).1, (-OH) 

where ~o" H~G~o, t h is near 1 with ~0(t/1 ) = e, hence x(e6) = x(fi) by Lemma 1.8. The 
factor I(1 + 7')(1 + 7")11/: is smooth for 7' near 1, the asymptotic behavior permits 
the application of [10, Lemma 6.11 hence f l  satisfies fl(1)=x(6)12lf~(1). When 
x(6) = 1 the right side of (3.7.1) is the limit of (A ~s6(~/1) as t/1 --* 1, and the left side is 
the corresponding limit of A ~y, as N(e6)= e2N6 = e2= t/~--. 1; t/1 can be taken in 
the split set. 

4. Unit  o f  H e c k e  Algebra 

4.1. Let t; = ~r(G) denote the Bruhat-Tits building (see [11]) of G = PGL(3) over 
the local non-archimedean field F of characteristic zero and odd residual 
characteristic. It is a simplical complex of dimension two. To describe its vertices 
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let ~ be the ring of integers in F, and X the space of column 3-vectors. The set of 
vertices of 3s is the quotient of the set of ~-lattices in X by the equivalence 
relation M1 "~M2 if M 1 =J.M2, 2 in F • Two vertices are joined by an edge if 
there are representatives Ma, M E with raM1 ~ M E ~ M i. Here m denotes a local 
uniformizer of the maximal ideal of ~ .  Three vertices form a two-simplex if there 
are representatives M1, M2, M a with 

wM1 ~M3~M2~M1.  

Write X as a direct sum X 1 ~)X 2 with dimvX i-- i. Let ~ denote the Bruhat-Tits 
building associated with X 2. It is a simplical complex of dimension 1, or the tree of 
H = SL(2). A vertex of ~O is the equivalence class of an ~-lattice L 2 in X2, two 
vertices are joined by an edge if there are representatives L2, L' 2 with toL 2 ~/~2 ~ LE- 

If L ~ is any N-lattice in X i then any lattice in X 1 has the form m-~L ~ The lattices 
M(2) = m- XL ~ + L2 (2 in Z) define a line in 3E, identifying 3 = ~0 x Z, or ~ x line, 
with the set of vertices in ~ with a representative M in X which satisfies M = M 
c~Xi + MnX2.  The convention when drawing diagrams will be to increase 2 to the 
right. If ~vL2 ~ E2 ~ L2 put M'(2)= to-aL ~ + E2. The strip associated to the edge 
joining E2 and L2 is described by 

MI-II M(O) M(1) 

M'(-I) M'(0) M'(I) 

Any vertex in 3s represented by a lattice M, determines a unique pair in 43, 
represented by M' and M", and a diagram 

M+L~ -~ M' 

/ \ / . ~ /  
Oa \/---~(--~7 , x , x 

M+M"~ I \ /  Ll+~l ' 7/s 
M" 

The equilateral triangle with vertices represented by M, M', M" will be called the 
characteristic triangle of M; it lies in an apartment and its intersection with z3 is the 
segment, called the characteristic segment of M, from M' to M". If Pr i, Pr 2 are the 
projections of X on X1, X2 then M' = Prl M + Pr2 M and M" = Mc~X 1 + MnX2.  
Put L~ = P r i M ;  then Mc~X1 =w"L~ for some a>O. Since 

PriM/Mc~X i ~_ M / ( M n X  1 + MraX2), 

there is an isomorphism 

Prl MIMc~X1 ~_ Pr2M/Mc~X2, 

and we denote by L~2(Mc~X2 C L~ C Pr2 M) the image of L] = reAL~ 2__< a). The 
base of the characteristic triangle consists of the vertices LA1 + LA2 (0 < 2 _--< a). The 
vertices of the edge from M to M' are M + L~l - A (0 < 2__< a), and those from M to M" 
are roAM + M" (0__< 2 __< a). In fact elementary divisor theory yields the existence of 
three rank one ~-lattices N l, N2, N 3 with M'=N1 + N 2 + N  3, M=vo~Ni + N  2 
+N3, M"=m"Nx +to~N2+N3 . The vertices in the characteristic triangle are 
~AiN 1 +ma2Nz + N3 ( 0 ~ 2 2 ~ 2 1  <a). 
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4.2. The group G(F) acts on 3~, 6 maps the lattice M to 6M. 3=3(X1 ,X2)  is 
mapped to 3(6X1, fiX2) and characteristic segments and triangles with respect to 
XI, X2 are mapped to such objects with respect to 6X1, 6X2. Note that an edge in 
3E, from the vertex represented by M1 to the vertex of M2, has positive direction if the 
representatives are such that wM2 ~ M1 ~ M2 and M2/M 1 is a module of rank one 
over the residue field. The positive direction on the lines in ,3 is from left to right, 
and the action of 6 preserves the direction. 

Let a denote the outer automorphism of G(F) defined by a(g) = J ' g -  1 j ,  where 

J = - 1 . To define its action on 3E fix the bilinear pairing of X with itself 

1 
given by <x,y> =tyJx. Given M, the dual lattice is 

M v = {y in X; ~yJx in ~ for all x in M}. 

Then o takes the vertex represented by M to the vertex of M v. It takes 3(X a, X2) to 
3(X2 ~,X~), where X/~ is the orthogonal complement of Xi, but it reverses the 
directions on lines. The extremes vertices M', M" in the characteristic segment of M 
are mapped to the extreme vertices (aM) '= (M")v, (aM)"= (M')v in the characte- 

• • 
ristic segment of aM = M v with respect to X2, X1. The actions of G(F) and a are 
compatible and extend to an action of G(F)>,~<a> = G'(F) on 36. 

Replacing 6 in G(F) by a g-conjugate gfa(g- 1) [g in G(F)], if necessary, we may 
assume that 6 is of the form (aeh, where 

a =  , e =  , cq= 0 1 0 . 
c O d /  

( - 1 )  
Then N6=6a(6 )=  ~ e2 and we consider here only ~ with regular 

1' 

- 1  
? = ~ e2; thus 7 is an element of H(F)= SL(2, F) with distinct eigenvalues. We 

choose XI to be the space of column vectors {t(0, x, 0); x in F}, and X2 = {t(x, 0, y); 
x, y in F}. Then 6X~ = Xi and as X~ = Xj (i # j) we have that 3 = 3(X1, X2) is stable 
under 6 x o. Also ? acts on the building ~l associated with X2. As 8 x a acts on,3 by 
transforming one line into another, reversing its direction, it acts on 43 too. The 
square of 6 x a is &r(6) x 1, fixing each vector in XI and inducing on ~ the 
transformation ?. 

4.3. Suppose that v is regular elliptic, namely E = F(v) is a quadratic extension of F. 
In this case the a-centralizer G~ is isomorphic to the centralizer H~ of? in H over F, 
and G~(F) is compact. I f f  is the characteristic function of K = G(~) divided by the 
volume [K[ of K, then its orbital integral is 

4~f(~) = ~ f (g_ x6o(g)) co__q 

= [Gg(F)[- i I f(g- lda(g))c% 

Z 1, 
(~ x ~)p = p 
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where the sum is taken over the vertices P represented by M = g M  o with 
(6 x tr)P = P. Mo is a fixed vertex, say the lattice of vectors in X with integral entries. 
It is clear that ~i(6) depends only on the a-conjugacy class of 6. There are two 
a-conjugacy classes in the stable a-conjugacy class of the above 6; if 6 = (~e)l and 
6,= (uo~e)~ with a scalar u in F • then 6, 6' are a-conjugate if and only if u lies in 
N~/FE • where E = F(y). Note that all 6u x a define the same action on ~), and 
(6, x 0-) 2 =y~ x 1 is independent of u. The stable 0.-orbital integral o f f  at c5 is the 
product of IGg(F)I- 1 and 

1 
(4.3.1) [U o "U] y" • ~ 1. 

ueUo/U i = 0 , 1  (~ui• 

Here we put fiui = (uwi~e)l, and observe that each element o fF  • can be expressed in 
the form u~v i for a unique unit u in Uo = ~ • and integer i, if t~ is fixed; of course 
m 2 = N~/vra as ~v is in F. U is a compact open subgroup of Ne/vE • u ranges over a 
set of representatives in Uo for Uo/U, and each a-conjugacy class is obtained 
[U0 : U] times as the first two sums range over 2[Uo : U] values of u and i. 

Remark. In [4] we take 6 such that Gg, is split over F, where 6'= �89 +JtM), and 
study by completely different means the unstable a-orbital integral 

1 
E E E ~(u), 

[Uo/U] .~Vo/U ~=o. ~ (~., • ~)P=P 

where x is the non-trivial character of F • • 

4.4. If the lattice M represents a vertex P of,3 then it specifies a vertex p = p(P) of ~). 
Let d be the maximum distance between two fixed points of ~, and take U to be in 

Un= {x in ~ •  x =  l(modton)}. 

Lemma. Suppose p', p" lie in ~ and (6 x a)p '= p", (6 x a)p"= p'. Then (a) For each 
(u, i) there is at most one pair P', P" in 3 with p' = p(P'), p" = p(P"), (cS,i x a)P' = P", (6~i 
x 0.)P" = P', such that P', P" form the extreme vertices of  a characteristic segment. 

(b) The set of (u,i); u in Uo/U; i = 0 , 1 ;  for which P', P" exists, consists of  
[Uo/U] elements; the pair P', P" is the same for all such u. 

(c) The number of pairs ((u, i); P) with (u, i) such that P', P" exists, and (6,i 
• ~r)P= p, and P has characteristic segment (P', P"), is [Uo/U ]. 

Proof. (a) and (b) are verified on considering the diagram 

(:1' C' (6 • p, 

0," C" ( 6 x o') (0,') 

The broken lines are reflected about the center point C by 6 • a, and P', P" exist for 
6 • a if the points C', C" are vertices. If C', C" are not vertices they lie at midpoints 
of edges. Replacing 6 x a by fir • a with lul = Itol a shifts C a distance �89 to the 
right, and (a), (b) follow. 
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To prove (c) we may assume by the proof of (a), (b) that P', P" exists for i = 0 and 
fiui x a=fi~ x a, u in Uo. We may choose three rank one ~-modules  N1, N2, N3 so 
that the vertex P'  is represented by N~ + N 2 + N 3 and P" by wkN1 + t~kN2 + N3,  

and the vertices Q', Q" are represented by mkNx + N2 + N3 and N~ +mkN2 + N 3. 

ix' p' p. 

p" 

p,, ix,, 

A vertex P with characteristic segment (P', P") is represented by a lattice L + N3, 
where L is an ~-lattice in the space Z generated by N=N~ + N  2. L satisfies 

(i) wkN ~ L C__N , 

(ii) t~ '-  1N ~ L, 

(iii) L ~ m N  , 

(iv) L ~ mN 1 + N 2 = N', 

(v) L ~ N 1 +mN 2 = N". 

Namely L is at distance at most k from N, at least k from N, not in the direction of 
P", or Q', or Q", respectively. In the Bruhat-Tits tree of Z we have 

::::_:~oLe 
N'NN" 

The transformation 6 x a acts on the set of P represented by L + N 3 with the 
above L, and so do the transformations ul = diag(1, u, 1) in PGL(3, F), with u in U0. 

The induced action on the set of lattices L is defined by the matrix (10 0u) on the 

tree of Z. Thus Uo acts transitively on the set of L, the stabilizer of any point being 
Ua. Hence for each P there exists u in Uo with 

P=ul((6 x a)P) = (6 u x a)P.  

This u is uniquely determined modulo Ua, and (c) follows. 

4.5. It is clear from Lemma 4.4 that the sum (4.3.1) is equal to the number ofvertices 
p' in ~) which are fixed by ~, as a fixed point p' of y is equivalent to an ordered pair 
p', p" in ~ with p" = (6 x a)p', p' = (6 x r If fo is the characteristic function of 
Ko=SL(2,~I) divided by the volume Igol of Ko, and Hv(F ) is the (compact) 
centralizer of ~ in H(F), then the stable orbital integral of fo at ~ is computed as 
usual to be the product of [H~(F)I-1 and the integral over h in PGL(2, F) of 
fQ(h-~h). This integral is the number of vertices p in ~ fixed by y, and as we 
choose the measures with JH~(F)J = IG~(F)I we deduce that: 

Proposition. We have 

~J(,~) = ~Jo(~) 
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whenever ~ =N6  is regular elliptic and f, fo are the characteristic functions of 
K = G(R), K o = H(R) divided by their volumes. 

Concluding remarks. (1) Less e lementary  but  conceptual ly  clear, representa t ion  
theoretic proofs  of  the existence assert ions of  P ropos i t ions  3.1.1 and  3.5.1, can 
now be given (see [0] for ana logous  cases), on  using the elegant results of  [7]. 

(2) The  delicate ge rm compu ta t i ons  in Sect. 3 here are not  indispensible for 
the work  of [1-5] .  

(3) P ropos i t ion  4.5 is crucial for I-1-5]; its p roo f  was  suggested to  me  by R. 
Langlands. I t  would  be interesting to find a conceptual ,  represen ta t ion  theoret ic  
proof  of this result, pe rhaps  a long  the lines of  1,4]. 

(4) The  proofs  of  this pape r  app ly  to any local field F of characteris t ic  :~ 2. 
Alternatively, by vir tue of  T h e o r e m  A of I-8] (see also the lines pr ior  to 
Proposi t ion 1 in [4]), our  results can be t ransferred f rom the case of  F with 
characteristic zero and  residual character is t ic  p > 0, to  the case of  a local F with 
char F - - p .  
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