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Abstract
The present paper provides an extension of the theory of perverse sheaves to algebraic stacks and
therefore to moduli problems, Q-varieties, algebraic spaces etc. We also include a detailed study of the
intersection cohomology of algebraic stacks and their associated moduli spaces. Smooth group scheme
actions on schemes and the associated derived categories turn up as special cases of the more general

results on algebraic stacks in the sense of Artin.
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The main goals of the present paper are as follows:

(i) generalize much of the basic theory of perverse sheaves as in ([B — B — D]) to algebraic stacks;
as a result the main results on perverse sheaves (for eg. the decomposition theorems for direct images of
perverse sheaves by a proper map) are shown to hold in much more generality and apply in much wider
contexts, for eg. moduli problems, Q)-varieties, algebraic spaces etc. (See (3.4.7) for a brief discussion of

the problems involved in obtaining such a generalization.)

(ii) define and study the intersection cohomology of algebraic stacks (and their associated moduli
spaces) in arbitrary characteristics. Recall that the only previous study of the intersection cohomology
of moduli spaces is by Kirwan (see [Kir-1], [Kir-2]); however her study is from an entirely different point

of view and is only valid for complex varieties.

(iii). using the observation (see [Ar] p.180) that algebraic stacks may be viewed as groupoid objects
in the category of algebraic spaces, we are able to include the study of smooth group-scheme actions and
the associated ’equivariant’ derived category as a special case of our general study of algebraic stacks.
This provides an alternate construction of the equivariant derived category along with all the relevant
machinery; the equivariant derived category becomes the natural home of the equivariant intersection

cohomology complexes introduced in [J — 2] and has further applications in [J — 3]. (See also [J — 4].)

We begin section 1 by reviewing the basic theory of algebraic spaces and stacks. In section 2 we
establish several basic results on the category of sheaves on algebraic stacks. This is continued in
section 3 where we study the derived categories (and various t-structures) associated to algebraic stacks.
Section 4 provides a detailed study of perverse sheaves on algebraic stacks. We recover most of the
basic results of ([B — B — D]) in this section and conclude with a decomposition theorem generalizing
that of ([B — B — D]). We apply the above results in section 5 to study the intersection cohomology of
algebraic stacks. Section 6 contains a brief discussion of the equivariant derived category. Some of the
more technical results are left in an appendix. We also thank the referee and Angelo Vistoli for some

helpful comments.

1. Introduction to algebraic stacks

(1.0). Throughout the paper we will restrict to schemes and algebraic spaces of finite type over a
noetherian separated base scheme B. Let (schemes/B) denote this category of schemes. We will (usually)
provide (schemes/B) with the big etale-topology. Recall this means the following: if X, Y are schemes,
the morphisms X — Y are maps locally of finite type over B; the coverings of any X in (schemes/B)

are the etale surjective maps.



(1.1). We will assume the basic terminology on algebraic spaces from ([Knut], chapter 2). The
category of algebraic spaces of finite type over B will be denoted (alg.spaces/B). Observe that if X is
a scheme of finite type over B, the associated functor (schemes/B)°? — (sets) represented by X is an
algebraic space. Thus the category of schemes admits an imbedding as a full subcategory of the category

of algebraic spaces.

(1.2.1). Next we consider the etale topology and topos associated to an algebraic stack. First recall
the following (see [Knut] Prop 1.4, p.95) :
let Ay, Ay be algebraic spaces, and u; : U; — A;, i = 1,2, be representable etale coverings. Let g, h

be maps so that in the diagram

™ u
Uy xUy — Uy L Aq
Ay

/| L]
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hom; =m;o0g,i=1,2. (Here 7; : U12< U, — Uy, and similarly 7; : U22< U, — U, is the projection to
1 2

the ¢ — th factor for i = 1, 2.) Then there exists a unique map f : Ay — Ay of algebraic spaces so that

ug o h = f ouy. Conversely, every map f : Ay — A, is induced in this way for some choice of uy, us, g

and h.

(1.2.2). Let f: Ay — A2 be a map of algebraic spaces. We will say f is locally of finite type (etale,
smooth) if for some representable etale coverings u; : U; — A;, ¢ = 1,2, there exists a lifting h : Uy — Uy
which is locally of finite type (etale, smooth, respectively). The class of maps between algebraic spaces
that are locally of finite type (etale, smooth) is stable under composition and base-change. Most local
properties of algebraic spaces are given in terms of the corresponding properties of a representable etale

covering.

(1.2.3) The big or global etale topology on the category of algebraic spaces is the category whose
morphisms are maps locally of finite type and where the coverings are etale surjective maps. The

category of algebraic spaces with the big etale topology will be often denoted merely (alg. spaces).

(1.3.1) Let C denote a category with finite limits and let S be a category fibered in groupoids over
C as in ([D-M] (section 4)). Assume that for every ¢ : U — V in C, and for every y € Ob(Sy) a map
f : x — y lifting ¢ has been chosen. Then z will be denoted ¢*(y). Now ¢* : Sy — Sy is a functor so
that (pop)* =¢*op*if p: U -V andy: Z - U arein C.

(1.3.2) Let C denote a category with finite limits and provided with a Grothendieck topology. A
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stack in groupoids over C' is a category fibered in groupoids over C' satisfying the conditions in ([D-M]
Definition (4.1)). Observe that the stacks in groupoids over C' (denoted (stacks/C)) forms a 2-category:
the 1-morphisms are functors from one stack to another and the 2-morphisms are morphisms of such
functors. Let C' also denote the 2-category having the same objects and morphisms as C' and where the
2-morphisms are all the identities; thus C' may be identified as a sub 2-category of the the 2-category
(stacks/C). If K is an object of C, K provides a stack, namely the category whose sections over U € C
is the discrete category of morphisms in C' from U to K. Such a stack is said to be represented by the

object K.

(1.3.3). A 1-morphism F' : &; — &, of stacks over C is representable if for every X in C and any
1-morphism z : X — &, the fiber-product X x & is a representable stack. (Recall that if A € C,
G2

X6>< Gi1(A)={(f:A—> X, ueOb(6,(A))|F(u) = f*(z), = regarded as an object of G2(X)}

regarded as a category in the trivial manner (ie. all morphisms are the identities); the above condition

says that the functor f — Ob(X x &;(A)) is representable by some g: Y — X.)
Sa

(1.3.4). Let P be a property of morphisms in C, stable under base-change and of a local nature
on the target. A representable map F : &; — &2 of stacks over C has the property P if the map
F' : X x 63 — X induced by base change for any 1-morphism z : X — &5, X € C, has the same
propertC;lP.

(1.3.5). Finally observe the following: let & be a stack over C. Then the diagonal map & - & x &
is representable if and only if for every X, Y € C, and 1-morphisms z : X —- &,y : ¥ — &, the

fiber-product X XY is representable.
&

From now on C will denote either the category (schemes/B) or (alg. spaces/B) provided with the

big etale topology, with B a noetherian separated scheme as in (1.0).

(1.4). Definition. An algebraic stack & is a stack in groupoids over the category (alg. spaces/B) so
that

(a). A: 6 — 6;6 is representable and

(b). there exists a representable smooth and surjective map x : X — & with X an algebraic space. (ie.
for every Y — G, the fibered product X xY is a representable stack represented by an algebraic space
and the obvious induced map X xY — YGis smooth and surjective.) We will often refer to z : X —» &
as an atlas or a smooth atlas. (l\?ost local properties of algebraic stacks are expressed in terms of the

corresponding properties of an atlas.)



(1.4)’ An algebraic stack is Deligne-Mumford if the map z : X — & is étale surjective. A general

stack as in (1.4) will often be referred to as an Artin stack.

(1.5) Examples of algebraic stacks. (i). Observe from ([D-M] example (4.9)) that an algebraic space
X itself may be regarded as an algebraic stack with an etale atlas z : X — X, where X is a scheme.

In this case we will define the dimension of X to be the dimension of the scheme X.

(ii). Let X be a scheme over B; let G denote a group-scheme, smooth separated and of finite type over
B acting on X. In this situation let [X/G] denote the stack whose category of sections over a B-scheme
T is is the category of principal homogeneous spaces E over T with structure group G. The principal
homogeneous space G x X over X (with G acting on the first-factor by translation) is a section of [X/G]
over X. The corresponding map z : X — [X/G] is smooth and surjective; hence [X/G] is an algebraic
stack. (See [D-M] (eg. 4.8) for the case G is finite.)

(iii). Let B denote a base scheme and let M denote a category fibered over the category (schemes/B)
provided with one of the moduli-topologies as in [Mum-2]. One readily verifies that M is fibered in
groupoids over (schemes) and that M has products - see ([Mum-2] p.50). Therefore M will be an
algebraic stack provided there exists an atlas z : M — M , which is smooth. (See [Ar] corollary (5.2)

for conditions that ensure the existence of such an atlas.)

(iv). Q-varieties. (See [Gil] (9.1) for a good definition.) As shown in ([Gil](9.1)) these are algebraic

spaces that may be interpreted as the ’coarse moduli space’ for certain etale algebraic groupoids.

(1.6). Conventions. Throughout the rest of the paper & will denote an algebraic stack with a smooth
atlas  : X — &, which is of finite type over a field k (ie. X is of finite type over k) satisfying:

(i) k has finite cohomological dimension and

(ii) for each prime [ different from the characteristic of k, each H"(Gal(k/k); Z /1¥) is finite for all n,
v > 1. Here k is the separable closure of k.
(For eg. k could be a finite field or be algebraically closed. If either of the above two conditions fails, one
may observe readily that the terms Ext™(K,, L,) in (3.4.2) need not be finite any longer. As argued in
the lines following (3.4.3), the finiteness of the above groups is essential even to provide a triangulated

category structure on Db(Et(BG.),Q;).) We will let char(k) = p > 0 throughout the rest of the paper.

2. The smooth and étale topoi

In this section we consider the étale and smooth topologies on algebraic stacks and sheaves on such

topologies. Convention: if & is Deligne-Mumford we will consider both the (local) smooth and étale
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topologies on &; however if & is Artin we will only consider the (local) smooth topology on &. These

are defined as follows.

(2.1) Let & denote an algebraic stack as above with an atlas z : X — & as in (1.4). The smooth
(local) topology (the (local) étale topology) of & will be denoted G, (Sey, respectively). The open sets
of Ssmt (Ser) will be representable smooth (étale, respectively) maps Y — & , where Y is an algebraic
space. (ie. Yé Z — Y is smooth (étale, respectively) for any algebraic space Z provided with a map

Z — 6).

(2.2.0) Let & denote a smooth stack as before with z : X — & its atlas. Now one may obtain a
simplicial object B&. in the category of algebraic spaces, called the classifying simplicial groupoid, by
letting B&¢ = X, B6; = XxX,..., (B6), = ng}l;_)?sz, with the structure maps induced from
the two projections pri, pra :GX éX — X and thS dngonalGX - X éX . (This is merely coskog(X).)
Observe that all the face maps {d;} of this simplicial object, being induced by pr; or pre are smooth
maps. The (local) étale topology and the (local) smooth topology of such a simplicial object may be
defined in the usual manner — see (A.1.0). We will denote these by Et(B&.) and Smt(B&.). There is

also an alternate étale site SEt(B®.) defined in (A.4).
(2.2.0.%) Let Z. : B6. — & denote the map given in degree n as &, =z odgo...ody : B&, — 6.

(2.2.1).0Observe from (1.5)(i) that an algebraic space Y may be regarded as an algebraic stack in the
obvious manner; the representable étale cover ¥ — Y now provides an atlas for the associated stack,
which will be denoted by Y itself. The classifying simplicial groupoid will now be denoted BY. . Since

Y is a scheme it follows that BY. is a simplicial scheme.

(2.2.2). If f : & — G is a representable map of algebraic stacks the induced map B&. — BG&.
(B&, — BG,,) will be denoted f. (fn, respectively ). The induced map of sites £t(B&.) — Et(B&.)
will be denoted merely f. while the corresponding map of sites SEt(B&.) — SEt(B&.) (as in (A.4.0))
will be often denoted f.

(2.3.1) Assume the above situation. If R denotes a commutative noetherian ring with a unit and of
torsion prime to p (= the characteristic of k), (for eg. R = Z /I where [ is prime to p), the category of
sheaves of R-modules on Et(B6&.) and Et(BS,,) for each n > 0 will be defined in the usual manner.
(See (A.1.1) for the basic terminology that will be adopted throughout this paper.) These will be denoted
Absh(Et(BG.); R) (Absh(Et(BG,); R), respectively). Observe that these are abelian categories. Next

observe (from [Knut] p.116 which is for quasi-coherent sheaves, but the same proof works for abelian
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sheaves) that if X is an algebraic space, then there are enough injectives in the category of sheaves of
R-modules on the étale and smooth sites of X. Now the arguments in ([Fr] p.15) showing the existence of
enough injectives on the étale site of a simplicial scheme readily apply in this more general context and
show Absh(Et(B6&.); R) and Absh(Smt(B&.); R) have enough injectives. That the obvious restriction
functor ( ), :Absh(Et(B&.); R) — Absh(Et(BG,); R) preserves injectives and is exact may be shown

similarly.

(2.3.2) Next let R denote a local ring of dimension 1 with maximal ideal m so that the residue field
R/m is of characteristic | which is prime to p (= char(k) as in (1.6)) and R is complete in the m-adic
topology. For eg. R = Z; and m = (IZ); or E is a finite extension of (); and R is the integral closure
of Z; in E. Let v > 1 be an integer. Let J be an open ideal in R, for eg. J = m”. The category of
J-adic sheaves on Et(B6&.) will now be defined to be the category J — ad(Absh(Et(BG.); R) in the
sense of ([Jou-1] p. 219). Recall that this means a J-adic sheaf on Et(B®&.) consists of an inverse system
{"F|n > 0} of sheaves of R-modules on Et(B&.) so that (i) J*t1."F = 0 and (ii) for every pair of
integers m,n with m > n > 0, the map R/m*"*' ®  ™+'F 5" F induced by the map ™F =" F

R/mvm+1
is an isomorphism.

(2.3.3). If J = m is the maximal ideal of R, the category of m-adic sheaves will be denoted by
R-Absh(Et(B6.)). If we let R = Z;, the l-adic integers, and m = the ideal (IZ;), the resulting category

of m-adic sheaves will be the category of l-adic sheaves on Et(BG&.)

(2.4)Remarks. (i)Throughout the paper a superscript to the left of a sheaf on Et(B®&.) will denote
it is the n — th stage of an inverse system of sheaves as above; a subscript to the right will denote it is
the restriction to Et(B&,,) of a sheaf on Et(B&.). (The only exception to this rule is that in section 4
a superscript o to the left of an object indicates it is defined over a finite field k. See (4.9.0).)

(ii) Tt is clear that similar statements hold for sheaves on Smt(B&.)

(iii) The term sheaf will from now on denote generically an abelian sheaf, a sheaf of R-modules or a

J-adic sheaf as in (2.3.2) (unless made explicit) on either one of the smooth or the étale topologies.

(2.5.1) Next let & denote an algebraic stack as in (1.6). Let a : Sgpny — S, denote the obvious map
of sites. Similarly let a. : Smt(B&.) — Et(BS.) denote the obvious map of sites. One may readily
verify that R'a, = 0 for ¢ > 0 and that if F is a sheaf on &, a,a*F = F; similarly Ria, = 0 for
i > 0 and that if F" is a sheaf on Et(B®.), then F* = o ,a*F". (Both assertions are of a local nature

on the étale topology of & and hence one may reduce them to the corresponding assertions on algebraic
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spaces and finally to schemes, where they are well-known. See [Mil] pp.111-112 and also Chapter I,
Proposition (3.26).). It follows therefore that a* (as a functor from sheaves on &.; to sheaves on Sgpp¢)

is fully-faithful.

(2.5.2) Assume the above situation. Let F' = {F,|n} be either an abelian sheaf, a sheaf of R-modules
or a J-adic sheaf on Et(B®&.) or on Smt(B&.). F will be called a sheaf with descent if each of the maps
o*F,, — F,, are isomorphisms in the appropriate category for any structure map a : (B&,) — (B&,,).
(Equivalently there exists an isomorphism ¢ : d§Fy — di Fy satisfying the usual cocycle conditions (see
for eg. [Mum-1] p.30) when pulled back to B&; by d;, i = 0,1 or 2 and ¢ pulled back to B&q by sq is
the identity.) Let (Z* : (sheaves on &.;) — (sheaves on Et(B®.) with descent) denote the functor given
by z*K = {Z} K|n > 0} where Z,, : B&,, — & is the structure map in (2.2.0.*). A functor ,Z* : (sheaves
on Ggpt) — (sheaves on Smt(BG.) with descent) is defined similarly. The functors ,Z* and Z* have
right adjoints which are given by: F = {F"n > 0} — ker(6° — &' : 0. F® — 1. F'), where & is the
map 7. F° = x1.F! induced by d;. (ie. T(U, Z.F) = ker(§° — ' : T(Ux X, F%) —» T(UxX xX, F1)),
U € G¢. The functor ;% is defined similarly.) The right-adjoint to sa‘c*e(a_:*) will be denf‘ced6 sTw (Tx,

respectively ).
(2.5.3). Proposition. Assume the above situation. Now the functors:
(2.5.3.1) ;7* : (sheaves on Ggpt) — (sheaves on Smit(B6G.) with descent) and

(2.5.3.2) z* : (sheaves on G.;) — (sheaves on Et(B6.) with descent)
are equivalences of categories.
Proof. Observe that if F' is a sheaf on &gy,

(2.5.3.3) R* &, ;2*F =0for alli >0 and ,2, ,*F = F.
This follows readily since T'(U, F) = ker(6° — 6! : T(UxX, F°) - T(UxXxX,F')) , U € G4t by the
sheaf-axiom for F' on &,,,,;. Now it follows readily thatG sT* is a fully—faeithfil functor. The assumption
that z : X — & is smooth shows Z* is essentially surjective onto the subcategory of sheaves with
descent on Smt(BG.) (Given a sheaf F' on Smt(BG.) with descent, the descent data makes it possible
to obtain a sheaf K on S,y so that (Z*K = F.) It follows that

sT* : (sheaves on Ggpyt) — (sheaves on Smi(BS.) with descent)

is an equivalence of categories. This proves (2.5.3.1). Let (a.)x = {@ns«|n > 0} and (a.)* = {ak|n > 0},
where a,, : Smt(B&,,) —» Et(B&,) is the obvious map. Now (2.5.1) and (2.5.3.1) show the composite

functor (a.)* 0 Z* = ;Z* oa* : (sheaves on G¢;) — (sheaves on Smit(B6S.) with descent) is fully faithful;
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since (a.)* is also fully-faithful, it follows Z* : (sheaves on &.;) — (sheaves on Ft(B&.) with descent) is

also fully faithful.

Now let K be a sheaf on Et(B&.) with descent; clearly (a.)*K is a sheaf on Smi¢(B6&.) with descent.
Using (2.5.3.1), there exists a sheaf L on Gy so that (a)*K = ;3*L. Now K = (a.)« o0 (a)*K =

(a.)x o sZ*L which may be readily shown to be isomorphic to Z* o ai. L. It follows therefore that

Z* : (sheaves on &,;) — (sheaves on Et(B&.) with descent)

is essentially surjective; since it is already fully-faithful Z* is an equivalence of categories.

(2.5.4). The inverse to the above equivalence (given by z*) is in fact given by the functor Z, as in

(2.5.2). ie.

F=3,3*F, F ¢ Absh(Get)

Recall (2.5.3.3) proves the corresponding assertion for the smooth topology. One may prove this for the
étale topology as follows. Let F' denote a sheaf on Ggy; now if a : Sy — Sep(a. 1 SMmE(BS) —
Et(B®)) is the obvious map of sites as before, then the natural map F — a,a*(F) is an isomorphism
as observed in (2.5.1). Therefore, in order to show that F = Z,(Z*F), it suffices to show the natural

map a,a*F — a,a*(Z.T*F) is an isomorphism. Next one verifies the isomorphism:

(2.5.4.1) a* 0 2,5*F = &, 0 (a.)*z*F

([Mil] Chapter 1, Proposition (3.26)) shows that the étale neighborhoods are cofinal in the system of
smooth neighborhoods of ’points’ on schemes; clearly the same holds for ’points’ on algebraic spaces. (See

[Knut] chapter II, theorem (6.4).) Since each of the maps Z,, is smooth, one may apply this observation

to show the natural map

* 0 T T F S (y2)pw 0 (a) T F

is an isomorphism.

Now the definition of Z,Z*F and similarly that of Z,. o (a.)* ;2*F as in (2.5.2) completes the proof

of (2.5.4.1). Therefore we obtain the isomorphisms

0 (BoZ* F) = o sTw () T*F = 0 T4 sT*0*F <— a,a*F

which completes the proof of (2.5.4). (Here the last isomorphism follows from (2.5.3.3) applied to a*F.)
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(2.6.1) Definition. Assume the above situation. Let F denote a sheaf on either of the two sites
Et(B6.) or Smt(B6.). We will now define H"(BG.; F) to be the n-th right derived functor of the
functor F — ker(d° — 6' : ['(B&y; Fy) — I'(B&y; F1)) where §° is the map induced by dt.

(2.6.2). Let & denote an algebraic stack with z : X — & an atlas. One observes that the categories
Absh(Gpe) and Absh(S,;) have enough injectives in the following manner. Let F' be an abelian sheaf
on G- Now imbed ;Z*F in an injective sheaf I on Smt(BG&.). (See (2.3.1).) It is clear from (2.5.3.3)
that F = %, 0 ,Z*F and that the obvious map FF = z,0 Z*F — .,/ is an injection. (Recall that
since T, has an exact left-adjoint sZ*, it preserves injections and injectives.) If F' is now a sheaf on &y,
one may use the isomorphism F = a,o*F (see (2.5.1)) (and the fact that a. has an exact left-adjoint
o* and hence preserves injectives and injections) to imbed F in an injective sheaf. Therefore one may
define the i-th cohomology of & with respect to an abelian sheaf F' on &,,,; or &, to be Ezt!(Zg, F)

where Zg is the obvious constant sheaf.

(2.6.3)Lemma. Assume the situation of (2.6.2). If F' is an abelian sheaf on &.;, the cohomology
of & with respect to F' = the cohomology of a*F on Gy =2 the cohomology of BS. with respect
(sZ)*oa*F = (a.)*(2)*F on Smt(B6.) = the cohomology of BS. with respect to Z*F on Et(BS.).
Proof. The first and last isomorphism in the lemma follow from (2.5.1). Since X — & is a smooth
covering, it follows that Hom(Ze, a*F) = ker(6° — §' : T(X, (F* o a*F)g) — F(XéX, (Z* o a*F)1),
where §° is the map induced by the projection to the i-th factor X éX — X. The definition of the

cohomology of BS&. with respect to (a.)* o Z*F, as in (2.6.1) now provides the second isomorphism.

(2.6.4) The results above identify the cohomology of an algebraic stack with the cohomology of its
classifying simplicial groupoid. We will use this identification now to give a finiteness result for the
cohomology of algebraic stacks as in (1.6). Let & denote an algebraic stack satisfying the finiteness
conditions as in (1.6) and let B&. denote its associated classifying simplicial groupoid. Let I denote a

fixed prime different from the residue characteristics.

(2.6.5)Definition. Let & be an algebraic stack as in (1.6) and let F = {F,|n > 0} be an abelian
sheaf (sheaf of R-modules, where R is a commutative ring as in (2.3.1)) on Et(B&.). F is constructible
if each F,, is a constructible sheaf (of R-modules, respectively) on Et(B&,,). If F'is an abelian sheaf on
Get, F is constructible if Z*F' on Et(B6.) is. (Here Z* : Absh(G.;) — Absh(Et(B6S.)) is the functor
defined in (2.5.2).)

(2.7.1)Proposition. (i) Assume the above situation. Let F' denote a constructible sheaf with finite
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torsion stalks (finite [-torsion stalks where [ is different from the characteristic p) on Et(B®&.). Then

each of the cohomology groups H"(B&.; F)) is finite (and I-torsion, respectively).

(ii). Assume that ¢ : & — & is a quasi-compact map of smooth algebraic stacks as above and let ¢.
denote the induced map B&. — B&. If F is a constructible sheaf (with finite tor dimension) on Et(B&.)
with finite [-torsion stalks where [ is away from the characteristics, then Rp..F' = {R(p)n+Fp|n} also
has the same property. If R is also regular (for eg. R = Z; or its integral closure in a finite extension E

of ;) and F has finite tor dimension, then so does Rp..F = {R(p)n«Fn|n}

Proof. (i) First observe the existence of the first quadrant spectral sequence

EP" = HY(BG,; F,) = HP*1(BS.; F)
(See (A.2.1).) Recall each B&, is an algebraic space; hence its étale cohomology is defined in (2.6.2)
and in view of (2.6.3) may be identified with the étale cohomology of B(BS,) , where B(B&,) is the
classifying simplicial scheme associated to B&,, as in (2.2.1). This reduces the problem to showing that
the cohomology of an algebraic space as in (1.6) with respect to a constructible sheaf with finite torsion
(I-torsion) stalks is finite (and [-torsion, respectively). In view of (2.2.1) a similar spectral sequence

reduces the problem to a similar statement for schemes which is clear by the assumptions in (1.6).

(ii). Recall that the induced map ¢* : Et(BS.) — Et(BG.) of sites is given by U — U x (B®&),
, U € Et(BG,,). It follows that the right-derived functor Ry., = {R@n«|n > 0}. Therefo;: Sv)en reduce
to showing: let f : X — Y denote a map of algebraic spaces. If F' is a constructible sheaf on Et(X),
then so is R™ f, F' for each m. Similarly if F' has finite tor dimension, then so does R™ f,F for each m,

provided R is regular.

Letz: X —» X,y : Y — Y denote representable étale coverings and let f : X — ¥ denote the induced
map. Now observe (as in (2.5.4)) that if F is as above, F & Z,Z*F, where Z : BX — X, * and Z.
are as in (2.5.1) Let g : BY — Y denote the corresponding map and 3*, §. the corresponding functors

associated to Y. Let f.: BX — BY denote the induced map. Then we obtain the isomorphisms:
R™f.F = §.y*R™ f,.F = §.R" f..Z"F

The first isomorphism follows from (2.5.4) applied to R™f,F; the last isomorphism follows from the
isomorphism R™f..z*F = y*R™ f,F which is clear by smooth base-change (recall z and y are étale)

applied to the pull-back square:
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BY. — BXx.

di dl
vy L, x

Since f. : BX — BY is a map of simplicial schemes, observe that R™f..z*F = {R™f.,T}Fy|n >
0}; since Z* F, is constructible (and of finite tor dimension) if F is, it is clear that R™f..z*F also
has the corresponding property. Therefore, in order to prove (ii), it suffices to prove that if G is a
constructible sheaf on Et(BY.) (with finite tor dimension when R is regular), and with descent, then 7.G
is constructible (and has finite tor dimension, respectively). Since G has descent, it follows from (2.5.3.2)
applied to Y that there exists a K € Absh(E¢(Y)) such that §*K = G; hence K = 3,5*K = 3.G (as
in (2.5.4) since y : Y — Y is étale). Therefore it suffices to show K is constructible (and of finite tor
dimension) if G is. Let G = {G,|n > 0}. Now the assumption that G has descent and is constructible,
shows there exists a filtration V3 C Vo C ... C V41 = Y by Zariski open algebraic subspaces, so that
if U; = (V})})ﬁf’, then Gojy,—y,_, is locally constant on the étale site of U; — U;_;. It follows that K
is locally constant on the étale topology of V; — V;_;. The case of finite tor dimension follows readily
using the projection-formula, the assumption that R is regular and the assumptions of (1.6) that show

the functor R¢ . has finite /-cohomological dimension. This concludes the proof of the proposition.

(2.7.2). Let f : & — & be a representable map of algebraic stacks and let f. : B&. — B&. denote
the induced map. Suppose in addition it is quasi-compact. Let F' = {F,,} (K = {K,}) be a sheaf with
descent on B&.(BG., respectively). Since the face maps of B&. are all smooth one may show (using
smooth base change) that R™f.,F is a sheaf with descent on Et(B&). for any m > 0. (One observes
readily that f.*K is a sheaf with descent on Et(B&.) if K is a sheaf with descent on Et(B&.).)

(2.7.3). Corollary. (i) Assume that & is an algebraic stack satisfying the finiteness conditions of
(1.6). If F is a constructible sheaf on &,; with finite torsion stalks (finite I-torsion stalks where [ is
different from the characteristic p), each of the cohomology groups H"(&; F) is finite (and I-torsion,

respectively).

(ii). Assume that ¢ : & — & is a quasi-compact map of smooth algebraic stacks as above. If F is a
constructible sheaf on Et(B&.) with finite I-torsion stalks where [ is different from the characteristics,
then R"p,F also has the same property for each n > 0. If R is a regular ring and F' has finite tor

dimension, then so does R"p, F for each n > 0.

Proof is clear in view of (2.7.1) and (2.7.2).
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(2.7.4) Let & denote an algebraic stack as in (1.6) with a smooth atlas : X — &. Let j: 6 — &
(i : & — &) be a representable map of algebraic substacks so that j (i) is an open (closed, respectively)
immersion. Let j. = Bj and i. = Bi denote the induced maps. Observe that for each m, j,,(in) is a
open (closed, respectively) immersion, and that the induced map j, : Absh(FEt(B&)) — Absh(Et(BS))
is given by j1(K)m = jm(Km), K = {K™|m} € Absh(Et(BS)). Similarly (Ri)"(L))m = Ril,(Lm),
L e Absh(Et(BG.)). (Once again one may prove readily that the above functors send sheaves with descent
to sheaves with descent; moreover considering sheaves of R-modules, where R is a regular ring (as in
(2.7.1)), one may also show that the above functors preserve the property of having finite tor-dimension

as well.

3. The derived categories and t-structures

(3.0) Throughout this section & will denote an algebraic stack as in(1.6) and B&. will denote the
corresponding simplicial groupoid defined in (2.2.0). In this section we consider various derived categories

associated to Smt(B6S.) and to &,,¢.

(3.0.%). All our results apply equally well to the étale topologies, Et(BS.) and G for Deligne-Mumford

stacks. However we state our results explicitly only for the étale topology.

(3.1) Let I be a prime number different from the residue characteristics. For each v > 0 we let
C?(Smt(B6&.), Z /1") denote the category of bounded complexes of sheaves of Z /I*-modules on Smt(B&.)
with constructible cohomology sheaves, constructible as in (A.2.3). Cftf(Smt(BG.), Z /") will denote
the full sub-category C%(Smt(B&.); Z/1") of complexes that are of finite tor dimension. If E is a fi-
nite extension of @, and R is the integral closure of Z, in E, we obtain the categories C®(Smt(B&.),
R/m") and C’é’tf(Smt(BG.), R/m") in a similar manner- see (2.3.2). A map f : K — L' of com-
plexes in the above categories is a quasi-isomorphism if it induces an isomorphism of the cohomology
sheaves H"(K'|sm(Bs,,)) — H"(L'|smiBs,,)) for all m > 0, all n. We obtain the derived cate-
gories D%(Smt(BS.), Z/"), D}(Smt(BS.), R/m"), D}, ;(Smt(BS.), Z/t"), (D}, ;(Smt(BS.), R/m")
by inverting the quasi-isomorphisms. The derived categories D%(&es, Z /L"), D(&ct, R/m"), Db 1(Ser,

Z[€"), D%, ;(Ser, R/m”) may also be defined in a similar manner.

(3.2). Assume the situation of (3.1). Observe that the full abelian sub-category of sheaves with
descent on Smt(BG.) is closed under extensions in the category of all sheaves on Sm#(B&.). Therefore
(see [Hart] p.47) we may let DZ¢*(B&.; R/m”) denote the full subcategory of D.(Smt(B&.); R/m")

consisting of complexes K so that each of the cohomology sheaves H(K") is a sheaf with descent.
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The category D"%*(B&.; R/m”) will be defined to be the full subcategory of D?, .(Smt(BS.); R/m"
ctf ctf

satisfying a similar condition.

(3.3) One defines Db(Smt(B&.), Zy) =2 — lim D}, (Smt(BG.), /) (DL(Smt(BS.), R)

=2-lim D’c’tf(Smt(BG.), R/m")) (see [Del-2] p. 148.) (Recall this means the objects of D?(Smt(B&.),
—

v

L
R) are inverse systems {, K"}, with , K e D}, ,(Smt(B&.), R/m”) so that R/m"*" ® (,K°) =~
R/mY

v+1 K. Given two such inverse systems {, K}, {, L'},

(33%) Hom({,K'}, {,L'}) = limHom(, K", ,I).).

D!(Smt(B&.), Q) (D:(Smt(B&.), E)) is the quotient of D%(Smt(BS&.), Z,) (Di(Smt(BS&.), R),
respectively) by the thick subcategory of torsion sheaves. Finally we define the derived category

D% (Smt(B6.), Q) as 2 — li_r)n DY (Smt(B6.), E) where the colimit is over all finite extensions E of Q.
E

(Recall this means the objects of D%(Smt(B&.), Q,) are direct systems { K| E}, where K € D%(Smt(B&.),
E)) and that given two such systems K = {Kg|E} and L = {Lg|E},

E

(3.3)’ Assuming the above situation one defines DIC’;‘;CS(BG.; R) (D%43(Smt(BG.), E), D% (Smt(BG.),
Q¢)) to be the full-subcategory of DY, ;(B&.; R) (D%(Smt(BS.), E), D(Smt(BS.), Q) respectively )
consisting of complexes whose cohomology sheaves have descent. One may similarly define D%(&.; R) =

2 —lim D}, +(Sei; R/m”), DY(.t; E) = the quotient of D%(&.; R) by the thick subcategory of torsion

sheaves and D%(G.s; Q1) =2 — li_I)nch)(Get; E).
E

(3.4) Let v > 0 be a fixed integer and let R be the integral closure of Z, in a finite extension E of Q.

We now observe the existence of spectral sequences (as in (A.2.1))

(3.4.1) EP(v) = Ext?(, K;

PV

L) = ExtPti(,K" , ,L)
where Ext™ is the n-th right derived functor of Hom in C?(Smt(B&,), R/m").

(3.4.2) Observe that (3.4.1) is a right-half-plane spectral sequence. Hence if , K- and ,L- are bounded
complexes with constructible cohomology sheaves (with I-torsion, | as always different from the residue

characteristics) it follows (as in (2.7.1)) that each Ext"(, K-, ,L°) is finite (with [-torsion) since &
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satisfies the finiteness conditions as in (1.6). Therefore taking the inverse limit of the spectral sequences

in (3.4.1) over v > 0 provides strongly-convergent spectral sequences

(3.4.3) EVY = {iLnExtq(,,K'

PV

L) = {iLnEwtpﬂ(,,K' , vL)

The finiteness of tfle Ext-groups in (3.4.13 shows (in view of [B — B — D] Proposition 2.2.15) that the
categories D?(Smt(B&.), Z,) and D%(Smt(B&.), R) (and D% (Smt(B&.), Z,) and D% (Smt(BS.),
R) are triangulated categories where the distinguished triangles are inverse systems of distinguished

triangles in DY, (Smt(BS.), Z/¢") and D, (Smt(BS.), R/m")) respectively.

(3.4.4) We next observe that the functor ;Z* (as in (2.5.2)) induces equivalences:

sT* 2 DY(Sgme; R/m¥) — D245 (Smt(BG.); R/m") and

58" : DYy (Somi; R/m”) = DY (Smt(BS.); Rfm")
Since ,Z* already induces an equivalence of the hearts ie. between the category of sheaves of R/m?”-
modules on G,y and the category of sheaves of R/mY”-modules on Smt(B&) and with descent, and

since it preserves the property of having finite tor-dimension, it suffices to show that z* is fully-faithful.

(See [Beil] Lemma 1.4 for a proof of this.) This follows from (2.5.3.1).

In the case of Deligne-Mumford stacks one obtains a similar equivalence:

z* : D%(&eyy; R/m”) — D%4¢3(Et(BS.); R/m"”) and

z* : DY, ;(8ei; R/m”) — DY (Et(BS.); R/m”)
To see this one may proceed as follows. Let K-, L'e D.(S.; R/m”). Let ,Z* denote the functor:
D (Sspmi; R/m¥) — D (Smt(BS; R/m")) (and induced by Z as in (2.5.2)), let () : Smt(B&.) —
Smit(B6.) and a : G,y — S be the functors as before. Now recall (from (2.5.1)) that («.)* and

a* are fully-faithful also at the level of derived categories. Moreover (a )* o Z* = ,Z* o a* and Z* is

fully-faithful -see (2.5.3.3). Therefore

Hompaes(pype.)) (" K, Z*L) = Hompaes(smi(Bs.)) ()" 0 Z*K, (a.)* 0 T L)

= Hompdes(smi(pe.))( sZ" 0" K, ;" oa”L) = Homp (s,,.,)(a"K, a*L) = Homp_(e.,)(K, L).

where the last-but-one isomorphism follows from the fact ,z* is fully-faithful- see (2.5.3.3). It is clear

that Z* preserves the property of having finite tor dimension.
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(3.4.5).) In view of the definitions in (3.3) and (3.3%), (3.3.%), (3.3.%*) and (3.4.4) show that the

functor ;T* induces the equivalences:
DY(Sgpi; R) ~ DVes(Smt(B6S.); R),
Db (&gmi; E) ~ DV (Smit(BS&.); E) and

DY(Ssmt; Qr) = DL (Smt(BS.); Qu)-

(3.4.6) Finally observe that by taking first the inverse limit over v and then the tensor product of the
spectral sequence in (3.4.1) with E and finally taking the direct limit over all such finite extensions E of
Qi one obtains a spectral sequence (recall E is flat over R)

(3.4.6.%) EV" = Ext'(K,, L;) = Ext’T(K- , L)

where K- = {K,|p >0} , L = {L;|p > 0} € D%%*(Smt(BS&.); Q).

(3.4.7). Remark.Observe also that as a result, Hom in the derived category D% (&,,;; @Q;) is
readily computable by means of the spectral sequence in (3.4.6.*). It follows that Hom in the category of
perverse sheaves on algebraic stacks (see the next section for the definition) is also computable similarly,
since Hom in the category of perverse sheaves is Hom in the derived category when the perverse sheaves
are viewed as complexes. (In (4.12) it becomes essential to be able to compute the Hom (and the Ext?,
i > 0) in this category of perverse sheaves.) Moreover the spectral sequence (3.4.6.*) (the identification
in (3.4.5)) is important (see (3.4.2)) even in providing a triangulated category structure to D(Smt(B&.),
Q1) and (D%(Ssme; @1), respectively ). It follows therefore that to be able to define a derived category
of £ — adic sheaves with a t-structure whose heart will be the category of perverse £ — adic sheaves on

algebraic stacks (see the next section) it seems essential to adopt our approach.

Another reason for adopting our approach is the following. Clearly one needs to relate the derived
category on an algebraic stack & with the derived category on its atlas X. However the category of
sheaves with descent on X is not closed under extensions in the category of all sheaves on X; this
makes it difficult to consider the category of complexes of sheaves on X whose cohomology sheaves have
descent. On the other hand the category of sheaves with descent on the simplicial algebraic space BG.
is closed under extensions in the category of all sheaves on B&.; hence it becomes possible to consider

the derived categories as in (3.2) and (3.3).

(3.5.1) We next introduce standard t-structures on the above derived categories. Let R denote the

integral closure of Zy in some finite extension E of )y and let m denote the maximal ideal of R. First
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observe that the standard t-structures on D%(&g,,¢; R/m”) may be defined in the usual manner. We may
define standard t-structures on D%(Smt(B&.), R/m") as follows. For each ¢ > 0, let D»<%(Smt(B®&.),
R/m")(D%24(Smt(B&.), R/m")) denote the full subcategory of D%(Smt(B&.), R/m") consisting of
complexes , K- so that H"(,K-) = 0 for all n > ¢(all n < q, respectively). One readily proves that the
inclusion D%<9(Smt(B&.), R/m") — D!(Smt(B&.), R/m") has a right adjoint 7<, which is given as

follows.

Let ,K- = {,K;|n > 0}e D%(Smt(B&.), R/m"). We let 7<,(,K-) denote the complex given on
Smt(X,) by 7<,(,K;). If a : B, - B&,, denotes a structure map of the simplicial object BS.,
there exist a map a (1<, ,K;)—37<4(e;, ' K;) = 7<4(,K}); the naturality of the first isomorphism
shows that so defined 7<4(,K*) is a complex on Smt(B®&.). Similarly one shows that the inclusion
D%29(Smt(BS.), R/m") — D}(Smt(B&.), R/m") has aleft adjoint 7>, which may be defined similarly.
It follows readily that (D%<°(Smt(B&.), R/m"), D%2°(Smt(B&.), R/m")) forms a t-structure on
D!(Smt(B&.), R/m"). (See [B — B — D]p. 29 for the definition of t-structures.). This will be referred
to as the standard t-structure on D%(Smt(B&.), R/m").

(3.5.2) Observe that the functor Z* in (3.4.4) is exact; therefore it preserves the standard t-structures.

(3.5.3) The standard ¢-structure on the derived categories D%(Smt(B®.), Z;) and (D%(Smt(B&.), R)
will be now defined in the obvious manner. Nevertheless the truncation functors defined in (3.5.1) do
not preserve the property of having finite tor dimension as observed in ([Del-2] p.149.). Hence we may
define new truncation functors 7, and 7%, following ([Del-2] p.149). We skip the detailed definitions.

One shows readily that 72 (7% ,) is right adjoint (left adjoint) to the inclusion

DVS9(Smt(BS.), R) — D (Smt(BS.), R)(D"2(Smt(BS.), R) — DY (Smt(BS.), R),

respectively). Clearly this induces a t-structure on the category D?(Smt(B&.), E) where E is a finite

extension of )y and R is the integral closure of Z; in E.

(3.5.4) As D(Smt(BG.), Q¢) = 2—1lim D(Smt(BG.), E) (with the colimit over all finite extensions
—

E of Q) D%(Smt(BS.), Q) is a triangulated category. The t-structures on the various D%(Smt(B6.),
E) define a t-structure on D%(Smt(B&.), Q,) which we call the standard t-structure. The standard
t-structure on D?(&,,,;; R) and D%(Sn¢; Q) may be defined similarly.

(3.5.5) Clearly the derived categories D%4¢%(Smt(B&.; R/m")), (D%%*(Smt(B&.; R)), D%%%(Smt(B6&.;
Q;))) inherit the standard t-structure from D%(Smt(B&.; R/m”))(D%(Smt(B&.; R)), D’(Smt(B&.;
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Q)), respectively). Moreover it is clear that the functor z* in (3.4.4) preserves the standard t-structures

we have defined above.

(3.5.6). Let n denote a fixed integer. If K- belongs to any one of the above derived categories K[n]
will denote the obvious complex obtained by shifting K- n-times to the left. The standard t-structure

on any of the above derived categories also gets shifted by this functor.

Next we consider non-standard t-structures on the derived categories considered earlier. We begin

with the following observations:

(3.6.1) Let S denote a stratification of & ie. a partition of & into a finite number of locally-closed

algebraic substacks S® so that Sa( X )(Spec k) is smooth. (Observe that one may obtain such a
Spec k

stratification of & as follows beginning with a similar stratification ' = {T'} of X; let T be such a

stratum of X and let & be the locally-closed stratum of & defined by

Sr(Y)={g:Y — &] the induced map ¢’ : Y xX — X factors through the given map T' — X}.
S

for any algebraic space Y as in (1.6). One may verify readily that & is an algebraic stack with atlas
given by T.) In this situation we will let S® denote the subsimplicial object of B&. given in degree
n by (S%), = S*xXx..xX. Now let {U?} denote the filtration of & by open substacks given by
Ut - U = U{S%dl?n(?(é(ﬁ’“)) = n —i+ 1} where n = dim; X which is the dimension of its
atlas as in (1.5)(i). (The dimension dim (X x(S%) is the dimension of the algebraic space X x(S%) as
in (1.5)(i).) Let U* denote the correspondineg subsimplicial algebraic space of BG.. Observeethat the

filtration U° C U! C ... CU™ C U™*! = B&. has the following properties:

(i) each of the maps U2 — U2*! is an open immersion.(The corresponding map of simplicial algebraic

spaces will be denoted j%)

(ii) each (U2 —U2) is smooth. The simplicial algebraic space (U%*! —U®) will be called the a — th

stratum of the simplicial algebraic space BS..

(3.6.2) A perversity is a function p : (non-negative integers) — Z so that (i) p is non-increasing and
(i) 0<p(n)—p(n+1) <1. Let p: {S*¥0 < a <n+1} — Z be the function associated to a perversity
p by letting p(S*) = p(dimk(SaéX)). For eg. the middle perversity m is defined by m(k) = —k and
m(Sq) = —dimk(SaéX). Given a perversity p, the dual perversity p* is given by p*(k) = —p(k) — 2k.
Assume the situation of (3.1). Starting with the standard t-structures on each D}, .(Smt(S*), R/m")
shifted by p(S%) (as in (3.5.6)) we will define a (non-standard) ¢-structure on D’C’tf(Smt(BG.), R/m")
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following ([B — B — D] chapter 2); this will be referred to as the t-structure obtained by gluing and using
the stratification S. We may define a ¢-structure on thf(Gsmt, R/m") in a similar manner by gluing

the ¢-structures on DY, (8%, R/m").

(3.6.3)Definition. For each stratum S let ig, denote the immersion S. - B&.. We let
Dﬁ;fSO(Smt(BG.), S; R/m”) = the full subcategory of Dgtf(Smt(BG.), R/m") consisting of complexes
vK so0 that H"(i5"(,K")) = 0 for all n > p(S.) and all strata S.; D} 7°(Smt(B6.), S; R/m”) = the
full subcategory of Dgtf(Smt(BG.), R/m") consisting of complexes , K so that H"(i% (,K*)) = 0 for
all n < p(S.) and for all strata S. The fact that this is a ¢-structure follows exactly as in ([B — B — D]p.

67) in view of the above observations.

(3.6.3)’. Observe that if & itself is smooth with the obvious trivial stratification S, then
DY3%(Smt(BS.), S; R/m”)(\ DY3°(Smt(BS.), S; R/m")

consists of complexes K so that H!(K-) = 0 unless i = p(dim(X)).

(3.6.4). Clearly the above t-structures induce similar ¢-structures on D%%2(Smt(B&.); R/m")
(Dbdes(Smt(BS.); R), Doy (Smt(B&.);, R/m”), (Do (Smt(BS.); R), D7 (Smt(BS.); E) and
Dbdes(Smt(B&.); Q;)) as well as on the corresponding derived categories associated to &gpms. These
t-structures will from now on be referred to as the t-structures obtained by gluing and the stratification
S. We will often use D%%*(Smt(B&.)) generically denote any one of these categories. In each case
the truncation functor 1<, : D%4¢%(Smt(B&.)) =% D545 (Smt(BS&.); S.) (T>n : D2 (Smt(BS&.)) —

D}-des(Smt(B6G.); §)=°) will be denoted 7455 (745, respectively).

3.6.5) Since z : X — 6 is smooth, one may readily show that the functor z* preserves the
) Y y p

t-structures; now (3.4.4) shows it induces an equivalence:

~ DL (Smi(BS.), S, R/m*) N D%y =" (Smt(B&.), S, R/m")

D3 (Gomes S, R/m*) N\ DY7% (S smi, S, R/m”)

and similarly for the other derived categories in (3.6.4).

(3.6.6). Recall the map of sites a : Sy = Somt, . : SmE(BG.) — Et(BG.) asin (2.5.1). Next observe
as in (2.5.1) that Ria, = 0, R'a., = 0 and that a,0*(K) < K, a,o*(F) & F, if K ¢ Absh(S 4m;)
with & a Deligne-Mumford stack and F' ¢ Absh(Et(B®)) in general. It follows that the functors o*

19



and o* are fully-faithful at the level of the appropriare derived categories. The observation that étale
neighborhoods are cofinal in the system of all smooth neighborhoods (ie. neighborhoods in the smooth
topology) (see (2.5.1) or [Mil] pp.111-112 and chapter I, proposition (3.26)) once again readily shows
that a*a,F = F, if FeAbsh(Gsn;) with & a Deligne-Mumford stack. Similarly afaF = P if
F-eAbsh(Et(B®.)) in general. It follows that

(3.6.6.%¥)a* : DY(Symt) = DE(S,me) and a* : DY4es(Et(BS.)) = Dbdes(Smit(BS.))

are equivalences of categories, where the derived categories denote any one of categories as in (3.6.4) and
preserve the standard t-structures as well as the ones obtained by gluing. (Recall the second equivalence

is only for Deligne-Mumford stacks.) This observation plays an important role in the proof of (4.2).

(3.7.1) We conclude this section with a brief discussion of Verdier duality for algebraic stacks. First
this involves the definition of the functors Rf; and Rf' for a 'compactifiable’ representable morphism
f : & — & of algebraic stacks. Let f : & — & be a representable map of algebraic stacks; we say f is
compactifiable if there exists a factorisation f = po j, with j : & = &(p : & — &) a representable open
immersion (p a representable proper map, respectively). In this case one may define Rfi to be Rp, o ji;
if f = p.oj. is the induced map B&. - BS. — BS we may also define Rf, to be Rp_, 0 j., making use
of the site defined in (A.1.0). (One may show as usual that these are independent of the factorisation
of f.) Finally Rf'(Rf') may be defined to be right adjoint to Rfi(Rf., respectively). Observe that
Rfy={Rfu|n} and Rf' = {Rf}|n}. (Alternatively one may define these functors in full generality for
maps of algebraic stacks of finite type over a field as in (1.6) in the obvious manner making use of the

dualising complezes defined below.)

(3.7.2). Next we show the existence of dualising complexes. Let X denote an algebraic space as in
(1.6) and let # : X — X denote a representable étale cover. Our assumptions as in (1.6) show that X is
a scheme of finite type over k where k satisfies the conditions as in (1.6). Let Dy = the constant sheaf
Q; on Spec k; if p: X — Spec k is the structure map of X, we will let D; = Rp' Dy, = the dualising

complex on Et(X). We will first show that this descends to a complex Dx on Et(X).

Let m; : XxX — X for i = 1, 2 denote projection to the i-th factor. Next observe that the constant
X
sheaf ; on Et(X) clearly has descent ie. there is an isomorphism ¢ : 77 Q; ~ m3Q; satisfying the obvious

cocycle conditions. Taking duals, we obtain a quasi-isomorphism

RriDy = Re\D(Qr) = D(niQr) = D(m3Qy) = ReyD(Qy) = Ry D

satisfying similar conditions. (Observe that X x X is a scheme of finite type over Spec( k); therefore the
X
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above quasi-isomorphisms are clear.) Now recall that each of the maps m; (i = 1,2) is étale; therefore
Rmy = Tiu; since R, is right-adjoint to Ry and 7} is right-adjoint to 7., it follows that Rm} ~ 7. It
follows that D ¢ descends to a complex Dx (see (3.4.5)) which we call the dualising complex on E¢(X).
(One may verify this is indeed a dualising complex, by working locally on the étale topology of X.)

(3.7.3) Now let f : X — Y denote a representable map of algebraic spaces as in (1.3.3). Let K
denote a bounded complex of @;-sheaves on Et(Y). We will now define Rf'K to be Dx(f*DyK),
where Dy K = Rhom(K, Dy), Dx M = Rhom(K, Dx), M a complex of (; sheaves on Et(X).. Clearly

similar arguments hold for the smooth topology.

(3.7.4). Next assume & is an algebraic stack as in (1.6) over a field k as before and z : X - G is a
smooth atlas. We will now show that the dualising complex Dx (obtained as in (3.7.2)) descends to a
complex Dg on Ggpye. Let m; : X xX — X for i = 1, 2 denote projection to the i-th factor. Next observe
that the constant sheaf Q; on Sm(?f(X ) clearly has descent i.e. there is an isomorphism ¢ : 77 Q; ~ T5Q;

satisfying the obvious co-cycle conditions. Taking duals, we obtain a quasi- isomorphism

RmiDx = RriD(Q;) ~ D(n}Q;) ~ D(n3Q;) ~ RryD(Q;) = RryDx

satisfying similar conditions. Now recall that both the maps m; are smooth of relative dimension dj
therefore one may show readily that Rm} ~ 7}[2d]. See [SGA]4. Expose XVIII, Theorem 3.2.5 for
Poincare-duality for compactifiable maps between schemes; one may generalize this to algebraic spaces
using the classifying simplicial scheme associated to an algebraic space as in (2.2.1). It follows (see
(3.4.5)) that Dx descends to a complex of sheaves Dg which we call the dualising complex on & ;-
(One may verify that this is indeed a dualising complex, by working locally on the smooth topology of

)

4. Perverse sheaves on algebraic stacks

(4.0) In this section we study perverse sheaves on algebraic stacks. Assume that & is an algebraic
stack as in (1.6) and that S is a stratification of & as in (3.6.1). A stratification T of & is a refinement
of S if (a) each stratum T of T is contained in some stratum S of S and (b) each stratum S of S is a
union of strata belonging to T'. One may readily verify that the category of all stratifications of & as in

(3.6.1) is small (in an appropriate universe) and is filtered under refinement.

(4.0.1)If S is a stratification of & as in (3.6.1), we let Ce(Syspy; S) (C2%(Smt(BS.); S)) = the heart
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DO (&sme; S, Q)N D27 (Gsmit; S, Qi) (DYe*0=(Smt(BS.); S, Qi) N D> (Smt(BS.); S, Qu),
respectively ). Similarly C.(&.; S), C%*(Et(BS.); S) will denote the corresponding categories defined
using the étale topologies. Now one may show exactly as in ([B-B-D] p. 62) that if T is a refinement
of the stratification S and K- (L ) belongs to C.(Gsmt; S) (L belongs to C2°*(Smt(B&.); S)) then
K- (L) also belongs to Co(&spms; T) (C22(Smt(BS&.); T), respectively .) Evidently the corresponding

assertion holds for the smooth topologies as well. Therefore we make the following definition.

(4.0.2). Definition. (i) C.(G¢) = li_r>nCC(66t; S). (Co(Gymt) = 1i_r>nCc(63mt; S).) This category will
s g
be called the category of perverse sheaves on Sqp (& 4ms, respectively ).
(ii). C%*(Et(B6.)) = li_r)anes(Et(B6.); S). (C23(Smt(B&.)) = lgrlcges(Smt(BG.); S)). This
S S

category will be called the c;tegory of perverse sheaves with descent on S_mt(BG.) (Smt(B6.), respec-

tively ) where the direct limit is over all stratifications as in (3.6.1).

(4.0.3)Observe from (3.6.6.%) that the functor o* (a*) induces an equivalence (the first holding only
for Deligne-Mumford stacks):

Ce(Get) = Ce(Symi) (Co(EL(BG.)) ~ C.(Smt(BS.)), respectively .)

(4.1). Now (Theorem 1.3.6, [B — B — D)) shows that C%*(Smt(B&.)), (Ce(Ssmt)) is an abelian
category and the functor H® = 7<g o 75¢ : D2 (Smt(B&.); Q;) — C%*(Smt(BS.)) (H® = 1< 0 T>¢ :
DY(Ssmi; Q1) = Co(Ssmi)) is a cohomological functor. Similar statements hold for the categories

defined using the smooth topologies.

(4.2) Proposition. Let & denote an algebraic stack as in (1.6) with a smooth atlas z : X — &.
Assume the above situation. Now the functor Z* (defined as in (2.5.2)) provides the equivalences of

categories:
(perverse sheaves on Gg,,¢) ~ (perverse sheaves on Smit(B6S.) with descent)

~ (perverse sheaves on Sm#(X) with descent).
Here the last category consists of perverse sheaves F' on Smt(X) provided with an isomorphism ¢ :
7 F — w3 F (in the appropriate category of perverse sheaves) satisfying the usual conditions; here
m; : XXX — X is projection to the i-th factor. If F' and K are two such objects, a morphism f : FF — K
in the ibove category will mean a map of perverse sheaves on Smt(X) commuting with the above extra
structure. The corresponding result holds with the étale site in the place of the smooth site for all

Deligne-Mumford stacks.
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Proof. Observe that the first equivalence follows from (3.6.5). Therefore it suffices to prove that the

functor

sT*:(perverse sheaves on G,py) ~(perverse sheaves on Smt(X) with descent).

induces an equivalence. Moreover to prove the last assertion for Deligne-Mumford stacks, in view of the
equivalence in (4.0.3), it suffices to prove the equivalence:

Z* (perverse sheaves on G;) ~(perverse sheaves on Et(X) with descent).

Locally on &g,y we may assume that the atlas ¢ : X — & has a section s; therefore it follows readily
(see [SGA 4] Expose V) that if F is a perverse sheaf on Smt(X) with descent, then there exists an
open smooth covering U; of & and perverse sheaves K; on Smit(U;) so that z*K; = F on X xU; where =
denotes isomorphism in the appropriate category of perverse sheaves. The fact that each IS is perverse
enables us (see [B — B — D] Theorem (3.2.4)) to glue them together to obtain a perverse sheaf K on
Gsme so that z*K = F. Similarly if « : F — F' is a map in the category on the right, one may show it

descends to a map of perverse sheaves on &Sgp,¢.

Note: The remaining results of this section and the mext also hold for Deligne-Mumford stacks with

the étale topology in place of the smooth topology. We do not state these explicitly.

(4.3). Corollary. Assume the above situation. Then the category (perverse sheaves on Gg,y,) is
both artinian and noetherian; every perverse sheaf on &,,,,; has finite length.
Proof. Observe (from (4.2)) that it suffices to show that the category (perverse sheaves on Smt(X)) has
the above property. Regarding X as an algebraic stack, and applying (4.2) to a representable étale cover
X — X, it suffices to show (perverse sheaves on Smt(X)) has the required properties. This is clear in

view of ([B — B — D] Theorem (4.3.1).

(4.4).Proposition. Let f : & — & denote a representable smooth map of algebraic stacks as in (1.6)
with connected non-empty geometric fibers; let z : X — & , y : Y — & denote the smooth atlases.
Let the relative dimension of the induced map f : X — Y be d. Then f*[d] :(perverse sheaves on

G,mi) = (perverse sheaves on &,,,;) is fully-faithful.
Proof. In view of the equivalence in (4.2) we first reduce to showing that

(4.4.1) f*[d] : (perverse sheaves on Smt(Y) with descent) — (perverse sheaves on Smt(X) with

descent)

is fully-faithful.
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The main step in the proof will be to show (4.4.1) assuming that

(4.4.2) f*[d] : (perverse sheaves on Smt(Y)) — (perverse sheaves on Smt(X))

is fully-faithful for all algebraic spaces X, Y and smooth maps f : X — Y with connected geometric
fibers of relative dimension d.

First observe that f*[d] preserves the property of having descent. Therefore it suffices to prove the
following: let a : K — L denote a map of perverse sheaves on Smt(X) with descent (as in (4.4.1)).

Then there exists a map 8 : K’ — L' of perverse sheaves on Smt(Y) with descent so that f*[d](8) = «

a. Tt suffices to show that the map § has descent.

By (4.4.2), clearly there exists a map 3 : K' — L' of perverse sheaves on Smt(Y) so that f*[d](8) =
commutativity of the square:

The assumption that a has descent shows the

Since a = f*[d](B), by the assumption, it follows that the above square is merely:

(K7 = w3 (F[d) (&) Ao,

~

w (FA(LY) = Frld)(ri(L'))
Frldl(ms(K") = w3 (Fl)(K")) Z2E, e pea)(1) = Frld](m3(17)

—

S S

Here f; : YxXX — Y XY is the map induced by f. Observe this is is also of relative dimension d and
with connected geometric fibers. Therefore the assumption in (4.4.2) shows that

f[d] : (perverse sheaves on Smt(Y xY) —(perverse sheaves on Smt(Y x X)
&

&
is fully-faithful. Hence the square

mp (K" T e (ry

-

my(K") 22 (L)

commutes. It follows that the map 8 has descent. This proves (4.4.1) assuming (4.4.2).
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One may prove (4.4.2) as follows. Let # : X — X, § : ¥ — Y be atlases as in (1.5)(i) and

f X oY, fl : YxX — Y'xY denote the induced maps, then these are both smooth maps between
X X

schemes of relative dimension d and with connected geometric fibers. Therefore, one may invoke ([B-B-D]

Proposition (4.2.5)) to observe that the functors:
f*[d] : (perverse sheaves on Smt(Y)) — (perverse sheaves on Smt(X)) and

f]d) : (perverse sheaves on Smt(Y xY)) —(perverse sheaves on Smt(¥Y x X))
X X

are fully-faithful. The same proof as above now shows that this implies

f*[d] : ( perverse sheaves on Smt(Y) with descent) — (perverse sheaves on Smt(X) with descent)

is fully-faithful. By (4.2) this shows that the functor

f*[d] : ( perverse sheaves on Smt(Y)) — (perverse sheaves on Smt(X))

is fully-faithful. Clearly this completes the proof of (4.4.2) and hence that of (4.4).

(4.5). Corollary. Assume the above situation. Then f*[d] identifies (perverse sheaves on &;,;) with
a thick (ie. closed under subquotients) subcategory of (perverse sheaves on Sgt).
Proof. Clearly f*[d] is an exact fully-faithful functor and every object of (perverse sheaves on &gy;)
has finite length. Moreover the characterization of the simple objects as in (4.8) shows it sends simple

objects to simple objects. Now apply (4.2.6) and lemma (4.2.6.1) of [B — B — D].

(4.6) Proposition. Let & denote an algebraic stack as in (1.6) with a smooth atlas z : X — & whose
geometric fibers are non-empty and connected. Let K be a perverse sheaf with descent on Smt(X).
Then every subquotient of K in the category of all perverse sheaves on Smt(X) also is a perverse sheaf
with descent.

Proof. Let K be a perverse sheaf with descent on X and let L be one of its subquotients. Let m; :
XxX — X, i =1, 2 denote the projection to the i-th factor. Observe that each of these is smooth
of c?rela,tive dimension = the relative dimension of z : X — & = d. Now =} L[d] is a subquotient of
w1 K[d] = n3K|[d]. (4.5) shows there exists a perverse sheaf M on X so that 77 L[d] = w3 M[d]. Now
pulling back by the diagonal A : X — X éX , we see that L = M. Thus L has descent. The equivalence

of categories in (4.2) now implies the corresponding statement when K is a perverse sheaf on Smt(B&.)

with descent.

Next we derive the following results as formal consequences of the existence of the t¢-structure ob-
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stratification of & as in (3.6.1). Let {U¢|i}, {U.}|i} denote the filtration of & (B&., respectively ) as in
(3.6.1).

tained by gluing as in (3.6.3) on D%%¢*(Smt(B&.); S, Qi) and on D4(S4me; S, Q1), where S is a fixed

(4.7.1). If K- € Db4e3(Smt(U.}), Q;) and F- € D%%*(Smt(BS.); Q;), we will say F- is an extension
of K- if j.*(F-) ~ K-, where j. : U.! = B®. is the obvious map.

(4.7.2). Moreover if K- e D% (Smt(U.}), Q;) there is a unique extension F- e D% (Smt(BG.),

Q) so that if ig. : S. — B®. is the inclusion of a stratum, then,

(i) Hi(is.*(F*)) = 0 for i > p(S.) — 1 and
(ii) Hi(Ris.'(F")) =0 for i < p(S.) + 1

One may obtain this from (Proposition 1.4.14, [B-B-D]) by taking U (Y) in ([B-B-D]) to be U'. (B&. —
U'., respectively ) where D%9*(Smt(B&. — U'.), Q;) has the induced t-structure and by applying
induction on the number of strata in B&. — U!.. (Observe that in ([B-B-D] Proposition 1.4.14, it is not
required that the strata U and Y be smooth.)

(4.7.3). One may prove similar assertions about the derived categories D%(&zmt, Q) and DS(UL .,
Q)

(4.7.4). Assume the above situation; let Y = & — U' and Y. = (B& — U').. LetCgs® (Cges, Cde?)
denote the heart of the t-category D% (Smt(U.}); Q;) (D% (Smt(Y.); Q;), D% (Smt(BS.), @),
respectively ) with respect to the t-structure induced from the t-structure on D%9¢%(Smt(B&.); Qi)
obtained by gluing as in (3.6.3).

Assuming the above situation we will let 4, : Y. — B&. denote the obvious map. If T denotes any one
of the functors j.i, j.*, Rj.x, i.*, 9., or Ri.', welet PT denote the functor H?oT o€, where € is the inclusion
of the heart into the appropriate derived category. (ie. H® denotes taking ’perverse-cohomology’.) We

now obtain the following Proposition exactly as in ([B-B-D] p.52.)

(4.7.5). Proposition. The functor Pj.* identifies CZ¢®, with the quotient of C9¢* by the thick

subcategory C¢¢® which is the image of C%* of the functor Pi...

(4.7.6) Now one may define the functor j.. : Cf¢® — C% as the image of 5., —? j.. and show that
the simple objects of the category C9¢® are obtained as either Pi.,F, where F is simple in C%** or as

juK, where K is simple in Cge¢®.

(4.8) Proposition. Let j : V — & be the open immersion of an irreducible substack and let
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j.: V. = BG. denote the open immersions of the corresponding simplicial objects. Assume further that
V xk is smooth, where k is the algebraic closure of k. Let L be an irreducible and lisse ;-sheaf on V.
wiltch descent. (ie. L corresponds to an irreducible representation of 71 ((V.)sm¢)); here (V.)gm¢ denotes
the étale topological type of the simplicial algebraic space V. which may be defined as in [Fr]p.43, in view
of (A.5.1) and” is the profinite completion.) If j. : V. — B®. is the induced map, then j., (L[dim VéX])
is a simple object in the category C%*(B&.; Q;). Moreover every simple object in C%*(B&.; Q) is

obtained in this manner for some choice of V.

Proof. follows by a double application of (4.7.4) and (4.7.5) (ie. apply (4.7.5) to the open immersion
V — V and the closed immersion V — X) and the observation that if L is an irreducible lisse sheaf of
Q;-modules on V. with descent, then L[dim VéX ] is a simple object in C9*(V; Q;). (For further details
see [B — B — D]4.3.)

(4.9.0) Let k denote a finite field with ¢ elements and let k denote its algebraic closure. Let °G denote
an algebraic stack of finite type over k as in (1.6) and let & denote 0(‘55 x Spec(k). Let °z:°X — 06
and z : X — & denote atlases as in (1.4); recall °X is an algebraipce cs(p)ace of finite type over k. Let

0z : %X — %X and 7 : X — X denote atlases for these algebraic spaces as in (1.5)(i). (Recall these

are in fact schemes.) In the rest of this section we develop the yoga of weights for ;-sheaves on & gp.

(4.9.1) Let w be an integer. A Q;-sheaf °F on °&,,,; will be said to be (exactly) pure of weight w if
the sheaf °%* o %2*(°F) on the scheme °X (of finite type over k) is pure of weight w ie. it satisfies
the condition as in ([B — B — D]p.126). The induced sheaf on &,,,; will be denoted F. Mized Sheaves
(Mized complexes of ();-sheaves) with weights < w or > w on °&y,,; may now be defined in the obvious
manner. (See ([B— B— D]p.126). (Recall a mixed complex of Q;-sheaves °K on °&,,; is pure of weight
w (has weights < w, > w) if each of the cohomology sheaves H!( °K) is pure of weight w + i(< w + i,
> w + i, respectively ).) A complex of Q;-sheaves °K = { °K,|n > 0} on B°&. with descent will be
said to be mixed of weights < w(> w) if °K¢ on Smt(°X) is mixed of weights < w(> w, respectively).
(Observe that since °K is assumed to have descent and is mixed, it follows that if %K, has weights

< w(> w), then so does each °K}).

As an immediate consequence of our definition, it follows that if °L is a complex of Q;-sheaves on
96 which is mixed of weights < w(> w), then so is * °L, where * is the functor as in (2.5.2). For the

rest of this section we will only consider the middle perversity.

(4.9.2)Theorem. Assume the above situation. Then every perverse sheaf °F on °&g,,; which is
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mized and simple is pure.

Proof. (4.8) identifies the simple objects in the category of perverse sheaves on & with the perverse
sheaves j. L[dim V éX ], where L is an irreducible and lisse @;-sheaf on a locally-closed substack V
of & so that Vspzz(k)Spec(E) is smooth. Let %z : °X — °& denote an atlas for °G. Similarly let
0% : 9X — 9X be an atlas for the algebraic space °X. It is clear that the above perverse sheaf is pure
if and only if °%* %z*(j..,L[dim V éX ] is pure. This is clear since the above perverse sheaf is nothing
but ji, %5* %z*(L[dim V éX ]), where j : V éX — X is the induced open immersion; this is clearly pure

by ([B-B-D] corollary (5.3.4)).

(4.10.0). Assume °G is an algebraic stack with the atlases %z : °X — %G and %% : °X — °X asin
the proof of (4.9.2). Let & denote the induced algebraic stack of finite type over k and let z : X — &,
#: X — X denote the induced atlases. The remaining main result we need to establish is that if °F is
a perverse sheaf on °S,,,,; as in (4.9.1) which is also pure and if F is the induced perverse sheaf on &,
then F' is semi-simple. In order to prove this it is not enough to show Z* o x*F' is semi-simple because
of the following: that Z* o *F is semi-simple shows the terms of its composition series split up as its
summands. However this splitting may not descend to a similar splitting of the corresponding terms of
the composition series of F'. In order to obtain such a splitting for the terms of the composition series of
F' it becomes necessary to be able to perform the full yoga of weights for perverse sheaves with descent

on the simplicial algebraic space B°S. We digress to establish these next.

(4.10.1)Next observe from our definition (see (4.9.1)) and the corresponding property for Q;-sheaves
on schemes of finite type over k that the category of Q;-sheaves of exact weight w is closed under

extensions as well as sub- and quotient objects.

Let °2:°X — 9& and 9% : °X —s X denote atlases. Let 7: X — & and 7 : X — X denote

the corresponding atlases for & and °X respectively .

Next let °K and 9L denote two mixed bounded complexes of Q;-sheaves with constructible coho-
mology sheaves on °&,,,,;. Let °z*( °K) = { °K,,|[n > 0} and °z*( °L) = { °L,|n > 0} denote the
induced complexes on Smt(B°&). One may now readily verify the following (local assertions):

(4.10.2.1) If 9K has weights < w’ and °L has weights > w, then Rhom( °K, °L) has weights
>w—w'.

(4.10.2.2). If instead °K has weights > w’ and °L has weights < w, then Rhom( °K, °L) has

weights < w — w'.
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(4.10.2.3) If °K has weights < w’ and °L has weights < w, then °K ® °L has weights < w + w'.

(4.10.2.4) Let f : °6 — °& denote a representable map of algebraic stacks and let °/K ( °L) denote
a mixed bounded complex of Q;-sheaves on °G,,,; with weights > w (< w, respectively ). Then Rf, °K
(Rf, °L) is also mixed and has weights > w (< w, respectively ). Therefore if in addition f is also proper,
and °K is pure of weight w, then so is Rf. °K. (Observe that this assertion is local on °&; hence one

may reduce this to the corresponding statement when f is a map of schemes of finite type over k.)

(4.10.3). Assume the situation of (4.10.1). Let °z : B(°6) — °6 and %% : B( °X) — °X denote
the maps in (4.10.1). Let oog : °& — Spec(k), oox : °X — Spec(k), 0 o5 : °X — Spec(k) denote
the structure maps. Similarly let o(pog), : (B°S), — Spec(k), o(BoX), : (B°X),, — Spec(k) denote

the structure maps. Now one readily verifies the following:

(4.10.3.1). 00G4 © O.i'*(F) = keT(U(Bog)O*(Fo) — O'(BOG)I*FI)
where F = {F,|n > 0} is a bounded complex of @;-sheaves on Smt(B°&).

(4.10.4) Lemma. Assume the above situation. Let w be an integer. Now the functor
RUOG* : DC(OGSmt; Ql) — DC(Smt(Spec(k)); Ql)

sends complexes with weight > w to complexes with weight > w.

Proof. Let "KeD¢(°Gns; Q1) - Now (2.5.4) shows that the natural map °K — %z, 0 %2*( °K) is

a quasi-isomorphism.

Next assume that °G is an algebraic space regarded as an algebraic stack as in ((1.5)(i)). Apply
(4.10.3.1) to °z*( °K); now the right hand side of (4.10.3.1) has weights > w by ([B — B — D](5.1.14))

and (4.10.1) above. This proves the assertion when °& is an algebraic space of finite type over k.

Next consider the general case. Once again apply (4.10.3.1) to °Z*( °K); since each (B°&), is an
algebraic space of finite type over k the right hand side of (4.10.3.1) has weights > w by what we have
already established in the above paragraph and by (4.10.1) above. This completes the proof the lemma.

(4.11.1). Let k be a finite field with (= p™) elements and let °& denote an algebraic stack of finite
type over k. For each n > 1, let Fry» denote the geometric Frobenius ’raising the coordinates to the
q"-th power’. One verifies that this induces a representable map °& —s °& of algebraic stacks. Let °F
denote a Q;-sheaf on °S,,,,;; if F denotes the induced sheaf on &,,,;, then one may readily verify that

there exists an isomorphism (Frg=)*F — F. (See [B — B — D](5.1.1).)
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(4.11.2). Proposition. The functor °F —s (F,(Fr,)*) from the category of perverse sheaves on
9&smt to the the category of perverse sheaves F' on G provided with an isomorphism (Fr,)*F S Fis
fully-faithful. Moreover the ’image’ of the above functor is a subcategory that is closed under extensions

and sub-quotients.

Proof. Let %z : °X — 96 denote an atlas of °&, while %% : °X — °X denote an atlas for the
algebraic space X. Let z : X — & and # : X — X denote the corresponding maps for & and X
respectively . Proposition (4.2) enables one to identify the category of perverse sheaves on °G,,,.; (S ,ms,
respectively ) with the category of perverse sheaves with descent on Smt(°X) (Smt(X), respectively ).

Now (4.11.2) follows readily from the two observations:

(i) a perverse sheaf F' on &,,,; has the property that the map Fr;F' — F is an isomorphism if and

only if the induced perverse sheaf on Smt(X) has the same property and

(ii) a perverse sheaf °F on Smt( °X) (Smt( °X)) has descent if and only if the induced perverse
sheaf F' on Smt(X) (Smt(X), respectively ) has descent. Similarly a map %a: °F — 9K of perverse
sheaves on Smt( °X) (Smt( °X)) has descent if and only if the induced map a : F — K of perverse
sheaves on Smt(X) (Smt(X), respectively ) has descent.

We skip the remaining details of the proof.

(4.11.3). Now let °6 denote an algebraic stack of finite type over a field k as before and let °M
denote a bounded complex of Q;-sheaves on Smt(Spec k). Let oog : °& — Spec(k) denote the obvious

structure map. One verifies readily that one obtains the spectral sequence:

EYT = H{,,((Spec k); H'( °M")) = HPT4RT(°6, °M"))

Observe that k is a finite field with g-elements and hence Gal(k/k) = Z; therefore EZ = 0 if p # 0 or

1. Hence one obtains a short-exact sequence

(4.11.31) 0 —— ELY*' —— H"RI(°6, °M") —— E%* —— 0

(4.11.3.2) Now let °K and °L denote two bounded complexes of Q;-sheaves with constructible
cohomology sheaves on &g, and let °M = Rhom( °K, °L). Let Rhom(K, L) denote the complex
Roog.Rhom( °K, °L) and let Hom( °K, °L) = H°Rhom( °K, °L) as in ([B-B-D] section 5.1). The
short-exact sequence in (4.11.3.1) now becomes:

(4.11.3.3) 0 — (Ext"Y(K,L))p, — Ext"(°K, °L) —— Ezt"(K,L)" — 0
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where (Ext" (K, L))r, (Ext"(K,L)f") denotes the co-invariants (the invariants, respectively ) under

the action of the Galois group Gal(k/k) or equivalently under the Frobenius Fr,.

Next let {Kp|p > 0} = Z*K and let {L,|p > 0} = Z*L be the induced complexes on the simplicial

algebraic space B&. Next observe the existence of the spectral sequence-see (A.2.1),

EP? = Ext9(K,, L,) = ExtP+1(K, L)

If B(BG,) denotes the classifying simplicial scheme for the algebraic space (BS),, and {(Kp),|u > 0}
and {(Lp)y|u > 0} denote the corresponding induced complexes on B(B&,), there is a similar spectral

sequence with E}"" = Ext*((Kp)y, (Lp)y) converging to Ext“t? (K, L,).

Making use of (3.4.5), the above spectral sequences and the corresponding assertion for perverse
sheaves on schemes one may now verify that if K and L are perverse sheaves on &,,,; then Ezt(K, L) = 0
if i < 0. (This is also a formal consequence of the fact that the perverse sheaves form the heart of the

t-structure we have defined in (3.6.3).) Therefore taking n=0, (4.11.3.3) now provides the isomorphism

(4.11.3.4) Hom(°K, °L) = Hom(K,L)*"

provided °K and °L are perverse sheaves on the algebraic stack °&G. Taking n=1, (4.11.3.3) also

provides the short-exact sequence

0 —— (Hom(K,L))r, —— Eaxt!( °K, °L) —— Eaxt!(K,L)¥T —— 0

Finally we make the following important observation: assume in addition that °K and °L are pure

of the same weight w. Then

(4.11.3.5)Ext! (K,L)f" =0

To see this, first observe from (4.11.3.2) that Ext'(K,L) = H'(Roog, o Rhom( °K, °L)). By
(4.10.4), this has strictly positive weights; hence (4.11.3.5) follows. We now conclude this section with

the following important result.

(4.12) Theorem. Assume the situation of (4.11.1). Let °F denote a perverse sheaf on °G,,,; which

is also pure. If F' denotes the induced perverse sheaf on G,,,¢, then F is semi-simple.

Proof. The proof parallels the original proof in ([B — B — D] Theorem (5.3.8)) making use of the
results of (4.10) and (4.11). Let F' denote the largest sub-object of F in the abelian category of all

perverse sheaves on S,,,; which is also semi-simple; it suffices to show F' = F. Now observe that F'

31



is stable under the action of the Frobenius; this is a local assertion and one may reduce to verifying
#* o z*(F") on the scheme X is stable under the Frobenius - see (4.11.2) above. Therefore (by (4.11.2))

there exists a perverse sheaf °F' on °8,,,; which induces the perverse sheaf F’ on Gp;.
Now consider the short-exact sequence:

0— °F -%F - °F/°F") >0

This represents an element of Ext!( °F', (°F/ °F")). (Recall once again that the category of perverse
sheaves is abelian. Moreover it follows as in ([B — B — D] Remarque (3.1.17)(ii)) that the Yoneda —
Ezt! computed in the abelian category of perverse sheaves is isomorphic to the Ext! computed in the
usual derived category of complexes of sheaves.) By (4.11.3.5) and (4.11.2) the image of this term in
Ezt!(F',(F/F")) is 0 ie. the short exact sequence

0—>F —-F—>F/F -0

splits. Therefore F = F' @ (F/F'); if F/F' is non-null it admits a non-null simple sub-object. Taking the
sum of F' and this sub-object provides a larger semi-simple sub-object of F', contradicting the original

choice of F'. It follows therefore that F//F" is null or F' = F'; this completes the proof of the theorem.

(4.13).Corollary. (Decomposition theorem). Let °p:°& — °& denote a proper representable map
of algebraic stacks over k as in (4.9.0) and let p : & — & denote the induced map over k. Let °F denote
a perverse sheaf on °& which is pure and let F' denote the induced perverse sheaf on &. Then Rp,F is
semi-simple.

Proof. Observe that R °p, °F is a perverse sheaf which is pure by (4.10.2.4). Now one shows that so is
each perverse cohomology H!(R %p. °F) and that R °p, °F¥,;H!(R °p. °F)[—i]. Now apply (4.12) to
each H{(R %p, °F).

5. Intersection cohomology of algebraic stacks
In this section we study the Intersection cohomology of algebraic stacks.

(5.0).Let & denote an algebraic stack and let  : X — & denote a smooth atlas as in (1.4). Let S
denote a stratification of & as in (3.6.1); since the atlas z : X — & is assumed to be smooth, the inverse
images of these strata define a similar stratification S’ of X. We will assume throughout the rest of this

section that the dimension of X is n.
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(5.1). Now one may obtain compatible filtrations Uy C Us C ... C U, CUpy1 = X, V1 C Vo C ...
C Vp C Viy1 = G as follows: let U;—U;_; = the union of strata S’ (of X) of dimension n—i+1. V;—=V;_;
is defined similarly. Observe that U; = the inverse image of V;; therefore if B&,, = X x X x X x X...x X is
the n-th stage of the classifying simplicial groupoid of &, we obtain a similar ﬁltratior(;3 of %GS by lftting
Ui = (Vi)x X xX xX...XxX. One readily verifies that so defined U? defines a sub-simplicial object of
B6. so thit t(fle fbvious ?nap U! — BG. is an open immersion in each degree. The open immersion

Vi = Vipa(Uy = Uiy, UP = UL UL — Uit will be denoted 7;(ji, j%, ji respectively).
n n . n

(5.2) A perversity is a function p : (non-negative integers) — Z defined as in (3.6.2).

(5.3.1) Let S denote a fixed stratification of & as above and let {U".|i} denote the induced filtration
of B&.. Let F' denote a fixed lisse (see (A.2.4)) sheaf of Q;-modules on the étale topology Smt(U!)
of the simplicial object (U').. (Observe from the very definition of lisse sheaves that F”’ descends to a

sheaf F on Smt(V1).) Let F!, denote the restriction of F' to Smt(U}).

(5.3.2)We will now construct a perverse sheaf of ;-modules on Smt(B6.), denoted I Cg (F"), and
called the intersection cohomology complex for the perversity p associated to F'. On Cyz, this is merely
o<p(wy) Rj1«(F'), where o5y, is the cohomology truncation defined in (3.5.1). Assume that we have
extended F' to a cosimplicial object IC5 (F" )iU_’“ for k < n. Now we will extend this to the complex
ICS(F)jyrer = a@(UHl,Uk)Rj,’f(IC’,,(F')"U_k)) of sheaves on Smt(U*t1). The perverse sheaf of Q-
modules on Smt(B&.) obtained in this manner will be denoted IC; (F").. Clearly this has descent; in
fact if T CE (F) denotes the perverse sheaf of Q;-modules on G4y obtained using the filtration {V;} in a
similar manner, it is clear that z*IC; (F') = ICS(F"). (Use smooth base change on the open immersions
Ji-)

(5.3.3) One may verify readily (see [B— B — D] Proposition (2.1.11)) that IC; (F) is quasi-isomorphic

to the unique extension j... F as in (4.7.6), where j. : U! — B®. is the open immersion.

(5.3.4)The hyper-cohomology of B&. with respect to T Cg (F") will be called the intersection coho-
mology of B&. with respect to F' and the stratification S and the perversity p. This will be denoted
IH; (B&.; F'). By (3.4.6), this is isomorphic to IHg (&.; ICS(F)).

(5.3.5) Observe that IHg (BG.; F) is independent of the stratification; this follows from the obser-
vation in (5.3.3) identifying IC5 (F) with ji, F.

(5.3.6). For the rest of the paper we will only consider the case where F' = the constant [ — adic sheaf
Ql ;ie. T CE(Q,) will denote the intersection cohomology complex on &g,,; obtained by starting with
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the constant [ — adic sheaf @); on the smooth-open stratum of the stratification S. The corresponding

hypercohomology groups will be denoted IH;(&; Q).

(5.3.7)The complex IC (Qy) on &4y is characterized by the following axioms. Let # : X — & denote
an atlas for & as in (1.4)(b) which is an algebraic space and let & : X — X denote an atlas for X as in

(1.5)(i) which is a scheme of finite type over k . Then
(i). dim support H*(#*z*IC; (Q1)) < n —p '(n+i) and
(i) dim support H'(D(&*z*IC5(Q1))) < n — (p*) 1 (n +1)

where p~1(I) = min{c|p(c) = [}, p* is the complimentary perversity defined in ([B-B-D] p. 63), (p*)~!

is defined similarly and D denotes taking the Verdier-dual. This follows from the easy observation as
in (5.3.2) that *z*1 CE (Q)) is the intersection cohomology complex on X with perversity p if and only
if I C;,g (@) is the intersection cohomology complex on & with perversity p; the former is characterized
by the above axioms. (See [G-M-2] p.107). Observe that our terminology is chosen to agree with that
of [B-B-DJ; this means a perversity pg_a in the terminology of [G-M-2] is obtained by pg_a(i) =
p(i) + (2dimg (X)).)

(5.3.8). Pairings and Poincare-Verdier duality. One may readily show (as in [G-M-2] pp.112-113) that
if p is a fixed perversity, p* is its complimentary perversity and S is a stratification of & as in (3.6.1),

then there exists a pairing:

IC5(Q)) ® ICS.(Q1) — De

where Dg denotes the dualising complex on Gg,¢. Next one obtains
D(ICH(Qi)) =~ IC5(Qu),

Observe that this readily follows from the above axiomatic characterization of the complex I C’;f (@) and

IC5.(Qu).

(5.3.9). Assume the situation of (5.3.1). Let F’ and F be lisse sheaves as in (5.3.1); let IC; (F")
(I Cf (F)) denote the intersection cohomology complex on Sy (Smit(BS.), respectively ) constructed
as in (5.3.2). Let IC5(F"), denote the restriction of the complex IC5 (F") to Smt(B&,). One may now
readily verify (from the construction) that this is isomorphic to the intersection cohomology complex of
BG,, constructed using the filtration U C U} C .... C U, C U,4+1 = BG6,,. Therefore we obtain the

hypercohomology spectral sequence:
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EP" = [HY((BS,); F}) = IH"*(B&; F')

(5.3.10). Assume the above situation. Let j : U — & denote the open immersion of an open substack;

smooth-base-change for j shows

FICS(F') ~ ICS (Fly )

where S’ is the induced stratification of U.

(5.3.11) Assume in addition to the above that U, V denote open sub-stacks of &. Let U., V., (UNV).,
(U U V). denote the associated simplicial objects. Then (5.3.10) provides Mayer-Vietoris sequences:

. — IHI?(B(U uv),; F') — IHI?(BU.; e IHI?(BV.; F') — IHI?(B((U NnvV); F') -
in the obvious manner.

(5.3.12) The decomposition theorem. Assume °f : °6 — ¥G is a representable (see (1.3.3))
proper map of algebraic stacks as in (4.11.1). Let f : & = & be the induced map of stacks over k. Let
IC,»(8; Q;) denote the intersection cohomology complex for the middle perversity on &, obtained by
starting with the constant sheaf Q;-sheaf F on the smooth stratum in a stratification of & as in (5.3.1).

Then
Rf ICH(6; F) = @IC,(Vy; Fo)ldu];

here V,, are locally closed substacks of &, F, is an irreducible lisse ();-sheaf on the smooth stratum of a
stratification of V,, d, is an integer and IC,, is the intersection cohomology with the middle perversity.

Proof. This follows readily from (4.13) and (4.8).

(5.4.0) For the rest of this section we will restrict to Deligne-Mumford stacks. Recall a stack & is
Deligne-Mumford if the atlas z : X — & is étale. By composing z with the map # : X — X with
X a scheme of finite type over k, we may assume without loss of generality that the given atlas X is
itself a scheme. Next observe that the support of any constructible sheaf on the stack & (in fact for
any algebraic stack in general) is a locally-closed algebraic sub-stack. When & has an étale atlas as
here the dimension of any locally-closed algebraic sub-stack may be defined to be the dimension of its
atlas. Therefore we may observe that that the intersection cohomology complex I CE? (@) on G is

characterized by the two axioms:
(i). dim support H*(IC5(Qi)) <n —p~'(n+i) and
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(i) dim support H*(D(IC5(Q:)) < n —p*~*(n+1i)

(5.5.0) Let 9 denote a coarse moduli-space for &. i.e. 9 is a scheme along with a proper map
7 : 6 — M so that if Q is an algebraically closed field, then mo(&(R2)) = M(N), where 7y denotes
the set of connected components for the action of the étale groupoid G associated to & as in (1.5)(ii).
See [Gil] (3.10).) Recall that the groupoid G is merely B&. where the all the face-maps are étale. In
this case we will let €. : B&. — & denote the obvious augmentation given by €, = the composition of
dpo..ody: B&, - X and the map z : X - &. (Recall this was denoted Z in (2.5.2); for the rest
of this section we have changed this notation.) We will let 7. : B&. — 9t denote the composition of

BG. 3G and7:6 — M.

(5.5.1) For the proof of (5.5.2 ) it is essential to use the simplicial étale site defined in (A.4.0). Any
scheme, algebraic space or stack Y will be considered as the associated obvious simplicial object which will
be denoted Y itself. Functors defined on the site Et as in (A.1.0) will have the superscript 'et’ to indicate
the site used, while functors on the site SEt (as in (A.4.0)) will denoted in the usual manner. (For eg.
7.s : Absh(SEt(BG.); Q;) — Absh(SEt(9M), Q;) while ©x., : Absh(Et(BS.);Q;) — Absh(Et(OM); Q)

will denote the obvious direct-image functors associated to .

(5.5.2). Theorem. Let p denote a fixed perversity. Assuming the above situation, Rw..IC,(B&.;
Qi) ~ IC,(M; Q) where IC, denotes the intersection cohomology complexes with perversity p and
7.4 is the direct-image functor Absh(SEt(BG.)) — Absh(SEt(K(9M,0))) where K (9,0) is the obvious
constant simplicial scheme associated to 9t and where SEt is the site defined as in (A.4.0). Hence

TH;(6; Qi) = IH;(M; Q).

Proof. First observe that the map X — & — 90 is finite and hence 7 itself is finite. Let n =
dimy, (X) = dimy, (Sﬁ)

Let Uy CU; C ... CU, C Upy1 = M be the filtration of M associated to a smooth stratification
as in (5.1); let Vi = Ui;;tG, Vi= U,g)(tBG and let p denote a fixed perversity. Let j;(j?, j¢) denote the
open immersion U; — U1 (V? — Vit Vi Vit respectively). Observe that Vi and Vi need not be
smooth in any degree. Let IC,(S; Q) (IC,(BS.; Q1)) denote the intersection cohomology complex on
G (BG., respectively ) constructed using some smooth stratification (and the constant sheaf Qz on the

smooth stratum) by applying the construction of (5.3.2).

Next one may readily verify using smooth base-change (on the open immersions j¢) that
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(5.5.2.1) EtﬁkaCp(th; Ql) ~ the complex U<13(Un+1—Un)R Etj,riaqﬁ(Un—Un_l)--- U<13(U1)R etj.l*Qe,

where @

Q, now denotes the constant sheaf on Et(V1!). Similarly one may show that

(5521)7 etﬂ'*ICp(gjt; Ql) ~ the COmpleX <I3(Un+*Un)R 6tj:"0'<5(Un,Un_1)--- 0'<13(U1)R 6t31_£,

where @), is the constant sheaf on Et(V1).

(5.5.2.2) Next we will show that the above complex is quasi-isomorphic to the intersection cohomology
complex IC,(6, Qz) We will achieve this by showing that the complex ¢m*IC,(9; Q;) satisfies the
two axioms:

(5.5.2.3) (i) dim support (Hi( t7*IC,(IM; Q1)) < n — p(n + 1)
(5.5.2.3)(ii) dim support(H:D( n*IC,(IM; Q1)) < n— (p*)~H(n +1)

characterizing the complex IC,(6,Q;) where D( “m*IC,(9M; Q;)) denotes the Verdier — dual. The
first axiom is readily verified since 7 is finite. In order to verify the second axiom one may proceed as

follows.

Let the functor R¢*x.! : D.(Et(M); Q;) — D.b(Et(B6.); Q;) be right-adjoint to the functor R ¢‘xr., :
DY(Et(B&.);Q;) — DY(Et(OM);Q;); observe that R ¢w.! = {R °x|n}. Similarly define the functor
R ¢x' . DL(Bt(OM); Q) — D.L(Et(S);Q;) to be right adjoint to the obvious functor R ¢imr,. Let
Dgy denote the dualising complex on Et(9), and Dg denote the dualising complex on &g (whose
existence was shown in (3.7.1)-(3.7.4)); one may now verify that R ¢'7'(Dgn) ~ Dg. Now let Dpg. =

#(R tw.'(Dgy)), where ¢ is the functor in (A.6.3). We will presently show

(5.5.2.5) Observe that Rm..Dpe. = Rr..¢(Rhom(Q;, R ¢*n.! Doy) ~ ¢(R ¢*w..Rhom(Q;, R 1. (Dgy))
~ ¢(Rhom(R “‘w..(Q1), (Don)) ~ Rhom(¢(R *7..(Q1), ¢(Dan))

Here the first isomorphism (denoted ~) is by (A.6.4)(ii), while the second one follows from the fact that
R ¢t7.} is right-adjoint to R ®... The last isomorphism follows from (A.6.4)(vii). Finally observe that
the geometric fiber of the map #. : B&. — 90t over any fixed geometric point Z in 9T may be observed
to be the classifying space for the finite group that stabilizes Z. Hence one may compute (see (A.8))
Ri(1.)«(¢(Q))) = 01if i > 0 and = @Q; if i = 0. Now (R “7..(Q;)) ~ Rr..(#(Q;)) Therefore one may
now show that the last term in (5.5.2.5) is quasi-isomorphic to Rhom(¢(Q;), ¢(Don)) =~ ¢(Dag).
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Next we will show that
(5.5.2.6) °m,Dg ~ Dgy

where ¢m, = R ¢, (recall 7 is finite) : D.’(Ser; Q1) — D’ (Et(IM); Q;) is the derived functor of the

direct-image functor of 7. Now observe that

#(Dop) ~ Rr.+Dps. = T« Re..(p(R °tn.'(Don))) ~ mud(R e.(R 7! (Doy)))
~ T (¢(R ®te., te.*(R tn'(Don))))

Here the first isomorphism is by (5.5.2.5) and the observation that m. = 7 o €, while the second one
follows from (A.6.4)(ii). . The third follows from the assumption that each of the maps €, is étale. Next
observe that, since 91 is a scheme, all the geometric points of the associated constant simplicial scheme as
in (A.4.2) are merely the usual geometric points of the scheme. Therefore the system of simplicial étale
neighborhoods U. of any such geometric point Z as in (A.4.3) with U. the constant simplicial schemes
associated to an étale neighborhood of Z of U in the usual sense are cofinal in the system of all simplicial
étale neighborhoods of Z as in (A.4.3). Therefore the stalks of the last term above may be readily shown
to be isomorphic to the stalks of ©‘mr,(Z.Z*(R ¢'n'(Dgx)) where the functors z* and Z, are defined as

in (2.5.4). Therefore we obtain the quasi-isomorphism:
et7r*¢(R ete‘* ete (R et7r! (Dsm))) ~ etﬂ'*(ﬁ(i'*{i'* (R et,]r! (DED”()))

Since R ®'7'(Dgy) is a complex of I-adic sheaves on Et(BG.) with descent the last term is readily seen
to be quasi-isomorphic to 7, (¢(R °‘7'(Dgn))) ~ ¢( ¢*m.Dg) by (2.5.4) and the observation that
R EtW!Dgﬁ >~ Dg.

Now one may readily observe that
et D( tr*IC,(M; Q1) = *tm. Rhom( ctm*IC,(90; Q); De)

~ Rhom(IC,(M; Q1); “‘miDg) ~ Rhom(IC,(M;Q:); Don)

Here the first isomorphism follows from the fact that R ¢w, = ©i7, is right-adjoint to ¢/7*, while the last

isomorphism follows from (5.5.2.6). Since dim(9M) = n, clearly D(IC,(9M; Q1)) = Rhom(IC,(M; Q:);

Dygy) satisfies the axiom:
dim support H!(D(IC,(MM;Q))) < n— (p*) "' (n+1)

Since 7 is finite, it follows that D( ¢7*(IC,(9M; Q;))) satisfies the second axiom in (5.5.2.3). This
completes the proof of (5.5.2.2).
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Next we will show using ascending induction on k that if #* : V¥ — 9 is the map induced by =.,

then
(5.5.2.7) Rr.E(m** (o(IC,(9; Qi) v+))) = d(IC(IM; Qu)jur),

where Rz*., is the derived functor of the direct-image-functor defined above using the alternate étale site
in (A.4.0). Now observe first that for each k, 7 (IC,(9M; Q1) v, ) satisfies the axioms characterizing the
complex ICy(&; Q1) v, as shown above and hence is quasi-isomorphic to the latter. Since the geometric
fibers (as in A. 8)) of the map . : B&. — 91 are the classifying simplicial schemes of the finite groups
that are the stabilizers of the corresponding geometric points, proper-base-change (see (A.8)) shows that
Rirk., =0 for i > 0 and hence 7*., is an exact functor for each k. Moreover if @, is the constant sheaf
on Et(V'), it is clear that 7'..(¢Q,) = (4Q,) the constant sheaf on SEt(U;). Therefore let m > 1, be
an integer for which (5.5.2.7) is true; we will show (5.5.2.7) is also true for m + 1. To see this observe

that

Ra™ (a1 2 (IC, (305 Qu))jvmss) = w1 (1) * (S(TC, (5 Q1)) ymt)
~ 7Tm+1.*¢(0-<i)(Um+17Um)R 6t3T0'<p(Um7Um_1)"' U<I3(U1)R eti.l*Qg)

= T (O p(Umir—Um) AR TR O p (U —Umr)-— T<p(un) R 5" #Q,))

= (O <p(Umpr—Um) T2 OB GO U~V 1) T<pom) R 5LQ,))

= (‘7<13(Um+1—Um)7"T+1(R3T¢(U<5(Um—Um_1)--- ‘7<;3(U1)R Etj.l*Qg))
= U<5(Um+1—Um)RjTWT¢(U<ﬁ(Um— 1) (7<;3(U1)R eti.l*Qg))

& O p(Upg1—Unm) RITOUTCON; Qo))

=~ ¢(ICM; Qo) Ui )-

(The fourth ~ follows from the fact that 77+! is an exact functor as observed above; the last-but-one
~ follows from the inductive assumption. The other isomorphisms are clear.). Observe that the use of

the alternate étale site and the functor 7., as in (A.4.0) is essential to the above proof.

(5.5.3) Theorem. Assume the situation of (5.5.0). Now the spectral sequence

EP" =IHY((B&,); Q¢) = TH"*1(6; Q)
degenerates i.e. EY'? =0 for p > 0. Hence HO({IHY(B&,; (Q/))|p}) = IHY(S; Q) = IHI(IM; Qo).
Proof. The proof parallels the proof of Theorem (5.1) in [Gil]; recall Gillet’s theorem is for K’-theory
which in this case already has a transfer map, namely the one induced by the direct image functor. We
will employ the trace-map associated to étale maps; observe that the trace-map behaves like a transfer-

map. Let 7 : & — & denote a representable étale-surjective map of algebraic stacks as in (1.6). Now
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one may readily define a functor
Rﬂ—! : ch)(éet; Ql) - ch)(Get; Ql)

as right-adjoint to the functor Rm,. Now one may verify that Rr' ~ 7* since 7 is étale; this is a local

assertion, local on & and therefore one may readily verify this. Therefore one obtains the trace-map
(5.5.3.1) tr(m) : mn* @, = Q,

so that the composition @, = m7*Q, = Q, is an isomorphism and tr(m) is natural with respect to

base-change i.e. if
Vi 2 v
<Ll
v - vu
is a pull-back square (of representable maps between algebraic stacks) with 7 étale surjective, then the
square
[rmoom* @, —— w’*w’*(f*Ql) — w'*w’*f*Ql
| tr(a) |

identity identity
Quu =1Q —  ['Q —  [*Q
| 1 hid) 1

commutes, where Q ; denotes the constant I — adic sheaf on the respective space.

Now let 7 : X — Y denote a representable étale surjective map of possibly singular algebraic stacks
as in (1.6);let Uy C Uz C ... CU, C U,y1 =Y be the filtration of ¥ associated to some stratification
asin (3.6.1) and let V; C V5, C ... CV, C V,,41 = X denote the induced filtration of X. Let p denote
a fixed perversity and let ICp(X; Qe)’ IC,(Y; Qz) denote the corresponding intersection cohomology
complexes on X and Y. One may now use ascending induction on k and smooth-base change to obtain the
quasi-isomorphism: 7*IC,(Y; Qi) v, ~ IC,(X; Q1)v, for all k. Next one may similarly use ascending
induction on k and smooth base-change to define a transfer (see [J — 5] for a more general case when «

is assumed to be proper and smooth instead of étale as in the present situation)
tr(m) : mICy(X; Q,) = ICH(Y : Q,)

so that (i) the composition IC,(Y;Q,) = mICp(X; Q,) — IC,(Y;Q,) is an isomorphism (where
the first map IC,(Y; Q1) — mJICp(X; @) is adjoint to the natural quasi-isomorphism 7*IC,(Y;
Qi) = ICH(X; Q1)) and
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(ii) the transfer ¢r(m) is natural with respect to base change i.e. if
X 25 X
R T
is a pull-back square with 7 étale surjective and f smooth, then the square
(Fm(IC(X;Q))) vy, = (mg™(IC(X5Q)))) —— (m . (ICx(X";Q)))wy)
f*(tr(w))wkl (tr(ﬂ')‘U’:c)l
(fIC,(Y;Q ) —  {IGY;Q)u;
commutes for all k, where U}, = Uy 1); Y. One proves this using ascending induction k and proper-smooth
base change-recall 7 is étale. Therefore the square
TH(X'; Qi) +—— ITHp(X;Q))
(5.5.3.2) tT(ﬂ')T tr(ﬂ)T commutes.
THR(Y'; Qi) +— IHF(Y;Q)

Next assume the hypotheses of the theorem. We will first observe that {IH}(B&y;Q;)|k} is a
cosimplicial abelian group. The face maps d’ of the simplicial object B&. are all étale; therefore one may
readily verify that if ICp(BSy; Qi) (ICp(BS&k_1; Q1)) is the intersection cohomology complex on B&,
(BGy, , respectively ) then d} (ICp(BSr_1;Qi) =~ IC,(BGy; Q) for any face-map d; : B&;, — BGj_1.
Since d; o s; = the identity, it follows that s7(IC,(BG; Q1)) =~ IC,(BGSr_1;Q;) as well. It follows that

{IH}(B&y;Q)|k} is a cosimplicial abelian group.

for each fixed integer n > 0. Let n > 0 be a fixed integer. We will next define a sequence of maps

m : TH2(BGy; Q,) — HO{THZ(BGy; Q,)|k > 0}) — TH2(BSy; Q,), k> 0
as follows. First observe that each face map d; : B&y11 — BGj of the simplicial scheme BG. is
€tale surjective; therefore d; induces a map dj : TH}(BGy; Q,) — IH}(BSgy1; Q,) and a transfer
tr(d;) : TH}(BSpy1; Q,) — TH(BS; Q,).

Now let mo = tr(dy) o dj; m, = [d}, odf o...od] o (tr(dy) o dj) o tr(dp)*]. Now the pull-back squares

By& %'y By &

e

Br_16 2) By_»26
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(where B&_1 = &) and (5.5.3.2) above show

(5.5.3.4) d} | otr(d; 1) =tr(d;)od! ;.

Now df o tr(di) od§ = df o df o tr(dy) = d§ o dj otr(do) = df o tr(di) o d§; it follows that the maps my
map into HO({TH}}(B&y; Q,)|k > 0}) = ker(dj — di : ITH;(BS&o; Qi) — IHy (B&1;Q1)). Moreover one

may readily verify that 7. = {m,|k} is a map of cosimplicial abelian groups.

We will now define explicitly a cosimplicial homotopy between 7. and the identity map of the cosim-
plicial abelian group {IH}(B&;Qi)|k}. Let hy = (tr(dy) o d;_;) o (tr(dg—1) o dj_,) o ... o tr(dy),
hi = (tr(dy) odj_,) o (tr(dg—1) o dj_,) o ...otr(d;) for 1 < i < k, and hy = tr(d;). By making re-
peated use of the formulae: df ; o tr(d;—1) = tr(d;) o d_,, one may now verify that hy o df = mp_1,
hiodf = hiy1 odf and hy o dj, = the identity. It follows that the the maps {h;|i} provides the required
homotopy between the identity map of the simplicial abelian group {I/H}}(B&y; Q@ €)|k > 0} and the map
m.: {IHB&; Q,)|k > 0} — HO{IHMBS; Q,)|k > 0}) — {THIBS; Q,)|k > 0}. Hence

Ep® =0 for r > 0 and = HO({ITH}(BG&y; Q,)|k > 0}) in the spectral sequence in the statement of

the theorem. This proves the theorem.

6. The equivariant derived category and equivariant perverse sheaves

(6.0) Let k denote a field as in (1.6) and let X (G) denote a algebraic space (smooth group-scheme,
respectively ) of finite type over k; assume G acts on X. (1.5)(ii) shows that in this case one obtains an
algebraic stack X /G in the sense of Artin; therefore this situation is merely a special case of the general
case dealt with in the previous sections. Now observe that the simplicial groupoid constructed in (2.2.0)
is now merely the simplicial algebraic space EG éX given by the familiar bar-construction as in [Fr] p.9.
Stratifications of the algebraic stack X/G as in (3.6.1) now correspond to G-invariant stratifications of
X. A sheaf with descent on Et(EG éX ) will from now on be referred to as an equivariant sheaf, or a G-
equivariant sheaf. We will now summarize the results of the earlier sections as applied to this particular

case.

(6.0.1) Let D%(X;Q;) (DY(X;Q,;)) denote the derived category D’c”d“(EGéX; Q)
(Dbdes(EG éX :Q1), respectively ) as in (3.3). If p is a fixed perversity, one defines non-standard t-
structures on the above categories by starting with a G-invariant stratification of X as in (3.6.3). We

will assume a fixed perversity p for the time being. The heart of the above t-structure will be denoted
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C%(X;Q) (CY%(X;Qy), respectively ) and called the category of equivariant perverse sheaves. Now we

restate the results of section 4 as applied to equivariant perverse sheaves.

(6.0.2). There exists an equivalence of categories:

C%(X;Q;) ~ (perverse sheaves on Et(X) with descent)

where the category on the right is defined as in (4.2).
(6.0.3) C%(X : Q) is both Artinian an Noetherian; every object in this category has finite length.

(6.0.4) Let X, Y be algebraic spaces as in (6.0) acted on by a smooth group-scheme G again as in
(6.0) and let f : X — Y denote a G-equivariant smooth map with connected nonempty geometric fibers.
Assume the relative dimension of f is d. Now the functor f*[d] : CY(Y;Q;) — C%(X; Q) is fully-faithful
and identifies C%(Y'; Q;) with a thick subcategory of C%(X; Q).

(6.0.5) Assume in addition to the hypotheses of (6.0) that G is connected and non-empty. Then if K-
belongs to C%(X : Q;), every sub-quotient of K- in the category C(X;@Q;) of all perverse-sheaves also
belongs to C%(X;Q;)

(6.0.6) Assume the hypotheses of (6.0). Now the simple objects in the category C%(X;Q;) are of
the form €*(ji. L[dimV7]), where j : V — X is the inclusion of a locally-closed G-invariant sub-algebraic
space of X, L is a lisse, Q;-sheaf on E#(V) corresponding to an irreducible representation of my (Ves).

Here € : EGéX — X is the obvious map, which in degree n is (dp)™.

(6.0.7) Assume the situation of (6.0). Let p : EG éX — BG denote the obvious map of simplicial
algebraic spaces. (Here BG is the ’classifying simplicial algebraic space for G’ defined as in [Fr] p.8.)
If K¢ D¥(X; Q;) one obtains the pairing p*(Q;) ® K- — K" of complexes of sheaves on Et(EGéX)
which induces a pairing of the corresponding hypercohomology spectral sequences in (3.4.6.*%) (with K-

= the constant sheaf ;) compatible with the pairing
H*(BG; Q) ®H*(EGZ<;X ; K°) — H*(EGéX ; K°).

(6.0.8) Let M, N-¢ DY(X; Q;) (DY(X; Q;)) and let K* = Rhom (M-, N) denote the derived functor
of the internal hom. Observe that now H*(EG éX ; Ko) ~ G>9 Hom (M-, N-[n]), where Hom denotes
n>0 B
hom in the derived category. It follows that 6>9 Hom (M-, N'[n]) is a module over H*(BG; Q).
n>p

(6.0.9). Recall that the stratifications of the stack X/G now correspond to G-invariant stratifications
of X. If S is such a G-invariant stratification of X, and p is a fixed perversity, the complex T C’If (@)
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now corresponds to the equivariant intersection cohomology complex defined in [J-2]. (We will therefore

denote the complex I CI“? (Q1) on the stack X/G by IC, ¢(Q) in conformity with [J-2].) Therefore

TH;(X/G; Qi) =~ THE (X5 Q1)
where the right hand side is the equivariant intersection cohomology groups of X again as in [J-2].

(6.0.10) Pairings and Poincare-Verdier duality. Assume the above situation. Now (5.3.8) shows that

one obtains pairings:

IC,,c(Q1) ® ICy g(Q1) — DEG’EX

so that D(ICp,c(Q1)) ~ ICy+(Q;). Taking hypercohomology of EG éX this provides the Poincare

duality isomorphism:

TH;, 6(X; Q) = Bat(IC,.6(Q1), Dpyx)-

(6.1) Throughout the rest of this section we assume k is an algebraically closed field of arbitrary
characteristic p > 0. Next assume in addition to the hypotheses of (6.0) that G is a connected algebraic
group acting (on the left) on an algebraic space X of finite type over k. In this context we proceed
to establish induction and restriction functors with respect to connected algebraic subgroups H of G.
Such functors have many applications for eg. to Lusztig’s character sheaves- see [Lusy]. The results

established here also find application in [J- 3]. Now we make the following observations.

(6.2.1) Let i : H — G denote the closed immersion of a connected subgroup of G and let i : EHxX —
H

EG é X denote the induced map.

(6.2.2). Let H act on G x X by h.(g, ) = (9.h™!, hx), he H, g e G and z ¢ X. Then a geometric
quotient Gx X exists for this action and the map s : G x X — GxX is smooth with fibers isomorphic
H H

to H.

(6.2.3). Now G has an action on G x X induced from its action by translation on the first factor of
G x X; this induces a G-action on GxX as well. One verifies that the map s is equivariant for these
H

actions of G.

(6.2.4). Let p: G;}X — X denote the map induced by the map G x X — X which is defined by (g,
x) = (g.x). One verifies that p is G-equivariant for the G-action on G X X asin (6.2.3) and the G-action
on X. It follows that p defines a map p : EGé(G;;X) — EGéX.
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(6.25) Let r: G x X — GéX = X denote the projection to the second factor.

(6.2.6). Next let G x H act on G x X by (g1, h1)-(g, ®) = (q19h], hiz), 91, 9€ G, hy e Hand z ¢ X.

We observe that the maps r and s are such that we obtain the commutative squares:
GxH)x(GxX) —— GxX

pnxsl sl

G x (GxX) — GxX
H H

(GxH)x(GxX) —— Gx X

and pra Xrl rl

HxX — X
It follows that r and s induce maps 7 : E(G x H)GxH(G x X) — EHEX
X
and 5: E(Gx H) x (GxX)—> EGx(GxX).
GxH G H

(6.2.7). Let A : H — G x H denote the diagonal and let j : X — G x X denote the map = — (e, x)

where e is the identity element of G. We now observe that the square
Hx X — X

o) ]

(GxH)x(GxX) — Gx X

commutes. It follows that j and A induce a map j: EHxX — E(G x H)x(G x X); one checks readily
H G
that ¥ o j = the identity; also po 50 j = .

(6.3) Definition. Let DY(X)(D* (X)) denote the derived category of bounded complexes of Q;-
sheaves with constructible cohomology sheaves having descent on Et(EG X X) (Et(EH o X), respectively
) as in (6.0.1). We define the restriction functor Res$ : DY(X) — D (X) to be i*.

(6.3") Suppose in addition X is also smooth; now observe that Ri' = i*[2(dim(G) —dim(H))](d) since,
for each n, i, : (EHxX), — (EG éX )n is a regular immersion of relative dimension = ((dim(G) —
H

(dim(H)))). Therefore, in this case we may use Ri'[—2(dim(G) — dim(H))](—d) as a restriction functor.

(6.4) Theorem. Assume in addition to the hypotheses of (6.1) that G, H are connected and let m

be the middle perversity. Then we obtain the equivalences of categories:

DH(X) F—*) DGXH(G x X) and DG(G[);X) 5_*) DGxH(G x X)

Proof. Observe first that each r, and s, have connected geometric fibers, each being isomorphic to
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a finite product of H with itself. Therefore observe that the geometric fibers of ¥ and 5 are isomor-
phic to the simplicial algebraic space EG and EH respectively; hence they have trivial cohomology
with respect to any locally constant abelian sheaf with torsion prime to p. Since (EH)o = H any
constructible H-equivariant abelian sheaf on Et(EH) is locally constant as in (A.2.2); if F(K) is a con-
structible H-equivariant abelian sheaf on Et(EH I>}X )(Et(EG é(G X X)), 7*(F)(5*(K), respectively) is
an H-equivariant constructible sheaf on Et(E(G x H )G;<H(G x X)). It follows that that the cohomology
sheaves of 7 (F') (5*(K)) are locally constant on the geometric fibers of 7(3, respectively ); recall these
geometric fibers were observed to be = EH. Therefore, the geometric fibers of 7 (3) are acyclic with

respect to 7 (F)(5*(K), respectively).

Hence 7 (F) (3*(K)) satisfies the conditions in (A.10) and hence the conditions (A.9). Hence the

natural map

F = {F,|n} = {Rrp.r;Fy|n}, (K ={K,|n} = {Rsn«spKn|n})

induces an isomorphism
(6.4.1.1) HY(EHxX; F)~ H'(E(G x H) x (G x X); 7*F)
H GxH

((6.4.1.2) (Ht(EGé(GEX); K)~ HY(E(G x H)G;<H(G x X); §*K)), respectively .)

As these isomorphisms are natural in F' and K they induce a map of the hypercohomology spectral
sequences proving thereby that such an isomorphism holds for any Fe D (X)(K e D%(GxX), respec-
H

tively). (Recall that the above derived categories consist of bounded complexes.)

Now we show that 7* and 5* are fully faithful. Let M:, N-e D¥(X) and let F- = Rhom(M-, N-);
observe that Fre D (X). Now the left-side of (6.4.1.1) is Ext!(M", N*) while the right-side is Ext!(7* M-,
7* N-). This proves that the functor #* is fully faithful; the proof for 5* is similar.

Finally to prove the surjectivity of 7*(3*), observe that it suffices to establish that 7 (3*) provides

the equivalence:

(6.4.2.1) (H-equivariant sheaves of Q;-modules on Et(EH xX)
H

~ (GxH-equivariant sheaves of Q;-modules on Et(E(G x H)( X )(G x X))
GxH

((6.4.2.2) (G-equivariant sheaves of @;-modules on Et(EGé(G;(IX))) ~

((G x H)-equivariant sheaves of @;-modules on Et(E(G x H )( X )(G x X))), respectively .)
GxH

One may readily show that (6.4.2.1) ((6.4.2.2)) is equivalent to
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(6.4.2.1)’ (H—equivariant sheaves of @;-modules on Et(X)) ~ ((G x H)—equivariant sheaves of @Q;-
modules on Et(G x X))

((6.4.2.2)’ (G—equivariant sheaves of @;-modules on Et(G EX ) where G acts by left-translation on
the left-factor G)

~ ((G x H)—equivariant sheaves of @;-modules on (G x X)), respectively .)

One verifies (6.4.2.1) as follows. First define automorphisms of GxG and GXG %G by (h, k) — (h.k, k)
and (g, h, k) — (g.h.k, h.k, k) respectively where g, h, k € G. These maps induce an automorphism of the
schemes (G x X) and (G x xG x X). Under these automorphisms, now one verifies that descent data for
the projection G x X — X correspond to the conditions for a sheaf on Et(G x X) to be G-equivariant

when G acts by left-translation on G' x X. It follows that one obtains the equivalence:

(G-equivariant sheaves of @;-modules on Et(G x X))
~ (sheaves of @;-modules on Et(G x X) with descent data for the map G x X — X)
~(sheaves of @;-modules on Et(X)).

where the last equivalence follows from the fact that the projection G x X — X has a section. Now on

adding the action of H, one obtains (6.4.2.1)’.

The proof of (6.4.2.2)’ is similar except one has to use the isomorphism:

HxGxX > (GxX) x (GxX)givenby (h,g,7) = ((9,%), (gh™", hz)) and the isomorphism:
(GxX)

HxHxGxX S (GxX) x (GxX) x (GxX)
(G;;X) (GEX)

given by (hy, ha,9,2) = ((g,2), (ghy ', haz), (ghy ', he.2)) to obtain the equivalence:

(H-equivariant sheaves of @;-modules on Et(G x X) for the H-action on G x X given by h.(g,z) =
(gh~*, ha))

~ (sheaves of Q;-modules on Et(G x X) with descent data for the map G x X — GxX)

~ (sheaves of Q;-modules on Et(X) ) "

where the last equivalence follows from the fact the map G x X — GxX is smooth and locally has a
H

section. On adding the G-action as well one obtains (6.4.2.2)". This completes the proof of (6.4).

(6.5) Definition. Assuming the above theorem, we will define induction functors Ind$, : DH(X) —

D%(X) to be right adjoint to Res$ in the following manner. Let F ¢ DH(X); theorem (6.4) shows that
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there exists a K ¢ DY(G'xX) so that 7 (F) = 5 (K). We let Ind%(F) = Rp.(K), where
H

p: EGé(GxX) — EGéX is the map induced by GxX — X as before.
H H

To see Ind$, so defined is right adjoint to Res$, we proceed as follows. Let K € DY(X), F eDH(X).
Now observe that Res$(K) = i*(K) = j* 0 8* o p*(K). As 7 is an equivalence so is its section j*.

Therefore there exists an L ¢ DY(G'xX) so that j* o 5*(L) = F. Therefore we obtain the isomorphisms
H

Hompsu (x)(Res%(K), F) = Homps x)(j* 0 §* o p*(K), j* 0 5*(L))
= HomDG(G;;X)(ﬁ*(K): L) = Hompex)(K, Rp.L) = Hompa x) (K, Ind%(F)).
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Appendix.

(A.0) Throughout the paper we will be primarily concerned with the following situation: B is a
noetherian scheme (serving as a ’base’) and X. is a simplicial object in the category of algebraic spaces
of finite type over B (i.e. a functor A°? — algebraic spaces of finite type over B) .(See section 1 and

[Knut] for basic properties of algebraic spaces.)

(A.1.0) The étale site associated to a simplicial algebraic spaces. (See [Del-1] p.10 or [Fr] p.11). Let
X.denote a simplicial algebraic space. Et(X.) will denote the category whose objects are étale maps
U — X, for some n > 0 with U an algebraic space (see (1.2.2)); a morphism(U — X,,) —» (V — X,,,) is
amap U — V lying over some structure map X, — X,, of the simplicial algebraic space X. A covering
of a given object U — X, in the site is a family of étale maps U; — U over X,, so that UU; — U is étale
surjective. We will let Et(X,,) denote the corresponding étale site of each X,,. Evidently there exists
a restriction functor (), : Et(X.) — Et(X,) for each n. Using the smooth topology one may similarly
define the sites Sm#(X,), for each n > 0 and Smt(X.)

(A.1.1) We next consider sheaves on the site E¢(X.). A sheaf F' on Et(X.) is a collection {F,|n}
where F), is a sheaf on Et(X,,) so that for each structure map a : X,, = X,,, there exists a natural map
a*F,, — F, and these maps satisfy an obvious compatibility condition as in ([Fr] p.14.) See (2.3.2),
(2.3.3) and (2.4) for more details.

(A.2.1). A basic spectral sequence. Let K = {K;|n}, L = {L;|n} be two bounded complexes of

abelian sheaves on Ft(X.). Then there exists a right-half-plane spectral sequence

E"" = Ext*(K,, L,) = Ext"t"(K", L")

Observe that (2.3.1) shows the existence of enough injectives in the category of abelian sheaves on Et(X.).
Therefore the construction of a similar spectral sequence when X. is a simplicial scheme as in ([Fr] pp.16-
17) carries over. (Strictly speaking the construction in [Fr] pp. 16- 17 is only for the special case K =
the constant sheaf Z x. Observe from [Fr]pp. 16-17 that the restriction-functor (), has a left-adjoint
L,; now one may show that the natural map Tot®L,(K;) — K" is a quasi-isomorphism. The above
spectral sequence is merely the spectral sequence a;sociated to the double complex Hom(®L,(K;,), L)
obtained by filtering the above double complex by {H om(ngaNLn(K ), L)|N}. The identigcation of the
E;-terms follow from the fact that L,, is left-adjoint to ().

(A.2.2) Next we define locally constant, lisse and constructible sheaves on Et(X.). Let R and J be
as in (2.3.2). A sheaf F' = {F,|n > 0} of R/m”-modules on Et(X.) is locally constant if Fy is locally
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constant on Et(Xg) and for every structure map a : X,,, = X, the induced map a*(F,) — F,, is an
isomorphism of sheaves of R/m”-modules. If F' = {F'} is a J-adic sheaf on Et(X.), we say & is lisse if

each Y F is a locally constant sheaf of R/m"-modules.

(A.2.3) A sheaf of R/m"”-modules F = {F,|n > 0} on Et(X.) is constructible if each F, is a con-
structible sheaf on Et(X,). An m”-adic sheaf F' = {"F,,|v, n > 0} on Et(X.) is constructible if each ¥ F},
is a constructible sheaf of R/m”-modules on Et(X,). Let (m”R) — adn -(Absh(Et(X.); R)) denote the
full sub-category of (m”R) — ad-(Absh(Et(X.); R)) consisting of m*-adic sheaves F = {*F,|v, n > 0}
so that each ¥ F), is a noetherian object in the category of sheaves of R/m"-modules on Et(X,). In view

of the fact that each X, is noetherian, we obtain the equivalence of categories

((m”R) — adn-(Absh(Et(X.)))) ~ (Constructible m"-adic sheaves on Et(X.))

Observe (see [Jou-1] Proposition 5.2.1, 5.2.2 and 5.2.3) that the above category is abelian. If R = 7Z;
and m = (IZ;), the resulting category will be denoted R-Absh.(Et(X.)); in the case of l-adic sheaves
the resulting category is thus denoted Z;-Absh(Et(X.)).

(A.2.4) The category of constructible @s-sheaves on Et(X.) will be defined to be the quotient of the
category Z;-Absh(Et(X.)) by the thick full subcategory of torsion sheaves. Similarly if E is a finite
extension of )y and R is the integral closure of Z; in F, we let the category of constructible E-sheaves
be the quotient of the category R-Absh.(Et(X.)) by the thick full subcategory of torsion sheaves. This
category will be denoted E-Absh.(Et(X.)). A constructible E-sheaf is lisse if it is locally of the form
L®E with L a lisse sheaf in R-Absh.(Et(X.)). Finally the category of constructible Q;-sheaves is defined
astollows: the objects are sheaves of the form F®Q, where F is a constructible E-sheaf for some finite
extension E of ()y. The morphisms of this categ(iy are defined in the obvious manner- see ([Del-2] pp.
146-147) for details. A constructible Q,-sheaf is lisse if it is of the form F®Q, where F is a lisse sheaf
in E-Absh.(Et(X.)). i

(A.2.5). Obviously all of the discussion carries over to other topologies for eg. Smt(X.) defined as in

(A.1.0).

(A.3.0) We will assume now that X. is a connected simplicial algebraic space. Now we observe (see

[Fr]p. 49) that for each v > 1, there exists an equivalence of categories

(locally constant constructible Z/£”-sheaves on Et(X.))

— (£”-torsion abelian groups provided with an action by 71 ((X.,z)e)
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where Z is a fixed geometric point of Xy and ~ denotes the pro-finite completion. It follows that we

obtain the equivalence of categories:

(A.3.1) (lisse and constructible f-adic sheaves on Et(X.)) = ((£Z) — ad — Abs(m1 (X, T)et) )

where Abs (71 ((X.,z)e) ) is the category of finite abelian groups with a continuous action by w1 ((X., z)et)
Finally observe that taking the inverse limit of a system {Ey,|n > 0} in ((Z) —ad — (Abs (71 ((X.,Z)er) )
provides a pro-finite abelian group which is a Z;-module provided with a continuous action by the

pro-finite group 71 ((X., z)¢) . It follows as in ([Jou-2] pp. 258-259.) that we obtain the equivalence

(A.3.2) (constructible lisse £-adic sheaves on Et(X.)) ~ (Z,-modules of finite type provided with a

continuous action by the pro-finite group 71 ((X., )et) )

If FE is a finite extension of (); and R is the integral closure of Z; in E, we obtain a similar equivalence

(A.3.3) (constructible lisse R-sheaves on Et(X.)) ~ (R-modules of finite type (provided with a con-

tinuous action by the pro-finite group m ((X., z)¢;) and

(constructible lisse Q¢-sheaves on Et(X.)) ~ (finite dimensional vector spaces V; (over Q;) provided
with a continuous action by m ((X., z)et) that is induced by an action of 71 ((X., ).;) on Vg where

E is some finite extension of Q)

(A.4) Now we define a different étale site for any simplicial algebraic space, different from the one
in (A.1.0). This site has often several computational advantages over the site in (A.1.0) as (5.5.2) and
(6.2) show. Most of this material is taken from the author’s Ph.D thesis ([J — T appendix C) and also
appears in ([J — 1]). As before we fix a noetherian base scheme B and will henceforth only consider

algebraic spaces of finite type over B. Let X. be a simplicial algebraic space over B.

(A.4.0) Definition. We let SEt(X.) denote the (small) site associated to X. whose objects are maps
a.: U. = X. of simplicial algebraic spaces so that each ay, : U, — X, is étale. A morphism (U.
X)) = (V. Lix .) is a commutative triangle over X. The coverings of any a. : U. — X. are given
by 8.:V. = U. in SEt(X.) with each 3, surjective.

(A.4.1)We may define hypercoverings in SEt(X.) to be simplicial objects V. in SEt(X.) (i.e. bisimplicial
algebraic spaces over X.) so that for each ¢ > 0, the map V; — (cosk;:;V.); is a surjection. (Here
(cosk*;V.)o = X.) One readily observes that so defined hypercoverings in SEt(X.) and Et(X.) (see [Fr]
p.23) for this) are identical.
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(A.4.2)Definition.(Friedlander) Let X. be a simplicial algebraic space as above and let n > 0 be an

integer. A simplicial geometric point (or simply, geometric point) of X. is a map

Z.: (Spec Q) ® A[n] - X.

of simplicial algebraic spaces, where €2 is a separably closed field and ®has the meaning as in ([Fr] p.7).

Observe that if Z : (Spec Q) — X, is a geometric point of X,, (for any n > 0), we may associate
to it a simplicial geometric point Z. (in the obvious manner) so that the map Z factors through Z,.
Observe also that with this definition (Spec Q) ® A[n] are all acyclic with respect to any abelian sheaf on
SEt(X.) — for now the global section section functor coincides with a stalk. One may also observe that
(Spec Q) ® A[n] is acyclic with respect to any locally constant abelian sheaf F' on Et(Spec Q®)A[n];
this follows readily by considering the étale homotopy type of (Spec Q®)A[n] which is A[n]. (See [Fr]
p. 40.)

(A.4.3).Definition(Friedlander). Let Z. : (Spec ) ® A[n] — X. be a geometric point of X. as above.

A (simplicial) étale neighborhood of Z. is a commutative triangle
/ T.
(Spec Q) ® Aln] — X.
where U. is in SEt(X.).

(A.5.0) If X. is a simplicial algebraic space, we let Absh(SEt(X.)) denote the category of abelian
sheaves on the site SEt(X.). (One may readily observe that there are enough (simplicial) geometric points
on the site SEt(X.).) As SEt(X.) is a small site, we may readily construct a generator for Absh(SEt(X.));
it follows that Absh(SEt(X.)) is a Grothendieck category and therefore has enough injectives. Now one
may consider the cohomology of X. with respect to any abelian sheaf or a (bounded-below) complex of
sheaves on SEt(X.) in the obvious manner. The category of complexes in Absh(SEt(X.)) that are bounded
below (trivial in negative dimensions, bounded) will be denoted C (Absh(SEt(X.))) (Co(Absh(SEt(X.))),
Ch(Absh(SEt(X.))), respectively.)

(A.5.0.1). Convention. We will adopt the following convention for the rest of the appendix. If
f.: X. = Y. is a map of simplicial algebraic spaces as above, we let f., denote the induced map
Absh(SEt(X.)) — Absh(SEt(Y.)). If F-e C(Absh(SEt(X.))), Rf..F" also may now be defined in the

standard manner.

(A.5.1).Lemma. Let X. be a simplicial algebraic space as before and let F' be an abelian sheaf on

SEt(X.). Then
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Hpyx) (X F) = limH*(D(K.., F))
%
where the direct limit is taken over the (filtered) homotopy category of hypercoverings and the left-side

is cohomology of X. computed using SEt(X.).

Proof. To prove the lemma, it suffices to show that the functor sending F' to the right hand side of
(A.5.1) is an effaceable d-functor. Let 0 - A - B — C — 0 be a short exact sequence of abelian
sheaves on SEt(X.). Since cohomology with respect to an abelian sheaf vanishes locally (see the Proof
of Theorem 8.16 in [A — M]), it follows that we obtain the following short exact sequence of complexes
0 = liml'(K.., A) = limI'(K.., B) = limI'(K.., C) —» 0
K K P
of abelian groups, where the direct limit is as before. We obtain the associated long-exact sequence on
taking the cohomology groups; this proves that the above functor is a d-functor. To show it is effaceable

one merely has to show that imH!(T'(K.., I)) = 0, for all 4 > 0, when I is an injective abelian sheaf
—
K

on SEt(X.). This follows essenﬁally from the fact that for each hypercovering K.., Zx.. — Zx. is a
resolution and hence the spectral sequence for the double complex Hom(Zk.., I) degenerates. (Here
Zk.., Zx. have the obvious meaning.)

Finally observe that as a corollary we obtain:

(A5.2) Hypyx ) (X3 F) = imH*(AT(K.., F")), F-e C (Absh(SEt(X.)).

K
(A.6.0) Let X. be a simplicial algebraic space as before. Next we define a functor

@ :Absh(Et(X.)) — Co(Absh(SEt(X.)))
as follows. (The obvious induced map Co(Absh(Et(X.))) — Co(Absh(SEt(X.))) will also be denoted by
the same symbol.) Let F = {F,|n}e Absh(Et(X.)) and U. SEt(X.). We let ®(F)- be the cosimplicial

abelian sheaf whose m — th term is given by
L., ®(F)™) = T(Up, Fn) ;
for each structure map a : A[n] — A[m], we obtain an induced map T'(U., ®(F)") = (U, F,,) = T(U,,
o, (Fp)) =Xy X Up, F) = T(Un, Fr), where the last map is induced by the map Uy, = X, x (Uy).
Xn Xn
Therefore {®(F)™|m} is a cosimplicial abelian sheaf on SEt(X.); normalizing this in the obvious manner

provides a complex which we denote by ®(F') .

(A.6.1). Let ny, : Et(X})) — SEt(X.) denote the map of sites given by U. = Uy, if U. € SEt(X.). Now
one may readily verify that if F is an abelian sheaf on Et(X.), then

®(F') = the normalization of the cosimplicial sheaf {n.(Fy)|k}.
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where F' = {F|k} is an abelian sheaf on Et(BG&.).

(A.6.2) Let X. be as before and let F' = {F,|n}e Absh(Et(X.)) be such that for each structure map
a: X, = X, the map o*(F,,) — F, is an isomorphism. Recall that such sheaves are called sheaves
with descent and the full subcategory of such sheaves is denoted Absh®*(Et(X.)). Then H'(®(F)) =0
for all t > 0 and H®(®(F)) = no.(Fp). (Hence Hgpyx (X5 HO(®(F))) ~ Hgpyx)(X5 ®(F)).) To
see this we may argue as follows. Let Z. : (Spec 2 ® A[n]) = X. be a geometric point of X.. Now

H'(®(F))z is the t — th cohomology of the cosimplicial abelian group

I'((Spec Q ® A[n]o); Fy) — T'((Spec @ ® Aln]1); F1) — ...

As F satisfies the above hypotheses, we observe that this cosimplicial abelian group is merely the

cosimplicial abelian group
Aln], ® Fpy — An]; ® Fg ...

where F3, is the stalk of Fj at the geometric point Zo of X. Clearly this complex is contractible; hence

(A.6.2) follows.

(A.6.3). In view of the above result we may define a functor

¢ : Abshes(Et(X.)) — Absh(SEt(X.)
by ¢(F) = H°(®(F)).

(A.6.4)Lemma. The functors ® and ¢ have the following properties.
(i) ® and ¢ are exact functors preserving quasi-isomorphisms.

(ii). Let f.: X. — Y. be a map of simplicial algebraic spaces and let F' ¢ Co(Absh(Et(X.))). If f..
denotes the induced functor (as in (A.5.0.1)),

B(fuF") = fu®(F). and ¢(f. F) = fouo(F).
(iii). Tf F e Co(Absh(Et(X.))), Hyyoxy (X5 F) = Hipy (X5 ®(F)).
(iv)The functor

F — {n:F|k}, Fe Absh(SEt(X.))

will be denoted 7*. The natural map
7" (p(F = {Fx|k})) — F = {Fy|k}
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is an isomorphism whenever F is a sheaf with descent on Et(X.)
(v) The functors ® and ¢ both preserve injections and injectives.

(vi) Let K, L be two complexes in D%*(Absh(Et(X.)) (=the full subcategory of D’(Absh(Et(X.)))
of complexes whose cohomology sheaves all have descent). If RHom denotes the internal hom in this

category,

¢RHom(K, L) ~ RHom(¢(K), ¢(L)).

Proof. (i). Let Z. be a simplicial geometric point of X. and let F' ¢ Absh(Et(X.)). Observe now that
(®(F)™); = li_r)nI‘(U., ®(F)™), where the filtered direct limit is over all simplicial étale neighborhoods
of Z.; observeUfha,t L(U., ®(F)™) = T'(Un, F,) and that for every étale neighborhood U of Z,,, one
may find (see [Fr] p.12.) an étale neighborhood U. of Z. so that the map U,, — X, factors through
the given map U — X,,. Therefore (®(F)™)z; ~ (F™)z, . The exactness of ® is now clear; now (i)
follows from (A.6.2) ad (A.6.3). (ii) follows readily from the definition of the functors f., and f., and
by (A.6.1). Finally (iii) follows from the fact that hypercohomology on Et(X.) and SEt(X.) may be
computed using hypercoverings (see (A.5.1) and [Fr] p.27) and the observation that hypercoverings on

the two sites coincide.

To prove (iv) we begin with the following observation. Let Z. denote a simplicial geometric point of
X. of the form in (A.4.3). and let Z,, : Spec Q®i, — X. its term in degree n. (Here i, is the generator
of A[n].) Let F = {F,|n} € Absh(Et(X.)). Now

This follows readily from the observation that given any étale neigborhood V of Z,, there exists a
simplicial étale neighborhood V. of Z. so that the map V,, — X, factors through V. It follows readily
that, under the same hypothesis:

M (s (Fr) 2, = s (Fr)z. = (Fo)z,

Observe that there exists a natural map 7o« (Fo) — Nn«(Fp) for all n. (For this observe that if
a : X, = Xp is any structure map of the simplicial space X., there exists natural maps 7o« (Fp) —
Nox (e () — Nnx(Fr).) Now assume F' has descent so that ®(F) ~ ¢(F) ~ no«(Fo). Therefore it

suffices to show that the map 79« (Fp) — N« (F) is an isomorphism.

Now 7o« (Fo)z. = colimT(V.,no«(Fo)) = colimID(Vy, Fy), where the colimit is over all V. in SEt(X.)

so that of V,, is an étale neighborhood of Z,,. Let Zg = dy(Z,) for some structure map d, : X,, — Xo
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. Observe that if V is any étale neighborhood of Zg, d,1(V) = X, x V is an étale neighborhood of Z,.
Xo

One may readily apply the construction in ([Fr] p. 12) to conclude that if V' is an étale neighborhood

of To, there exists a W. € SEt(X.) so that (i) W,, is an étale neighborhood of Z,, and (ii) Wy is an étale

nighborhood of Zy that dominates the given V. It follows that 7o« (Fp)z. = (Fo)z,- Since F has descent,

rx (Fr)z. =2 (Fn)z, = (Fo)z,- This proves (iv).

Next observe that ® has the required property since the restriction functor ()i : Absh(FEt(X.)) —
Absh(Et(Xg)) has the property of preserving injections and injectives. Clearly ¢ also has the same
property-see (A.6.3).

(vi). Observe that ® has a left adjoint denoted 7* (as in (iv) that preserves the tensor-product which

is left-adjoint to the internal hom hom. Now the assertion of (vi) follows readily in view of (vi).

(A.6.5).Corollary. Let the functor
Dbdes( Absh(Et(X.))) — Db (Absh(SEt(X.)))
induced by the functor ¢ in (A.6.2) be also denoted ¢. Then ¢ is fully-faithful.

Proof. Let 77* denote the left-adjoint of the functor ¢ as in (A.6.4)(iv). Given two complexes K-, L
in D% ( Absh(Et(X.))), one observes that

Hom(¢(K"), ¢(L°)) = Hom(i"(4(K")), L) = Hom(K", L)

Observe that one may identify ¢ with ®. This may be identified with {n,«|n}. Therefore the left-adjoint
to @ (at the level of the appropriate derived categories) is 77*. Now the second isomorphism follows by

(A.6.4)(iv). This completes the proof.

(A.7).Definition. Let f : X — Y be a map of algebraic spaces and F € Absh (Et(X)). Then (F, f)
is cohomologically proper if for every map g : Y’ — Y, the canonical base-change g*Rf.F — Rf' . g""F

is a quasi-isomorphism, where f’, ¢’ are defined by the pull-back square
e
! 'l lf
vy 2 v
(A.7.1)Ezamples.(i). Let f be proper and F torsion; now the proper-base-change theorem (see [Mi]

chapter 4 or [SGA]4 Expose XVI) shows (F, f) is cohomologically proper.

(ii). Let f be a smooth map with connected non-empty geometric fibers. Let F' = f*K, for an abelian
sheaf K on Et(Y), with torsion prime to the residue characteristics. Then (F, f) is cohomologically

proper.
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Proof of(ii). First we will obtain the isomorphisms:
F — f.f*F and g*F — f' f""g*(F).

The first one is a local assertion on Y while the second one is local on Y’. Moreover it is clear that the
first one implies the second. Next we may assume without loss of generality (by restricting to étale open
neighborhoods on Y) that f factors as an étale map i : X — A} followed by the projection A} — Y.
However since the geometric fibers of f are nonempty and connected, one may readily verify that the

map X x (Speck) = A} x (Spec k) is an isomorphism. Now it is clear that the natural map
(Spec k) (Speck)

F — f.f*F is an isomorphism.

Now observe that R(g* o f, o f*)F ~ g*(Rf.)f*F, while R(f',f'"g*)F = Rf'.(f'*g*)(F); however
the composite functor g* f.f* = the composite functor f', f'*g*, since g*fo f*F = g*F = f'_f""g*F as

observed above. It follows, therefore, that the natural maps

g RIN'F = Rf(f"g)F = Rf'.g" (f*F)
are isomorphisms. This shows (K = f*F, f) is cohomologically proper.

(A.8). Theorem. (Joshua: see [J-T] appendix C or [J-1].) Let f.: X. — Y. be a map of simplicial
algebraic spaces. If K-e Co(Absh(SEt(X.))), we obtain a Leray spectral sequence:

EPY = HP(Y; RIf.K") = HM(X,; K°).
If in addition K- = ®(F"), F"e Co(Absh(Et(X.))) and each (F,, f,) is cohomologically proper, then we
obtain the identification of the stalks:

(RUf.K)s ~HY(X.x 7.; K'|X.x .).
Y. Y,
Proof. We begin with the hypercohomology spectral sequence

Ep = H(Y; HY(RF..KY) = HPV(Vs RELK) ~ HPH(X 5 K°).

This clearly provides the required spectral sequence. We proceed to identify the stalks of RIf.,K . Let

7. denote a simplicial geometric point of Y. Observe that
af R p— q g
(R1f.K")y _huinH (UxX; K)
where the colimit is over all (simplicial) étale neighborhoods of §. as in (A.4.3) and the cohomology is

computed on the site SEt(U.x X.). Next recall the isomorphism
Y.

H1(Ux X; K')~HY(U.x X.; F)
Y Y

since K- :.<I>(F'). Therefore we are able to make use of the spectral sequence
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E® = HS(UT1>/<TXT; E)= HT+5(U.}>/<.X.; F)
as in (A.2.1). Taking the direct limit over all such étale neighborhoods U. of §., we obtain the spectral
sequence

(A8.1) liénEf’s = li;r>an(UT XX F) = 1151HT+S(U. XX F)
Now we use the assumption that each (F,, f,) is cohomologically proper to identify the left-side as
Hs(ﬂr;/(rXr; F%|gr1>/in)- Therefore we may identify the right side of (A.8.1) as HT+S(?7.1>/<.X.; F|g1>/<X)

This proves the theorem.

(A.9) Corollary. Assume the following in addition to the hypotheses of (A.8).

(i) F" is a complex concentrated in one degree (i.e. it is the obvious complex associated to an abelian

sheaf F' = {F,|n} on Et(X.)).
(ii) each (F,, fn) is cohomologically proper

(iii) Ht(f1(y.); F|f*(y.)) =0 for all t > 0, f.71(y.) denotes the geometric fiber at . and ¥. is a

simplicial geometric point of Y. as in (A.4.2).

Then the natural map F = {F,|n} — {Rfn.f}F,|n} induces an isomorphism H'(X.; F) ~ HY(Y;
{fnsFn}) for all ¢.
Proof. First observe using (A.8) and the third assumption that R!f..(®(F)); ~ 0 for all ¢ > 0. This
shows

H)tEt(X.)(X-3 F)~ H.gEt(X.)(X'; ®(F)) ~ HgE‘t(Y.)(Y'; ROf..®(F))

~ H gy (Vs Fa®(F) = Hypyiy) (Vs B(f o (F)))

Hiy oy (Y5 (Fs (F))).

This proves the corollary.

(A.10) Remark. Assume that f. : X. — Y. is a map of simplicial algebraic spaces so that for
each n, the geometric fibers of f, are connected, nonempty and f, is smooth. Assume in addition
that M = {M,|n} is an abelian sheaf on Et(Y.) with torsion prime to the residue characteristics and
F = f*(M). Now the second example in (A.7.1) shows each (F,, f,) is cohomologically proper. If
HY(fX(y.); F,) = 0 for all t > 0 and [ prime to the residue characteristics, (F., f.) satisfies the

assumptions of (A.9).
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