ON THE SYMMETRIC SQUARE: APPLICATIONS
OF A TRACE FORMULA

YuvAL Z. FLICKER

June 1, 1988 and, in revised form, January 11, 1990

ABSTRACT. In this paper the existence of the symmetric-square lifting of admissible and of
automorphic representations from the group SL(2) to the group PGL(3) is proven. Complete
local results are obtained, relating the character of an SL(2)-packet with the twisted character
of a self-contragredient PGL(3)-module. The global results relate packets of cuspidal repre-
sentations of SL(2) with a square-integrable component, and self-contragredient automorphic
PGL(3)-modules with a component coming from a square-integrable one. The sharp results,
which concern SL(2) rather than GL(2), are afforded by the usage of the trace formula. The
surjectivity and injectivity of the correspondence implies that any self-contragredient automor-
phic PGL(3)-module as above is a lift, and that the space of cuspidal SL(2)-modules with a
square-integrable component admits multiplicity one theorem and rigidity (“strong multiplicity
one”) theorem for packets (and not for individual representations).

INTRODUCTION

Let H, or Hy be the F-group SL(2), G the F-group PGL(3), F a global field and A its ring
of adeles. This work studies the lifting (or correspondence, or transfer) of automorphic forms
of H(A) to those of G(A), defined by the symmetric square (or adjoint) three dimensional
representation of the dual group H = PGL(2,C) of H in G = SL(3, C), by means of twisted
character relations and a twisted trace formula.

The interest in the symmetric square lifting originates from Shimura’s work [Shim]|. Let
f(z) =37 €™ be a holomorphic cusp form of weight k and character w, signify by 1
a primitive Dirichlet character of Z with ¢w(—1) = 1, and suppose that

doean™ = (1 = app™*) (1 = 0p~*) 7.
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Using Rankin’s method Shimura [Shim| proved that the Euler product
w3 T (s /2T ((s + 1) /2)T (3 (s — k + 2))

x [TI(L = ¢ (p)azp™*) (1 — 9 (p)apbpp™) (1 — (p)b2p~*)] "

p

is holomorphic everywhere except possibly at s =k or k — 1.

Since f generates the space of a cuspidal representation my of GL(2,4) (F = Q, with
a discrete-series component mp, at 00), this statement can be put in terms of a lifting
of automorphic forms compatible with the above dual group homomorphism, which takes
the diagonal complex matrix (ap,bp) to (ap,apbp,b3), or rather to (ap/bp,1,bp/ap) in a
normalized (modulo the center) form.

To reformulate Shimura’s result Gelbart and Jacquet [GJ] put

L2(3;7r0v7 Xv) = L(37 Tow @ Xo X 7\:[-011)/-[’(87)(11)

and
52(3;7TOU7XU;¢U) = 6(577('01) Q Xo X ﬁOU;QpU)/g(saXU; ¢v)

for any representation m, of GL(2, F},) and character x, of the multiplicative group F* of
the completion F, of F' at a place v. Here 7y, denotes the contragredient of mg,, and v, is
a nontrivial additive character of F,. The representation g, is said in [GJ] to L-lift to a
representation 7, of G(F,) if m, is o-invariant (namely, 7, ~ “7,, where 7, (g) = 7, (0 (g))

and o(g) = Jtg~ 1T,

is an involution of G) and for any .,

L(37 Ty & Xv) = L2(37 WOv;Xv)a 6(87 Ty @ Xuj wv) = 52(37 Tov, Xvs '@bv)

If 7y is an automorphic representation of GL(2,A) and x is a character of AX /F*  put
Ly(s,mo,x) = [1, L2(S, T0v; Xv).- The main theorem of [GJ] is obtained on adelizing the
method of [Shim]. It asserts that for any cuspidal representation my of GL(2,A) not of the
form my(p) (p = Ind(0; Wg, Wg)), the function Ly(s, mg, x) is entire for all x. This refines
the statement of [Shim|, implies that each component my, of my L-lifts to some m,, and
T = @, is a cuspidal representation of G(A).

Our approach to the lifting is different; it is motivated by the ideas of Saito and Shintani
in the base-change theory. Following Shintani, the local lifting is defined by means of
character relations, and following Saito, the global (and local) lifting is studied by means of
the (twisted) trace formula. It is shown that the above 7y (cuspidal, not of the form mq(p)),
lifts to a cuspidal 7. This implies the holomorphy of Ly(s, mo, x) = L(s, 7 ® x) for all x.

To describe our work, let L(G) be the space of automorphic forms on G = PGL(3); it
consists of all slowly increasing complex-valued functions ¢ on G(F)\G(A) with a stan-
dard [BJ] right invariance property. The group G(A) acts on L(G) by right translation
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(r(g)¢)(h) = ¢(hg). The irreducible constituents 7 are called automorphic G-modules, or
representations.

Each such 7 is a restricted tensor product ®m, of irreducible admissible representations ,
of the local groups G,, = G(F, ), which are unramified for almost all v. Each irreducible un-
ramified G,,-module , is isomorphic to the unique unramified subquotient of a GG,,-module
I((piv)) normalizedly induced from an unramified character (a;j;¢ < j) — [[; ttiv(aii) of the
upper triangular subgroup. Although the character (u;,) is not uniquely determined, we
obtain a unique conjugacy class t(m,) = diag(u (7)) (where o denotes a local uniformizer
of the maximal ideal in the ring R, of integers in F,) in the dual group G = SL(3,C) of
G. The map m, — t(m,) is a bijection from the set of equivalence classes of irreducible
unramified G,-modules to the variety of conjugacy classes in G.

Similar description holds in the case of H = SL(2), where the automorphic representa-
tions my = ®mg, have local components my, which are parametrized, in the unramified case,
by conjugacy classes t(my,) in the dual group H= PGL(2,C) of H.

We study lifting of automorphic forms of H(A) to those of G(A), which is compatible
with the Symmetric Square representation Ao = Sym?: H — G of H = PGL(2,C) in
G = SL(3,C). This is the irreducible three-dimensional representation of H; it can be
described also as the adjoint representation of H on its Lie algebra; it maps the diagonal
matrix (a,b) to the diagonal matrix (a/b,1,b/a). We say that the automorphic H-module
Ty = ®Tgy lifts to the automorphic G-module m = @, if t(m,) = Ao(t(mo,)) for almost all
v (where g, and m, are both unramified).

Our first global result asserts that each cuspidal H-module lifts to an automorphic G-
module. This result is contained in [GJ].

But we can obtain more precise results. It is clear that if 7 is a lift, then it is o-invariant.
Our second global result is a determination of the image of the lifting. Thus of 7 is a
cuspidal G-module which is o-invariant then it is a lift of a cuspidal H-module (which is
not a representation denoted by my(p) and associated (by the principle of functoriality, see,
e.g., [Bo2]) to an induced projective two-dimensional representation p = Ind(0; Wg, Wg) of
the Weil group Wr of F).

The cuspidal H-module my(p) lifts to the induced, noncuspidal, o-invariant G-module
I(m(6/0),x). Here E is a quadratic extension of F, and 6 is a character of the idele class
group AR /E* = Cp ~ W2 of E. The character 6/0: z — 60(z/z) of Cg determines
an automorphic representation m(6/6) of GL(2,A), whose central character is the unique
nontrivial character x of A* /F* which is trivial on the norm subgroup Ng / rA%. The Levi
subgroup of the maximal parabolic subgroup of G is isomorphic to GL(2), hence m(6/6)
determines the induced G-module I(mw(6/6),x). Finally the trivial H-module lifts to the
trivial G-module.

This gives a complete description of the image. Indeed, any o-invariant automorphic G-
module which is not in the above list, namely it does not have a trivial component, it is not
cuspidal and not of the form I(7(6/6),x), must be of the form I (7, 1), namely normalizedly
induced from a discrete-series GL(2, A)-module m; with a trivial central character. Such
I(mq,1) are not obtained by the lifting.
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The notion of lifting which we use is in fact a strong one, in terms of all places. Namely
we define local lifting of irreducible H,-modules to such G,-modules, and show that if mg
lifts to 7, then g, lifts to m, for all places v. The definition of local lifting, which is too com-
plicated to recall here, is formulated in terms of identities of characters of representations.
It generalizes the notion of lifting of unramified local representations described above.

Yet we will mention here that the character relations compare the twisted character of
m,, wWhich is a o-stable function, with the character of the packet of mg,, which is a stable
function. The definitions imply that in the local lifting it is not a single H,-module 7,
which lifts to m,, but it is the packet of my, which lifts. As usual, the packet of an H,-
module 7, is defined to be the set of admissible irreducible H,-modules of the form 7, (g
in GL(2, F,)), where 7§ (h) = mo, (g~ hg) (h in H,).

Given local packets P, for each place v of F' such that P, contains an unramified H,-
module 70, for almost all v, we define the global packet P to be the set of H(A)-modules
®g, With mg, in P, for all v and g, equivalent to 7r8v for almost all v. We say that the
packet is automorphic, or cuspidal, if it contains such a representation of H(A). In the case
of G, more generally for GL(n) and PGL(n), packets consist of a single term.

We are now in a position to state the main lifting theorem. The lifting defines a bijection
from the set of packets of cuspidal representations of H(A) to the set of o-invariant G(A)-
modules which are cuspidal or of the form I(w(0/0), x).

This permits the transfer of two well-known theorems for G = PGL(3), to the context of
H = SL(2).

The first is a rigidity theorem for cuspidal representation of SL(2). It asserts that if
Ty = ®mg, and 7w, = @, are cuspidal H-modules and 7g, ~ =, for almost all v, then mg
and 7(, define the same packet. The analogous statement for G is proven in [JS].

The second application is multiplicity one theorem for SL(2). It asserts that each cuspidal
representation of SL(2,A) occurs in the cuspidal spectrum of L(H) with multiplicity one.
The analogous statement for GL(n) is well known. Note that the rigidity theorem holds for
packets, but not for individual representations. There do exist two inequivalent cuspidal
H-modules which are equivalent almost everywhere.

Other corollaries to the lifting theorem assert that a o-invariant cuspidal G-module can-
not have a component of the form I(my,, 1), where m, is a square-integrable representation
of GL(2, Fy).

Further, if my is a cuspidal GL(2)-module with a local component I(vf,v;?), t > 0,
normalizedly induced from the character (¢ ;) — |a/bl%, of the upper triangular subgroup,
then we conclude (as in [GJ]) that ¢ < 1. The estimate ¢ < 3 is easy, and the equality ¢t = 0
is asserted by the Ramanujan conjecture for GL(2).

As a final corollary we note that for cuspidal my not of the form mg(p), since the L-
function Ly(s, mg, x) is equal to L(s, 7w ® x), where 7 is the lift of my, we conclude, as noted
above, that it is entire for each character y of A* /F*.

There are six parts [I], ..., [VI] in our Symmetric Square project, arranged according
to their logical interdependence. Each part has been published separately, see the reference
list; an attempt has been made to isolate different ideas or techniques and make them as
independent as possible. The initial results and some of the techniques had been described
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in [Fout], and the preliminary draft [Fadj]. In this file, we make changes to update the work.
For example, §4 of the paper [I] (and [FK3], which was the old “[V]”) is made redundent
by (the current) [V]. We keep the listing [I], ..., [V I] for the parts of the present work too,
and refer to the original published paper when necessary as “the paper [I]”. In particular,
[V] could be read after [I] (it replaces and completes [I], §4) and it is used in [IV] (and [VI]),
but we keep its labeling to be “[V]”.

The contents of the parts are as follows. The basic definitions of local lifting of unramified
and ramified representations are given in [II]. To study the o-invariant G-modules 7 not
obtained by the lifting we introduce in [II] the the map A;: H, — G Where H1 = SL(2,C)
is the dual group of H; = PGL(2) = SO(3), in addition to the map Ao: Hy — G mentioned
above. We then introduce the dual maps )\2‘. Hg — H; from the Hecke algebra Hg of
spherical functions on G to the Hecke algebras H; of H; (i =0, 1).

These definitions are suggested by the work of [I], where the technical local transfer
needed for the study is discussed. There we define a norm map v = N¢ from the set of
stable o-conjugacy classes of § in G(F') to the set of stable conjugacy classes of v in H(F).
We transfer smooth compactly supported functions f, on G(F,) to such fy, on H(F,). The
definition is based on matching stable orbital integrals. Similar discussion is carried out for
the transfer from G to Hy. The results of [I] are summarized in its introduction.

In [III] we give the global tool for the study of the lifting, an identity of trace formulae.
First we compute the trace formula for G(A) twisted by the outer automorphism . Since o
does not leave all parabolic subgroups of G invariant, we introduced in [Fadj] a modification
of the truncation used by Arthur to obtain the trace formula. The subsequent computation
of the twisted trace formula was carried out in [CLL], from which we quote (in [III], §2), the
contribution from the Eisenstein series. Thus in [III] we compute explicitly all terms in the
twisted formula, stabilize it, and compare it with a sum of trace formulae for H = SL(2) and
H, = PGL(2). The formulae in [III] are greatly simplified by the introduction of regular
functions (see below).

In [IV], §1, we give an approximation argument to deduce from the global identity of
trace formulae the local (hence also global) results. It is a new argument. It replaces the
technique of [L1], which relies on the theory of spherical functions. The new argument is
based on the usage of what we call reqular functions, which are not spherical but in fact
lie in the Hecke algebra with respect to an Iwahori subgroup. Their main property is that
they both isolate the representations with a vector fixed by an Iwahori subgroup and their
support is easy to control and work with, in contrast to that of a spherical function.

The approximation (or separation) argument given here applies in any rank one situation
(since there are only finitely many reducibility points of principal series representations in
this case) and does not use spherical functions at all, except the case where fy, is the unit
element f9 of Hy and f, is the unit element in Hg, which is proven in [V]. For further
comments see the lines preceding [IV], Proposition 1.8.2.

In deriving the main theorems in [IV], §2, we use the immediate twisted analogue of
Kazhdan’s fundamental study of characters [K2]. This is formulated in [II], §3; it is not
proven here since the proof is entirely parallel to that of [K2] and requires no new ideas (cf.
[Fstbc| in the case of any reductive group). The only non immediate result needed to twist
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[K2] is the analogue of [K2], Appendix. This is done in [Fstbc], (I.4), in general; the special
case needed in this part is done here in [IV], (1.8).

In [ITI], §3.7, together with [IV], (1.6.3), we give a new argument for the comparison
of trace formulae for functions f = ®f, such that the transfer fi, of f, vanishes for
some u. This new argument uses the regular functions mentioned above to annihilate the
undesirable terms in the trace formula. It replaces the technique of [L1], which relies on the
computations of singular and weighted orbital integrals and the study of their asymptotic
behavior, and the correction technique of [Fgl3]. In [VI] this argument is pursued to give
a simple proof of the comparison of trace formulae for all test functions f. Thus in [IV]
we deal only with automorphic H-modules with an elliptic component, but in [VI] we deal
with all cuspidal H-modules.

The method of [VI] establishes by simple means trace formulae comparisons in other
rank one situations. This method may generalize to deal with groups of arbitrary rank
and give a simple proof of any trace formulae comparisons for general test functions, but
we do not do this here. It affords a simple proof of the base-change lifting for GL(2) (see
[Fgl2]), and its analogues for the quasi-split unitary groups U(2, F/F) and U(3, E/F). See
[Fu], where the automorphic and admissible representations of U(2), U(3) are classified, and
compared with those of the related general linear groups, and both rigidity and multiplicity
one theorems for U(2), U(3), are proven.

The approach of [Fu] — reducing the study of the representation theory of U(3, E/F) to
base-change lifting to GL(3, F) — was found by direct analogy with the techniques of the
present work. Shortly before [Fu3un| was written, reference [25] in Langlands [L2] claimed to
have established the endoscopic lifting from U(2) to U(3) by stabilizing the trace formula for
U(3) alone. But such a technique is conceptually insufficient for that purpose, as explained
in [Fu3ap], §4.6, p. 562.

1. APPROXIMATION

1.1. Lifting. Let G be a reductive group over a number field F' with an anisotropic center.
Let L = L(G(F)\G(A)) denote the space of slowly increasing functions 1 on G(F)\G(A)
with standard conditions of right invariance (see, e.g. [BJ], (4.2)). The group G(A) acts
on L by (r(g)y)(h) = ¥ (hg). An automorphic representation is an irreducible invariant
subquotient, in the sense of [BJ], (4.6), of L. Denote by Ly the subspace of all cuspidal
functions v in L. The space Ly decomposes as a direct sum of irreducible invariant repre-
sentations, called cuspidal. Every irreducible representation of G(A) factors as a restricted
product m = ®m, over all primes v of local admissible irreducible representations m,. For
almost all places m, is unramified.

Put G = PGL(3), H = Hy = SL(2), H, = PGL(2). By a discrete-series representation
of any of these groups we mean a cuspidal or one-dimensional automorphic representation.
The notion of local hftlng for unramlﬁed representatlons with respect to the dual-groups
homomorphisms Ag: H — G, Ay: Hy — G is defined in [IT], (1.6). It was generalized to
deal with any local representation and formulated in terms of characters in [II], (2.3) and
(2.6). We write m, = \;j(mi,) when m;, lifts to m, with respect to A;.
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1.1.1. Normalization. Let 7 = ®@m, be a o-invariant representation of G(A). Namely 7
is equivalent to the representation ?m(g) = m(og) of G(A). Then there exists an intertwining
operator A on the space of © with An(g)A~! = 7w(og) for all g in G(A). Assume that 7
is irreducible. Then by Schur’s lemma the operator A2, which intertwines 7 with itself,
is a scalar which we normalize to be equal to 1. Fix a nontrivial additive character ¢ of
Amod F. Denote by 1 the character of the upper triangular unipotent subgroup N(A),

defined by ¥ (n) = 9 (z + z), where
lzy
n= (o 1 z> .
001

Note that ¢¥(on) = 1(n). Assume that « is nondegenerate, namely it can be realized in a
space of (Whittaker) functions W on G(A) which satisfy W (ngk) = ¢(n)W (g) for all g in
G(A), n in N(A), and k in a compact open subgroup of G(A¢), depending on W; here Ay
denotes the ring of finite adeles; 7 acts by w(g)W (h) = W (hg). Then 7 is nondegenerate
and can be realized in the space of functions “W(g) = W(og), W in the space of m. We
take A to be the operator on the space of # which maps W to “W.

This gives a normalization of the intertwining operator A, which is also local in the
following sense. Each component m, of 7 is nondegenerate and can be realized in a space
of Whittaker functions W, (with Wy, (n,gyky) = 1y (1) Wy (gy), where 1, is the restriction
of ¥ to N, = N(F,)). Moreover, each W is a finite linear combination of products @W,;
where for almost all v the component W, is the (unique up to a scalar multiple) unramified
(i.e., right K, = G(R,)-invariant) Whittaker function. Now we can write A as a product
®A, over all places, where A, is the operator intertwining m, with “m,, which maps W, to
°W,. This is the normalization of the local operators used below. We put m,(0) = A,,
and 7, (f, x o) for the operator m,(f,)A,, when 7, is a nondegenerate representation.

In the special case when 7, is unramified, there exists a unique Whittaker function W,
in the space of m, with respect to 1, (provided v, is unramified), with W, (k,) = 1 for &, in
K, = G(R,). It is mapped by m,(c) = A, to W, which satisfies °W,(k,) = 1 for all k,
in K, since K, is o-invariant. Namely A, maps the unique K,-fixed vector W, in the space
of m, to the unique K,-fixed vector W, in the space of ?m,,, and we have °W, = W,,.

Hence A, acts as the identity on the K,-fixed vectors, and our local normalization is the
one used in the study of spherical functions in [IT], §1.2.

We take (o) to be the identity if = is the trivial representation of G(A). If

m=1(1;P,G) = {¢: G(A) — C; ¢(pg) = 62/*(p)$(9), g € G(A),p € P(A)}

is the G(A)-module normalizedly induced from the trivial representation of the maximal
parabolic subgroup P of G of type (2,1) (dp is the modular function of P), then the
conjugate representation ?7 is the induced I(1;? P, G) from the trivial representation of the
parabolic P of type (1,2). In this case we define w(o) by (7(0)¢)(g) = ¢(og).

1.2. Definition. The automorphic representation m; = Qm;,, of H;(A) (quasi-)lifts to the
automorphic representation @ = ®m, of G(A) if m, = A;(m;,) for (almost) all v.
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1.2.1. Example. Let m; = ®y, be an automorphic representation of H;(A). Let 7 = ®@m,
be the representation I(m;) of G(A) normalizedly induced from the representation m ® 1 of
its maximal parabolic subgroup P = M N. Note that the Levi factor M of P is isomorphic
to GL(2,A) and m; defines a representation of M which is trivial on the center. Then 7 is
irreducible, and also o-invariant, since (1) ?x is the representation I(71) induced from the
contragredient 71 of 7y, (2) 7, is equivalent to 71, being a representation of H; = PGL(2).
We have that m; quasi-lifts to 7 by virtue of [IT], (1.6).

1.2.2. Example. Let F' be a local or global field. Let K be a quadratic extension of F'.
Put Cg for the Weil group Wg x (it is isomorphic to K* if K is local, and to Ay /K>
if K is global). Put C} for the kernel of the norm map from Ck to Cp. Similarly we
have K' and Aj. Note that Ay /K' ~ Cj. The Weil group Wk, F is an extension of
Gal(K/F) by Ck. It can be described as the group generated by the z in Cx and 7 with 72
in Cr — Ng,/rCk, under the relation 7z = Z7; the bar indicates the action of the nontrivial
element of Gal(K/F).

Let 6 be a character of C'x. The projective two-dimensional induced representation
I(0) = Ind(0; Wk /K, Wk /) of Wk, in the dual group H= PGL(2,C) of H = SL(2) can
be realized as

Wk/xkinz — (6(02) 9(02)> Xz, T— (_01(1)) X T.

It depends only on the restriction of § of Cj. Denote by x the nontrivial (quadratic)
character of C'r whose kernel is Nk, rCk.

If F is local and 6 = 6 (6 is the character defined by 0(z) = 6(z) for all z), then there
is a character p of Cr with 6(z) = u(Nz) (Nz = 2Z). We define the representation 7(0)
of GL(2, F) associated with 6, or I(#), to be the induced representation I(u, pux). Also we
define the packet {mg} = {mo(#)} of representations of H(F') associated with I(f) to be

the set of irreducible subquotients of the representations (normalizedly) induced from the

character (g a§1> — X(a) of the Borel subgroup. It consists of two elements. In this case

{mo(6)} is independent of 6 since 0 is trivial on C}.

If F' is global, for almost all places v of F' the character 6 is unramified, and then at an
inert v we have 6, =1 on K. At v which splits in K/F the restriction of I(6) to Wx, /r,
is a direct sum of two characters, and this defines a representation induced from the Borel
subgroup, again denoted by 7 (6,) or {m(6,)} (a packet in the case of H(F,)). It is well
known (see, e.g., [LL]) that there exists an automorphic representation my(#) of SL(2, A)
whose components for (almost) all v are in the above {m(6,)}-

Applying the map Ay = Sym? to I, we get the representation

2= (0(2/2),1,0(2/2)) x 2z, T — (O 1 1) x T,

1 0

of Wg,p in G = SL(3,C). It is the direct sum of the two-dimensional representation
Ind(0(z/Z); Wk k, Wk r) and the one-dimensional representation x — x(z) of Wg/p,
where x is the quadratic character of W, associated with the quadratic extension K/F
by class field theory.



ON THE SYMMETRIC SQUARE: APPLICATIONS OF A TRACE FORMULA 9

This direct sum parametrizes the representation 7 of G(A) induced from the representa-
tion * x x of a maximal parabolic P. Here 7* = 7*(#’) is a GL(2)-module, where we put
0'(z) = 0(z/Z). The representation 7 is o-invariant, since “7 is the representation induced
from 7* x x~'. But x is of order two, and for our 7* of the form 7*(¢’), the contragredient
i* is 7* @ x ~ 7* [LL]. It follows from [II], (1.6) that 7 quasi-lifts to .

More generally, if 7y is an automorphic representation parametrized by a map p: Wg —
H and 7 is one parametrized by the composition Ag o p of p and Ag: H > G then it is
clear that my quasi-lifts to 7 upon restricting p to the local Weil group W, . But it is not
clear that given 7, there exists such 7w which is the quasi-lift of my. For this we need to use
the trace formula, which yields also local lifting at all places and global lifting.

1.3. Terms. To formulate the identity of traces of o-invariant representations in
L(G(F)\G(A)), in L(H(F)\H(A)) and L(H(F)\H1(A)), with which we study the lifting,
we now describe the terms which appear in it.

= ZHtrwv(fU X o).

7I'

This sum is taken over all equivalence classes of discrete-series (see (1.1)) representations
m = ®m, of G. The multiplicity one theorem for GL(3) is used here to write this sum
without multiplicities, as each equivalence class of 7 consists of a single representation.

= ZZHtrIv((WU(e/g);Xv);fv X J)'
K 6 wv

Here the first sum is over all quadratic extensions K of F', and x denotes the quadratic
character of F*\A* whose kernel is Nk ,r(A)). The second sum is over all characters
z — 0(2/Z) of Wik which are not of order 2, up to the equivalence 6 ~ 6.

= ZHU‘I«;(’O, Jo X U)'
n w

The sum is over unordered triples n = {x, ux, 1}, where x, p are characters of Wg,r of
order 2 (not 1), and x # p. The induced representation I(n) from the character n of the
Borel subgroup can also be described in the form I(7(6/6), x), where z — 6(z/Z) is as in I’
but of order 2, and then there exists a character y of Wg/p of order 2 with 6(z/Z) = u(2z).

= ZHtrﬂ'l(flv)a

and

ZHtrI 1y, 1); fo X 0).
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Both sums extend over the equivalence classes (consisting of a single element each) of the
discrete-series representations of H; = PGL(2).

To=3" m({mo}) [T belmou} o)
{mo} v

The sum ranges over almost all packets of discrete-series representations of H = SL(2). A
local packet {mq, } was defined in [II], (1.2). A global packet {my} is defined if we are given
a local packet P, for all v, which contains an unramified element 73, for almost all v. It
consists of all representations ®mg, with mg, in P, for all v and mg, = ng for almost all v. We
say that {mo} is a discrete-series packet if it contains an automorphic representation which
appears in the discrete-series, and a cuspidal packet if it contains a cuspidal representation.
The sum of Iy ranges over all discrete-series packets {mp} not of the form = (6). If {mo}
consists of the one-dimensional representation, put m({m}) = 1. It is shown in [LL], (6.4),
that each element in a cuspidal packet {m} not of the form 7 (0), is cuspidal. Moreover, if
m, and m( are two elements in such {7}, then their multiplicities m(n() and m(n()) in the
cuspidal spectrum Lo(H(F)\H(A)) are equal and denoted by m({mo}).

Io =2 T tr{mo(6)}(fou).
K 6 wv

K ranges over the quadratic extensions of F'. The second sum ranges over the characters
z — 0(z/Z) of Wk k whose order is not (1 or 2), up to the equivalence 6 ~ ~*. Implicit in
I and I is a result of [LL], (6.6), and (6.3) with G’ = H, A = Ar = 1 which asserts that
each member of {my(#)} appears in the discrete spectrum with multiplicity at most one.

=3 TLtrimo(0)}(fow).

{mwx-pux} v

The sum ranges over all packets {my} of H(A) of the form {m(0)}, where 0 is a character
of K*\A%X with (0/0)2 =1 but 0/ # 1, where K is a quadratic extension of F. Note that
K defines a character x of AX /F* of order 2, and since §/0 = 6/6 there exists a character
p of AX /F* of order 2 (in particular unitary) with 0(z/z) = u(2Zz), and p # x. The packet
mo(#) is uniquely determined by the unordered triple {u, x, ux} of quadratic characters.

1.3.1. Fix a representation m, of G(F,) for almost all v. The rigidity theorem for GL(3, A)
of [JS] implies that each of I, I, I' and I" consists of at most one entry = with the above
components for almost all v, and, moreover, at most one of the four terms has such an
entry.

1.4. Lemma. Let F be a local field. Suppose m = I(n', ) is a o-invariant representa-
tion of G(F) induced from a mazimal parabolic subgroup, where ' is a square-integrable
representation of the 2 X 2 factor and p is a unitary character. Then either p =1 and '
is a representation ™ of Hy(F), or p is a character of order 2 and w' is a representation
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of the form w(0/0) of GL(2, F), where 0 is a character of the quadratic extension K of F
determined by p.

Remark. The lemma and its proof are valid also in the case where F' is global and 7 is an
automorphic representation of G(A).

Proof. By definition of induction °r is I(#’, u~1), where %’ is the contragredient of 7’. Since
I(n', ) is tempered, the square-integrable data (n’, 1) is uniquely determined. Hence, as
I(7', ) is equivalent to I(#',u~1), our 7’ is equivalent to #’ and p = p~!. The central
character of 7/ is u = p~! since 7 is a representation of PGL(3). If y = 1 then 7’ is a
representation of GL(2, F') with a trivial central character. If p # 1, since #' ~ 7’ ® p we
have 7’ ~ 7’®pu. This implies (by [LL]) that 7’ is parametrized by an induced representation
Ind(0'; Wi, Wg) of the Weil group Wg. The central character of «'(0') is p - 0’| px, where
0'| x denotes the restriction of the character §’ of K* to F*. On the other hand, this
central character is equal to u. Hence ' =1 on F'*, and there exists a character # on K*
with 6'(2) = 0(z/Z) (z in K*), as required. O

1.5. Regularity. Let F' be a nonarchimedean local field, n a positive integer, y a unitary

character of Ag(R) = {(a,a™');|a| = 1}; we denote by (a,b) the diagonal matrix (g 2).

We write H,G for H(F), G(F), etc. Recall that we write ®(v,f) or ®¢(-y) for the orbital
integral of f at 7, and F¢(7y) or F(v,f) for A(y)®(v,f). Let ™ be a local uniformizer of F'.

Definition. Let S be the open closed set of v in H which are conjugate to (ax™,a™'m~™)
in H, where a lies in R*. The function fj is called regular of type (n, u) if fo is supported
on S and F((an™,a=1n~"), fo) = u(a)~? for every a in R*. When pu = 1 we say that f; is
regular of type n.

Analogous definition applies to f; and f. For example, we say that f is regular of type
(n,p) if the value of f at 0 in G is zero unless § is o-conjugate to (am™,1,1), and then

F((a’lr", L, 1), f) = N(a)_l'

1.5.1. Modules of coinvariants [BZ2]. Let (m,V) be an admissible G-module, N the
upper triangular subgroup, Vi the quotient of V' by the span of n-v — v (n in N, v in V).
It is an A-module, as A normalizes N. The associated representation of A is denoted by
'mn, and we put w7y = 6~/2'ny, where 6(a,b,c) = |a/c|?. Since 7 is o-invariant and N
is o-invariant, Vy is an A x (o)-module, and 7y is a o-invariant representation of A. It
is an admissible representation, studied in [BZ2]. The function § is introduced to preserve
unitarity [BZ2], p. 444, last line. Its character on A X o is denoted by x(7mx), so that

trmy(f x o) = /A £(a)(x(mn)) (a) da,

for any smooth compactly supported function f on A. If m; are all of the irreducible sub-
quotients of 7y (repeated with multiplicities) which are equivalent to their o-conjugates,
then tromy = ) . trm. The Deligne-Casselman theorem [C1] easily generalizes to our
case, and asserts that x(0) = x('mn)(d) (these are the unnormalized characters), hence
(Axz)(0) = (x(7n))(9), for § = (ab,1,b) with |a] < 1.
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Similar definitions hold for representations mg of H. Again N is the upper triangular
subgroup (of H), 'moy is defined as above and so is mon, where d(a,a™!) = |a|?>. The
Theorem of [C1], which is stated for the unnormalized characters, implies that (Axa,)(7y) =
(x(mon))(7) at v = (a,a™ ") with |a| < 1. For any function fo on H put

fon () = 62(7) /

/fo(k_lfynk)chdk.
H(R) JN

1.5.2. Computation. Let f; be a regular function of type (n, ), and 7y an irreducible
representation of H. Then, using the Weyl integration formula (see [II]), we have

1

trmo(fo) =trmon (fon) = =

5 | x(mon)@F(a fo)

Ao

- / x(mow) (am™, a= o))~ (a) do.
Ap(R)

If 4 is ramified, that is, p # 1, then trmo(fp) vanishes unless g is a subquotient of the
induced representation Iy(p’) of H, in the notations of [II], (2.8), where p’ is a character of
A ~ F* with g/ = pp on Ap(R) ~ R*. Then

(x(mon))(a,a™") = p'(a) + 4/ (@),

and trmo(fo) is equal to (u')(w™) unless p? = 1 on Ag(R). If y?> = 1 but p'? # 1 then
Iy(y') is irreducible and trmy(fo) is equal to 2™ + 2~™, where z = p/(x™). If u'> = 1 but
p' # 1 then Iy(p') is reducible and tr mo(fo) = p/ (™), where 7 is any of the two irreducible
quotients of Io(u').

Suppose that 4 = 1. In this case, if trmo(fo) # 0 then my is a constituent of Iy(u')
where ' is unramified. Hence 7y has a nonzero vector fixed under the action of an Iwahori
subgroup, by [Bo3], Lemma 4.7. We have tr(Iy(u))(fo) = p/(7™) + p/(7™)~ !, and this
is the value of trmy(fo) when Iy(p') is irreducible. Reducibility occurs when z = p/(7)
is equal to ¢ = |m|~!, ¢7! or —1. If z = q or ¢~!, then the composition series of Io(u')
consists of the trivial representation 1 and the special representation sp. Then tr 1(fy) = ¢”
and trsp(fo) = ¢~ ™. If z = —1 then Iy(y') is the direct sum of two irreducibles 7y, and
trmo(fo) = (—1)™ for each of them.

1.5.3. Twisted computation. Let f be a regular function of type (n,u), and 7 a o-
invariant irreducible representation of G. The twisted Weyl integration formula (see [II])
implies that
ol x o) = [ (xlm)((en”, 1) x o) (@)
RX

and this does not vanish only when = is a subquotient of a representation I(y’) of G induced
from a character p' = (p1, 2, o) of A, such that there is a character 'y of F* with 'y = u
on R* and p/(a,b,¢) = pi(a)ps(b)us(c) is equal to ‘u(a/c). Namely p/ = ('u,1,'n ).
As in [II], x(7n)((a,b,c) x o) is the sum of ‘u(a/c) and 'u(c/a). Put z = 'u(x™). Then
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tr I(u')(f x o) is equal to 2™, unless y? = 1 when it is equal to 2™ + 2™, These are the
values of trw(f x o) if = lies in irreducible I(y'). But the list of (1.4) and the reducibility
results of [BZ2] imply that if I(y') is (o-invariant and) reducible, then I(p') is I(v~1,1,v) or
I(xv=12,1,xv'/?), where x is a character of F* with x? = 1, and v denotes the character
v(z) = |z|. Then =1 or p = x (respectively), and tr I (') (f x o) = 2" +2~™, and z equals
q or ¢*/?x(m); x(m) equals 1 or —1. In the first case, where z = ¢, the composition series
of I(y') consists of (1) the trivial representation 1, and tr1(f x o) = ¢™; (2) the Steinberg
representation st, and trst(f xo) = ¢~™; and some other non-o-invariant irreducibles. In the
second case, where z = x(m)q'/2, the composition series of I(x') consists of two o-invariant
irreducibles. Let sp(x) and 1(x) denote the special and one-dimensional subquotients of
the induced representation I(v'/2,v=1/2) ® x of GL(2). Let P denote a maximal proper
parabolic subgroup of G; its Levi factor is isomorphic to GL(2). Then the composition
series of I(u') consists of the irreducibles Ip(sp(x),1) and Ip(1(x), 1) induced from P, and

tr(Ip(sp(x),1))(f x o) = 27", tr(Ip(1(x),1))(f x o) = 2".

It is clear that when p = 1 and tr7(f x o) # 0, then the irreducible 7 has a vector fixed
by the action of an Iwahori subgroup, again by [Bo3|, Lemma 4.7.

1.6. Comparison. Let F' be a global field. Suppose that f = ®f, and f; = Qfi,
are products of smooth compactly supported functions f, and f;, on G(F,) and H;(F,).
Suppose f, and f;, are the unit elements f2 and f2 in the Hecke algebras H and H; [IT],
(1.2) of G(F,) and H;(F,) for almost all v. Suppose that fi, = AI(f,) for all v in the
notations of [I], §3, namely ®% (9) = ®% (v) whenever vy = NJ, and a similar statement
of matching orbital integrals for fy,. It is shown in [I], §3 that for each f, there exists f;,
and for each f;, there exists f, with fi, = Af(f,), and in [V] that £, = A§(f0) and that
12 = A5(f9). To show what results can be obtained had we not proved that f2 = A}(f9)
(this might be useful in other situations), we make the following restriction on f (which is
removed in [VI]). Denote by ®}° the unstable orbital integral of f, defined in [I], (3.5).

1.6.1. Restriction. There is a place u' of F' such that ®¥*(6) = 0 for all o-regular ¢ in
G(F,) at v = u'; note that u’' can be archimedean or nonarchimedean.

Recall that ¢ is called o-regular (resp. o-elliptic, o-split) if vy = N§ is regular (resp.
elliptic, split) in H(F,), where N is the norm map defined in [I].

Under this restriction we can choose fi, to be 0, hence f; = ®f1, to be 0, and I; = 0.
Consequently, we do not need to know that f, = \i(f2) for almost all v.

Fix a finite place u (# u’) of F. Fix f,, fo, for all v # u to be matching as in (1.6) such
that (1.6.1) is satisfied at u'. Put f* = Qf,, f§ = ®fov (product over v # u). Proposition
3.5 of [III] asserts

1.6.2. Lemma. There exists an absolutely integrable function d(z) on the unit circle in
C*, and a positive integer n' depending on f*, f¥, such that if f, fou are regular of type
n, n>n', then

I+ 30+ 31"+ 31— Iy — 315 — 10 — 31, = J,
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where

J= / d2)( 42" %z |2 =1

Indeed, tr Io(u, fu) = 2™ + 27", where z = p(mr).

Remark. As the one dimensional representation which appears in Iy lifts to the one dimen-
sional representation in I, we may assume that I and I consist of cuspidal representations
only.

1.6.3. Proposition. J is equal to 0.
Proof. The sum of the I’s on the left of J can be written as

Z (2 + 27™) 4 aoq™ + a1q7" + a2q™? + azg ™™ + as(—¢"H)" + as(—¢ )",

%

where a; and c; are complex numbers, the sum is absolutely convergent, and c; is a sum
of tr%(f* X ), tr ¢ (fY) etc. with coefficient 1,3 or 7, over the ©“,... such that m =
™ @ Ty,... appears in the sum of I,..., where m, = I(y') determines z; as in (1.5.2),
(1.5.3) (with = 1). Here z; # ¢q,q~ %, ¢"/2, ¢~ Y/2, —¢*/2, —q~1/2.

We shall use the following comments. All representations in the trace formula have
unitary components. Hence each z; lies in the compact subset X’ = X'(gq) in C which is
the union of the unit circle |z| = 1 and the real segments ¢7! < z < gand ¢! < —2 < q.
Let X = X(q) be the quotient of X’ by the equivalence relation z=! ~ 2. Then X is a
compact Hausdorff space. Let B = B(q) be the space spanned over C by the functions
fn(z) = 2"+2"™ on X, where n > 0. It is closed under multiplication, contains the scalars,
and separates points of X. Moreover, if f lies in B then its complex conjugate f does too.
Hence the Stone-Weierstrass theorem implies the following

Lemma. B is dense in the sup norm in the space of complex-valued continuous functions
on X.

Put F,(2) = ¢*fns3(2) — ¢fnt2(2) — ¢fns1(2) + fn(z). Since the sum over i and the
integral J are absolutely convergent, (1.6.2) implies that for every n > n' we have

S Fa(m) + a0Fa(0) + aFa(a?) + aFa(~a?) = / d(2)F (2) d* 2.

Had we replaced g by ¢~! in the definition ofF,,(2), the ag, as, as here would be replaced

by a1,as3,as. We write the left side here in the form )., b;Fy,(2;), where now the z; are
distinct elements in X. The sum ranges over all 4 > 0 such that b; # 0. Our aim is to show
that the sum is empty. Suppose that it is not empty.

We first show that |z;| = 1 for all ¢. If this is false, we may assume that zp > 1. Let
n” > n’ be an odd integer. For every n > 0 we obtain from (1.6.2) the identity

S BEL ) ) = [ AR @M &

i>0
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Writing #; for the distinct 23", and # for 2", we obtain (for every n > 0)

D Vifalty) = /|t ~ d' () fo(t) . ()

>0

The sum ranges over distinct points of X (¢ ). We have b, = boFnn(z0) # 0 since
Foi(z) # 0 and 23" # 23" for all z;. We may assume that b) = 1. The absolute
convergence of the sum and integral implies that there is ¢ > 0 with fl H=1 |d'(t)| dt < e,
and for each £ > 0 there is m > 0 so that ) .. [bi[ < e. The Lemma implies that there is
f in B(q?’””) with f(t9) = 1 which is bounded by 2 on X(q?’"”), whose value at t1,...,tm,
and on |t| = 1 is very small. Evaluating the linear function () at f, which is a finite linear
combination of f,’s we conclude that by = b, = 0.

We know that |z;| = 1 for all 7. Let S be the quotient of the unit circle S’ by the relation
z ~ z~ L. In particular, ao,...,as are zero, and we can write the identity of (1.6.2) in the
form

S bifal) = [ A1) 47 (<))

i>0

z and z; are in S. Arguing as above we have ¢ > 0 with f|z|:1 ld(z)|dz < ¢, and m > 0
with Y .o |bi| < e. Moreover there is f in B with f(z9) = 1 which is bounded by 2 on S,
whose value outside of a small neighborhood of 2y is small. The only problem is that (xx)
holds only when n > n’. But this is easy to overcome. Take k larger than the sum of n’
and the degree of f, such that 2% is close to one. Then |z* 4+ 27%| < 2 on S, and we can
apply (*+) with f,, replaced by g(z) = f(2)(2* + 2z=%) to obtain a contradiction to by # 0.
This establishes the proposition. O

1.7. Proposition. Let V be a finite set of places of F including the archimedean places.
Fix a conjugacy class t, in H for all v outside V. For any choice of matching f, and fo,
(= A5(fv)) forv in V which satisfy restriction (1.6.1) we have

I+ 37+ 1"+ 11 =T+ 315+ 110 + 114, (1.7.1)
where I, 1y, ... are defined by products over v in V only, the sums in I, Iy, ... are taken
only over m, {mp},... whose component at v outside V is unramified and parametrized by

the conjugacy class Ao(t,) in G ort, in H.

Proof. The proof of (1.6.2) applied inductively to the elements in a set U of places outside
V, implies that >, ¢; ] fo, (tiv) = 0, where the product ranges over v outside V U U, the
sum is over all sequences {t;,; v outside V'} in H with tiw =ty for v in U, and ¢; is defined by
the difference of the left and right sides of (1.7.1) (corresponding to the sequence {t;,}). We
have to show that ¢; = 0 for all 4. Suppose ¢y # 0. Choose a positive m with Y |¢;| < 3|co
(sum over 7 > m), and a set U disjoint from V so that for each 1 < i < m there is u in U
with t;,, # t,. Applying (*) with this U and with fy, =1 (thus fo, = f3,) for all v outside
V U U, we obtain a contradiction which proves the proposition. [l
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1.7.2. Theorem. Under the conditions of (1.7) at most one of the sums I,I' 1" I} is
nonempty, and consists of a single summand.

Proof. This follows from the rigidity theorem of [JS]. O

1.7.3. Corollary. Fiz a nonarchimedean u in 'V and an irreducible H,-module w(,, which
is not supercuspidal. Then (1.7.1) holds where the products in I, Iy,... range only over
v # u inV, and the sums in I, Iy, ... are the subsums of those specified in (1.7) where
{mo} has the above component{r(,} atu, and © has component 7, which lies in the induced
representation of Gy, which is the lift of the induced representation Io(p') of Hy containing
Ty, -

Proof. Denote by p the restriction of u' to 'RX. The case of p = 1 is dealt with in
Proposition 1.6.2 (or (1.7)). That of y? = 1 is the same. If p? # 1 let f}, be a regular
function of type (n,p), and consider fo, = fb, + fb,; note that f4, is of type (n,u1).
Then tr moy (fou) vanishes unless g, is irreducible and induced Io('p) from a character 'y of
EX = Ag, whose restriction to R is p, then tr mp, (fou) equals 2™ +2z~™ for a suitable z. As
the same observations apply on the twisted side, applying the Stone-Weierstrass theorem
as in (1.6.2) the corollary follows. O

It is convenient to rewrite (1.7.1) in the form

Zn(ﬂ) Htrﬂ'v(fv X o) = Z n({mo}) Htl"{ﬂbu}(fm;)- (1.7.4)
v {mo} v

™

On the left the sum ranges over a set of o-invariant automorphic representations of G(A),
not necessarily in the discrete spectrum, specified in (1.3). The sum on the right is over
automorphic packets {mo} of H(A). The coefficients are either 1, 7

3, 7 or integers. The
products are taken over v in V, as specified in (1.7) and (1.7.3).

1.7.5. Corollary. Suppose w in V is such that each my, in (1.7.4) is a lift of some {moy }-
Fiz a packet {m{,,}. Then (1.7.4) (or (1.7.1)) remains valid if w is omitted from the products
over v, and the sums are taken over {my} with component {n{,,} at w and = with components

Mo({7h,}) at w.

Proof. Our assumption implies that (1.7.1) can be expressed in the form

Z c({mow}) tr{mow } (fow) = 0,
{mow}

since it is shown in [I], §3, that for each fy,, there is a matching f,, (with fo, = A\§(fw))- If
{mow } contains a square-integrable representation then we take fy,, to be a pseudo-coefficient
and conclude that the corresponding coefficient is zero. Hence we may assume that each
{mow} in the sum is the set of (one or two) constituents of an induced representation Ig (i, ).
Since the sum is absolutely convergent, the argument of (1.6.3) implies that the coefficients
are all zero, as required. O
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1.7.6. Lemma. (1) The conclusion of (1.7.5) holds at a complex place w of F.

(2) If F is totally imaginary then (1.7.1) holds where all archimedean places are omitted

(in the sense of (1.7.5)) from V; then the sums in (1.7.4) are finite for a fized choice of
fov, fo (v inV, v # c0).
Proof. (1) Let m be an irreducible admissible o-invariant representation of G(C) which
appears as a component at a complex place of an automorphic representation on the left of
(1.7.4). Since the trivial representation of H(A) lifts to the trivial representation of G(A), we
may assume that either (i) 7 is nondegenerate, in which case it is induced from a character
of a Borel subgroup, hence it is the lift of an induced mp; here we use the description [Vo],
Theorem 6.2(f), of nondegenerate (= large) representations of G(C); or (ii) = is induced
from the trivial representation of a maximal proper parabolic subgroup. Note that C* has
no characters of order two. Indeed, any automorphic representation of G(A) which appears
in I, I' or I" and is not one-dimensional, is either nondegenerate (and each of its local
components is nondegenerate), or it is induced from a one-dimensional representation of a
maximal parabolic subgroup. In case (ii) 7 is a constituent of a representation 7’ of G(C)
induced from a Borel subgroup. Well-known results concerning GL(2, C)-modules assert
that 7/ has a composition series of length two which consists of the irreducible 7 and a G(C)-
module 7" Which is also induced from a Borel subgroup. 7’ is the lift of 7(, and 7" of =y,
where (), m(j are induced representations of H(C). Then trn(f x o) = trn(fo) — tr «{f (fo)
for all matching fo, f, and (1.7.5) applies. Namely in case (ii) we have not verified the
assumption of (1.7.5) (which is false since 7 is neither Ao({7(}) nor Ao({m(}), but showed
that the proof of (1.7.5) applies nevertheless. Note that for each fy on H(C) there is a
matching f on G(C), e.g. by [I], §3.

For (2), the sums are finite by a theorem [BJ], 4.3(i), p. 195, which asserts that there
are only finitely many automorphic representations 7w of G(A) with a fixed infinitesimal
character and a C-fixed vector; C' is an open compact subgroup of G(Ay), and Ay denotes
the finite adeles. The conditions of this theorem are satisfied in our case since we fixed the

archimedean components of the m and the my, and we choose f, (v # o00) to be invariant
under such fixed C. O

1.8. Density. For a global function f whose components at ', u” are supported on the
o-elliptic regular set, the twisted trace formula takes the form (see [I1I], (3.2.5)).

T+ 30+ 31"+ 30 =) ¢y®4(0) (1.8.1)
{s}
The sum is over all conjugacy classes of elements § in G(F') whose norm v = N¢ in H(F)

is elliptic regular. The c, are volume factors, see [III], (1.2.1). The sum is finite. With
analogous conditions on fj, the stable trace formula for H takes the form

IO + %IO lIII — chq)st
{~}

The sum is over all stable conjugacy classes of elliptic regular elements in H(F'). The c,
are as above and the sum is again finite. The following is a twisted analogue of Kazhdan
[K2].
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Proposition. Suppose that tr m,(f, xX0o) = 0 for all admissible w,, (which are the component
at u of the m which make a contribution (1.8.1)). Then the twisted orbital integral ®¢, (0)
of fu is 0 for all 6 in G(F,).

Proof. By virtue of [I], §3 it suffices to consider only o-regular 0. Since G(F') is dense in
G(F,) and @y, (9) is smooth, it suffices to show that in each neighborhood of ¢ in G(F,)
there exists a o-regular §g in G(F') with ®¢,(dp) = 0. We choose such dy which is o-elliptic
at the places u’, u”. We choose f whose components at u/, u” are supported on the o-
regular elliptic set, so that (1.8.1) holds, such that the component of f at u is our f,, and
®y,(d0) # 0 for all v # u. The assumption of the lemma implies that }_ 5 cy @ () = 0.
The sum ranges over all o-conjugacy classes of o-elliptic regular § in G(F). Since f is
compactly supported it is clear that the eigenvalues of N¢ lie in a finite set (depending on
f). These eigenvalues determine the stable o-conjugacy class of §. By [I], Corollary 1.5, we
may restrict the support of f% = gy fy to have ®¢u(d) = 0 for all § in the sum unless
d is o-conjugate to . Since Psu(dp) # 0 and P¢(dg) = 0, and ¢, # 0, it follows that
@4, (60) = 0, as required. O

We shall now adapt the above techniques to show that corresponding spherical functions
have matching stable orbital integrals. However we do not use this result in our work. Our
method is new. It is based on the usage of regular functions. {The present part was written
in 1985. Its method was extended in [FK1] and [Fstbc] to deal with groups of general rank.
As noted in [Freg], p. 3, there is a gap in [Fstbc]. It is filled in an appendix of the paper [VI],
and by Labesse [L], Proposition 8, p. 525}. We checked — but did not write up — that this
result can also be proven by a method of Clozel, which is also global (both Clozel’s and my
techniques are motivated by the global technique of Kazhdan [K2|, Appendix), but relies
instead on properties of spherical, not Iwahori, functions. In fact Clozel writes in [Cl], p.
151, line 3, that his method is the one used in this work. But his assertion is wrong, and in
more than one sense. Langlands probably proved the matching statement by combinatorics
on buildings, in an unpublished long and difficult set of notes. In any case we believe that
our method is the simplest available.

As in [I], (3.1), and [II], we write A§(f) = fo if f and fy are matching (have matching
stable orbital integrals), and 5\0( f) = foif f and fo are corresponding spherical functions
(see [I1], §1; they satisfy tr w(f x o) = trmo(fo) for all unramified my and 7 with 7 = Ag(mp)).

1.8.2. Proposition. For each f in H we have X§(f) = fo ifj\(’g(f) = fo-

Proof. As in (1.8) it suffices to consider a o-regular 0y in G(F') which is o-elliptic at v/,
u”, choose f* = ®f, (v # u) whose components at v, u” satisfy (1.6.1) and are supported
on the o-regular set, with ®%¢(dy, f*) # 0. The component at u is taken to be a regular
function of any type n. The function fo = f§ ® fo. is taken in a parallel fashion, so that f,
fo have matching orbital integrals. Hence

D@ (8, fo) = Y ey (6, ), (1.8.3)

where the sums over stable conjugacy classes are finite. Recall from [I], §1, that the norm
map is a bijection from the set of stable o-conjugacy classes in G(F), to the set of stable



ON THE SYMMETRIC SQUARE: APPLICATIONS OF A TRACE FORMULA 19

conjugacy classes in H(F'). By (1.8.1) we obtain (1.7.1), which we write as in the proof of
(1.6.2) in the form

Zc(wou) tr oy (fou) =0 or Zci(z? +2;")=0. (1.8.4)

As in (1.6.2) we conclude that the coefficients ¢;, or ¢(m, ), are zero. In particular we can
take the subsum in (1.8.4) over spherical 7, only, and it is equal to zero also when fo,, fu
are replaced by corresponding spherical functions as in our proposition. Hence we obtain
(1.8.3) where fo,, fu are now corresponding spherical functions. As the sums are finite we
can reduce the support of the component fy,, so that the only entry to the sums in (1.8.3)
is dp. Indeed, a stable o-conjugacy class § is determined by the eigenvalues of do (). Since
D5t (§p, f*) is nonzero by construction, we have ®%¢(dg, f,) = ®%*(Ndo, fo.) for all o-regular
do (in G(F), hence in G(F,)), as asserted. O

1.9. Suppose that F'islocal, G is a reductive group over F, 7 is an admissible representation
of G, C is a compact open subgroup of F'*, f is the quotient of the characteristic function
of C by the volume |C| of C with respect to the measure which appears in the definition of

trm(f).

Lemma. trn(f) is equal to the dimension of the space of C-fixed vectors in w, namely it
1S a nonnegative integer.

Proof. mw(f) is the projection on the space of C-fixed vectors in . O

1.9.1. Definition. Let J be a reductive group over a local field, 7 a square-integrable
J-module, and f a smooth compactly supported (modulo center) function on J. Then f is
called a pseudo-coefficient of 7 if trw(f) = 1 and tr7’(f) = 0 for any irreducible tempered
J-module 7’ inequivalent to .

The existence of pseudo-coefficients for H = SL(2) is well known. Their existence for
any p-adic group is proven in Kazhdan [K2], Theorem K.

It is illuminating to record here some results of [LL] concerning the sum Iy, or the discrete
spectrum of L(H(F)\H(A)).

1.9.2. Lemma. FEvery automorphic (cuspidal) representation mo of H(A) is contained
in an automorphic (cuspidal) representation © of GL(2,A). If © and &' contain my then
7' = w® 7 for a character w of AX. If & contains © and ©' then ©' = ©" for some h in

GL(2,A), where ©"(g) = n(h~1gh).

Proof. The first assertion follows from [LL], Lemma 6.2, and the other two are proper-
ties of induction, verified in [LL], Lemmas 2.4, 2.5. Let us recall an argument for the
first claim. Extend my to an automorphic representation of H'(A), H' = ZH, by ex-
tending the central character of my to Z(F)\Z(A); Z denotes here the center of GL(2).
Put @ = Ind(Vy,; H'(A), H(A)), H = GL(2). Here the space Vy, of m is a space of
automorphic forms. Define a linear functional I: V, — C by l(¢) = 9(1). Note that
Wm(y)m(9)Y) = ¥(vg) = ¥(g9) = l(n(g9)v) for all v in H'(F) since 9 is automorphic. It

suffices to construct an embedding of the space Vz of 7 into L(H(F)\H(A)). The induced
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representation 7 operates by right translation in the space Vi of functions f: H (A) = Vg,
which are compactly supported modulo H'(A) and satisfy f(sg) = mo(s)f(g) (s in H'(A),
g in H(A)). Define a functional L on the space of & by

up= 3 1r(i9))-

u€FX JFx2

The sum converges since f is compactly supported modulo H'(A), and as L(7(g)f) =

SIS (g (1)) 9)) and [ is H'(F)-invariant, it follows that L is H(F)-invariant. The map

intertwining Vi and L(H(F)\H(A)) is defined by f — ¢7(g) = L(7(g)f). It is clearly
nonzero. The induced representation 7 is reducible, and we deduce that one of its irreducible
components is automorphic. It is clear that the restriction of a cuspidal 7 to H(A) is also
cuspidal. O

2. MAIN THEOREMS

Let F' be a global field. Fix a place u to be nonarchimedean, unless otherwise specified.
Put H = SL(2), H, = PGL(2), G = PGL(3). An irreducible o-invariant G,,-module 7, is
called o-elliptic if its twisted character is not identically zero on the o-elliptic regular set.

2.1. Proposition. Given a supercuspidal m, there exists (i) a o-invariant o-stable o-
elliptic nondegenerate tempered m,, which is not Steinberg, and (ii) for each o, a nonneg-
ative integer n(moy,), with n(mny,) # 0, which depends only on the packet of my,, and which
s equal to 0 if mo, 1S one-dimensional or special, such that for all matching f,, fo. we have

tr 7y (fu X 0) = Zn(mu) tr{mou } (fou)- (2.1.1)

The sum is absolutely convergent. Given an open compact subgroup C, of H, = H(F,),
there are only finitely many terms my, in the sum which have nonzero C,-fixed vector.

Remark. (2.1.1) holds of course when =, is special. Then =, is Steinberg, and the sum
consists of =, alone.

Proof. We may assume that F' is totally imaginary. Let 7, be a cuspidal representation of
H (A) which has the component 7y, at u, its component at another finite place w is special,
and it is unramified at any other finite place. It is easy to construct such 7, using the trace
formula for H, and a function fy = ® fo,, whose component at u is a matrix coefficient of
Tow, at w it is a pseudo-coefficient of the special representation, at the other finite places it
is the unit element of the Hecke algebra, and at the infinite places the component has small
compact support near the identity.

Apply Proposition 1.7 with 7, and the set V' = {u, w}. Take fo,, to be a pseudo-coefficient
of the special representation. Hence all terms on the right of (1.7.1) belong to Iy. We obtain
the right side of (2.1.1). If we take fo, to be a matrix-coefficient of 7{,, we obtain a positive
integer (the multiplicity of 7, in the cuspidal spectrum of H(A)) on the right of (1.7.1).
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Hence there exists a (necessarily unique under the conditions of (1.7)) term = on the left
of (1.7.1). If f,, is a function which satisfies (1.6.1) and matches a pseudo-coefficient of the
special representation, then (X, , Xst, e = tT Tw(fw X o) # 0 by the orthogonality relations
[IT], (3.4), and the component of 7 at w is Steinberg. Hence 7 is a o-invariant cuspidal
representation in I of (1.7.1), and (2.1.1) follows. Note that =, is o-stable since the right
side depends only on fq,. Moreover, 7, is nondegenerate since 7 is cuspidal. Consequently
m, is tempered, since it is o-elliptic and nondegenerate.

Further, m, is not Steinberg. Indeed, if it is, then it is the lift of the special 7(,, and
(2.1.1) becomes tr 7, (fou) = D n(mou) tr{mow } (fou). Taking fo, to be a matrix-coefficient
of 7}, we conclude that n(n(,) is 0. Moreover, no 7y, is special. Indeed, taking fo, to be
a pseudo-coefficient of 7y, we obtain n(mg,) on the right of (2.1.1), and on the left 0, by
the twisted orthogonality relations of [II], Lemma 3.6.1.

The final claim follows from Harish-Chandra’s theorem quoted in (1.7.6). O

Let K, be a quadratic field extension of F,; denote by K! the group of elements in K,
whose norm in F), is one (as in (1.2.2)).

2.2. Proposition. Given a character 60, of C’Il<u = K} there are nonnegative integers
n(moy) with n(mo(0y)) =1, and a complex number ¢ # 0, with

ctrm,(fu x o) =Y n(moy) tr{mou}(fou), (2.2.1)

for matching fou, fu, where w, = I(7*(6,), xu) in the notations of (1.2.2). The sum is
absolutely convergent and includes neither the trivial nor the special representation.

Remark. Here u may be a real place.

Proof. 1f u is nonarchimedean we work with a totally imaginary F'. If u is real take F' = Q
and imaginary quadratic K. The claim is clear if (1) 6,, = 1, since then my(6,,) is an induced
representation, ¢ = 1 and there is only one term in the sum, or (2) u splits in K/F. If
0, # 1 we fix a finite inert place w # u and a character 0, of K! with 02 # 1. Let 0 be a
character of C'} which has the above components at u and w, and all its components at the
finite v # u, w are unramified, except perhaps at a place v’ # u, w which splits in K if u is
real. It is easy to construct such # using the trace (or Poisson summation) formula for the
pair C} and K1, and a function f = ®f, with f(1) # 0; with f, = 04; fu = 0w; fo, is the
characteristic function of the maximal compact subgroup of K} for all finite v # u, w,v';
and f, supported on a small compact neighborhood of 1 if v is complex (when u is finite)
or v is v’ (if u is real).

Since 02, # 1 we have 6% # 1. We apply Proposition 1.7 with = = I(w(6/6),x) in I' on
the left. Then {mo(6)} appears on the right, in 1. To obtain (2.2.1) we apply the argument
of (1.7.5) at all split places (including v’ or the complex places), and take fo,, to be a matrix
coefficient of a member of the packet {m(6y)}. This explains the appearance of ¢ # 0. We
may choose f,, to satisfy (1.6.1). O
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2.3. Proposition. Only square-integrable my appear in the sum of (2.1.1). Moreover, the
sum is finite. The same conclusion holds for (2.2.1) if u is real and 0,, # 1.

Proof. Recall that since the left side of (2.1.1) depends only on the stable orbital integrals
of f,, namely on fo,, it is clear that the character y, of m, is a o-stable function, namely
it depends only on the stable o-conjugacy classes. We now use the (immediate) twisted
analogue of [K2], Theorems C and D. Then there exists a function f;, whose orbital integrals
vanish on the o-split regular set, and '®;/ (6) = x,(d) on the o-elliptic regular set. We
write '® ¢, for the function on the o-elliptic regular set whose value at 0 is |T'|®y, (6), where
|T'| is the volume of the centralizer of N¢ in H(F,). By [I], §3, there is a function f],
matching f,. We can choose f{, to have vanishing unstable orbital integrals. Moreover,
there exist finitely many tempered elliptic 7., and nonzero complex numbers ¢(mg,), o
that '@z (v) = - c(Tou) Xmo, (7) on the regular elliptic set. Consequently

Z C('R'Ou) tr WOu(fOu) = Z n(ﬂ'Ou) tr{ﬂ-Ou}(fOu)a

for all fo, whose orbital integrals vanish on the regular split set. Evaluating both sides at
a pseudocoefficient of any square-integrable representation we conclude that there are only
finitely many elliptic (square-integrable or trivial) representations on the right of (2.1.1).
It remains to show that only square-integrable my, appear in (2.1.1). In the nonar-
chimedean case the {m,} on the right are packets which consist either of supercuspidal
Hy,-modules, or of the irreducible constituents in the composition series of an induced
Hy,-module. Fix a character p of Ag(R,) ~ RY, and let fy, be an (n, p)-regular function
with n > 1. Then tr{moy}(fou + fo,) vanishes unless {mg,} is the set of constituents of
Io(p') with g/ = pon R, where its value is 2™ + 27" (times two if u? = 1), where z = p/(m).
Hence the right side takes the form ), c;(2' + z; ). The sum is absolutely convergent,
and |z;| = 1, or z; = z;, and ¢! < |2 < g, (by unitarity). It is also clear from the last
assertion of Proposition 2.1 that this sum is finite. On the left, since m, is o-elliptic and
nondegenerate, if the value of trm,(f, X o) is not zero then m, is induced from the special

representation of a maximal parabolic subgroup of G, and tr m, (f, X o) is equal to g, n/2,
Applying the Stone-Weierstrass theorem as in (1.6.3) we conclude that ¢; = 0 for all i.
In particular each packet {mo,} on the right consists of supercuspidals, the sum is finite,
and 7, on the left is not induced from the special representation of the maximal parabolic.
When F), is real, the sum is again absolutely convergent. The packet {mg, } either consists of
square-integrables, and then tr{mo, }(fo,) = 2™ for suitable fo, = fou(n) and z = z({moy })
with |z| < 1, or tr{moy }(fou) = tr[lo(p)](fou) takes the form z™ + z=™. This case can be
left to the reader (cf. [L1], pp. 218-221). O

Remark. The above arguments imply also that the sum of (2.2.1) is finite and consists of
square-integrable my, when 6, # 1.

2.3.1. Corollary. If {mp,} # {m0(0.)} appears on the right of (2.2.1) then it is extraordi-
nary (namely it is supercuspidal but not of the form my(0.,) for any character 0, of K!,). In
particular, if Fy is real, or has odd residual characteristic, then {my(6,)} is the only term
in the sum of (2.2.1).
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Proof. This follows from the finiteness of the sum, and the twisted orthogonality rela-
tions for characters. Indeed, if {mo,} # {m0(0.)} appears on the right of (2.2.1), namely
n(mou) # 0, and {mo,} = {mo(0.,)}, 0., # 0., then (2.2.1) for 0!, implies that ' (x(7))(d) =
>0/ (mou) X ({mou}) (VO) with ) = I(n*(6),),x,,) and n'(m(0,,)) # 0. Since x(w,) is or-
thogonal to x(x,), we obtain

0= n(mou)n(mou) = n(mo(6;,))n’ (mo(6;,)) > 0.

This contradiction proves the first claim. In the real case and in the case of odd residual
characteristic, all square-integrable representations are special or of the form 7 (6,). [l

2.3.2. Corollary. Given a square-integrable ), as in (2.1), the relation (2.1.1) deter-
mines the tempered m, uniquely.

Proof. Suppose we also have ctrn) (fy, X 0) = > m(moy) tr{mou}(fon) for all matching
(fus fou), where ¢ # 0 and m(mp,) are nonnegative integers with m(n(,) # 0, then the
orthogonality relations on the right [II], (2.1.1), and the twisted orthogonality relations on
the left [II], (3.6.1), imply that =, is equivalent to m,. O

2.3.3. Corollary. If m, on the left of (2.1.1) is supercuspidal then w{,, is extraordinary,
it is the only term on the right of (2.1.1), and n(x{,) = 1. The residual characteristic of u
1S even.

Proof. For a supercuspidal m,, we have twisted orthonormality relations for its character [II],
(3.3.1), namely (Xr,, Xr,)e = 1 in the notations of [II], (3.6). On the right the orthogonality
relations for characters [II], (2.1.1), imply that (3 7(7ow)X {rou}s 2 M(Tou) X{mou}) 18 €qual
to > n(mow)?[{mou}], where [{mo, }] denotes the number of elements in the packet {mg,}. It
follows that the sum consists of n(,, alone, with coefficient n(n(,) = 1, and the packet of
T, consists of a single representation. Since it is square-integrable but not special, it is
extraordinary. O

2.4. Proposition. Suppose that f, satisfies (1.6.1), namely its unstable orbital integral
vanishes on the o-reqular set. Then trI(myy, 1)(fl, X 0) is zero for any irreducible represen-
tation my, of Hy(Fy).

Remark. Here u is allowed to be archimedean.

Proof. This is obvious if 71, is an induced representation, since then the (twisted) character
of I(my,1) is supported on the o-split set, where the o-orbital integral of f, is assumed
to be zero. The case of one-dimensional representations follows from that of special ones,
hence we assume that 7, is square-integrable. Let 71 be a cuspidal representation of H;(A)
whose component at u is the above, and whose component at a fixed finite place w # u of
odd residual characteristic is supercuspidal. We may choose F' so that all its archimedean
places, except possibly u, are complex. Apply Proposition 1.7 so that I(m,1) is the only
term on the left, in I{, with uy = u. Assuming that tr I(m,,1)(f], X o) # 0 we conclude
that the character of I(m,, 1) is o-stable and o-elliptic, and there is a term 7y on the right
of (1.7.1) whose component at u is elliptic. We take fo, to be a pseudo-coefficient of mp,,;
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for each finite v # u,w we take fy, to be the characteristic function of a small compact
open subgroup of H(F,), as in Lemma 1.9. We obtain the identity

ctrI(mw, 1) (fu X 0) = Y n(mow) tr{mow }(fow),

with the properties of (2.2.1). The sum is finite and made of supercuspidals by the arguments
of (2.3). But w has an odd residual characteristic, hence any supercuspidal packet {mg,,} is
of the form {my(6,,)}, which defines the representation I(m(0y/0), Xw) by (2.3.1), and we
obtain a contradiction to Corollary 2.3.1 on using the orthogonality relations for characters
(on the right side) and twisted characters [II], (2.6.1), on the left side. O

2.5. Proposition. Suppose m, is a o-invariant supercuspidal representation which is not
o-unstable. Then it is the lift of an extraordinary my,, hence o-stable.

Proof. Recall that a o-conjugacy class function xis called o-unstable if x(§) = —x(9) for
any o-elliptic regular stably o-conjugate but non-o-conjugate § and é in G(F,). We use
the Deligne-Kazhdan trace formula with a function f = ®f, whose component at u is a
matrix coefficient of 7, and its component at some finite ug # u satisfies (1.6.1) and is
supported on the o-elliptic regular set, to prove the existence of a o-invariant cuspidal =
whose component at u is ours, and whose component at ug is o-elliptic and o-stable. Here
we use the assumption that m, is not o-unstable to deduce the existence of a o-elliptic
regular § with ®% (0) # 0. This m appears in I of (1.7.1), and we use Proposition 1.7
with fo, as in (1.9) at each v # wu,up of V in (1.7), and a pseudo-coefficient fo,, of a
square-integrable component at uy of a my which must appear on the right of (1.7.1).

We obtain (2.1.1) where the left side is perhaps replaced by ctrm,(f, X o), where ¢ # 0.
The sum on the right is finite and consists of supercuspidal m,, by (2.3). We take one of
the mo,, which appears on the right, and obtain (2.1.1) for it. By (2.3.2) we obtain again m,,
on the left of (2.1.1), now with coefficients ¢ = 1; (2.3.3) implies that mg, is the only term
on the right of (2.1.1), and it extraordinary with coefficient 1. O

2.6. Proposition. Only one packet, namely {m{,}, appears on the right of (2.1.1).

Proof. Suppose that in addition to {n,,} there appears also the (necessarily supercuspidal)
packet {m(j,} on the right of (2.1.1), with n(n(,) # 0. Denote by f(mp,) a matrix coeflicient
of a supercuspidal 7, and by f({mo,}) the sum of f(m,) over the my, in the packet {mg,}.
Write fo,, for n(n{,)f({n},}) — n(ng,)f({7h,})- Then the function fo, is not uniquely
determined, but its orbital integrals are.

Moreover, its orbital integrals are stable conjugacy class functions, since '®(f({m,})) =
X{mo.} On the elliptic regular set, and these orbital integrals are zero on the split regular
set. Denote by f, a function on G, matching fy,. We can choose f, to have zero unstable
orbital integrals by [I], §3, since its (twisted) orbital integrals are zero on the o-regular split
set. It is clear from the orthogonality relations for characters that we have trm, (f, x o) =0
for every o-invariant G,-module 7.

Indeed, if tr m, (fy X o) # 0 then 7, can be only the representation of G, determined by
{m},} and {x{,}, but the choice of fy, guarantees that trm,(f, X o) = 0 for this 7.



ON THE SYMMETRIC SQUARE: APPLICATIONS OF A TRACE FORMULA 25

Then Proposition 1.8 shows that f, has vanishing (twisted stable) orbital integrals, hence
fou has vanishing orbital integrals, and we conclude that n(mg, )X (x; } = n(To,)X{xy,} 00
the elliptic regular set. This contradicts the orthogonality relations for characters, and the
proposition follows. O

Remark. An analogous discussion can be carried out in the real case on using pseudo coef-
ficients instead of matrix coefficients.

2.7. Corollary. For each character 0, of K} there is a positive integer n, = ny(0y) so
that tr my, (fu X 0) = ny tr{mo(04) } (fou) for all matching fu, fou, where 7, = I(7*(04), Xu),
and x,, s the character of F, with kernel NK,;.

Proof. This follows from (2.2), (2.3.2), and (2.6). O

2.7.1. Corollary. Suppose that 7o, is an extraordinary (not of the form w(0,)) represen-
tation of H(F,). Then it lifts to a supercuspidal representation 7, of G(F,).

Remark. (1) Extraordinary representations exist only in even residual characteristic. (2)
m, is o-invariant, o-stable and o-elliptic.

Proof. This follows from (2.3.2), (2.7), (2.4) and (2.5). O

2.8. Theorem. Let F' be a local field.

(1) The one-dimensional, special, extraordinary, type mwo(0), representation of H(F), lift
(respectively) to the one-dimensional, Steinberg, supercuspidal, I(7(0/0), x), representations
of G(F); local lifting is defined in [II], (2.3).

(2) A o-invariant admissible irreducible representation m of G(F) is a lift of a packet {mo}
of H(F) precisely when it is o-stable. Thus 7 is a lift unless it is of the form I(my,1), where
w1 48 an elliptic representation of Hy(F), or it is o-unstable and supercuspidal.

Proof. This follows from [II], (2.9) (case of special representations), (2.7.1) and (2.5) (extra-
ordinary case), (2.4) (case of I(my,1)), as well as (1.4) (list of o-invariant representations),
once we show that m(6,) lifts to I(m(0y/04), Xu), namely that the n, of (2.7) is equal to 1.
For that we use a totally imaginary global field, take a global character § whose component
at u is our local character, and apply (1.7) where I(w(6/0), x) is the only (global) term on
the left. The finite set V of (1.7) can be assumed to have no split (in K/F) places by the
argument of Lemma 1.7.5, and 6, # 1 on K} for all v in V (including our u). Using (2.7)
the identity (1.7.1) of (1.7) reads

[ 7o tr{mo(6)}(fou) = [ ] tr{mo(80)}(foo) + D (o) ] ] tr{mou}(fon)-

The sum is over discrete-series packets my which are inequivalent to our my(#), and the
coefficient of the first term on the right is one as noted in the discussion of the terms I}
and I in (1.3). It suffices to choose fo, to be a coefficient of a supercuspidal member of
{m0(0y)} for each v in V to conclude that the product of the positive integers n, is one,

1t will be interesting to give a direct local proof (not using the trace formulae) that every o-invariant
supercuspidal G(F)-module 7 is o-stable.
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hence n,, is 1 for all v. Note that the matching f, can be chosen to satisfy (1.6.1). From the
conclusion for the p-adic places we conclude the claim for real w on using @ for our global
field, and an imaginary quadratic extension of it for K. U

Remark. o-invariant supercuspidal representation cannot be o-unstable. In fact, they must
be o-stable and lifts of extraordinary my. This we show in [IV], once we have the statement
Y = X (f% (relating the unit elements f, f® in the Hecke algebras Hy, H of H;(F)
and G(F')). This statement is proven in [V]. Given this statement, the above methods are
extended in [VI] to yield the following global theorem unconditionally. For now we prove
the following

2.9. Theorem. Let F' be a number field.

(1) Any o-invariant cuspidal representation m, with a component which is the lift of a
square-integrable mo,, is a lift of a unique cuspidal packet {mo} of H(A), whose members
have a square-integrable component at u.

(2) If the discrete-series m is a lift (= A({mo})) then it has no component of the form
I(myy, 1) where my, is elliptic.

(3) Any packet {my} which contains a cuspidal representation with an elliptic component
lifts to an automorphic representation © of G(A).

(4) 7 is cuspidal, unless my is one-dimensional (and then 7 is one-dimensional), or my is
of the form () associated with Ind(0; Wg, Wr), where m is I(w(0/0), x).

(5) Each cuspidal mo with an elliptic component occurs only once in the cuspidal spectrum
of L(H(F)\H(A)).

(6) If 7}y is cuspidal with an elliptic component at a place where wy has an elliptic component,
and ), ~ moy for almost all v(my as in (5)), then {my} = {n{}.

Remark. (5) is multiplicity one theorem for (cuspidal representations with an elliptic com-
ponent of) H = SL(2). (6) is a rigidity theorem for such packets of SL(2, A).

Proof. To prove (1) we form (1.7.1) under the conditions of (1.7), where 7 is the only
contribution on the left. Each component of 7 is clearly o-stable, hence a lift of some mg,,
and the argument of (1.7.5) implies that the component at v # u of any 7y which appears
on the right side of (1.7.1) and (1.7) lifts to m,. At u we use f, which satisfies (1.6.1) and
matches a pseudo-coefficient fq,, of a square-integrable my, which lifts to m, (m, exists by
our assumption). (1) follows. (2) is clear from (2.4). (3) follows on using (1.7) and (1.9),
and (4), (5), (6) are similarly immediate. O

2.10. Corollary [GJ]. If a unitary cuspidal representation Ty of GL(2,A) with a square-

integrable component has a local component 7y, of the form Io, (Vi v, t), t > 0, thent < %.

Proof. The restriction {mp} of 7y to H(A) is a discrete-series packet with a square-integrable
component, which lifts to an automorphic representation 7 of G(A). In particular,

To(vh, vy t) lifts to I(v2%,1,12%), which is unitary only if 2t < 1. A strict inequality holds
since our cuspidal 7 cannot have a component at v which lies in the composition series of

I(m}/z, 1, 1/1,_1/2), by Proposition 2.4. O
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2.10.1. For any representation 7y, of GL(2, F}) and character x, of F* put

L2(377~T0'uaXv) = L(Sa'ﬁ-Ov ® Xv X ":rOU)/L(SuXv)v

and
82(5’7}01}3 Xvs Il;bv) = 8(35 %O’U ® Xv X 7;%011; 'lpv)/g(sa Xvs 1/)11)

Here 7o, is the contragredient of 7y, and %, is a nontrivial additive character of F,. The
L-functions depend only on the packet {mg,} defined by mp,. As in [GJ], we say that 7,
L-lifts to a representation m, of G(Fy) if 7, is o-invariant and

L(57 Ty 02y Xv) = L2(57 7~TO1};X11)7 8(37 Ty, ®Xv; l;bv) = 82(57 7}01)7 Xvs ¢v);

for any character x, of F)*. Here 7, is viewed as a representation of GL(3,F,) with
a trivial central character. Gelbart and Jacquet [GJ], Propositions 3.2, 3.3, showed for
non extraordinary g, that {m,} L-lifts to the lift m, of {m,}. If 7y is an automorphic
representation of GL(2,A) and x is a character of F*\A* then the function Ls(s, g, x) is
defined to be the product over all v of the La(s, Toy, Xv)-

2.10.2. Corollary [GJ]. If my is cuspidal, not of the form m(0), and has a square-
integrable component, then
LQ(SaTrOaX) = L(Saﬂ ® X)

for any character x of F*\A*, where 7 is the lift of mo. Hence La(s, T, x) is entire for
any x.

Proof. The local factors of the two global products are equal unless m, is supercuspidal, but
then both local factors are equal to 1.

It is easy to deduce from this [GJ], p. 535 that 7y, L-lifts to its lift m, in the remaining
case, where m, is supercuspidal. O

Corollary 2.10.2 was proved directly using the Rankin-Shimura method in [GJ], where it
was used as the key tool to prove that each mg, and my L-lift to their lifts, with no conditions
on local components. The advantage of the trace formula is in characterizing the image of
the lifting, establishing character relations and proving the multiplicity one theorem and
the rigidity theorem for SL(2), in addition to proving the existence of the lifting.
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