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Abstract. We describe the equivariant Chow ring of the wonderful compactification X

of a symmetric space of minimal rank, via restriction to the associated toric variety Y .
Also, we show that the restrictions to Y of the tangent bundle TX and its logarithmic
analogue SX decompose into a direct sum of line bundles. This yields closed formulas
for the equivariant Chern classes of TX and SX , and, in turn, for the Chern classes of
reductive groups considered by Kiritchenko.

0. Introduction

The purpose of this paper is to describe the equivariant intersection ring and
equivariant Chern classes of a class of almost homogeneous varieties, namely, won-
derful symmetric varieties of minimal rank; these include the wonderful compact-
ifications of semisimple groups of adjoint type.

The main motivation comes from questions of enumerative geometry on a spheri-
cal homogeneous space G/K. As shown by De Concini and Procesi, these questions
find their proper setting in the ring of conditions C∗(G/K), isomorphic to the di-
rect limit of cohomology rings of G-equivariant compactifications X of G/K (see
[DP83], [DP85]). Recently, the Euler characteristic of any complete intersection
of hypersurfaces in G/K has been expressed by Kiritchenko (see [Ki06]), in terms
of the Chern classes of the logarithmic tangent bundle SX of any “regular” com-
pactification X . As shown in [Ki06], these Chern classes are independent of the
choice of X , and hence yield elements of C∗(G/K); moreover, their determination
may be reduced to the case where X is a “wonderful variety”.

In fact, it is more convenient to work with the rational equivariant cohomol-
ogy ring H∗

G(X), from which the ordinary rational cohomology ring H∗(X) is
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obtained by killing the action of generators of the polynomial ring H∗(BG); the
Chern classes of SX have natural representatives in H∗

G(X), the equivariant Chern
classes. When X is a complete symmetric variety, the ring H∗

G(X) admits algebraic
descriptions by work of Bifet, De Concini, Littelmann, and Procesi (see [BDP90],
[LP90]).

Here we consider the case where X is the wonderful compactification of a sym-
metric space G/K of minimal rank, that is, G is semisimple of adjoint type and
rk(G/K) = rk(G)−rk(K); the main examples are the groups G = (G×G)/diag(G)
and the spaces PSL(2n)/PSp(2n). Moreover, we follow a purely algebraic ap-
proach: we work over an arbitrary algebraically closed field, and replace the equiv-
ariant cohomology ring with the equivariant intersection ring A∗

G(X) of [EG98] (for
wonderful varieties over the complex numbers, both rings are isomorphic over the
rationals).

We show in Theorem 2.2.1 that the pull-back map

r : A∗
G(X) → A∗

T (Y )WK

is an isomorphism over the rationals. Here T ⊂ G denotes a maximal torus
containing a maximal torus TK ⊂ K with Weyl group WK , and Y denotes the
closure in X of T/TK ⊂ G/K, so that Y is the toric variety associated with the
Weyl chambers of the restricted root system of G/K.

We also determine the images under r of the equivariant Chern classes of the
tangent bundle TX and its logarithmic analogue SX . For this, we show in Theorem
3.1.1 that the normal bundle NY/X decomposes (as a T -linearized bundle) into a
direct sum of line bundles indexed by certain roots of K; moreover, any such line
bundle is the pull-back of OP1(1) under a certain T -equivariant morphism Y → P1.
By Proposition 1.1.1, the product of these morphisms yields a closed immersion
of the toric variety Y into a product of projective lines, indexed by the restricted
roots.

In the case of regular compactifications of reductive groups, Theorem 2.2.1
is due to Littelmann and Procesi for equivariant cohomology rings (see [LP90]);
it has been adapted to the equivariant Chow ring in [Br98]. Here, as in the
latter paper, we rely on a precise version of the localization theorem in equivariant
intersection theory inspired, in turn, by a similar result in equivariant cohomology,
see [GKM99]. The main ingredient is the finiteness of T -stable points and curves
in X ; this also plays an essential role in Tchoudjem’s description of cohomology
groups of line bundles on wonderful varieties of minimal rank, see [Tc05].

For wonderful group compactifications, a more precise, “additive” description
of the equivariant cohomology ring is due to Strickland, see [St06]; an analo-
gous description of the equivariant Grothendieck group has been obtained by
Uma in [Um07]. Both results may be generalized to our setting of minimal rank.
However, determining generators and relations for the equivariant cohomology or
Grothendieck ring is still an open question; see [Br07], [Um07] for some steps in
this direction.

Our determination of the equivariant Chern classes seems to be new, already in
the group case; it yields a closed formula for the image under r of the equivariant
Todd class of X , analogous to the well-known formula expressing the Todd class



EQUIVARIANT CHOW RING OF WONDERFUL VARIETIES

of a toric variety in terms of boundary divisors. The toric variety Y associated to
Weyl chambers is considered in [Pr90], [DL94], where its cohomology is described
as a graded representation of the Weyl group; its realization as a general orbit
closure in a product of projective lines seems to have been unnoticed.

Our results extend readily to all regular compactifications of symmetric spaces of
minimal rank. Specifically, the description of the equivariant Chow ring holds un-
changed, with a similar proof, and the determination of equivariant Chern classes
follows from the wonderful case by the results of [Ki06, Sec. 5]. Another direct
generalization concerns the spherical (not necessarily symmetric) varieties of min-
imal rank considered in [Tc05]. Indeed, the structure of such varieties may be
reduced to the symmetric case, as shown by Ressayre in [Re04].

This paper is organized as follows. Section 1 gathers preliminary notions and
results on symmetric spaces, their wonderful compactifications, and the associated
toric varieties. In particular, for a symmetric space G/K of minimal rank, we
study the relations between the root systems and Weyl groups of G, K, and G/K;
these are our main combinatorial tools. In Section 2 we first describe the T -stable
points and curves in a wonderful symmetric variety X of minimal rank; then we
obtain our main structure result for A∗

G(X), and some useful complements as well.
Section 3 contains the decompositions of NY/X and of the restrictions TX |Y , SX |Y ,
together with their applications to equivariant Chern and Todd classes.

Throughout this paper, we consider algebraic varieties over an algebraically
closed field k of characteristic 6= 2; by a point of such a variety, we mean a closed
point. As general references, we use [Ha77] for algebraic geometry, and [Sp98] for
algebraic groups.

1. Preliminaries

1.1. The toric variety associated with Weyl chambers

Let Φ be a root system in a real vector space V (we follow the conventions of [Bo81]
for root systems; in particular, Φ is finite but not necessarily reduced). Let W be
the Weyl group, Q the root lattice in V , and Q∨ the dual lattice (the coweight
lattice) in the dual vector space V ∗. The Weyl chambers form a subdivision of V ∗

into rational polyhedral convex cones; let Σ be the fan of V ∗ consisting of all Weyl
chambers and their faces. The pair (Q∨, Σ) corresponds to a toric variety

Y = Y (Φ)

equipped with an action of W via its action on Q∨ which permutes the Weyl
chambers. The group W acts compatibly on the associated torus

T := Hom(Q, Gm) = Q∨ ⊗Z Gm.

Thus, Y is equipped with an action of the semidirect product T W . Note that the
character group X (T ) is identified with Q; in particular, we may regard each root
α as a homomorphism

α : T → Gm.
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The choice of a basis of Φ,

∆ = {α1, . . . , αr},

defines a positive Weyl chamber, the dual cone to ∆. Let Y0 ⊂ Y be the corre-
sponding T -stable open affine subset. Then Y0 is isomorphic to the affine space
Ar on which T acts linearly with weights −α1, . . . ,−αr. Moreover, the translates
w · Y0, where w ∈ W , form an open covering of Y .

In particular, the variety Y is nonsingular. Also, Y is projective, as Σ is the
normal fan to the convex polytope with vertices w · v (w ∈ W ), where v is any
prescribed regular element of V . The following result yields an explicit projective
embedding of Y .

Proposition 1.1.1.

(i) For any α ∈ Φ, the morphism α : T → Gm extends to a morphism

fα : Y → P1.

Moreover, fα and f−α differ by the inverse map P1 → P1, z 7→ z−1.

(ii) The product morphism

f :=
∏

α∈Φ

fα : Y →
∏

α∈Φ

P1

is a closed immersion. It is equivariant under T W , where T acts on the

right-hand side via its action on each factor P1
α through the character α,

and W acts via its natural action on the set Φ of indices.

(iii) Conversely, the T -orbit closure of any point of
∏

α∈Φ(P1 \{0,∞}) is iso-

morphic to Y .

(iv) Any nonconstant morphism F : Y → C, where C is an irreducible curve,

factors through fα : Y → P1 where α is an indivisible root, unique up to

sign. Moreover,

(fα)∗OY = OP1 . (1.1.1)

Proof. (i) Since α has a constant sign on each Weyl chamber, it defines a morphism
of fans from Σ to the fan of P1, consisting of two opposite half-lines and the origin.
This implies our statement.

(ii) The equivariance property of f is readily verified. Moreover, the product
map

r
∏

i=1

fαi : Y → (P1)r

restricts to an isomorphism Y0 → (P1\{∞})r, since each fαi restricts to the ith
coordinate function on Y0

∼= Ar. Since Y = W · Y0, it follows that f is a closed
immersion.

(iii) follows from (ii) by using the action of tuples (tα)α∈Φ of nonzero scalars,
via componentwise multiplication.
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(iv) Taking the Stein factorization, we may assume that F∗OY = OC . Then
C is normal, and hence nonsingular. Moreover, the action of T on Y descends to
a unique action on C such that F is equivariant (indeed, F equals the canonical
morphism Y → ProjR(Y, F ∗L), where L is any ample invertible sheaf on C, and
R(Y, F ∗L) denotes the section ring

⊕

n Γ(Y, F ∗Ln). Furthermore, F ∗L admits a
T -linearization, and hence T acts on R(Y,L)). It follows that C ∼= P1 where T acts
through a character χ, uniquely defined up to sign. Thus, F induces a morphism
from the fan of Y to the fan of P1; this morphism is given by the linear map
χ : V ∗ → R. In other words, χ has a constant sign on each Weyl chamber. Thus,
χ is an integral multiple of an indivisible root α, uniquely defined up to sign. Since
F has connected fibers, then χ = ±α.

Conversely, if α is an indivisible root, then the fibers of the morphism α : T →
Gm are irreducible. This implies (1.1.1). �

Next, for later use, we determine the divisor of each fα regarded as a rational
function on Y . Since fα is a T -eigenvector, its divisor is a linear combination
of the T -stable prime divisors Y1, . . . , Ym of the toric variety Y , also called its
boundary divisors. Recall that Y1, . . . , Ym correspond bijectively to the rays of the
Weyl chambers, i.e., to the W -translates of the fundamental coweights $∨

1 , . . . , $∨
r

(which form the dual basis of the basis of simple roots). The isotropy group of
each $∨

i in W is the maximal parabolic subgroup Wi generated by the reflections
associated with the simple roots αj , j 6= i. Thus, the orbit W$∨

i
∼= W/Wi is in

bijection with the subset

W i := {w ∈ W | wαj ∈ Φ+ for all j 6= i}

of minimal representatives for the coset space W/Wi. So the boundary divisors
are indexed by the set

E(Φ) := {(i, w) | 1 6 i 6 r, w ∈ W i} ∼= {w$∨
i | 1 6 i 6 r, w ∈ W};

we will denote these divisors by Yi,w. Furthermore, we have

div(fα) =
∑

(i,w)∈E(Φ)

〈α, w$∨
i 〉Yi,w (1.1.2)

by Proposition 1.1.1 and the classical formula for the divisor of a character in a
toric variety (see, e.g., [Od88, Prop. 2.1]). Also, note that 〈α, w$∨

i 〉 is the ith
coordinate of w−1α in the basis of simple roots.

1.2. Symmetric spaces

Let G be a connected reductive algebraic group, and let

θ : G → G

be an involutive automorphism. Denote by

K = Gθ ⊂ G
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the subgroup of fixed points; then the homogeneous space G/K is a symmetric

space.
We now collect some results on the structure of symmetric spaces, referring to

[Ri82], [Sp85] for details and proofs. The identity component K0 is reductive, and
nontrivial unless G is a θ-split torus, i.e., a torus where θ acts via the inverse map
g 7→ g−1.

A parabolic subgroup P ⊆ G is said to be θ-split if the parabolic subgroup θ(P )
is opposite to P . The minimal θ-split parabolic subgroups are all conjugate by
elements of K0; we choose such a subgroup P and put

L := P ∩ θ(P ),

a θ-stable Levi subgroup of P . The intersection L ∩ K contains the derived sub-
group [L, L]; thus, every maximal torus of L is θ-stable. We choose such a torus
T , so that

T = T θT−θ and T θ ∩ T−θ is finite. (1.2.3)

Moreover, the identity component

A := T−θ,0

is a maximal θ-split subtorus of G. All such subtori are conjugate in K0; their
common dimension is the rank of the symmetric space G/K, denoted by rk(G/K).
Moreover,

CG(A) = L = (L ∩K)A

(where CG(A) denotes the centralizer of A in G), and (L∩K)∩A = A∩K consists
of all elements of order 2 of A.

The product PK0 ⊆ G is open, and equals PK; thus, PK/K is an open subset
of G/K, isomorphic to P/P ∩K = P/L ∩K. Let Pu be the unipotent radical of
P , so that P = PuL. Then the map

ι : Pu ×A/A ∩K → PK/K, (g, x) 7→ g · x, (1.2.4)

is an isomorphism.
The character group X (A/A∩K) may be identified with the subgroup 2X (A) ⊂

X (A). On the other hand, A/A ∩K ∼= T/T ∩K and hence X (A/A ∩K) may be
identified with the subgroup of X (T ) consisting of those characters that vanish on
T ∩K, i.e.,

X (A/A ∩K) = {χ− θ(χ) | χ ∈ X (T )}. (1.2.5)

Here θ acts on X (T ) via its action on T .
Denote by

ΦG ⊂ X (T )

the root system of (G, T ), with Weyl group

WG = NG(T )/T.
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Choose a basis ∆G consisting of roots of P . Let Φ+
G ⊂ ΦG be the corresponding

subset of positive roots and let ∆L ⊂ ∆G be the subset of simple roots of L. The
natural action of the involution θ on Φ fixes pointwise the subroot system ΦL.
Moreover, θ exchanges the subsets Φ+

G\Φ+
L and Φ−

G\Φ−
L (the sets of roots of Pu

and of θ(Pu) = θ(P )u).
Also, denote by

p : X (T ) → X (A)

the restriction map from the character group of T to that of A. Then p(ΦG)\{0}
is a (possibly nonreduced) root system called the restricted root system, that we
denote by ΦG/K . Moreover,

∆G/K := p(∆G\∆L)

is a basis of ΦG/K . The corresponding Weyl group is

WG/K = NG(A)/CG(A) ∼= NK0(A)/CK0(A). (1.2.6)

Also, WG/K
∼= NW (A)/CW (A), and NW (A) = W θ

G whereas CW (A) = WL. This
yields an exact sequence

1 → WL → W θ
G → WG/K → 1. (1.2.7)

1.3. The wonderful compactification of an adjoint symmetric space

We keep the notation and assumptions of Subsection 1.2 and we assume, in addi-
tion, that G is semisimple and adjoint; equivalently, ∆G is a basis of X (T ). Then
the symmetric space G/K is said to be adjoint as well.

By [DP83], [DS99], G/K admits a canonical compactification: the wonderful

compactification X , which satisfies the following properties:

(i) X is a nonsingular projective variety.
(ii) G acts on X with an open orbit isomorphic to G/K.
(iii) The complement of the open orbit is the union of r = rk(G/K) nonsingular

prime divisors X1, . . . , Xr with normal crossings.
(iv) The G-orbit closures in X are exactly the partial intersections

XI :=
⋂

i∈I

Xi

where I runs over the subsets of {1, . . . , r}.
(v) The unique closed orbit, X1 ∩ · · · ∩Xr, is isomorphic to G/P ∼= G/θ(P ).

We say that X is a wonderful symmetric variety with boundary divisors X1, . . .
. . . , Xr. By (iii) and (iv), each orbit closure XI is nonsingular.

Let Y be the closure in X of the subset

A/A ∩K ∼= AK/K = LK/K ⊆ G/K.
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Then Y is stable under the action of the subgroup LNK(A) ⊆ G. Since L ∩
NK(A) = L ∩K = CK(A), and NK(A)/CK(A) ∼= WG/K by (1.2.6), we obtain an
exact sequence

1 → L → LNK(A) → WG/K → 1.

Moreover, since Y is fixed pointwise by L ∩ K, the action of LNK(A) factors
through an action of the semidirect product

(L/L ∩K) WG/K
∼= (A/A ∩K) WG/K .

The adjointness of G and (1.2.5) imply that X (A/A ∩K) is the restricted root
lattice, with basis

∆G/K = {α− θ(α) | α ∈ ∆G\∆L}.

Moreover, Y is the toric variety associated with the Weyl chambers of the restricted
root system ΦG/K as in Subsection 1.1. This defines the open affine toric subvariety
Y0 ⊂ Y associated with the positive Weyl chamber dual to ∆G/K . Note that

Y = WG/K · Y0. (1.3.8)

Also, recall the local structure of the wonderful symmetric variety X : the subset

X0 := P · Y0 = Pu · Y0

is open in X , and the map

ι : Pu × Y0 → X0, (g, x) 7→ g · x, (1.3.9)

is a P -equivariant isomorphism. Moreover, any G-orbit in X meets X0 along a
unique orbit of P , and meets transversally Y0 along a unique orbit of A/A ∩K.

It follows that the G-orbit structure of X is determined by that of the asso-
ciated toric variety Y : any G-orbit in X meets transversally Y along a disjoint
union of orbit closures of A/A ∩K, permuted transitively by WG/K . As another
consequence, X0 ∩G/K = PK/K and Y0 ∩ G/K = AK/K, so that ι restricts to
the isomorphism (1.2.4).

Finally, the closed G-orbit X1∩· · ·∩Xr meets Y0 transversally at a unique point
z, the T -fixed point in Y0. The isotropy group Gz equals θ(P ), and the normal
space to G · z at z is identified with the tangent space to Y at that point. Hence
the weights of T in the tangent space to X at z are the positive roots α ∈ Φ+

G\Φ
+
L

(the contribution of the tangent space to G · z), and the simple restricted roots
γ = α− θ(α), where α ∈ ∆G\∆L (the contribution of the tangent space to Y ).

1.4. Symmetric spaces of minimal rank

We return to the setting of Subsection 1.2. In particular, we consider a connected
reductive group G equipped with an involutive automorphism θ, and the fixed
point subgroup K = Gθ.

Let T be any θ-stable maximal torus of G. Then (1.2.3) implies that

rk(G) > rk(K) + rk(G/K)
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with equality if and only if the identity component T θ,0 is a maximal torus of K0,
and T−θ,0 is a maximal θ-split subtorus. We then say that the symmetric space
G/K is of minimal rank ; equivalently, all θ-stable maximal tori of G are conjugate
in K0.

Throughout this subsection, we assume that G/K is of minimal rank, and put

TK := T θ,0 = (T ∩K)0.

The following auxiliary result is proved in [Br07, Subsection 3.2].

Lemma 1.4.1.

(i) The roots of (K0, TK) are exactly the restrictions to TK of the roots of (G, T ).

(ii) The Weyl group of (K0, TK) may be identified with W θ
G.

In particular, CG(TK) = T by (i) (this may also be seen directly). We put

WK := W θ
G and NK := NK0(T ) = NK0(TK).

By (ii), this yields an exact sequence

1 → TK → NK → WK → 1. (1.4.10)

Moreover, by (1.2.7), WK fits into an exact sequence

1 → WL → WK → WG/K → 1. (1.4.11)

The group WK acts on ΦG and stabilizes the subset Φθ
G = ΦL; the restriction map

q : X (T ) → X (TK)

is WK-equivariant and θ-invariant. Denoting by ΦK the root system of (K0, TK),
Lemma 1.4.1(i) yields the equality

ΦK = q(ΦG).

We now obtain two additional auxiliary results.

Lemma 1.4.2. Let β ∈ ΦK . Then one of the following cases occurs:

(a) q−1(β) consists of a unique root, α ∈ ΦL.

(b) q−1(β) consists of two strongly orthogonal roots α, θ(α), where α ∈ Φ+
G\Φ

+
L

and θ(α) ∈ Φ−
G\Φ

−
L .

In particular, q induces a bijection q−1q(ΦL) = ΦL
∼= q(ΦL). Moreover, α and

θ(α) are strongly orthogonal for any α ∈ ΦG\ΦL; then sαsθ(α) ∈ W θ
G = WK is a

representative of the reflection of WG/K associated with the restricted root α−θ(α).



M. BRION AND R. JOSHUA

Proof. Note that any α ∈ q−1(β) is a root of (CG(S), T ), where S ⊆ TK denotes
the identity component of the kernel of β, and CG(S) stands for the centralizer
of S in G. Also, CG(S) is a connected reductive θ-stable subgroup of G, and
the symmetric space CG(S)/CK(S) is of minimal rank. Moreover, θ yields an
involution of the quotient group CG(S)/S, and the corresponding symmetric space
is still of minimal rank. So we may reduce to the case where S is trivial, i.e., K has
rank 1. Since β is a root of K0, it follows that K0 ∼= SL(2) or PSL(2). Together
with the minimal rank assumption, it follows that one of the following cases occurs,
up to an isogeny of G:

(a) K0 = G = PSL(2); then θ is trivial.
(b) K0 = PSL(2) and G = PSL(2)× PSL(2); then θ exchanges both factors.

This implies our assertions. �

We will identify q(ΦL) with ΦL in view of Lemma 1.4.2.

Lemma 1.4.3.

(i) q induces bijections

Φ+
G\Φ

+
L
∼= ΦK\ΦL

∼= Φ−
G\Φ

−
L .

(ii) ΦK \ΦL is a root system, stable under the action of WK on ΦK .

(iii) The restricted root system ΦG/K is reduced.

Proof. (i) follows readily from Lemma 1.4.2.
(ii) Since ΦL is stable under WK , then so is ΦK \ΦL. In particular, the latter

is stable under any reflection sβ , where β ∈ ΦK \ΦL. It follows that ΦK \ΦL is a
root system.

(iii) We have to check the nonexistence of roots α1, α2 ∈ ΦG \ΦL such that
α2 − θ(α2) = 2(α1 − θ(α1)). Considering the identity component of the inter-
section of kernels of α1, θ(α1), and α2 and arguing as in the proof of Lemma
1.4.2, we may assume that rk(G) 6 3. Clearly, we may further assume that G is
semisimple and adjoint. Then the pair (G, K) is either (PSL(2)×PSL(2), PSL(2))
or (PSL(4), PSp(4)), and the assertion follows by inspection. �

Also, note that the pull-back under q of any system of positive roots of ΦK is a
θ-stable system of positive roots of ΦG. Let ΣG be the corresponding basis of ΦG;
then q(ΣG) is a basis of ΦK . If G is semisimple, then the involution θ is uniquely
determined by its restriction to ΣG, and the latter is an involution of the Dynkin
diagram of G. It follows that the symmetric spaces of minimal rank under an
adjoint semisimple group are exactly the products of symmetric spaces that occur
in the following list.

Examples 1.4.4. (1) Let G = G ×G, where G is an adjoint semisimple group,
and let θ be the involution of G such that θ(x, y) = (y, x); then K = diag(G) and
rk(G/K) = rk(G).

The maximal θ-stable subtori T ⊂ G are exactly the products T×T, where T
is a maximal torus of G; then TK = diag(T), and A = {(x, x−1) | x ∈ T}. Thus,
L = T , and WK = WG/K = diag(WG) ⊂ WG ×WG = WG.
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Moreover, ΦG is the disjoint union of two copies of ΦG, each of them being
mapped isomorphically to ΦK = ΦG/K by q.

(2) Consider the group G = PSL(2n) and the involution θ associated with the
symmetry of the Dynkin diagram; then K = PSp(2n) and rk(G/K) = n− 1.

The Levi subgroup L is the image in G = PGL(2n) of the product GL(2) ×
· · · ×GL(2) (n copies). The Weyl group WG is the symmetric group S2n, and WK

is the subgroup preserving the partition of the set {1, 2, . . . , 2n} into the n subsets
{1, 2}, {3, 4}, . . ., {2n−1, 2n}. Thus, WK is the semidirect product of S2×· · ·×S2

(n copies) with Sn. Moreover, WL = S2 × · · · × S2, so that WG/K = Sn.
For the root systems, we have ΦG = A2n−1, ΦK = Cn, ΦL = A1 × · · · ×A1 (the

subset of long roots of ΦK), ΦK \ΦL = Dn (the short roots), and ΦG/K = An−1.

(3) Consider the group G = PSO(2n) and the involution θ associated with
the symmetry of the Dynkin diagram (of type Dn); then K = PSO(2n − 1) and
rk(G/K) = 1.

The Levi subgroup L is the image in G of SO(2)×SO(2n−2). The Weyl group
WG is the semidirect product of {±1}n−1 with Sn, and WK is the semidirect prod-
uct of {±1}n−1 with Sn−1. Moreover, WL is the semidirect product of {±1}n−2

with Sn−1, so that WG/K = {±1}.
We have ΦG = Dn, ΦK = Bn−1, ΦL = Dn−1 (the subset of long roots of ΦK),

ΦK \ΦL = A1 × · · · × A1 (n− 1 copies), and ΦG/K = A1.
4) Let G be an adjoint simple group of type E6, and θ the involution associated

with the symmetry of the Dynkin diagram; then K is a simple group of type F4,
and rk(G/K) = 2.

The Levi subgroup L has type D4, and WG/K = S3. We have ΦG = E6,
ΦK = F4, ΦL = D4 (the subset of long roots of ΦK), ΦK\ΦL = D4, and ΦG/K = A2.

2. Equivariant Chow ring

2.1. Wonderful symmetric varieties of minimal rank

From now on, we consider an adjoint semisimple group G equipped with an in-
volutive automorphism θ such that the corresponding symmetric space G/K is of
minimal rank. Then the group K is connected, semisimple and adjoint; see [Br07,
Lemma 3.2].

We choose a θ-stable maximal torus T ⊆ G, so that A := T−θ,0 is a maxi-
mal θ-split subtorus. Also, we put TK := T θ; this group is connected by [Br07,
Lemma 3.2] again. Thus, TK is a maximal torus of K. In agreement with the
notation of Subsection 1.4, we denote by NK the normalizer of TK in K, and by
WK the Weyl group of (K, TK).

As in Subsection 1.3, we denote by X the wonderful compactification of G/K,
also called a wonderful symmetric variety of minimal rank. The associated toric
variety Y is the closure in X of T/TK

∼= A/A ∩K. Recall that Y is stable under
the subgroup LNK ⊆ G, and fixed pointwise by L∩K. Thus, LNK acts on Y via
its quotient group

LNK/(L ∩K) ∼= (T/TK)WG/K
∼= TNK/TK .

We will mostly consider Y as a TNK-variety.
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By [Tc05, Sec. 10], X contains only finitely many T -stable curves. We now
obtain a precise description of all these curves, and of those that lie in Y . This
may be deduced from the results of [loc. cit.], which hold in the more general
setting of wonderful varieties of minimal rank, but we prefer to provide direct,
somewhat simpler arguments.

Lemma 2.1.1.

(i) The T -fixed points in X (resp., Y ) are exactly the points w · z, where w ∈ W
(resp., WK ), and z denotes the unique T -fixed point of Y0. These fixed

points are parametrized by WG/WL (resp., WK/WL
∼= WG/K ).

(ii) For any α ∈ Φ+
G\Φ+

L , there exists a unique irreducible T -stable curve Cz,α

which contains z and on which T acts through its character α. The T -fixed

points in Cz,α are exactly z and sα · z.
(iii) For any γ = α − θ(α) ∈ ∆G/K , there exists a unique irreducible T -stable

curve Cz,γ which contains z and on which T acts through its character γ.

The T -fixed points in Cz,γ are exactly z and sαsθ(α) · z.
(iv) The irreducible T -stable curves in X are the WG-translates of the curves

Cz,α and Cz,γ . They are all isomorphic to P1.

(v) The irreducible T -stable curves in Y are the WG/K-translates of the curves

Cz,γ .

Proof. The assertions on the T -fixed points in X are proved in [Br07, Lemma 3.4].
And since Y is the toric variety associated with the Weyl chambers of ΦG/K , the
group WG/K acts simply transitively on its T -fixed points. This proves (i).

Let C ⊂ X be an irreducible T -stable curve. Replacing C with a WG-translate,
we may assume that it contains z. Then C ∩ X0 is an irreducible T -stable curve
in X0, an affine space where T acts linearly with weights the positive roots α ∈
Φ+

G\Φ
+
L , and the simple restricted roots γ = α− θ(α), α ∈ ∆G\∆L. Since all these

weights are pairwise nonproportional, it follows that C ∩ X0 is a coordinate line
in X0. Thus, C is isomorphic to P1 where T acts through α or γ. In the former
case, C is contained in the closed G-orbit G · z; it follows that its other T -fixed
point is sα · z. In the latter case, C is contained in Y , and hence its other T -fixed
point corresponds to a simple reflection in WG/K . By considering the weight of the
T -action on C, this simple reflection must be the image in WG/K of sαsθ(α) ∈ WK .
This implies the remaining assertions (ii)–(v). �

2.2. Structure of the equivariant Chow ring

We will obtain a description of the G-equivariant Chow ring of X with rational
coefficients. For this, we briefly recall some properties of equivariant intersection
theory, referring to [Br97], [EG98] for details.

To any nonsingular variety Z carrying an action of a linear algebraic group H ,
one associates the equivariant Chow ring A∗

H(Z). This is a positively graded ring
with degree-0 part Z, and degree-1 part the equivariant Picard group PicH(Z)
consisting of isomorphism classes of H-linearized invertible sheaves on Z.

Every closed H-stable subvariety Y ⊆ Z of codimension n yields an equivariant
class

[Y ]H ∈ An
H(Z).
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The class [Z]H is the unit element of A∗
H(Z).

Any equivariant morphism f : Z → Z ′, where Z ′ is a nonsingular H-variety,
yields a pull-back homomorphism

f∗ : A∗
H (Z ′) → A∗

H(Z).

In particular, A∗
H(Z) is an algebra over A∗

H(pt), where pt denotes Spec k.
The equivariant Chow ring of Z is related to the ordinary Chow ring A∗(Z) via

a homomorphism of graded rings

ϕH : A∗
H(Z) → A∗(Z)

which restricts trivially to the ideal of A∗
H(Z) generated by A+

H(pt) (the positive
part of A∗

H(pt)). If H is connected, then ϕH induces an isomorphism over the
rationals:

A∗
H (Z)Q/A+

H(pt)A∗
H(Z)Q

∼= A∗(Z)Q.

More generally, there is a natural homomorphism of graded rings

ϕH′

H : A∗
H(Z) → A∗

H′(Z)

for any closed subgroup H ′ ⊂ H . If H ′ = H0, the neutral component of H , then
the group of components H/H0 acts on the graded ring A∗

H0(Z), and the image

of ϕH′

H is contained in the invariant subring A∗
H0 (Z)H/H0

. Moreover, ϕH0

H induces
an isomorphism of rational equivariant Chow rings

A∗
H(Z)Q

∼= A∗
H0 (Z)

H/H0

Q .

If H is a connected reductive group, and T ⊆ H is a maximal torus with
normalizer N and associated Weyl group W , then the composite of the canonical
maps

A∗
H(Z) → A∗

N (Z) → A∗
T (Z)W

is an isomorphism over the rationals. In particular, we obtain an isomorphism

A∗
H(pt)Q

∼= A∗
T (pt)W

Q .

Furthermore, A∗
T (pt) is canonically isomorphic to the symmetric algebra (over the

integers) of the character group X (T ). This algebra will be denoted by ST , or just
by S if this yields no confusion.

Returning to the G-variety X , we may now state our structure result.

Theorem 2.2.1. The map

r : A∗
G(X) → A∗

T (X)WG → A∗
T (X)WK → A∗

T (Y )WK , (2.2.12)

obtained by composing the canonical maps, is an isomorphism over the rationals.
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Proof. We adapt the arguments of [Br98, Sec. 3.1] regarding regular compactifica-
tions of reductive groups; our starting point is the precise version of the localization
theorem obtained in [Br97, Sec. 3.4]. Together with Lemma 2.1.1, it implies that
the T -equivariant Chow ring A∗

T (X) may be identified as an S-algebra to the space
of tuples (fw·z)w∈WG/WL

of elements of S such that

fv·z ≡ fw·z (mod χ)

whenever the T -fixed points v · z and w · z are joined by an irreducible T -stable
curve where T acts through its character χ. This identification is obtained by
restricting to the fixed points. The ring structure on the above space of tuples is
given by pointwise addition and multiplication; moreover, S is identified with the
subring of constant tuples (f).

It follows that A∗
G(X)Q

∼= A∗
T (X)WG

Q may be identified, via restriction to z,

with the subring of SWL

Q consisting of those f such that

v−1 · f ≡ w−1 · f (mod χ) (2.2.13)

for all v, w, and χ as above. By Lemma 2.1.1 again, it suffices to check the
congruences (2.2.13) when v = 1. Then either we are in case (ii) of that lemma,
and w = sα, or we are in case (iii) and w = sαsθ(α). In the former case, (2.2.13)
is equivalent to the congruence

f ≡ sα · f (mod α),

which holds for any f ∈ SQ. In the latter case, we obtain

f ≡ sαsθ(α) · f (mod α− θ(α)). (2.2.14)

Thus, A∗
G(X)Q is identified with the subring of SWL

Q defined by the congruences
(2.2.14) for all α ∈ ∆G\∆L.

On the other hand, we may apply the same localization theorem to the T -variety
Y . Taking invariants of WK and using the exact sequence (1.4.11), we see that
A∗

T (Y )WK

Q may be identified with the same subring of SQ, by restricting to the
same point z. This implies our statement. �

2.3. Further developments

We will obtain a more precise description of the ring A∗
T (Y )WK

Q that occurs in
Theorem 2.2.1. This will not be used in the sequel of this paper, but has its own
interest.

Proposition 2.3.1.

(i) We have compatible isomorphisms of graded rings

A∗
T (Y )WK

Q
∼= (SWL

TK
⊗A∗

T/TK
(Y ))

WG/K

Q

and

A∗
T (pt)WK

Q
∼= SWK

T,Q
∼= (SWL

TK
⊗ ST/TK

)
WG/K

Q .
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(ii) The image in A∗
G(X)Q

∼= A∗
T (Y )WK

Q of the subring

A∗
K(pt)Q

∼= SWK

TK ,Q
∼= (SWL

TK
⊗Q)WG/K ⊆ A∗

T (pt)WK

Q

is mapped isomorphically to A∗
G(G/K)Q

∼= A∗
K(pt)Q under the pull-back

from X to the open orbit G/K.

(iii) We have isomorphisms

Pic(X)Q
∼= PicG(X)Q

∼= PicT (Y )WK

Q
∼= PicT/TK

(Y )WK

Q (2.3.15)

that identify the class [Xi] of any boundary divisor with

[Xi ∩ Y ]T/TK
=

∑

w∈W i
G/K

[Yi,w]T/TK
, (2.3.16)

where Yi,w denote the boundary divisors of Y , indexed as in Subsection 1.1.

Proof. (i) Lemma 2.3.2 below yields a WK-equivariant isomorphism of graded ST -
algebras

A∗
T (Y ) ∼= ST ⊗ST/TK

A∗
T/TK

(Y ),

where WK acts on ST via its action on T , and on A∗
T/TK

(Y ) via its compatible

actions on T/TK and Y . Moreover, X (T )Q
∼= X (TK)Q ⊕ X (T/TK)Q as WK-

modules, so that
ST,Q

∼= STK ,Q ⊗ ST/TK ,Q

as graded WK -algebras. It follows that

A∗
T (Y )Q

∼= STK ,Q ⊗A∗
T/TK

(Y )Q

as graded ST,Q-WK-algebras. Taking WK -invariants and observing that the action
of WL ⊆ WK on the right-hand side fixes pointwise A∗

T/TK
(Y )Q, we obtain the

desired isomorphisms in view of the exact sequence (1.4.11).
(ii) Since (G/K) ∩ Y = T/TK , we obtain a commutative square

A∗
G(X)

r
−−−−→ A∗

T (Y )WK





y

t





y

A∗
G(G/K)

s
−−−−→ A∗

T (T/TK)WK

where the vertical arrows are pull-backs, and s is defined analogously to r. More-
over, A∗

G(G/K) ∼= A∗
K(pt), A∗

T (T/TK) ∼= A∗
TK

(pt), and this identifies sQ with the

isomorphism A∗
K(pt)Q → SWK

TK ,Q. Likewise, tQ is identified with the map

(SWL

TK
⊗A∗

T/TK
(Y ))

WG/K

Q → (SWL

TK
⊗Q)WG/K

induced by the natural map A∗
T/TK

(Y )Q → Q. This implies our assertion.
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(iii) Let L be an invertible sheaf on X , then some positive tensor power Ln

admits a G-linearization, and such a linearization is unique since G is semisim-
ple. This implies the first isomorphism of (2.3.15). The second isomorphism
is a consequence of Theorem 2.2.1. To show the third isomorphism, recall that
PicT (Y ) ∼= A1

T (Y ), so that

PicT (Y )WK

Q
∼= (X (TK)WL ⊕ PicT/TK

(Y ))
WG/K

Q
∼= X (TK)WK

Q ⊕ PicT/TK
(Y )

WG/K

Q

by (i); moreover, X (TK)WK

Q = 0 since the group K is semisimple. Finally, (2.3.16)
follows from the decomposition of Xi ∩ Y into irreducible components Yi,w, each
of them having intersection multiplicity one. �

Lemma 2.3.2. Let Z be a nonsingular variety carrying an action of a torus T
and let T ′ ⊂ T be a closed subgroup acting trivially on Z. Then there is a natural

isomorphism of graded ST -algebras

A∗
T (Z) ∼= ST ⊗ST/T′

A∗
T/T ′(Z),

where ST/T ′ is identified with a subring of ST via the inclusion of X (T/T ′) into

X (T ).

Proof. We begin by constructing a morphism of graded ST/T ′ -algebras

f : A∗
T/T ′(Z) → A∗

T (Z)

such that f([Y ]T/T ′) = [Y ]T for any T -stable subvariety Y ⊆ Z.
For this, we work in a fixed degree n and consider a pair (V, U), where V

is a finite-dimensional T -module, U ⊂ V is a T -stable open subset such that
the quotient U → U/T is a principal T -bundle, and the codimension of V \U is
sufficiently large; see [EG98] for details. Then we can form the mixed quotient

Z ×T U := (Z × U)/T,

and we obtain

An
T (Z) = An(Z ×T U) ∼= An(Z ×T/T ′

U/T ′) ∼= An
T/T ′(Z × U/T ′), (2.3.17)

where the latter isomorphism follows from the freeness of the diagonal T/T ′-action
on Z × U/T ′. Composing (2.3.17) with the pull-back under the projection Z ×
U/T ′ → Z yields a morphism

fn : An
T/T ′ (Z) → An

T (Z).

One may check as in [EG98] that fn is independent of the choice of (V, U) and,
hence, yields the desired morphism f .

Using the description of the ST/T ′ -module A∗
T/T ′(Z) and of the S-module A∗

T (Z)

in terms of invariant cycles (see [Br97, Theorem 2.1]), we obtain an isomorphism
of graded ST -modules

id⊗ f : ST ⊗ST/T′
A∗

T/T ′(Z) → A∗
T (Z). �

Next, we show that A∗
G(X)Q is a free module over a big polynomial subring.
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Proposition 2.3.3. Let R denote the Q-subalgebra of A∗
G(X)Q generated by the

image of A∗
K(pt) (defined in Proposition 2.3.1(ii)) and by the equivariant classes

[X1]G, . . . , [Xr]G of the boundary divisors. Then R is a graded polynomial ring,

and the R-module A∗
G(X)Q is free of rank |WG/K |.

Proof. By [Br97, 6.7 Cor.] and Lemma 2.1.1, A∗
G(X)Q is a free module over

A∗
G(pt)Q of rank being the index |WG : WL|. As a consequence, the ring A∗

G(X)Q

is Cohen–Macaulay of dimension rk(G).
On the other hand, the R-module A∗

G(X)Q is finite by [BP02, Lemma 6] (the
latter result is proved there in the setting of equivariant cohomology, but the
arguments may be readily adapted to equivariant intersection theory).

Since R is a quotient of a polynomial ring in rk(K) + r = rk(G) variables, it
follows that R equals this polynomial ring. Moreover, A∗

G(X)Q is a free R-module,
since it is Cohen–Macaulay. This proves all assertions except that on the rank
of the R-module A∗

G(X)Q, which may be checked by adapting the Poincaré series
arguments of [BP02]. �

3. Equivariant Chern classes

3.1. The normal bundle of the associated toric variety

We maintain the notation and assumptions of Subsection 2.1. In particular, X de-
notes a wonderful symmetric variety of minimal rank, with associated toric variety
Y .

Let NY/X denote the normal sheaf to Y in X . This is an LNK-linearized locally
free sheaf on Y , which fits into an exact sequence of such sheaves

0 → TY → TX |Y → NY/X → 0. (3.1.18)

Here TX denotes the tangent sheaf to X (this is a G-linearized locally free sheaf
on X) and TX |Y denotes its pull-back to Y .

The action of G on X yields a morphism of G-linearized sheaves

opX : OX ⊗ g → TX , (3.1.19)

where g denotes the Lie algebra of G. In turn, this yields a morphism of T -
linearized sheaves OY ⊗ g → NY/X which factors through another such morphism

ϕ : OY ⊗ g/l → NY/X (3.1.20)

(where l denotes the Lie algebra of L), since Y is stable under L. Also, note the
isomorphism of T -modules

g/l ∼=
⊕

α∈ΦG\ΦL

gα.

We may now formulate a splitting theorem for NY/X .
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Theorem 3.1.1.

(i) We have a decomposition of T -linearized sheaves

NY/X =
⊕

β∈ΦK\ΦL

Lβ , (3.1.21)

where each Lβ is an invertible sheaf on which TK acts via its character β.

The action of NK on NY/X permutes the Lβ’s according to the action of

WK on ΦK\ΦL.

(ii) Map (3.1.20) restricts to surjective maps

ϕβ : OY ⊗ (gα ⊕ gθ(α)) → Lβ (β = q(α), α ∈ Φ+
G\Φ

+
L),

which induce isomorphisms of T -modules

Γ(Y,Lβ) ∼= gα ⊕ gθ(α).

In particular, ϕ is surjective, and each invertible sheaf Lβ is generated by

its global sections. Moreover, the corresponding morphism

Fβ : Y → P(gα ⊕ gθ(α))
∗ ∼= P1

equals the morphism fα−θ(α) (defined in Proposition 1.1.1).

Proof. (i) Since Y is connected and fixed pointwise by TK , each fiber NY/X (y),
y ∈ Y , is a TK-module, independent of the point y. Considering the base point
of G/K and denoting by t (resp., k) the Lie algebra of T (resp., K), we obtain an
isomorphism of TK-modules

NY/X (y) ∼= g/(t + k) ∼=
⊕

α∈Φ+

G\Φ
+

L

gα,

which yields the decomposition (3.1.21) of the normal sheaf regarded as a TK-
linearized sheaf. Since the summands Lβ are exactly the TK-eigenspaces, they are
stable under T , and permuted by NK according to their weights.

(ii) Consider the restriction

ϕ0 : OY0
⊗ g → NY0/X0

.

By the isomorphism (1.3.9), the composite map

OY0
⊗ pu → OY0

⊗ g → NY0/X0
(3.1.22)

is an isomorphism. Thus, ϕ0 is surjective; by NK-equivariance, it follows that ϕ is
surjective as well. Considering TK-eigenspaces, this implies in turn the surjectivity
of each ϕβ .

Thus, the T -linearized sheaf Lβ is generated by a two-dimensional T -module
of global sections with weights α and θ(α). This yields a T -equivariant morphism
Fβ : Y → P1. Its restriction to the open orbit T/TK is equivariant of weight
α − θ(α) for the action of T by left multiplication; thus, we may identify this
restriction with the character α− θ(α). Now Proposition 1.1.1 implies that Fβ =
fα−θ(α). By (1.1.1) and the projection formula, it follows that the map

gα ⊕ gθ(α) = Γ(P1,OP1(1)) → Γ(Y, F ∗
βOP1(1)) = Γ(Y,Lβ)

is an isomorphism. �
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3.2. The (logarithmic) tangent bundle

Recall that TX denotes the tangent sheaf of X , consisting of all k-derivations of
OX . Let SX ⊆ TX be the subsheaf consisting of derivations preserving the ideal
sheaf of the boundary ∂X . Since ∂X is a divisor with normal crossings, the sheaf
SX is locally free; it is called the logarithmic tangent sheaf of the pair (X, ∂X),
also denoted by TX (−log ∂X).

Since G acts on X and preserves X , the map opX of (3.1.19) factors through a
map

opX,∂X : OX ⊗ g → SX . (3.2.23)

In fact, opX,∂X is surjective; this follows, e.g., from the local structure of X , see
[BB96, Prop. 2.3.1] for details. In other words, SX is the subsheaf of TX generated
by the derivations arising from the G-action.

Clearly, the sheaf TX is G-linearized compatibly with the subsheaf SX . More-
over, the natural maps TX → NXi/X

∼= OX (Xi)|Xi (where X1, . . . , Xr denote the
boundary divisors) fit into an exact sequence of G-linearized sheaves

0 → SX → TX →
r

⊕

i=1

NXi/X → 0, (3.2.24)

see e.g. [BB96, Prop. 2.3.2].
The pull-backs of TX and SX to Y are described by the following.

Proposition 3.2.1.

(i) The exact sequence of TNK-linearized sheaves

0 → TY → TX |Y → NY/X → 0

admits a unique splitting.

(ii) We also have a uniquely split exact sequence of TNK-linearized sheaves

0 → SY → SX |Y → NY/X → 0, (3.2.25)

where SY denotes the logarithmic tangent sheaf of the pair (Y, ∂Y ). More-

over, the TNK-linearized sheaf SY is isomorphic to OY ⊗ a, where TNK

acts on a (the Lie algebra of A ) via the natural action of its quotient WG/K .

Proof. (i) is checked by considering the TK-eigenspaces as in the proof of Theorem
3.1.1. Specifically, the TK-fixed part of TX |Y is exactly TY , while the sum of all
the TK-eigenspaces with nonzero weights is mapped isomorphically to NY/X .

(ii) First, note that the natural map

OY ⊗ a → SY (3.2.26)

is an isomorphism, since Y is a nonsingular toric variety under the torus A/A∩K;
see, e.g., [Od88, Prop. 3.1].

Next, consider the map TX |Y → NY/X and its restriction

π : SX |Y → NY/X .



M. BRION AND R. JOSHUA

Clearly, the kernel of π contains the image of the natural map

i : OY ⊗ a → SX |Y .

We claim that the resulting complex of TNK-linearized sheaves

OY ⊗ a → SX |Y → NY/X (3.2.27)

is exact. By equivariance, it suffices to check this on Y0. Then the local structure
(1.3.9) yields an exact sequence of P -linearized sheaves

0 → OX0
⊗ pu → SX |X0

→ OX0
⊗ a → 0,

see [BB96, Prop. 2.3.1]. This yields, in turn, an isomorphism

OY0
⊗ (pu ⊕ a) ∼= SX |Y0

which implies our claim by using the isomorphisms (3.1.22) and (3.2.26).
In turn, this implies the exact sequence (3.2.25); its splitting is shown by arguing

as in (i). �

Corollary 3.2.2. We have isomorphisms of TNK-linearized sheaves

TX |Y ∼= TY ⊕
⊕

β∈ΦK\ΦL

Lβ , SX |Y ∼= (OY ⊗ a)⊕
⊕

β∈ΦK\ΦL

Lβ , (3.2.28)

and an exact sequence of TNK-linearized sheaves

0 → OY ⊗ a → TY →
m

⊕

j=1

OY (Yj)|Yj → 0, (3.2.29)

where Y1, . . . , Ym denote the boundary divisors of the toric variety Y .

3.3. Equivariant Chern polynomials

By [EG98], any G-linearized locally free sheaf E on X yields equivariant Chern

classes

cG
i (E) ∈ Ai

G(X) (i = 0, 1, . . . , rk(E)),

which we may encode by the equivariant Chern polynomial

cG
t (E) :=

rk(E)
∑

i=0

cG
i (E)ti.

The map
r : A∗

G(X) → A∗
T (Y )WK

of Theorem 2.2.1 sends cG
t (E) to cT

t (E|Y ), by functoriality of Chern classes.
Together with the decompositions of the restrictions TX |Y and SX |Y (Corollary

3.2.2), this yields product formulas for the equivariant Chern polynomials of the
G-linearized sheaves TX and SX .
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Proposition 3.3.1. With the above notation, we have equalities in A∗
T (Y ):

r(cG
t (SX )) =

∏

β∈ΦK\ΦL

(1 + tcT
1 (Lβ)), (3.3.30)

r(cG
t (TX )) =

m
∏

j=1

(1 + t[Yj ]T )×
∏

β∈ΦK\ΦL

(1 + tcT
1 (Lβ)), (3.3.31)

where cT
1 (Lβ) ∈ PicT (Y ) denotes the equivariant Chern class of the T -linearized

invertible sheaf Lβ, and [Yj ]T ∈ PicT (Y ) denotes the equivariant class of the bound-

ary divisor Yj .

(Note that the above products are all WK-invariant, but their linear factors are
not.)

Likewise, we may express the image under r of the equivariant Todd classes

tdG(TX ) and tdG(SX):

r(tdG(SX)) =
∏

β∈ΦK\ΦL

cT
1 (Lβ)

1− exp(−cT
1 (Lβ))

,

r(tdG(TX)) =

m
∏

j=1

[Yj ]T
1− exp(−[Yj ]T )

×
∏

β∈ΦK\ΦL

cT
1 (Lβ)

1− exp(−cT
1 (Lβ))

.

Finally, we determine the equivariant Chern classes cT
1 (Lβ) ∈ PicT (Y ) in terms

of the boundary divisors of Y , indexed as in Subsection 1.1. Here β ∈ ΦK\ΦL and
hence β = q(α) for a unique α ∈ Φ+

G\Φ
+
L .

Proposition 3.3.2. With the preceding notation, we have

cT
1 (Lβ) = α +

∑

i,w

〈α− θ(α), w$∨
i 〉[Yi,w ]T , (3.3.32)

where $∨
i denote the fundamental coweights of the restricted root system ΦG/K ,

and the sum runs over those pairs (i, w) ∈ E(ΦG/K) such that w−1(α − θ(α)) ∈

Φ+
G/K .

Proof. Recall from Theorem 3.1.1 that the T -module of global sections of Lβ is
isomorphic to gα ⊕ gθ(α). Let s be the section of Lβ associated with a generator
of the line gα. Then cT

1 (Lβ) = α + divT (s), since s is a T -eigenvector of weight α.
Moreover, divT (s) is the divisor of zeros of the character α− θ(α). Together with
(1.1.2), this implies equation (3.3.32). �
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1990, pp. 219–262.

[Od88] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik
und ihrer Grezgebiete, Vol. 15, Springer-Verlag, Berlin, 1988.

[Pr90] C. Procesi, The toric variety associated to Weyl chambers, in: Mots, Lang.
Raison. Calc., Hermès, Paris, 1990, pp. 153–161.

[Re04] N. Ressayre, Spherical homogeneous spaces of minimal rank, preprint, 2004,
available at www.math.uni-montp2.fr/~ressayre/spherangmin.pdf

[Ri82] R. W. Richardson, Orbits, invariants and representations associated to invo-

lutions of reductive groups, Invent. Math. 66 (1982), 287–312.

[Sp85] T. A. Springer, Some results on algebraic groups with involutions, Adv. Stud.
Pure Mathematics, Vol. 6, North-Holland, Amsterdam, 1985, pp. 525–543.



EQUIVARIANT CHOW RING OF WONDERFUL VARIETIES

[Sp98] T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics,
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