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Abstract. We study a fully nonlinear equation of complex Monge-Ampère
type on Hermitian manifolds. We establish the a priori estimates for solutions

of the equation up to the second order derivatives with the help of a subsolution.

1. Introduction. Let (Mn, ω) be a compact Hermitian manifold of dimension
greater than 1, with smooth boundary ∂M (which may be empty), and χ a smooth
real (1, 1) form on M . Define

χu = χ+

√
−1

2
∂∂̄u and [χ] =

{
χu : u ∈ C2(M)

}
.

In this paper we are concerned with the equation

χnu = ψχn−1
u ∧ ω, χu > 0 on M. (1.1)

When M is closed, both ω, χ are Kähler and ψ is constant, equation (1.1) was
introduced by Donaldson [5] in the setting of moment maps. Donaldson observed
that in this case the solution of equation (1.1) is unique (up to a constant) if exists,
and that a necessary condition for the existence of solution is [nχ − ψω] > 0. He
remarked that a natural conjecture would be that this is also a sufficient condition.

Donaldson’s problem was studied by Chen [3], Weinkove [13], [14], Song and
Weinkove [10] using parabolic methods as limit of the J-flow introduced by Don-
aldson [5] and Chen [2]. In [10] Song and Weinkove gave a necessary and sufficient
condition for convergence of the J-flow. Later on Fang, Lai and Ma [6] extended
their approach and solved the equation

χnu = cαχ
n−α
u ∧ ωα, χu > 0 on M. (1.2)

for all 1 ≤ α < n.
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A key ingredient in solving elliptic or parabolic fully nonlinear equations is to
derive a priori estimates up to the second order derivatives. For the complex Monge-
Ampère equation on closed Kähler manifolds, these estimates were established by
Yau [15] and Aubin [1]. Their results and techniques had far-reaching influences
in both geometry and to the theory of nonlinear PDEs on manifolds. In 1987,
Cherrier [4] studied the complex Monge-Ampère equation on Hermitian manifolds.
He established the estimates for second order derivatives in the general case, and
extended Yau’s zeroth order estimate under an additional assumption on the Her-
mitian metric. Recently, Tosatti and Weinkove [12] were able to carry out Yau’s
estimate on general closed Hermitian mannifolds.

There has been increasing interest to study fully nonlinear elliptic and parabolic
equations other than the complex Monge-Ampère equation on Kähler or Hermitian
manifolds, both from geometric problems such as Donaldson’s problem mentioned
above, and from the PDE point of view. In this paper our main interest is to
seek general technical methods in establishing a priori estimates. We shall confine
ourselves to α = 1 in (1.2) but our method works for more general equations and
in particular for all α < n. We shall treat the other cases in separate papers.

Our first result for equation (1.1) is the following

Theorem 1.1. Let u ∈ C4(M) a solution of equation (1.1) and set C0 = supM u−
infM u. Assume that there exists a function u ∈ C2(M) satisfying

χnu ≥ ψχn−1
u ∧ ω, χu > 0 on M. (1.3)

Then there are constants C1, C2, depending on C0, |u|C2(M), the positive lower
bound of χu, and infM ψ > 0 as well as other known data, such that

max
M
|∇u| ≤ C1(1 + max

∂M
|∇u|), |∆u| ≤ C2((1 + max

∂M
|∆u|) on M. (1.4)

We remark that both C1 and C2 in Theorem 1.1 depend on C0, but the estimate
for ∆u is independent of the gradient bound. (i.e. C2 is independent of C1.)
Apparently, assumption (1.3) is a trivial necessary condition for the solvability of
equation (1.1). Following the literature we shall call the function u a subsolution of
equation (1.1). It seems worthwhile to remark that the subsolution u plays key roles
in our proof of both estimates in (1.4); see Sections 3-4 for details. This appears
to us a rather new phenomena, and we are not clear how to derive these estimates
without using u. We also remark that the gradient estimate seems new even in the
Kähler case.

Theorem 1.1 still holds under the following assumption which is slightly weaker
than (1.3)

(nχu − (n− 1)ψω) ∧ χn−2
u > 0, χu > 0 on M. (1.5)

When M is Kähler and ψ is a constant, this condition was first given by Song and
Weinkeve [10] and proved to be necessary and sufficient for the solvability (1.1) on
closed Kähler manifolds.

The estimates in Theorem 1.1 enable us to treat the Dirichlet problem for equa-
tion (1.1) on Hermitian manifolds with boundary. More precisely we can prove the
following existence result under the assumption of existence of a subsolution.

Theorem 1.2. Let (Mn, ω) be a compact Hermitian manifold with smooth boundary
∂M , ψ ∈ C∞(M̄), ψ > 0, where M̄ = M ∪ ∂M and ϕ ∈ C∞(∂M). Suppose there
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exists a subsolution u ∈ C2(M̄) satisfying{
χnu ≥ ψχn−1

u ∧ ω, χu > 0 on M̄

u = ϕ on ∂M.
(1.6)

Then equation (1.1) admits a unique solution u ∈ C∞(M) with u = ϕ on ∂M .

In order to prove Theorem 1.2 we need to establish a priori boundary estimates.
The gradient estimate on the boundary follows immediately from a barrier argu-
ment. The proof for the second order boundary estimates is similar to the Monge-
Ampère equation case in [7] and will be omitted here. We shall come back to the
issue for more general equations including (1.2) in our forthcoming papers where we
shall also discuss the existence questions for the closed manifold case. In this paper
we will just present the global a priori estimates up to the second order derivatives
of the solutions to equation (1.1).

The rest of this paper is organized as follows. In section 2 we fix some notations
and introduce some fundamental formulas in Hermitian geometry, which will be
used throughout the paper. We also establish a crucial lemma in this section that
will be applied to deriving the estimates in the following sections. Section 3 and
Section 4 will be devoted to establishing the global gradient estimates and the
estimates for the second order derivatives respectively. In both sections we make
the important use of the existence of a subsolution.

We dedicate this article with sincere respect and admiration to Professor Avner
Friedman on the occasion of his 80th birthday. We wish to thank Wei Sun for
pointing out several mistakes in previous versions. Part of this work was done while
the first author was in Xiamen University in summer 2011.

2. Preliminaries. We shall follow the notations in [7] where the reader can also
find a brief introduction to the background materials for Hermitian manifolds. In
particular, g and ∇ will denote the Riemannian metric and Chern connection of
(M,ω). The torsion and curvature tensors of ∇ are defined by

T (u, v) =∇uv −∇vu− [u, v],

R(u, v)w =∇u∇vw −∇v∇uw −∇[u,v]w,
(2.1)

respectively. In local coordinates z = (z1, . . . , zn),

gij̄ = g
( ∂

∂zi
,
∂

∂z̄j

)
, {gij̄} = {gij̄}−1,

T kij = Γkij − Γkji = gkl̄
(∂gjl̄
∂zi
− ∂gil̄
∂zj

)
,

Rij̄kl̄ = −gml̄
∂Γmik
∂z̄j

= − ∂2gkl̄
∂zi∂z̄j

+ gpq̄
∂gkq̄
∂zi

∂gpl̄
∂z̄j

.

(2.2)

Let v ∈ C4(M). For convenience we write in local coordinates

vij̄ = ∇j̄∇iv, vij̄k = ∇kvij̄ , etc.

Recall vij̄ = vj̄i = ∂i∂̄jv and vij̄k = ∂kvij̄ − Γlkivlj̄ . It follows that{
vij̄k − vkj̄i =T likvlj̄ ,

vij̄k̄ − vik̄j̄ =T ljkvil̄.
(2.3)
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We calculate

vij̄kl̄ = ∂̄lvij̄k − Γqljviq̄k

= ∂̄l(∂kvij̄ − Γpkivpj̄)− Γqljviq̄k

= ∂̄l∂kvij̄ − ∂̄lΓ
p
kivpj̄ − Γpki(vpj̄l̄ + Γqljvpq̄)− Γqljviq̄k

= ∂k∂̄lvij̄ + gpq̄Rkl̄iq̄vpj̄ − Γpkivpj̄l̄ − Γqljviq̄k − ΓpkiΓ
q
ljvpq̄,

(2.4)

vij̄l̄k = vjīlk̄ = ∂̄l∂kvij̄ − ΓpljΓ
q
kivqp̄ − Γpljvip̄k − Γqkivj̄ql̄ + gqp̄Rkl̄j̄qvip̄.

Therefore,{
vij̄kl̄ − vij̄l̄k = gpq̄Rkl̄iq̄vpj̄ − gpq̄Rpl̄kj̄viq̄,

vij̄kl̄ − vkl̄ij̄ = gpq̄(Rkl̄iq̄vpj̄ −Rij̄kq̄vpl̄) + T pikvpj̄l̄ + T qjlviq̄k − T
p
ikT

q
jlvpq̄.

(2.5)

The second identity in (2.5) follows from (2.4), (2.3) and

ΓpkiΓ
q
lj − ΓpikΓqjl + T pikΓqjl + ΓpikT

q
jl = T pikT

q
jl.

It can also be derived as follows.

vij̄kl̄ − vkl̄ij̄ = (vij̄kl̄ − vkj̄il̄) + (vkj̄il̄ − vkj̄l̄i)
+ (vkj̄l̄i − vkl̄j̄i) + (vkl̄j̄i − vkl̄ij̄)

=∇l̄(T
p
ikvpj̄) + gpq̄Ril̄kq̄vpj̄ − gpq̄Ril̄pj̄vkq̄

+∇i(Γqjlvkq̄)− g
pq̄Rij̄kq̄vpl̄ + gpq̄Rij̄pl̄vkq̄

=∇l̄T
p
ikvpj̄ + T pikvpj̄l̄ + gpq̄Ril̄kq̄vpj̄ − gpq̄Ril̄pj̄vkq̄

+∇iΓqjlvkq̄ + T qjlvkq̄i − g
pq̄Rij̄kq̄vpl̄ + gpq̄Rij̄pl̄vkq̄

= gpq̄(Rkl̄iq̄vpj̄ −Rij̄kq̄vpl̄) + T pikvpj̄l̄ + T qjlvkq̄i

= gpq̄(Rkl̄iq̄vpj̄ −Rij̄kq̄vpl̄) + T pikvpj̄l̄ + T qjlviq̄k − T
p
ikT

q
jlvpq̄.

(2.6)

Let u ∈ C4(M) be a solution of equation (1.1). As in [7], we denote gij̄ = χij̄+uij̄ ,

{gij̄} = {gij̄}−1 and let W = trχ + ∆u. Assume that gij̄ = δij and gij̄ is diagonal
at a fixed point p ∈M . Then

uīikk̄ − ukk̄īi =Rkk̄ip̄upī −Rīikp̄upk̄ + 2Re{T jikuij̄k} − T
p
ikT

q
ikupq̄, (2.7)

and therefore,

gīikk̄ − gkk̄īi =Rkk̄īigīi −Rīikk̄gkk̄ + 2Re{T jikgij̄k} − |T
j
ik|

2gjj̄ −Gīikk̄ (2.8)

where

Gīikk̄ =χkk̄īi − χīikk̄ +Rkk̄ip̄χpī −Rīikp̄χpk̄ + 2Re{T jikχij̄k} − T
p
ikT

q
ikχpq̄. (2.9)

In local coordinates, equation (1.1) can be written in the form

gij̄gij̄ =
n

ψ
. (2.10)

Differentiating this equation twice gives at p

F īi(uīikuk̄ + ukuīik̄) = 2Re{fkuk̄ − F īiχīikuk̄}. (2.11)

F īigīikk̄ − (F īigjj̄ + F jj̄gīi)gij̄kgjīk̄ = fkk̄ (2.12)
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where F īi = (gīi)2 and f = −nψ−1. Note that
∑
F īi ≤ (

∑
gīi)2 ≤ C; we shall use

this fact without further reference. By (2.8) and (2.12) we have

F īiWīi =F īigjj̄īi ≥
∑
k

F īigjj̄(|gij̄k − T
j
ikgjj̄ |

2 + |gij̄k|2)− CW. (2.13)

Finally, we note that since u ∈ C2(M) and χu > 0 on M ,

εω ≤ χu ≤ ε−1ω (2.14)

for some ε > 0. Consequently,∑
gīi(χīi + uīi) ≥ ε

∑
gīi. (2.15)

Let λ1(χu), . . . , λn(χu) denote the eigenvalues of {χij̄+uij̄}. Then (1.3) is equiv-
alent to ∑ 1

λi(χu)
≤ n

ψ
(2.16)

while (1.5) is equivalent to∑
i 6=k

1

λi(χu)
<
n

ψ
for each k = 1, . . . , n. (2.17)

It is clear that at a point where gij̄ = δij in local coordinates,∑ 1

χīi + uīi
≤
∑ 1

λi(χu)
≤ n

ψ
. (2.18)

We conclude this section with the following inequality which will play a crucial
role in both the gradient and second order estimates in the sections below.

Lemma 2.1. There exist θ > 0 and N ≥ n depending on ε such that if W ≥ N
then

F ij̄(χij̄ + uij̄) ≥
n+ θ

ψ
. (2.19)

Proof. We may assume gij̄ = δij and {gij̄} is diagonal. Suppose that g11̄ ≥ · · · ≥
gnn̄. By Schwarz inequality, (2.10), (2.18) and (2.14) we have∑

i≥2

(gīi)2(χīi + uīi) ≥
(∑
i≥2

gīi
)2/∑

i≥2

1

χīi + uīi

≥
(n
ψ
− g11̄

)2/(n
ψ
− 1

χ11̄ + u11̄

)
≥ (n− ψg11̄)2

nψ

(
1 +

ψ

n(χ11̄ + u11̄)

)
≥ (n− ψg11̄)2

nψ

(
1 +

εψ

n

)
≥ n+ θ

ψ

(2.20)

provided g11̄ is sufficiently large.

Remark 1. One can replace assumption (1.3) by (1.5) in Lemma 2.1. This is clear
from the proof.
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3. Gradient estimates. Let u ∈ C4(M) be a solution of equation (1.1). The
primary goal of this section is to establish the a priori gradient estimates.

Proposition 1. There exists a uniform constant C > 0 such that

max
M̄
|∇u| ≤ C(1 + max

∂M
|∇u|). (3.1)

Proof. Let φ = Aeη where η = u− u and A is a positive constant to be determined
later. Suppose the function eφ|∇u|2 attains its maximum at an interior point p ∈M .
We choose local coordinate around p such that gij̄ = δij and gij̄ is diagonal at p
where, unless otherwise indicated, the computations below are evaluated.

For each i = 1, . . . , n, we have

(|∇u|2)i
|∇u|2

+ φi = 0,
(|∇u|2)ī
|∇u|2

+ φī = 0 (3.2)

and
(|∇u|2)īi
|∇u|2

− |(|∇u|
2)i|2

|∇u|4
+ φīi ≤ 0. (3.3)

A straightforward calculation shows that

(|∇u|2)i = ukuik̄ + ukiuk̄, (3.4)

(|∇u|2)īi =ukīuik̄ + ukiuk̄ī + ukīiuk̄ + ukuik̄ī

=ukiuk̄ī + uīikuk̄ + uīik̄uk +Rīikl̄uluk̄

+
∑
k

|uik̄ − T kilul̄|2 −
∑
k

|T kilul̄|2.
(3.5)

It follows that

F īi(|∇u|2)īi ≥ F īiukiuk̄ī +
∑
k

F īi|uik̄ − T kilul̄|2 − C(1 + |∇u|2). (3.6)

By (3.2) and (3.4),

|(|∇u|2)i|2 = |uk̄uki|2 − 2|∇u|2Re{ukuik̄φī} − |ukuik̄|2. (3.7)

Combining (3.3), (3.7) and (3.6), we obtain

|∇u|2F īiφīi + 2F īiRe{ukuik̄φī} ≤ C(1 + |∇u|2). (3.8)

Now,
φi = φηi, φīi = φ(ηiηī + ηīi).

We have

2φ−1F īiRe{ukuik̄φī} = 2gīiRe{uiηī} − 2F īiRe{χik̄ukφī}

≥ − 1

2
|∇u|2F īiηiηī − C

(3.9)

and
φ−1F īiφīi =F īiηiηī + F īiηīi

≥F īiηiηī + F īi(uīi + χīi)−
n

ψ
.

(3.10)

Therefore, by (3.8),

1

2
F īiηiηī + F īi(uīi + χīi)−

n

ψ
≤C(φ−1 + |∇u|−2). (3.11)

We consider two cases separately: (a) W > N for some N sufficiently large, and
(b) W ≤ N .
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In case (a) we have

F īi(uīi + χīi)−
n

ψ
≥ θn

ψ
,

by Lemma 2.1 for some θ > 0. Therefore from (3.11) we obtain a bound |∇u| ≤ C
when A is chosen sufficiently large.

Suppose now that W ≤ N . Then, using equation (2.10),

F īiηiηī + F īi(uīi + χīi) ≥ |∇η|2 min
i
F īi + ε

∑
F īi

≥n|∇η| 2n ε
n−1
n (det gij̄)

2
n

≥ ε
n−1
n |∇η| 2n

( ψ

Wn−1

) 2
n

≥ c0|∇η|
2
n .

(3.12)

Plugging this back in (3.11) we derive a bound |∇η| ≤ C which in turn implies a
bound |∇u| ≤ C.

4. The second order estimates. In this section we derive second order estimates
for solutions of equation (1.1).

Proposition 2. Let u ∈ C4(M) be a solution of equation (1.1). There exists a
constant C > 0 depending on ε, supψ−1, supM u − infM u, the C2 norms of χ, u
and ψ, and the geometric quantities of M , such that

max
M̄
|∆u| ≤ C(1 + max

∂M
|∆u|).

Proof. Consider Φ = eφW , where as aforementioned W = trχ + ∆u and φ is a
function to be determined. Suppose Φ achieves its maximum at a point p ∈ M .
Choose local coordinates such that gij̄ = δij and gij̄ is diagonal at p. We have (all
calculations below are done at p)

Wi

W
+ φi = 0,

Wī

W
+ φī = 0, (4.1)

Wīi

W
− |Wi|2

W 2
+ φīi ≤ 0. (4.2)

By (2.3) and (4.1),

|Wi|2 =
∣∣∣∑
j

gjj̄i

∣∣∣2 =
∣∣∣∑
j

(gij̄j − T
j
ijgjj̄) + λi

∣∣∣2
≤
∣∣∣∑
j

(gij̄j − T
j
ijgjj̄)

∣∣∣2 + 2
∑
j

(Re{(gij̄j − T
j
ijgjj̄)λi}) + |λi|2

=
∣∣∣∑
j

(gij̄j − T
j
ijgjj̄)

∣∣∣2 − 2WRe{φiλi} − 2|λi|2

(4.3)

where

λi =
∑
j

(χjj̄i − χij̄j + T lijχlj̄).
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By Schwarz inequality,∣∣∣∑
j

(gij̄j − T
j
ijgjj̄)

∣∣∣2 ≤W∑
j

gjj̄ |gij̄j − T
j
ijgjj̄ |

2. (4.4)

It therefore follows from (4.2), (4.3), (4.4) and (2.13) that

0 ≥F īiWīi − F īi
|Wi|2

W
+WF īiφīi ≥WF īiφīi + 2F īiRe{φiλi} − CW. (4.5)

Let φ = eAη where η = u − u + supM (u − u) and A is a positive constant. We
see that φi = Aφηi and φīi = Aφηīi +A2φηiηī. By Schwarz inequality,

2AF īiRe{ηiλi} ≥ −A2F īi|ηi|2 − C. (4.6)

By Lemma 2.1 we see that

φ−1F īiφīi =AF īiηīi +A2F īiηiηī

=AF īi(χīi + uīi)−
nA

ψ
+A2F īiηiηī

≥ θA

ψ
+A2F īiηiηī

(4.7)

provided W is sufficiently large. This combined with (4.6) and (4.5) gives

(θA− Cψ)W ≤ C.
Choosing A large enough we derive a bound W ≤ C.

By Proposition 2 equation (1.1) is uniformly elliptic for solutions u with χu > 0.
Therefore one can apply Evans-Krylov Theorem and the Schauder theory to derive
higher order estimates.
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