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HIGHER INTERSECTION THEORY ON ALGEBRAIC STACKS:II

Roy JosHuA

ABSTRACT. This is the second part of our work on the intersection theory of algebraic stacks. The main results here
are the following. We provide an intersection pairing for all smooth Artin stacks (locally of finite type over a field)
which we show reduces to the known intersection pairing on the Chow groups of smooth Deligne-Mumford stacks
of finite type over a field as well as on the Chow groups of quotient stacks associated to actions of linear algebraic
groups on smooth quasi-projective schemes modulo torsion. The former involves also showing the existence of Adams
operations on the rational étale K-theory of all smooth Deligne-Mumford stacks of finite type over a field. In addition,
we show that our definition of the higher Chow groups is intrinsic to the stack for all smooth stacks and also stacks
of finite type over the given field. Next we establish the existence of Chern classes and Chern character for Artin
stacks with values in our Chow groups and extend these to higher Chern classes and a higher Chern character for
perfect complezes on an algebraic stack, taking values in cohomology theories of algebraic stacks that are defined with
respect to complexes of sheaves on a big smooth site. As a by-product of our techniques we also provide an extension
of higher intersection theory to all schemes locally of finite type over a field. As the higher cycle complex, by itself,
is a bit difficult to handle, the stronger results like contravariance for arbitrary maps between smooth stacks and the
intersection pairing for smooth stacks are established by comparison with motivic cohomology.

Table of Contents

. Introduction

. Review of higher intersection theory on algebraic stacks: algebraic K-theory of algebraic stacks
. The extension technique

. (Lichtenbaum) Motivic cohomology vs. the higher Chow groups for smooth stacks

. Homotopy property, Chern classes and the projective space bundle theorem

. Intersection theory for smooth algebraic stacks

. Appendix

Supported by the Max Planck Institut fiir Mathematik, the IHES and the ICTP



ROY JOSHUA

0. Introduction

In this paper we continue our work on the higher intersection theory for all Artin stacks locally of finite
type over a field. We establish Chern classes and Chern character along with an (integer valued) intersection
pairing for all smooth Artin stacks. We show that this intersection theory reduces modulo torsion to the known
intersection theory (at the level of the usual Chow groups) for all smooth Deligne-Mumford stacks of finite
type over a field and also for quotient stacks associated to linear actions of linear algebraic groups on smooth
quasi-projective schemes. The higher Chow groups of a stack are defined as in the first part of the paper, [J-1]
section 4; we will also adopt the basic terminology from that paper.

We summarize the main results here. Let (alg.stacks) denote the category of algebraic stacks in the sense of
Artin and locally of finite type over a given field k.

Let CH.( ,.) :(alg.stacks) —(bi-graded abelian groups)

denote the integral higher Chow groups defined in the first part of our work i.e. [J-1](4.5.1). In general, this
depends on the choice of an atlas for the stack; but for Deligne-Mumford stacks, smooth Artin stacks and Artin
stacks of finite type, this is independent of the choice of the atlas. (The last assertion is proved in section 3.
See (1.2) for an explanation of the notation.)

Theorem 1. (See (4.2.2), (4.2.3) and (4.6.11).) Let & denote an algebraic stack of dimension d and let
z: X — & denote a fixed atlas for . Let K°(&) denote the Grothendieck group of vector bundles on & -see
(1.5.0) for the definition.

(i) If & is smooth, one obtains Chern-classes
¢; : K°(6) — CHy (6,2,0),i >0
which pull-back under any representable flat map &' — &.

(ii) Projective space bundle theorem. Let £ denote a vector bundle of rank r on the algebraic stack &
and let w : P() = Proj(£) — & denote the associated projective space bundle. Let ' = zxProj(£)
&

denote the induced atlas for Proj(£). Let Op(g)(1) denote the tautological bundle on P(£). This defines a
class g € CHyyr—2(P(E),2',0). Then the map &7-CH,.(8,z,.) = CH.(P(f),2',.) sending (ag, ..., ar—1) to
¥;m*(a;).4b% is an isomorphism.

(iii) Covariance of the integral higher Chow groups. Let p: &' — & denote a proper map of algebraic stacks
that factors as the composition of a closed immersion and a projection 7 : P(£) — & for some vector bundle &£
on the stack &. Let ' = xx &' denote the induced atlas for &'. Then there exits a map p. : CH.(&",2',.) —

&

CH,(6,z,.).

(iv) For each integer i, let T'(¢) denote a complex of abelian sheaves on the big smooth site of all algebraic
stacks locally of finite type over k so that there exist universal Chern classes CT € H¥ (B.GL,,T'(i)). Let K(&)
denote the Waldhausen K-theory space of the category of perfect complexes on & - see the definition in (1.5.1).
Then one obtains higher Chern classes

Ci(n) : m,(K(6)) — HIE- ™ (&,T (i)

smit

where d is an integer depending on the complex I'(Z) and the right hand side denotes hypercohomology on the
smooth site of the stack &. These pull-back under any representable map. In case the stack & is smooth, there
exist higher Chern classes C;(n) : 7, K (&) - CH*"(&, z,i) where the right hand side is defined below. O

Remark 0.1 The Chern classes in (iv) are also obtained in the thesis of Toen (see [Toe-1], [Toe-2]) for the
K-theory of the exact category of vector bundles on & by similar methods.

Let & denote an algebraic stack of finite dimension over k. Recall that in [J-1](4.2.5), for each integer m
and non-negative integer n, we defined an additive presheaf on the site S,¢s.5mt as follows. (See (1.1) for the
definition of this site.) For each U connected, ZSres-smt (U, n) = the free abelian group on dimension m cycles on
U x Ag[n] intersecting the faces properly. We define in section 3, an additive presheaf Zém L (n)on Gres smi
by: Z5 _ (U,n) = the free abelian group on codimension i cycles on U x A[n] intersecting all the faces of
U x A[n] properly, for each u : U = & in S5 smt and also connected. Welet Zg — (,)=®Z§  ( ,.).
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Let Zi( ,.) denote the pre-sheafification of the higher cycle complex of codimension 4 on the site
(gp.schemes)Res.zar- (See (1.1) again for the definition of this site.) We define an extension functor Eg
associated to each algebraic stack & in section 2 so that Eg(Z?( ,.)) will be a presheaf on the site &5 smi-
We also define an extension functor E1 extending presheaves on the site (gp.schemes/k)Res.zar t0 the restricted
Zariski site (schemes/k)Res.zar Of all schemes locally of finite type over k.

We define CH!(8,2,.) = H (B,S, Es(2i( ,.))) and CH!(8,2,.;Q) = Hy(B,6,Es(Zi( ,.)) ®Q). If
X is a scheme locally of finite type, we define CH!(X,.) = Hyz,.(X,E1(Zi( ,.))). We let CH!(&,z,n) =
1,CH{(&,z,.) and CH!(X,n) = 7,CH{(X,.). Similarly CH*(&,z,n;Q) = m,CH!(8,x,.;Q). Let Z(i)[2i]
denote the shifted motivic complex of weight i defined on the category of smooth separated schemes of finite
type over k. We show in section 2, that Eg(Z(i)[2i]) defines an extension of this complex to the smooth site
Ssmt and that E1(Z(7)[2i]) defines an extension to (schemes/k)res.zar-

Theorem 2. (See (5.1), (5.3.10) and (3.5).)

(i) The groups CH!(&,z,n), i,n > 0, are intrinsic to the stack and independent on the choice of the atlas
for all smooth stacks &. In fact CHY (S, z,n) = 7, (Hem: (6, Es(Z(4)[2i]))) if & is smooth. Moreover, if & is
any algebraic stack of finite type over k (not necessarily smooth), the groups CH*(&, z,n;Q) are independent
of the choice of the atlas z. If the stack is of finite dimension, CH!(&,z,n) = m, (H. (B, S, Zk ( ,.)) as
well.

res.smt

(ii) If f : 6 — & is a map of smooth algebraic stacks, one obtains an induced map f* : CH*(S,.) —
CH*(&',.).

(iii) If & is also smooth, one obtains an intersection-pairing:
U:CHYG,n) ® CHI(6,m) = CH™I(&,n +m).

In addition, if f : &' — & is a map of smooth algebraic stacks, the induced map f* : CH*(68,.)) - CH*(&,.)
is compatible with the above intersection pairing.

(iv) If & is any smooth separated Deligne-Mumford stack of finite type over k, there exists an isomorphism
CH*(6,0;Q) = CH},,.(6)®Q. The above intersection pairing on CH*(&,0;Q) agrees with the known
z

el

intersection pairing on the naive Chow group CH},,,.(6)2Q.
z

(v) Let G denote a linear algebraic group acting on a smooth quasi-projective scheme X so that the action
is G-linearized (i.e. X admits a G-equivariant locally closed immersion into a projective space onto which
the G-action extends to a linear action). Then one obtains an isomorphism CH*([X/G],.;Q) = CH} (X, ;Q)
preserving the multiplicative structure, where the right-hand-side is the G-equivariant intersection theory of X
asin [EG]. O

Remark 0.2. In view of Theorem 2 (i), we may omit the atlas z from the definition of the higher Chow
groups for stacks satisfying the hypotheses there. The proof of (iv) involves showing the existence of A-operations
on the (higher) étale K-theory of any smooth Deligne-Mumford stack with rational coefficients. The intersection
pairing in (iii) also extends to higher Chow groups with coefficients. Moreover, observe that we have extended
the definition of the higher Chow groups to all stacks that are locally of finite type, but not necessarily of finite
type over k: this is important since some of the more familiar stacks (see for example, Corollary 4 (v)) are only
locally of finite type.

As a by-product of our techniques we also obtain a straightforward extension of intersection theory to all
schemes of locally of finite type over a field. These results may be summarized in the following theorem. Let
(schemes) denote the category of all schemes locally of finite type over a given field k.

Theorem 3. (See (4.2.2), (4.2.3) and (5.2.0).)

(i) Let X denote a scheme locally of finite type over a field k and of finite dimension d and let £ denote a
vector bundle of rank r on X. Let 7 : P(§) = Proj(£) — & denote the associated projective space bundle
and let Op(g)(1) denote the tautological bundle on P(£). Let ¢¢ € CHgyr—2(IP(€),0) denote the canonical class
defined by this bundle. Then the map ®&I_,CH,.(X,.) = CH.(P(E),.) sending (ag, ..., ar—1) to T;m*(a;). 4k is
an isomorphism.
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(ii) If f : X' — X is a map of smooth schemes locally of finite type over k, there exists an induced map
f*:CH*(X,.) - CH*(X',.).

(iii) If X is a smooth scheme as in (i), there exists an intersection pairing:
CH!(X,n) ® CHI(X,m) — CH™(X,n + m).

Moreover, if f: X' — X is a map of smooth schemes as in (i), the induced map f*: CH*(X,.) - CH*(X',.)
is compatible with the above intersection pairing. O

The following corollary is to serve as a sample of the applications of the above theorems.

Corollary 4. (i) Let X denote a smooth scheme locally of finite type over a field k£ and of finite dimension
d provided with the action of an affine smooth group scheme G defined over k. Then there exist Chern classes

¢; : KO(X/G]) — CHy_i([X/G], X,0) and Ci(n) : mp(K([X/G])) — CHI=™([X/G],n).

(ii) For each integer ¢, let I'(¢) denote a complex of sheaves on the big smooth site of all algebraic stacks
locally of finite type over k satisfying the hypotheses in Theorem 1 (iv). Assuming the hypotheses as in (i)
except that X could be singular, there exist higher Chern classes

Ci(n) : 1 (K([X/G))) — Hypy" ([X/G], T (0)).
(iii) Assuming the hypotheses of (i), there exists an intersection pairing
U: CHY([X/G],n) ® CH([X/G],m) — CH*([X/G],n + m).

(iv) Next assume X is separated and of finite type over k, the action is locally proper and the stabilizers
are all finite and reduced and M|x /) is a coarse moduli space (as in [J-1], (1.3.4)(vii)). Then one obtains an
isomorphism CH*([X/G],;Q) = CH*(Mx/c),-;Q) and hence an induced intersection pairing on the latter
provided X is smooth. (The higher Chow groups of the algebraic space Mx,g] on the right hand side are
defined as in [J-1] (4.6.6).)

(v) Let k be algebraically closed, X a smooth projective curve of genus g over k and M the stack of principal
G-bundles over X with G as in (i). (See [LS] for example.) Then the stack Mg is smooth and there exists an
intersection pairing

U:CH*(Mg,.) ® CH*(Mg,.) — CH*(Mg, .).

(vi) Let X denote a smooth projective variety which is conver in the sense of [F-P] p.6. Let M, (X, )
denote the stack of stable families of maps of n-pointed genus g-curves to X and let 9, (X, ) denote the cor-
responding coarse-moduli space. Here 3 denotes a class in CH!(X). If this stack is smooth, (for example, g = 0
and X = P" for some r), one obtains an intersection pairing U : CH*(M, (X, 8),.) ® CH*(M, (X, B8),.) —
CH*(M, n(X,B),.). Moreover, one also obtains an isomorphism CH* (M, (X, 8),.;Q) = CH*(M, (X, B),.; Q)
and therefore an induced pairing U : CH* (O, (X, 8),.;Q) ® CH*(M, »(X, B), Q) — CH*(M, (X, B),;Q
when the stack M, (X, () is smooth. O

The organization of the paper is as follows. The first section is a quick review of the first part of our work,
recalling the basic framework. We also define the algebraic K-theory of algebraic stacks: for algebraic stacks,
it seems best to adopt the definition of K-theory (G-theory) as the Waldhausen style K-theory of the category
of perfect complexes (pseudo-coherent complexes with globally bounded cohomology, respectively) following
[T-2]. Moreover, these are more convenient for us in section 4. The second section, which is purely technical,
introduces a technique whereby we are able to extend results from the Zariski site of quasi-projective schemes
over a field k to all algebraic spaces locally of finite type over a field and then to the restricted smooth site or
the smooth site of any algebraic stack. For example, this way we extend the motivic complexes functorially
to the smooth site of any algebraic stack. In the third section, we restrict to smooth algebraic stacks and
obtain fundamental comparison theorems relating our higher Chow groups for stacks with hypercohomology
computed with respect to appropriate extensions of the motivic complexes. As an immediate consequence, we
show that our higher Chow groups are intrinsic to the stack for all smooth stacks: we also establish contravariant
functoriality for maps between smooth stacks. We also obtain a comparison between our higher Chow groups
and the equivariant higher Chow groups for quotient stacks associated to the actions of linear algebraic groups
on smooth quasi-projective schemes. The higher Chern classes (along with a Chern character) are established
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in the fourth section by extending well known techniques. This includes higher Chern classes with values in our
higher Chow groups for all smooth stacks.

The fifth section establishes an intersection pairing at the level of our higher Chow groups for all smooth
algebraic stacks. We show, using standard techniques on the Adams operations, that this intersection pairing
agrees modulo torsion with the known intersection pairing for all smooth separated Deligne-Mumford stacks.
(This, in fact, involves showing the existence of A and hence Adams operations on the rational étale K-theory
of all smooth Deligne-Mumford stacks.) The intersection pairing for smooth stacks is established by invoking
the comparison theorems of section 3. (This replaces the argument using DGAs associated to the cycle complex
adopted in an earlier version. We thank Spencer Bloch for suggesting the idea of comparing with the motivic
complexes as is done here.)

It ought to be pointed out that establishing an intersection pairing for all smooth Artin stacks, in general,
even at the level of the Chow groups (i.e. in degree 0), has been an open problem: the main difficulty is that the
diagonal map is no longer a local imbedding so that none of the standard techniques, including the ones using
Gysin maps for lci morphisms apply in general. However, see [Kr] where he obtains an intersection pairing for
Chow groups of all smooth stacks that have affine stabilizer groups.

The comparison theorem of section 3 also provides an intersection pairing for the higher Chow groups of all
smooth schemes locally of finite type over k. Combined with the localization theorem for all schemes proved in
[J-1], we obtain a complete theory of higher Chow groups for all schemes locally of finite type over a field, (at
least modulo torsion).

1. Review of higher intersection theory on algebraic stacks: algebraic K-theory of algebraic
stacks

(1.1) Throughout the paper we will adopt the conventions and terminology from the first part, i.e. [J-1]. Ac-
cordingly let k denote a fixed field of arbitrary characteristic. We will only consider objects (schemes, algebraic
spaces and algebraic stacks) that are locally of finite type over k (and hence quasi-separated). The algebraic
stacks we consider will be the ones in the sense of Artin. The category of all algebraic stacks (algebraic spaces) lo-
cally of finite type over k will be denoted (alg.stacks/k) ((alg.spaces/k), respectively). Now (smt.alg.stacks/k)
((smt.alg.spaces/k)) will denote the corresponding full sub-categories of smooth objects. The big Zariski site of
all quasi-projective schemes (schemes) over k will be denoted (gp.schemes/k) zqar (schemes/k) zar, respectively).
The big étale site (smooth site) of all algebraic spaces will be denoted (alg.spaces/k).: ((alg.spaces/k)smt, re-
spectively). Now (smt.gp.schemes/k) zqr, (smt.schemes/k) zqr, (smt.alg.spaces/k)et and (smt.alg.spaces/k) smt
will denote the corresponding sites associated to smooth objects.

If C is any of these big sites we obtain the corresponding restricted sites which have the same objects and
coverings but where the morphisms are restricted to be only flat maps. All flat maps will be required to be
of some fized relative dimension. ie. if f : & — & is a flat map of algebraic stacks we will also require
that for each irreducible component T of &, every irreducible component of f~1(T) = TgG’ is of dimension

= dimG' — dimGS. (gp.schemes/k)ges.zar, (Schemes|k)ges.zar, (alg.spaces/k)ges.et and (alg.spaces/k)Res.smt
will denote the corresponding restricted sites. Similarly (alg.spaces/k)res ((alg.stacks/k)res) will denote the
full sub-category of (alg.spaces/k) ((alg.stacks/k) , respectively) where the morphisms are all required to be
flat maps. If G is a fixed algebraic stack, we have defined several sites associated to &: the smooth sites, &gy,
Gsmit, Gres.smt and Spes smi, the étale site S, and for Deligne-Mumford stacks the étale site G¢. (See [J-1]
section 2 for details.)

(1.2) We will consider presheaves on any of these sites taking values in a complete pointed simplicial category
as defined in [J-1] section 6. We defined in [J-1] (4.2.3) an additive presheaf Z,( ,.) : (alg.stacks/k)res.smt — (chain
complexes of abelian groups). If & is an algebraic stack, the restriction of this presheaf to Sy es.gmt is de-
noted ZSressmt( ). If B,& is the classifying simplicial space associated to an atlas z : X — &, observe
that the face maps of the simplicial space B,& are all smooth. This enables us to define the étale hyper-
cohomology of B,& with respect to Z8=-mi( ). We define CH(S,z,.) = H. (Bo®, Z07°*2( ,.)) and
CH.(6,z,n) = m,(CH(B,;6,z,.)). In case G is a smooth group scheme acting on a scheme X, the higher
Chow groups of the quotient stack [X/G] with respect to the atlas X will be denoted CH.([X/G], X,.). Often
the atlas X will be omitted and the above group will be denoted simply by CH,([X/G],.).
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(1.2)’ If X is any scheme, we defined ZXzer( ,.) to be the restriction of Z,( ,.) to the Zariski site of X.
We define CH(X,.) = Hyz,, (X, ZX2s~( ,.) and CH.(X,n) = 7,(CH(X,.)).

(1.3) In order to be able to handle unbounded complexes and also the spaces of K-theory, we fix a complete
pointed simplicial category S and consider only presheaves that take values in S. (See [J-1] section 6 for details.)
For the purposes of this paper, S will denote either the category of all complexes of sheaves of R-modules on
a suitable site (where R is a commutative Noetherian ring with 1) or the category of presheaves of fibrant
pointed simplicial sets (=spaces) on a suitable site. If P is such a presheaf 7,(P) ~ will denote the sheaf
associated to the presheaf U — H~"(['(U, P)) in the first case and the sheaf associated to the abelian presheaf
of homotopy groups U — 7,(L(U, P)) in the second case. A map a: P — @ is a quasi-isomorphism (a strong
quasi-isomorphism) if it induces an isomorphism on all m,( ) =~ (m,I'(U, ) for all U in the site and all n,
respectively). Clearly every strong quasi-isomorphism is a quasi-isomorphism. If C is a site and Presh(C,S)
denotes the category of all presheaves on C with values in S, the derived category associated to Presh(C,S) is
obtained by inverting maps that are quasi-isomorphisms. This will be denoted D(Presh(C,S)).

(1.4) The only presheaves P we consider will be ones that are additive in the following sense: the natural map
(U UuV,P) —T(U,P) xT(V,P) is a quasi-isomorphism for all U and V in the category under consideration.

(1.5.0)Definition. Let & denote an algebraic stack. A quasi-coherent (coherent, coherent and locally free)
sheaf F' on a stack & is a sheaf of Og-modules on Sy,,+ so that for any map z : X — &, with X an algebraic
space, x*(F') is a quasi-coherent (coherent, coherent and locally free) sheaf on the algebraic space X.

Let Mod.on(S) (Mod;. ¢re.(©)) denote the category of all coherent (coherent and locally free, respectively)
sheaves on the stack 6. K°(&) will denote the Grothendieck group of the latter category. (Both are also
symmetric monoidal categories with the operation of direct sum of two sheaves. Therefore it is possible to
consider the higher algebraic K-theory of these categories: nevertheless, it seems best for us to consider the
more general definition of the higher K-theory and G-theory of algebraic stacks adopted below.)

(1.5.1) Definition. Let & denote an algebraic stack and let Og denote its structure sheaf. A complex
of quasi-coherent Og-modules on Sy is strictly pseudo-coherent (strictly perfect) if it is a strictly bounded
above complex (bounded complex, respectively) of vector bundles. A complex of quasi-coherent Og-modules
E® is pseudo-coherent (perfect) if it is locally quasi-isomorphic on the site Ggpyy (i-€. there exits au: U — &
in the site G4 so that the restriction of £* to U is quasi-isomorphic) to a strictly pseudo-coherent (perfect,
respectively) complex.

For each v : U — & in the site Gres.sme (Ssme), let Pseudocohpqq(U) (Perf(U)) denote the category of
pseudo-coherent complexes with globally bounded cohomology (perfect complexes, respectively) on the algebraic
space U. One may provide each of these categories with the structure of a complicial Waldhausen category (in
the sense of [T-2]) by taking the cofibrations (weak-equivalences) to be maps of complexes that are degree-wise
split injective (quasi-isomorphisms, respectively). This defines a lax-functor from the site Sres.smt (Ssme, re-
spectively) to the (large) category of complicial Waldhausen categories. Applying the functor sending a (small)
complicial Waldhausen category to the corresponding space of algebraic K-theory, one obtains lax-functors
G : Gres.smt — (spaces) (K : &, — (spaces), respectively) that sends u : U — & to K(Pseudocohpqq(U)),
K(Perf(U)), respectively. We will rigidify these lax functors and obtain quasi-isomorphic (i.e. weakly equiv-
alent) presheaves on the site Ssmi (Sres.sme, respectively) with values in the category of spaces. The corre-
sponding presheaves will be denoted G and K, respectively.

(1.5.2) Moreover, if T is a closed algebraic sub-stack of &, one defines K7 (&) (Gr(6)) as the homotopy
fiber of the obvious restriction K(6) —» K(6& - T) (G(6) — G(6 — T, respectively).

(1.6.1) Remark. On any Noetherian separated scheme with an ample family of line bundles, it is shown in
[T-2] that the K-theory of perfect complexes is weakly equivalent to the K-theory of the symmetric monoidal
category of locally free coherent sheaves. Moreover, it is shown there that, on any Noetherian separated scheme,
the K-theory of pseudo-coherent complexes with bounded cohomology is weakly equivalent to the K-theory
of the symmetric monoidal category of coherent sheaves. Therefore, as presheaves on the smooth site of an
algebraic stack, the above presheaves may be replaced (up to stalkwise weak-equivalence) by the presheaves of
the K-theory of vector bundles and the K-theory of coherent sheaves.

The following result shows that the correct version of algebraic K-theory for algebraic stacks is the one
adopted above in terms of perfect complexes.
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(1.6.2) Theorem(Poincaré duality). Let & denote a smooth algebraic stack of finite type over k. Now the
obvious map K(&) — G(8) is a weak-equivalence.

Proof. Exactly the same proof as in (3.21) Theorem of [T-2] applies. However, for the sake of completeness we
will sketch an outline of the proof. Recall the algebraic stack & is assumed to be of finite type over a field and
therefore automatically quasi-compact and Noetherian. By fixing a geometric point Z of & and by restricting to

a small enough smooth neighborhood of Z, we may assume that E® is a strictly pseudo-coherent complex with
dn—2

H™(E®) =0 for n < k. Now E"2 =—— E™1 — Z"(E®) — 0 is exact, (where Z"(E*) denotes the cycles in
degree n) showing Z™(E*®); is finitely presented for any n < k. Let the tor-dimension of Z*(E®); over Og z be
p. Let 7>, E® be the complex defined by (755, E®)! = Et, i > k—p, (155, E*)' = Z*P(E*) ifi =k —p
and (7>5—pE®)" = 0 for i < k — p. The hypothesis that H"(E*) = 0 for all n < k shows that the obvious map
T>k—pE® = E® is a quasi-isomorphism and the part of 7>4_,E® in degrees < k — 1 is a resolution of Z¥(E®).
Therefore it suffices to show that Z*¥ P(E®); is flat and finitely presented and hence a free O z-module. This
follows by the assumption that the tor-dimension of Z¥(E®) is p. O

2. The extension technique

In this section we will discuss a technique for extending presheaves and maps between presheaves defined on
the site (gp.schemes/k) ges. zar to the étale site of all algebraic spaces locally of finite type over k and to the site
BS,es.smt associated to any algebraic stack & locally of finite type over k. This will be used in the next sections
to construct Chern classes from higher algebraic K-theory with values in various cohomology theories and to
obtain a comparison with hypercohomology defined with respect to the motivic complexes. (In turn this will
construct an intersection pairing for all smooth algebraic stacks at the level of our higher Chow groups and also
establish contravariant functoriality for maps between smooth stacks at the level of our higher Chow groups.)
Apart from its application in later sections of the paper, this technique may be of independent interest as it
enables one to extend readily results from schemes to algebraic stacks.

(2.1.1) Let C denote a site closed under finite fibered products and arbitrary (small) sums, let C' denote a
full sub-category of C that is closed under finite products in C and let X € C. We assume C’ is a site so that if
U belongs to C' and {u; : U; — U|i} is a covering in C’, it is also a covering of U in C. Let U = {U; — X|i e I}
and V = {V; — X|j € J} be two coverings of the object X with each U; — X and V; — X in C. A map of
covers ® : i/ — V consists of a function ¢ : J — I and for each j € J a morphism f; : V; — Uy(;) compatible
with the projection to X. We will further assume that for every object U’ in C’, every C-covering of U’ has
a refinement by a C'-cover. (V is a refinement of U if there exists a map of covers Y — V.) Let P denote a
presheaf on C' with values in a complete pointed simplicial category S. We let cosko(U) = coskg (U;U;) denote
the simplicial object defined in the usual manner.

(2.1.2) In the examples (2.3.1) and (2.3.2) below, all the structure maps of this simplicial object belongs to C
whereas in the example (2.3.3) only the face maps belong to C. In the former case I'(cosko (U), P) is a cosimplicial
object in S. In the latter case we will assume that the category S is the category of co-chain complexes over a
Noetherian ring. Then I'(cosko(U), P) is a co-cochain complex trivial in negative degrees with the differential
§ = B;(—1)!d*. Now we apply a denormalizing functor DN as in ([J-1](3.6.3)) to obtain a cosimplicial object
DN (T (cosko(U), P)). We define H(U, P) = holimDN (T'(cosko(U), P)) in this case. T'(cosko(V), P) and H(V, P)
are defined similarly. One may readily verify that if ® : &/ — V is a map of covers, then there is an obvious
induced map T'(cosko(U, P)) — T'(cosko(V), P) of cosimplicial objects in S. In the setting of (2.3.1) and (2.3.2),
if A is a filtered direct system of covers U, € C' of X, a € A, we let H(A; P) = hokimb({:olinfllF(cosko Uy),P). In

the setting of (2.3.3), we let H(A, P) = holim colim DNT (cosko (Ua), P).

Assume the situation in (2.1.1). Now observe that the category of all coverings of a given object X e C is not
filtered in general. (This is filtered if there exists at most one map between two coverings. For example if X is a
scheme, C' =the sub-category of quasi-projective schemes and the coverings are all in the Zariski topology of X,
then the category of coverings of X by quasi-projective schemes is a filtered direct system. However coverings
in the étale topology do not, in general, form a filtered category.) To remedy this we adopt the technique that
restricts maps between coverings so that they form a filtered direct system.

(2.2.1) Definition. The canonical filtered direct system of covers. Assume the situation in (2.1.1). Let
{Ux|A € A} denote Coverscr (X). We will assume this category is skeletally small. (Observe that this hypothesis
7
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is satisfied in all the applications we consider - see (2.3) below.) Let F denote the category of all finite subsets
of A. Given such an F in F, we define Ur = Uy, x Uyp, X ... x Uy, , if F = {f1, fo,..., fn} (i.e. with respect to
some ordering of the elements of F' and the product x denotes the fibered product over &.) If F' C F, the
inclusion of F” into F induces an obvious projection Ur — Upr. Let DCoversc: (X) = {Ur|F = a finite subset
of A} with a morphism Ur — Ur: defined as above. Clearly DCoversc/(X) is a filtered direct system indexed
by F, since there is at most one map between any two objects.

(2.2.2) Observe that if X and Y are objectsin C and f : X — Y is any map in C, one obtains an induced map
of direct systems DCoversc: (Y) — DCoverse (X) that is natural in f. Observe also that if P is a presheaf on
C' taking values in a complete pointed simplicial category, one obtains an induced map H(DCoversc: (Y), P) —
H(DCoversc (X), P) that is also natural in P.

(2.3) Examples. The main examples we will be interested in are the following:

(2.3.1) C = (schemes/k)ges.zar, C' = (qp.schemes/k)ges.zar- Now Resl : C — C' will denote the obvious
map of sites. If X is a scheme, Coversgpschms(Xzqr) will denote the directed set of all coverings of X in the
Zariski topology by quasi-projective schemes over k.

(2.3.2) C = (alg.spaces/k)Res.et, C' = (separated schemes/k)Rges.et- The coverings in the first (second) site
are all étale coverings y : Y — X, with both Y and X algebraic spaces (with both ¥ and X schemes.) Now
Res2 : C — (' will denote the obvious map of sites. Given an algebraic space X, we will let DCoverss_schms(Xet)
denote the canonical directed set of étale coverings of X by separated schemes. As observed above this category
is filtered: it is also skeletally small in view of our assumption that the algebraic spaces are locally of finite
type over k. (The hypothesis of separation ensures that if U — X is an étale surjective map from a separated
scheme, coskd (U) is a simplicial scheme.)

(2.3.3) C = C" = (alg.spaces/k)Res.smt- Next we consider the category of all atlases for a given algebraic
stack 6. Even-though the stack & does not belong to the category C, the definitions in (2.2.1) and (2.2.2)
provide a canonical filtered direct system of atlases for &. This will be denoted Datlases(S). (i.e. In (2.2.1)
let Coversc: (&) denote the category of all atlases for &. Since & is assumed to be locally of finite type over k,
this category is also skeletally small.)

(2.4.1) Definition: the extension functors. (i) Let P denote a presheaf on the site (gp.schemes/k)res. zar
with values in a category S as before. We define its extension E1(P) to (schemes/k)res.zar be the presheaf
defined by I'(U, E1(P)) = H(Coversgp.schms(Uzar), P).

(ii) Let @ denote a presheaf on the site (schemes/k) ges.ct. We define its extension E2(Q) to (alg.spaces/k)Res.et
be the presheaf defined by T'(U, E2(Q)) = H(DCoverss.schms(Uet), @)-

(2.4.2) Remarks. (i) Observe that if P is a presheaf on (smt.gp.schemes/k) ges. zar (On (smt.schemes/k) ges.et)
the same extension functors provides an extension of P to (smt.schemes/k)ges.zar ((smt.alg.spaces/k)ges.et,
respectively). This follows readily, because for a smooth object the filtered direct system of covers that is
involved in the extension also consists of smooth objects.

(ii)Observe that in the above examples, C' is a full sub-category of C. However these categories are not small
categories; this makes the technique of canonical Kan extensions not applicable and justifies the definition of
the extension functors as above.

(2.5) Theorem. Assume the above situation. (i) Then both the extension functors preserve strong quasi-
isomorphisms.

(ii) There exist natural maps of presheaves P — Resl,(E1(P)) and Q — Res2.(E2(Q)). The second is a
quasi-isomorphism always while the first is one for presheaves P that have cohomological descent on the Zariski
site of affine schemes over k.

(iii) If P (Q) is already a presheaf on (schemes/k)ges.zar ((alg.spaces/k)ges.ct) then there is a natural
map P — E1(Resl.(P)) (Q — E2(Res2.(Q))). The first is a quasi-isomorphism for all presheaves that have
cohomological descent on the Zariski site of affine schemes. The second is always a quasi-isomorphism under
the same hypotheses as in (ii).

(iv) If P (Q) is contravariant for flat maps (for arbitrary maps), so is the extended presheaf E1(P) (E2(Q),
respectively). In fact, if f : X — Y is a flat map of schemes, there exists an induced map E1(P)y —
8



[+«(E1(P)|x) that is natural in the map f, where E1(P)y (E1(P) x) denotes the restriction of E1(P) to the
Zariski site of the scheme Y (X, respectively).) A corresponding assertion holds for the functor E2 and for
arbitrary maps if P is contravariant for arbitrary maps.

(v) All the above assertions holds for presheaves defined on the corresponding sites of smooth objects.

Proof. (i) This follows from the observation that filtered colimits (see [J-1] (6.1.6)) and homotopy inverse limits
preserve quasi-isomorphisms.

(ii) Observe that Resl, and Res2, are simply the appropriate restriction functors. Given any object U in
the category C' and any covering U = {U;|i} of it in C', there exists a natural map of cosimplicial objects in
S: I(U, P) — T'(cosko(U), P). Since this is natural in ¢/ one may take the direct limit of the constant system
{T'(U, P)|U} and of the direct system {I'(cosko(U),P)|U} as U varies in the category of all Zariski covers of
U by quasi-projective schemes over k to obtain the map P — Resl.(E1(P)). One may similarly take the
direct limit over all coverings of U by schemes in the directed system DCoversg scpms(Uet) to obtain the map
Q — Res2,(E2(Q)). The existence of the natural maps in (iii) also follows similarly.

To see that these are stalk-wise quasi-isomorphisms, one considers each case separately. In the first case it
suffices to show that if U is a quasi-affine scheme over k, the natural map I'(U, P) — H(Coversq,,.schms(U Zar); P)
is a quasi-isomorphism. This follows from [J-1](3.7.4)(ii) since P is assumed to have cohomological descent on the
Zariski site of U and the Zariski site of U (= a quasi-affine scheme over k) has finite cohomological dimension
with respect to abelian sheaves. In the second case observe that if U is a quasi-affine scheme over k, one
obtains from [J-1](3.7.5) a natural quasi-isomorphism H(DCoverss,schms(Uet),P) ~ He: (U, P). (Recall that
P is always additive by assumption.) Now it suffices to show that the natural map P; — liLn]HIet(U, P)is a
quasi-isomorphism where the last colimit is over all étale neighborhoods of any given geometric point Z of X.
Since the natural map H,. (U, P) — 0lgi(r_nn]HIet(U, T<nP) is a quasi-isomorphism by [J-1] (3.4.1) with ¢ =T, one
may now reduce to proving this for abelian sheaves where it is clear.

(iv) Let f : X — Y denote a flat map (arbitrary map). Given any cover U = {U;|i} of Y, the inverse image
71U = {Ul§X|z} is a cover of X. Even if U/ is an open cover by Zariski open quasi-affine schemes (an étale

cover by schemes) the inverse image need not satisfy the same condition, but may be refined to covers that are
by quasi-affine open sub-schemes (to étale covers by schemes, respectively).

Let V be an object in the site associated to Y and let U = V' xX. It is clear that we obtain an induced a map
Y

f*: H(CO’U@Tqu_schms(VZar);P) — H(Coversqpschms(UZar;P)
(f* : H(DCoverss.schms (Vet), Q@) — H(DCoverss.schms(Uet), @), respectively.)

Moreover, this map is natural in f. This essentially proves all the statements in (iv). Now the last assertion is
clear since the filtered direct limits in the definition of the extension functors involve only smooth objects. O

Remark. Observe that the extension functor E1, in fact, may be viewed as a functor
E1: Presh((gp.schemes/k) res.zar, S) = Presh((schemes/k)ges.et,S)-

This follows from the observation that if P is a presheaf on the site (¢gp.schemes/k)Res.zar, E1(P), by definition
is a presheaf on (schemes/k)ges.zar and hence is contravariant for all flat maps between schemes. Therefore,
E1(P), in fact, is a presheaf on the étale site of a given scheme (which has only étale maps as morphisms):
hence E1 does extend presheaves to the site (schemes/k)ges.et-

(2.6.1) Proposition. Let E' = E20FE1 : Presh((qp.schemes/k)ges.zar,S) — Presh((alg.spaces/k)ges.ct, S)-
(i) If X is an algebraic space locally of finite type over k, and P = P’ is a quasi-isomorphism of presheaves on
(gp.schemes/k)Rres.zqr both of which have cohomological descent on the Zariski site of any affine scheme over
k, one obtains an induced quasi-isomorphism H,,; (X, E'(P)) = He (X, E'(P")).

(ii) Let R' = Resl o Res2 : (alg.spaces/k)ges.ct — (qp.schemes/k)ges.zqr denote the composition of the
two restriction functors Res2 and Resl. Then the natural map P — E'(R'(P)) induces a quasi-isomorphism

H,, (X, P) = H, (X, E'(R'(P))) provided P has cohomological descent on the Zariski site of any affine scheme.

(iii) Any pairing P @ P' — P" of presheaves in Presh((gp.schemes/k)Res.zar,S) extends functorially to a
pairing E'(P) @ E'(P') — E'(P").
9
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(iv) The corresponding assertions hold for presheaves defined only on smooth objects.

Proof. (i) It follows from (2.5)(ii) that the induced map I'(U, E'(P)) — T'(U, E'(P")) is a quasi-isomorphism
for any quasi-affine scheme U over k. Therefore the map E'(P) — E'(P') is a quasi-isomorphism of presheaves
and hence the induced map H,; (X, E'(P)) = H, (X, E'(P')) is also a quasi-isomorphism.

(ii) follows immediately from (2.5)(iii) and (iii) follows readily from the definition of the extension functor
E'. (iv) follows as in the proof of (2.5)(v). O

(2.6.2) Corollary. Let & denote a fixed algebraic stack locally of finite type over k. Then there exist functors
Eg : Presh((gp.schemes/k)Res.zar,S) — Presh(Sres.smt,S)

Eg : Presh((schemes/k)ges.et; S) — Presh(G es.smt, S)
having the following properties.

(i) Ifu:U — & is an object in &,¢s sm¢ with U an affine scheme and P € Presh((gp.schemes/k)ges.zar,S)
has cohomological descent on the Zariski site of any affine scheme over &, the natural map Py, = Es(P)y,,
is a quasi-isomorphism. A similar conclusion holds for the second extension functor with respect to any U in
Gres.sme Which is a scheme.

(ii) Let P’ 2, P denote a map of presheaves on (schemes/k)res.zqr Which is a stalkwise quasi-isomorphism.
If Eg is the second functor, the induced map Fg(¢) induces a stalk-wise quasi-isomorphism on restriction to
the étale site of any algebraic space U in Gres. sm¢. Similar conclusions hold for the first functor if P’ and P are
presheaves on (gp.schemes/k)ges.et that have cohomological descent on the Zariski site of any affine scheme.

(iii) If P is a presheaf on (alg.spaces/k)ges that has cohomological descent on the Zariski site of any affine
scheme and Pg denotes the restriction of P t0 Gres.smi, there exists a natural map Ps — Eg(R'(P)) which is
a quasi-isomorphism on restriction to the étale site of any algebraic space in the site Gres.sme-

(iv) Let f: &' — & denote a flat map of algebraic stacks. Let P denote an object in
Presh((gp.schemes/k)res.zar, S) orin Presh((schemes/k) Res.et, S). Then there exists an induced map Eg(P) —
Rf.Es (P). In case P denotes an object in Presh((gp.schemes/k)zqr,S) or in Presh((schemes/k)et,S)
and f : & — & is an arbitrary representable map between algebraic stacks, there exists an induced map

(v) The same extension functors define extensions with similar properties at the level of the corresponding
unrestricted sites.

(vi) If & is a smooth algebraic stack, there exist extension functors
Eg : Presh((smt.gp.schemes/k)ges.zar,S) = Presh(Gpres.sme, S) and
Eg : Presh((smt.schemes/k)Res.ct,S) = Presh(Sres.smt, S) and

with similar properties. If, in either case, P denotes a presheaf on the corresponding unrestricted sites, the
extension functors send P to a presheaf on &p;.

(vii) If P ® P' — P" is a pairing of presheaves either in Presh((gp.schemes/k)ges.zar,S),
Presh((gp.schemes/k)ges.et,S) or the corresponding sites of smooth objects, there exists an induced pairing:
Eo(P) @ Ee(P') » Eo(P").

Proof. Recall G, mt has as objects all maps z : X — & that are smooth with X an algebraic space locally
of finite type over k. Moreover, the morphisms in this site are restricted to be flat maps. Therefore this is a
sub-category of the big site (alg.spaces/k)res.ct and any presheaf on the latter category defines by restriction
a presheaf on Gyes sme- Starting with a presheaf in Presh((gp.schemes/k)Rres.zar,S), the extension functor
E' in (2.6.1) now provides the required extension of P to a presheaf on (alg.spaces/k)pges.ct- To see this, let
P denote a presheaf on (gp.schemes/k)Res.zar- Now E1(P) is a presheaf on (schemes/k)ges.zar- Since P is
contravariant for flat maps so is E1(P) which shows E1(P) is in fact a presheaf on (schemes/k)Res.ct- Now
E'(P) = E2(E1(P)) defines a presheaf on (alg.spaces/k)Res.et- This defines the presheaf Eg(P) by restriction
t0 Sres.smt- The remaining properties (i) through (iv) are all clear for the first extension functor Eg from (2.5).
The second extension functor is similarly defined by just E2 and the corresponding properties are again clear
by (2.5). The fifth assertion is clear from the definition of the extension functors adopted above while the last
two are clear from the above propositions. O

10



3. (Lichtenbaum) Motivic cohomology vs. the higher Chow groups for smooth algebraic stacks

Much of the difficulty with the higher cycle complexes, for example, the difficulty with general contravariant
functoriality or the difficulty with moving lemmas, may be circumvented, at least for all smooth schemes, by
comparison with the motivic complexes. This follows from rather recent comparison theorems relating the
higher Chow groups with motivic cohomology. (See [Fr-S] and [Voev].) This comparison, may be extended from
smooth quasi-projective schemes to all smooth algebraic stacks using the extension techniques developed in the
last section. It has to be pointed out that such a comparison was not available even for all smooth varieties
until recently and therefore did not make it into the first version of this paper. We thank Spencer Bloch for
first bringing such a comparison to our attention. We will restrict to smooth algebraic stacks throughout this
section.

(3.0.1) For each integer ¢ > 0, let Z(i)[2i] denote the shifted motivic complex of weight i defined on
(smt.qp.schemes/k) zqr. Similarly let Z¢( ,.) denote the pre-sheafification of the codimension i higher cycle
complex on (gp.schemes/k)res. zar- If & denotes a smooth algebraic stack, we let Eg(Z(i)[2i]) and Eg(Z¢( ,.))
denote the extension functor

Eg : Presh((smt.gp.schemes)zqr,S) = Presh(Sgmt,S)

(see (2.6.2), where S = the category of all complexes of abelian groups as [J-1] (6.2.4)) applied to the above
complexes. The former will be called the (shifted) motivic complez of weight i on the stack &: by (2.6.2)(vi)
this defines a complex of sheaves on the smooth site &p¢. We will let

(3.0.2) HY™(6,1) = m(Homt (S, Es (2(i)[21])))
and call it the (Lichtenbauwm) motivic cohomology of the stack &. We define
(3.0.3) CHI(8,5,.) = Huy (B, S, Bo(Z%( ,.))), CH(&,2,n) = 7(Hoy (B,6, Bs(Z(,.))))
for an atlas z : X — &. Similarly we let
(3.0.3) CH!(X,.) = Hyz,, (X, EL(Z(. ,.)),i>0
where E1 : (gp.schemes/k)Res.zar — (schemes/k)Res.zar is the extension functor defined in (2.4.1).

Remark. An alternative to the above approach would be to extend the definition of the motivic complexes
from schemes to algebraic spaces in the obvious manner (i.e. define a sheaf Z.,(A™) on (smt.alg.spaces/k) as
in (A.3.1)) and use this to define the motivic cohomology of stacks. However, the use of the extension functor
in the above definition seems to simplify proving such comparison results as in (3.1) Theorem, below.

(3.0.4) Let & denote an algebraic stack of finite dimension. For each fixed non-negative integer i, presently
we define an additive presheaf Zém L (yn) on Gres st by Zé (U,n) = the free abelian group on
codimension i cycles on U x A[n] intersecting all the faces of U x Aln] properly, for each u : U — & in
Sres.smt and also connected. We let Z5 (1 ,.) = igBOZém_sm( ,.). (Similarly, if X is a scheme of finite

res.smt

dimension over k, we define an additive presheaf Z}}ZM(. ,n) for each i,n > 0 on the Zariski site Xz,.. We
let 2%, (- ,.)= CGZBOZ}'(ZM(. ,-)-)

(3.1) Theorem. (i) Let & denote a smooth algebraic stack and let z : X — & denote a given atlas. Then
there exists a quasi-isomorphism natural in &:

Hypmt (6, Es(Z(i)[2i])) ~ CHY(S, , .).
Therefore one obtains the isomorphism Hif[_”(6,i) ~ CHY(&,z,n) for all i > 0 and all n.

(ii) Let & denote a smooth algebraic stack of finite dimension and let  : X — & denote a given atlas. Then
there exists a quasi-isomorphism natural in &:
CHi(G,LE, ) ~ H, (BEGJ Zéres_smt( 3 ))
Proof. Throughout the proof we will let Z7, ... k) ( .,.) denote the additive presheaf U — Z*(U,.)
defined on the site (alg.spaces/k) ges.et by T(U, Z*( ,.)) = @2%(U,.). (Here 2*(U,.) is the higher cycle complex
2

of codimension ¢ cycles and U is connected.) Now the extension is provided by (2.6.1) and (2.6.2). One begins
11
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with the presheaves Zi( ,.), Z(i) on (smt.qp.schemes/k)ges.zar; (A.3.3) and (A.5) in the appendix show
that one obtains a natural quasi-isomorphism Z¥( ,.) ~ Z(i)[2i] on (smt.qp.schemes/k)ges.zar- Next one
applies the extension functor Eg from (2.6.2) to obtain a quasi-isomorphism Eg(Z¢( ,.)) ~ Es(Z(i)[2i]) of
presheaves on restriction to the étale site of any object U € Gres.5m¢ and for any smooth algebraic stack &.
Since we obtain a stalk-wise quasi-isomorphism Eg(Z%( ,.)) ~ Eg(Z(i)[2i]) (on restriction to the étale site of
any object U € G,¢5.5mt) we oObtain the quasi-isomorphism:

Het (B, 6, B (Z(i)[2i])) ~ Het (B, S, Es(Z( ,.)))

However, observe from (2.6.2)(vi) that the complex of sheaves Eg(Z(7)[2i]) is in fact a complex of sheaves on the
smooth site of the stack &. Therefore the comparison theorem in [J-1] (3.6.1) (see also [J-1](3.6.4)), shows that
the left-hand-side identifies with Hsp: (B2S, Ee(Z(i)[2i])) = Hemt (6, Ee (Z(4)[2i])) proving the first assertion.

Now it suffices to prove that the presheaf Es(Z%( ,.)) is quasi-isomorphic to the presheaf Z'( ,.),., 1> O
restriction to the étale site of any object U in &5 9m¢. However the presheaf Zém_mt( ,.) is the restriction of

the presheaf 2%, ...\ (

Res.et

(2.6.2)(iii) shows that the presheaf Eg (Z( ,.)) is quasi-isomorphic to Z%
site of any u : U = & in G ¢4 sme. This proves the second assertion. [
Remark. One also obtains a quasi-isomorphism in the case of (3.0.3): Hzq, (X, Z(i)[2i]) ~ Hzar (X, 2%, ( ,.))

for all smooth schemes X of finite type over the field k. However this is obvious from [Fr-S] section 11 or [Voev].
Moreover, one also obtains the quasi-isomorphism (for any smooth scheme locally of finite type over k)

Hgar (X, B(Z.(3)[2))) = Hzar (X, B1(Z'( ).

Once we define the motivic cohomology of the scheme X to be given by the left-hand-side, this provides the
isomorphism Hift_"(X ,i) = CHY(X,n) for any smooth scheme locally of finite type over k.

(3.2) Corollary. (Independence on the choice of the atlas)

,-) and the latter restricts to Z¢( ,.) on (smt.qp.schemes/k)ges.zar- Therefore

(,.) onrestriction to the étale

res.smt

The higher Chow-groups C H*(&, z,n) are in fact independent of the choice of the atlas and therefore intrinsic
to the stack for all smooth algebraic stacks. The higher Chow groups C H*(&,z,n;Q) are independent of the
choice of the atlas z for all stacks of finite type over the field k.

Proof. The first assertion is clear in view of the above theorem for all smooth stacks. Observe that if d is the
dimension of the stack &, the complex Zém_mt( ,-) is isomorphic to the complex Zf_rl?&mt( ,-). Therefore
it suffices to show the higher Chow groups CH, (S, z,n;Q) are independent of the choice of the atlas x for any
algebraic stack of finite type over k. We will prove the corollary in this case by Noetherian induction on the

stack.

Let & denote an algebraic stack of finite type over the given field and let z : X — &, 2’ : X’ — & denote
two atlases. Without loss of generality we may assume there exists a smooth surjective map a : X' — X over
S. In view of [J-1] (3.6.1)(iii), we may assume the stack is reduced and therefore one may find a proper closed
sub-stack &1 of & with 69 = & — &1 smooth and non-empty. Now one obtains the commutative diagram of
distinguished triangles:

CHZ(GI;:LJU’Q) — CHZ(GaxlaaQ) —— CHZ(60,$6,,@) E— CHZ(Glaxllaa@)[]-]

! ! ! !

CH;(6y,71,5Q —— CH;(6,7,;Q —— CH;(8o,%0,;Q —— CH;(&y1,z1,;Q)1]

Here z! = 2'x6; and z; = £x&;, ¢ = 1,2. The inductive assumption and the first statement of the corollar
i ) ) p y
&

S
show the first and last maps are quasi-isomorphisms; the last but one map is a quasi-isomorphism, since the
stack &g is smooth. Therefore the second map is also a quasi-isomorphism. O

(3.3) Remark. Therefore, for all algebraic stacks satisfying the hypotheses above, we may omit the atlas in
the definition of the higher Chow groups.

(3.4) Corollary (Contravariant functoriality for maps between smooth stacks)

Let f : ' — & denote a (possibly non-representable) map between smooth algebraic stacks. Then f induces
a map
12



f*: CHi(®,.)) - CH(&',.)

Proof. Recall the motivic complexes Z (i) are in fact contravariantly functorial on the category (smt.gp.schemes/k).
Therefore (2.6.2)(v) and (vi) show their extensions to stacks are also contravariantly functorial for all repre-
sentable maps between smooth stacks. This proves the corollary for representable maps.

Now we consider non-representable maps. Let f : & — & denote a possibly non-representable map of
algebraic stacks and let z : X — & denote an atlas for &. Let X' = Xx&'; since f is not necessarily
&

representable, X' need not be an algebraic space. Let X" — X' denote an atlas for the stack X' and let the
composite map X" — X' — &' be denoted z”. If B,& (B,»&") denotes the classifying simplicial space for &
associated to z (&' associated to z', respectively), f induces a map Bf : B,»&' — B, of simplicial spaces.
(2.5)(iv) shows that one obtains a map E(Z(i)[2i]) ,e — Bf«(E(Z(i)[2i]) B,, &) of presheaves on B;&c;. This
induces a map E(Z(i)[21])5,6 — R(Bf)«(E(Z(i)[21])B,, &) of presheaves on B;&,;. Taking hypercohomology
on the site B, &, provides us with the required map f* : CH(&,.) - CHY(&',.) O

We proceed to compare our higher Chow groups for quotient stacks associated to the action of linear algebraic
groups on smooth quasi-projective schemes with corresponding Totaro-Edidin-Graham equivariant higher Chow
groups.

(3.5) Theorem. Let G denote a linear algebraic group acting on a smooth quasi-projective scheme X so
that the action is G-linearized, i.e. X admits a G-equivariant locally closed immersion into a projective space
onto which the G-action extends to a linear action. Then there exists an isomorphism

CH*([X/G],;Q) = CHy(X, ;Q)

compatible with restriction to open G-stable sub-schemes of X and preserving the ring structures. (Here
CH}(X,.;Q) denotes the G-equivariant higher Chow groups as defined in [EG] re-indexed by codimension.)

Proof. We will first show that one may reduce to the case G is a torus (in fact a split torus.) (This will
occupy the first half of the proof.) Let H denote a closed algebraic subgroup of G. By faithfully flat descent
one may establish an isomorphism between the stacks:

(3.5.1) [X/H]&[(X x G)/(H x G)]i[(XEG)/G].

The first (second) is induced by the projection to the first factor (the map sending (z, g) € X x G to the class of
(z,g9) in X ;<I G, respectively). Clearly these are compatible with restrictions to open G-stable subschemes of X.

Next assume that H is a normal subgroup with G = G/H a finite group. Now the obvious map X xG — X
H
(sending (z,g) ~ (zoh™1, hog) to zog) induces a map [(XEG)/G] — [X/G] which will be a principal G = G/H
bundle. Therefore, by [J-1] (3.7.11), and (3.5.1), (3.2) above it follows that

(3.5.2) CH*([X/H], .;Q) = CH*([X/G],.;Q)¢%

where the isomorphism is compatible with restriction to open G-stable subschemes and with the given ring
structures. On taking H = G° = the connected component of the identity, this reduces to the case when G
is connected. If R,(G) is the unipotent radical of G, G = G/R,(G) is reductive. The homotopy property of
the equivariant higher Chow groups and our higher Chow groups enables one to now reduce to the case of a
reductive group action. Moreover, since the chosen maximal torus splits over some finite Galois extension of
the ground field k£ and we are working with Q-coefficients, one may assume without loss of generality that T is
in fact split. (See, for example, [J-1] (3.7.11).)

Let T' denote a fixed maximal torus in G, N(T') = Ng(T') = its normalizer in G and W = N(T)/T = its
Weyl group. By (3.5.1), we obtain the isomorphisms of the quotient stacks (where N(T') acts diagonally on
X x G in the last term):

[X/N(T)] = [(X x G)/(N(T) x G)] ~ [(XN?T)G)/G]-

Therefore, (see (3.2)) the higher Chow groups, CH*( ,.;Q) of these stacks are also isomorphic. Moreover,

CH*([(X x G)/G],Q) 2 m(H (EGX(X x G);Q)). One has anatural map 7 : EGx(X x G) - EGxX
N(T) G N(T) G N(T) €]

13



ROY JOSHUA

1

induced by the map 7y : X X )G — X, sending (z,9) =~ (zomn ',nog)toxog. Clearly each 7, is flat (in

N(T
fact, smooth) so that one obtains the second of the following two natural maps

(3-5-3) Z:EGEX)"( 7';(@) — Rﬂn*W:,(Z(*EGéx)n( 7-§Q) — RW"*(ZFEGE(X z()G))n( 77(@))

(Here Z*(Y,.; Q) denotes Z*(Y,.)®Q for any scheme Y.) Clearly these maps being natural are compatible with
Z

restriction to open G-stable subschemes of X and also with the obvious multiplicative pairings. We proceed to
show the composition above is a quasi-isomorphism for each n > 0: on taking hypercohomology (in the sense
of [J-1] (3.6.4)), this will prove the isomorphism

(3-5.4) CH*([X/N(T)], Q) = CH*([(XNfT)G)/GL-;Q) = CH*([X/G],5Q)

compatible with restriction to open G-stable sub-schemes of X and also with the given ring structures.

We will begin with the (Kunneth) quasi-isomorphism valid for any quasi-projective linear variety V (in the
sense of [J-3]) and any quasi-projective scheme X:

(3855) Z:(Vx X,) = 2°(V,) &  Z(X,.).
Z*(Speck  k,.)
This follows from [J-3] Theorem 4.5. The Bruhat decomposition proves any connected reductive group is linear.
Therefore, (3.5.5) applies to any connected reductive group G in the place of V. In general, any linear algebraic
group G is the disjoint union over its connected components, which reduces to the case G is connected. In this
case, the quotient G/R,(G) is connected reductive where R, (G) is the unipotent radical. Now the homotopy
property of the cycle complex, therefore, proves (3.5.5) holds for any linear algebraic group G in the place of V.

Replacing X by G™ x X (and letting N(T') act on G™ x X by its right-action on X), one may readily
reduce to proving the composition of the maps in (3.5.3) is a quasi-isomorphism for n = 0. i.e. It suffices
to show that the map Z%( ,.;Q) — Rmo.(Z%  ¢( ,Q) is a quasi-isomorphism. The map my and the

N(T)

obvious projection pry : X >(< )G — N(T)\G induce a map ¢ : X >(< )G — X x N(T)\G which one may verify
N(T N(T

readily is bijective on points and hence purely inseparable. Therefore, it suffices to prove that Z%( ,.;Q) —
Rpr1u(Z% y (n(rna)( >3 Q) is a quasi-isomorphism where pry : X x (N(T)\G) — X denotes the obvious
projection.

Next observe that the formula

(355)0 Z(ND\G) x U5 Q 2 2 (NING5Q)_ & Z*(U,4Q)
* (Speck  k,;Q)

holds. To see this observe that T\G is a linear variety so that formula (3.5.5) holds for T\G in the place of V.
Next observe T\N(T) —» U x (T\G) — U x (N(T)\G) is a principal bundle with fiber W = T\N(T) for any
scheme U. Therefore, (see [J-1] (3.7.11)), one obtains the formula in (3.5.5)g by taking the W-invariants from
the corresponding formula with T'\G in the place of N(T")\G which holds for all U. On the other hand, B\G is a
projective smooth linear variety, (in fact stratified by affine spaces) so that CH*(T\G, .;Q) =2 CH*(B\G, .; Q) =
CH*(B\G,0; Q)%CH *(Spec k,.;Q). (This follows from the same argument as in [J-3] ; see also [J-4] Theorem

(3.1).) Therefore, CH*(N(T)\G, .;Q) = CH*(B\G,O;Q)W%CH*(Spec k,;Q) = CH*(Spec k,.;Q), since
CH*(B\G,0; Q)W = Q. It follows readily from these observations that Rmo.(Z2%  o( ,5Q) ~Z%( ,5Q)
and therefore that Z:EGéX)n( , Q) ~ Ry (ZFEGE(XNTT)G))"( ,Q)) for eac}jlv(;)z 0. Therefore, we obtain
the isomorphism in (3.5.4).

By (3.5.2), one obtains the isomorphism:

(3.5.6) CH*([(X/N(T)}, 5Q) = CH*([X/T], sQ" .
It is shown in [EG] Proposition 6, that

(3.5.1)CHL(X, Q) = CHAX, ;QW.
14



(Strictly speaking this is shown only for the special case G is connected and reductive with a split maximal torus
T and also not for the higher Chow groups; however, as in the arguments above, one may readily reduce the
case of a general algebraic group to the case of a connected reductive group. The extension to the higher Chow
groups is clear.) From the definition of the equivariant higher Chow groups in terms of schemes approximating
EGxX and ET ¥X (through a certain range), it is clear this isomorphism is compatible with restriction to

G
open G-stable sub-schemes of X and also compatible with the ring structures.
In view of (3.5.4), (3.5.6) and (3.5.7), we reduce to showing that there exists an isomorphism
(3.5.8) CH*([X/T],;Q) = CHy(X, Q)

compatible with restriction to open T-stable subschemes of X and the given ring structures on either side.

For this we will identify the term CH%([X/T],2q — p; Q) on the left-hand-side with the motivic cohomology,

HP ([X/T),.;Qq)) = H%(ETxX,.;Q(q)[p]) where Q(q) denotes the rational motivic complex of weight gq. One
T

identifies the latter with Homp(spec &) (ET%X , K(Q(q)[p])) where H(Spec k) denotes the A'-homotopy

category of smooth schemes over Spec k and K(Q(g)[p]) is the simplicial sheaf corresponding to the motivic
complex Q(q)[p]- (See [M-V].) (To see this first observe that the motivic complex Q(g) is homotopy invariant,
showing K(Q(g)[p]) is A'-local. Let SimplSh(Spec k)nisar denote the category of all simplicial sheaves on
the big Nisnevich site of smooth schemes over k provided with the simplicial model structure where cofibrations
(fibrations, weak-equivalences) are monomorphisms (A!-fibrations, A!-weak-equivalences, respectively) as in [M-
V] (3.1). Since each term, (ET¥X )n = T™x X is a smooth quasi-projective scheme, one obtains a natural quasi-

isomorphism {ELi (BT xX)a Q@Ipl)|n} = {Evia (BT xX)a Q@Ip)In} = {Map(ETXX)n, K(Q@) D)}
where Map denotes the bi-functor

SimplSh(Spec k)%’is,Al x SimplSh(Spec k)nisar —+ (simpl.sets),

sending (M, N) to Map(M,N),, = Hom(M x A[n], N). Taking the homotopy inverse limit over A and taking
the homotopy groups, one obtains the required isomorphism.)

We proceed to consider the right-hand-side of (3.5.8). Let T = G, and let Uy, = A*® — 0; there is a
natural principal G,,-bundle Uy, — P>°. The term on the right-hand-side of (3.5.8) (in bi-degree ¢ and 2¢q —
p) now identifies with CH?((Ux)"xX,2q — p; Q). (For each fixed ¢ and p, CH?((Ux)"xX,2q — p; Q) =

T T

CH((U N)">T<X ,2q — p; Q) if N is sufficiently large and Ux — PV is the corresponding G,,-principal bundle.)
Therefore, one may identify this with Hompg(spee 1) ((Uso)” x X, K(Q(q)[p])) as well.
T

We proceed to show that the two simplicial sheaves ET xX and (Us)™xX are isomorphic in the homotopy
T T

category H(Spec k) and that this isomorphism is natural in X. First it follows from [M-V] section 4, Propo-
sition (3.7), that the two simplicial sheaves (P°>°)™ and BT are naturally isomorphic in the homotopy category
H(Spec k). The required isomorphism may be obtained readily from this: however, here are some details. For
this we consider the simplicial sheaf (ET x X) ¥Uoo where T acts diagonally on ET x X. One sees readily that

the natural map p; : (ET x X )¥ U & X ; U is a local fibration with fibers the contractible simplicial sheaf

ET (in the sense of [M-V] p. 51). (Recall that a local fibration is a map of simplicial sheaves that is a fibration
in the usual sense at each stalk.) Therefore, p; is a weak-equivalence, hence an A'-equivalence (see [M-V] p.
71) and therefore an isomorphism in the homotopy category H (Spec k).

Let ps : (ETxX)xUy — ET xX denote the obvious projection: it suffices to show this is also an isomorphism
T T

in the homotopy category H(Spec k). First one observes that p, is also a local fibration with fibers Uy, and
that if Ex 41 is the Al-resolution functor (as in [M-V] p.110), then it sends local fibrations to A!-fibrations.
(See [M-V] p. 79. A map of simplicial sheaves is called an A'-fibration if it has the right-lifting property with
respect to maps which are monomorphisms and A!-weak-equivalences. Since each map which is a stalk-wise
weak-equivalence is automatically an A!-weak-equivalence, every A'-fibration is automatically a local fibration.)
Therefore, applying this functor to p» produces an Al-fibration ph : E' — B’ with fiber F' = Ex 41 (Uy), since
Uw is the fiber of ps. It follows that F’ is A'-weakly-equivalent to Us,. Now recall from [M-V] p.134 that U,
is contractible in the homotopy category H(Spec k). Therefore, F' is also contractible in the A'-homotopy
category, showing that p) and hence py is an isomorphism in the homotopy category H(Spec k).
15
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It follows that we obtain an isomorphism
CH*([X/T], ;Q) = CH;(X, Q)

preserving the ring structures and compatible with restriction to open T-stable subschemes. (Observe that the
ring structures on these groups are induced from the same product structure on the motivic complexes in the
homotopy category H(Spec k).) This proves the theorem. O

Remark. As a further application of the comparison theorem, (3.1), we will also establish higher Chern
classes for smooth stacks with values in our higher Chow groups and an intersection pairing for all smooth
stacks. These are discussed in sections 4 and 5, respectively.

4. Homotopy property, Chern classes and the projective space bundle theorem

(4.1) Theorem. Let & denote an algebraic stack and let 7 : £ — & denote a vector bundle of rank 7. Let
z : X — & denote an atlas for & and let z' : X ég — & denote the induced atlas. Then one obtains the

isomorphisms for each ¢ > 0:
CH,.(8,z,.) = CH.,..(&,2,.)
. Bm Gn et B lgn et

Proof. Let n > 0 be a fixed integer and let Z, "™ ( ,.) (Zx=""™*( ,.)) denote the presheaf on B,;&y, ¢
(Bgr&n,et, respectively) which are the restrictions of the corresponding presheaves on the restricted smooth sites
of & and & respectively. Observe that one obtains a natural map Zf”e"’”( ) — RW*W*ZE“”G"’”( ,.)- Since
7 is flat of relative dimension r, it induces a map of presheaves 7* Z.* 6""”( ) — z? f'f"’”( ,.). Combining
the above maps, we obtain the map

Z*Bmgn,et( ’.) — Rﬂ'*Z*Bm’gn,et( ,.)

of presheaves on B, &y, ¢;. In order to prove the theorem, it suffices to show that this map is a quasi-isomorphism.
By (the trivial smooth-base change), it suffices to prove this when & is replaced by a scheme u : U — (B,6),
in the site B;&y . This is clear by the homotopy property established for the higher Chow groups in [BI]
Theorem (2.1). O

Next we proceed to construct Chern classes. For the cycle complex we will first construct only ordinary
Chern classes defined on the Grothendieck group of vector bundles of stacks. Next we extend these to higher
Chern classes defined on the higher K-theory of stacks and taking values in cohomology theories of stacks that
are defined by complexes of sheaves that are sheaves on the big site (alg.stacks/k)smt. The difficulty of doing
a similar construction for the higher cycle complex comes from the fact it defines only a (pre-)sheaf on the
corresponding restricted sites. However, as we show, hypercohomology with respect to the higher cycle complex
may be replaced by hypercohomology with respect to the motivic complexes provided one restricts to smooth
objects. This observation enables us to obtain a theory of higher Chern classes for smooth stacks with values in
our higher intersection theory.

(4.2.1) Let £ denote a vector bundle of rank r on an algebraic stack & of dimension d and let Proj(£) denote
the associated projective bundle stack over &. Associated to Opyj(g)(1) now one may define a canonical cycle
Ve € Zgrr—2(Proj(€,0)) in the usual manner. Observe that if z : X — & is a map from an algebraic space and
z*(€) is the associated vector bundle on X, z*(¢g) = 1,+¢ is the corresponding divisor in Z,(Proj(z*£),0).
Now it is easy to see that intersecting with the divisor 1¢ defines a map ov¢ : Z,(Proj(€,.) = Z,-1(Proj(&,.)
for each n. (To see this proceed as follows: let z : X — & denote an atlas and let p; : X éX — X denote

the projection to the i-th factor. If Z is an integral sub-stack of & of dimension n, pf(z*(Z) o z*(¢p¢)) =
pia*(2) o pj (™ (). Therefore, pi(z*(Z) o 2" (Y¢)) = p5(2”(Z) o z*(v¢)). It follows that z*(Z) o z*(¢¢)
descends to a class in Z,,_1(Proj(£),.) thereby defining the operation ot¢.)

(4.2.2) Theorem. Let G denote an algebraic stack of finite dimension and let 7o : £ — & denote a vector
bundle of rank r. Let 7 : P(£) = Proj(£) — & denote the associated projective space bundle. Let z: Z — &
denote a fixed atlas for & and let 2’ : zxProj(€) denote the induced atlas for Proj(£). Let Op(g)(1) denote

S

the tautological bundle on P(£). Then the map ®_CH.(6,z2,.) = CH.(P(£),#',.) sending (ao, -..,ar—1) to
¥;m*(a;) o1t is an isomorphism. The corresponding statements hold when X is any scheme of finite dimension
over k and £ is a vector bundle of rank r.
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Proof. Since the proof of the second assertion is entirely similar we will skip it. Let n > 0 denote a fixed integer.
Observe that the vector bundle £ pulls back to a vector bundle over each object z : X — (B.8),, in the site

B.S, et Let Zf’e"’”( ,) (Zf"P(E)"’”( ,-)) denote the restriction of Z,( ,.) on B,Gy ¢t (ByP(E)n,et) as
before. Now it suffices to show that the map:

B.Gn et B,iP(E)n,et
@ 2BSwe )5 Rrz2PPEme
0<i<r—1

given by (ag,...,a,—1) = ¥;7*(a;) o ¥k is a quasi-isomorphism. In order to establish this, it suffices to work
locally on the site B, &, ¢: i.e. one may replace & by a scheme X that belongs to the site B, &, ¢. In other
words, we reduce to proving the theorem when the stack & is replaced by a scheme. Now the result follows as
in [Bl-1] Theorem (3.1). O

(4.2.3) Corollary. Assume the situation of (4.2.1). Then one obtains a push-forward map
e : CHL(P(E),7,.) = CH.(6,z,.) if £ is a vector bundle over the stack &

and a push-forward map
7w : CHL(P(E),.) = CH.(X,.) if £ is a vector bundle over the scheme X.

Proof. We define m, as the projection onto the 0-th summand. 0O

(4.3.1) With the above theorem at our disposal we immediately obtain the covariance of the integral higher
Chow groups with respect to maps f : & — &' of algebraic stacks that are strongly projective, i.e. maps that can
be factored as the composition of a closed immersion followed by projection from a projective space Proj(€),
where £ is a vector bundle over the stack &'.

(4.3.2) Proposition(Base-change). Consider the cartesian square

with & an algebraic stack of finite dimension, f flat of relative dimension m and p strongly projective. Let

z: Z — & denote a given atlas for & and let 2’ = 2x&', Z = 2x& and 7' = 2x&' denote the induces atlases.
S [¢] S
Now we obtain the commutative square:

CHpym(6',2';n) —2— CHpym(S',2';n)
f*T Tf*
CH(&,z,n) —2— CHy(S,zn)

More generally, the same conclusion holds modulo torsion, if p is any proper representable morphism. A
corresponding assertion holds in case the above square is one of schemes over k.

Proof. As before we will skip the case of schemes. We will consider the case when p is a closed immersion first.
Let n > 0 denote a fixed integer. In this case it suffices to prove the commutativity of the diagram

— E_net — Ban,et
RES .28 ) 012

|

r— Bzén e *
Rf.pLf 'z, < ,m) f
r|
B, &, B.1G, .
Rf*p;Z*+m ' t( ,TL) p'* Rf*Z*+m !t( ,TL)

of presheaves. One may readily reduce the commutativity of the above diagram to that of the square:
17
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ZESn (T (V)n)  —— 2O (Vin)
(4.3.2.%) f*l lf*
Elin 0T V) m) s 25 (N (V)n)

*+m *+m
where V' belongs to the site B,&, ¢, f71(V) = 6'6>;V, p~ (V) = @éV and p' 1 (fY(V)) = G'g FHv).

This is clear from the usual properties of the cycle complex. (See [J-1] section 4 for example.) This completes
the proof when p is a closed immersion. The proof when p is a projection from P(£) follows immediately from
(4.2.2).

Next we consider the case when p is an arbitrary proper and representable morphism. (3.6.7) Proposition of
[J-1] shows that the higher Chow groups with rational coefficients may be computed using hypercoverings. (4.6.3)
Theorem in [J-1] in fact shows that p induces a push-forward map p.. One may now reduce the commutativity
of the square in the Proposition to the commutativity of the square (4.3.2.*%) above. (Observe that if V = U,, ,,,
for a hypercovering U, o« — B, &, the corresponding squares in (4.3.2.%) as n varies, are compatible with respect
to the face maps of the simplicial space AU, ,.) O

(4.3.3)Definition. (Chern classes) Let £ denote a vector bundle of rank r on a smooth algebraic stack &
of dimension d. We define the i-th Chern class of £ to be the element of CHy ;(6,0) defined as follows.
Observe from (5.1) (see below) that CH*(6,0) = CH,(G,0) has a ring structure. Now (4.2.2) shows that
CH*(Proj(£),0) is a free module of rank r over CH*(&,0) with 1,..., 9% ! as a basis. Therefore, we may
define ¢;(€) € CHy—;(6,0) so that 37_o(—1)7*(c;(£)) o 5% = 0. (One may readily verify these pull back
under representable flat maps.)

Next we proceed to define higher Chern classes in cohomology theories that are defined by complexes of
presheaves (in the sense of [Gi-1] section 1) on the big smooth site of all algebraic stacks over k. Observe that
the higher cycle complex being contravariantly functorial only for flat maps, is not a presheaf on this site.

(4.4.1) Let (stacks/k)sm: denote the big smooth site of all stacks locally of finite type over k and let T'(7)
denote a complex of sheaves on this site for each integer i. Alternatively let (smt.stacks/k)sm: denote the big
smooth site of all smooth stacks locally of finite type over k and let I'(¢) denote a complex of sheaves on this site
for each integer i. Now I'(7) defines by restriction a complex of presheaves on the quotient stack [Spec k/GL,,].
(Since this stack is also smooth, one may consider either of the above two situations.) The classifying simplicial
scheme for this stack with respect to the atlas Spec k is B.GL,. The pull-back of T'(i) to B.GL,, will also be
denoted by T'(7).

(4.4.2) Let C denote either the Zariski site or the étale site of B.GL,,. We will next make the assumption
that there exist universal Chern classes C¥ € HE (B.GLy;T'(i)), 1 < i < p. Here d is an integer depending on
the complex T'(7).

One may consider the following examples of the above set-up. In each case & will denote an algebraic stack
locally of finite type over k and I'(i)|s will denote the restriction of I'(é) to the smooth site of &.

(4.5.1) Algebraic de Rham cohomology. I'(i)je = (g, for all i > 0 and = 0 for i < 0. Here QF , denotes
the de Rham complex on &. (Here d = 2.)

(4.5.2) Gersten complez. T'(i)|g = m;(K( ))|s,4>0and =0 for i <0. (Now d = 1.)

(4.5.3) Motivic complexes for (smooth objects). Here I'(7) = Z(7)[2¢] = the (shifted) motivic complex of weight
1 considered in the appendix.

In all of the above cases, the universal Chern classes live in the Zariski hypercohomology of B.GL,,.

(4.5.4) Now we will start with a complex I'(¢) of sheaves so that there exist universal Chern classes
¢; € H2(B.GL,,T(i)). (Therefore, d = 2 here.) As examples of the complexes I'(i) we may consider the
following. Fix an integer ! and let (alg.stacks/Z[1/1]) denote the category of algebraic stacks locally of finite
type over k with [ invertible in the structure sheaf. Let T'(¢) = u;(¢) = the sheaf of I-th roots of unity twisted
i-times. If A is any abelian group, let A[0] denote the obvious complex of sheaves concentrated in degree 0
where it is the constant sheaf associated to A. Now one may also consider the complex of sheaves I'(i) = A[0]
for all 7.
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For example let G denote a smooth group scheme acting on a scheme X locally of finite type over a field k.
Observe that the smooth cohomology of the stack [X/G] with respect to any of the above sheaves may identified
with the equivariant cohomology of X: therefore our constructions provide higher equivariant Chern classes
with values in equivariant étale cohomology for smooth group scheme actions.

(4.6.1) For each scheme (smooth scheme) X, let hx denote the contravariant functor from the category
(schemes/k) ((smt.schemes/k), respectively) to sets represented by X. Let P denote a presheaf of abelian
groups on the above category. Then the Yoneda lemma provides the isomorphism I'(X, P) =2 Hom(hx,U(P))
where Hom denotes the (external) Hom in the category of presheaves of sets on (schemes/k) ((smt.schemes/k),
respectively) and U is the forgetful functor sending an abelian presheaf to the associated presheaf of sets.
Let Zhx denote the contravariant functor from (schemes/k) ((smt.schemes/k)) to abelian groups defined by
Zhx(Y) = Z(Hom(schemes k) (Y5 X)) = the free abelian group on Hom(schemes/k) (Y, X)

(= Z(Hom(smt.schemes/k)(Y, X)) = the free abelian group on Hom(gm¢.schemes/k) (Y, X), respectively). Now one
also obtains the isomorphism

(4.6.2) T(X, P) = Hom(Zhx, P)

where Hom on the right denotes the (external) Hom in the category of abelian presheaves on (schemes/k)
((smt.schemes/k), respectively).

Therefore, for each fixed [ > 0, p > 0,
(4.6.3) H¢ (B,GL,, P) = T(B,GL,,GP) = Hom(Zhp,gLp, GP)

where C denotes either the big sites (schemes/k) zqr, (sSchemes/k)er, (smt.schemes/k) zqr or (smt.schemes/k)et
and P denotes a presheaf of complexes of abelian groups on the above site, GP is the Godement resolution as
in [J-1](3.3.1) and Hom denotes the external Hom in the category of all (unbounded) complexes of abelian
presheaves on the above site. (Observe that hypercohomology computed on the big site (schemes/k)zqr or
(schemes/k)et is isomorphic to the hypercohomology computed on the corresponding small site.) Recall that for
each fixed I, Zhp,gr, is a contravariant functor from (schemes/k) (or from (smt.schemes/k)) to abelian groups
which we may imbed in the category of all simplicial abelian groups. Therefore, one may view {Zhp,gr,|l} as a
contravariant functor from (schemes/k) ((smt.schemes/k)) to the category of double simplicial abelian groups.
Now the homotopy colimit of the double simplicial abelian presheaf {Zhp,gL,|l} may be identified with its
diagonal; since the above double simplicial object is constant in one direction, this is simply the same simplicial
abelian presheaf {Zhp,r,|l}. This simplicial abelian presheaf may be identified with the corresponding chain
complex: we will denote this presheaf on (schemes/k) (or on ((smt.schemes/k), respectively) by

(4.6.4) Zhp.gr,.

Now observe that Hom(Zhpgr,,GP) = T'(BiGLy, Hom(ZhpcL,,GP)) where Hom is the internal Hom
in the complete pointed simplicial category of all complexes of abelian presheaves on the above site, i.e.
(schemes/k) zar , (schemes/k)ct, (smit.schemes/k) zqr or (smt.schemes/k)e;. Therefore [J-1](6.1.5) shows that
on taking the homotopy inverse limit of the cosimplicial object {H¢ (B;GL,, P)|l} one obtains

I'(B.GLy, Hom(Zhp.GL,,GP)).

Next let T'(i) denote a complex as in (4.4.1) and let T'(i)schemes/r denote its restriction to the category
of all schemes (locally of finite type) over k with universal Chern class C? e HZ (B.GLy, Gl schemes/k (1) =
HY (B.GLy,I(i)[di]) = mo(I'(B.GLy, Hom(Zhp.a1,,T(i)schemes/x|di])). The above discussion shows that the
universal Chern class C? corresponds to a map

(465) CAT : Zh’B.GLp — F(i)schemes/k[di]

in an appropriate derived category of presheaves on (schemes/k). Alternatively if I'(¢) denotes a complex as
in (4.4.1) and let T'(¢) spt.schemes i denote its restriction to the category of all smooth schemes locally of finite
type over k, the universal Chern class C¥ will correspond to a map

(465), CA? : ZhB-GLp - F(i)smt.schemes/k[di]
in an appropriate derived category of presheaves on (smt.schemes/k).

The stability of the universal Chern classes as p increases shows that the following diagram
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(4.6.6)ZhB_GLP or F(i)schemes/k[di]
LZhp.ar,,,

of presheaves commutes in the appropriate derived category.

Let Zhp.gr, and I'(7) denote the corresponding presheaves defined on &,y similarly. (Observe that the
above presheaves are contravariant for all maps, and therefore define presheaves on Sy, in fact.) By pull-
back to (B;&)sm: (and restriction) we obtain presheaves on (B,&).; which will be denoted Zhp gL, B.G.,
and I'(i) B, s,, (or just I'(7) itself). Now we apply one of the extension functors in (2.6.2) to obtain functorial
extensions of the maps in (4.6.5) to the functorial extensions of the above presheaves to the site S,y for any
algebraic stack &. i.e. We obtain:

E(CP?) . .
E(‘B(ZhB.GLP) —_— E@(F(l)schemes/k[dl])

I |

Zhp.cL L'(i)[di]

PBg Gt

Observe from (2.6.2)(iii) that the natural map I'(4)schemes/k — Ee(T() schemes/x) 18 @ quasi-isomorphism on re-
striction to the étale site of any algebraic space in Ggpy;- (Clearly both of the above assertions hold for complexes
I'(i) that are only defined for smooth objects provided the stack & we consider is also smooth.) Therefore the
right vertical map in the above diagram is a quasi-isomorphism: we will therefore identify Ee (T (4) schemes/x [di])
with I'(¢)[di]. Therefore we obtain the map

(4.6.7) C? : Zhp.ar — T(6)[di]

pBZGEt

(in an appropriate derived category) of presheaves on (B;&).;. Moreover, if GL, — GL,, is the obvious
closed immersion, sending GL, to the first p rows and columns, the diagram

ZhB.GLp, e, _ r(i)(di]
\ 4’
LhB.GL, g .,

commutes in the appropriate derived category of sheaves on B, &, since the diagram (4.6.6) commutes. Observe
also that if f : &' — & is a flat representable map of algebraic stacks, one obtains a commutative square:

Rf.(CT) AT s
Rf*(ZhB-GLpB ,glt) —_— Rf*(r(l)[dZ]Bmlglet)
(4.6.8) f*T T I
c? T 7+
ZhB.GLyy, ¢, — L(i)[di]B.s..

(Here z : X — G is an atlas and z' : X' — &' is the induced atlas.) This follows from (2.6.2)(iv).

Next observe that Hy,,(S,I(i)) = Het (B, 6,T(4)). Therefore, taking the hypercohomology on (B;&)et,
taking the resulting homotopy groups and letting m — oo, we obtain maps

(4.6.9) Ci(n)" : m,(Het (B2S, Zhp.cL(B.&)..) = n}gnooWn(Het (B+®,ZhB.GLm(B,s).,))

— 7 (Het (B2 S, T(i)[di])) = n—ai(Hyme (S, T(3))) = HE-™(&,T(3))

If one considers Zhp g1, as a presheaf of simplicial abelian groups instead, the obvious map hp.gr — Zhp.gL
of simplicial presheaves factors through the Bousfield-Kan integral completion Z(hp.gr). Next we observe
the weak-equivalence of simplicial presheaves

(4.6.10) K ~Z X ZoB.GL ~ lim Z X ZxB.GLy,

m—00
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on the site (B;&)e: (and also on the Zariski site of any scheme X). Here K is the presheaf of spaces defined
by U — K(U) which is the K-theory space of the symmetric monoidal category of locally free coherent sheaves
on U. It is shown in [Gi-1] Proposition (2.15) that if X is a Noetherian scheme of finite Krull dimension, one
obtains a weak-equivalence K(X) ~ Z X ZB.GL(Ox) which is natural in X. Since both sides commute with
filtered colimits in X, it follows readily that one obtains the quasi-isomorphism of the presheaves in (4.6.10) on
the site (B;&)¢:. Moreover, the two presheaves Z..hp.gr and ZB.GL are identical.

Now one obtains a natural map K(6) — He (B, 6,K) ~ H,(B,;6,Z x ZoB.GL). Since the C;(n) are
constant, on the factor Z, it follows that we obtain Chern classes:

(4.6.11) C;(n) : T, (K(6)) — H¥—(&,T'(d)), if & is any algebraic stack over k.

smt

This is defined as the composition

T (K(6)) = 7 (holimK (B, 6)) — 7o (Hey (6, K)) = (et (Bs, 7 X ZooB.GL))

Ci(n)' i—n .
= T (Het (Bes L X Zhp 6L, e, ) —bs HE ™ (8,T(3))
These are the required higher Chern-classes. Since both the presheaves hp. ¢, and I'() are in fact presheaves on
the big site (alg.stacks/k)sm: it follows readily that the above Chern classes pull back under any representable
map of stacks. If n = 0, we will let the classes C;(0) be denoted simply by ¢;. It follows that if £ is a vector
bundle on the algebraic stack &, one has Chern-classes ¢;(£) € HY , (&;T(1)).

(4.7) Next we outline how to define a Chern-character map 7,(K(&)) — ©oH*"(&,I'(i))®Q as in [B]]
i z
section 8 (or [Sou] section 7). For this we start with classes ch? ¢ HE (S, F(i))(%zb(@ instead of the classes C? in

(4.4.2): these are defined as in [SGA] 6, Exposé 0, appendix. Now one applies the above arguments to obtain
maps

ch; : 7 (Het (B,S,0 x ZoB.GL)) — ]I-]Id"_"(G,F(i))%Q

smit

One defines ch : 7, (He (B, 6,0xZoB.GL)) — ¢H% (S, F(i))%@ as ®ch; . Finally observe that 7, (He (B, S, Z x
K3 2
ZB.GL)) = @an (Het (Bz S, r X ZB.GL)). Therefore one defines the Chern-character
T €

ch : Tp(Hey (B, S, 7 X LsoB.GL)) — @Hg;;t"(e,r(z'))%(@
K3
by defining it to be r + ch on the rank 7 component. Finally composing with the obvious map 7, (K(&)) —
Tn(Het (B S, Z X ZB.GL)) we obtain the Chern-character

(47.5) ch: m (K(8)) — SHy" (8,1(0)20Q

(4.7.1) Since the map ch is natural in G, one may readily verify that it (not ch) becomes an isomorphism on
tensoring the left-hand-side with Q. One may define the chern character with values in H-"(6&,T'(i)®Q) in
i z

smt

a similar manner.

Remark. Clearly the above assertions hold for smooth stacks if one considers complexes I'(i) defined only
for smooth objects. In particular, taking I'(¢) = the motivic complex Z(4)[2i], and making use of the compar-
ison theorem (3.1), we obtain higher Chern classes for all smooth algebraic stacks with values in our higher
intersection theory.

5. Intersection theory for smooth algebraic (Artin) stacks via motivic cohomology

Once again, we will restrict to smooth algebraic stacks throughout this section. Let & denote a smooth
algebraic stack with z : X — & a given atlas. For each integer ¢ > 0, we let CH¢(S,z,.) denote the object
defined in (3.0.3). (Recall from (3.3) that we may in fact omit the atlas z from the definition: therefore, the
above object will be henceforth denoted CH(S,.).) We begin with the following theorem which establishes an
intersection pairing on these higher Chow groups. (Observe that we are in fact working integrally.)

(5.1) Theorem. Now there exists an intersection pairing:
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CH{(8,.) ® CH/(8,.) - CH*I(8, )

and hence an induced pairing CH!(&,n) ® CH(&,m) - CHJ(&,n + m) of the higher Chow groups. If
f : 6" = 6 is amap with &' also a smooth algebraic stack, the map f* is compatible with the above intersection
products.

Proof. We recall from (A.4) that there exists a natural pairing Z(3)[2i|®Z(5)[25] = Z(i+7)[2(i+J)] of the motivic
complexes on the category of all smooth quasi-projective schemes over k. (Here we use the convention that
Z(i) = Z(i)¥—5.) By (2.6.2)(vii) this extends to a pairing: Eg(Z(i)[2i]) ® Es(Z(§)[24]) = Es(Z(i+j)[2(i +3)])
of the associated complexes on the smooth site of the stack &. Next we take hypercohomology on the smooth
site of & and invoke (3.1) Theorem, to obtain the pairing CH!(&,.) ® CH/(&,.) - CH*(&,.). Taking the
corresponding homotopy groups, we obtain the pairing of the higher Chow groups. The last assertion follows
from the observation that the pairing in (2.6.2)(vii) is compatible with the induced map as in (2.6.2)(iv) and
(34). O

(5.2.0) Remark. The remark following (3.1) shows one obtains an intersection pairing on the higher Chow
groups of all smooth schemes (locally of finite type) over k in a similar manner. This, combined with our
localization theorem for all schemes locally of finite type over k (see [J-1] Theorem 4) provides a complete
extension of higher Chow groups (at least modulo torsion) to all schemes locally of finite type over k and of
finite dimension: previously this was available only for quasi-projective schemes over k.

In the rest of the paper we will show that if & is a smooth separated Deligne-Mumford stack of finite type
over k, there exists an isomorphism between CH*(6,0; Q) and CH;, ;. .(6)®Q sending the above ring-structure
Z

T

to a previously known ring-structure on the latter. For this we need to show the existence of Adams operations
on the étale K-theory of Deligne-Mumford stacks tensored with Q.

(5.2.1) Given a presheaf P of spaces, we will let Py denote the localization of P at Q in the sense of [B-
K] chapter V. (When P is the zero-th term of a presheaf of Q-spectra, P is a presheaf of nilpotent spaces
and therefore one obtains the isomorphism 7.(Pg) = 7. (P)®Q of presheaves. Observe that the presheaves of

z

K-theory and G-theory spaces therefore have this property.)

(5.3.1) Proposition. (i) Let & denote a Deligne-Mumford stack of finite type over k, let B& denote the
classifying simplicial scheme associated to a given atlas z : X — &. Assume that X is a separated scheme so
that each (B&),, is also separated. Let Gg(B®) denote the space hoEm{G@(BGn)|n} where G(B&,,) denotes

the K-theory space of the complicial Waldhausen category of pseudo-coherent complexes with globally bounded
cohomology on (BG),,. Then the obvious augmentation m.(Gg(B&)) — m.(H (BS, Gg)) = 7. (Het (6, Gg))
is an isomorphism. Similarly if T C & is a closed algebraic sub-stack of & and BT is the associated simplicial
algebraic space, the obvious augmentation 7. (Gq,T(BS)) — 7 (Hpr1,et (BS,Gg)) is an isomorphism. (We
have let Gg,pr(B®&) = the canonical homotopy fiber of the obvious map Gg(BS&) — Go(BS — BT).)

(ii) Moreover, the obvious map A}im T (HpT,et (BS, (Z x BGLY)q)) — 7 (Hpr,et (BS, (Z x BGLY)g)) is
—00

an isomorphism. (Here BGLy (BGL) are the obvious presheaves of simplicial sets and the + denotes the +

construction applied to these. One may identify the presheaf K with Z x BGL* upto natural quasi-isomorphism.)

Proof. (i) Since the homotopy inverse limits preserve quasi-isomorphism, it suffices to show that for each fixed
integer n > 0, the obvious augmentation m.(Ggq,(BT), (B&)n)) = m«(H(BT), 0t (B&n, Gg)) is an isomorphism.
This follows from [T-1] Theorem (2.15) since each BS,, is a separated scheme of finite type over k.

Next we consider (ii). It follows from [Sou] p. 510 that, on taking the direct limit as N — oo, the map of
presheaves Z x BGLY, — Z x BGL™" induces a stalk-wise weak-equivalence.

Let P denote a presheaf of spaces on &.;. Now we observe that in the spectral sequence
Ey' = Hyy(BS,n-+(Pg)) = m—s—¢Het (BS, P)

Ezs’t = 0 for all but finitely many s, independent of ¢. In particular, the above spectral sequence converges
strongly. (One may easily prove this when the stack is the quotient stack associated to the action of a finite
group. Now devissage (see [J-1] (5.1.2.%) or [L-MB1] Theorem (10.2) and Corollaire (10.2.1)) enables us to
reduce to the case of a general Deligne-Mumford stack to this.)

Now we obtain a natural map of the spectral sequences:
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ESt = Jim H2(BS, 7 4((Z BGL})g)) = Jim 7o (Het (BS, (Z % BGL};)q)) and

3! = Hy(BS,m_((Z x BGL*)q)) = m_—i(Het (BS, (Z x BGL*)g))

Since both the spectral sequences converge strongly, it suffices to show that one obtains an isomorphism at the
E,>-terms. This in turn follows from the observation that the étale cohomology of a Deligne-Mumford stack with
respect to an abelian sheaf (tensored with Q) commutes with filtered colimits of such sheaves. Once again one
may reduce this assertion to the case of quotient stacks associated to finite group actions, where it is clear. O

Remark. It may be worth pointing out that the result (ii) of the last proposition is essential in establishing
a A-ring structure on 7, (Kg(B®)) at least if one wishes to apply the arguments in [Sou]. This would be clearly
false if did not use rational K-theory of the simplicial space B&.

(5.3.2) Corollary. Let G denote a smooth Deligne-Mumford stack of finite type over k and let T C & denote
an integral algebraic sub-stack. (i) Then 7. (Hr(6,Kqg)) = 7 (Hpr,: (BS,Kg)) = m(Kq,p7(B6)) has the
structure of a graded A-ring, there exists an associated v-filtration on 7, (Kq, 7 (B&)) and one also has Adams
operations {1)¥|k} defined on it. (ii) There exists a spectral sequence

B'= @ mni(Kops(BS)) % m_si(Ko(BS)) = myoi(Het (6. Ko)
pe G'*
where the direct sum varies over all closed integral sub-stacks of codimension p. (iii) The Adams operations act
on the E%!-terms of the above spectral sequence and are compatible with the differentials.

Proof. Since the stack & is smooth, observe that one may identify the presheaves G and K up to quasi-
isomorphism. (See (1.6.2).) Moreover, we may choose an atlas ¢ : X — & so that X is a separated
scheme (for example an affine or quasi-projective scheme). Therefore (5.3.1) provides the isomorphisms in
(i). Now the proof of the remaining assertion in (i) follows immediately from the isomorphisms in (i) since
one can now define A-operations as in [Sou] section 4. We will briefly recall this for the sake of complete-
ness. Let p : GLy — GLj; denote a representation of the group scheme GLy. If BGLy and BGLy
denote the associated simplicial sheaves on &.; or on the étale site of the simplicial scheme B&, p induces
a map BGLy — BGLy. Recall these are presheaves of simplicial groups on &g or equivalently on the
étale site of the simplicial scheme B&. (i.e. We may take the complete pointed simplicial category as in
[J-1] section 6 to be the category of fibrant pointed simplicial sets.) Composing with the obvious map to
BGL — BGL™, pinduces a map p : Z x BGLy — Z x BGL'. i.e. one obtains a map of abelian groups
Rz(GLy) — mo(RMap(Z x BGLy,Z x BGL")) where RMap(Z x BGLy,Z x BGL")) is defined to be
hoiimM ap(ZxBGLY;,G'ZxBGL") and Rz(GLx) denotes the integral representation ring of the group scheme

GLy. (The functor Map : (simplicial presheaves on S.) x (simplicial presheaves on Gg) —
(simplicial sets) is defined by Map(F, K)n = HoMsimplicial  presheaves (F X A[n], K).)
Therefore one obtains an additive homomorphism 7 : limNRZ(GLN) — limeo(RM ap(Z x BGLy,Z x
0o+ 0o+
BGL")) = limNm)(RM ap(Z x BGLY,,Z x BGL") where the last isomorphism follows from the universal
04—

property of the + construction. Now 7({A"(idgry — N)|N}) defines a compatible collection of homotopy
classes of maps A" : Z x BGL}, — Z x BGL" of presheaves.

By (5.3.1)(ii) we observe that the obvious map
Jim (Hpr,et (BS, (Z x BGLY)g)) — 7 (HpT,et (BS, (Z x BGL)g))
—00

is an isomorphism. It follows that on taking m Hpr,:(BS, ) the map A" induces the lambda operation

A" : 1 (Kq,pr (B6)) — m(Kq,B7(B6)). To prove that one obtains the usual relations on the A™s, one reduces

to showing they hold on limeo(RM ap(Z x BGL};,Z x BGL™)): this follows readily from the fact they hold
o0

on the representation ring limNRZ(GL ~)- The existence of the Adams operations is now a formal consequence.
04—

Each closed integral sub-stack Y of & defines a closed sub-simplicial scheme of B&. Now we obtain the
fibration sequence:

YCeOII%}gJKQ’BY(BG) — Ycloglrﬂr/}sKQ,Byf (B6) — . 6ng(g)KQ,Bp(B(‘B)
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where M}, denotes the full sub-category of closed integral sub-stacks of codimension < k and BY (BY', Bp)
denotes the obvious classifying simplicial scheme. Moreover, &®) denotes all the points of codimension exactly
p; these are the generic points of codimension p integral sub-stacks of &. Taking the homotopy groups we
obtain an associated long-exact sequence which provides the spectral sequences in (ii). The identifications
leinrfflkﬂ*(KQ’ By (BG)) ~ 19061i1\1311k7r*]HI€t,y (6, (ZxBGL")g) and the observation that each A" is actually induced

by a map Z x BGL} — Z x BGL™ shows that the differentials in the spectral sequence are compatible with
the X\ operations and hence with the Adams operations. This completes the proof of (ii) and (iii). O

(5.3.3) Gersten resolutions on smooth Deligne-Mumford stacks (See [Gi-2](4.7).)

Let & denote a smooth Deligne-Mumford stack. For each integer p, R*(t) is the presheaf on the étale site of
G defined as follows. For each U — & in the étale site of &, and each point u of U, we let i, : Spec  k(u) - U
denote the obvious map, where k(u) denotes the generic point of u. We let R*(t)|y,, be the complex of sheaves
on U,; defined by

u e UWO u e UG u e U®)

Here U denotes the set of points of codimension ¢ in U. Since each U is a smooth scheme, it follows from
Quillen’s proof of Gersten’s conjecture that the obvious map m (K) — R*(t) is a resolution on the étale site
of the stack &. ie. if U — & belongs to the étale site of the stack &, R*(t)y,, is a resolution of the
sheaf 7;(K)v,,. It follows that R* (t)(%@ is a resolution of the sheaf 7rt(K)§>Q. If z: X - & is an atlas

for the stack, it follows that R*(t)s, s, ®Q is a resolution of the sheaf m(K)®Q on B,S,, .. Observe that
z zZ
R*(t)B,6®Q = {R*(t)B,s, ®Qn} is now a complex of sheaves on the étale site B, S, of the simplicial scheme
z z
B, 6. Therefore CH;"LM-W(G)%(@ >~ oM, (BwG,R*(s)Bmg%Q) = @Hgt(BwG,ﬂ's(K)QZz)Q) = @Hﬁt(G,ﬂ's(K)QZz)@).

Next we proceed to interpret the Ej-terms of the spectral sequence in (5.3.2) in terms of such a Gersten
resolution. For this one begins with a punctual sub-stack p of codimension p in the stack &. One may now
observe that, since p is punctual, it is regular and a closed sub-stack of an open sub-stack U of & in (5.3.2)(ii)).
Moreover, now

(5.3.3.2) 1y o(Ko,zp(BU)) = 1, (Ko(Bp)) = HY, (p, 7, 1(Kq))
= W0, (751 (K))@Q = 7y (K((0)EQ = K1 (b(2))2Q,

Here k(p) = H%(p, 0,) is the function field of the (punctual) stack p and the last isomorphism follows from
(5.3.9)(i) below. Therefore the Eq-terms of the spectral sequence in (5.3.2) form the complex of abelian groups:

(5.33.3) R*()9Q: ® Ki(k(P)oQ— - & K ik@p)eQ—-— & Q
Z pe GO Z p e () Z pe G@

where &(?) denotes the set of points (=integral closed sub-stacks) of codimension i in &. One proceeds to
compare the above complex with R*(t) BEG‘%@-

Observe that a closed integral sub-stack 7" of & corresponds to a closed integral subscheme Y of the atlas
X so that dy (V) = d; *(Y) (where d; }(Y) = Y;;(chs)l with d; : B,&; — B,&¢ = X denotes the obvious
map). Moreover it is shown in [Gi-2] p.219 that K;(k(p))®Q = ker(6° — o' : Ki(k(z0))®Q — Ki(k(z1))2Q

zZ z z
where g is a point of the atlas X lying above the point p and 1 = dy ' (p) = d;* (p). It follows that

(5.3.3.4) R*(t)%@ = ker((6° — 6') : T(B,&¢, R* (t)Bm@QZa@) - I'(B; 61, R* (t)BmG(%Q))

We proceed to show that the s-th cohomology of the complex on the right-hand-side above may be identified
with H%, (B, 6, R*(t) BEGQZ@@). We begin with the following lemma.

(5.3.3.5) Lemma. Assume, in addition, that the stack & is separated. Let Zx : Sh(B;Get) — Sh(Get) be
defined by Z.(F) = ker(6° — 6 : 2o« (Fo) — z1.(F1)) where z; : B,&; — & is the obvious map induced by the
atlas z : X — &. Then the functor Z, is exact for sheaves of Q-vector spaces.
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Proof. Let 9t denote a coarse moduli space for the stack & and let 7 : & — 901 denote the obvious map. Clearly
this is finite since the stack & is separated and Deligne-Mumford. Next we prove that the composite functor
Rr. 0 RZ, = R(mwoZ), is exact for sheaves of Q-vector spaces. For each i > 0, let z; : B,&; — & be the obvious
structure map. Now {z;, (F};)|¢} is a cosimplicial object of sheaves on &, and Z.(F) = liin{mi*(Fi)H} for any
sheaf F' = {F;|i} on B,S.;. We let T, : B,& — & denote the map of simplicial objects given in degree i by z;.

One may first reduce to the case & is in fact a quotient stack [X/G] for a finite group; in this case the
geometric fibers of the map 7 o , may be identified with the classifying simplicial schemes of the stabilizers.

Therefore one may identify the stalks of R™(7oZ). with the cohomology of the classifying spaces of finite groups
with rational coeflicients; hence these are trivial for all n > 0. (See [J-2] for more details.)

Since 7 is finite, one may observe readily that . is an exact functor. It follows that the composite functor
7« © T, as well m, are exact and that R"m,(F) = 0 = R"(mw o Z).(F) for n > 0 and for sheaves of Q-vector
spaces F. Now consider the spectral sequence Ej* = R*1,R'Z,(F) = R***(n 0 Z),(F). Ey' =0 for s > 0 and
therefore 7, R*(Z)«(F) = Rt (7 0 Z).(F) =2 0 for t > 0 and for any sheaf F' of Q-vector spaces. Since r is finite,
it follows that R*(Z).(F) = 0 for ¢ > 0 and any sheaf F' of Q-vector spaces. O

If p denotes a point of the stack &, we will identify it with the corresponding punctual sub-stack; now
ip : p — 6 will denote the obvious map. One may observe that i,.7,(K)®Q is a sheaf on &.,; this is flabby by
z

(5.3.9) below.
(5.3.3.6) Proposition Let F; = R*(t)p,s®Q(i) denote the i-th term of the complex R*(t)p,e®Q. This is
z z
a flabby sheaf on B, &, in the sense that H%(B,6, F;) = 0 for n > 0.

Proof. Observe that HZ,(B,6, F;) = HL (S, RZ.(F;)) =2 HY(S,Z.(F;)) by the above lemma. Observe next
that Z.(F;) = & ipem—(K)®Q. By the observations above, it follows that Z.(F;) is flabby. O
p e GO Z

(5.3.3.7) Corollary The E'~‘-term of the spectral sequence in (5.3.2) identifies with H?,(&, R* (t)%@) =
12,6, m(K)2Q)

Proof. This is clear in view of the above discussion. [I.

Let & be smooth and let ¢ : ' — & denote the closed immersion of a smooth algebraic sub-stack. Then the
normal bundle, N, associated to i exists as a vector bundle of rank p if the codimension of T in & is p. Observe
from [L-MB1] (4.2.3) that the construction of the Proj of a coherent sheaf on stacks is a local construction.
This shows that the techniques of blow-ups and deformation to the normal cone (see [BFM] section 2) extend
to algebraic stacks. Recall the deformation to the normal cone is constructed from the diagram

T s T Al T

(5.3.4) l ,pl l

6 M, w LN
where W is the blow-up of & x A! along T' x 0. The naturality of the above deformation shows that if B is a
classifying simplicial scheme associated to the stack & one obtains a similar diagram of simplicial schemes:

BT -2, BT x Al (B BT
(5-3-5)34 wl Bgl

Bs - Bw % BN
One defines the algebraic K-theory of a simplicial scheme X. by hoiim{K (Xn)|n} which is the homotopy inverse

limit of the cosimplicial spectrum {K(X,)|n}, where each K(X,,) is defined as in (1.5.1). Similarly if Y. is a
closed sub-simplicial scheme of X., one defines Ky (X.) = hoiim{KYn (Xp)|n} with each Ky, (X)) defined as in

(1.5.2). Since all the vertices in the above diagram are schemes, one obtains the excision isomorphisms (see for
example [T-2] (3.19)):
K} kS
(5.3.6) M. (KpT(BG)) ¢— mu(Kprxa (BW)) — mi(Kpr(BN)).
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Observe also that the pull-back maps are compatible with the action of the Adams operations as in (5.3.2).

Let 7 : N — T denote the projection from the normal bundle to 7" and let A(7*(NV)) denote the Koszul-Thom
class associated to NV = the co-normal bundle associated to ¢. This is a class in mo(K7(N)). Now A(m*(NVY))
is a complex of vector bundles on N with support contained in T. Let BN denote the normal bundle to the
closed immersion of BT in B& and let Br : BN — BT denote the obvious map. The pull-back of 7*(NV) to
BN is the bundle Br* BNV and one may verify the Koszul-Thom class A(7*(NV)) pulls-back to the Koszul-
Thom class A(Bw*(BNV)) which represents a class in mo(Kpr(BN)). Recall we have used the Waldhausen
style K-theory of perfect complexes to define the K-groups. (See (1.5.2).) The map E- — n*(E") U A(x*(NV))
(E- — Bri(E') UA(B7w:(BN,Y))) defines a map

(5.3.7) K(T)) -» Kr(N) (K(BT,) — Kpr, (BN,,) for each n, respectively)

Moreover, since 7*(E") U A(7*(NV)) — i.(E") is a natural map in E* which is a quasi-isomorphism one may
verify that the first map may be identified with i,. Similarly the second map above may be identified with B, i.
for each n.

(5.3.8) Lemma. Let the codimension of 7" in & be c. Let A € (K (IN)) denote the class of the Koszul-Thom
class A(m*(NV)). Now ¢¥(A) = k°A. Similarly, if A, € mo(Kpr, (BN,)) denotes the class of A(Bn*(BNY)),
P*(A,) = k°A,.

Proof. We can adopt the proof in [G-S] (4.12.1) and Lemma (4.12) verbatim. For this we use the inductive
formula

PF — R~ LU + L+ (DRIt U NPT 4 (= D)RRAF =0,k > 1.

as in [G-S] (4.12.1). One may reduce immediately to the case where the Koszul-Thom complex A(7*(N)) is
replaced by the complex: On - Ox where a corresponds to an element in O locally. Now it suffices to show
that A\F applied to the above complex = the same complex shifted [k — 1] times to the left, where A\¥ denotes the
k-th exterior power operation. The same proof as in [G-S] lemma (4.12) applies verbatim to establish this. O

(5.3.9) Lemma. (i) Let p denote a punctual Deligne-Mumford stack. If k(p) = H%(p, Op), one obtains the
isomorphism H?,(p, 7, (K))®Q = 7,(K(k(p)))®Q, if i = 0 and = 0 otherwise. There exist Adams operations on
z z

both of the above terms and the above isomorphisms are compatible with the action of the Adams operations.

(ii) Assume in addition that i : p — U is the closed immersion of a punctual sub-stack of codimension p into
a regular stack U. Then the map Bi, induces an isomorphism 7, K (Bp) — m.(Kp,(BU)).

(iii) Let N denote the normal bundle associated to the closed immersion in (ii). If 4 : p — N is the zero section,
it induces an isomorphism as in (ii). The map Bi, may be identified with the map a = 7*(a) U A(x*(BNVY))
modulo torsion.

Proof. (i) The isomorphism in (i) is established in [Gi-2] (5.3) using the degeneration of the spectral sequence
(from the FEj-terms onwards): EYY = H,((Bp)i;7,(K)®Q) = H.H (Bp, ,(K®Q)). ie. EM =0if j # 0.
zZ z

(Observe that we keep p fixed throughout.) Recall the Adams operations may be realized as maps of the
presheaves Z x BGLY, — Z x BGL™; therefore they are compatible with the differentials of the above spectral
sequence. This proves (i).

Observe that it suffices to show each of the maps Bin. : K(Bp,) — Kpy, (BN,,) is a weak-equivalence. Next
one observes readily that each (Bp),, is isomorphic to a finite disjoint union of the spectra of fields. Therefore,
one obtains the weak-equivalences: K ((Bp)n) ~ G((Bp)yn) for all n and Kgp, (BN,) ~ G(Bpy) for all n. To see
the map Bins : K(Bpy) ~ G(Bpn) = Kpp, (BN,,) is a weak-equivalence, one just compares fibration sequence
provided by Quillen’s localization theorem with fibration sequence defining K gy, (BNy). This proves (ii).

That the map 4 induces an isomorphism as in (ii) is clear from (ii) applied to the closed immersion i. To see
this may be identified with the map as in (iii) we observe the existence of a natural quasi-isomorphism 7*(E-) U
A(Br*BNVY) — Bin.(E") for any complex of vector bundles E- on BT,,. It follows from standard results on
Waldhausen K-theory that the map Bi, may now be identified with taking cup product with A(B7*BNV). O

(5.3.10) Theorem Let & denote a smooth separated Deligne-Mumford stack of finite type over k. Now one
obtains isomorphisms
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CH*(8,0;Q) = OH:,(8, 1, (K)9Q) = CHyy,,(€)8Q

preserving the ring structures on each.

Proof. We proceed to show (see [Sou] pp. 524-525) that the differentials d, : ES~"—5+7=1 — E$=% r > 2 are
trivial modulo torsion. For this one begins with a punctual sub-stack p of codimension s in the stack &. One
may now observe that, since p is punctual, it is regular and a closed sub-stack of an open sub-stack U of & in
(5.3.2)(ii)). Moreover, recall

T—s—t(Kq,Bp(BU)) = 71— (Ko(Bp))
= He, (p, m—s—t(Kq)) = 1, (p, m-s—t(K)®Q = 7, (K (k(p))) 2Q

For —s —t = 0,—1, or —2, one knows that the Adams operation ¥* acts on 7_,_;(K(k(p))) by k~*~t. The
first isomorphism follows from (5.3.9) (ii); moreover (5.3.9)(iii) shows we may assume this isomorphism is given
by cup-product with a Koszul-Thom class associated to the normal bundle for the closed immersion of p in
U. Therefore, by (5.3.8), one observes that ¢* acts on E** = W_U_U(KBP(B6))Q§@ (which is the spectral

sequence in (5.3.2)) by multiplication with £~7. Since the differentials are compatible with the action of the
Adams operations, it follows that the action of ¢* on E®*" is by k=% for r > 1.

Next let a € E»?. Now k™ Vd,(a) = d.(k~%a) = d,(¢*(a)) = ¥*(d,(a)) = k~1""1d,(a), since d,.(a) € E¥tmv—r+1,
Letting u = s — 7 and v = —s +r — 1, it follows that d,.(a) = 0 modulo torsion, if d, : EE~"=5t7=1 — E$=s,
r > 2. Observe that the differentials d,. : ES~% — Ef+7=5="+1 are trivial since EfT™ 77"t = 0 for all r > 2
and all s. It follows that Ey° = E% ¢ which is the s-th associated graded piece of mo(H,: (S, Kg)).

Recall CHSM.%(G)%Q = H},(BG, ’R*(s)%@) ~ H} . (BG, ’R*(s)%@) where the last isomorphism follows by

n

[Gi-2] proof of Theorem (6.1). One may identify the last term with H%,(6,7,(K) ® Q) = E5~° by (5.3.3.7).
The ring structure on CH;aive(G)%@ is obtained from the obvious one on ®HS, (6, 7s(Kg)).
s

Now it suffices to prove the first isomorphism in the theorem preserves the ring structure. (Clearly the other
isomorphisms preserve the obvious ring structures.) For this one observes that the Chern-character induces
a quasi-isomorphism (stalk-wise) of the presheaves U — K(U)g and U — Z( ,.)&.., .m: ®Q. (Though the

z

Riemann-Roch theorem in [Bl-1] is stated as an isomorphism between the corresponding homotopy groups, as
we observed in [J-1] (4.4.5), the Chern-character can be made to be a map of presheaves on the étale site of a
given scheme.) Therefore one obtains the isomorphisms:

CH*(8,0,Q) = mo(Het (6,2, )11 BQ) = 7o (Hor (6, Kq)) = BHE(S, m,(Ko)) = CHiy, (6)2Q

Finally it suffices to show that the middle isomorphism preserves the ring structures. For this, first recall that the
Chern-character induces a quasi-isomorphism of the presheaves: Z( ,.)e,.....,0Q < Kgp. One may obtain
Z

a spectral sequence as in (5.3.2) for the complex Z:( ,.)s,., ....®Q instead of K¢y and the quasi-isomorphism
z

extends to an isomorphism of the two spectral sequences from the Es>-terms onwards. Therefore, the differential

dst = 0 for the spectral sequence for the presheaf Kg implies the corresponding differential is also trivial for

the spectral sequence for Z:( ,.)e,., ;. ®Q. Therefore mo(Het (S, Z2:( )6 0es om: ®Q)) = ®ES * which are
Z Z s

the Es-terms of the corresponding spectral sequence. Moreover, this isomorphism is compatible with the ring
structures. Now it suffices to show that the isomorphism H3 (S, 7,(Kqg)) ~ HZ (S, ms(Z2( ,.)6,0. om: @Q))
z

is compatible with the obvious pairings. This follows from the observation that the Chern-character map
ch : . (Kg) = m(Z( )6, .m: ®Q) is clearly multiplicative as a map of presheaves of QQ vector spaces on
z

the site G,;. This completes the proof of the theorem. O

Proof of Theorems 1, 2 and 3. The statements in Theorem 1 all follow readily from (4.2.2), (4.2.3) and
(4.6.11), while those in Theorem 2 follow from (5.1), (5.3.10) and (3.5). The statements in Theorem 3 follow
from (4.2.2), (4.2.3) and (5.2.0). O

Proof of Corollary 4. The Chern classes in (i) are provided by (4.3.3) while the higher Chern classes in
(ii) are provided by (4.6.11). Now we consider (iii). Observe that X is an atlas for the quotient stack [X/G];
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therefore if X is smooth so is the stack. Therefore the intersection pairing CH.([X/G],.) ® CH.([X/G],.) —
CH,.([X/G],.) is provided by Theorem 2(iii). In case the action is locally proper with finite reduced stabilizers
the stack [X/G] is known to be Deligne-Mumford. Therefore Theorem 2 (iii) along with [J-1] (5.1.2) proves the
assertion in (iv). Observe that the stack Mg is smooth. (See [LS] Proposition (3.4).) Therefore Theorem 2(iii)
again provides the required intersection pairings in (v). Observe from [B-M] (see also [F-P] or [C-K] p. 170)
that the stack M, (X, B) is a separated (in fact, proper) Deligne-Mumford stack. Therefore, Theorem 2 (iii)
and [J-1] (5.1.2) complete the proof of (vi). O
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Appendix: The motivic complexes

Throughout this appendix, we will freely adopt the terminology from [Fr-S], [F-S-V] and [Voev]. Occasionally
we will differ from their terminology so as to be consistent with the ones adopted in the rest of this paper.

(A.0) Given a field k, (smt.schemes/k) will denote the category of all smooth separated schemes of finite
type over k. We will consider three big topologies on this category: namely, the Zariski, the Nisnevich and étale
topologies. (smt.schemes/k)zqr, (smt.schemes/k)nis and (smt.schemes/k)gr will denote these sites. For any
presheaf P of abelian groups on (smt.schemes/k), we will let Pz, , Pnis and P; denote the associated
sheaves on the Zariski, the Nisnevich and étale sites. Now A[n] will denote the standard n-simplex defined as
usual. As n varies, {A[n]|n} defines a cosimplicial scheme. Given an abelian presheaf P on (smt.schemes/k),
we extend P to a simplicial presheaf as in [Fr-S]: i.e. we let C,(P) denote this simplicial presheaf defined by
I'(U,C,(P)) = T'(U x A[n], P). This simplicial abelian presheaf may be replaced by the corresponding chain
complex (i.e. with a differential of degree —1): this complex will also be denoted C,(P). Now we may re-index
C*(P) = C_;(P) to obtain a co-chain complex of presheaves that are trivial in positive degrees.

(A.1) Given X, Y € (smt.schemes/k), we define Cor(Y, X) be the free abelian group generated by closed
integral subschemes Z CY x X that are quasi-finite and dominant over each component of Y.

(A.2) Given a fixed X € (smt.schemes/k), one defines a presheaf with transfers, Z.,(X), by T'(U, Z¢4(X)) =
Cor(U, X). It is observed in [F-S-V], that this defines a sheaf with transfer on (smt.schemes).t, (smt.schemes/k) nis
and (smt.schemes/k) zar-

The motivic complezes Z(n).

(A.3.1) For us it is often convenient to use the ones introduced in [Fr-S], section 11 as they compare read-
ily with the cycle complexes of Bloch. We let Z(n)F~5 for the corresponding motivic complex of weight n;
recall this is defined as C*(Z¢q(A™))[—2n]. The main advantage of this complex is that there is an imbedding
C*(Zeg(A™)) — Z2™( xA",.) preserving the degree. We will also show that it preserves pairings.

(A.3.2) On the other hand the comparison theorem of [Voev] shows that the complex Z(n)F=9 is quasi-
isomorphic to the motivic complex denoted Z(n) in [F-S-V]. For the sake of completeness we will also recall
its definition. Let G,, denote the multiplicative group scheme A! — (. For each integer n > 1, let GX" be the
n-fold product of G,, with itself. We will now consider Z¢(G)"). We let D,, denote the sum of the images
of the homomorphisms Z.y(G,, *™~") given by the imbeddings of the form (1, ...,Zn_1) = (T1, sy L, ey Tn—1)-
D,, is a sub-sheaf of Z.,(G;$") which is in fact a direct summand. We let Z.o(G)") = Zeo(G)X™)/Dy. Z(n) on
(smt.schemes/k) is the complex C*(Zo(G)"))[—n].

(A.3.3) Since the two complexes in (A.3.1) and (A.3.2) are quasi-isomorphic (see [Voev]) we may use either
one. However, for explicit comparison with the cycle complex, it is preferable to use the one in (A.3.1). Unless
the choice is important for us, we will let Z(n) denote either of these complexes.

(A.3.4) We define Q(n) = Z(n) ® Q.

It is observed in [F-S-V], that, Z(n) and Q(n) define complexes of sheaves with transfers and homotopy
invariant cohomology presheaves on (smt.schemes/k).t, (smt.schemes/k)n;s and (smt.schemes/k) zgr.

Tensor structure on the motivic complezes.

(A.4) Theorem. There exists a natural pairing Z(n)¥ =% ® Z(m)¥ =% — Z(n + m)¥~% that is compatible
with the intersection pairing on the cycle complex for smooth schemes.

Proof. Observe that both the pairings (i.e. the one on the motivic complexes and the one on the cycle complex)
are induced by first taking an external product and then pulling back by the diagonal. It involves the use of the
easy moving lemma in the case of the cycle complex while in the case of the motivic complexes no such moving
is needed. To see this, recall that the complex Z(n)¥=5[2n] = C*(Z.,(A™)). For a given smooth scheme U,

L(U, C~P(Zeo(A™))) = Cor(U x Alp], A™) and T(U, C~1(Z¢,(A™))) = Cor(U x Alg], A™).

Therefore, the pairing Z(n)f—5[—2n] ® Z(m)¥ ~%[-2m] = Z(n+m)¥~5[—2n — 2m)] is defined as follows. First

take the external product of two correspondences Z; € Cor(U x A[p], A™) and Z2 € Cor(U x Alq], A™) to obtain

Zy x Zy € Cor(U x U x Alp] x Alg], A™*™). Now the projection of the cycle Z; x Z, onto U x U x A[p] x A[q] is

finite and surjective onto each component. Therefore, if T : A[p+q] — A[p] x Alq] is given by a triangulation as
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in [BI-1], the pull-back by T defines a cycle T*(Z; x Z3) € Cor(U x U x A[p+¢], A™*"). Finally pulling back by
the diagonal A x id : U x Am*t" — U x U x A™*T" defines the required class Z; o Zo € Cor(U x A[p+ g, A™*).
(See the remarks below.)

It is also clear that the imbedding of the above complex into 2™( A™,.) is now compatible with the inter-
section pairing on the cycle complex. To see this consider:

2™"(U,.) ® 2™(U,.) ~ 2™"(U x A™,.) @ z™(U x A™,.)
K2ntm(U x U x AMm ) o 20 x U x AvFm | )25 gnbm (7 x Antm )

The sub-complex 23" (U x U x A"+™ ) consists of those cycles in z"*™(U x U x A"*™ ) that intersect the
diagonal properly. The quasi-isomorphism z"+™(U x U x A™+™ ) ~ 22F™(U x U x A"+™ ) makes use of the
easy moving lemma. O

(A.5) Tt is shown in [Fr-S] section 11, that the natural imbedding of the complex Z(n)¥~%[2n] into the cycle
complex Z™(  xA"™,.) is a quasi-isomorphism on the Zariski site of any smooth scheme.

(A.6) Remarks.(i) It is shown in [F-S-V] that there also exist pairings Z(n) ® Z(m) — Z(n + m). Therefore
if one is only interested in providing a ring structure on our higher Chow groups for algebraic stacks, we may
make use of this pairing. However, from the definition of the quasi-isomorphism of this complex with the cycle
complex, it is not clear a priori that this pairing is compatible with the one on the cycle complexes for smooth
schemes.

(ii) The extension functors of section 2 enable one to extend the comparison result in (A.5) to algebraic
stacks.

(iii) In using the triangulation of A[p] x A[g], one has to show that it is possible to choose these triangulations
compatibly so that pull-back by T defines a map of complexes:

T* : C*(Zeg(A™))(U) ® C* (Zieg(A™))(U) = C*(Zieg(A™F™))(U x V)

Since n and m are fixed here, one may invoke exactly the same arguments as in [Bl-1] section 5 showing that one
may find a triangulation T, for all A[p] x A[g] so that it defines a map of complexes: Z(n)¥ =5 ® Z(m)F—% —
Z(n+m)F~5. An alternative to this is the use of cubical complexes. (See [J-3].)
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