Isovariant Etale Descent and Riemann-Roch for

Algebraic Stacks

31 Motivation
Recall Thomason’s theorem from the early

1980s:

e/ a prime invertible in the schemes X we

consider, v >> (

o G/I”(X): the mod—I[¥ G-theory spectrum
of X

e G'°P/1”(X): the mod—I” topological G-theory
spectrum of X

e base scheme: k£ an algebraically closed field,

char(k) >0



Thomason’s Theorem: X of finite type

over k. Then the augmentation:
G P /1"(X) — He (X, G™P/17( 1))
is a weak-equivalence. Therefore, there is a

spectral sequence:
ESY = H2 (X, mGPP /1Y ( )/1Y) = m_s(GPP /1Y (X
Among the applications:

e a general Riemann-Roch theorem, i.e. the

square

G/I"(X) —— GP/I¥(X)

‘| e

G/I"(Y) —— G*"P/I*(Y)
homotopy commutes for any proper map f :

X —Y.



e (trivial application) The FEs-terms of the
above spectral sequence provide a definition

of étale cohomology of X when X is smooth.

Goal of the Talk: sketch an outline of how
to extend Thomason’s theorem to algebraic

stacks. We begin with

An elementary counterexample. k, X as be-
fore. G a finite constant group scheme acting
on X. Then Thomason’s theorem is false as

stated for the quotient stack [X/G]!

Recall: ob|X/G|(T) = {principal G bundles
& on T along with a G-equivariant map f :

E— X}



A morphism (£ — T) to (£ — T") given by

a commutative square

g Y g

L

T % o

inducing an isomorphism & = ¢*(&’) and

where f = f’ o ¢.
Sketch of a proof

e (Coherent sheaves on [ X/G]) ~ (Coherent
sheaves on X with descent data) ~ (G-equivariant

sheaves on X). Therefore G*P /I (X)
~ G'P(X,G)/l" = G(X,G)/I"[B~].
o X — |X/({] étale over of [ X/G]. Hence any
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U — X étale belongs to | X/G]e:. Therefore
the presheaf G*P/I¥( ) on [X/G].: identifies
with U — G*?/1*(U).

o FGxX = cosk([)X/G]X so that
G

Het ([X/G, G™P/17( 1))

~ ]H[et(EGéX, GloP/lV( ) ~ Gt"p/l”(EGéX)
e Therefore, it suffices to show G*°P(X, G) /1Y —
G'°P(EG X X)/l” is not a weak-equivalence.
This follows from classical results of Atiyah-

Segal if £ = C.
Remarks

1. Similarly G( )q does not have étale de-

scent for algebraic stacks.
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2. Most cohomology theories for stacks de-
fined on the étale (or smooth) sites: for quo-
tient stacks | X/G] these are Borel style equiv-

ariant cohomology theories of X.

3. The above two are the main difficulties

with the Riemann-Roch for algebraic stacks.



82 Main Results

Theorem 1. Assume S is a gerbe over its
coarse moduli space 9 which exists as an al-

gebraic space. Then S;sp et >~ IMes

Theorem 2. Let § be an algebraic stacks.
Then there exists a finite filtration So € &7 C
... € S,, = S by locally closed algebraic sub-
stacks with each §; — §;_1 a gerbe over its

coarse moduli space.

The isovariant étale topos of S is obtained
by gluing the isovariant étale topos of each
S; — S;_1. This topos has enough points and

they correspond to the geometric points of
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the coarse moduli spaces associated to each

Sz' — 87;_1.

Theorem 3. Let S be any algebraic stack.
Then:

e the augmentation

G*P J1"(S) = Hiso.et (S, G*P/1V( 1))
is a weak-equivalence.

There exists a spectral sequence
Ey' = Hj,, (S, m(GHP/1°( )

= m—s(G'P/17(5))



Applications

e Riemann-Roch for algebraic stacks: If f :
S’ — S is proper and of finite cohomological

dimension, then

G/I"(S") —— G™P/I*(S')

‘| e

G/IY(S) —— GP/1¥(S)

commutes upto homotopy.

e For smooth stacks, the F5-terms define Bredon-

style cohomology theories for algebraic stacks.

e Definition of other Bredon-style cohomology-
homology theories for algebraic stacks made

possible using this site.



83 Algebraic Stacks: a quick review

(schemes) C (alg.spaces) C (orbifolds) C (D-

M stacks) C (Artin stacks)

e (schemes) C functors((schemes)?? — (sets))

by Yoneda

e lack of fine moduli spaces means one needs

to consider
(lax. functors) : (schemes)®P — (groupoids)
Examples
1. The moduli stack of smooth curves of genus
g:
ob(M,(T)) = { smooth proper maps p: C' —

T'— fibers geometrically connected curves of
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genus = g}
morphisms: (C — T) — (C' — T") are com-

mutative squares
C —— '

L

T — T

inducing an isomorphism C ~ C’ xT'. This is
T/

a D — M stack.
2. Vect*: X complete

ob(VectX (T) = { vector bundles £ of rank r
on X x T},

morphisms (£ - T) — (&' — T") given by a
map f: 7T — T' and an isomorphism « : £ ~
(id x f)*(£')
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3. Quotient Stacks: | X/G]
Definitions
Let {U; — Uli} be a flat cover.

A stack S is a lax-functor (schemes)’? —

(groupoids) so that the following hold:

o Gluing of morphisms: given X, Y € S(U)
and ¢; : Xy, — Y|y, which are compatible,
then there exists a unique morphism ¢ : X —

Y so that ¢y, = ¢; for all 7.
o Gluing of objects: if X; ¢ S(U;) and ¢, ; :
X;|\U;xU; — X;|U;xU; satisfy an obvious
U U
co-cycle condition, there exists an object X € S(U)
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and sz : X|U,L i) Xz so that Qb],zoqbz’UzXUj =
U
AU xU;.
6,10,
Morphisms of stacks: lax natural transforma-

tions.

e An algebraic stackis a stack S so that (i) A :
S — § x § is representable, quasi-compact
and separated and (ii) there exists a smooth
surjective map x : X — S with X an alge-

braic space.

e § is Deligne-Mumford (or D-M) if there ex-
ists an z : X — S étale with X an algebraic

space.
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The Inertia Stack is defined by the cartesian

square:
Is ——— S

l L

S T> S xXS8
f: 8 — 8§ is isovariant if the induced map

Is: — IsxS’ is an isomorphism.

S
Example: § = [X/G]. Then &' — § is iso-
variant if and only if &' = [Y/G] for Y — X

isovariant, i.e. equivariant and induces an iso-

morphism on the isotropy subgroups.

The Isovariant Etale site: Sisoct- Objects

of this site are isovariant étale maps &’ — S.
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Morphisms are commutative triangles of such

stacks.
Reference:

R. Joshua: Riemann-Roch for algebraic stacks:

I, to appear in Compositio Math, (in press)
Also see

http://www.math.ohio-state.edu/”~ joshua/pub.htm

for a preprint in dvi downloadable format.
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