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Homework 4

Exercises 1–10 should be regarded as warm-up exercises. They are intended to
test your understanding of some of the definitions and constructions introduced in
lecture. Your first step to answering these should be to go back to the lecture notes
and read again the appropriate definition or construction.

Exercise 1. A map f : V−→W between vector spaces V and W over a field F is
linear, if

(a) f(ax + by) = af(x) + bf(y) for all x, y ∈ V , a, b ∈ F.
(b) f satisfies the eight axioms for a vector space.
(c) f : V−→W is bijective.

Exercise 2. By the kernel of a linear map f : V−→W one understands

(a) {w ∈W | f(0) = w}
(b) {f(v) | v = 0}
(c) {v ∈ V | f(v) = 0}

Exercise 3. Which of the following statements are correct? If f : V−→W is a
linear map, we have

(a) f(0) = 0.
(b) f(−x) = −x for all x ∈ V .
(c) f(av) = f(a) + f(v) for all a ∈ F, v ∈ V .

Exercise 4. A linear map f : V−→W is called an isomorphism if

(a) there exists a linear map g : W−→V with fg = IdW and gf = IdV .
(b) V and W are isomorphic.
(c) for each n-tuple (v1, . . . , vn) of vectors in V , the n-tuple (f(v1), . . . , f(vn))

is a basis of W .

Exercise 5. By the rank rk(f) of a linear map f : V−→W , one understands

(a) dim Ker f (b) dim Im f (c) dim W
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Exercise 7. The map f : R2−→R2, (x, y) 7−→ (x + y, x − y), is given by the
following matrix (“The columns are the . . . ”):

(a)
(

1 1
1 −1

)
(b)

(
0 2
−2 0

)
(c)

(
1 1
−1 1

)
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Exercise 8. Let V and W be vector spaces over a field F with bases (v1, v2, v3) and
(w1, w2, w3), respectively, and let f : V−→W be the linear map with f(vi) = wi.
Then the “associated” matrix is

(a)

1 1 1
1 1 1
1 1 1

 (b)

1 0 0
0 1 0
0 0 1

 (c)

0 0 0
0 0 0
0 0 0


Exercise 9. A linear map f : V−→W is injective if and only if

(a) f is surjective. (b) dim Ker f = 0. (c) rk f = 0.

Exercise 10. Let f : V−→W be a surjective linear map and dim V = 5, dim W =
3. Then

(a) dim Ker f ≥ 3.
(b) dim Ker f is 0, 1, or 2 and each of these cases can arise.
(c) dim Ker f = 2.

Exercise 11. Let V and W be vector spaces over a field F, let (v1, . . . , vn) be a
basis of V , and let f : V−→W be a linear map. Show that f is injective if and only
if (f(v1), . . . , f(vn)) is linearly independent.

We can define the notion of a polynomial with coefficients in a field F to mean a
linear combination of powers of the variable (or indeterminate):

f(t) = amtm + am−1t
m−1 + · · ·+ a1t + a0,(1)

where ai ∈ F. Such expressions are sometimes called formal polynomials, to distin-
guish them from polynomial functions. Every formal polynomial with coefficients
in F determines a polynomial function on F. The variable appearing in (1) is an
arbitrary symbol, and the monomials ti are considered linearly independent. This
means that if

g(t) = bntn + bn−1t
n−1 + · · ·+ b1t + b0

is a polynomial with coefficients in F, then f(t) and g(t) are equal if and only if
ai = bi for all i = 0, 1, 2, . . . . Sometimes it is useful to write a polynomial in the
standard form

f(t) = a0 + a1t + a2t
2 + · · · ,(2)

where the coefficients ai are all in the field F and only finitely many of the coefficients
are different from zero. Formally, the polynomial (2) is determined by its sequence
of coefficients ai:

a = (a0, a1, a2, . . . ),

where ai ∈ F and all but a finite number of ai are zero. Every such sequence
corresponds to a polynomial.

Addition and multiplication of polynomials mimic the familiar operations on
polynomial functions. Let f(t) be as in (2), and let

g(t) = b0 + b1t + b2t
2 + · · · ,(3)
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be a polynomial with coefficients in the same field F, determined by the sequence
b = (b0, b1, b2, . . . ). The sum of f and g is

f(t) + g(t) :=(a0 + b0) + (a1 + b1)t + (a2 + b2)t2 + · · ·

=
∑

k

(ak + bk)tk,

which corresponds to addition of sequences: a + b = (a0 + b0, a1 + b1, a2 + b2, . . . ).
The product of f and g is computed by multiplying term by term and collecting
coefficients of the same degree in t. If we expand the product using the distributive
law, but without collecting terms, we obtain

f(t)g(t) =
∑
i,j

aibjt
i+j .

Note that there are only finitely many nonzero coefficients aibj . The right-hand
side is not in standard form since the same monomial tn appears many times—once
for each pair (i, j) of indices such that i + j = n. Putting the right-hand side back
into standard form (by collecting terms) leads to the definition

f(t)g(t) := p0 + p1t + p2t
2 + · · · ,

where

pk := a0bk + a1bk−1 + · · ·+ akb0 =
∑

i+j=k

aibj .

Exercise 12. Let F be a field and Pn = {a0 + a1t + · · · + antn | ai ∈ F} be the
vector space of polynomials in the indeterminate t of degree ≤ n with coefficients
in F. If f(t) ∈ Pm and g(t) ∈ Pn, the product f(t)g(t) ∈ Pm+n is defined as above.
We call (1, t, . . . , tm) the canonical basis of Pm. Determine the matrix of the linear
map

P3−→P4, f(t) 7−→ (2− t)f(t)

relative to the canonical bases.

Exercise 13. By a finite chain complex C of vector spaces over a field F one
understands a sequence of homomorphisms

0
fn+1 // Vn

fn // Vn−1
fn−1 // · · · f2 // V1

f1 // V0
f0 // 0

of vector spaces over F with the property that fifi+1 = 0 for each i; i.e., such that
Ker fi ⊃ Im fi+1. The quotient vector space Hi(C) := Ker fi/ Im fi+1 is called the
i-th homology group of the complex. Show that if all the Vi are finite-dimensional,
then

n∑
i=0

(−1)i dim Vi =
n∑

i=0

(−1)i dim Hi(C).

Exercise 14. Consider the following commutative diagram of homomorphisms of
vector spaces over a field F.

V4
f4 //

epi. ϕ4

��

V3
f3 //

∼= ϕ3

��

V2
f2 //

ϕ2

��

V1
f1 //

∼= ϕ1

��

V0

mono. ϕ0

��
W4 g4

// W3 g3
// W2 g2

// W1 g1
// W0



4

Assume that the rows are exact, i.e., Ker fi = Im fi+1 and Ker gi = Im gi+1 for
i = 1, 2, 3, and suppose furthermore that the vertical homomorphisms have the
indicated properties; i.e., ϕ4 is an epimorphism, ϕ3 and ϕ1 are isomorphisms, and
ϕ0 is a monomorphism. Show that under these conditions ϕ2 is an isomorphism.


