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Abstract

Let X be the quotient of a smooth projective variety over a field
by a finite group action (in which case we say X is pseudo-smooth),
such that the singularities of X are isolated k-rational points. Let
f : Y → X be the morphism obtained by blowing up these points
on X. Assume further that Y is pseudo-smooth, and that the compo-
nents of the exceptional divisor are projective spaces. Then, without
invoking the theory of finite-dimensional motives or assuming any of
the standard conjectures, we show that a Chow-Künneth decompo-
sition on either X or Y gives rise, by means of an explicit construc-
tion, to a Chow-Künneth decomposition on the other. We use these
constructions to show that various properties (among them Murre’s
Conjectures and being of Lefschetz type) hold for X if and only if
they hold for Y . The main examples of interest to us are Kummer
manifolds: these are obtained by taking the quotient of an abelian
variety by the involution a 7→ −a, and then blowing up the singular
locus. We give several further applications of our construction to this
particular class of examples.

1 Introduction and summary of results

Let X 7→ H∗(X) be a Weil cohomology theory on varieties over some alge-
braically closed field. According to the standard conjectures of Grothendieck
formulated in [GR], one expects — among other things — that if X has
dimension d, then the Künneth components of the diagonal class [∆X ] ∈
Hd(X ×X) should lie in the subgroup Ad(X ×X) of HdimX(X ×X) gen-
erated by algebraic cycles. Moreover, for any smooth hyperplane section
W ⊆ X, the so-called Hard Lefschetz Theorem should hold: specifically, if
L : Hi(X)→ Hi+2(X) is the Lefschetz operator, then composing with the
iterated operator Ld−i should define an isomorphism Ai(X) → Ad−i(X)
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for all i. A detailed exposition of the standard conjectures may be found
in the comprehensive survey article of Kleiman [Kl].

A related but stronger set of conjectures was formulated by Jacob Murre
in [Mu]. Murre conjectured that the Künneth components of the diagonal
class of each such X should actually be defined in the category of (rational)
Chow motives, and that these projectors should act on the (rational) Chow
groups of X in a prescribed manner. The first of Murre’s conjectures —
the existence of a Chow-Künneth decomposition — has been verified for
certain classes of varieties (curves, surfaces, abelian varieties, and various
other special cases); however, it remains wide open in the general case.
The existence of a Chow-Künneth decomposition for abelian varieties was
first demonstrated by Shermenev [Sh], although it is a later construction
of the same by Deninger and Murre [DM] that lends itself most readily to
applications. Künnemann [Ku] used the Deninger-Murre construction to
prove that the Hard Lefschetz Theorem holds for abelian varieties at the
level of Chow motives. In fact, Künnemann proved much more, construct-
ing Lefschetz, Lambda, and *-operators for abelian varieties, and showing
that various identities among these, which hold in the setting of Kähler
geometry, actually hold at the level of Chow groups. More significantly, he
showed that if a variety is of Lefschetz type (see Section 2.3), then many
expected properties — including the Hard Lefschetz Theorem and the exis-
tence of projectors appropriately refining the Chow-Künneth decomposition
— follow immediately.

Let A denote an abelian variety over an algebraically closed field of
characteristic different from 2. Its associated Kummer variety KA is the
quotient of A by the involution a 7→ −a. If A has dimension d > 0, then
KA has 22d singular points, which are precisely the images of the 2-torsion
points of A under the quotient map A → KA. Blowing up these points
yields a smooth variety K ′A which we call the Kummer manifold. Even
though KA is a singular variety, it is pseudo-smooth (i.e. the quotient of
a smooth variety by the action of a finite group scheme), so basic meth-
ods of intersection theory may be used to study its Chow groups with
Q-coefficients (see [F, Example 1.7.6]). In earlier work [AJ1], the authors
of the present article used the Chow-Künneth decomposition for A con-
structed by Deninger and Murre to construct an explicit Chow-Künneth
decomposition for KA. Although the existence of such a decomposition
follows from the theory of finite-dimensional motives (see [GP]), we gave
several applications for our construction which would not have been possi-
ble from the abstract theory. This work was continued in [AJ2], in which
we used Künnemann’s Lefschetz algebra structure on the Chow groups of
an abelian variety to establish one for Kummer varieties. Once again, the
existence of such a decomposition was established in [KMP] under the as-
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sumption of parts of the standard conjectures (which are known to hold for
Kummer manifolds in characteristic 0 by work of Arapura [Ar]); however,
our construction has no dependence on characteristic and furthermore lends
itself to several applications.

In the present article, we use our constructions for KA to exhibit an
explicit Chow-Künneth decomposition for the Kummer manifold K ′A and
also an explicit Lefschetz algebra structure on its Chow groups. The follow-
ing is a technical result, which combined with our earlier results (see [AJ1]
and [AJ2]), provides the Chow-Künneth decomposition for the Kummer
manifolds.

Theorem (See Theorems 3.5 and 5.1) Let X denote a pseudo-smooth
variety of dimension d over a field k and Y the variety obtained by blowing
up a finite number of k-rational points on X. Suppose further that Y is
pseudo-smooth, and that the (respective) exceptional divisors of the blow-up
at each point are isomorphic to Pd−1.

Then:

• If either X or Y has a Chow-Künneth decomposition, then this can be
used to construct (explicitly) a Chow-Künneth decomposition on the
other (cf. (3.7) and Corollary 3.13.)

• If the Chow-Künneth decomposition (so constructed) on either X or
Y satisfies Poincaré duality (respectively, Murre’s Conjecture B, B’,
C, D) then the same is true for the other variety.

• Y is of Lefschetz type if and only if X is of Lefschetz type.

When combined with the results of [AJ1] and [AJ2], we may then con-
clude:

Corollary Let A denote an abelian variety of dimension d > 0 over an
algebraically closed field of characteristic different from 2 and K ′A its Kum-
mer manifold. Then K ′A has a Chow-Künneth decomposition satisfying
Poincaré duality and Murre’s conjecture B’; moreover, K ′A has Lefschetz
type in the sense of Definition 2.4. If d ≤ 4, then K ′A also satisfies Murre’s
conjecture B.

We also give several other applications of our construction. The first
concerns powers of the relation of algebraic equivalence (on algebraic cy-
cles). For a pseudo-smooth variety V , let LCHp

Q(V ) denote the subgroup
of CHp

Q(V ) consisting of cycles algebraically equivalent to zero. For r ≥ 1,
we denote by L∗r the rth power of (the equivalence relation) L, as defined
by Hiroshi Saito [Sai].
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Theorem (See Proposition 6.3) Let A denote an abelian variety of di-
mension d > 0 over an algebraically closed field of characteristic different
from 2. Let X = KA and Y = K ′A. Let [∆X ] =

∑2d
i=0 π

X
i denote the Chow-

Künneth decomposition for X constructed in [AJ1] and [∆Y ] =
∑2d
i=0 π

Y
i

the Chow-Künneth decomposition for Y constructed in (3.7). Define fil-

trations on CH∗Q(X) and CH∗Q(Y ) by F rCH∗Q(X) =
∑2d−r
i=0 πXi • CH

p
Q(X)

and F rCH∗Q(Y ) =
∑2d−r
i=0 πYi • CH

p
Q(Y ). Then:

(i) For r≥1, F rCHd
Q(X)=L∗rCHd

Q(X) and F rCHd
Q(Y )=L∗rCHd

Q(Y ).

(ii) For r > d, L∗rCH∗Q(X) = 0 and L∗rCH∗Q(Y ) = 0.

As another application, we prove a Hard Lefschetz Theorem for Chow
groups of Kummer manifolds in the case that the base field is the algebraic
closure of a finite field of characteristic different from 2.

Theorem (See Corollary 6.5) Let Y denote the Kummer manifold asso-
ciated to an abelian variety of dimension d > 0 over an algebraic closure of
a finite field of characteristic different from 2, and let LY denote the Lef-
schetz operator as constructed in the present paper. Then for 2p ≤ d, the
map CHp

Q(Y )→ CHd−p
Q (Y ) defined by c 7→ Ld−2pY • c is an isomorphism.

Most of our arguments rely on the following fundamental fact about
the structure of the Chow groups of blow-ups of the sort we are consid-
ering. Suppose f : Y → X is the morphism describing the blow-up of a
pseudo-smooth variety X at a point, such that Y is pseudo-smooth and the
exceptional divisor Z is isomorphic to the projective space over the ground
field. This is a strong assumption, but it guarantees that the cohomology
of the exceptional divisors are generated by algebraic cycles, which may
be viewed as the underlying reason why our strategy works. In this case,
CH∗Q(Y × Y ) is the internal direct sum of two subgroups, which we call A
and B: A consists of cycles pulled back from X × X via f × f , while B
consists of cycles supported on Z × Y ∪ Y × Z. With respect to the non-
commutative ring structure given by the composition of correspondences
on CH∗Q(Y ×Y ) = CH∗(Y ×Y )⊗Q, A is a ring and B is a two-sided ideal
of CH∗Q(Y ×Y ); furthermore, A and B are nearly orthogonal to each other.
Using these properties —and the crucial fact that every cycle in B can
be written as a sum of external products of cycles on Y — we can, start-
ing with a Chow-Künneth decomposition on X, construct Chow-Künneth
projectors on Y , and then use these to construct the appropriate operators
necessary for the exhibition of a Lefschetz algebra structure on CH∗Q(Y ×Y ).
We also show that if a Chow-Künneth decomposition or Lefschetz algebra
structure is known for Y , then pushing forward all the relevant cycles to X
will establish the analogous results there.
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The paper is organized as follows. We begin in Section 2 by providing
definitions and results from intersection theory. In Section 3, we establish
some important structural results concerning the Chow groups of a blow-up,
and then give our main construction involving Chow-Künneth decomposi-
tions. The remainder of the paper is devoted to various applications of our
explicit constructions. The first application, to Murre’s Conjectures, ap-
pears in Section 4. In Section 5, we study Lefschetz decompositions in the
context of blow-ups. Both of these are discussed in a fairly general setting.
We conclude in section 6 with various specialized applications to Kummer
varieties and manifolds.

Acknowledgements The present work was prompted by helpful exchang-
es with several colleagues; in particular, we thank Donu Arapura, Michel
Brion, Igor Dolgachev, and Charles Vial for helpful discussions. We thank
the referee for a careful reading, and for several suggestions which helped
improve this article.

2 Preliminaries

2.1 Correspondences and Murre’s Conjectures

Let k denote a field. For convenience, we refer to the quotient of a smooth
variety by the action of a finite group (scheme) as a pseudo-smooth vari-
ety. It is well-known that the basic machinery of intersection theory and
the usual formalism for correspondences extends naturally from smooth va-
rieties to pseudo-smooth varieties, provided one uses rational coefficients.
We may thus define the category Mk(Q) of (rational) Chow motives of
pseudo-smooth projective varieties in the same way as for smooth projec-
tive varieties (see for example, [Sch]). Throughout this article, we use the
notation CHi(X) for the Chow groups of (an algebraic scheme) X and
write CHi

Q(X) = CHi(X)⊗Q. It is worth noting that if a finite group G
acts on a smooth variety X, then the machinery of equivariant intersection
theory allows us to identify the equivariant Chow groups CH∗G(X)Q with
CH∗Q(X/G). Thus, the extension of the usual formalism of correspondences
to pseudo-smooth varieties (see [F, Example 1.7.6]) can also be derived from
the analogous theory in the equivariant context.

Since we will make use of many projection maps in the sequel, we re-
serve the symbol p for these, with the superscript indicating the domain
and the subscript the range. For example, if k is a field and X,Y, Z are
pseudo-smooth varieties over k, pXY Z13 : X × Y × Z → X × Z is the map
(x, y, z) 7→ (x, z). A subscript of ∅ indicates the structure morphism; for
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example, pXY∅ is the structure morphism X × Y → Spec k. Given cy-
cles α ∈ CHi(X) and β ∈ CHj(Y ), we refer to their exterior product
α × β = pXY1

∗
α · pXY2

∗
β as a product cycle on X × Y of type (i, j); by

abuse of terminology, we sometimes also refer to linear combinations of
such elements as product cycles.

Now suppose X, Y , and Z are pseudo-smooth varieties over k, with
γ ∈ CH∗(X×Y ) and δ ∈ CH∗(Y×Z). The composition δ•γ ∈ CH∗(X×Z)
is defined by

δ • γ = pXY Z13 ∗(p
XY Z
12

∗
γ · pXY Z23

∗
δ).

Composition of correspondences is associative; we will use this fact freely
without explicit mention in the sequel. If s : X×Y → Y ×X is the exchange
of factors, we define the transpose of α ∈ CH∗(X × Y ) by αt := s∗(α). We
write ∆X for the diagonal in X ×X and Γf for the graph of a morphism f
between (pseudo-smooth) varieties. Since [∆X ] • γ = γ = γ • [∆X ] for γ ∈
CH∗(X×X), the operation • makes CH∗(X×X) into a (noncommutative)
ring with unit element [∆X ]; furthermore, CHdimX(X×X) is a subring of
CH∗(X ×X).

We say that a variety X of dimension d has a Chow-Künneth decom-
position (or CK-decomposition for short) if the diagonal class [∆X ] ∈
CHd

Q(X ×X) has a decomposition into mutually orthogonal idempotents,
each of which maps onto the appropriate Künneth component under the
cycle map. More precisely, there exist πi ∈ CHd

Q(X ×X), 0 ≤ i ≤ 2d, such
that:

1. [∆X ] =

2d∑
i=0

πi;

2. πi • πi = πi for all i, and πi • πj = 0 for i 6= j;

3. If H∗ is a Weil cohomology theory, then for each i, the image of πi
under the cycle map clX : CHd

Q(X × X) → H2d(X × X;Q) is the
(2d− i, i) Künneth component of the diagonal class.

We say that a CK-decomposition as above satisfies Poincaré duality if
π2d−i = πi

t for 0 ≤ i ≤ 2d.
Finally, we recall the conjectures of Murre, formulated in [Mu] for

smooth varieties:
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Murre’s Conjectures

Let X denote a pseudo-smooth projective variety. Then

A. X has a CK-decomposition [∆X ] =

2d∑
i=0

πi.

B. If i < j or i > 2j, then πi acts as 0 on CHj
Q(X).

B’. If i < j or i > j + dimX, then πi acts as 0 on CHj
Q(X).

C. If we define

F 0CHj
Q(X)=CHj

Q(X) and F kCHj
Q(X)=Ker π2j+1−k∗|Fk−1CHj

Q(X)

for k > 0, then the resulting filtration is independent of the particular
choice of projectors πi.

D. For any filtration as defined in C, F 1CHj
Q(X) is the subgroup of

cycles in CHj
Q(X) homologically equivalent to zero.

2.2 Intersection theory on pseudo-smooth varieties

One can define pullback maps, pushforward maps, and intersection prod-
ucts in the context of pseudo-smooth varieties, and many basic results (in-
cluding, in particular, the projection formula) carry over from the smooth
case into this setting, provided one uses rational coefficients; see [dBN]
for details. For this reason, we use rational coefficients throughout this
section, even though many of the results (appropriately rephrased) hold
with integral coefficients in the smooth case. In the interest of making our
proofs more concise, we will work with correspondences as much as pos-
sible; however, it will occasionally serve intuition better to argue directly
using pullback and pushforward maps. To this end, we record the follow-
ing “dictionary” (cf. [F, Proposition 16.1.1] and [F, Example 1.7.6]) which
allows us to go back and forth between these two interpretations.

Lemma 2.1 Let X,Y, Z be pseudo-smooth projective varieties over a field.
Suppose f : X → Y and g : Y → Z are morphisms, and α ∈ CH∗Q(X × Y ),
β ∈ CH∗Q(Y × Z), γ ∈ CH∗Q(X × Z). Then the following formulas hold:

(1× g)∗(α) = [Γg] • α, (f × 1)∗(β)

= β • [Γf ], (f × 1)∗(γ)

= γ • [Γtf ], (1× g)∗(γ)

= [Γtg] • γ.
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An important observation is that composition of correspondences is well-
behaved with respect to pullback of cycles.

Lemma 2.2 With notation as in Lemma 2.1, suppose further that g is a
morphism of degree d, and α, β ∈ CH∗Q(Z×Z). Then (g×g)∗α•(g×g)∗β =
d(g × g)∗(α • β).

Proof Observe first that by the projection formula, we have:

[Γg] • [Γtg] = [∆Z ] • [Γg] • [Γtg] = (g × 1)∗(g × 1)∗[∆Z ] = d[∆Z ].

Then

(g × g)∗α • (g × g)∗β = (1× g)∗(g × 1)∗α • (1× g)∗(g × 1)∗β

= [Γtg] • α • [Γg] • [Γtg] • β • [Γg]

= d
(
[Γtg] • α • β • [Γg]

)
= d(g × g)∗(α • β).

(2.1)

2

The following fact about compositions of product cycles is surely well
known; however, since we will be using it so frequently, we include a proof
in the interest of completeness of exposition.

Lemma 2.3 Let X be a pseudo-smooth irreducible projective variety of
dimension d over some field k. Suppose α ∈ CHi

Q(X), β ∈ CHj
Q(X),

γ ∈ CHk
Q(X), and δ ∈ CH`

Q(X). Then

(α× β) • (γ × δ) = (γ × β) · pXX∅
∗
pX∅ ∗(δ · α).

In particular,
(α× β) • (γ × δ) = m(α, δ)(γ × β)

for some m(α, δ) ∈ Q, which equals zero if i+ ` 6= d.

Proof

(α× β) • (γ × δ)

= pXXX13 ∗(p
XXX
12

∗
(pXX1

∗
γ · pXX2

∗
δ) · pXXX23

∗
(pXX1

∗
α · pXX2

∗
β))

= pXXX13 ∗(p
XXX
13

∗
pXX1

∗
γ · pXXX2

∗
δ · pXXX2

∗
α · pXXX13

∗
pXX2

∗
β)

= pXXX13 ∗(p
XXX
13

∗
(pXX1

∗
γ · pXX2

∗
β) · pXXX2

∗
δ · pXXX2

∗
α)

= pXX1

∗
γ · pXX2

∗
β · pXXX13 ∗p

XXX
2

∗
(δ · α)

= pXX1

∗
γ · pXX2

∗
β · pXX∅

∗
pX∅ ∗(δ · α)

= (γ × β) · pXX∅
∗
pX∅ ∗(δ · α).
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Now let m(α, δ) = pXX∅
∗
pX∅ ∗(δ · α). If i + ` 6= d, then pX∅ ∗(δ · α) ∈

CHi+`−d
Q (Spec k) = 0. If i + ` = d, then pXX∅

∗
pX∅ ∗(δ · α) ∈ CH0

Q(X ×
X) ∼= Q.

2

2.3 Lefschetz algebra structure

We recall, with slight revisions, the definition of Lefschetz algebra from [Ku].

Definition 2.4 A Lefschetz algebra of dimension d is a triple (R,
{ηi}2di=0, L,Λ) where R =

⊕
p∈ZR

p is a graded Q-algebra, L ∈ R1, Λ ∈ R−1,
and

(i) η0, . . . , η2d are elements of R0 satisfying

2d∑
i=0

ηi = 1 and ηi ◦ ηj =

{
ηi if i = j
0 if i 6= j.

(ii) For all i, L ◦ ηi = ηi+2 ◦ L.

(iii) For all i, Λ ◦ ηi = ηi−2 ◦ Λ.

(iv) [Λ, L] := Λ ◦ L− L ◦ Λ =
∑2d
i=0(d− i)ηi.

The examples of primary concern to us arise when X is a pseudo-
smooth projective variety of dimension d over some field, R is the ring
CH∗+dQ (X ×X), the ηi are Chow-Künneth components of [∆X ], and L ∈
CHd+1

Q (X ×X), Λ ∈ CHd−1
Q (X ×X) are elements satisfying the identities

(ii)–(iv). If CH∗+dQ (X × X) can be endowed with the structure of a Lef-
schetz algebra in this manner, we say that X is of Lefschetz type. Varieties
of Lefschetz type are of interest largely due to the following result, which
may be deduced formally from the definition.

Corollary 2.5 [Ku, Theorem 4.1] Let R be a Lefschetz algebra as above,
and define I = {(i, k) ∈ Z × Z | max{0, i − d} ≤ k ≤ bi/2c}. Then R has
a Lefschetz decomposition, i.e. there exist elements pi,k ∈ R0 satisfiying:

(i)
∑
k qi,k = ηi for each i.

(ii) qi,k ◦ ηj = ηj ◦ qi,k = qi,k if i = j and 0 otherwise.

(iii) qi,k = 0 for (i, k) 6∈ I.

(iv) qi,k ◦ qj,l = qi,k if i = j and k = l and 0 otherwise.

(v) qi,k ◦ L = L ◦ qi−2,k−1.

(vi) Λ ◦ qi,k = qi−2,k−1 ◦ Λ.
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(vii) L ◦ Λ ◦ qi,k = k(g − i+ k + 1)qi,k.

(viii) Λ ◦ L ◦ qi,k = (k + 1)(g − i+ k)qi,k.

Corollary 2.6 (Hard Lefschetz Theorem) [Ku, Theorem 5.2] If X is
a pseudo-smooth projective variety of dimension d over a field k, and
R = ((CH∗Q(X × X), {ηi}2di=0, L,Λ) is a Lefschetz algebra, then for i,

0 ≤ i ≤ d, the correspondence Ld−i defines an isomorphism of motives

hi(X)
∼=−→ h2d−i(X)(d− i) with inverse Λd−i, where hj(X) is the rational

Chow motive (X, ηj , 0).

3 An explicit Chow-Künneth decompositions
for blow-ups

3.1 Main construction and technical details

For the balance of the paper, we fix the following notation and hypotheses.

Assumptions.

• X is a pseudo-smooth projective variety of dimension d over some
field k.

• Y is the blow-up of X along T = {a}, where a is a k-rational point
of X.

• Y is pseudo-smooth and the exceptional divisor Z of the blow-up is
isomorphic to Pd−1.

Let

E
j
//

g

��

Y

f

��

T
i // X

be the commutative square describing this blow-up.

The objective of this section is to describe explicitly how a CK-decompo-
sition for X can be used to construct one on Y , and conversely. We begin by
setting up the framework for our construction and proving some auxiliary
results.

First, observe that Y × Y is the blow-up of X × X along the closed
subscheme S = S1 ∪ S2, where S1 = T × X and S2 = X × T . The
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exceptional divisor of this blow-up is E = E1 ∪E2, where E1 = Z × Y and
E2 = Y × Z. Thus we have commutative diagrams:

E
j̃
//

g̃

��

Y × Y

f×f
��

E1
� � j×1

//

g×1
��

Y × Y

f×1
��

E2
� � 1×j

//

1×g
��

Y × Y

1×f
��

S
ĩ // X ×X T × Y �

� i×1
// X × Y Y × T �

� 1×i
// Y ×X.

Note that even when X is smooth, S is not regularly imbedded in X×X,
so we cannot use the blow-up exact sequence to relate the Chow groups of
Y ×Y to those of X ×X. Instead, we use the localization sequence. Let m
be an integer, 0 ≤ m ≤ d, and define UX = X×X−S and UY = Y ×Y −E.
Then by there is a commutative diagram with exact rows:

CHm−1
Q (E)

j̃∗ //

g̃∗

��

CHm
Q (Y × Y ) //

(f×f)∗

��

CHm
Q (UY )

∼=

��

// 0

CHm−d
Q (S)

ĩ∗ // CHm
Q (X ×X) // CHm

Q (UX) // 0

(3.1)

The aim of the rest of this section is to describe a decomposition of
CH∗Q(Y ×Y ) as the internal direct sum of two subgroups, A and B, and to
study the multiplicative structure of CH∗Q(Y ×Y ) as a ring (under compo-
sition of correspondences) with respect to these subgroups.

To this end, define

ζ = (f × f)∗[∆X ] ∈ CHd
Q(Y × Y ),

A = ζ • CH∗Q(Y × Y ) • ζ, and

Am = A ∩ CHm
Q (Y × Y ), 0 ≤ m ≤ 2d.

(3.2)

Clearly, A =
⊕2d

m=0Am.

Lemma 3.1 For γ ∈ CH∗Q(Y × Y ), (f × f)∗(f × f)∗γ = ζ • γ • ζ. In
particular, if γ ∈ (f × f)∗CH∗Q(X ×X), then ζ • γ • ζ = γ. Furthermore,
A = (f×f)∗CH∗Q(X×X) is a ring with unit element ζ, and Ad is a subring
of A.
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Proof From the projection formula and the fact that f has degree 1, it
follows that [Γf ] • [Γtf ] = [∆X ]. Then

ζ • γ • ζ = (f × f)∗[∆X ] • γ • (f × f)∗[∆X ]

= [Γtf ] • [∆X ] • [Γf ] • γ • [Γtf ] • [∆X ] • [Γf ]

= [Γtf ] • [Γf ] • γ • [Γtf ] • [Γf ]

= (f × f)∗(f × f)∗γ.

The remaining assertions are clear from Lemma 2.2.
2

Next, define

B′ = (j × 1)∗(Ker ((f ◦ j)× 1)∗)

B′′ = (1× j)∗(Ker (1× (f ◦ j))∗).

Let B = B′ + B′′; for 0 ≤ m ≤ 2d, set B′m = B′ ∩ CHm
Q (Y × Y ),

B′′m = B′′∩CHm
Q (Y ×Y ), and Bm = B′m+B′′m. Then there are direct sum

decompositions

B =

2d⊕
m=0

Bm, B
′ =

2d⊕
m=0

B′m, B
′′ =

2d⊕
m=0

B′′m.

There is a rather important orthogonality relationship between A and B.

Proposition 3.2 (Orthogonality principle) Suppose α ∈ A, β′ ∈ B′

and β′′ ∈ B′′. Then β′ • α = 0 and α • β′′ = 0.

Proof Write α = (f × f)∗δ, β′ = (j × 1)∗ε1 and β′′ = (1 × j)∗ε2, where
δ ∈ CHd

Q(X×X), ε1 ∈ Ker ((f ◦ j)×1)∗, and ε2 ∈ Ker (1× (f ◦ j))∗. Then

β′ • α = ε1 • [Γtj ] • [Γtf ] • δ • [Γf ] = ((f ◦ j)× 1)∗ε1 • δ • [Γf ] = 0.

α • β′′ = [Γtf ] • δ • [Γf ] • [Γj ] • ε2 = [Γtf ] • δ • (1× (f ◦ j))∗ε2 = 0.
2

A simple chase on diagram 3.1 shows that σ = [∆Y ] − ζ ∈ Bd. Direct
calculation then shows that the formulas

σ • σ = σ, σt = σ, and σ • ζ = ζ • σ = 0

hold. Moreover, Proposition 3.2 shows that for β′ ∈ B′, β′′ ∈ B′′, we have
β′ • σ = β′ and σ • β′′ = β′′.
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Given γ ∈ CH∗Q(Y × Y ), let γ′ = γ − ζ • γ • ζ. Then using Lemma 3.1
we calculate:

(f × f)∗(γ
′) = (f × f)∗(γ − ζ • γ • ζ)

= (f × f)∗γ − (f × f)∗(f × f)∗(f × f)∗γ

= (f × f)∗γ − (f × f)∗γ

= 0.

Another chase on diagram 3.1 shows that γ′ ∈ Im j̃∗ ∩Ker (f × f)∗. This
shows that there are well-defined maps

s : A⊕B → CH∗Q(Y × Y ) and t : CH∗Q(Y × Y )→ A⊕B

given by s(a, b) = a+ b and t(γ) = (ζ • γ • ζ, γ − ζ • γ • ζ).

Proposition 3.3

(i) s and t are inverse isomorphisms; thus, CH∗Q(Y × Y ) is the internal
direct sum of A and B.

(ii) A and B are each closed under transposition of cycles.

Proof It is clear from the definitions that s ◦ t = 1, so it suffices to show
that s is injective and that t is surjective. To show the former, we prove
A ∩ B = {0}. If γ ∈ A ∩ B, then in particular, γ • ζ = γ = ζ • γ, and
also γ = b′ + b′′ for some b′ ∈ B′ and b′′ ∈ B′′. Using Proposition 3.2, we
calculate:

γ = ζ • γ • ζ = ζ • (b′ • ζ) + (ζ • b′′) • ζ = 0.

Now suppose (α, β) ∈ A⊕B. Setting γ = α+β and writing β = β′+β′′

with β′ ∈ B′ and β′′ ∈ B′′, we have

ζ • γ • ζ = ζ • α • ζ + ζ • β • ζ = α+ ζ • (β′ • ζ) + (ζ • β′′) • ζ = α.

Hence t(γ) = (α, β), and so t is surjective.
For the second statement, α ∈ A implies α = (f × f)∗δ for some δ ∈

CH∗Q(X × X). Since δt ∈ CH∗Q(X × X), obviously αt = (f × f)∗δt ∈ A.
Furthermore, suppose β ∈ B and write βt = α′ + β′ for some α′ ∈ A,
β′ ∈ B. Then β = (βt)t = α′

t
+ β′

t
. Because β has a unique expression as

a sum of an element of A and an element of B we must have α′
t

= 0; so
α′ = 0, and thus βt ∈ B.

2

The following is a computational criterion convenient for testing for
membership in A or B:
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Corollary 3.4 Suppose γ ∈ CH∗Q(Y × Y ). Then γ ∈ A if and only if
ζ • γ • ζ = γ and γ ∈ B if and only if ζ • γ • ζ = 0.

Proof If γ ∈ A, then γ = ζ • γ • ζ by Lemma 3.1. Conversely, suppose
γ = ζ • γ • ζ. Write γ = α + β, where α ∈ A and β ∈ B and β = β′ + β′′,
where β′ ∈ B′ and β′′ ∈ B. Then, using Proposition 3.2,

γ = ζ • γ • ζ = ζ • α • ζ + ζ • β′ • ζ + ζ • β′′ • ζ = ζ • α • ζ = α ∈ A.

The second statement is now clear.
2

3.2 Blowing up

The proof of the following theorem introduces one of the main constructions
used in this article. Our techniques bear some resemblance to those used
by Vial in [V, Section 5]. There are, however, two main differences in
approach.

(i) We are blowing up varieties that are not necessarily smooth, but hav-
ing isolated quotient singularities, so that our varieties are required
to be only pseudo-smooth. This also means that we cannot make use
of the blow-up exact sequence (as in, for e.g. [F, Proposition 6.7]).

(ii) The second difference is that we interpret Y × Y as the blow-up
of X × X along the subscheme S (as explained in Section 3.1); in
contrast, the arguments of Vial only involves Y as the blow-up of X
along a subvariety T .

Theorem 3.5 If X has a CK-decomposition [∆X ] =

2d∑
i=0

πXi , then Y has

an explicit CK-decomposition, as defined in (3.7). If the former satisfies
Poincaré duality, then so does the latter.

Proof By Lemma 2.2, {(f×f)∗πXi }2di=0 is a set of orthogonal idempotents
in CHd

Q(Y × Y ). However, Σ2d
i=0(f × f)∗(πXi ) may not equal [∆Y ], so we

proceed to deal with this discrepancy. Recall σ = [∆Y ]− ζ = [∆Y ]− (f ×
f)∗([∆X ]). Denote by h1 : E1 ↪→ E, h2 : E2 ↪→ E, k1 : E1 ∩ E2 ↪→ E1, and
k2 : E1 ∩ E2 ↪→ E2 the various inclusion maps. Then the sequence

CHd−2
Q (E1 ∩ E2)

k1∗+k2∗→ CHd−1
Q (E1)⊕ CHd−1

Q (E2)

h1∗−h2∗−→ CHd−1
Q (E)→ 0
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is exact, so we may write σ = j̃∗(h1∗τ1 +h2∗τ2), with τi ∈ CHd−1
Q (Ei), i =

1, 2. Since j̃◦h1 = j×1 and j̃◦h2 = 1×j, we have σ = (j×1)∗τ1+(1×j)∗τ2.
We stress that this is the only part of our construction which involves a
choice of cycles.

By Proposition 3.3, we have also σ = σt = (1× j)∗τ t1 + (j× 1)∗τ
t
2; thus,

σ =
1

2
[(j × 1)∗τ1 + (1× j)∗τ2] +

1

2
[(1× j)∗τ t1 + (j × 1)∗τ

t
2)]

= (j × 1)∗
1

2
(τ1 + τ t2) + (1× j)∗

1

2
(τ1 + τ t2)t.

This calculation shows that we may replace (τ1, τ2) with ( 1
2 (τ1 + τ t2),

1
2 (τ t1 + τ2)), and thus assume without loss of generality that τ2 = τ t1.

Let ` ∈ CH1
Q(Z) be the class of a generic hyperplane, and for conve-

nience, set `i = j∗(`
i−1) ∈ CHi

Q(Y ) for 1 ≤ i ≤ d. From the projective bun-

dle formula, we have τ1 =
∑d−1
i=0 `

i× ad−i−1, where ad−i−1 ∈ CHd−i−1
Q (Y ).

Define ad = 0, `0 = 0, η0 = 0 and ηi = (j × 1)∗(`
i−1 × ad−i) = `i × ad−i

for 1 ≤ i ≤ d. If we set θi = ηtd−i, then ηi is a product cycle of type
(i, d − i) when 1 ≤ i ≤ d and θi is a product cycle of type (i, d − i) when
0 ≤ i ≤ d − 1. Finally, define γi = ηi + θi for 0 ≤ i ≤ d. By construction,
we have γti = γd−i.

2

Lemma 3.6 a0 = 0.

Proof Since a0 ∈ CH0
Q(Y ), we have a0 = c[Y ] for some c ∈ Q. Observe

first that

(f × f)∗(j × 1)∗τ1 = (1× f)∗

d−1∑
m=0

(f × 1)∗(j × 1)∗(`
m × ad−m−1)

= (1× f)∗

d−1∑
m=0

(i× 1)∗(g × 1)∗(`
m × ad−m−1)

= (1× f)∗

d−1∑
m=0

i∗g∗(`
m)× ad−m−1.

For reasons of dimension, g∗(`
m) = 0 when 0 ≤ m ≤ d − 2 and

i∗g∗`
d−1 = x ∈ CHd

Q(X), so (f × f)∗(j × 1)∗τ1 = x × a0 = c(x × [Y ])
and similarly (f × f)∗(1× j)∗τ2 = c([Y ]× x).

By construction, (f × f)∗σ = 0; thus,
(f × f)∗(j × 1)∗τ1 + (f × f)∗(1 × j)∗τ2 = c(x × [Y ] + [Y ] × x) = 0.

Since x × [Y ] is a projector which is orthogonal to [Y ] × x, it follows that
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(x×[Y ])•(c(x×[Y ]+[Y ]×x)) = c(x×[Y ]) = 0. Finally, since ∆∗Y (x×Y ) =
x · [Y ] = x 6= 0, we must have c = 0, and hence a0 = 0.

2

Returning to the proof of Theorem 3.5, we note the following important
facts:

θ0 = ηd = 0 and ηi ∈ B′d, θi ∈ B′′d for 0 ≤ i ≤ d. (3.3)

One easily checks that
∑d
j=0 γj = σ. Since γi is a product cycle of type

(i, d− i), Lemma 2.3 implies γi • γj = 0 when i 6= j. In particular, we have:

σ • γi = γi • γi = γi • σ (3.4)

for i, 0 ≤ i ≤ d. Thus, σ = σ • σ =
∑d
j=0 γj • γj , and so we have∑d

j=0[γj • γj − γj ] = 0, where the term in brackets is a product cycle of
type (j, d− j). Composing with γi on the left, we conclude:

γi • γi • γi − γi • γi = 0. (3.5)

Now by (3.6), σ•(γi•γi−γi) = (σ•γi)•γi−σ•γi = γi•γi•γi−γi•γi = 0,
and similarly (γi • γi − γi) • σ = 0. Thus,

γi • γi − γi = (ζ + σ) • (γi • γi − γi) • (ζ + σ) = ζ • (γi • γi − γi) • ζ,

which by (3.4), equals

ζ • σ • γi • ζ + ζ • (ηi + θi) • ζ.

The first term vanishes because ζ • σ = 0 and the second vanishes
because ηi ∈ B′ and θi ∈ B′′. Thus, we have γi • γi = γi, and so γi is a
projector satisfying

σ • γi = γi = γi • σ. (3.6)

Furthermore, for i and j, 0 ≤ i ≤ d and 0 ≤ j ≤ 2d, we have:

γi•(f×f)∗πXj = (γi•σ)•(ζ•(f×f)∗πXj •ζ) = γi•(σ•ζ)•(f×f)∗πXj •ζ = 0

and similarly (f × f)∗πXj • γi = 0.
Finally, define for 0 ≤ j ≤ 2d,

δj =

{
γd− j

2
if j is even

0 if j is odd
and πYj = (f × f)∗πXj + δj . (3.7)
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The computations above show that [∆Y ] =
∑2d
j=0(f × f)∗(πXj ) + σ =∑2d

j=0 π
Y
j satisfies properties (i) and (ii) in the definition of CK-decomposi-

tion. The construction shows that δtj = δ2d−j for all j; hence, the assertion

about Poincaré duality follows from the definition of the πYj .
It remains to show that for any Weil cohomology theory H∗ and every

j, 0 ≤ j ≤ 2d, clY×Y (πYj ) is the (2d− j, j) Künneth component of [∆Y ] ∈
H2d(Y ×Y ;Q). Using the Künneth isomorphism to make the identification

H2d(Y × Y ;Q) ∼=
⊕2d

i=0H
2d−i(Y ;Q)⊗Q H

i(Y ;Q), it suffices to show that
clY×Y (πYj ) ∈ H2d−j(Y ;Q)⊗Q H

j(Y ;Q).

Now πXj is a projector in the original Chow-Künneth composition for

X; so clX×X(πXj ) ∈ H2d−j(X;Q) ⊗Q H
j(X;Q). Hence, using properties

of the cycle map from the definition of Weil cohomology (see for exam-
ple, [Kl, Section 3]), we have clY×Y (f × f)∗πXj = (f × f)∗clX×X(πXj ) ∈
H2d−j(Y ;Q)⊗QH

j(Y ;Q). Moreover, δj = γd−j/2 is a product cycle of type

(d − j/2, j/2); hence γd−j/2 =
∑r
m=0 λm × µm, where λm ∈ CHd−j/2

Q (Y )

and µm ∈ CHj/2
Q (Y ). Again using properties of the cycle map,

clY×Y (γd−j/2) =

r∑
m=0

clY×Y (λm × µm)

=

r∑
m=0

clY (λm)⊗ clY (µm) ∈ H2d−j(Y ;Q)⊗Q H
j(Y ;Q).

Thus, regardless of whether j is odd or even, clY×Y (πYj ) ∈ H2d−j(Y ;Q)⊗Q
Hj(Y ;Q).

2

3.3 Refined projectors

In the construction of the Chow-Künneth projectors, our interest was fo-
cused on the sums γi = ηi+θi as projectors in CHd

Q(Y ×Y ). In subsequent
sections, however, we will need to use the fact, established below, that ηi
and θi are themselves mutually orthogonal projectors. Before proceeding
any further, we need to make some slight modifications to our definitions
in certain cases, the reasoning being that we wish to avoid the situation
in which ηi and θi are nonzero constant multiples of each other. To this
end, if 0 < i < d/2 and ηi and θi happen to be nonzero constant multiples
of each other, replace (ηi, θi) with (ηi + θi, 0) and replace (ηd−i, θd−i) with
(0, ηd−i + θd−i). This change alters the definition of the ai, but it does
not change γi or γd−i, nor does it disturb the duality relation ηti = θd−i.
Now if d is even, ηtd/2 = θd/2. In view of this, the only way for ηi and θi
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to be nonzero constant multiples of each other (after the modification de-
scribed above) is when d is even, i = d/2 and ηd/2 = θd/2 We will show in
Proposition 3.8 that this situation is impossible.

Lemma 3.7 For i, 1 ≤ i ≤ d− 1, `i × `d−i 6= 0.

Proof If `i × `d−i = 0, then ∆∗Y (`i × `d−i) = `i · `d−i = 0. However, by
the projection formula and the self-intersection formula,

`i·`d−i = j∗`
i−1·j∗`d−i−1 = j∗(`

i−1·j∗j∗`d−i−1) = j∗(`
i−1·`d−i) = j∗(`

d−1).

This is a zero cycle on Y of degree one, so it cannot be zero.
2

Proposition 3.8 For all i, 0 ≤ i ≤ d,

ηi • ηi = ηi, θi • θi = θi, ηi • θi = θi • ηi = 0.

Moreover, m(`i, ad−i) = m(ad−i, `i) = m(`i, `d−i) = 1, m(ai, ad−i) = 0,
where the m(−,−) are the rational numbers defined in Proposition 2.3. For
all i and j, ai × aj = 0.

Proof Direct calculation using the self-intersection formula shows that

m(`i, `d−i) = m(j∗`
i−1, j∗`

d−i−1)

= pY Y∅
∗
pY∅ ∗(j∗`

i−1 · j∗`d−i−1)

= pY Y∅
∗
pY∅ ∗j∗(j

∗`i−1 · `d−i−1)

= pY Y∅
∗
pY∅ ∗j∗(`

i · `d−i−1)

= pY Y∅
∗
pY∅ ∗j∗(`

d−1)

= 1

for i, 0 ≤ i ≤ d. Moreover, since ηi and θi are product cycles on Y × Y ,
Lemma 2.3 implies that ηi • ηi = sηi and θi • θi = tθi for some s, t ∈ Q.
Now ηi ∈ B′ and θi ∈ B′′ by (3.3), so by Proposition 3.2, we have
ηi • (f × f)∗πj = 0 and (f × f)∗πj • θi = 0 for 0 ≤ j ≤ 2d. Using
Lemma 2.3, we have

ηi • γi = ηi • σ = ηi • [∆Y ]− ηi •
2d∑
j=0

(f × f)∗πj = ηi, and similarly (3.8)

γi • θi = θi.
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So on one hand, ηi • θi = ηi • γi − ηi • ηi = (1− s)ηi, but also ηi • θi =
γi • θi − θi • θi = (1− t)θi. Hence (1− s)ηi = (1− t)θi.

First suppose ηi and θi are not nonzero constant multiples of each other.
It must be the case that s = 1 or t = 1. If s = 1, then (1− t)θi = 0, so t = 1
or θi = 0; but in the latter case, we may still assume t = 1. If t = 1, we may
similarly conclude that s = 1. Thus, s = t = 1, and so ηi•ηi = ηi, θi•θi = θi
and ηi•θi = 0. Now θi•ηi = (γi−ηi)•(γi−θi) = γi•γi−ηi•γi−γi•θi+ηi•θi =
γi−ηi−θi = 0. Now the formulas m(`i, ad−i) = m(ad−i, `i) = 1 follow from
the statement ηi • ηi = ηi and the symmetry of m(−,−) in its arguments.
Since ηi • θi = 0, we have m(ai, ad−i)(`i × `d−i) = 0. If 1 ≤ i ≤ d− 1, then
by Lemma 3.7, `i× `d−i 6= 0, so we must have m(ai, ad−i) = 0. When i = 0
or i = d, this is obvious, since a0 = ad = 0. Finally, from θi • ηi = 0, we
have m(`i, `d−i)(ai × ad−i) = ai × ad−i = 0. Then

ai × aj = (`i × aj) • (ai × ad−i) = 0.

Thus, all of asserted equations hold for i 6= d/2, or if i = d/2 and either
ηd/2 = θd/2 = 0 or ηd/2 6= θd/2.

Now suppose that d is even and ηd/2 = θd/2 6= 0. Then ηd/2 = θd/2 =
1
2γd/2, and so ηd/2 • θd/2 = 1

4γd/2 = 1
2ηd/2 6= 0. However, by Lemma 2.3,

ηd/2 • θd/2 = m(`d/2, `d/2)ad/2 × ad/2
= ad/2 × ad/2
= (`d/2+1 × ad/2) • (ad/2 × ad/2−1)

= (`d/2+1 × ad/2) • (ad/2+1 × ad/2−1) • (ad/2 × `d/2−1).

Since we have already showed that ad/2+1 × ad/2−1 = 0, the above
calculation forces γd/2 = 0, which is a contradiction. This shows that the
condition ηd/2 = θd/2 6= 0 is impossible.

2

Corollary 3.9

(i) Let β1 = `i × λ ∈ CHi+j
Q (Y × Y ). Then β1 • ηi = β1. If β1 ∈ B′ or

if ai × λ = 0, then β1 • θi = 0.

(ii) Let β2 = λ × `j ∈ CHi+j
Q (Y × Y ). Then θd−j • β2 = β2. If β2 ∈ B′′

or if λ× aj = 0, then ηd−j • β2 = 0.

Proof We prove the first statement, the second being similar. First,

β1 • ηi = (`i × λ) • (`i × ad−i) = m(`i, ad−i)(`i × λ) = `i × λ = β1.

By direct computation, β1•θi = m(`i, `d−i)(ai×λ) = ai×λ; so if ai×λ = 0,
then β1 • θi = 0. If β1 ∈ B′, then β1 • ζ = 0 by Proposition 2.3 and
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β1 • σ = β1 •
∑d
j=0 γj = β1 • γi for reasons of dimension. Thus, β1 =

β1 • [∆Y ] = β1 • (ζ + σ) = β1 • γi = β1 • (ηi + θi) = β1 + β1 • θi. It follows
that β1 • θi = 0 in this case also.

2

Corollary 3.10 B is a two-sided ideal of CH∗Q(Y × Y ).

Proof We need to check that for all α ∈ A, and β1, β2 ∈ B, the elements
α • β1, β2 • α, and β1 • β2 are in B. For the first, simply note that because
ζ ∈ A, ζ • (α • β1) • ζ = ζ • α • (β1 • ζ) = 0 by Proposition 3.2. By
Corollary 3.4, α • β1 ∈ B. The argument showing β2 • α ∈ B is similar.

We will show that if β1, β2 ∈ B, then in fact β1 • β2 = 0, which is
clearly in B. By linearity in each factor, we may assume that β1, β2 are
homogeneous elements with respect to the grading on CH∗Q(Y × Y ), i.e.

β1 ∈ CHk
Q(Y × Y ) and β2 ∈ CH l

Q(Y × Y ) for some k, l. For i = 1, 2, write
βi = β′i + β′′i , where βi ∈ B′ and β′′i ∈ B′′. Then

ζ • (β1 •β2)•ζ = ζ •β′1 •β′2 •ζ+ζ •β′′1 •β′2 •ζ+ζ •β′1 •β′′2 •ζ+ζ •β′′1 •β′′2 •ζ.

The first, second, and fourth terms are zero by Proposition 3.2, so we
may assume without loss of generality that β1 ∈ B′ and β2 ∈ B′′. By the
projective bundle formula, β1 is a sum of elements of the form `i×bk−i and
β2 is a sum of elements of the form cl−j×`j , where 1 ≤ i, j ≤ d and bm, cn ∈
CH∗Q(Y ). Using linearity again, we reduce to the case β1 = `i × bk−i, and
β2 = cl−j × `j . Then β1 • β2 = (β1 • ηi) • (θd−j • β2) by Corollary 3.9.
If i = d − j, then ηi • θd−j = 0 by Proposition 3.8. If i 6= d − j, then
ηi • θd−j = ηi • γi • γd−j • θd−j = 0 where the first equality is by (3.8)
and the second equality is by the orthogonality of γi and γd−j as shown in
Lemma 2.3. In either case, we have β1 • β2 = 0.

2

3.4 Blowing down

We now have the tools to prove the converse of Theorem 3.5.

By Proposition 3.3, we may write every δ ∈ CHi
Q(Y × Y ) uniquely as

(f × f)∗(f × f)∗δ + bδ, where bδ ∈ B. As we will need to use a similar
argument in Section 5, we phrase the next result in somewhat general form.

Lemma 3.11 With hypotheses as in Theorem 3.5, suppose δi ∈ CH∗Q(Y ×
Y ), 1 ≤ i ≤ 4, satisfy δ1 • δ2 = δ3 • δ4. Then (f × f)∗δ1 • (f × f)∗δ2 =
(f × f)∗δ3 • (f × f)∗δ4.
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Proof For each i = 1, . . . , 4, write δi = (f × f)∗(f × f)∗δi + bi, where
bi ∈ B. Substituting these expression into the assumption δ1 • δ2 = δ3 • δ4
yields

(f × f)∗(f × f)∗δ1 • (f × f)∗(f × f)∗δ2 + (f × f)∗(f × f)∗δ1 • b2
+ b1 • (f × f)∗(f × f)∗δ2 + b1 • b2

= (f × f)∗(f × f)∗δ3 • (f × f)∗(f × f)∗δ3 + (f × f)∗(f × f)∗δ3 • b4
+ b3 • (f × f)∗(f × f)∗δ4 + b3 • b4,

which by Lemma 2.2 may be rewritten

(f × f)∗((f × f)∗δ1 • (f × f)∗δ2) + (f × f)∗(f × f)∗δ1 • b2
+ b1 • (f × f)∗(f × f)∗δ2 + b1 • b2

= (f × f)∗((f × f)∗δ3 • (f × f)∗δ3) + (f × f)∗(f × f)∗δ3 • b4
+ b3 • (f × f)∗(f × f)∗δ4 + b3 • b4.

The first summand on each side is in A, while Corollary 3.10 shows that
the other three summands are in B. By Proposition 3.3, CH∗Q(Y ×Y ) is the
internal direct sum of A and B, so we must have (f × f)∗((f × f)∗δ1 • (f ×
f)∗δ2) = (f × f)∗((f × f)∗δ3 • (f × f)∗δ4). Finally, the projection formula
implies that (f × f)∗(f × f)∗ is the identity map, so (f × f)∗ is injective
and the assertion follows.

2

By taking δ4 = [∆Y ], we immediately deduce:

Corollary 3.12 If δ1, δ2 ∈ CH∗Q(Y × Y ), then (f × f)∗(δ1 • δ2) = (f ×
f)∗δ1•(f×f)∗δ2. In particular, if δ1•δ2 = 0, then (f×f)∗δ1•(f×f)∗δ2 = 0.

As discussed in [SV, 1.4], given a surjective morphism g : V → W of
projective varieties, one may identify the (Chow) motive of W with a di-
rect summand of the Chow motive of V . In particular, there is a section
s ∈ CHd

Q(W × V ) such that [Γg] • s = [∆W ]. If one begins with a Chow-

Künneth decomposition [∆V ] =
∑2d
j=0 π

V
j for V , one might attempt to

construct a Chow-Künneth decomposition on W by considering the ele-
ments [Γg] • πVj • s, 0 ≤ j ≤ 2d. Because the πVj are central modulo homo-
logical equivalence (assuming some choice of Weil cohomology theory), the
cohomology classes of the elements [Γg] • πYj • s, 0 ≤ j ≤ 2d actually define
a Künneth decomposition on W , but it does not follow that these elements
are idempotents when considered with respect to rational equivalence.

In the case of blowing down in our special case as considered in 3.1,
however, this construction actually yields a Chow-Künneth decomposition
as shown in the following Corollary.
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Corollary 3.13 With hypotheses as in Section 3.1, suppose [∆Y ]=
∑2d
j=0 π

Y
j

is a Chow-Künneth decomposition for Y . Then [∆X ] =
∑2d
j=0(f × f)∗π

Y
j

is a CK-decomposition for X. Moreover, if the CK-decomposition for Y
satisfies Poincaré duality, then so does the CK-decomposition for X.

Proof The formula for [∆X ] follows by applying (f×f)∗ to the expression
for [∆Y ], noting that f×f has degree 1. Now if i 6= j, we have πYi •πYj = 0,

so (f × f)∗π
Y
i • (f × f)∗π

Y
j = 0 by Corollary 3.12. Finally,

(f×f)∗π
Y
i •(f×f)∗π

Y
i = ([∆X ]−

∑
j 6=i

(f×f)∗π
Y
j )•(f×f)∗π

Y
i = (f×f)∗π

Y
i .

The remaining assertions are clear from the construction.

2

4 Application to Murre’s Conjectures

The goal of this section is to prove that each of Murre’s Conjectures holds
for Y if and only if it holds for X. The case of Murre’s Conjecture A
(existence of a Chow-Künneth decomposition) was completed in the pre-
vious section. In the interest of making the proofs easier to follow, we use
Greek letters for elements of CH∗Q(Y × Y ) or CH∗Q(X × X) and Roman
letters for elements of CH∗Q(Y ) or CH∗Q(X). In order to study the action
of correspondences on Chow groups, we will need some results analogous
to Lemma 2.2 and Proposition 3.2.

Lemma 4.1 If α ∈ CH∗Q(X ×X) and x ∈ CH∗Q(X), then

f∗(α • x) = (f × f)∗(α) • f∗x.

Proof Viewing x as an element of Corr(k,X), we compute using Lemma
2.1. Keeping in mind that [Γf ] • [Γtf ] is multiplication by deg f = 1, we
have:

(f × f)∗α • f∗x = [Γtf ] • α • [Γf ] • [Γtf ] • x = [Γtf ] • α • x = f∗(α • x).

2

Recall that T denotes the center of the blow-up of X and that Z is
the exceptional divisor in Y . For i, 0 ≤ i ≤ d, define subgroups Ci =
f∗CHi

Q(X) and Di = j∗(Ker g∗ : CHi−1
Q (Z) → CHi−d

Q (T )) of CHi
Q(Y ).

Observe that Di = CHi−1
Q (Z) ∼= Q if i < d and Di = 0 if i = d. Then
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Proposition 4.2 CHi
Q(Y ) is the internal direct sum of Ci and Di. Fur-

thermore, if α ∈ A and di ∈ Di, then α • di = 0, and if β ∈ B and c ∈ Ci,
then (β • σ) • ci = 0.

Proof Let VX = X − T and VY = Y −Z. Then VX ∼= VY , so localization
gives a commutative diagram with exact rows:

CHi−1
Q (Z)

j∗ //

g∗

��

CHi
Q(Y ) //

f∗

��

CHi
Q(VY )

∼=

��

// 0

CHi−d
Q (T )

i∗ // CHi
Q(X) // CHi

Q(VX) // 0.

The property CHi
Q(Y ) = Ci+Di follows from a straightforward diagram

chase and the fact that i∗ is injective. Now write α = (f×f)∗u, ci = f∗v ∈
Ci, and di = j∗y ∈ Di. Then

α • di = (f × f)∗u • j∗y = [Γtf ] • u • [Γf ] • [Γj ] • y
= [Γtf ] • u • [Γf•j ] • y
= [Γtf ] • u • [Γi•g] • y
= [Γtf ] • u • [Γi] • g∗y
= 0.

Therefore, if ci ∈ Ci ∩Di, then (regarding ci as an element of Ci), we
have ζ • ci = ci by Lemma 4.1, but also (regarding ci an element of Di),
ζ • ci = 0 by the above calculation. Thus, Ci ∩Di = {0}. Finally,

(β • σ) • ci = β • σ • f∗v = β • σ • ζ • f∗v = β • 0 • f∗v = 0.

2

From this point onward, we fix identifications

CHi
Q(Y ) ∼= Ci ⊕Di and CHd

Q(Y × Y ) ∼= A⊕B

and thereby justify the use of ordered pair notation for elements of CH∗Q(Y )
and CH∗Q(Y × Y ).

Corollary 4.3 Suppose ((f × f)∗α, β) ∈ CHd
Q(Y × Y ) and (f∗x, y) ∈

CHi
Q(Y ). Then

((f × f)∗α, β • σ) • (f∗x, y) = (f∗(α • x), β • σ • y).
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Proposition 4.4 Murre’s Conjecture B holds for X if and only if it holds
for Y , and similarly for Conjecture B’.

Proof We give the proof for Conjecture B. First suppose X has a Chow-
Künneth decomposition [∆X ] =

∑2d
i=0 π

X
i satisfying Murre’s Conjecture

B, i.e. π` • CHj
Q(X) = 0 when ` < j or ` > 2j, and let [∆Y ] =

∑2d
i=0((f ×

f)∗πXi , δi) be the Chow-Künneth decomposition for Y as constructed in
(3.7). From (3.6), the property δi = δi • σ holds for all i. Now fix j,
0 ≤ j ≤ d, and consider (f∗x, y) ∈ CHj

Q(Y ). By Corollary 4.3, ((f ×
f)∗πX` , δ`) • (f∗x, y) = (f∗(πX` • x), δ` • y). If ` < j or ` > 2j, then
πX` • x = 0. When ` is odd, clearly δ` • y = 0; so assume ` is even. Then
δ` is a product cycle of type (d − `/2, `/2); so it suffices to show that for

any u ∈ CHQ
d−`/2(Y ) and v ∈ CHQ

`/2(Y ), (u × v) • y = 0 when ` < j or
` > 2j. Then

(u× v) • y = pY Y2 ∗(p
Y Y
1

∗
y · pY Y1

∗
u · pY Y2

∗
v)

= pY Y2 ∗p
Y Y
1

∗
(y · u) · v

= pY∅
∗
pY∅ ∗(y · u) · v.

Note that y·u ∈ CHj+d−`/2
Q (Y ). If ` < j, then j+d−`/2 > d; so y·u = 0.

If ` > 2j, then j − `/2 < 0; so pY∅ ∗(y · u) ∈ CHj−`/2
Q (Spec k) = 0. Thus,

this Chow-Künneth decomposition for Y satisfies Murre’s Conjecture B.
Conversely, suppose [∆Y ] =

∑2d
i=0 π

Y
i is a Chow-Künneth decomposi-

tion for Y satisfying Murre’s Conjecture B. By Proposition 3.3, we may
write πYi = ((f × f)∗πXi , δi) for some πXi ∈ CHd

Q(X × X). This means,

in particular, that if (f∗x, y) ∈ CH`
Q(Y ), then (f × f)∗πXj • f∗x = 0 when

` < j or ` > 2j. By Lemma 4.1 we have f∗(πXj • x) = 0, and since f∗ is

injective, πXj •x = 0. Corollary 3.13 then guarantees that [∆X ] =
∑2d
i=0 π

X
i

is a Chow-Künneth decomposition for X satisfying Murre’s Conjecture B.
2

Proposition 4.5 Murre’s Conjecture C holds for X if and only if it holds
for Y . Similarly, Conjecture D holds for X if and only if it holds for Y .

Proof Assume first that X has a CK-decomposition [∆X ] =
∑2d
i=0 π

X
i

satisfying Murre’s Conjecture C. Now let [∆Y ] =
∑2d
i=0(f × f)∗πXi + δi be

the CK-decomposition for Y constructed in the proof of Theorem 3.5. By
Proposition 4.2 and Corollary 4.3, we have ((f × f)∗πX` + δ`) •CHi

Q(Y ) =

(f × f)∗πX` • Ci + δ` • Di = f∗(πX` • Ci) + δ` • Di. In particular, this
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implies that the filtration induced by this CK-decomposition (as defined in
Section 2.1) is described by

FmCHi
Q(Y ) = f∗FmCHi

Q(X) +Di,m (4.1)

where Di = Di,0 ⊇ Di,1 ⊇ . . . is a descending chain of subgroups. By
Murre’s Conjecture C for X, the term FmCHi

Q(X) is independent of the
original choice of CK-decomposition for X. Also, by [Mu, Lemma 1.4.4],
F 1CHi

Q(Y ) is contained in the subgroup CHi
Q(Y )hom ⊆ CHi

Q(Y ) of cycles
homologically equivalent to zero. If i = d, then Di = 0; so Di,j = 0
for all j. If i < d, then Di = CHi−1

Q (Z) ∼= Q is a one-dimensional Q-

vector space, with CHi−1
Q (Z)hom = 0. Hence Di,j = 0 for all j ≥ 1,

showing that the filtration FmCHi
Q(Y ) is independent of the original choice

of CK-decomposition on Y . This proof also shows that if Conjecture D
holds for X, i.e. F 1CHi

Q(X) = CHi
Q(X)

hom
, then likewise F 1CHi

Q(Y ) =

CHi
Q(Y )

hom
.

Conversely, suppose Y has a CK-decomposition satisfying Murre’s Con-
jecture C. If [∆X ] =

∑2d
i=0 π

X
i is a CK-decomposition on X, use The-

orem 3.5 to construct a CK-decomposition [∆Y ] =
∑2d
i=0(f × f)∗πXi + δi

on Y . By assumption, the filtration (4.1) defined by this CK-decomposition
is independent of the original choice of CK-decomposition on X; hence
f∗F

mCHi
Q(Y ) = FmCHi

Q(X) is also independent on this choice, and so
Conjecture C holds for X. The assertion concerning Conjecture D follows
similarly.

2

5 Application to Lefschetz decompositions

5.1 Lefschetz type and blowing up

The goal of this section is to prove the following result:

Theorem 5.1 Let f : Y → X be as in Section 3.1. Then Y is of Lefschetz
type if and only if X is of Lefschetz type.

Let d=dimX=dimY and suppose ((CH∗+dQ (X×X), {πXi }2di=0, LX ,ΛX)
is a Lefschetz algebra. It follows easily from Lemma 2.2 that

((f × f)∗CH∗Q(X ×X), {(f × f)∗πXi }2di=0, (f × f)∗LX , (f × f)∗ΛX)

is a Lefschetz algebra.
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Next, define

L′ =

d∑
i=1

(`i × ad−i+1) + (ai × `d−i+1) ∈ CHd+1
Q (Y × Y )

and

Λ′ =

d−1∑
j=0

(d− j)(j + 1) [(`j × ad−j−1) + (aj × `d−j−1)] ∈ CHd−1
Q (Y × Y ).

We will show that if we set

LY = (f × f)∗LX + L′ ∈ CHd+1
Q (Y × Y )

and
ΛY = (f × f)∗ΛX + Λ′ ∈ CHd−1

Q (Y × Y )

and denote by πY0 , . . . , π
Y
2d ∈ CHd

Q(Y × Y ) the projectors constructed in

(3.7), then (CH∗+dQ (Y × Y ), {πYi }2di=0, LY ,ΛY ) is a Lefschetz algebra.

Proposition 5.2 The following identities hold for each s:

• L′ • δ2s = δ2s+2 • L′ = `d−s × as+1 + ad−s × `s+1.

• Λ′ • δ2s = δ2s−2 • Λ′ = s(d− s+ 1)[(`d−s × as−1) + (ad−s × `s−1)].

• Λ′ • L′ − L′ • Λ′ =
∑2d
i=0(d− i)δi.

Proof

L′ • δ2s = L′ • γd−s =

d∑
i=1

[`i × ad−i+1 + ai × `d−i+1] • [ηd−s + θd−s].

By Lemma 2.3, the only (possibly) nonzero term in this sum corresponds
to i = d− s, so

L′ • δ2s = (`d−s × as+1) • ηd−s + (`d−s × as+1) • θd−s
+ (ad−s × `s+1) • ηd−s + (ad−s × `s+1) • θd−s.

Using Proposition 3.8 and Corollary 3.9, we see that the first term equals
`d−s × as+1 and the fourth term equals ad−s × `s+1, while the middle two
terms vanish. Thus, L′ • δ2s = `d−s × as+1 + ad−s × `s+1. By similar
reasoning,

δ2s+2 • L′ = (ηd−s−1 + θd−s−1) • [`d−s × as+1 + ad−s × `s+1]

= `d−s × as+1 + ad−s × `s+1.
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Therefore, L′ • δ2s = δ2s+2 •L′, as desired. The proof of the second formula
is similar.

For the third formula,

Λ′ • L′ =

d−1∑
j=0

d∑
i=1

(d− j)(j + 1) [(`j × ad−j−1) + (aj × `d−j−1)]

• [(`i × ad−i+1) + (ai × `d−i+1)] .

By Lemma 2.3, the (i, j) term of this double sum will be zero unless
j = i− 1; hence the expression simplifies to

d∑
i=1

i(d−i+1) [(`i−1 × ad−i) + (ai−1 × `d−i)]•[(`i × ad−i+1) + (ai × `d−i+1)]

=

d∑
i=1

i(d− i+ 1)[m(`i−1, ad−i+1)(`i × ad−i) +m(`i−1, `d−i+1)(ai × ad−i)

+m(ai−1, ad−i+1)(`i × `d−i) +m(ai−1, `d−i+1)(ai × `d−i)]

=

d∑
i=1

i(d− i+ 1)[(`i × ad−i) + (ai × `d−i)].

Likewise,

L′ • Λ′ =

d−1∑
j=0

d∑
i=1

(d− j)(j + 1) [(`i × ad−i+1) + (ai × `d−i+1)]

• [(`j × ad−j−1) + (aj × `d−j−1)] .

Again, the only nonzero terms correspond to the case j = i− 1, so this
simplifies to

d∑
i=1

i(d−i+1) [(`i×ad−i+1)+(ai × `d−i+1)] • [(`i−1 × ad−i) + (ai−1 × `d−i)]

=

d∑
i=1

i(d− i+ 1)[m(`i, ad−i)(`i−1 × ad−i+1) +m(`i, `d−i)(ai−1 × ad−i+1)

+m(ai, ad−i)(`i−1 × `d−i+1) +m(ai, `d−i)(ai−1 × `d−i+1)]

=

d∑
i=1

i(d− i+ 1)[(`i−1 × ad−i+1) + (ai−1 × `d−i+1)]

=

d−1∑
i=0

(i+ 1)(d− i)[(`i × ad−i) + (ai × `d−i)].
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Hence,

Λ′ • L′ − L′ • Λ′

= −d[(`0 × ad) + (a0 × `d)] +

d−1∑
i=1

[i(d− i+ 1)− (i+ 1)(d− i)][(`i × ad−i)

+ (ai × `d−i)] + d[(`d × a0) + (ad × `0)]

= −dγ0 +

d−1∑
i=1

(2i− d)γi + dγd =

d∑
i=0

(2i− d)γi

=

d∑
i=0

(2i− d)δ2(d−i) =

d∑
i=0

(d− 2i)δ2i.

Since δj = 0 for j odd, reindexing gives Λ′•L′−L′•Λ′ =
∑2d
j=0(d−j)δj ,

as desired.

2

Corollary 5.3

L′ • σ = L′ = σ • L′, Λ′ • σ = σ • Λ′ = Λ′,

and

δj • σ = σ • δj = σ for j, 0 ≤ j ≤ 2d.

Proof By the definition of L′ and Proposition 5.2,

L′ =

d∑
i=0

L′ • δ2(d−i) = L′ •
d∑
i=0

δ2(d−i) = L′ • σ

and

L′ =

d∑
i=0

δ2i • L′ = (

d∑
i=0

δ2i) • L′ = σ • L′,

which establishes the first set of equalities; the proof for the second set is
similar. The third set of equalities is a restatement of (3.6).

2

Proof (of Theorem 5.1) Suppose, as above, that

(CH∗+dQ (X ×X), {πXi }2di=0, LX ,ΛX)
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is a Lefschetz algebra. Let {πYi }2di=0 denote the Chow-Künneth decomposi-
tion defined by (3.7); we will show that

(CH∗+dQ (Y × Y ), {πYi }2di=0, (f × f)∗LX + L′, (f × f)∗ΛX + Λ′)

is a Lefschetz algebra. The verification is purely formal, so we will show
it only for the first formula in Definition 2.4; the rest follow by analogous
reasoning. First,

((f × f)∗LX + L′) • ((f × f)∗πX2s + δ2s) = (f × f)∗LX • (f × f)∗πX2s

+ (f × f)∗LX • δ2s + L′ • (f × f)∗πX2s + L′ • δ2s.

By Lemma 2.2 and the hypothesis, the first term on the right equals

(f × f)∗(LX •πX2s) = (f × f)∗(πX2s+2 •LX) = (f × f)∗(πX2s+2) • (f × f)∗LX .

Since (f × f)∗LX ∈ A and δ2s = σ • δ2s by (3.6), we may compute the
second term: (f × f)∗LX • δ2s = (f × f)∗LX • ζ • σ • δ2s = 0. Likewise, the
third term is L′ • (f × f)∗πX2s = L′ • σ • ζ • (f × f)∗πX2s = 0. The last term
equals δ2s+2 • L′ by Proposition 5.2. Thus, we have:

((f×f)∗LX+L′)•((f×f)∗πX2s+δ2s) = (f×f)∗(πX2s+2)•(f×f)∗LX+δ2s+2•L′.

Similarly one shows

(f × f)∗(πX2s+2) • (f × f)∗LX + δ2s+2 • L′

= ((f × f)∗(πX2s+2) + δ2s+2) • ((f × f)∗LX + L′),

completing the argument.
Conversely, suppose (CH∗+dQ (Y × Y ), {πYi }2di=0, LY ,ΛY ) is a Lefschetz

algebra, i.e. the identities of Definition 2.4 are satisfied. By Corollary
3.12, the analogous identities required to show that (CH∗+dQ (X×X), {(f ×
f)∗π

Y
i }2di=0, (f × f)∗LY , (f × f)∗ΛY ) is a Lefschetz algebra also hold.

2

5.2 Agreement with the usual Lefschetz operator

In the proof of Theorem 5.1, we constructed the Lefschetz operator LY
in terms of LX and an extra term L′. In the following we show that if
d = dimX ≥ 2 and if LX takes the usual form of the Lefschetz operator,
then the same is true for Y . Letting ∆X : X → X×X and ∆Y : Y → Y ×Y
denote the respective diagonal maps, we show that if LX = (∆X)∗(b) for
some divisor b ∈ CH1

Q(X), then LY = (∆Y )∗(b
′) for some b′ ∈ CH1

Q(Y ).
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To this end, let b ∈ CH1
Q(X), and write b′ = f∗b + j∗[Z] ∈ CH1

Q(Y ).
Writing Lb′ = (∆Y )∗(b

′), we have:

(f × f)∗Lb′ = (f × f)∗(∆Y )∗(b
′)

= (∆X)∗f∗(b
′)

= (∆X)∗f∗f
∗(b) + (∆X)∗f∗j∗[Z]

= (∆X)∗(b) + (∆X)∗i∗g∗[Z]

= LX .

By Proposition 3.3, there exists M ∈ Bd+1 such that Lb′ = ζ •Lb′ • ζ +M ;
that is,

M = Lb′ − ζ • Lb′ • ζ = Lb′ − (f × f)∗(f × f)∗Lb′ = Lb′ − (f × f)∗LX .

We will show that M = L′; it will then follow that the Lefschetz operator
LY constructed in Theorem 5.1 coincides with Lb′ . Note also that

M = Lb′−([∆Y ]−σ)•Lb′ •([∆Y ]−σ) = σ•Lb′+Lb′ •σ−σ•Lb′ •σ. (5.1)

Observe that

σ • Lb′ =

d∑
i=0

(ai × `d−i + `i × ad−i) • (∆Y )∗(b
′)

=

d∑
i=0

(ai • (∆Y )∗(b
′))× `d−i + (`i • (∆Y )∗(b

′))× ad−i.

Now for y ∈ CHi
Q(Y ),

y•(∆Y)∗(b
′)=pY Y2 ∗(p

Y Y
1

∗
y·(∆Y )∗(b

′))=pY Y2 ∗(∆Y )∗((∆Y )∗pY Y1

∗
y·b′)=y·b′;

thus, σ • Lb′ =

d∑
i=0

(ai · b′)× `d−i + (`i · b′)× ad−i. Also,

`i · b′ = j∗`
i−1 · (f∗(b) + j∗[Z])

= j∗(`
i−1 · (j∗f∗(b) + j∗j∗[Z]))

= j∗(`
i−1 · g∗i∗(b) + `i−1 · `)

= j∗`
i = `i+1.

Thus, σ •Lb′ =
∑d
i=0(ai · b′)× `d−i + `i+1× ad−i. Now each term in the
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above summand is a product cycle of type (i+ 1, d− i), so we have:

σ • Lb′ = (σ • Lb′) • γi+1

=

d∑
i=0

((ai · b′)× `d−i) • (ai+1 × `d−i−1 + `i+1 × ad−i−1)

+ (`i+1 × ad−i) • (ai+1 × `d−i−1 + `i+1 × ad−i−1)

=

d∑
i=0

m(`d−i−1, ai · b′)(ai+1 × `d−i) +m(ad−i−1, ai · b′)(`i+1 × `d−i)

+m(`i+1, `d−i−1)(ai+1 × ad−i) +m(`i+1, ad−i−1)(`i+1 × ad−i).

By Proposition 3.8,the above simplifies to:

σ • Lb′ =

d∑
i=0

m(`d−i−1, ai · b′)(ai+1 × `d−i)

+m(ad−i−1, ai · b′)(`i+1 × `d−i) + (`i+1 × ad−i).

Let q : Y → Spec k be the structure morphism. Then we have:

m(`d−i−1, ai · b′) = q∗(j∗`
d−i−2 · ai · (f∗(b) + rj∗[Z]))

= q∗(j∗(`
d−i−2 · j∗(ai) · j∗f∗(b))

+ q∗(j∗(`
d−i−2 · j∗(ai) · j∗j∗[Z])

= q∗(j∗(`
d−i−2 · j∗(ai) · `))

= q∗j∗(`
d−i−1 · j∗(ai))

= q∗(j∗`
d−i−1 · ai)

= m(`d−i, ai)

= 1.

Also, m(ad−i−1, ai · b′) = q∗(ad−i−1 · ai · b′), but ad−i−1 · ai = ∆∗Y (ad−i−1×
ai) = 0 by Proposition 3.8, so m(ad−i−1, ai · b′) = 0.

Therefore, σ • Lb′ =
∑d
i=0(ai+1 × `d−i) + (`i+1 × ad−i) = L′. From the

definitions, one sees immediately that σt = σ, Ltb′ = Lb′ , and the above
calculation shows that (σ • Lb′)t = σ • Lb′ . Hence, Lb′ • σ = Ltb′ • σt =
(σ • Lb′)t = σ • Lb′ . By (5.1), M = σ • Lb′ = L′.
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6 Applications to Kummer varieties and
manifolds

Let A be an abelian variety of dimension d over an algebraically closed
field k of characteristic 6= 2. The associated Kummer variety KA is obtained
by taking the quotient of A by the action of the group (scheme) G generated
by the involution a 7→ −a.

The Kummer manifold is obtained from KA by blowing up the singular
locus of A — that is, by blowing up the image of the 2-torsion points of A
under the quotient map q : A → KA. As observed in [DL, p.4], KA may

be embedded in P2d−1 using a symmetric theta divisor; thus, the image
of any 2-torsion point is a singular point, étale locally isomorphic to the
affine cone over the second Veronese variety of Pd−1. This can be seen
by observing that the negation involution of the abelian variety A acts
locally by (z1, · · · , zg)→ (−z1, · · · ,−zg), because it acts so on the tangent
space. The ring of invariants is generated by polynomials zizj ; hence, the
exceptional divisor of the blow-up of the Kummer variety at a 2-torsion
point is isomorphic to Pd−1. Now if a ∈ A is a 2-torsion point, A the blow-up
of A along {a}, and KA the blow-up of KA along {q(a)}, then the universal
property of the blow-up gives an induced map h : A/G → KA. Since the
exceptional divisors of both blow-ups are (each) isomorphic to Pd−1 and
KA is known to be normal [Sas], h is a quasi-finite proper birational map.
Because KA is also normal, h is an isomorphism by Zariski’s main theorem.
This proves that KA is also a pseudo-smooth variety. A similar argument
shows that the intermediate schemes obtained by successively blowing up
each of the singular points on KA also satisfy the same hypotheses. Let
f : K ′A → KA denote the composition of all these blow-up maps; K ′A is
then a smooth variety, the so-called Kummer manifold associated to A.

6.1 Murre’s conjectures and the Lefschetz decomposi-
tion for Kummer manifolds

Corollary 6.1 The Kummer manifold Y has a Chow-Künneth decomposi-
tion [∆Y ] =

∑2d
i=0 π

Y
i satisfying Poincaré duality, and is also of Lefschetz

type. Furthermore, Y satisfies Murre’s conjecture B’, and when d ≤ 4, Y
satisfies Murre’s conjecture B.

Proof For convenience, let X = KA and Y = K ′A. In [DM, Section 3],
Deninger and Murre constructed a particular Chow-Künneth decomposi-
tion [∆A] =

∑2d
i=0 π

A
i for A. Using this construction, the present au-

thors showed in [AJ1] that if we set πXi = (q × q)∗πAi ∈ CHd
Q(X × X),
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then [∆X ] =
∑2d
i=0 π

X
i is a Chow-Künneth decomposition for X satisfying

Poincaré duality and Murre’s Conjecture B’; when d ≤ 4, X also satisfies
Murre’s Conjecture B. We also showed in [AJ2, Theorem 1.2] that X is of
Lefschetz type. The conclusion then follows by application of Theorem 3.5,
Theorem 5.1, and Proposition 4.4.

2

Remarks

1. A similar result holds for any of the intermediate schemes obtained
by blowing up some (but not all) of the singular points on X.

2. The referee has pointed out an alternate strategy for constructing an
explicit Chow-Künneth decomposition on the Kummer manifold Y ,
based on a different construction of the latter. The negation map
a 7→ −a on the abelian variety A defines an action of G = Z/2Z on A
in the obvious manner. If one blows up the locus of 2-torsion points
on A to obtain a variety Ã, then the action of G on A extends in a
natural way to an action of G on Ã. The Kummer manifold Y can
then be realized as the quotient variety Ã/G. Therefore, if one starts
with a Chow-Künneth decomposition on the Abelian variety that is
stable under the action of Z/2Z, one could apply the results of [V,
Remark 5.5] or [SV, Proposition 2.10] to obtain an explicit Chow-
Kunneth decomposition on Ã, which could then be descended to a
Chow-Kunneth decomposition on the Kummer manifold Y as in [SV,
Corollary 2.13].

6.2 Algebraic equivalence on Kummer varieties and
manifolds

Continuing the notation and assumptions of the previous section, we ap-
ply our explicit construction to study powers of the relation of algebraic
equivalence on X and on Y .

In [Sam], Samuel defined the notion of an adequate equivalence rela-
tion on algebraic cycles and proved that rational equivalence is the finest
such relation. Having fixed a field k, an adequate equivalence relation E
is an assignment, to every pseudo-smooth variety V over k, of a subgroup
ECH∗(V ) ⊆ CH∗(V ), which is preserved under pullback, pushforward,
and intersection with arbitrary cycles. Algebraic equivalence, homological
equivalence, and numerical equivalence all examples of adequate equiva-
lence relations. Hiroshi Saito [Sai] defined the product E ∗ E′ of two ad-
equate equivalence relations E and E′, and proved that E ∗ E′ is itself
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adequate. He also proved that the operation is associative and commuta-
tive, and distributes in the expected manner over sums of relations (defined
in the expected manner).

If A is an abelian variety of dimension d over an algebraically closed
field k, there is a natural filtration on CHp

Q(A) defined by the Deninger-

Murre Chow-Künneth projectors: for r ∈ Z, set F rCHp
Q(A) =

∑2p−r
i=0 πAi •

CHp
Q(A). A conjecture of Beauville [Be] is equivalent to the assertion

that the nontrivial steps in this filtration occur only in positive degree,
i.e. F 0CHp

Q(A) = CHp
Q(A). This is easily seen to be equivalent to the as-

sertion that πi acts as 0 on CHj
Q(A) = 0 when i < 2j, which is the second

half of Murre’s Conjecture B.
Now let L denote the (adequate) relation of algebraic equivalence. Its

rth power L∗r is the so-called r-cubical equivalence introduced in [Sam].
In previous work of the first author, the following was proved in a slightly
stronger form:

Theorem 6.2 [A, Theorem 3.1 and Proposition 3.3] Assume Beauville’s
Conjecture, and let A be an abelian variety over an algebraically closed field.
Then:

(i) For r ≥ 1, F rCHd
Q(A) = L∗rCHd

Q(A).

(ii) For r > d, L∗rCH∗Q(A) = 0.

The second statement is a kind of nilpotence assertion for cycles on
abelian varieties. We will show that our constructions yield similar results
for X and Y .

First, define filtrations on CHp
Q(X) and CHp

Q(Y ) by

F rCHp
Q(X) =

2p−r∑
i=0

πXi • CH
p
Q(X) and F rCHp

Q(Y ) =

2p−r∑
i=0

πYi • CH
p
Q(Y ).

Then for i, 0 ≤ i ≤ 2d and α ∈ CH∗Q(X), we have:

(q × q)∗πAi • α = q∗(π
A
i • q∗α) (6.1)

since both sides are equal (as correspondences) to Γq •πAi •Γtq •α. Note that
this identity is also expressed by the formula F rCHp

Q(X) = q∗F
rCHp

Q(A).
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Proposition 6.3 Assume Beauville’s conjecture. Then the conclusions of
Theorem 6.2 hold when A is replaced by either X or Y .

Proof Suppose r ≥ 1. Then Theorem 6.2, together with adequacy of L∗r,
implies

F rCHd
Q(X) = q∗F

rCHd
Q(A) = q∗L

∗rCHd
Q(A) ⊆ L∗rCHd

Q(X).

Likewise, since q∗q
∗ is multiplication by |G|,

L∗rCHd
Q(X) = q∗q

∗L∗rCHd
Q(X) ⊆ q∗(L∗rCHd

Q(A))

= q∗(F
rCHd

Q(A))

= F rCHp
Q(X).

This proves the first statement for X. For the second statement, simply
observe that for r > d,

L∗rCH∗Q(X) = q∗q
∗L∗rCH∗Q(X) ⊆ q∗(L∗rCH∗Q(A)) = 0.

To deduce the statements for Y , apply Proposition 4.2 to write CHd
Q(Y ) =

Cd+Dd. Direct computation shows thatDd = 0, so since πYi = (f×f)∗πXi +
δi and δi = δi • σ by Corollary 5.3, another application of Proposition 4.2
implies

F rCHd
Q(Y ) =

2d−r∑
i=0

πYi • CHd
Q(Y )

=

2d−r∑
i=0

(f × f)∗πXi • Cd

=

2p−r∑
i=0

f∗(πXi • CHd
Q(X))

= f∗F rCHd
Q(X).

Now, using adequacy of L∗r, we have, for r ≥ 1:

F rCHd
Q(Y ) = f∗F rCHd

Q(X) = f∗L∗rCHd
Q(X) ⊆ L∗rCHd

Q(Y ).

Also, because CHd
Q(Y ) = f∗CHd

Q(X), we have CHd
Q(Y ) = f∗f∗CH

d
Q(Y ),

so

L∗rCHd
Q(Y ) = f∗f∗L

∗rCHd
Q(Y ) ⊆ f∗L∗rCHd

Q(X) = f∗F rCHd
Q(X)

= F rCHd
Q(Y ).
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This establishes the first statement. For the second, simply note that for
r > d,

L∗rCH∗Q(Y ) = f∗f∗L
∗rCH∗Q(Y ) ⊆ f∗L∗rCH∗Q(X) = 0.

2

6.3 A Hard Lefschetz Theorem for Chow groups of
Kummer manifolds

As an application of the explicit Lefschetz decomposition constructed in
Section 5, we prove the following theorem.

Theorem 6.4 (Hard Lefschetz for Chow groups) With notation and
assumptions as in Sections 3.1 and 5, suppose further that X is of Lefschetz
type and that for 2p ≤ d, the map HX : CHp

Q(X) → CHd−p
Q (X) defined

by a 7→ Ld−2pX • a is an isomorphism. Then the map HY : CHp
Q(Y ) →

CHd−p
Q (Y ) defined by z 7→ Ld−2pY • z is an isomorphism.

Proof By the direct sum decomposition CHi
Q(Y ) ∼= Ci ⊕ Di from Sec-

tion 4, any z ∈ CHi
Q(Y ) may be written (uniquely) as z = f∗x+ y, where

x ∈ CHi
Q(X) and y ∈ Di. Then

LY • z = ((f × f)∗LX + L′) • (f∗x+ y)

= (f × f)∗LX • f∗x+ (f × f)∗LX • y + L′ • f∗x+ L′ • y.

Using Proposition 4.1 to simplify the first two terms, and the equalities
σ •L′ = L′ = L′ •σ from Corollary 5.3, we conclude: LY •z = f∗(LX •x)+
(f×f)∗LX •y+L′•σ•f∗x+L′•y. By Proposition 4.2, the middle two terms
are 0, so we have LY • z = f∗(LX •x) +L′ • y. Using ordered pair notation
(as in Section 4) to express the decompositions CH∗Q(Y × Y ) ∼= A⊕B and

CHi
Q(Y ) ∼= Ci ⊕Di, we have:

LY • z = ((f × f)∗LX , L
′) • (f∗x, y) = (f∗(LX • x), L′ • y)

and hence, by induction,

Ld−2pY • z = (f∗(Ld−2pX • x), L′
d−2p • y).

Thus, to prove that the map HY : Cp⊕Dp → Cd−p⊕Dd−p defined above is
an isomorphism, it suffices to check that the induced maps u : Cp → Cd−p
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defined by f∗x 7→ f∗(Ld−2pX • x) and v : Dp → Dd−p defined by y 7→
L′
d−2p • y are isomorphisms. That u is an isomorphism follows formally,

since HX is an isomorphism and f∗ is injective.
We will also need an unweighted version of the Λ′ operator, defined by:

Λ′0 =

d−1∑
j=0

`j × ad−j−1 + aj × `d−j−1 ∈ CHd−1
Q (Y × Y ).

We claim that the map Dd−p → Dp defined by y 7→ Λ′d−2p0 •y is a two-sided
inverse to v. Fortunately, both L′ and Λ′0 are product cycles, so we can
calculate their powers explicitly. By Lemma 2.3, we have:

L′
2

=

d∑
i=1

[(`i × ad−i+1)+(ai × `d−i+1)] •
d∑
j=1

[(`j × ad−j+1)+(aj × `d−j+1)]

=

d∑
i=1

[(`i × ad−i+1) + (ai × `d−i+1)] • [(`i+1 × ad−i) + (ai+1 × `d−i)]

=

d∑
i=1

[m(`i, ad−i)`i+1 × ad−i+1 +m(`i, `d−i)ai+1 × ad−i+1

+m(ai, ad−i)`i+1 × `d−i+1 +m(ai, `d−i)ai+1 × `d−i+1.

By Proposition 3.8, the middle two terms vanish and the expression simpli-
fies to

∑d
i=1 `i+1×ad−i+1 +ai+1× `d−i+1 =

∑d
i=2 `i×ad−i+2 +ai× `d−i+2.

Arguing inductively, we conclude

L′
d−2p

=

d∑
i=d−2p

`i × a2d−2p−i + ai × `2d−2p−i.

Similarly, we compute

Λ′d−2p0 =

2p∑
j=0

`j × a2p−j + aj × `2p−j .

If z ∈ CHp
Q(Y ), direct computation shows that for α ∈ CHi

Q(Y ), β ∈
CHj

Q(Y ), we have (α× β) • z = 0 unless i+ p = d. Using this principle, we

see L′
d−2p • z = [`d−p × ad−p + ad−p × `d−p] • z and hence

Λ′d−2p0 • (L′
d−2p • z) = [ap × `p + `p × ap] • [`d−p × ad−p + ad−p × `d−p] • z

= (ad−p × `p + `d−p × ap) • z
= γd−p • z.
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Now suppose further that z ∈ Dp ⊆ CHp
Q(Y ). Then

z = [∆Y ] • z = (f × f)∗[∆X ] • z + σ • z.

The first term vanishes by Proposition 3.8, and since σ =
∑d
i=0 γi, where

each γi is a product cycle of type (i, d− i), we see that σ • z = γd−p • z.
Summarizing, we have

(Λ′d−2p0 • L′d−2p) • z = z.

A similar calculation shows that for e ∈ Dd−p ⊆ CHd−p
Q (Y ),

(L′
d−2p • Λ′d−2p0 ) • e = e.

This shows that the maps z 7→ L′
d−2p • z and e 7→ Λ′d−2p0 • e are mutually

inverse isomorphisms between Dp and Dd−p, completing the proof.
2

By the results of [AJ2], the hypotheses of Theorem 6.4 are satisfied
for Kummer varieties over finite fields. By taking direct limits, one easily
argues that they also hold for Kummer varieties over the algebraic closure
of a finite field. Thus, we have:

Corollary 6.5 Let Y be the Kummer manifold associated to an abelian
variety of dimension d > 0 over an algebraic closure of some finite field
of characteristic different from 2. Then for 2p ≤ d, the map CHp

Q(Y ) →
CHd−p

Q (Y ) defined by z 7→ Ld−2pY • z is an isomorphism.
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Ann. 273 (1986), 647-651.

[Ar] D. Arapura, Motivation for Hodge cycles, Adv. Math. 207 (2006),
no. 2, 762–781.

[dBN] S. del Baño Rollin and V. Navarro Aznar, On the motive of a
quotient variety, Collect. Math. 49 (1998), no. 2-3, 203–226.



Explicit Chow-Lefschetz decompositions for Kummer manifolds 39

[DM] C. Deninger and J. Murre, Motivic decomposition of Abelian
schemes and the Fourier transform, J. Reine. Angew. Math. 422
(1991), 201–219.

[DL] I. Dolgachev and D. Levahi, On isogenous principally polarized
abelian surfaces, curves and abelian varieties, 51-69, Contemp.
Math., 465, Amer. Math. Soc., (2008).

[F] W. Fulton, Intersection Theory, Springer-Verlag, 1984.

[GR] A. Grothendieck Standard conjectures on algebraic cycles, Alge-
braic Geometry (Bombay, 1968) – Tata Inst. Fund. Res. Stud.
Math., 4, Tata Inst. Fund. Res., Bombay, 1969, 139–199.

[GP] V. Guletskii and C. Pedrini, Finite dimensional motives and the
conjectures of Beilinson and Murre, K-Theory 30 (2003), no. 3,
243–263.

[I] J. Iyer, Murre’s conjectures and explicit Chow-Knneth projections
for varieties with a NEF tangent bundle, Trans. Amer. Math. Soc.
361 (2009), no. 3, 1667–1681.

[KMP] B. Kahn, J. Murre, and C. Pedrini The transcendental part of
the motive of a surface, Algebraic cycles and motives 2, 143–202.
London Math. Soc. Lecture Note Ser. 344 (2007).

[Kl] S. L. Kleiman, The Standard Conjectures, Motives, Proc. Symp.
Pure Math. 55 part 1, AMS (1994), pp. 3–20.
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