Equivariant intersection cohomology of semi-stable points
By
Michel Brion and Roy Joshua!

In this paper we show that the equivariant intersection cohomology of the semi-stable points on a
complex projective variety for the action of a complex reductive group may be determined from the
equivariant intersection cohomology of the semi-stable points for the action of a maximal torus. This
extends the work of Brion (see [Br]) who considered the smooth case using equivariant cohomology. The
equivariant intersection cohomology we employ is due to Brylinski and the second author - see [Bryl-2]
or [J-1]. As an application, we find a surprising relation between the intersection cohomology of Chow
hypersurfaces - see §3. The second author would like to thank the Institut Fourier and the first author

for an enjoyable visit.

§1. (1.0) We will first recall some basic terminology from [Br] p.126. Let G denote a complex connected
reductive group, with T a chosen maximal torus and W = Ng(T')/T its Weyl group. S will denote the
symmetric algebra on the group of characters of T' tensored with Q and S" will denote the invariants
for the action of W on S. We make S into a graded algebra by assigning the degree 2 to the characters
of T. H will denote the graded W sub-module of S formed of the elements that are W-harmonic, ie.
killed by every differential operator with constant coefficients, invariant by W and with no constant
term. Then H is isomorphic to the regular representation of W and the multiplication of S induces an
isomorphism of S ® H with S as modules over W and over SW. Let e denote the signature of W. For
every W-module M, one denotes by M® the set of anti-invariant elements of M, i.e. eigen-vectors of
W on M with weight e. The sub-space H® of H has dimension 1 over ; one chooses an element D # 0

that serves as a generator of H* and one sets N = deg(D).

(1.1) Let X denote a complex projective variety, possibly singular, provided with the action of a
complex reductive group G and provided with a G-linearized ample line bundle L. Recall (see [M-F-K]
p-36) a point = € X is semi-stable (relative to L and @) if there exists an integer n > 0 and a section
s € HO(X; L™)% such that s(z) # 0; we will let X*° denote the set of all such semi-stable points. (Recall
also that such a point is stable if in addition the isotropy subgroup G is finite and the orbit G.z is closed
in X*°.) Since L is also T-linearized, one may let X5* denote the set of T-semi-stable points. Now one

has the relation (i.e. the Hilbert-Mumford criterion):
(1.1.*%) X** = N g.X3°.
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The main result of our note will be the following theorem.

(1.2)Theorem. (See [Br] p.128 for the smooth case.) With the previous notations, there exists a

natural isomorphism:
THE(X**; Q) = IHTHY (X5 Q)°

where intersection cohomology is the one with the middle perversity.

Let o : X*° — X§° denote the obvious open immersion. The theorem will follow from the following

results.

(1.3.1) The map
o* : THF(X55)* — THF(X*%)*
is an isomorphism.
(1.3.2) Moreover one also obtains an isomorphism:
H @ THE(X*; Q) 2 [H}(X*; Q)
On taking the anti-invariant part of (1.3.2) one obtains the isomorphism:
He ® TH5(X°% Q) o THFN (X% Q)°
Now the map : £ — u?(z)~!/D defines an isomorphism: TH}(X*%; Q)® = THY N (X*%; Q) which will
prove the theorem. Recall the intersection cohomology of the geometric quotient X//G is isomorphic to

the equivariant intersection cohomology of the G-semi-stable points if every G-semi-stable point is also

stable. Therefore, if every semi-stable point is also stable, (1.2) provides the isomorphism
IH*(X//G; Q) = IH; ™M (X35 Q).
Since the stratification of X with respect to the action of 7' is simpler than that with respect to the

action G, the above isomorphism is often useful in computing TH*(X//G; Q). We will demonstrate this

by considering some examples in the third section of the paper.

§2. We will provide a complete proof of Theorem (1.2) in this section. Throughout the rest of the

paper we will freely make use of the results as well as the terminology discussed in the appendix.

(2.1.0) We will assume the basic situation of (1.1); however in (2.1.1) through (2.3) we will let X be

also quasi-projective. Now one obtains the fibration

2



G/T — B(G/T,G,X) = EGéX

(2.1.1)Lemma. Under the above assumptions one obtains the isomorphism:

HE(X; Rt (Q) = Hg(X; Q) © HY(G/T; Q).
Proof. For this one may also consider the fibration:

B/T=U — G/T — G/B
where B is a Borel subgroup containing 7', and where U is the unipotent radical of U. Since U is
isomorphic to an affine space, one readily obtains an isomorphism H*(G/T;Q) = H*(G/B;Q). One
may apply the Kunneth formula to each of the projections

7 B(G/T,G, X)), =G/T xG" x X — (EGéX)n =G"x X

(and similarly to 7, : B(G/B,G, X), — B(Spec C,G, X),, = (EGéX)n) to obtain the identifications

R"7mn(Q) = H™(G/T;Q), R™7,.(Q) = H™(G/B;Q).

It follows that the natural map of the Leray spectral sequences for 7« and 7:

Bt = H(X; R'm,(Q)) = Hg"‘t(X;RW*(@)) and

Ey' = Hy(X; R'7.(Q)) = HE™(X; R (Q)
is an isomorphism from the FEs-level onwards and hence at the abutments. In view of the above ob-
servations, it suffices to prove (2.1.1) with 7. replaced by 7. Since G/B is projective and smooth,

the corresponding Leray spectral sequence degenerates at the Fs-level by an application of Deligne’s

degeneration condition (see (A.5)) and identifies
(21.1%) Hi(X; R7.(Q) = H (X; ©R"7.(Q)[-n)).

(For this observe that if £ is a G-linearized ample line bundle on G/B, it has an equivariant Chern-class

¢ in H*(B(G/B,G, X); Q). Iterated cup-product with the ¢; defines a map:

R *7.,(Q) = R"*7..(Q)

By Hard-Lefschetz this is an isomorphism. Now apply (A.5).)
Now one has the pull-back square

B(G/B,G,Spec C) +%— B(G/B,G,X)

= |=

B(Spec C,G, Spec C) +—=— B(Spec C,G, X)



Since G/B is projective, it follows that each of the maps 7, and 7, is proper. Now proper-base
change provides the isomorphism: R"7 . (Q) = a*(R"7.+(Q)) for each n. Since G is connected, BG. =

B(Spec C,G, Spec C) is simply connected and hence the locally constant sheaves R"7 .(Q) on BG. are

constant; hence so are R"7,(Q). Now (2.1.1.*) and the above observation complete the proof of the

lemma.

(2.2)Proposition. Assume the above hypotheses. Let K = {K,|n} denote a bounded complex of

sheaves of Q-vector spaces on EGxX. (See (A.1.5).) Now one obtains the natural isomorphism:
G

Hy (X5 m.*(K)) = Hg (X; Rr..m.*(K)) = H*(G/T; Q) ® Hy, (X; K).

Proof. For each n > 0, let m, : B(G/T,G,X), — (EGéX)n denote the obvious map induced by 7.

Now one obtains the identification:

Rrpar)(Kp) ~ Rmp.(Q) ® Ky, natural in n and K

This follows from the projection formula. Since the above identification is natural in n, it follows that

one has the identification
{Rmpary, (Kn)n} =~ {Rmp. (Q) ® Kp|n}

natural in K. i.e. Rr..7w.*(K) ~ Rn.(Q) ® K. Now one takes the equivariant hypercohomology with

respect to G to obtain the isomorphism:
(2.2.1) HE (X; Rrm.*(K)) = Hy (X; Rm..(Q) ® K)

= Hy (X; Rra(Q) ® Hy(X; K)

T Hz (X5Q)
where we applied the Kunneth formula (see (A.3)) to obtain the last isomorphism. Now (2.1) shows one

may identify the last term with

H*(G/T; Q) ® Hy (X; K)
One may identify the left-hand side of (2.2.1) with H*(B(G/T, G, X); 7*(K)) = H;.(X; K) where the
last isomorphism follows from (A.2.1). This completes the proof of the proposition.

(2.3) Examples. (i) Take K = Q, the obvious constant sheaf. (2.2) now becomes (2.1).

(ii). Take K = ICS(Q) = the equivariant intersection cohomology complex as in (A.4.0) where p is

an arbitrary perversity. This shows that

IH; (X; Q) = H*(G/T;Q) ® IH ,(X; Q).



(iii) Let 4 : Y — X denote the immersion of a locally closed G-stable subvariety of X. We will let
i denote the corresponding induced maps EGéY — EGéX, B(G/T,G,Y) — B(G/T,G,X) as well.
Let K = Ri*Ri!(ICE (Q)). Now (2.2) provides the isomorphism:

IHty (X5 Q) = H*(G/T; Q) ® IHg y,,(X; Q)
where THg v (X5 Q) = Hg (X; Ri.Ri'(ICS (Q)) while

IH;y,(X; Q) = B (B(G/T,G, X); Ri. RN IC /M ) (@))

with T C,SB(G/ T’G’X))(@) being the complex defined in (A.4.1). (We skip the verification of the above

isomorphism.)

(iv). Take K = the constant sheaf Q and X = Spec C in (2.2). Now we obtain the isomorphism
H*(BT; Q) = H*(G/T; Q) ® H*(BG; Q) = H*(G/T; Q) ® (H*(BT; Q)"

One may now identify # (as in (1.0)) with H*(G/T; Q). It follows that one may identify the class
D e H with a class in H*(BT; Q).

(2.4) Once again assume that X is a projective complex variety as in (1.1). We let 7 : X — X denote
a G-equivariant resolution of singularities provided by Hironaka - see [Hir]. Now one has the following
(see [Kir] p. 157):

(i) if L is a very ample G-linearized line bundle on X, then Ly = 7*(L®?%) ® O(—E), (E being the

exceptional divisor), is a very ample G-linearized line bundle on X for d large,

(iii) let {2,]7} denote the stratification for X as defined in [Kir] p.158; if {£3|3} is the corresponding

stratification of X, then the strict-transform 7—1(23) of X4 is a union of strata of X.

Recall that the open stratum on X and X is always the set of semi-stable points for the G-action. If Z
is any G-stable subvariety of X, Z5% will denote Z N X3° and 7' (Z) will denote the strict transform of
Z by .

(2.5). Lemma. Let U and V denote the unions of strata in the above stratification of X so that
71(X**) C U C V and so that each is open in X. Assume moreover that ¥ = V — U is a smooth

variety. Then the image of the class
D e H*(BT; Q) in Hx(ENa~'(X5); Q) is zero.

Proof. Let ¥, denote the disjoint union of the lowest-dimensional strata in . Now one has the long-exact

sequence:



= HEENT H(XF), (B -2 na ' (X§); Q = Hip(En7 1(X5); Q)
S HA((E-2) N7 1(X#); Q — ...

and the Thom-Gysin isomorphism:
Hi(Z.nm~ Y (X5); Q = Hy(Ena~ ' (X§), (£ - Z) e~ H(X5); Q

which is also W-equivariant. (Observe that the assumption ¥ is smooth is needed to obtain such an
isomorphism.) By ascending induction on the number of strata in V — U (and the above long-exact
sequence in T-equivariant cohomology) we may now assume V-U=%isa single stratum for the
G-action on X. Since 7~ !(X*%) C U, one may further assume that 7(%) is contained in a stratum ¥ of

X so that ¥ C X — X%,

It is proven in [Br] Lemme 2, that, under the above assumptions, the image of the class D in HJ.(X57;
Q) is zero. Now 7* : H:(25%; Q) — Hi(EZ N7 1(X3%); Q) maps the above class to zero as well. This

proves the lemma.

(2.6) Proposition. Assume the situation in (2.4). Let V', U denote unions of G-strata in X so that
X% C U C V and both are open. Assume further that ¥ = V — U is projective and that the strict

transform 7= (V — U) is also smooth. Under the above hypotheses
Hp(r='(V®), = (U3); Q* =0

Proof. We willlet U = 7= '(U), V = 7~ (V) and £ = 7~ () in (2.5). Since ¥ is smooth and G-stable

one has the Thom-Gysin isomorphism which is W -equivariant:

(2.6.1) H;(V,U;Q = Hy(5;Q) and Hi(V nr 1 (X3),U N7 1 (X3#); Q) = Hi(E N7 ' (X$);Q)

Recall ¥ is stable by G; now (2.2) and (A.2.4) provide the isomorphisms:

(2.6.2) H7 (5 Q) 2 H e H;(S; Q) = H e (H (5 Q)Y
Next observe that ¥ is obtained by equivariant blow-ups from ¥ and that it is projective and smooth.
Tt follows that ¥ N7—1(X3*) is a union of strata for the T-action on ¥ according to [Kir] p.157 and the
above stratification is T-equivariantly perfect. Now one may use an ascending induction on the number
of such strata in 3 N 71 (X%%) to prove the restriction

(2.6.3) Hp(S; Q) — HE(Sna~!(X5); Q
is surjective for each n. On taking anti-invariant elements, (2.6.1) and (2.6.2) show that every class z in

(H:(E N7~ 1(X2#); Q) may be written as z = D.y, for some y € Hi(X N7~ (X%%); Q) where D is the
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image of D. However D is zero, as observed in (2.5), which proves that z itself is zero. This proves the

proposition.

Remark. While proving the next result we will need to use the stratification for the action of the
reductive group G along with a similar stratification defined for the T-action. These will be referred to

as the G-stratification and T-stratification, respectively.

(2.7) Remark. Assume the situation of (2.4) and let U, V' denote unions of G-strata in X so that
U C V and both are open and non-empty. For any given U and V, by additional G-equivariant blow-ups

one may always assume that 7 1(V — U) is also smooth.

(2.8)Proposition. Let U denote a G-stable open subvariety of a projective variety X as in (2.4) so

that it is a union of G-strata from the corresponding stratification. Assume that X** C U. Then :
LH (X5, U5 Q)" = 0

Proof. Throughout the proof we will adopt the following notation: We will let 7 : X — X denote a
G-equivariant resolution of singularities so that 7—1(X —U) is also smooth. For each G-stable subvariety

Y of X, Y will denote the strict transform 7—1(Y").

Next the decomposition theorem in equivariant intersection cohomology (see [J-2] section 4 for e.g.)

applied to 7 shows that
(2.8.1) R (Q) = ICT(X) @ %ICT(Es)[dS]

where the sum ranges over a finite collection of T-stable subvarieties S of X, Lg is a T-equivariant locally
constant sheaf of Q-vector spaces on S and dg is a certain shift. Though this decomposition is far from
natural in general, it has the following property (see [Kir] p.157). Let U be a G-stable open subvariety
of X and let my : U = n~1(U) — U denote the induced G-equivariant resolution of singularities. Now

the decomposition in (2.8.1) restricts to give a decomposition of Rmo.(Q). Moreover the square

[H;(X; Q) +—— Hj(X; Q)
(2.8.2) l l
IH;(U; Q) +—— Hi(U; Q)
commutes, where the horizontal maps are split epimorphisms. (One may similiarly use (2.8.1) to obtain

a commutative diagram:



IH}(X; Q) —— Hi(X; Q)

(2.8.2)) l l
IH;(U; Q —— H3(U; Q)

where the horizontal maps are split monomorphisms.)

One may use this observation to obtain the commutative diagram:

(2.8.3)
e Q\ ’Y /LHF;(U; 7
H; (%,Q) ———— Hi (0;Q)
s ; &’l ’
H (n = (X3); Q) —~ Hy (= (U3); Q)
TH} (X3 Q) - TH} (U3 Q)

Recall X and hence X are projective. Now consider the stratification on X for the T-action; the strict-
transform of strata on X is a union of strata in X and the above stratification on X is equivariantly

perfect for T-equivariant cohomology. It follows the map QZ) in the central square is an epimorphism.

Taking V = X in (2.6), one observes that ¥ = V — U is closed in X and hence projective; by the
hypotheses 7= (V — U) is smooth. Hence the hyptheses of (2.6) are satisfied. Therefore (2.6) shows that
the map

B Hyp(r~ ' (X3); Q¢ — Hi(n ' (UF); Q°
is an isomorphism. The commutativity of the central square now shows that the map ¢' * is also an
epimorphism. These observations along with (2.8.2) applied to different choices of U show that the

maps ¢ and ¢'® are both epimorphisms as well. (Here, as well as elsewhere, we use the observation that

taking the anti-invariant parts is an exact-functor.)

Now observe the identification (see (2.2) and (2.3) (ii)):
TH(X; Q) = H*(G/T; Q) ® IHg(X; Q) and
ITH7(U; Q = H*(G/T; Q) ® IH;(U; Q).

Since the G-stratification on X is equivariantly perfect for equivariant intersection cohomology with

respect to G, it follows that the map v is an epimorphism. Since ¢ and ¢'* are already epimorphisms,
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it follows that so is the map +'“.

Finally one has the commutative diagram:

ra

0 —— ker(y'") —— IHHX$#;Q° L — IHHU#: Q* —— 0

! ! !

0 — s ker(f'") —— Hp(r'(X2°); Q* —2 Ha(n'(U); Q) —— 0

where the last two vertical maps are split mono-morphisms by (2.8.2"). Tt follows ker(y'") injects into

ker(8'"). However
ker(y'") = IH} (X7, U3’; Q) and ker(8'") = Hy(n 1 (X3°), 771 (UF"); Q)
by the surjectivity of the maps 8’ and '*. Since Hj (7w 1(X3%), 7 1(U2*); Q) = 0 as shown in (2.6),
the proposition follows.
(2.9)Corollary. Assume the situation of (2.8). Now
(IHF(X7); Q) = (IHE(U7; Q)" for all n.
Proof. Observe that the long exact sequence
. > THR(XE5,US Q) — THR(X55 Q) — THE(US; Q) — ...
remains exact after taking the anti-invariant parts. Therefore (2.8) proves (2.9).

Conclusion. Clearly (2.9) proves (1.3.1) by taking U = X*°, since X°® = X*°N X5%. This completes
the proof of the theorem (1.2).

§3. Examples.

(3.1) To any irreducible subvariety Z of codimension k in P", one associates classically a Chow
hypersurface Hz in Gg_1,p, the Grassmanian of (k — 1)-planes in P" (see e.g. [A-N] pp.40-43.) Recall
that Hyz is the set of all (k — 1)-planes that meet Z. A variant of this construction yields a hypersurface
H, in P"x---xP" (k times): the closure of the set of k-tuples in P™ which generate a k—1-plane meeting
Z. Observe that H/, is stable under the natural action of the symmetric group Sy on P™ x --- x P™ (k
times) by permutations. Therefore Sy, acts on the intersection cohomology IH*(H7,; Q). From our main

theorem, we will derive the following suprising result.
(3.1.1)Proposition There is a canonical isomorphism:

IH*(Hz; Q) = IH*T*E-D(HY; Q)°



Proof. Consider the linear action of G = SLi on V = Homc(CF, C**1). We identify V with (C**+1)k;

the maximal torus T of diagonal matrices in SLj acts on V by
(t1, - ti)-(x1, oy ) = (b1.T1, ey T )-
It follows easily that
P(V)s =P(V)5 = {[z1,...,zx] € P(V)|z; #0 for all ¢ }
and that
P(V)5./T 2 P" x ... x P (k times)
Moreover, by the Hilbert-Mumford criterion, we have:
P(V)* = P(V)*® = {[x1, ..., Tk]|71, ..., 7} are linearly independent in C**+1 }

and hence P(V)* /G = Gi—1,, (the Grassmanian of (k — 1)-planes in P™).

Now define a subvariety X C P(V) as the closure of the image in P(V) of the set of k-tuples
(T1,.., ) € (CPH1)* such that [zy],..., [)] generate a (k — 1)-plane in P™ which meets Z. Then
X is stable by the action of SLj and it is clear that

X35/T = H)y and X*/G = Hy.

By Theorem (1.2), we have a canonical isomorphism:

THE (X" Q = TH; ™) (g Q)

(Observe that N = k(k — 1) for SLg.) Moreover, any semi-stable point (either for G or for T') is stable
and hence:

THH(X*%; Q) = ITH*(X*°/G; Q)

To see this, consider the Leray spectral sequence E5'? = HP(X*/G; Rim. (ICY(Q))) = THX(X®; Q),
where 7 : EG X X® — X?/G. Here X*/G is viewed as a simplicial scheme in the obvious manner. Using
the terminology of (A.2.0) one may identify the fiber over Z of this simplicial map with the simplicial
scheme B(G/G(z),G, Spec C) where G(z) is the stabiliser of 2, Z = the orbit of z. Now (A.2.1) provides

the identification:
H* (B(G/G(x),G, Spec C); 1C%(Q))) = H* (BG(x); i*(1C(Q)))

where i : BG(z) — B(G/G(zx),G, Spec C) is the map in (A.2.0) with H = G(z) and X = Spec C. Since
G(z) is trivial for each z ¢ X*® (in this example), one readily obtains the following identification of the

E,»-terms for the spectral sequence above:
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EP"=0if ¢> 0and E?° = TH?(X*/G; Q).
By a similar argument, one obtains the isomorphism:
ITH}(X7; Q = TH*(X7/T; Q).

This completes the proof of the proposition.

Remark. If the irreducible variety Z C P™ is not a linear subspace, and if its codimension k is at
least 2, then Hz and HY, are singular in codimension 1. This justifies the use of intersection cohomology

in the above example. To see this, consider the variety
Vz ={(z,L) € Z x Gr—1,n|x € L} and the first projection p: Vz; — Hyz.

Then it is easily checked that p is birational, but that the fibers p~!(L) are not connected for all L in
some divisor in Hz. By Zariski’s main theorem, Hz is singular in codimension 1. The same holds for

H,, by a similar argument.

(3.2) Consider three positive integers 7, k and n such that r < k. Let ¥, C P™ x ... x P™ (k times)
be the set of k-tuples which generate a linear subspace of dimension at most r in P”. Then Y, is a
normal, (in general) singular variety, with an obvious action of the symmetric group Sj. We claim that

the representation of Sy on IH*(Y,; Q) does not contain the sign representation, i.e.
IH*(Y,; Q* =0
Namely, with the notation of the first example, define X C P((C**!)¥) to be the set of all [y, ..., 74]

such that the linear span of zy,...,z; has dimension at most r + 1. Then X is closed and stable under

the action of SLj. Moreover, we have:
X% /T =Y, and X* = ) (since r < k).

Now the conclusion follows as in the first example.
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Appendix. In this appendix we review the basics of equivariant intersection cohomology and the

equivariant derived category.

(A.1.0). We will assume the basic situation of (1.1). Accordingly X denotes a complex quasi-projective

variety provided with the action of a complex linear algebraic group G.

(A.1.1) In this situation one first forms the simplicial spaces EG éX in the usual manner (See [Fr]p.
4 for eg.) Observe that (EG X X)n = G™ x X with the usual structure maps. Each of the face maps
d; : (EGéX)n — (EGéX)n_l is induced by the group-action g : G x X — X and the projection

7 : G X X — X and hence is smooth.

(A.1.2) Assume in addition to the hypotheses of (A.1.0) that Y is another variety acted on by the
group G. Now one may form the double-bar construction B(X, G, Y') which is a simplicial space given

in degree n by B(X, G,Y), = X x G" x Y with the structure maps defined similarly. (See [Fr] p. 4 for
eg.).

(A.1.3) Now assume X. is a simplicial scheme (i.e. a simplicial object in the category of schemes),
for e.g one of the simplicial schemes obtained as above. One puts a Grothendieck topology on X. by
defining the objects to be maps u : U — X,,, where u is the inclusion of an open set in X,, for some n.
Given two such open sets v : U - X,, and v : V — X, for some n, M a map a : u — v is given by a
map a : U — V that lies over a structure map o' : X,, — X,, of the simplicial scheme X.. If X,, is
a complex algebraic variety for each n, we will always consider only the transcendental topology on X,.

The corresponding topology on X. will be denoted by Top(X.).

(A.1.4). We will only consider sheaves of @-vector spaces in this paper. A sheaf F' of Q-vector
spaces on a simplicial scheme X. consists of a collection {F,|n}, where each F, is sheaf of Q-vector
spaces on X, provided with a collection of maps ¢(«) : a*(F,) = F,, associated to each structure map
a: X, = X, of the simplicial space X. satisfying certain obvious compatibility conditions as in ([Fr]
p.14, for eg.). The category of such sheaves will be denoted by Sh(X.). We will let Dy(X.; Q) denote
the derived category all bounded complexes of sheaves of )-vector spaces. A sheaf F' as above on X. has
descent property provided the maps ¢(a) : a*(F,) = F,,, as above associated to each structure map «,
is an isomorphism at each stalk. A complex K- in Sh(X.) or in Sh(X.) has descent if all its cohomology
sheaves {H*(K,)|n} have descent. In the special case where X. is the simplicial space EG éX as in
(A.1.1) and F = {F,|n} is a sheaf on EGéX with descent, we will say F is a G-equivariant sheaf
on EG?:X and that Fy is a G-equivariant sheaf on X. In other words F' is a lift to the equivariant

derived category of the sheaf Fy on X. (Conversely any sheaf K on X is equivariant if there is a sheaf
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F = {F,|n} on EGéX with descent so that K = Fp.)

(A.1.5) In the above situation, the category D@¢*(X.; Q) will denote the full subcategory of the derived
category Dy(X.; Q) of complexes of sheaves whose cohomology sheaves have descent. Dg’deS(X 5 Q) will
denote the corresponding full subcategory of complexes with constructible cohomology. If X. = EG é X
= the simplicial space associated to the action of a group G on a space X (as in (A.1.0)), we will denote
the category D*(X.; Q) (D>%*(X.; Q)) by DS (X; Q) (Dy%(X; Q), respectively).

(A.1.6). Next assume that p : Y. — X. is a map of simplicial schemes. Now the category of

sheaves of @)-vector spaces on Y. has enough injectives as observed in [Fr] p.15. The derived functor

Rp.(K) = {Rpn«(K,)|n}, if K = {K,|n} € D>%(Y.; Q). One defines equivariant hypercohomology by:

H (X; K) = B (EGX X; K)

(A.2.0) Assume the situation of (A.1.2). Clearly there exists a natural map i : EH;(IX — B(G/H,
G, X). of simplicial schemes which is a closed immersion in each degree. Moreover there exists an
obvious projection map « : B(G/H, G, X). = EGéX = B(Spec C, G, X). induced by the projection
G/H — SpecC. Let K € Dg’G(X ; Q). Clearly 7*(K) is a complex of presheaves on the simplicial space
B(G/H, G, X). and i*(*(K)) is a complex of presheaves on EH I>;X . Now i induces an isomorphism:

(A.2.1) | (X;i*(n* K)) = H*(B(G/H, G, X); 7*(K))

Remark. Under the above assumptions, observe that the complex i*7*(K) is merely the restriction of
K to EHxX. If G is a complex reductive group and H = N(T') = the normalizer of a maximal torus,
H

then one knows G/N(T) is acyclic rationally. It follows one obtains the isomorphism:

(A.2.2) Hy (X K) =2 H5 (X K).

(T)
Next assume that H is normal and has finite index in G. Now one obtains the isomorphism:
(A.2.3) (Hy (X; K))C/" = Hy(X; K)

If G=N(T) and H =T, combining (A.2.2) with (A.2.3) one obtains the isomorphism:

(A.2.4) (H:(X; K)V = H(X; K).

(A.3). Kunneth formula. (See [J-3] appendix.)

Ho (X M@ N) 2 Hy (X3 M) & (X N),

whenever M, N € Df’C(X; Q).
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(A.4.0) Next we recall the construction of equivariant intersection cohomology from [J-1]. (See [Bryl-
1] or [Bryl-2] for a somewhat different approach.) Let X be a quasi-projective complex variety provided
with the action of a complex linear algebraic group G. Let {U;|1 < i < n + 1} denote a G-invariant
filtration of X by open subschemes so that each U; — U;_1 is smooth. Let H denote a closed subgroup
of G. Now one forms the simplicial spaces EH I>; U; as in (A.1.1); here the space in degree m is H™ x U;.
It is clear one obtains a filtration of the simplicial space EH 1>§r X in this manner; we will denote the map
EH E U, — EH I>§ U;+1 by j;. Starting with an H-equivariant locally constant sheaf £ of Q-vector spaces

on U;, one obtains the complex

IC’;I(E) = 0<p(n) Rjnx © ...0<p0) Rjo« (L)
called the equivariant intersection cohomology complex relative to H with the perversity = p.

(A.4.1) One may now consider the filtration B(G/H,G,U;) C B(G/H,G,U;y1) of B(G/H,G,X). If
ji also denotes the above open immersion, one may define a complex

ICE(G/H’G’X)(ﬁ) = ng(n)Rjn* 0 ...0<p(0) Rjos (ﬁ)

where £ denotes a G-equivariant locally constant sheaf on X. One may readily verify that ifi : EHxX —

H
B(G/H,G,X) is the map as in (A.2.0), then ICH (L) ~ i*(ICZ'“/™%X)(L)). Now (A.2.1) provides
the identification:

H* (B(G/H, G, X); IC; /™Y (o)) = 1Hy (X; £).

(A.5) The degeneration criterion of Deligne (See [De] or [J-1] appendix ).)

Let p : Y. — X. denote a map of simplicial schemes and let F. € Dg’G(Y;Q). Let u € H3(Y.; Q)

denote a class. Then cup-product with u defines maps
Rip.(u) : Rip.(F) — R™*2p,(F), for each i.

Now the Leray spectral sequence for the map p degenerates if there exists an integer n so that the

maps:
(R"'ps(w)))* : R*'pu(F) — R""ip.(F)

are isomorphisms for each i > 0.
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