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Homework 3

Exercises 1–10 should be regarded as warm-up exercises. They are intended to
test your understanding of some of the definitions and constructions introduced in
lecture. Your first step to answering these should be to go back to the lecture notes
and read again the appropriate definition or construction.

Exercise 1. For which of the following objects does the description “linearly de-
pendent” or “linearly independent” make sense?

(a) An n-tuple (v1, . . . , vn) of elements of a vector space
(b) An n-tuple (v1, . . . , vn) of real vector spaces
(c) A linear combination c1v1 + · · ·+ cnvn

Exercise 2. Let V be a vector space over a field F. Let v1, . . . , vn ∈ V . What does
Span(v1, . . . , vn) = V mean?

(a) Each linear combination c1v1 + · · ·+ cnvn is an element of V .
(b) Each element of V is a linear combination c1v1 + · · ·+ cnvn.
(c) The dimension of V is n.

Exercise 3. Let V be a vector space over a field F. For linearly independent triples
(v1, v2, v3) of vectors in V ,

(a) (v1, v2) is always linearly dependent.
(b) (v1, v2) may or may not be linearly dependent, depending on the choice of

(v1, v2, v3).
(c) (v1, v2) is always linearly independent.

Exercise 4. Let F be a field. The i-th vector of the canonical basis of Fn is defined
by

(a) ei = (0, · · · , i, · · · , 0).
(b) ei = (0, · · · , 1, · · · , 0).
(c) ei = (1, · · · , 1, · · · , 0).

Exercise 5. Let V be a vector space over a field F. Which of the following state-
ments implies the linear independence of the n-tuple (v1, . . . , vn) of elements of
V ?

(a) c1v1 + · · · cnvn = 0 only if c1 = c2 = · · · = cn = 0.
(b) If c1 = · · · = cn = 0, then c1v1 + · · ·+ cnvn = 0.
(c) c1v1 + · · ·+ cnvn = 0 for all (v1, . . . , vn) ∈ Fn.

Recall from lecture the following proposition.

Proposition 1. Let V be a finite dimensional vector space over a field F. Any
linearly independent finite ordered set L ⊂ V can be extended by adding elements,
to get a basis.

Exercise 6. What does Proposition 1 and its proof imply in the case that L = ∅?
(a) If (w1, · · · , ws) is an s-tuple of vectors in V and Span(w1, · · · , ws) = V ,

then one can extend w1, · · · , ws to a basis.
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(b) If (w1, · · · , ws) is a linearly independent s-tuple of vectors in V , then there
exists a basis consisting of vectors from (w1, · · · , ws).

(c) If (w1, · · · , ws) is an s-tuple of vectors in V and Span(w1, · · · , ws) = V ,
then there exists a basis consisting of vectors from (w1, · · · , ws).

Exercise 7. The vector space V = {0} over a field F consisting of the zero element
(a) has the basis (0).
(b) has the basis ∅.
(c) has no basis.

Exercise 8. Let V be a vector space over a field F. If one were to define

U1 − U2 := {x− y | x ∈ U1, y ∈ U2}
for subspaces U1, U2 of V , then one would have

(a) U1 − U1 = {0}.
(b) (U1 − U2) + U2 = U1.
(c) U1 − U2 = U1 + U2.

Exercise 9. Let V be a vector space over a field F. For subspaces U1, U2 of V , one
always has

(a) (U1 + U2) + U3 = U1 + (U2 + U3).
(b) U1 ∩ (U2 + U3) = (U1 ∩ U2) + (U1 ∩ U3).
(c) U1 + (U2 ∩ U3) = (U1 + U2) ∩ (U1 + U3).

Exercise 10. Let V be a vector space over a field F. Subspaces U1, U2 of V are said
to be transverse (to each other) if U1+U2 = V . One calls codim U := dim V −dim U
the codimension of U in V . For transverse U1, U2, one has

(a) dim U1 + dim U2 = dim U1 ∩ U2.
(b) dim U1 + dim U2 = codim U1 ∩ U2.
(c) codim U1 + codim U2 = codim U1 ∩ U2.

Definition 2. Let V be a vector space over a field F and suppose S ⊂ V is a
subset. A subspace U of V is called the smallest subspace of V containing S if (i)
U ⊃ S and (ii) if W is a subspace of V and W ⊃ S, then W ⊃ U .

Condition (i) is read as “U contains S” and condition (ii) is read as “if W is a
subspace of V and W contains S, then W contains U .”

Exercise 11. Let V be a vector space over a field F. Prove the following.
(a) If v1, . . . , vr are elements of V , then Span(v1, . . . , vr) is the smallest sub-

space of V containing v1, . . . , vr. (See Definition 2.)
(b) The span of v1, . . . , vr is the same as the span of any reordering of v1, . . . , vr.

Exercise 12. Let V be a vector space over a field F. Prove the following.
(a) Any reordering of a linearly independent r-tuple of vectors (v1, . . . , vr) is

linearly independent.
(b) An r-tuple of vectors (v1, . . . , vr) is linearly independent if and only if none

of these vectors is a linear combination of the others.

Exercise 13. Let V be a finite dimensional vector space over a field F.
(a) Show that any subset of a linearly independent set is linearly independent.
(b) Show that any reordering of a basis is also a basis.
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Exercise 14. Prove Proposition 3. (This proposition is a more precise—but per-
haps less attractive—reformulation of Proposition 1 and its proof. A good starting
point for this exercise would be to study the proof of Proposition 1 given in lecture.)

Proposition 3. Let V be a vector space over a field F and let v1, . . . , vr, w1, . . . , ws

be vectors of V . If (v1, . . . , vr) is linearly independent and Span(v1, . . . , vr, w1, . . . , ws) =
V , then by suitably chosen vectors from (w1, . . . , ws) one can extend (v1, . . . , vr) to
a basis of V .

Exercise 15. Let V be a vector space of dimension n over a field F, and let
0 ≤ r ≤ n. Prove that V contains a subspace of dimension r.

Exercise 16. Prove Proposition 4.

Proposition 4. Let V be a vector space over a field F. If (v1, . . . , vn) and (w1, . . . , wn)
are bases of V , then for each vi there exists some wj, so that on replacing vi by wj

in (v1, . . . , vn) we still have a basis.

Exercise 17. Let V be a real vector space and a, b, c, d ∈ V . Suppose that

v1 = a + b + c + d
v2 = 2a + 2b + c − d
v3 = a + b + 3c − d
v4 = a − c + d
v5 = − b + c − d

Show that (v1, . . . , v5) is linearly dependent. (Remark: One can solve this exercise
by expressing one of the vi as a linear combination of the other four. But there is
a proof in which one does not need to do any calculations.)

Definition 5. Let V be a vector space over a field F and let U1, U2 be subspaces
of V . We say that U1 and U2 are complementary subspaces if U1 + U2 = V and
U1 ∩ U2 = {0}.

For instance, consider the real vector space V = R3. It is easy to check that (i)
U1 = {x ∈ R3 | x3 = 0} and U2 = {x ∈ R3 | x1 = 0, x2 = 0} are complementary to
each other and (ii) U1 = V and U2 = {0} are complementary to each other. The
following exercise shows that there are many other examples.

Exercise 18. Let V be a vector space of dimension n over a field F. Show that if
U1 is a subspace of dimension p, then there exists a subspace U2 complementary to
U1, and each such subspace U2 has dimension n− p.

Given a complex vector space V one can make a real vector space from it by
simply restricting the scalar multiplication C × V−→V to R × V−→V . Since on
restriction the concepts “span” and “dimension” take on a new meaning, we some-
times write SpanC and dimC (resp. SpanR and dimR), when regarding V as a
complex (resp. real) vector space.

Exercise 19. For each n ≥ 0 determine for which pairs (r, s) of numbers there
exists a complex vector space and vectors (v1, . . . , vn) in it, such that

r = dimR SpanC(v1, . . . , vn),

s = dimR SpanR(v1, . . . , vn).
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Exercise 20. Let V be a finite dimensional vector space over a field F, and let
U1, U2 be subspaces of V . The formula dim(U1 +U2) = dim U1 +dim U2−dim(U1∩
U2) is analogous to the formula |S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|, which holds for
sets. If three sets are given, then

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3|
− |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|+ |S1 ∩ S2 ∩ S3|.

Does the corresponding formula for dimensions of subspaces hold?


