Spring 2010

Algebraic Topology (topics course) John E. Harper

Series 2

Exercise 1. Prove Proposition 1.

Proposition 1. Let C be a model category.

- (a) The cofibrations in C are the maps which have the left lifting property with respect to acyclic fibrations.
- (b) The acyclic cofibrations in C are the maps which have the left lifting property with respect to fibrations.
- (c) The fibrations in C are the maps which have the right lifting property with respect to acyclic cofibrations.
- (d) The acyclic fibrations in C are the maps which have the right lifting property with respect to cofibrations.

Exercise 2. Prove Proposition 2.

Proposition 2. Let C be a model category.

- (a) The class of cofibrations in C is closed under pushouts.
- (b) The class of acyclic cofibrations in C is closed under pushouts.
- (c) The class of fibrations in C is closed under pullbacks.
- (d) The class of acyclic fibrations in C is closed under pullbacks.

If C is a category and D is a small category, denote by C^{D} the *diagram category* with objects the diagrams $X: D \longrightarrow C$ and morphisms their natural transformations. If the colimit colim_D X exists for every diagram $X \in C^{D}$, then it follows easily—from the universal property of colimits—that the objects colim_D X give a well-defined functor colim: $C^{D} \longrightarrow C$.

Exercise 3. Prove Proposition 3.

Let C be a category and let $D = \{a \leftarrow b \rightarrow c\}$. Then a morphism $f \colon X \longrightarrow Y$ in C^{D} is a collection of maps f_a, f_b, f_c which makes the left-hand diagram

in C commute, and colim f is the induced map $X_a \amalg_{X_b} X_c \longrightarrow Y_a \amalg_{Y_b} Y_c$ on pushouts. The following proposition explores some homotopical properties of the colimit functor colim: $C^{\mathsf{D}} \longrightarrow \mathsf{C}$. We will establish additional homotopical properties after developing certain results on left (and right) homotopic maps.

Proposition 3. Let C be a model category and let $f: X \longrightarrow Y$ be a map in C^{D} .

- (a) If f_a, f_b are acyclic cofibrations, f_c is a weak equivalence, and the induced map $Y_b \coprod_{X_b} X_c \longrightarrow Y_c$ is a cofibration, then colim f is an acyclic cofibration.
- (b) If f_a and the induced map $Y_b \coprod_{X_b} X_c \longrightarrow Y_c$ are cofibrations, then colim f is a cofibration.

Exercise 4. Use duality in model categories to obtain a corresponding proposition for the limit functor lim: $C^{D^{op}} \longrightarrow C$. Note that D^{op} is the category $\{a \rightarrow b \leftarrow c\}$.

Exercise 5. Prove Proposition 4.

Let C be a category and let D be the category $\{0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots\}$ with objects the non-negative integers and a single morphism $i \rightarrow j$ for each $i \leq j$. Then a morphism $f: X \longrightarrow Y$ in C^{D} is a collection of maps $f_0, f_1, f_2, f_3, \ldots$ which makes the left-hand diagram

in C commute, and colim f is the induced map colim $X \longrightarrow$ colim Y on colimits. The following proposition explores some homotopical properties of the colimit functor colim: $C^{D} \longrightarrow C$. We will establish additional homotopical properties after developing certain results on left (and right) homotopic maps.

Proposition 4. Let C be a model category and let $f: X \longrightarrow Y$ be a map in C^{D} . Assume that C has all small colimits.

- (a) If f_0 and each of the induced maps $Y_i \coprod_{X_i} X_{i+1} \longrightarrow Y_{i+1}$ $(i \ge 0)$ is an acyclic cofibration, then colim f is an acyclic cofibration.
- (b) If f_0 and each of the induced maps $Y_i \coprod_{X_i} X_{i+1} \longrightarrow Y_{i+1}$ $(i \ge 0)$ is a cofibration, then colim f is a cofibration.

Exercise 6. Use duality in model categories to obtain a corresponding proposition for the limit functor lim: $C^{D^{op}} \longrightarrow C$. Note that $D^{op} = \{0 \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow \cdots\}$ is the category with objects the non-negative integers and a single morphism $i \leftarrow j$ for each $i \leq j$.

Exercise 7. Prove Proposition 5

Proposition 5. Let C be a model category.

- (a) The class of cofibrations contains all isomorphisms.
- (b) The class of fibrations contains all isomorphisms.
- (c) The class of weak equivalences contains all isomorphisms.

Exercise 8. Prove Proposition 6.

Proposition 6. Let C be a model category. Assume that C has all small coproducts and products.

- (a) The class of cofibrations in C is closed under coproducts.
- (b) The class of acyclic cofibrations in C is closed under coproducts.
- (c) The class of fibrations in C is closed under products.
- (d) The class of acyclic fibrations in C is closed under products.

In the exercises and propositions which follow, we are working in a fixed model category C; references for this material include [1, Section 4] and [2, Chapter 7]. Recall the following proposition.

Proposition 7. If A is cofibrant and $A \wedge I$ is a good cylinder object for A, then the maps $i_0, i_1: A \longrightarrow A \wedge I$ are acyclic cofibrations.

Exercise 9. Use duality in model categories to obtain a corresponding proposition involving path objects.

Exercise 10. Prove Proposition 8.

Proposition 8. If $f \stackrel{l}{\sim} g: A \longrightarrow X$, then there exists a good left homotopy from f to g. If in addition X is fibrant, then there exists a very good left homotopy from f to g.

Exercise 11. Use duality in model categories to obtain a corresponding proposition involving right homotopies.

Exercise 12. Prove Proposition 9.

Proposition 9. If A is cofibrant, then $\stackrel{l}{\sim}$ is an equivalence relation on hom_C(A, X).

Exercise 13. Use duality in model categories to obtain a corresponding proposition involving right homotopy.

Exercise 14. Prove Proposition 10.

Proposition 10. If A is cofibrant and $p: Y \longrightarrow X$ is an acyclic fibration, then composition with p induces a bijection:

$$p_*: \pi^l(A, Y) \xrightarrow{\cong} \pi^l(A, X), \qquad [A \xrightarrow{f} Y] \longmapsto [A \xrightarrow{f} Y \xrightarrow{p} X].$$

Exercise 15. Use duality in model categories to obtain a corresponding proposition involving right homotopy classes of maps.

Exercise 16. Prove Proposition 11

Proposition 11. Suppose that X is fibrant, that $f \stackrel{l}{\sim} g: A \longrightarrow X$, and that $h: A' \longrightarrow A$ is a map. Then $fh \stackrel{l}{\sim} qh$.

Exercise 17. Use duality in model categories to obtain a corresponding proposition involving right homotopy.

Exercise 18. Prove Proposition 12.

Proposition 12. If X is fibrant, then the composition in C induces a map:

$$\pi^{l}(A',A) \times \pi^{l}(A,X) \longrightarrow \pi^{l}(A',X), \qquad ([A' \xrightarrow{h} A], [A \xrightarrow{f} X]) \longmapsto [A' \xrightarrow{h} A \xrightarrow{f} X].$$

Exercise 19. Use duality in model categories to obtain a corresponding proposition involving right homotopy classes of maps.

Exercise 20. Prove Proposition 13.

Proposition 13. Let $f, g: A \longrightarrow X$ be maps.

- (a) If A is cofibrant and $f \stackrel{l}{\sim} g$, then $f \stackrel{r}{\sim} g$.
- (b) If X is fibrant and $f \stackrel{r}{\sim} g$, then $f \stackrel{l}{\sim} g$.

Exercise 21. Prove Proposition 14

The following proposition is a key result of this section.

Proposition 14. Suppose that $f: A \longrightarrow X$ is a map between objects A and X which are both fibrant and cofibrant. Then f is a weak equivalence if and only if f has a homotopy inverse; i.e., if and only if there exists a map $g: X \longrightarrow A$ such that $gf \sim id$ and $fg \sim id$.

Exercise 22. Please read [1, Sections 3-4].

References

- W. G. Dwyer and J. Spaliński. Homotopy theories and model categories. In Handbook of algebraic topology, pages 73–126. North-Holland, Amsterdam, 1995.
- P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.