Equivariant Riemann-Roch for G-quasi-projective varieties

By
Roy Joshua!

Let G denote a complex linear algebraic group. In this paper we establish an equivariant Riemann-
Roch theorem valid for the category of G-quasi-projective complex varieties. We show that this is
particularly suitable for the construction of modules over the Hecke-algebra and work on the p-adic
Kazhdan-Lusztig conjecture. We wish to acknowledge [T-3] section 5 as the source of our basic technique;
however the equivariant Riemann-Roch theorems of [T-3] are valid only modulo [” (I being a prime) even

for complex varieties, while many of our results are valid integrally.

We devote the first section to a quick review of equivariant K-theory, where we recall the definitions
and main functorial properties of all the distinct versions of equivariant K-theory we use in the rest
of the paper. We consider equivariant algebraic, Atiyah-Segal and topological K-theories and conclude

with a preliminary Riemann-Roch theorem.

In the second section we define equivariant homology (with locally compact supports) and provide an
equivariant Chern-character and an equivariant Todd-homomorphism into these from (local) equivariant
topological K-cohomology. We combine the Riemann-Roch theorem of section 1 with these to provide
an equivariant Riemann-Roch via (local) equivariant topological K-cohomology. In the third section,
we sketch the construction of equivariant Atiyah-Segal and topological K-homology defined intrinsically.
The fourth section contains the final form of the equivariant Riemann-Roch theorem in terms of these
K-homology theories. The fifth section contains some applications: we discuss various forms of the
convolution operation that appear in work on the p-adic Kazhdan-Lusztig conjecture as well as in future
applications to representations of quantum groups - see [J-2] and [J-4]. The sixth section contains
a discussion of the technique of reduction to a torus as well as the generic slices of Thomason. An

appendix develops some background material on equivariant Fredholm complexes.

1. Review of Equivariant K-theory
We begin by recalling the definitions of equivariant K-cohomology.

(1.1) Equivariant algebraic K-theory. Let Z denote a complex quasi-projective variety provided with
the action of a complex linear algebraic group G. Now Modgyeon(Z) (Modeon(Z), Mod;.¢(Z)) will de-
note the category of all quasi-coherent Oz-modules (coherent Oz-modules, coherent and locally-free
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Oz-modules respectively ). A G-equivariant quasi-coherent Ox-module will denote a quasi-coherent
Ox-module with a G-action as in [M-F-K] chapter 1, section 3 or [T-1] (1.2). ModS.,,(Z) (ModS,,(Z),
M odff(Z )) will denote the full subcategory of G-equivariant quasi-coherent (coherent, coherent and
locally-free respectively ) Oz-modules. If A denotes any of the symmetric monoidal categories above,
K(A) will denote the algebraic K-theory spectrum associated to A. Kg(Z) = K(M odff(Z)) is the
corresponding cohomology theory. K&(Z) = mo(Kg(Z)). It is often convenient to identify the above
group with the Grothendieck group of bounded complexes in M odff(Z); the latter will be denoted
KO(Cy(M odff(Z))). (See [SGA-6] for the definition of the Grothendieck group of a triangulated cate-
gory.)

(1.2) Equivariant Atiyah-Segal K-theory. Let M denote a maximal compact subgroup of G and let
K#:5(Z(C)) denote the M-equivariant spectrum of M-equivariant continuous maps from Z(C) into the
classifying M-spectrum of complex vector spaces with M-action. (See [Wa] 3.36, 3.41 and also [T-3]
p.626 .) The space Fredh(Hys) in (A.3) of the appendix is the 'zero-th space’ of the above classifying
spectrum. Let Fredh™(Z(C)) denote the category of M-equivariant Fredholm complexes on Z(C)
and M-equivariant continuous maps as in (A.1) of the appendix. Observe (see (A.5)) that sending an

equivariant Fredholm complex to its classifying map induces an isomorphism
(1.3) mo(K1y°(Z(Q))) ~ K°(Fredh™ (Z(C)))

where the right hand side is the group defined as in (A.3.2) (with Y empty). (See [Seg-2] section 5 and
the appendix.)

One may observe (see (A.2)) that the obvious functor sending an algebraic vector bundle to the

associated topological vector bundle induces a map
(14) p: K&(Z) = K°(Cy(Modf;(2))) — mo(K3;°(Z(0)))

(1.5) Equivariant topological K-theory. Assume the situation in (1.2). Let |[EM x Z(C)| be the space
obtained as the realization of the simplicial space EM 1\>51 Z(C) provided by the bar-construction. Equivari-
ant topological K-theory will be the non-equivariant complex K-theory of this space; i.e. K4 (Z(C)) =
KtP(|[EM x Z(C)|) = the function spectrum of maps from the suspension spectrum of |[EM X Z(C)|+ to
KU, the spectrum representing complex K-theory. K.°(Z(C)) = mo(KP(Z(C))). By [Seg-2] section
5, one may indentify K:7°(Z(C)) with K° (Fredh(|EMA>jIZ((C)|)), where Fredh(|EMA>jIZ((C)|) denotes
the category of Fredholm complexes on |EM x Z(C)| and where the group K°(Fredh(|EM x Z(C)]) is
defined as in (A.3.2) (with X replaced by |EM % Z(C)|, Y empty and the group M trivial).

Observe also that there is an obvious functor (which we denote by B) that sends an M-equivariant
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vector bundle £ on Z(C) to the vector bundle EM x& on the space |[EM x Z(C)|. Corollary (A.5)(ii) is
M M

a generalization of this applied to Fredholm complexes and shows :

(1.6) there exists a functor B that sends any M-equivariant Fredholm complex £ on Z(C) to a
Fredholm complex EM x& on the space EM x Z(C). It is clear that the functor B induces a map:
M M

(1.6) B : mo(K4:5(Z(C))) = K°(Fredh™ (Z(C))) — K*(Fredh(|EM x Z(C))))
N KtOP*°(|EMJ>\<4Z((C)|)

(1.6”) This map may be extended to a map of spectra Kiy°(Z(C)) — KP(Z(C)) by using the
natural weak-equivalence: K.7(Z(C)) = K'P(|[EMxZ(C)|) ~ K{&5(|EM| x Z(C)) along with the
M
M-equivariant projection |[EM x Z(C)| — Z(C). (M acts diagonally on the product |[EM| x Z(C).)

(1.7) Equivariant cohomology. Assume the above situation. Now the equivariant cohomology of Z
with rational coefficients will be H*(|[EM x Z(C)|; Q). This will be denoted H;,(Z(C); Q). (It will
often be convenient to consider the corresponding function spectrum Map(|[EM x Z(C)|+; I;IK (Q, 2i))
of maps from the suspension spectrum of |[EM x Z(C)|+ to the generalized Eilenberg-Maclane spectrum

MK (Q,2i). We will often abbreviate this to Map™ (Z(C); LK (Q,2i)).)

(1.8) Functoriality . Let f : X — Y denote a G-equivariant map between G-quasi-projective varieties.
Let M denote a maximal compact subgroup of G. Assume f also has finite tor dimension; for example f
is smooth or factors as the composition of a regular G-equivariant immersion followed by a G-equivariant

smooth map. Now f induces maps:
f*: Ka(Y) = Ka(X), f*: K5 (Y(0) = K35(X(Q)), f*: Kp (Y(Q)) — Kj"(X(C)) and
frHy(Y(C); Q — Hy (X(0); Q

These maps are compatible with the maps defined in (1.4), (1.6’) as well as with the equivariant

Chern-character defined in (2.7).

(1.9) In the rest of this section we proceed to consider the corresponding cohomology theories with
supports contained in a G-equivariant closed subvariety. We will henceforth assume that Z is G-quasi-
projective; recall this means that Z imbeds G-equivariantly as a locally-closed G-invariant subscheme of
a projective space P™ on which G acts linearly. If G is connected, it follows by Sumihiro’s theorem that
any normal quasi-projective variety with a G-action is G-quasi-projective. (See [Sum] Theorem 1.) We
will presently show that the assumption of connectedness on G may be dropped if Z is normal and quasi-

projective. Next assume G is a disconnected group acting linearly on a normal quasi-projective variety
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Z and that i : Z — P™ = Proj(V) is a G°-equivariant closed immersion into a large projective space as
provided by Sumihiro’s theorem. (Here V is a suitably large projective space provided with a linear action
by G°.) Let G = G/G?; choose coset representatives {gi, ..., gm|gi € G} so that G = {g1G?, ..., g G°}.
One may view GC;_BV as an induced representation of G. Thus G acts on Proj(ea_aV) linearly extending the

action of G° on Proj(V).

One may utilize the common formulae for the induced action of G (see [C-R] pp. 228-29 for the case
of finite groups) to define a G-action on IIProj(V) that makes the obvious closed immersion of the
latter into Proj(@V) G-equivariant. i.e. Eet geG,1 <4< n,sothat g.9; = g;.ko, for some j and
ko € G°. Now we i}t (g-(xgy, s Tg,,))g; = ko-Tg;, (Tgy, .y Ty,,) € léIProj(V). (This defines a G action on
lc'_;[Proj (V) making the imbedding into Proj (%BV) G-equivariant.)

Finally one may also define a closed immersion I : Z — IIProj(V'), by (I(z)),, = i(gj_l.x), 1<ji<m.
One checks readily that I is G-equivariant with respect tci) the given action of G on Z and the above
action on IIProj(V). It is clear that the above arguments provide a G-equivariant closed immersion
of Z in Prcj)j (®V). (See also [T-3] p.629 where fragments of a similar argument are mentioned.) One
may now readﬁy observe that Z imbeds as a closed G-invariant sub-variety of an open and G-invariant
sub-variety Z of Proj (%BV), which is clearly non-singular. Now one obtains the natural weak-equivalence

(see [T-1] Theorems (2.7) and (5.7)):

(1.10) K(Mod& , (7)) is weakly-equivalent to Kg, z(Z) =the canonical homotopy-fiber of the map

coh

K(Mod:(Z)) — K(Modf;(Z - Z)).

K(Mod%

coh

(Z)) will be denoted K¢(Z) or Kg z(Z) henceforth. This is the equivariant K-homology
theory in the algebraic setting; clearly it is independent of the imbedding of Z in Z. The weak-equivalence

Kg.72(Z) 5 K(ModS, (Z)) will be denoted P — L, henceforth.

coh

Under the same hypotheses, one may define K ﬁ%a (Z(C)) to be the canonical homotopy fiber of the
natural map K#:5(Z(C)) — Ki5(Z(C) — Z(C)). We will define Kf\?[pz(c) (Z(C)) to be the canonical
homotopy-fiber of the map K477 (Z(C)) — KYP(Z(C) — Z(C)).

(1.11) Lemma. Let Z be as before and let Z — Yy 4 ¥; denote two G-equivariant closed immersions

so that Yy and Y; are smooth. Now one obtains the commutative squares:

m0(Ka,z(Yo)) — ——— 7o (Ka,z(Y1))

l l and

o (K% (Yo(0)) +—— mo(KX s ;0 (Y1(0)))
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Ti(K e (10(0) «Z— m(K M 6 (Vi(©)

l l for all 4

T (K0 (Y(0) 2 m(KM o (V1(0)

where the horizontal maps are all isomorphisms and are induced by the map i* as in (1.8).

Proof. The commutativity of the diagram follows from the compatibility of the map ¢* with respect to

the maps defined in (1.4) and (1.6”). Excision shows the horizontal maps are all weak-equivalences.

(1.17’) Corollary (Poincaré duality). If Z is a smooth complex variety provided with a G-equivariant

closed immersion in an ambient smooth G-variety Z, one obtains weak-equivalences:
Ko,2(Z) = Ka(2), K50 (2(0) = K%(Z(0)) and K177 (Z(0)) = K;7(Z(0)).
Proof. Take Yo = Z and Y] = Z in the above lemma.
Clearly the map p in (1.4) induces a map
(1.12) Ko(ModS,,(2)) = mo(K}s(Z(C)))
Next observe that the map in (1.6”) and the above definitions provide a map of spectra:
(1.12)) B: K5 (Z(C)) = K3 (Z(0))
if Z — Z is a G-equivariant closed immersion into a smooth G-variety.

(1.13.1)Let Z 2% 7' & 4, 7 denote two G-equivariant closed immersions of G-quasi-projective varieties

so that Z is also smooth. Now one obtains natural maps:
K6,2(2) = Ka,2/(2), K50 (Z) = K50 (Z) and K3, o (Z) 2 = Ky, ©(2)

(1.13.2). Let Z denote a G-quasi-projective variety and let P™ denote a projective space with a linear
G-action. Let p: Z x P* — Z denote the obvious projection. Let i : Z — Z denote a G-equivariant

closed immersion into a smooth G-quasi-projective variety. Now one may compute:

70(Kg,zxp(Z x Pm)) = 0<§19<n7T0(KG,Z(Z))[—OP"(—Q)L

i (K3 ey (Z X P(C))) = 0> (K3 %) (Z(C)))[~Opn(—q)] and
i (K oy xpncy (Z x P(C))) = 0<?<nm(KﬁZ 20 (Z(0))[=Opn(=q)]-

See [T-3](5.6) for the first and [Seg-1](3.9) for the others. Therefore one may define

(1.13.3) pu : mo(Kg, zxpn(Z x P*)) — mo(Kg,2(Z))
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to be the projection to the summand indexed by Op». One may also define p, in a similar manner for

the other theories above.

(1.14)Preliminary Riemann-Roch. Let Z denote a G quasi-projective variety provided with a

G-equivariant closed immersion i : Z — Z into an ambient smooth G-quasi-projective variety.

(i) If the map i factors through i’ : Z' — Z (which is the G-equivariant closed immersion of another

G-quasi-projective variety Z'), one obtains commutative squares:

n(Kaz(2) ——  m(Koz(Z) mi(Kf5o (2(0)) —— m(Kfi% o (Z(0)
i I o =
mo(K%50 (2(0) —— mo(K 4% (Z(0)) mi(Ky g0 (2(0) —— mil( K300 (Z(0)))
for all 3.

(ii) Let P™ denote a projective space provided with a G-linear action. Now the projection p : Z xP™ —

Z induces maps of commutative squares:

To(Kg,zxpn(Z x P™)) L m(Ka,z(2))

| G

1o (K 50 xen (o) (Z(C) x PMO)) —— mo(K3i%c) (Z(0)))

i (K 50 xpn(© (Z(C) x P(0Q))) —— Wi(Kff,Sz(c)(Z(C)))

b s

T (KL, iy () X BU(Q) —Ly m(K12, o (Z(0)))
Proof. Recall mo(K ¢ x(Z)) is the Grothendieck group of the category of bounded complexes in M ole.Jc (2)
with supports contained in X and 7o(K f/i,SZ(C) (Z(C))) is the group defined in (A.3) associated to the
category of equivariant Fredholm complexes on Z(C) with supports contained in Z(C). There is a similar
description of the groups associated to Z'. This proves the commutativity of the first square in (i). The
commutativity of the second square in (i) follows by taking the homotopy fibers of the columns in the

following diagram:



K3%(Z - 2(0)) K" (Z - 2)(0))
(ii). The commutativity of the squares in (ii) are clear by the computation in (1.13.2). This completes

the proof of the proposition.

2. Equivariant Homology (with locally compact supports): the equivariant Todd homo-

morphism.

(2.1) Throughout this section G will denote a complex linear algebraic group or a compact lie group
and X a G-quasi-projective complex variety. Let BG. denote the classifying simplicial space associated to
G and given in degree n by G™ with the obvious structure maps. In this situation one may also consider
the simplicial space EG ();X in the usual manner (See [Fr]p. 4 for example.) Observe that (EG X X)) =
G™ x X with the usual structure maps. Each of the face maps d; : (EGéX)n — (EGéX)n_l is
induced by the group-action g : G x X — X and the projection 72 : G x X — X. The obvious map
EG éX — B(G induced by the map X —Spec C will be denoted 7. If f : X — Y is a G-equivariant
map between two G-varieties, the induced map EG éX — EG éY will be still denoted f.

Now assume X. is a simplicial space (i.e. a simplicial object in the category of spaces), for example,
one of the simplicial spaces obtained above. One puts a Grothendieck topology on X. by defining the
objects to be maps u : U = X,,, where u is the inclusion of an open set in X, for some n. Given two
such open sets u : U - X,, and v : V — X,,, for some n and m, a map a : u = v is given by a map
a : U — V that lies over a structure map o' : X,, — X,,, of the simplicial space X.. The corresponding

topology on X. will be denoted by Top(X.).

We will only consider sheaves of Q-vector spaces in this paper. A sheaf F' of Q-vector spaces on a
simplicial space X. consists of a collection {F,|n}, where each F,, is sheaf of Q-vector spaces on X,,,

provided with a collection of maps ¢(a) : a*(F,,) — F,,, associated to each structure map « : X,, = X, of
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the simplicial space X. satisfying certain obvious compatibility conditions as in ([Fr] p.14, for example.).
The category of such sheaves will be denoted by Sh(X.). We will let Dy(X.; Q) denote the derived

category all bounded complexes of sheaves of Q-vector spaces.

(2.2) If K' is a complex of sheaves of Q-vector spaces on EG éX , one defines HY, (X; K°) to be
H*(EG éX ; K') = the equivariant hypercohomology with respect to K'. Now one obtains a spectral

sequence:

(2.3) B3 = H*(BG; R'm.K') = H5™ (X; K)

Assume the above situation. Let Q denote the obvious constant sheaf on BG.. We let D = R7'(Q)
= the dualizing complex for the category Dy(EG EX ; Q). (See [J-3] section 6, for a detailed discussion
in the étale setting.) We define the equivariant homology of X (with locally compact supports) to be

(2.4) HY (X (0); Q) = Hg(X; D)
If f: X — Y is a G-equivariant proper map between G-varieties, the trace-map tr(f) : Rm,Rr'(Q) — Q

induces a map HY (X(C); Q) — HY (Y(C); Q). Thus equivariant homology is a covariant functor for

equivariant proper maps.

Next assume that X is a smooth variety of dimension d over C. Now one may identify Rr'(Q) with

7*(Q)[2d]. One may observe that for the corresponding spectral sequence in (2.3), Eg’t =0ift < —2d,
t>0orif s <0. Hence

HY(BG; R~*1, DY) = By = Ep %' = .. = %2 2 H_*(X; DY)

(2.5) One may now observe that if X is smooth of dimension d over C, the fundamental class in
H°(BG; R_2d7r*D(f§ ) is an infinite cycle in the spectral sequence in (2.3) with K* = Dé and induces
a fundamental class [X]g € HS)(X(C); Q). It follows that, if X is smooth, one obtains a fundamental
class [X]g € HS(X; Q).

Next assume that X is a possibly-singular G-quasi-projective variety with a G-equivariant closed
immersion i : X — X into a smooth G-quasi-projective variety. If Dg and Dé denote the dualizing
complexes on EGéX and EGEX', one obtains a pairing of sheaves Dg ®i.Ri'(Q) — i*Dg on EGéf(.
This pairing induces a pairing of the associated spectral sequences in (2.3). Cap product with the
fundamental class in H°(BG; R~>*m, D) induces a map of the spectral sequences:

(2.5.%) E3*(1) = H*(BG; R'm.i.Ri'(Q)) — E3*'(2) = H*(BG; R*~%Ir,(DY))

where 7 : EG éX' — BG denotes the obvious map. This is induced by a map HY ¢, (X(©); Q —
Hs4_ (X (C); Q) which is cap-product with the fundamental class [X] € Hz4(X; Q) (= the homology with
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locally compact supports of X). Therefore the map in (2.5.*) is an isomorphism. Since the fundamental
class in H°(BG; R~%%r, Dg ) is an infinite cycle, it follows that the above map induces an isomorphism
of the two spectral sequences from the Es-terms onwards and hence on the abutments. We have thereby
established Poincaré-Lefschetz-duality for G-equivariant rational homology. This isomorphism will be

denoted

(2.6) P—L: H}, o (X(C); Q = HE(X(C); Q)

G,X(0
henceforth. If M C G denotes a maximal compact subgroup, one may replace G by M to obtain

Poincaré-Lefschetz-duality in M-equivariant homology.

(2.7) Equivariant Chern classes, Chern character and the Todd homomorphism. Let Z denote a G-
quasi-projective variety as in (1.9) and let M denote a maximal compact subgroup of G. Let E denote
an M-equivariant complex topological vector bundle of rank n + 1 and let P(E) denote the associated
projective space bundle. One may compute H3;(P(E)(C); Q) = H3,(Z(C); QI[T)/(T™) with T
corresponding to the class of the canonical line bundle Op~(1). Therefore one may define the equivariant
Chern-classes of the vector bundle E as one normally does in the non-equivariant case. This procedure
thus defines Chern-classes and Todd-classes for complex topological M-equivariant vector bundles on

Z(C) with values in the equivariant cohomology ring H;,(Z(C); Q).

If Z is not projective this method fails to define Chern-classes for all classes in K% (Z(C)) and for all
classes in Kf\f[p (Z(C)) even if Z is projective. Therefore, we adopt the following technique for defining
equivariant chern-classes in general. Recall that K4 7(Z(C)) ~ Map(|[EM x Z(CO)|4+,KU) - see (1.5);
one may view the wuniversal Chern-character as a map of spectra KU — 1;[K (@ 24)) that induces a

weak-equivalence when KU is localized at Q. Clearly this defines an equivariant Chern-character
chM : Ki2(2(0) = Map([EM xZ(O)]y, TTK(Q,20))
K3

as a map of spectra. One may also define a local equivariant Chern-character as follows. Let i : Z — Z

denote a G-equivariant closed immersion into a smooth G-quasi-projective variety. One defines
(@7.1)ehy 7 K (Z(C), 2(0)-Z(C)) — Map(IEM;;Z((C)h/(IEMﬁ(Z(C)—Z(C))I+); IIK(Q,2i))

to be the obvious map induced by éh™ on K'(Z(C)) and on K'%P(Z(C) — Z(C)). On taking the

homotopy groups this defines a local Chern-character
M,Z top 7 A * (17 7 . P-L M .
chy ™" 1 mo(Ky"(Z(C), Z(C) — Z(0))) — Hy(Z(C), Z(C) — Z(C); Q) — H,"(Z(C); Q)
ie. ch?’z =P-1L o’c\hJZVI’Z. Finally one defines an equivariant Todd homomorphism
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(2.7.2) 737 - w0 (KL (2(C), Z(C) - Z(C))) — HM(Z(C); Q)

by 1 Z A chgf’z(é’ yNTdM (TZ| ), where 77|z denotes the restriction of the tangent bundle of Z to

Z and TdM (TZ\ ) denotes its equivariant Todd-class. We will also consider the Chern-character:
(2.7.3) ch™7 : K3 (2(C))) — Map(|[EM x Z(C)|; TIK (Q 24)
2
In the rest of this section we discuss properties of the local Chern-character defined above and combine
the equivariant Todd homomorphism with (1.14) to obtain an equivariant Riemann-Roch theorem.

(2.8.1) Additivity and multiplicativity. Assume the situation above. Let £& and £ denote Fredholm
complexes on |EM x Z(C)| with supports on |EM x Z(C)| while F* denotes a Fredholm complex on
M M
|EMA>}Z((C)| Now

B2 (& B &Y = WP (E) + chMP(E)
chf 2 (& @ F) = chi 2 (€) N chMZ(F) z¢) = chyf Z(€) N eh™Z(Fy )

where £ ® F* represents the class in mo(K%P(Z(C), Z(C) — Z(C))) given by the pairing
mo(K 3" (Z(C), Z(C) ~ Z(0))) @ mo (K (Z(C))) — mo(Kpy(Z(C), Z(C) ~ Z(0)))

These properties follow readily from the corresponding properties of the universal Chern character.

(2.8.2) Excision. Let U % Z denote an M-stable open sub-space of Z containing Z. Let j* :
KP(Z(C), Z(C) — Z(C)) — KP(U(C), U(C) — Z(C)) denote the obvious restriction map induced
by j. Now

chyf (€ = ehif U (5 (€)

& being a Fredholm complex on |EM x Z(C)| with supports in |EM x Z(C)|.
M M

(2.8.3) Localization. Let Z X Z' — Z denote closed immersions of G-stable subvarieties of the

smooth G-variety Z. Let i, denote the induced maps
K"(2(0), 2(0) - Z(C)) — K3"(Z(0), Z(C) ~ Z'(C)) and
Map(|[EM x Z(C)|4 /|[EM x(Z(C) = Z(Q))|+, TK(Q20))
— Map([EM x Z(C)|+ /|[EM x(Z(C) — Z'(C)) |+, TK (Q, 2)).
Now
(2.8.3.%) chMZ (i, (E)) = inchXZ (€
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where £ is a Fredholm complex on |[EM x Z(C)| with supports in |[EM x Z(C)| and i,(£’) is the same
M M
complex & viewed as a complex on the same space but with supports in |[EM x Z'(C)|. By considering
M

the induced map on the homotopy fibers of the columns in the following diagram

K (Z(0)) Map™(Z(C); ILK(Q 2i))

EhM’Z

\
/

MapM((Z - Z)(C); LK (Q, 20)

hM.Z-2

one may first prove that Eh%’z(i*(:‘} ) = i*’c\h?’z(é’ ). Now compose this with the Poincaré-Lefschetz-

duality to prove (2.8.3.%).

(2.8.4) Pull-back property. Assume in addition to the above situation that p: Z — Z is a proper and
smooth G-equivariant map of G-quasi-projective smooth varieties. Let ¢ : Q = p~!(Z) — Z denote the

obvious restriction of p. If £ is a Fredholm complex on |EM x Z(C)| with supports in |[EM x Z(C)|
M M

s« aMZioNy _ 2 MZ (O

¢ (P2 (E) = nZ ()

(2.8.5) Lemma. Let Z <y Z denote a G-equivariant closed immersion of Z into a smooth G-quasi-
projective variety. Let 7 : N — Z denote a G-equivariant vector bundle with Z viewed as the subspace
of N by the zero section. Let N denote the coherent sheaf of sections of the bundle N and let A’ (7*(N))
denote the Koszul-Thom complex on N. If £ is a Fredholm complex on |EM 1\>/<1 Z (C)| with supports in

|EMA>}Z((C)|, A (7*(N)) @ #*(£") has supports in |EMA>}Z((C)| C |EMA>}N| and
chlN (A (W) @ 7(€7)) = TdM (N,2)~" n chZ (£

Proof. With the above properties of the local Chern character, the proof reduces to the same one in
[B-F-M] Proposition (3.4). We will summarize the arguments for the sake of completeness. Imbed N
in the projective completion P = Proj(N @ €;) where € is the trivial one dimensional vector bundle
on Z. Let p: P — Z denote the obvious projection and let ¢ : Q = p~'(Z) — Z denote the
obvious restriction of p. On P one obtains an exact sequence 0 — H — p*(N @ ¢;) — Op(1) —
0 and p*(N @ ¢) = p*(N) ® €;. Now projection to the second factor provides a map of sheaves

H — Op which is surjective off Z. This gives rise to a Koszul complex A"H on P exact off Z and
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such that on restriction to N C P, this complex is A'(7*(N)). By the excision property one obtains:
chPN (AT (N) @ 7*(€7)) = chiyPP(AMH @ p*(E)). Let s : Z — Q denote the zero section. Now
s*(chg[’P(A'H ®p*(&)) = chg[’P(A'H ® p*(£)) by the localization property. Since p*(€’) is exact
off ), the multiplicative property shows chg’P(A'H ® p*(€)) = ch™ (A Hig) N chg[’P(p* (£)). Now
chg’P(p* &) = q*ch?’z(é") by the pull-back property and ¢, o s, = id since s is a section to ¢. It
follows that

hMN (A7 (N) @ 7(E7)) = gu 0 s (ch 3PP (N H @ p*(€7))
= g.(chM@ (A H o) @ q*(chi 2 (£))) = q.(ch™ (A Hig)) N ch 7 (&)

Now it suffices to show Td™ (N, ) ™! = g.(ch™:?(A H\q)); this follows from the equality p, (ch™ P (A H)) =
TdM™(N)~! which follows by the same argument as on page 112 of [B-F-M].

(2.8.6) Gysin maps. Let Z be as before and let Z — Yj 24 ¥7 denote two G-equivariant closed
immersions so that Yy and Y7 are also smooth. Now any G-equivariant complex of vector bundles on Yj
with supports in Z is quasi-isomorphic to an equivariant complex of vector bundles on Y; with supports

in Z. This provides a Gysin-map
Gysin : Kg,z(Yo) = Kg.z(Y1)

Let the normal bundle to the closed immersion Yy — Y; be N. One may view the total space of
this bundle as a tubular neighborhood of Yy in Y;. Now cup-product with the Koszul-Thom class
AN € Kii% o (N(C)) defines a map K15 o (Yo(C)) — Kjy5 ) (N(0). Using excision the latter
is seen to be weakly-equivalent to K f\‘/f,sz(c) (Y1(C)). The composite of the above is the Gysin map
Gysin : K ij"SZ(C) Yo(C) - K f\‘/f,sz(c) (Y1(C)). One defines similar Gysin maps in equivariant topological

K-theory.

If Y{ — Y1 is a map that is suitably transveral to the maps Yy — Y3 and Z — Y3, and if Z' (Yy) is
defined by an appropriate cartesian square, the above Gysin maps will pull-back to the cooresponding

Gysin maps associated to the immersions Z' — Yy — Y{. (See [T-4] (3.2) for details.)

(2.8.7) Homotopy property. Let X x A % X denote a G-equivariant closed immersion of smooth
G-quasi-projective varieties over Al where G acts trivially on Al. Assume that the given map 7 : X — Al
is smooth. Let X — X denote a closed G-equivariant immersion of a G-stable subvariety; for each t € A!,
let X; — X't — X, denote the corresponding closed immersions, where X, is the fiber of 7 over t. Let

M denote a maximal compact subgroup of G.
(i) Now the Gysin-maps K¢, x, (X)) = Kg,x,(X;) are all homotopic to the Gysin-map K¢, x xat (X x
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Al = Kg xxa (X' ). Similar results hold in equivariant Atiyah-Segal K-cohomology and equivariant

topological K-cohomology with respect to the action of M.

(i) If £ is a Fredholm-complex on |[EM x X (C)| with supports in |[EM x (X x A')(C)| and &; is the
M M
corresponding complex on |EM x X (C); | with supports in |EM x (X;(C))|, ch?ffil &)= ch%’Xt (&) for
M M
all t € AL

(2.9) Theorem (Riemann-Roch via local equivariant K-cohomology)

Let Z denote a G quasi-projective variety provided with a G-equivariant closed immersion i : Z — Z

into an ambient smooth G-quasi-projective variety.

(i) If the map i factors through i’ : Z' — Z (which is the G-equivariant closed immersion of another

G-quasi-projective variety Z'), one obtains a commutative diagram:

poP—L7! M, Z

mo(K (ModS,,(2))) mo(K i 50 (2(0) —— mo(Kyfy e (2(0) —2— HM(Z(0); Q

ro(K(ModS, (7)) 227225 (K&, (2(0)) —E mo(Ki 00 (2(0)) T2y HM(2/(C); Q)

a— -1 ~
where the maps denoted po P — L ! are the compositions :m (K (ModS , (Z))) ., mo(Ka.z(Z2)) &

coh
ro (K45 (2(0)) and mo(K(ModS, (2')) L2 mo(Ko,2(2)) & mo(KAS, o (Z(Q)).

(ii) Let P™ denote a projective space provided with a G-linear action. Now the projection p : Z xP™ —
Z induces a commutative diagram:

oP_L-1
70 (K (ModC ol

coh

(Z xP™))) WO(KfI,%(prn(@(Z(C) x P*(Q))) e WO(K;Z?Z(C)X]P’"((C) (Z(C) x P™(C))

| | |

ro(K (ModS,, (7 x Py)) 22, (K50 (2(0))) 2, 7o (K37, (Z(0)
ro (K22 (Z(© x B (©) 25 gM(z x PO Q)

M,Z(C)xP(C)

lm lm
M,Z
Tz

70 (K12, o (2(0))) L HMZ(0); Q

where the maps denoted po P — L_ ! are the compositions:

-1

P-L ~ -
mo(K(ModS , (Z x P"))) ——— mo(Kg,zxpn(Z x PT)) 4 7o (K a1,z xpn(c) (Z x P™)(C)) and

coh

pP-L;t

o (K (ModS ,(2))) —= m0(Ka,z(Z)) £ 70 (K z(c) (Z(C))).

coh
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Proof (i). The commutativity of the first two squares are clear from (1.14). The commutativity of the
last square in this case follows from the localization property (2.8.3). The localization property (2.8.3)

shows i*chg[’z(é’ = ch%’z(i*(é’ ")). Now it suffices to observe that
T2 (1.E) = chi (1. (£7)) N Td(T ) = ix(chyZ(1.(£))) N Td(T )

= i(chy 7 (1.(E)) NTd(Ty ) = in(ry" 7 (€)

Now consider the projection Z x P* — Z. Once again the commutativity of the first two squares

follow from (1.14). The computations as in (1.13.2) show

70K oy (ZO) X Q) = mo(Kiity (ZO) | ro(K(iP(B™(C))) and tha

HMY(Z(C) xP*(C); Q =2 HM(Z(C); © ® HM(P"(C); Q.
H*(BM;Q)

Therefore one may reduce to the case where Z is a point. Now the description of the map p, as in

(1.13.3) proves the required result as in the non-equivariant case - see [B-S] , Proposition 10.

3. Equivariant Atiyah-Segal and Topological K-homology.

Let i : Z — Z denote the G-equivariant closed immersion of G-quasi-projective varieties with Z
smooth. In this setting, one could define the Atiyah-Segal K-homology to be K 1‘31'?2(@) (Z(C)). However,
in order to show that this theory is independent of the imbedding into the ambient smooth G-variety Z,
it is necessary to define Atiyah-Segal K-homology intrinsically (i.e. without the imbedding into Z) and
obtain a Poincaré-Lefschetz-duality. For this we invoke the generalized equivariant homology theories
as developed in [LMS]. Let M denote the maximal compact subgroup of G. Let the K 1‘\4,1'5 denote the
equivariant spectrum representing Atiyah-Segal K-theory with respect to M defined as in [LMS] chapter
1.

Notation. If M is a compact Lie group acting on a pointed space Z and E is an M-equivariant
spectrum, Mapy(Z, E) will denote the function spectrum of M-equivariant maps from the suspension

spectrum of Z to E.
If Z is a complex G-projective variety we will define
(3.1) K¥4(Z(C)) = Mapm (T, Z(C)4 A K%

where Mapys denotes the function-M-spectrum which is the internal Hom-functor in the category of

M-spectra. £ is the sphere-M-spectrum (with the trivial M-action.)
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K}5,(Z(C)) = mi(Mapu (3, Z(C)+ A Kj;®)).

(In general the homotopy groups of an M-spectrum are indexed by pairs (n, H) where n is an integer and
H is a subgroup of M; we always let H = M, so that the homotopy groups are now indexed only by the
integers.) If Z is only G-quasi-projective let Z — P" denote a G-equivariant locally closed immersion
into P" with a linear action by G. Let Z denote the closure of Z in P*. Now Z — Z and Z are both

G-projective varieties and we define

(3.1) K¥<(Z(C)) to be the canonical homotopy cofiber of the natural map K o(Z — Z(C)) —
K}'s(Z(0).

Next we show, in outline, the existence of a fundamental class in mq(K Y ¢(Z(C))) if Z is a G-quasi-
projective smooth complex variety of dimension d over C. First assume that Z is G-projective and
smooth. Now one may consider a G-equivariant closed immersion Z — P™ where G acts linearly on P”.
One may consider an M-equivariant imbedding of the C'>° compact manifold P” in a large vector space
RYN on which M acts linearly. Let v denote the normal bundle to the composite imbedding Z — P" —
RY and let T(v) = D(v)/S(v) be its Thom-space. (Here D(v) and S(v) are the corresponding disk and
sphere bundles.) Now one obtains the Thom-Pontrjagin collapse map u : SV — Z(C); AT(v) - see
[LMS] pp. 152-153. One also obtains a Gysin-map K1:5(Z(C)) — K¥5(T(v)) = Mapu (T (v), Ki%9).
Slant product with the map yu provides a map K4%(T(v)) — KX 4(Z(C)). Composing these two we

obtain a map
(3:2) P: K4°(Z(0) — K} 5(Z(C))

The image of the class Oy € Kg(Z) is a class in K475(Z(C)) which we will denote by O again. This
maps to a class [Z] € K} 5(Z(C)) under the map P; this is the fundamental class associated to Z. Now
one may observe (see [LMS] pp.157-160) that the map in (3.2) is itself obtained by cap-product with the

class [Z] and that this map is a weak-equivalence.

Next assume that Z is a G-quasi-projective smooth variety. Let Z — Z denote a G-equivariant open
immersion into a G-projective smooth variety. By blowing up G-stable subvarieties in Z — Z one may
further assume that Z — Z is also smooth. Let [Z] denote the fundamental class associated to Z as in

(3.2); cap-product with this class induces a homotopy-commutative diagram:

Kfi,szfz(m (2(C)) —=— K}'s(Z - 2(0)

(3.3) l l
K%(2(0) —— K}s(Z(0)
(The above diagram may be obtained as follows. Let Z — P" — RN be an M-equivariant closed

imbedding with normal bundle v; as before; let the normal bundle to the closed immersion Z-7Z=2Z
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be N. Let vo = v1z_5 ® N and let T(v1) and T(v2) denote the respective Thom-spaces. Now one

obtains a homotopy commutative diagram:

Kf/f,%—z(c) (Z_((C)) — Kf/js(T(Vz)) — K%S(Z—Z((C))

l l |
E%(2(Q)  —— Ki5(T(m) ——  K}s(Z(0)
where the two horizontal maps in the right square are obtained as in the paragraph preceding (3.2).
The middle vertical map is induced by a Thom-Pontrjagin collapse T'(v1) — T'(v2). Now T'(v1) is the
M-equivariant S-dual of Z(C); and T(v2) is the M-equivariant S-dual of Z — Z(C); - see [LMS] p.
153. Therefore the right square commutes. The two horizontal maps in the left square are Gysin-maps.
The one in the bottom row is cup product with the Koszul-Thom class of the bundle v; on Z while
the one in the top row is cup product with the Koszul-Thom class of the bundle Viz_z on VA
one may also identify the left-most vertical map with the map induced by a Thom-Pontrjagin collapse
Z(C) — T(N). Therefore the left-most square commutes. The horizontal maps in the left-square are
clearly weak-equivalences. The diagram in (3.3) is the outer-square of the above diagram. One may

observe that the top-row of (3.3) is a special case of Poincaré-Lefschtez-duality.)

One therefore obtains an induced map of the homotopy cofibers of the two columns which will be also
a weak-equivalence. i.e. we obtain an induced map P : K4;°(Z(C)) — K}5(Z(C)). The image of the
class Oz € Kg(Z) under the above map defines the fundamental class [Z) of Zin K44(Z(C). Moreover

the above map P may be realized as cap-product with the fundamental class [Z].

Next we consider Poincaré-Lefschetz-duality in general. Let X denote a GG-quasi-projective variety
and let X — Z denote a G-equivariant closed immersion into a smooth G-quasi-projective variety. Now
there exists fundamental classes [Z] in K} ¢(Z(C)) and [Z — X] in K} 4(Z — X (C)). Cap-product with

these classes provides us with a homotopy-commutative diagram:

Ky®(Z(Q) —— KX(Z(0)

! !

K°(Z - X(0) —— K}s(Z - X(0))

(3.4) Therefore, cap-product with [Z] induces a weak-equivalence of the homotopy-fibers of the two
columns: i.e. cap-product with [Z] induces a weak-equivalence K 11\31',%((@) (Z(C)) = K} (X(C)). (Ob-
serve that one has a localization sequence: K o(X(C)) — KX (Z(C)) — K¥4(Z — X(C)).) This is
the required Poincaré-Lefschetz-duality. This will be denoted P — L.

Let f : X — Y denote a G-equivariant proper map. Now one may imbed f in a commutative diagram
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A |
Y sy Y ¢ Y-Y

where X — X (Y — Y) is the G-equivariant open immersion into a G-projective variety. Moreover the

two smaller squares are cartesian. It follows that, under the above assumptions, one obtains an induced

map
(3.5) fu : K}5(X(0) — KX 5(Y(C)).

(3.6) Under the above hypotheses, let

X — X

Lo

Y —— Y
denote a pull-back square with the horizontal maps being G-equivariant closed immersions into smooth

G-quasi-projective varieties. By factoring f as the composition of a G-equivariant closed immersion
into a projective space P™ x Y and the projection from the latter to Y, we have shown how to define
fe s Ko (X(Q) - K AL (Y(C)). It remains to show this map is compatible with the map f,
in (3.5) under the weak-equivalence in (3.4); one may prove this separately for f a closed immersion

X — P™ x Y and also the projection P™* x Y — Y. We skip the direct verification of these.

We will end this section by providing an intrinsic definition of equivariant topological K-homology.
Assume as in (1.9) that G is a complex linear algebraic group acting on a G-quasi-projective variety
Z and that Z — Z is a G-equivariant closed immersion into a G-quasi-projective smooth variety. Let
1 :Y — Z denote the closed immersion of a G-stable subvariety and let U denote its complement. Let
U = Z—Y; this is a G-quasi-pro jective smooth variety and U — U is a G-equivariant closed immersion.
Let M denote the maximal compact subgroup of G.

(3.7)Proposition. Under the above hypotheses, one obtains fibration-sequences:

Kffi,(c)(Z(C)) — Kfi,%(c)(z(@)) — Kﬁ"%(c)(ﬁ(@)) and

Kf\?[f)y(c) (Z(0) — K?\Z’?Z(C) (Z(0) — K;Z?U(c) U(©))

Proof. We will prove the existence of only the second fibration sequence; a similar proof applies to the

first. Consider the commutative diagram:
Ko (Z(0) —— KyP(Z(0) —— KiP(Z-Y(0)

al ) id:fyl~ Nlﬁ
Ky y0(2(0) —— K\P(2(0) —— K3(Z - Z(0)
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The two rows are cofibration sequences; therefore the homotopy cofibers provide a cofibration-sequence:

cof(a) = cof (v) = cof (B)

However, cof(y) ~ *; therefore cof(8) ~ Xcof(a) or (since we are considering spectra) Qcof(8) ~
cof(a). But U = Z —Y is the complement of the open subvariety Z — Z in U = Z — Y. Therefore one

obtains a fibration sequence:
K, o ((0) = Ki$(Z - Y/(©) - Ki(Z - 2(0)).

It follows that Qcof(8) ~ K;ZPU(C) (U(C)). Therefore the required fibration-sequence is merely the

cofibration-sequence:

top
KM Y

%0 (Z(©) B K, o (Z(0)) — cof (a).

M,Z(C)

This completes the proof.

(3.8) Theorem. Assume the above situation. Now the obvious map K f,,'fz© (Z(C)) = K f\%’ 2(0) (Z(C))

induces an isomorphism: 7; (Kf,j,sz(c) (Z((C)))IM — wi(Kf\j’[f)Z(C) (Z(C))) for all i. Here Iy, is the augmen-

tation ideal in the representation ring R(M) and},, denotes completion with respect to Ips.

Proof. The naturality of the maps in (6.1.4) and (6.1.5) along with the observation that R(T,) is a finite
module over R(M) (where T, is the maximal compact torus in T') show that it suffices to prove the
theorem with M replaced by T.. Observe that the theorem is true if X has Krull dimension 0. This fact
and (3.7) show that one may use ascending induction on the Krull dimension to establish the theorem.
Moreover, since M has been replaced by T, it suffices to prove the theorem when X has been replaced

by a T-stable open subscheme U as in (6.3).

that U is smooth. Therefore one may assume that U = U. ie. One may

©)) in (3.7) with K#-(U(C)) and similarly one may identify K;“ZI,)U(C) (U(C)) in

(3.7) with Krf,fi P(U(C)). Now one may compute (using the Kunneth-formula and the observation that
T (K45 (T!) = mo (K45 (T2 /TY)) ~ mu (K45) is flat over m (KU) and m, (K27 (TY)) = mu (K57 (T2 /T2)) ~
T (K5P) is flat over m, (KU)):

Recall from (6.3)
(U(

identify Kﬁ',%(c)

m(K£:5(U(0)) = m (K7, 5(U/T(C) x T"(0))) = m(K*P(U/T(C))) ® m(K7°(T{)) and

7. (KU)
m (K U(0) = m (K U/T(Q) x T/(O) = m (K (U/T@) & m (K TL)

Clearly mi(K#%)p, =~ mi(KL9P) for every i. The theorem follows.

U
Te c

(3.9)Remark . See [A-S] p. 9 for an example of a finite C.W-complex X provided with the action by

a finite group where the equivariant topological K-theory fails to be the completion of the corresponding
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equivariant Atiyah-Segal K-theory. Thus the assumption that X is an algebraic variety (of finite type
over C) provided with an algebraic group action seems essential in the above theorem. (This assumption

enables us to use the generic-slices in (6.3).)

(3.10)Definition. In view of the above theorem we will make the following definition of equivariant
topological K-homology. Assume the above situation. Now Kf\j’[f’i(Z Q) = m(K3(Z ((C)))AIM Clearly

these groups are intrinsically defined and are covariant functors for proper M-equivariant maps.

(3.11) Corollary. Assume the above situation. Now one obtains a Poincaré-Lefschetz-duality iso-

morphism: T, (K;ZPZ(C)( (0)) = K}, (Z(C)). This will be denoted P — Ly,p.

(3.12) Assume that Z is a G-quasi-projective variety as in (3.8). We will conclude this section by
showing that the composition

p—r-1 M,Z

KM o(Z(0) —2 mo(K 3 (2(C))) ~2— HM(Z(C); Q)

is independent of the closed immersion Z — Z. Similar arguments will prove that the compositions

Ro (KNS Z(©) 2555 mo(K i (2(0)) £y HM(2(0); @ and

70(K%(2)) — mo(Ka,2(2)) ~=—— HM(2(0); Q)
are independent of the closed immersion Z — Z. This will follow from the following two propositions.

(3.13)Proposition. Let Z be as before and let Z — Yj 4 Y7 denote two G-equivariant closed

immersions so that Yy and Y; are also smooth. Now one obtains the commutative squares:

m(Kez(¥0) T m(Koz(1)
JV Gysin l

mo(K S0 (Fo(0)) 25 mo(K g g (Y1 (0)

! !

o (K3 7y (Yo (0))) % mo(KM 0 (V1 (0)

HM(Z(0;Q —2=  HM(Z(C);Q)

where the horizontal maps are all isomorphisms provided by Gysin-maps.

Proof. Let W be the blow-up of ¥ x C along Yy x 0. Now one observes as in [B-F-M] pp. 113-114 that

one obtains the commutative diagram:
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YOL)Y(-)X(C(.—YO
Jo

| v i

Vi 2w RN
Here i : Yy — N is the closed immersion of Yy as the zero-section into the normal cone N associated
to the closed immersion ¢. One may observe readily that all the maps in the above diagram are G-
equivariant. The above diagram, along with excision (which all the four cohomology theories above
have) and the homotopy property (2.8.6), reduce the problem to the case where i is replaced by i.
Now the commutativity of the top two squares follows from the observation that the Gysin-maps are
all compatible. This results from the observation that top three of the horizontal maps above are cup-
products with the Koszul-Thom class of the normal bundle associated to the closed immersion Yy — N
and the Koszul-Thom classes in the three K-cohomology theories are compatible. (See for example

[B-F-M] p.166.)

To prove the commutativity of the bottom square, one only needs to make the following observa-
tions: TdM (Ty,) = TdM(N)~' UTdM(Ty,) and chy ™ (Gysin(E)) = chy***(€) N TdM (N;;)~*, where
€ e WO(K;\;JII,JZ(C) (Yo(C))). These are well-known in the non-equivariant context and they extend to the
equivariant case by naturality. (The first is a consequence of the multiplicativity of the Todd class.
The second follows from (2.8.5).) Excision shows the top-three horizontal maps are isomorphisms. This

completes the proof of the proposition.

Next we will assume for simplicity that Z is G-projective. If i; : Z — Zj, j = 1,2 are two G-
equivariant closed immersions, in view of (3.13) one may assume that Zj, J = 1,2 are projective spaces
P™ of large enough dimension on which G acts linearly. By taking the product of the two immersions,
one obtains a third closed immersion i3 : Z — P™ x P™ and this factors as Z A> Z x P™ — P x P™,

(3.14)Proposition. Assume the above situation. Now one obtains a commutative square:

-1

KM o(Z(Q) 2 my(KP, o (B x PR(Q)  ——m  HM(Z(C); Q)

a a a.|

P_Ltop o n m TM m
KM, o(Z x P™(Q) —2 mo(Kiy pgm (B X P™(C)) —— HM(Z x PO)™; Q)

Pl*l Pl*l p1=.=JV

KM o(Z Pl Ki® (@ L, HM(Z(C);
Mo2©) L gl @v) T EMZE) Q

Proof. The commutativity of the two squares on the right follows from (2.9). The left-most vertical

maps are defined so as to make the two left-squares commute. The composition of the vertical maps is

the identity by (3.6), (3.8) and (3.10).
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4. The equivariant Riemann-Roch theorem (at the level of equivariant homology theo-

ries).

We will presently combine the Riemann-Roch theorem (2.9) with the definition of equivariant K-

homology to obtain the following strong form of an equivariant Riemann-Roch theorem.

(4.1) Let G denote a complex linear algebraic group acting on a G-quasi-projective variety Z as in
(1.9) and let M denote a maximal compact subgroup of G. Let Z — Z denote a G-equivariant closed
immersion into a smooth G-quasi-projective variety. We define natural transformations:

KC(Z) & KM (Z(C)) and m (KM (Z(C))) 2 T (Kit (Z(C))) as follows. The map p will be the

composition:

_r-! ~ _
K% (2) SN Kaz(Z) 5 Kf/j’sz(c) (2(C)) £=L25 KM (Z(C)). The map B is merely the comple-

tion at the augmentation ideal in R(M). In view of (3.8) the map B factors as the composition

pP—L;}

(K} 5(2(0))) T (K50 (2(©) D mulKi2 0 (Z(0)) =2 KM, (Z(C)). Finally

we define an M-equivariant Chern-character ch™ : K{! ((Z(C)) — HM(Z(C); Q) as the composition

P-Li, 0 5 chy? .
(Z(C) —= ﬂo(Kfuf’Z(C) (Z(C))) e, HM(Z(C); Q). One defines a Todd-homomorphism

™ KM (Z(C)) — HM(Z(C); Q) similarly.

KM

top,0

(4.2)Theorem. (Equivariant Riemann-Roch).

Assume that f: X — Y is a G-equivariant proper map between two G-quasi-projective varieties. In

this case one obtains the commutative diagram :
mo(p) B M
mo(K9(X)) === mo(K4s(X(0) —— Kit,4(X(0) —— HM(X(0);Q)
(2.4.%) f*l lf* f*l fs
mo(p) B M
m(K9(Y)) —= m(K}s(Y(C) —— K/ o(Y(C) —— HM(Y(C;Q)
Proof. As observed in (1.14), one may factor f as the composition of a G-invariant closed immersion 4 into
a projective space IP{ onto which the G-action extends followed by the obvious projection 7 : Py, — Y.
Therefore it suffices to prove the commutativity of the two squares for the two special cases when f =14

or f = m. These follow readily from (2.9) and the definition of the natural transformations in (4.1). This

completes the proof of the theorem.
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5. Applications

One of the main applications of the above Riemann-Roch theorems is to the construction of modules
over the affine Hecke algebra associated to a complex reductive group from the equivariant derived
category on the unipotent variety. (See [J-2].) We foresee further applications to representations of

quantum groups as well. We first state some results in a form suitable for such a variety of applications.

(5.1) Proposition. Let f : X — Y denote a G-equivariant proper map between G-quasi-projective

varieties. Let

x 1,y

Lo

) QAN v
denote a commutative cartesian square with X ( Y) a G-quasi-projective smooth variety containing X
(Y, respectively ) as a G-stable closed subvariety and f a G-equivariant proper map. Let M denote the

maximal compact subgroup of G. Now one obtains a commutative diagram:

P—Liop ch¥X

KM, o(X(0) ¢ mo(KiPy o (X(Q)) —2 Hyy x(X5Q 5 HM(X; Q)

‘| 'l o Js
KM, o(Y(C) £ m(Kidhy o (V(©) "2 Hipy(V; Q) L HM(Y; Q)

*

where chg’x and ch?,/f 24 are the local Chern-characters defined in (2.7), the second-map f is defined so as
to make the left-most square commute. The map P — Lo, (P — L) is the Poincaré-Lefschetz-duality-map
considered in (3.11) ((2.6), respectively .) The last map f, is defined as the composition:

HM (G Q) 8, (@) L M (Y3 @ T (Y @
and the third vertical map f, is defined so as to make the last square commute.

Proof. This is clear from the Riemann-Roch theorem (4.2).

Many of the above-mentioned applications involve the convolution in K-theory considered by Lusztig,

Ginzburg (see [C-G]) and others.

(5.2) Convolution. Let Z;, i = 1,2,3 denote G-quasi-projective smooth varieties and let Z1,2 C
7y % ZQ, Zy3 C Zy X 23, Z13C 71 x Z3 denote G-stable closed subvarieties. Assume further that the
following condition holds. Let p; ; : ZiX Zo X Zg — Z; X Zj denote the projections to the (i, j)-th factor
for i < j, 1 <14,j < 3. Now the restriction of p; 3 to pi%(Zl,z) ﬂpié(Zm) — Z1 X Zs is proper and

maps into 7 3.
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One may now define a convolution
* ! 7r0(KvG,Zl’2 (Zl X ZQ)) ® WO(KG,ZQ,S (ZQ X Zg)) — WO(KG,Zl,g (Zl X Zg)) as the composition
(5.1.1) mo(K,21,,(Z1 X Z5)) ® 70(K, 22,5 (Zo X Z3))

P1 2®P5 3
22

mo(Kg (Zy x Zy x Z3))

P15(Z1,2)Np3 5(Za,3)
. - - P13 ~ ~

— WO(KG,P{%(Zl,s)(Zl X Zy X Z3)) i} WO(KG,ZL;;(Zl X Zg))

By pre-composing the above operation with the inverse of the Poincaré-Lefschetz-duality

P—L,®P—L,
—e

70(Kg,2:,(Z1 X Z3)) @ mo(K, 7, 4(Z2 X Z3)) 70(K%(Z1,2)) ® mo(K9(Za2,3))

and by following it with the Poincaré-Lefschetz-duality mo (K¢, 21,3(21 x Z3)) Loley o (K%(Z;3)) one

obtains a convolution:
x:70(K9(Z1,2)) @ mo(K%(Z2,3)) — mo(K%(Z1,3))
If M denotes the maximal compact subgroup of G, one may define similar convolutions
(5.2.2) *: WO(KJ{‘,I"SZM(ZH X Z5)) ® WO(KJ‘(‘,I"SZM(Z} x Z3)) — wo(Kj(}',%m(Zl x Z3))
(5.2.3) x: Wo(Kf\Zf’ZLZ(Zl X Z3)) ® WO(KZ’,”Z2,3(Z2 x Z3)) — ”O(Kg,pzl,s(zl x Z3))

as well as * : WO(K%5(Z1,2((C))) ® Wo(K%S(ZQ,g((C))) — Wo(K%S(Zl,g((C))) and * : K,f‘(;fp,o(Zl,Q(C)) ®

K 0(Z2,5(C)) — K} 0(Z1,3(C)). One may also define a convolution

(5'2'4) * 1 H]TJ,ZLQ (Zl X 22; Q) ® H]Td’,ZQ’g(ZQ X 23; Q)

P1 2®P5 3 x . . 5
HM,P;;(ZI,Z)OPQ_é(ZQ,:;) (Zl X Z2 X Zg7 Q)
* 7 7 > . P1,3% % ~ 5
= Hy ot (B X 22 X 25 Q) == Hiy g, (21 % 733 Q)

where P 3« is either the map pi1 3. or the map Py 3. defined in (5.1). By pre-composing this operation with
the inverse of the Poincaré-Lefschetz-duality H]"{,I’Zl’Z(Zl X Zy; Q) ® Hyp 22,3(22 x Zs; Q) LoLloboL,
HM(Z15; Q) ® HM(Z2,3; Q) and following it with the Poincaré-Lefschetz-duality Hy, ,  (Z1 X Zs;
Q X% HM(Z; 3; Q) one may obtain a convolution * : HM(Z; 2; Q) ® HM(Z5,3; Q) — HM(Z13; Q).

(5.2.5) Proposition. The last two convolutions, with p; 3. = P13+, are compatible with the convolu-

tions defined in (5.2.3).

Proof. This follows readily from Proposition (5.1). (The local chern-character clearly commutes with

inverse-images; (5.1) shows it also commutes with the direct-image maps when pi 3« = P1 3x.)
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To apply this to the case considered in [J-2], (i.e. to the construction of modules over the affine
Hecke algebra associated to a reductive group) we first recall the basic set-up. Let G denote a complex
reductive group; U will denote the variety of all unipotent elements in G and p : A — U will denote the
G-equivariant resolution of singularities due to Steinberg. Let B denote the variety of all Borel subgroups
of G. (Recall that A = {(u, B) e U x B|lu € B} and that y is now simply the projection to the first factor.)
One obtains an action of G x C* on U on the right by: u.(g,q) = g~ 'u?g. There is a similar action on A
defined by: (u, B).(g,q) = (¢~ 'ulg,g~'Bg). Finally Z = AZ>/<1A ={(u,B',B)luelU,B',BeB,ue BNB}.
Now there are two possible situations where we may define a convolution as in (5.2). In both cases the

group that acts on the varieties will be G x C* and M will denote its maximal compact subgroup.

(5.3.1) We will let Z; (as in (5.2)) = A for all i = 1, 2, 3. Now each Z; is a G-quasi-projective
smooth variety and Z imbeds G x C*-equivariantly as a closed subvariety of A x A. We let Z; ; = Z for
(i,4) = (1,2), (i,§) = (2,3) or (i,§) = (1,3). Now the map p1;s : py5(Z) Np35(Z) = A* =5 A is

proper and maps into Z. Therefore the hypotheses of (5.2) are met and we obtain convolution-products

x 1 mo(K9*C(2)) @ mo(K9*C (Z)) — mo(K9*C (2)), » : mo(K}5(Z(0))) ® mo(K}5(Z(0)) —
mo(K}s(Z2(0))), * : Ky, o(Z(C)) @ Kigy, o(Z(C)) — Ky, 4(Z(C)), and x : H}(Z(C); Q) & HY (Z(C);

Q — HY(Z(C); Q) -

(5.3.2) In the second situation we let Z; (as in (5.2)) = B for all i = 1, 2, 3. We let Z; ; = B for
(,7) = (1,2), (i,5) = (2,3) and (i,5) = (1,3). Once again the hypotheses of (5.2) are satisfied and we

obtain convolution-products

* 1 mo(K9XC (B%) @mo (KT (B%)) = mo(K9*C (B%)), * : mo(K}5(B*(C))) @ mo (K ' (B>(0))) —
mo(K }s(B2(0)), * : Kiy, o(B*(C)) ® Ky, o(B*(C)) — Ky, o(B*(C) and * : HM(B*(C); Q ®
HM(B*(C); Q — HY(B*(0); Q).

(5.3.3) Theorem. (i) The maps mo(K“*C (2)) Tole), mo(K 5 (Z(C))) L, mo (K7 (Z(C))) and the
maps mo(K%*C (B82)) Zole), mo(KM(B2(C))) 2 mo(Ke,(B%(C))) are homomorphisms that preserve

the convolution products in (5.3.2).

(ii) The maps

P-L7! chMA?

KM, o(Z(Q)) — mo(K 25y (AX(C))) —2— Hy; (A% Q) == HM(Z; Q) and

-1
P-L chM

KM (B(Q)) 2222, mo(Kion(52(0)) 25 my, (8% @) 2

% HY (6% Q
also preserve the convolution products in (5.3.1).
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Proof These are clear from (5.1) and the definitions in (5.3.1) and (5.3.2).

We will next show that the map p (as in (4.1)) induces an isomorphism when the variety X is Z or
if X is the flag-manifold B™ (n > 1) both provided with the diagonal action of G x C*. (Recall that C*
acts trivially on B.) Let W denote the Weyl group of G; for each y € W one defines

(5.4) Zy = {(u,B,B") ¢ Z|(B, B') € O(y) = the orbit of G on B x B indexed by y}

and Zy = U IZy, for each subset I of W. Throughout M will denote a maximal compact subgroup of
Y€

G xC .
(5.5) Theorem. The map p in (4.1) induces isomorphisms:
(i) o (K (Mod%XE (B)™))) £ mo(K Y (B(C)™)) for all n. >0

(it)mo (K (ModSXC (Z1))) & mo(K X 4(Z1(C))) for each subset I of W.

coh

(iii)In particular Ko(ModSx® (Z1)) ® Q is a projective Rgxc- ® @-module of rank = (cardinality
I).(cardinality W).

Proof. The proof of (i) is essentially an application of the localization sequence to the natural filtration
on B by Schubert cells along with an application of the five lemma in a strong-form. (To apply the five
lemma, one may first prove, using the above filtration, that m (K} ¢(B(C)™) = 0 for all n.) The third
statement of the proof follows from the second statement using the computation of mo (K% ¢(Z1(C)))®Q
as in ([K-L] (3.1.6)). If I consists of only a single element y € W, observe that the obvious map Z, — B
given by (u,B,B') — B is a locally trivial fibration with fibers isomorphic to complex affine spaces
C”, v = the dimension of B. Therefore, in this case, we reduce to proving p induces an isomorphism

To(K (ModS*C (B)) ® Q ~ 7o (K475 (B(C))) ® Q, which is proven in (i).

coh

In general, if I is as above and y € I, Z{y<y|y ¢ 1y 18 closed in Z1 and its complement Zgy /sy, ¢ 1}
is open in Z;. One may now use the obvious localization sequences along with the strong form of
the five lemma to obtain the conclusion. (To apply the five lemma, one needs to first prove that
71 (K} s(Z1(C)) = 0. For this, clearly one may use induction on the cardinality of I along with an

obvious localization sequence as above.)

Next we consider a convolution product that arises often in the context of quantum groups. (See [Lusz]
section 3, or [J-4] for example.) Let X;, = 1,2,3,4,5 denote smooth quasi-projective varieties. Let Gj,
i = 1,2,3 denote three complex linear algebraic groups so that G; acts on X; fori =1,2. G5 acts on

X3, X, and X5. Assume that X; C X; are closed subvarieties that are stable under the corresponding
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actions. We may assume that G1 x G2 x G3 acts on all of the varieties by letting G5 act trivially on X 1
and X, while G; and G5 will act trivially on X, and X;5. Let pr: X3 — Xy x X’g, po: X4 — X5 and
ps : X4 — X5 denote smooth maps that are equivariant for the action of Gy x G x G5. Assume further
that ps3 is proper and that p» is a principal G; x G2-bundle. Now one may define a convolution-product

* as the composition:

(5.6.1) * : mo(Kay,x, (X1)) ® m0(Kay,x,(X2)) =2 70(KGyxGax G, xs(X3)) 2 mo(Kay,x, (X4)) 225
WO(KGs,Xs(XF)))

The isomorphism 7o (K q, x GaxGs,Xs (X3)) = o (Kay,x, (X4)) is induced by p} and uses the fact that ps
is a principal G1 x Ga-bundle. Let M; denote the maximal compact subgroup of G;. Now one may also

define similar convolution-products

* 2 m0(K S, 0 (X1(0) @ mo(K 755, (X2(C€)) = mo(K i x, () (X3(0))) and

wimo(KIP o (K1(0) @ mo(KIP o (R2(0)) = mo(KLP . o (Ka(0))).

Making use of Poincaré-Lefschetz-duality one may obtain similar convolution products on equivariant

K-homology. One may also define a convolution-product:
* * p* * ~J * p. * *
(5.6.2) * : Hyy, (X1; Q) © Hyy, (X25 Q) = Hiy, yoagy sy (X5 Q) = Hyy (X5 Q 5 Hyy (X55 Q)
where Ps. is the map defined in (5.1).

(5.6.3) Proposition. The convolution-products in (5.6.1) are all compatible under the natural trans-
formations in (1.4), (1.12) and (1.12’). The local equivariant Chern-character maps the convolution-

products in (5.6.1) to the convolution-product in (5.6.2).

Proof. This is clear from (5.1).

6. Special Techniques

In this section we discuss briefly two techniques that are often quite handy in studying equivariant
homology theories: namely that of reduction to the action by a maximal torus and the existence of
generic slices for torus actions. As in (1.9) we let G denote a complex linear algebraic group G acting
on a G-quasi-projective variety Z. Let B denote a Borel subgroup (i.e. a maximal connected solvable

subgroup) and let T' denote a maximal torus contained in B. Let M denote a maximal compact subgroup
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of G and let T, denote the maximal compact torus in T'. Now one obtains the weak-equivalences (natural
in Z):
(6.1.1) Kg(GxZ) ~ Kp(Z) ~ Kr(Z) , K(GxZ) ~ KB(Z) ~ KT (2)
B B

See [T-3] (1.10). Now the projection map 7 : GxZ — Z is a proper and smooth G-equivariant map and
B

the inverse image of Z C Z under 7 is G EZ ; therefore it induces maps
(6.1.2) px : KT(Z2) ~ K¢(GxZ) — K% (Z) and p* : K¢(Z) = K¢(GxZ) ~ KT(Z)
B B

Next observe the M-equivariant maps M xZ(C) - GxZ(C) —» GxZ(C) are homotopy-equivalences
T T B

(with equivariant homotopy inverses) and hence induce weak-equivalences:
(6:13) K£5(2(0)) = KM 2(0) 5 K5(Gx2(0) = K3(Gx2(0)
and similarly:
(613) KX5(2(0) = KXs(MxZ(C) = KXo(GxZ(©)) = K} s(Gx2(0)
Clearly the same argument applies to provide similar weak-equivalences in K f\f[f’c and Ktj‘olp.

Assume that Z - Z is the G-equivariant closed immersion of two G-quasi-projective varieties with

Z smooth. The map 7 induces maps

(614) pr : K50 (2(0) = Kif 0 (C1Z(0) = K50 (2(0)

and
(6.1.5) p* : KX\J',SZ(C) (Z(©) — Kfi,%;z(@ (GEZ(C)) = Kﬁ',sz(c) (Z(0)

Similar results hold in equivariant topological K-cohomology of Z(C) with supports in Z(C).

(6.2)Proposition. Assume the above situation. Now the composition of the maps p* and p, in (6.1.2),
in (6.1.5) and (6.1.4) as well as the corresponding maps on equivariant topological K-cohomology induce

the identity on taking the homotopy groups.

Proof. For the maps in (6.1.2) this is established in [T-3] Theorem (1.13). We will sketch a proof for
the maps in (6.1.5) and (6.1.4). The proof for the remaining cases are similar. Observe that the fibers
of the projection 7 are all isomorphic to G/B; moreover there is a section to this map given by sending

a point Z of Z to (e, %) € GxZ. Tt follows one obtains a natural map:
B

621) m(K{S(G/BO)  © (Ko (Z(O) = m(Kjif 0 (G 2(0)

. (K75 )
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Now one may compute (use the filtration by the Schubert-cells and a localization sequence) 7; (K % (G/B(C)))
to be a projective module over R(M) = mo(K#}°) if i is even and trivial if i is odd. One may similarly
compute the right-hand-side (6.2.1) using the filtration by the Bruhat cells in G and a localization se-
quence; it will readily follow that the above map is an isomorphism. Therefore it suffices to show that the
composition of the two maps R(M) = mo (K1) AN mo(K 45 (G/B(C))) = mo(K4:5) = R(M) is the
identity. This is clear since R(M) = R(G) = mo(Kg(Spec €)) and m(K7:°(G/B(C))) = mo(Ke(G/B))
and since composition of the maps p* and p. in (6.1.2) is already observed to be the identity. This
completes the proof in equivariant Atiyah-Segal K-cohomology. To obtain the corresponding result for
equivariant topological K-cohomology, one first observes that there exists an isomorphism similar to
the one in (6.2.1) in this theory. Now the observation that mo(K%?(G/B(C))) = the completion of
mo(K47°5(G/B(C))) at the augmentation ideal completes the proof.

(6.3) Existence of generic slices for torus actions. (See [T-2] Proposition (4.10).) Let T denote
a complex algebraic torus acting on a quasi-projective variety Z. Then there exists a non-empty 7-

invariant open subscheme U of Z with the following properties.
i) U is an affine scheme that is non-singular
ii) The geometric quotient U/T exists, it is affine and non-singular and the map U — U/T is smooth

iii) There exists a diagonalizable subgroup T' of T with quotient torus 7" = T/T" and an action of

T" on U so that T acts via the map T — T". Further T" acts freely on U and there is an isomorphism
U=T"xU/T=T/T' xU/T

of schemes with T-action.
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Appendix. Equivariant Fredholm complexes. Here we re-examine the basic setup in [Seg-2].

(A.1) A topological vector space over the complex numbers is admissible if it is Hausdorff, locally
convex, complete and has a neighborhood of the origin which contains no half-line. (See [Seg-2] p. 387.)
If X is a paracompact space, a vector bundle on X is a topological space E with a projection p: £ — X
so that the fibers E, are admissible topological vector spaces and so that p is locally trivial. If X is
provided with the action of a compact Lie group M, an M vector bundle on X is an M-space E provided
with an M-equivariant projection p : E — X so that the action m : E, — FE,,, is linear, for each m ¢ M.
One defines the category of M-vector bundles on X in the obvious manner. A morphism f : E — E' of
M-vector bundles is compact if there is a neighborhood U of the zero-section in E and a subspace K of
E' proper over X so that f(U) C K. A bounded complex E" of M-equivariant vector bundles (where
the differentials are equivariant and of degree +1) is called an M-equivariant Fredholm complez if there

exist M-equivariant maps h* : E¥ — E*—1 5o that
(A.1.1) hEFigk 4 g1k = id — Kk,

where k¥ : E¥ — E* is a compact homomorphism. The category of M-equivariant Fredholm complexes
on X will be denoted Fredh™ (X). The set of points z € X at which the complex E" fails to be exact is
the support of the complex E". (It is shown in [Seg-2] that the support of an M-equivariant Fredholm

complex is a closed M-invariant subspace of X.)

(A.2) Observe that if f : E — E' is an M-equivariant map with finite rank, then f is compact and
one may assume without loss of generality that U and K as above are stable under the action of M.
To see this, one argues as follows: since f is M-equivariant, one may assume that the image of f is
contained in an M-invariant finite dimensional subbundle V of E’. Moreover since M is compact, one
may assume that the action of M on V is unitary; now one may take the closed unit ball in V' for K.
The inverse-image f~!(int(K)), where int(K) denotes the interior of K, is an open neighborhood of the
zero-section in E, which is also stable under the action of M. It follows that a bounded complex of finite

dimensional M -equivariant vector bundles on X is an M-equivariant Fredholm complex.

(A.3) Now we recall the following basic result from [Seg-2]. Let M denote a compact group as
before and let Hp; denote a separable Hilbert space with a linear M-action so that every irreducible
representation of M occurs with infinite multiplicity. We may assume that M acts on the right on
Hys. Let Fredh(Hys) denote the space of all Fredholm-operators on Hys; M acts on Fredh(Hyr) by,
m.T(v) = m(T(v.m™1)), v e Hy, m ¢ M and T € Fredh(Hys). Clearly the fixed point sub-space
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Fredh(Hy )™ = the sub-space of all M-equivariant Fredholm operators. Now it is shown in [Seg-2] that
(A.3.1) mo(K4%(X)) = [X, Fredh(Hum ),

which is the set of all M-homotopy classes of M-maps of X into Fredh(Hys). Moreover it is shown in
[Seg-2] section 5 that if YV is a closed M-invariant subspace of X, mo(K j(‘,fgf(X )) is isomorphic to the
group of equivalence classes of M-equivariant Fredholm-complexes on X with supports contained in Y

where the equivalence relation ~ is defined as follows:

(A3.2) & ~ & if there are acyclic M-equivariant Fredholm complexes Fy; and F} so that £ & Fy; ~
&; @ F;, where ~ denotes M-homotopy. This group will be denoted K°(Fredhi! (X))

Moreover any continuous M-map d : X — Fredh(Hys) defines a complex
(A33) H(d) =(..—» 0> X x Hy % X x Hy —0....)

where d(x,v) = (x,d(z)(¥)), z € X, ¢ € Hy. (See [Seg-2] p. 398.) Now observe that the map d is
M -equivariant for the action of M on X and Fredh(H)s) as above. It is shown by ([Seg-2] Proposition
2.3) that this is in-fact a Fredholm complex. However it is not clear from [Seg-2] section 5 that the maps

h* and k* as in (A.1.1) will be M-equivariant. We will rectify this problem by the following result.

(A.4) Lemma. There is a continuous M-equivariant map
P : Fredh(Hy) — Fredh(Hpy)

so that Ao P(A) —id and P(A) o A —id are M-equivariant operators of finite rank (and hence compact)
for all A € Fredh(Hyy).

Proof. Observe first of all that Fredh(Har) is an infinite-dimensional manifold; for each N (N'), a closed
M-invariant subspace of H)s of finite codimension (finite dimension respectively ), let Un n+ be the open
sub-set of Fredh(Hys) consisting of all A so that the composition N 4 Hy A Hy S (Hpr)/N' is an
isomorphism. Now {Un n'|N, N'} forms an M-invariant open cover of Fredh(Hs). To see this one may
proceed as follows: let A : Hy; — Hyy be a Fredholm operator, let N = a finite dimensional subspace
of Hys stable under the action of M and containing ker(A). Since M is compact every representation
of M breaks up into the sum of irreducible representations which are all finite dimensional. Let N be a
complement to N. Let N’ = N. Now it is clear that the composition N 4 Hy 4 Hy % (Hup)/N' is

an isomorphism.

Now we define Py ' : Uy n+ — Fredh(Hyr) by Py n'(A) = i(pAi)~'p. One patches together these
Py, n defined locally to define a P : Fredh(Hy) — Fredh(Hpr), using an M-invariant partition of

30



unity; one may obtain this from a partition of unity by averaging with respect to a Haar measure.
(Observe that the above argument is merely a slight modification of the proof of proposition (2.3) in

[Seg-2].) This completes the proof of the lemma.

Observe that in this case the condition in (A.1.1) reduces to: there exists an M-equivariant map

h:X x Hy — X x Hy (over X) so that both d o h and h o d differ from the identity by a compact

operator. If P denotes the operator in (A.4), one may let h(z, ) = (z, P(d(x))(®)).

(A.5)Corollary. Assume the situation of (A.3).

(i) Now each class in (K475 (X)) is represented by an M-equivariant Fredholm-complex of the form

H(d) in (A.3.3). Moreover given any M -equivariant Fredholm complex £, one can find an M-equivariant

Fredholm complex of the form H'(d) and acyclic complexes A;, A; so that & @ Ag ~ H'(d) ® A;.

(ii) The functor H'(d) — EM x H'(d) defines a map
M
B: Ky®%X) — KiPO(X)

Proof. These are now obvious from (A.4) and [Seg-2] Theorem (5.1).
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