Handout 1

Recall from lecture that instead of calculating in \mathbb{R} we may want to calculate in the field of complex numbers \mathbb{C}. This leads to the notion of a "complex vector space" which is defined analogously to a real vector space: one has only to replace \mathbb{R} by \mathbb{C} and "real" by "complex" in all instances.

Definition 1. A triple $(V,+, \cdot)$ consisting of a set V and two maps

$$
\begin{array}{rlc}
V \times V \xrightarrow{+} V, & (x, y) \longmapsto x+y & \text { ("addition") } \\
\mathbb{C} \times V \xrightarrow{\bullet} V, & (a, x) \longmapsto a x & (\text { "scalar multiplication") }
\end{array}
$$

is called a complex vector space if the following eight axioms hold for the maps + and \cdot :
(1) $(x+y)+z=x+(y+z)$ for all $x, y, z \in V$.
(2) $x+y=y+x$ for all $x, y \in V$.
(3) There exists an element $0 \in V$ with $x+0=x$ for all $x \in V$.
(4) For each $x \in V$ there exists an element $-x \in V$ with $x+(-x)=0$.
(5) $a(b x)=(a b) x$ for all $a, b \in \mathbb{C}, x \in V$.
(6) $1 x=x$ for all $x \in V$.
(7) $a(x+y)=a x+a y$ for all $a \in \mathbb{C}, x, y \in V$.
(8) $(a+b) x=a x+b x$ for all $a, b \in \mathbb{C}, x \in V$.

Notation. Instead of "complex vector space" one also says "vector space over \mathbb{C} ".
Instead of calculating with only \mathbb{R} or \mathbb{C}, one can work with any subfield of the complex numbers. A subfield of \mathbb{C} is any subset which is closed under the four operations addition, subtraction, multiplication, and division, and which contains 1. In other words, a subset $\mathbb{F} \subset \mathbb{C}$ is a subfield of \mathbb{C} if the following properties hold:
(a) $a+b \in \mathbb{F}$ for all $a, b \in \mathbb{F}$.
(b) If $a \in \mathbb{F}$, then $-a \in \mathbb{F}$.
(c) $a b \in \mathbb{F}$ for all $a, b \in \mathbb{F}$.
(d) If $a \in \mathbb{F}$ and $a \neq 0$, then $a^{-1} \in \mathbb{F}$.
(e) $1 \in \mathbb{F}$.

The following are examples of subfields of \mathbb{C}.
(i) $\mathbb{F}=\mathbb{R}$ the field of real numbers.
(ii) $\mathbb{F}=\mathbb{Q}$ the field of rational numbers.
(iii) $\mathbb{F}=\mathbb{Q}[\sqrt{2}]:=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$.

Instead of working only with subfields of \mathbb{C}, one can list the properties of the "scalars" that are needed axiomatically. This leads to the abstract notion of a "field", which contains important new classes of fields including the finite fields. Axioms (1)-(9) below are modeled on calculation with real or complex numbers. In other words, they are essentially designed so that one can calculate in a field "exactly as" one would calculate in \mathbb{R} or \mathbb{C}.

Definition 2. A field is a triple $(\mathbb{F},+, \cdot)$ consisting of a set \mathbb{F} and two operations

$$
\begin{array}{rlc}
\mathbb{F} \times \mathbb{F} \xrightarrow{+} \mathbb{F}, & (x, y) \longmapsto x+y & \text { ("addition") } \\
\mathbb{F} \times \mathbb{F} \xrightarrow{\bullet} \mathbb{F}, & (x, y) \longmapsto x y & (\text { "multiplication") }
\end{array}
$$

such that the following nine axioms hold:
(1) $(a+b)+c=a+(b+c)$ for all $a, b, c \in \mathbb{F}$.
(2) $a+b=b+a$ for all $a, b \in \mathbb{F}$.
(3) There exists an element $0 \in \mathbb{F}$ with $a+0=a$ for all $a \in \mathbb{F}$.
(4) For each $a \in \mathbb{F}$ there exists an element $-a \in \mathbb{F}$ with $a+(-a)=0$.
(5) $a(b c)=(a b) c$ for all $a, b, c \in \mathbb{F}$.
(6) $a b=b a$ for all $a, b \in \mathbb{F}$.
(7) There exists an element $1 \in \mathbb{F}, 1 \neq 0$, such that $1 a=a$ for all $a \in \mathbb{F}$.
(8) For all $a \in \mathbb{F}$ with $a \neq 0$ there exists an element $a^{-1} \in \mathbb{F}$ with $a^{-1} a=1$.
(9) $a(b+c)=a b+a c$ for all $a, b, c \in \mathbb{F}$.

If \mathbb{F} is any field, one defines the concept of a vector space over \mathbb{F} analogously to the notion of a complex vector space above - replace \mathbb{C} by \mathbb{F} everywhere. It is probably better to once again write out the whole definition.
Definition 3. A triple $(V,+, \cdot)$ consisting of a set V and two maps

$$
\begin{aligned}
V \times V \xrightarrow{+} V, & (x, y) \longmapsto x+y & \text { ("addition") } \\
\mathbb{F} \times V \xrightarrow{\bullet} V, & (a, x) \longmapsto a x & \text { ("scalar multiplication") }
\end{aligned}
$$

is called a vector space over \mathbb{F} if the following eight axioms hold for the maps + and \cdot :
(1) $(x+y)+z=x+(y+z)$ for all $x, y, z \in V$.
(2) $x+y=y+x$ for all $x, y \in V$.
(3) There exists an element $0 \in V$ with $x+0=x$ for all $x \in V$.
(4) For each $x \in V$ there exists an element $-x \in V$ with $x+(-x)=0$.
(5) $a(b x)=(a b) x$ for all $a, b \in \mathbb{F}, x \in V$.
(6) $1 x=x$ for all $x \in V$.
(7) $a(x+y)=a x+a y$ for all $a \in \mathbb{F}, x, y \in V$.
(8) $(a+b) x=a x+b x$ for all $a, b \in \mathbb{F}, x \in V$.

Similarly, one defines the concept of a vector subspace of a vector space over \mathbb{F} analogously to the notion of a vector subspace of a real vector space as we did in lecture - replace \mathbb{R} by \mathbb{F} everywhere. It is probably better to once again write out the whole definition.

Definition 4. Let V be a vector space over a field \mathbb{F}. A subset $U \subset V$ is called a vector subspace (or just subspace for short) of V if the following are satisfied:
(i) $U \neq \emptyset$.
(ii) For all $x, y \in U$ we have $x+y \in U$.
(iii) For all $a \in \mathbb{F}$ and $x \in U$ we have $a x \in U$.

