Isovariant Étale Descent and Riemann-Roch for Algebraic Stacks

§1 Motivation

Recall Thomason's theorem from the early 1980s:

- l a prime invertible in the schemes X we consider, $\nu >> 0$
- $G/l^{\nu}(X)$: the mod- l^{ν} G-theory spectrum of X
- $G^{top}/l^{\nu}(X)$: the mod $-l^{\nu}$ topological G-theory spectrum of X
- base scheme: k an algebraically closed field, $char(k) \geq 0$

Thomason's Theorem: X of finite type over k. Then the augmentation:

$$G^{top}/l^{\nu}(X) \to \mathbb{H}_{et}(X, \mathbf{G}^{top}/l^{\nu}(\quad))$$

is a weak-equivalence. Therefore, there is a spectral sequence:

$$E_2^{s,t} = H_{et}^s(X, \pi_t \mathbf{G}^{top}/l^{\nu}()/l^{\nu}) \Rightarrow \pi_{t-s}(G^{top}/l^{\nu}(X))$$

Among the applications:

• a general Riemann-Roch theorem, i.e. the square

$$G/l^{\nu}(X) \longrightarrow G^{top}/l^{\nu}(X)$$
 $f_{*} \downarrow \qquad \qquad \downarrow f_{*}^{top}$
 $G/l^{\nu}(Y) \longrightarrow G^{top}/l^{\nu}(Y)$

homotopy commutes for any proper map f:

$$X \to Y$$
.

• (trivial application) The E_2 -terms of the above spectral sequence provide a definition of étale cohomology of X when X is smooth.

Goal of the Talk: sketch an outline of how to extend Thomason's theorem to algebraic stacks. We begin with

An elementary counterexample. k, X as before. G a finite constant group scheme acting on X. Then Thomason's theorem is false as stated for the quotient stack [X/G]!

Recall: $ob[X/G](T) = \{ principal \ G \ bundles$ \mathcal{E} on T along with a G-equivariant map f: $\mathcal{E} \to X \}$

A morphism $(\mathcal{E} \to T)$ to $(\mathcal{E}' \to T')$ given by a commutative square

$$\begin{array}{ccc} \mathcal{E} & \stackrel{\psi}{\longrightarrow} & \mathcal{E}' \\ \downarrow & & \downarrow \\ T & \stackrel{\phi}{\longrightarrow} & T' \end{array}$$

inducing an isomorphism $\mathcal{E} \xrightarrow{\alpha} \phi^*(\mathcal{E}')$ and where $f = f' \circ \phi$.

Sketch of a proof

• (Coherent sheaves on [X/G]) \simeq (Coherent sheaves on X with descent data) \simeq (G-equivariant sheaves on X). Therefore $G^{top}/l^{\nu}(X)$

$$\simeq G^{top}(X,G)/l^{\nu} = G(X,G)/l^{\nu}[\beta^{-1}].$$

• $X \to [X/G]$ étale over of [X/G]. Hence any

 $U \to X$ étale belongs to $[X/G]_{et}$. Therefore the presheaf $\mathbf{G}^{top}/l^{\nu}($ on $[X/G]_{et}$ identifies with $U \to G^{top}/l^{\nu}(U)$.

• $EG \times X = cosk_0^{[X/G]}X$ so that $\mathbb{H}_{et}([X/G], \mathbf{G}^{top}/l^{\nu}(\))$

$$\simeq \mathbb{H}_{et}(EG\underset{G}{\times}X, \mathbf{G}^{top}/l^{\nu}(\quad)) \simeq G^{top}/l^{\nu}(EG\underset{G}{\times}X)$$

• Therefore, it suffices to show $G^{top}(X,G)/l^{\nu} \to G^{top}(EG \times X)/l^{\nu}$ is not a weak-equivalence. This follows from classical results of Atiyah-Segal if $k = \mathbb{C}$.

Remarks

1. Similarly $G(\)_{\mathbf{Q}}$ does not have étale descent for algebraic stacks.

- 2. Most cohomology theories for stacks defined on the étale (or smooth) sites: for quotient stacks [X/G] these are Borel style equivariant cohomology theories of X.
- 3. The above two are the main difficulties with the Riemann-Roch for algebraic stacks.

§2 Main Results

Theorem 1. Assume \mathcal{S} is a gerbe over its coarse moduli space \mathfrak{M} which exists as an algebraic space. Then $\mathcal{S}_{iso.et} \simeq \mathfrak{M}_{et}$

Theorem 2. Let S be an algebraic stacks. Then there exists a finite filtration $S_0 \subseteq S_1 \subseteq ... \subseteq S_n = S$ by locally closed algebraic substacks with each $S_i - S_{i-1}$ a gerbe over its coarse moduli space.

The isovariant étale topos of S is obtained by gluing the isovariant étale topos of each $S_i - S_{i-1}$. This topos has enough points and they correspond to the geometric points of the coarse moduli spaces associated to each $S_i - S_{i-1}$.

Theorem 3. Let S be any algebraic stack. Then:

• the augmentation

$$G^{top}/l^{\nu}(\mathcal{S}) \to \mathbb{H}_{iso.et}(\mathcal{S}, \mathbf{G}^{top}/l^{\nu}())$$

is a weak-equivalence.

There exists a spectral sequence

$$E_2^{s,t} = H_{iso.et}^s(\mathcal{S}, \pi_t(\mathbf{G}^{top}/l^{\nu}()))$$

$$\Rightarrow \pi_{t-s}(G^{top}/l^{\nu}(\mathcal{S}))$$

Applications

ullet Riemann-Roch for algebraic stacks: If $f: \mathcal{S}' \to \mathcal{S}$ is proper and of finite cohomological dimension, then

$$G/l^{\nu}(\mathcal{S}') \longrightarrow G^{top}/l^{\nu}(\mathcal{S}')$$
 $f_{*} \downarrow \qquad \qquad \downarrow f_{*}^{top}$
 $G/l^{\nu}(\mathcal{S}) \longrightarrow G^{top}/l^{\nu}(\mathcal{S})$
commutes upto homotopy.

- \bullet For smooth stacks, the E_2 -terms define Bredonstyle cohomology theories for algebraic stacks.
- Definition of other Bredon-style cohomologyhomology theories for algebraic stacks made possible using this site.

§3 Algebraic Stacks: a quick review

(schemes) \subseteq (alg.spaces) \subseteq (orbifolds) \subseteq (D-M stacks) \subseteq (Artin stacks)

- (schemes) \subseteq functors((schemes)^{op} \rightarrow (sets)) by Yoneda
- lack of fine moduli spaces means one needs to consider

 $(lax.functors): (schemes)^{op} \rightarrow (groupoids)$ Examples

1. The moduli stack of smooth curves of genusg:

 $ob(M_g(T)) = \{ \text{ smooth proper maps } p : C \rightarrow$ T --- fibers geometrically connected curves of

genus = g}

morphisms: $(C \to T) \to (C' \to T')$ are commutative squares

$$\begin{array}{ccc} C & \longrightarrow & C' \\ \downarrow & & \downarrow \\ T & \longrightarrow & T' \end{array}$$

inducing an isomorphism $C \simeq C' \times T$. This is a D-M stack.

2. $Vect_r^X : X \ complete$

 $ob(Vect_r^X(T) = \{ \text{ vector bundles } \mathcal{E} \text{ of rank } r$ on $X \times T \}$,

morphisms $(\mathcal{E} \to T) \to (\mathcal{E}' \to T')$ given by a map $f: T \to T'$ and an isomorphism $\alpha: \mathcal{E} \simeq (id \times f)^*(\mathcal{E}')$

3. Quotient Stacks: [X/G]

Definitions

Let $\{U_i \to U|i\}$ be a flat cover.

A $stack \mathcal{S}$ is a lax-functor $(schemes)^{op} \rightarrow (groupoids)$ so that the following hold:

- Gluing of morphisms: given $X, Y \in \mathcal{S}(U)$ and $\phi_i: X_{|U_i} \to Y_{|U_i}$ which are compatible, then there exists a unique morphism $\phi: X \to Y$ so that $\phi_{|U_i} = \phi_i$ for all i.
- Gluing of objects: if $X_i \in \mathcal{S}(U_i)$ and $\phi_{i,j}$: $X_j|U_i \times U_j \to X_i|U_i \times U_j \text{ satisfy an obvious}$ $\text{co-cycle condition, there exists an object } X \in \mathcal{S}(U)$

and $\phi_i: X_{|U_i} \xrightarrow{\simeq} X_i$ so that $\phi_{j,i} \circ \phi_i | U_i \underset{U}{\times} U_j = \phi_j | U_i \underset{U}{\times} U_j$.

Morphisms of stacks: lax natural transformations.

- An algebraic stack is a stack S so that (i) Δ : $S \to S \times S$ is representable, quasi-compact and separated and (ii) there exists a smooth surjective map $x: X \to S$ with X an algebraic space.
- \mathcal{S} is Deligne-Mumford (or D-M) if there exists an $x:X\to\mathcal{S}$ étale with X an algebraic space.

The Inertia Stack is defined by the cartesian square:

 $f: \mathcal{S}' \to \mathcal{S}$ is isovariant if the induced map $I_{\mathcal{S}'} \to I_{\mathcal{S}} \times \mathcal{S}'$ is an isomorphism.

Example: S = [X/G]. Then $S' \to S$ is isovariant if and only if S' = [Y/G] for $Y \to X$ isovariant, i.e. equivariant and induces an isomorphism on the isotropy subgroups.

The Isovariant Étale site: $S_{iso.et}$. Objects of this site are isovariant étale maps $S' \to S$.

Morphisms are commutative triangles of such stacks.

Reference:

R. Joshua: Riemann-Roch for algebraic stacks:

I, to appear in Compositio Math, (in press)

Also see

http://www.math.ohio-state.edu/~joshua/pub.htm?
for a preprint in dvi downloadable format.