Homework 1

Recall from lecture that if $f: X \longrightarrow Y$ is a map, then the set

$$
\Gamma_{f}:=\{(x, f(x)) \mid x \in X\}
$$

is called the graph of f. The graph is a subset of the Cartesian product $X \times Y$.
Exercise 1. Let X, Y be sets. As in lecture, we can draw a picture (or cartoon) of the Cartesian product $X \times Y$ by a rectangle (here, we are thinking of X and Y as intervals, although in general this will not be true). In this way, give examples of graphs of maps f with the following properties (please draw a picture for each):
(a) f is surjective, but not injective
(b) f is injective, but not surjective
(c) f is bijective
(d) f is constant
(e) f is neither injective nor surjective
(f) $X=Y$ and $f=\operatorname{Id}_{X}$
(g) $f(X)$ consists of only two elements
(Careful: not all subsets of the Cartesian product $X \times Y$ are graphs of a map $f: X \longrightarrow Y$; i.e., many subsets of $X \times Y$ are nongraphs.)

The inverse map f^{-1} of a bijective map $f: X \longrightarrow Y$ clearly has the properties

$$
f \circ f^{-1}=\operatorname{Id}_{Y}, \quad f^{-1} \circ f=\operatorname{Id}_{X}
$$

since in the first case each element $f(x) \in Y$ is mapped by $f(x) \mapsto x \mapsto f(x)$ onto $f(x)$, and in the second case each $x \in X$ is mapped by $x \mapsto f(x) \mapsto x$ onto x. Conversely, one has the following property.
Proposition 1. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ be maps such that

$$
f \circ g=\operatorname{Id}_{Y}, \quad g \circ f=\operatorname{Id}_{X}
$$

Then f is bijective and $f^{-1}=g$.
Exercise 2. Prove Proposition 1. (To get started: An injectivity proof runs like this: "Let $x, x^{\prime} \in X$ and $f(x)=f\left(x^{\prime}\right)$, then \ldots. Therefore $x=x^{\prime}$, and f is proved to be injective." On the other hand, the pattern for a surjectivity proof is: "Let $y \in Y$. Choose $x=\ldots$. Then we have \ldots, therefore $f(x)=y$, and f is proved to be surjective.")
Exercise 3. Consider any commutative diagram of sets of the form

with α, β bijective.
(a) Show that g is injective if and only if f is injective.
(b) Show that g is surjective if and only if f is surjective.
(We will frequently meet this kind of diagram in the course. The situation is then mostly: f is the object of our interest, α and β are subsidiary constructions, means to an end, and we already know something about g. This information about g then tells us something about f. In solving this exercise, you will see the mechanism of this information transfer.)

