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ABSTRACT 

In this paper we discuss Kfinneth decompositions for finite quotients of several classes of smooth pro- 
jective varieties. The main result is the existence o f  an explicit (and readily computable) Chow-Kiinneth 
decomposition in the sense o f  Murre with several pleasant properties for finite quotients of abelian 
varieties. This applies in particular to symmetric products of abelian varieties and also to certain smooth 
quotients in positive characteristics which are known to be not abelian varieties, examples of which were 
considered by Enriques and Igusa. We also consider briefly a strong Kiinneth decomposition for finite 
quotients of projective smooth linear varieties. 

1. INTRODUCTION 

Chow-Kiinneth decompositions are conjectured (by optimists) to exist over Q for 
all smooth projective varieties X; at present, they are known to exist for curves [18], 
surfaces [21], projective spaces [18], abelian varieties [7] and other special types 
of  varieties (see, for example, [5,6]). Igusa [11] gives a construction (possibly 
discovered earlier by Enriques) of  a finite group action on an abelian variety 
such that the quotient variety is smooth, but not an abelian variety. It is natural 
to ask whether varieties of  this sort - or more generally, quotients of  abelian 
varieties by a finite group action - admit a Chow-Kfinneth decomposition. Indeed, 
even when the quotient variety is singular, one may still speak of  motives and 
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correspondences (and hence Chow-Kfinneth decompositions) using the reasoning 
of  [8, Examples 8.3.12 and 16.1.13]. 

In this paper we construct a Chow-Kiinneth decomposition for quotients of 
abelian varieties by a finite group action by descending the canonical Chow- 
Kfinneth decomposition for abelian varieties given by Beauville, Deninger and 
Murre [7]. We obtain explicit formulae for the Chow-Kiinneth projectors for the 
quotient that are readily computable in terms of  the Chow-Kfinneth projectors for 
the abelian variety. In view of  the close relation our Chow-Kiinneth projectors bear 
to the Deninger-Murre projectors for the original abeIian varie~, our projectors 
have very pleasant properties: they are easily defined explicitly and also act in 
the expected manner on the rational Chow groups o f  the quotient variety thereby 
verifying the existence o f  a conjectured filtration for all quotients o f  abelian 
varieties (by actions of  finite groups) up to dimension 4 or less. We also sketch 
in outline that strong Ktinneth decompositions - which are known to exist for linear 
varieties (cf. [29]) - may be descended to finite quotients of  such. This provides a 
means of computing the higher (rational) Chow groups of  such quotient varieties. 
Needless to say, we work throughout with rational coefficients. 

Here is an outline of  the paper. In the rest of  this section we set up the basic 
terminology and conventions for the rest of  the article. In particular, we recall the 
definitions of  Chow-Kfinneth decomposition and strong Kiinneth decomposition. 
In the next section we prove the following theorem: 

Theorem 1.1. (See Theorem 2.3). Let A be an abelian variety of  dimension d 
over afield k and G a finite group acting on A. Let f "  A ~ A / G be the quotient 

~ ,  2d 7~ map. Suppose [AA]-~- A.~i=0 i is the Beauville-Deninger-Murre Chow-Kiinneth 
decomposition for A and let ~li = I - ~ ( f  X f ) . 7 ~  i. 

Then 

2d 

[ A A / G ]  : ~ t]i 

i=:O 

is a Chow-Kiinneth decomposition for A / G. This Chow-Kiinneth decomposition 
satisfies PoincarO duali~." that is, for any i, O2d-i = t ~i. 

In addition, Oi acts as zero on CHJQ(A/G) for i < j and also for i > j + d in 

general. In case d <<, 4, we may also conclude that I~i acts  trivially on CHJQ(A/G) 
for i < j and also for i > 2 j.  

While the techniques are a modification of  those of Deninger-Murre [7] and 
also [3], there are several non-trivial issues that need to be considered as will 
become clear from the proof. To begin with, the quotient of the abelian variety 
by the action of  a finite group need not be an abelian variety nor even a nonsingular 
variety, so there is no analogue of  the Poincar6 bundle which plays a key role in the 
Deninger-Murre proof for abelian varieties. 

We first prove the theorem under the hypothesis that for each g E G, g(0) is a 
torsion point of the abelian variety; this is equivalent to requiring that the action 
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of the group preserve the torsion points of the abelian variety. It is clear that this 

hypothesis is not always satisfied: for example, choose a E A(k) to be a point 

of  infinite order and take G = Z /2Z  = {1, g} with the action g • x = - x  + a. 

However, we reduce the general case to this one by means of a technique in group 

cohomology; hence we are able to obtain an explicit formula for the Chow-Kfinneth 

projectors for all actions of  finite groups on all abelian varieties. 

One may observe that the existence of  such a Chow-Kfinneth decomposi- 

tion is guaranteed by the work of  Kimura [15] and [9] on finite-dimensional 

motives. However, there are several clear advantages to our construction of the 

Chow-Kfinneth projectors. For example, the statement that the projectors ~li act as 

zero on CHJQ(A/ G) for i < j and i > j + d already verifies part of  the conjectured 

formalism for the Bloch-Beilinson filtration on Chow groups. Our explicit and 

easily stated formula enables us to obtain such results readily by exploiting the close 

relation our Chow-Kiinneth projectors bear to the Deninger-Murre Chow-Kiinneth 

projectors on the original abelian variety. In addition, the Poincar6 duality property 

for the projectors is also immediate from our formula. For the convenience of  

the reader and for comparison purposes, we have also included a discussion of 

construction of  Chow-Kfinneth projectors via finite dimensionality of  motives. 

See Section 2.2. We show that the complexity of  these calculations increases 

exponentially with respect to the dimension of  the abelian variety. Our techniques 

are more explicit and result in a much cleaner formula, irrespective of  the dimension 

of the abelian variety. 

In the third section, we extend the strong Kfinneth decomposition to finite 

quotients of  projective smooth linear varieties. It is shown here, essentially using 

elementary methods, that if  X is a variety possessing a strong Kfinneth decomposi- 

tion and f : X ~ Y is a finite surjective map, then Y possesses a strong Kfinneth 

decomposition which we may describe explicitly in terms of  that for X. As an 

application, we describe a strong Kfinneth decomposition for symmetric products 

of  projective spaces. We also discuss some formal consequences of  such a strong 

Kfinneth decomposition: we show that a strong Kfinneth decomposition implies 

a Chow-Kiinneth decomposition and that the rational higher Chow groups are 

determined by the rational higher Chow groups of  the base field and the rational 

(ordinary) Chow groups of  the given variety. 

We discuss, in an appendix, functoriality properties of  cohomology theories for 

pseudo-smooth schemes as well as consequences of the existence of  strong Kfinneth 

decompositions for the quotient varieties we consider in this paper. The latter 

discussion is done in a somewhat more general setting so that it applies not only to 

determine the higher rational Chow groups of  finite quotients of  projective smooth 

linear varieties, but also possibly to other situations not considered in the body of  

the paper. 

Throughout the paper we will fix a field k of  arbitrary characteristic and restrict 

to the category of quasi-projective schemes over k. 
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1.1. Group scheme actions and quotients 

Following the treatment in [20], we review some definitions and results related to 
group scheme actions. 

Definition 1.1. Let G be a group scheme over a field k with identity section 
e: Speck --+ G and multiplication m :G xk G -+ G. 

An action of  G on a scheme X is a morphism tx : G x X --+ X such that: 

(1) The composite 

X e ~  x X ~- Speck xk G xk X ~ X 

is the identity map. 
(2) The diagram below commutes: 

G xk G x~ X mxlx > G xk X 

1 G XlZ llt 

G x k X  ~ >X 

In the future, we will identify elements g c G with the morphism/,tg : X ~ X 
defined by #g (X) = ~(g, X) and (by abuse of  notation) refer to this morphism simply 
as g. 

I f  G is a finite group (-- a constant 6tale finite group scheme) over k acting on a 
quasi-projective scheme X (also over k), there exists a quasi-projective variety Y 
together with a finite, surjective G-invariant morphism f : X  ---> Y universal for 
G-invariant morphisms X --+ Z. The scheme Y is called the quotient of  X by G, 
and is typically denoted Y = X/G.  

Definition 1.2. We say a scheme X is pseudo-smooth (over k) if  it is the quotient 
of  a smooth scheme (over k) by the action of  a finite group. 

1.1.1. Notation and terminology: review of correspondences 
In this section we define the category of  rational correspondences and rational 

Chow motives for pseudo-smooth projective varieties. 
Let k be a field and ~k the category of schemes pseudo-smooth and projective 

over k. I f  X, Y are objects of  ])k and X has pure dimension d, we define the group 
of degree r correspondences from X to Y by Corr~ (X, Y) = C Hd+r (x  xk Y) ® Q, 
the group of  codimension d + r (rational) cycles on X xk Y modulo rational 
equivalence. In general, let X1 . . . . .  Xn be the irreducible components of  X; we 
then define Corrr (X, Y) = (~in=l Corrr (xi, Y). When ol 6 CorK(X, Y) and /3 
Corr'(Y, Z), we define their composition/~ • ol~ Cor/+S(X, Z) by the formula 

/3 • ot = (p13). (P~2Ol • P~3fl); 
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here pij represents projection of  X xk Y xg Z on the ith and j th  factors. Moreover 
given a correspondence ot as above and a class [xl e CH*(X) ® Q, we obtain a new 
class ot • [xl = p2,(ot.p~([xl). Given the correspondence fi as above, one verifies 
readily that [x] • (ot •/~) -- ([xl • ~) * ft. 

One then constructs a new category M k  (Q), the category of (rational) Chow mo- 
tives of pseudo-smooth projective varieties. The objects of  Adg(Q) are pairs (X, rr), 
where X is an object of  Vk of dimension d and 7r 6 Corr°(X, X) is aprojector; that 
is, an element satisfying re • Jr = zr. For any two Chow motives (X, Jr) and (Y, p), 
one then defines 

HomM~ ((X, st), (Y, p)) = ~ p • Corr°(X, Y) • Jr. 

J 

I f  Ax is the diagonal of  X xk X and [Ax] its class in CH*(X xk X) ® Q, 
a straightforward computation shows that [Ax] is a projector, and furthermore 
that ot = ot • [Ax], ot = [Ay] • ot for any pseudo-smooth projective scheme Y and 
ot c Corr*(X, Y). (See (H.5) in Appendix for more details.) Thus, there is a functor 
h:V~ pp -+ A4k(Q) defined on objects by h(X) = (X, [Ax]) and on morphisms by 

h(X f Y) = F f ,  where [F f ]  c HomMk((~)(h(Y), h(X)) is the class of  the graph 
of  f .  Furthermore, letting LI denote disjoint union (of schemes), one may define 
the sum @ and product ® of  motives: 

(X, p) ~ (Y, q) = (xLIY , pLIq), 

(x, p) ® (Y, q) = (x  Xk Y, p ® q) 

where p ®q = s*(p × q) and s :X ×k Y ×k X Xk Y --+ X ×k X ×k Y ×k Y is the map 
exchanging the middle two factors. 

We denote by J[ the "trivial" motive h(Spec k), a neutral element for @, and by L 
the "Lefschetz motive" (P~, P~ ×~ {x}); here x ~ P~ is any rational point. Finally, 
ifot ~ Corr*(X, Y) is any correspondence, we define its "transpose" tot = s*(ot) 
Corr*(Y, X), where s : X ×k Y ~ Y ×k X is the exchange of  factors. For further 
discussion of  motives, we refer the reader to [27]. Also see [8, Examples (8.3.12) 
and (16.1.12)] for discussion that shows one can in fact define a category of  Chow 
motives for pseudo-smooth schemes as we have done. In fact it is possible to 
consider the above theory for all smooth Deligne-Mumford stacks over k; some 
of  our results extend to this situation readily. 

1.2. Abelian varieties 

In this section we establish notation and cite a rigidity property for abelian varieties 
necessary in the sequel. A comprehensive treatment of  abelian varieties may be 
found in [20] or [19]. 

Let k be a field and A an abelian variety over k. Following [19], we denote by 
m : A ×k A ~ A the morphism representing composition on the group scheme A 
and use additive notation for this (commutative) operation. For any a ~ A(k), we 
denote by r ,  :A ~ A (translation by a) the map defined by ra(x) = x + a. 
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A morphism f : A ~ B between abelian varieties is called a homomorphism if  

for every a, a' ~ A, f ( a  + d )  = f ( a )  + f(a:).  When n 6 Z we define n: A --+ A by 

n(a) = na and set A[n] = Ker(A -~ A), the (group scheme of) n-torsion points on 
A. For clarity of  notation, we write a instead of  - 1 .  

The following important result is a consequence of  a general rigidity principle; 
see [19, Corollary 2.2] for details: 

P r o p o s i t i o n  1.3. Let h : A ~ B be a morphism of  abelian varieties. Then there 
exists a homomorphism ho : A ~ B and an element a ~ A(k) such that h = "Ca o ho. 

Here and everywhere else, o will denote composition o f  morphisms. We remark 
that h o and a are in fact unique. Indeed, one must have a = h (0); uniqueness of  h o 
then follows immediately. 

Let J, be the dual abelian variety; we will denote by/2 the Poincar6 bundle and 
its class in CH~(A x~ Ji). 

We conclude this section by recalling the definition of strong Kiinneth and Chow- 
Kiinneth decompositions. 

Definition 1.4. Suppose X is projective and pseudo-smooth, of  dimension d 
over k. We say that X has a Chow-Kiinneth decomposition if  there exist elements 

7~0, . . . ,  7rZd E CH~(X xk X) such that: 

X-" 2d 7.(. 
• [ A x ]  = z.-. i=o ~. 
• For every i, :ri • Jri = :ri and for all j -# i, 3ri • Jrj = 0. (Thus, Jro . . . . .  3r2d form 

a system of mutually orthogonal projectors.) 
• Let H be a Weil cohomology theory H* (cf. [16]) and, for any k-scheme Y, let 

clr : CH~(Y) --. H*(Y) denote the cycle map. We require that c l x x k X ( J r i )  = 

A (i), where A (i) is the codimension i Kfinneth component o f the class of  [ A x ] 
in H* (X ×k X). (We will show later that any Weil cohomology theory admits 
an extension to the category of  pseudo-smooth schemes.) 

Next let X be any scheme of  pure dimension d over a field k. 
We say that X possesses a strong Kiinneth decomposition i f  there exist elements 

ai,j, bi,j E CHiQ(X) such that 

(1.1) LAxl--F F.a;jxb. i j 
i j 

Observe that i f  X is projective, X having a Chow-Kfinneth decomposition is 
equivalent to asserting that h(X) ~- (~2d_o h i ( X )  where h i ( X )  is the motive (X, 7t'i). 

2. CHOW KUNNETH DECOMPOSITION FOR QUOTIENTS OF ABELIAN VARIETIES 

Our goal in this section is to exhibit an explicit Chow-Kfinneth decomposition for 
the quotient of  an abelian variety A by the action of  a finite group G, assuming 
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only that g(0) is a torsion point for each g c G. As before, the quotient A / G  
may be singular. We rely on the following result, originally due to Shermenev [28], 
but later proved in a somewhat more functorial setting by Deninger and Murre [7, 
Theorem 3.1]; in this latter source the result is proved more generally for abelian 
schemes over a smooth quasi-projective base: 

Theorem 2.1. Let A be an abelian variety o f  dimension d over af ield k. Then 
there exist projectors 7r i c C Hd ( A ×k A ), i ----0 . . . . .  2d, giving a Chow-Kiinneth 
decomposition for A: 

2d 

[AA] = Z 7ri" 
i=0 

Since we need to make explicit use of  the projectors :r/'i, we will presently review 
their construction. First, consider A xk A as an abelian A-scheme via projection on 
the first factor; with respect to this structure, the dual abelian scheme is A xk A. 
Consider then the Fourier transform (cf. [7, 2.12; 17, 1.3]): 

FCH: CH~(A xk A) --+ CH~(A xk ,4) 

defined by FCH(Ot) = Pl3.(Pl2*Ot • F),  where 

F = 1 x ~. E CHQ(A xl¢ A xk,4)  
i=0 

and the various pij represent projections from A xk A xk A on the ith and j th  factor. 
Note that the sum defining F is actually finite. 

Dualizing this construction, we may define 

[:cH:CH~(A xk A)--+ CH~(A xk A) 

by Fell(Y) ---- q13, (q~2Y " F), where 

~_.~ t ~i 
= l x ~. c CH~(A xk /] xk A) 

i=0 

and qij represent the various projections from A xk A xk A. By switching the last 
two factors and changing notation appropriately, we see that in fact 

[;CH(Y) = Pl2.(P~3Y" F).  

An argument involving the theorem of  the square (cf. [7, Corollary 2.22], also [3, 
Proposition 3]) then shows that [~cH(FcH(~)) = (--1) dcr*u for all ~ c CH*(A xk 
A), and similarly for the other composition. 
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Observe that [AA] • CHd(A  x k A), and write FCH([/kA]) = ~/2d=0 fli, where fli • 
CH~(A x~ A). It is a fact [7, pp. 214-216] that (1 x n)*fli = nifli . Now define 

(2.1) ~i = (--1)do'*PCH(t~i). 

The following result will allow us to make some helpful reductions: 

L e m m a  2 . 2 .  

(1) I f  Theorem 1.1 holds when k is radicially closed, it holds for arbitrary k. 
(2) I f  Theorem 1.1 holds after extending the base field k by some finite Galois 

extension L / k, then it holds in general. 

Proof. The first assertion follows from the fact that the rational Chow groups are 
invafiant under radicial (i.e. purely inseparable) extensions of  the base field. Now let 
L/k  be a Galois extension and let H = Gal(L/k). For any k-scheme X, we denote 
by j x :XL  -+ X the corresponding base extension morphism. If  [ A A ]  = ~--~2d0 Yr i 
is the Beauville-Deninger-Murre Chow-Kfinneth decomposition for A, then it is 

x - , 2 d  . ,  easy to check that [ / k A y  ] = 2-,i=0 JA×A i is the corresponding decomposition for 
AL. Moreover, by base extension we may interpret G = GL as a finite 6tale constant 
group scheme over L acting on AL; we then have (A/G)L ~ AL/GL. Since the 
theorem holds in L, 

2d 

[A(A/G)L] = ( fL  × fL)*JAxA~i = JA/GxA/G( f  × f),Tgi 
i = 0  

is a Chow-Kfinneth decomposition for (A/G)L. Furthermore, the last expres- 
sion shows that the Chow-Kfinneth projectors are H-invariant. Thus, by [27, 
Lemma 1.17], we may descend the Chow-Kfinneth decomposition to k; that is, 
we may conclude that 

2d 2d 
1 . 

[AA/G] = E ~JA/GxA/G,jA/GxA/G ( f  x f ) , y r  i = E ( f  x f ) , y r  i 
i = 0  i = 0  

is a Chow-Kiinneth decomposition for A~ G, as desired. The second statement now 
follows from the observation. Let ot • CHJo(A ) for j as above. Now 

( f  × f),(Yri).ol-~ f , (yr i • f*(oe)). 

f* (or) e CHJ O (AL)I4 and therefore we reduce to proving the last statement Observe 
of the theorem to the situation where A is replaced by AL. This completes the proof 
of  theorem. [] 

Next we proceed to prove the following weakened form of  the main theorem: 
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Theorem 2.3. Let A be an abelian variety of  dimension d over afield k and G 
a finite group acting on A such that g(O) • A(k) is a torsion point for each g • G. 

~ ,  2d Jr Let f "  A --+ A /  G be the quotient map. Suppose [AA] = z.~i=0 i is the (Beauville- 
Deninger-Murre) Chow-Kiinneth decomposition for A considered above and let 

1 
Oi = ( -~( f  × f ) ,Tr i .  

Then 

2d 

[AA/G]  : ~ rli 

i = 0  

is a Chow-Kiinneth decomposition for A~ G. 
Moreover, the G-action commutes with multiplication by n for all n in the infinite 

subset E chosen as in 2.6 and Oi acts as zero on CHJQ(A/ G) in the following cases: 
(i) i < j or i > j + d in general, and (ii) i f  j = O, 1, d - 2, d - 1, d and i > 2j. 

Remark.  The hypothesis that g(O) be a torsion point o f  A is not always satisfied. 
For example, if a c A(k) is any point of  infinite order, then the automorphism 
g :x ~ - x  + a defines an action of Z / 2 Z  on A for which g(0) = a is not a torsion 
point. However, if  k is an algebraic extension of  a finite field, then this hypothesis 
is always satisfied. 

Observe also that this hypothesis is equivalent to requiring that G preserves the 
torsion points o f  A. This hypothesis seems quite helpful for being able to descend 
the Chow-Kiinneth projectors of the abelian variety A to A / G ,  which, a priori, has 
no other structure other than that of  an algebraic variety. We will show later that one 
may reduce the general case to this situation. 

Our method of  proof is based on that of  [7, Theorem 3.1]; however, there are 
further technicalities which complicate it somewhat. The content of  the proof is, 
of  course, to show that the elements i~ l ( f  x f) .zri ,  0 ~ i <<, 2d, are mutually 
orthogonal projectors. The map f*  establishes an isomorphism [8, Example 1.7.6]: 

CH~(A/  G) ---> CH~(A) G 

with inverse i~--~f,. (See also (H.0) in the appendix for an explanation of  this 
from the point of  view of equivariant Chow groups.) Thus, we will work in 
the group CH~(A) ~, constructing mutually orthogonal G x G-invariant elements 
which may be descended to elements of  CH~ (A /G)  by the following device: 

Lemma 2.4. Suppose X is a pseudo-smooth projective variety o f  dimension d and 
G afinite group ofautomorphisms of  X. Let f : X ~ Y = X / G  be the quotient map 
and suppose 

2d 

(g x h)*[Ax] = ~--'~ Pi 
g,h6G i = 0  
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where Pi o pj =0  i f  i 7~ j ,  Pi e Pi = [G[2pi and the Pi are G x G-invariant, i.e. for 
any g, h ~ G, (g x h)*pi = Pi. 

Then 

2d 
1 

[Ay]  =/~0= I ~ ( f  × f )*Pi 

is a Chow-Kiinneth decomposition for Y. 

Proof. We have (making use of  the identifications from the appendix identifying 
CH~) (A/G)  with the rational G-equivariant Chow groups of  A) 

( f  x f ) , ( f  x f )*  = IGI 2, ~ (g x h)* = ( f  x f ) * ( f  x f ) ,  
g,hEG 

and ( f  × f ) , [ A x ]  = IGI[Ay], 

and therefore: 

IGI2(f x f ) , [Ax] - - - - ( f  x f ) , Z p i .  
i 

Hence 

1 Z (  f x f)*Pi. 
[Ay]  = I ~  i 

1 It remains to show that i-dT(f x f ) .P i  are mutually orthogonal idempotents. As 

in Proposition 3.4, we add subscripts and superscripts to p (respectively, q) to 
denote the various projections between products of  X (respectively, Y), and for 
convenience of  notation set r = ( f  x f x f )  : X xk X xlc X --+ Y x~ Y xk Y. Now, 

123 z 123"-~ 123"-,  ~ f) , lOj).  (2.2) ( f  X f)*Pi * ( f  x f)*PJ = q13 , tq12 kY x f ) , P i  " q23 t J  x 

Since the degree of  r is 1613, r , r* corresponds to multiplication by IGI 3, and 
therefore, the last expression equals: 

(2.3) 1 123 [ * 123"-~ 123"(f X f ) , p j ) .  1~13ql 3 .~r.r q12 ta r × f ) , P i  "q23 

Because q12-123 o r = ( f  x f )  o p~23, the above simplifies to: 

1 123 / r 123"(~ q123*(f x f ) , p j ) .  
1~13q13 , I  *Pl2 y x f ) * ( f  x f ) , p i "  23 

Because the Oi are G x G-invariant, we have ( f  x f ) * ( f  x f ) ,  is multiplication 
by I GI 2, so the expression equals: 

! 123 [ r 123",G,2 , 123".~ f ) , tg j  ) 
iGi3q13 , I  *P12 I [ i°l "q23 [y x 
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Finally, applying the projection formula, the formula ql. 23u o r = ( f  × f )  o pill 3 
and (G x G)-invariance of  the Pi, one may identify the last expression with: 

1 123 r / 123" • 123"  f ) , p j )  
iGiql3 . *~P12 Pi " r  q23 ( f x  

1 r .  123 I 123" 1 2 3 " ( r  f ) , p j )  
= - ( -~( f  × J)*Pl3 ,[PI2 Pi "P23 y x f ) * ( f  × 

,-, 123 1p123" 123'p ", 
= IGl(f  x J)*P13 , t  12 Pi " P-3 J) 

-- ]Gl(f  x f )*(Pi  " Pj). 

Because the Pk are mutually orthogonal projectors, this last expression equals 0 
i f / #  j or IGi3(f x f ) , p i  i f / =  j .  [] 

In [7], the crucial step in the proof of the Chow-Kfinneth decomposition for 
abelian varieties is the following computation, which may be proved using the 
seesaw theorem [ 19, Corollary 5.2]: 

Proposit ion 2.5. [7, 2.15]. For any integer n, 

(1 x n)*£ = n£ 

where n denotes multiplication by the integer n. 

The analogous strategy in our context would seem to be to study the action of 
(1 x n)* on (g x h)*£; however, the induced action by G on ,4 is by pulling back 
line bundles by elements of  G. Therefore, the induced action by elements of  G on 
is by homomorphisms and hence on double-dualizing this provides an action on A 
which may differ from the original action. (If G acts on A "by isogenies"; that is, 
i f  all of  the maps g : A -+ A are in fact homomorphisms of A, then duality gives 
a natural action of G on A, but we are not assuming this.) Instead, we rely on the 
fact [19, p. 119] that the Poincar6 bundle on A Xk A is the transpose of  the Poincar6 
bundle on A xk ,4. Hence: 

(2.4) (n x 1)*e ='((1 x n)* t£) = t ( n 'Q  = n £  

and we prove the following: 

Proposit ion 2.6. There is an infinite subset E C N such that for  all n e E and all 
g e G :  

(2.5) 
( g x  1) o ( n x  1 ) = ( n × l ) o ( g x  1), 

(n × 1)*(g x 1)*£ = n ( g  x 1)*£. 

and 

Moreover, one has: 

(2.6) 
( r - 2g (0 )  X 1) o (g x 1) o (n x 1) = (n x 1) o (r-2g(0) x 1) o (g x 1), and 

(n x 1)*(g x l)*(Z-2g(O) x 1)*£ = n(g x 1)*(Z-2g(O) x 1)*L 
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Proof i  For each g ~ G, write g = ag o go as in Proposition 1.3. Let mg be the order 
ofag = g(0); this is guaranteed to be finite by our hypothesis in Theorem 2.3. Next, 

let m = ]-IgcG rag, and 

E = { n 6 Z :  n = l ( m o d m ) ,  n s ~ ± l } .  

Note that i fn  ~ E, mg divides n - 1 (for any g), so nag : ag. 
Now, if  n ~ E, we have 

(2.7) (g x 1) o (n x 1 ) = ( r a g  x 1) o (go x 1) o (n x 1). 

Since go is a homomorphism, n o go = go o n; therefore the last expression equals 

(rag x 1)o(n  x 1).(g0 x 1). Since ag = nag, this equals ( n x  DO(rag x Do(g0  x 1) = 

(n x 1) o (g x 1). This proves the first equality in the proposition. 

Therefore, 

(n x 1)*(g x 1 ) * e = ( g o  x 1)*(rag x 1)*(n x 1)*L 

By (2.4) the last term equals 

n(go x 1)*(rag x 1)*~ = n ( g  x 1)*& 

This completes the p roof  o f  the first statement. The second follows similarly. [] 

The next step in the proof  o f  Theorem 2.3 is to construct the elements pi 
appearing in Lemma 2.4; for each i, we simply set 

Pi = Z (g x h)*rr i 
g,hcG 

w h e r e  Jr i are the Chow-K/inneth components o f  [ A A ]  from Theorem 2.1. It 
is clear from the formula that the pi are G x G-invariant and that 2d Z i = O  Pi = 
~J-~g,heG(g, h)*[AA]; so it remains to prove that they are mutually orthogonal. In 

preparation for this, we study the action o f  (1 x n)* on Pi: 

Propos i t ion  2.7. For n ~ E, (1 x n)*(g x h)*zri -= ni(g x h)*zr i. Hence ,  (1 x n)* 
Pi = ni pi • 

Proof .  Observe that (1 x n)*(g x h)*:rci = (1 x n)*(g x 1)*(1 x h)*yri = (g x l)*(1 x 

n)*(1 x h)*yri, so it suffices to consider the case g = 1. 

We recall the construction o f  rri from (2.1): 

(2.8) (1 × n)*(1 x h)*rc i = (--1)d(1 × n)*(1 × h)*cr*[rCH(fli ). 
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One may verify, by writing h = rh(0) o h0 as in the proof of the last proposition, 
that a o (1 × h) = (1 × r-Zh(0)) o (1 x h) o a.  Therefore, using the definition of Fc~ 
the last expression identifies with: 

(2.9) (--1)da*(lxn)*(lxh)*(lxr-2h(O~)*Plz*(P'3*~i'( lx~--~('")~i=o #! ,],] 

Since ~'CH(~i) has degree d, one may readily see that all terms in ~'CH(~i) (and 
hence in the expression above) except for/z = i are trivial (see, for example, [7, 
Lemma 2.8 and Theorem 2.19]). Next, in view of the Cartesian square 

A×kA×kA p12 >AxkA 
(lxr 2h(o)xl).(lxh×l)l l(lxr_2h(O)).(l×h) 

A×kA×kA p12 >AxkA 

the above expression becomes: 

(~i) ~ 

Now using another Cartesian square 

A x k A x k A P 1 2  ~ A x k A  

l lxnxl llxn 

A x k A x ~  p12 ~AxkA 

this equals 

{ {  (~i)'~ 
(-1)da*Pl2,(1 × n ×  1)*(1 × h  × 1)*(1 ×r_2h(0)× 1)*~Pl3*f l i -~ l  × i] ] ] "  

Since PI3 leaves the second factor unchanged, this expression identifies with: 

(--1)dcr*Pl2, P~31~i'(1 x n x  1 ) * ( l × h × l ) * ( l x z _ 2 h ( 0 ) × l ) *  1 x i! ] , /  

= (--1) Cr P12, Pl3fii " 1 X ~((n × 1)*(h x 1)*(r-Zh(0) x 1)*/~ i . 

By the second statement in Proposition 2.6 the last term is given by 

(2.10) ni(--1)do* Pl2,(P~3fli . (l × 1 ~.((h x l)*(r-2h(O) X 1)* ' / ) ) ) .  

By applying the same steps above in essentially the opposite order one obtains the 
identification of the last expression with (observe again that all terms except the 
one with/z = i are trivial): 
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.=o7/ 

=ni(--1)dcr*Pl2,(1 x h  x 1)*(1 xr_2h(0) x 1)* Pl3*fli" 1 ~ /z! 1 /  

=ni(--1)d~7*(1 xh)*(1 x r_2h(O))*Pl2,(Pt3*~i. (1 x k (~'I*'~ 
.=o . !  ]] 

=ni(l×h,*(--1,dcr*Pl2,(Pl3*#i ( I × ~ ( U * ) ~  "! JJ 

= h i ( 1  x hJ*zri. [] 

To prove orthogonality o f  the Pi, we need a version o f  Liebermann's trick (cf. [7, 
Proof  o f  Theorem 3.1 ]); first we prove the following simple lemma: 

Lemma 2.8. l~br every g, h ~ G, pj • ( g  x h)*[AA] : pj. 

Proof .  Certainly the lemma is true if  g -- h = 1. In the general case, 

* * /9  Pj • (g × h)*[Az]  -= P13,(P12(g x h)*[AA] • P23 j)  

(2.11) 

Since pj is G × G-invariant the last term equals 

(g x 1)*Pl3.(P~2[AA]. P*3PJ) = (g x 1)*(pj • [AA] ) = (g x 1)*(pj) = pj. 

Proposi t ion  2.9. (Liebermann's trick). For every i, j, i -J= j, Pi • Pj -= O. 

Proof.  Suppose n c E.  By  Proposition 2.7, 

nJpj = (1 x n)*pj = (1 x n)*(pj  • [AA]). 

By Lemma 2.8, the last term equals 

'GI 2 ( l l  x n ) , ( p j . Z ( g  x h)*[AA] ) 
g,h 

ia12 (1 x n)* pj • Pi 
i=0 
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* p  -= Pl3 , ( (g  x h x 1)*P~2[AA] • P23 J) 

-= Pl3 , (g  x h x l)*(p~2[Aa] • (g-1 x h -1 x 1) P23PJ) 

= P l 3 , ( g  -1 × h  -1 x 1 ) , (p~2[Az] - (g -1  x h  -1 x 1) P23PJ) 

_=-(g-1 x 1),Pl3,(P~2[Aa]. p~3(h -1 x 1)*pj). 

[] 



Hence 

2d 1 ~ , , , 
IGI2 (1 x n) Pl3,(Pl2PJ" P23Pi) 

2d 

= 1 ~ - ~ p l 3 , ( l x l x n ) * ( p ~ 2 p j . p ~ 3 P i )  
1612 i=o 

2d 

= 1 ~pl3 , (p~2pj .p~3(  1 xn)*pi )  
[GI2 i=o 

2d 

1 ~ n i ( p j  Pi). 
IG[2 i=o 

 J((pj • ; j )  - I c l 2 p j )  + • p j )  = o 

for all n ~ E. Since E is infinite, this forces Pi • ,Oj -= 0 for all i ¢ j ,  and also 
pj • pj -= IGl2pj. [] 

This final step in the proof of Theorem 2.3 is to show that the images of  the 
~7i under the cycle map CIa/GxkA/G :CH*(A/G xk A/G) ~ H*(X/G Xk X/G) 
to any Weil cohomology theory are in fact the Kfinneth components of  the class 
of  the diagonal. This follows easily from the analogous fact for the variety A and 
commutativity of  the following diagram: 

CH~(A Xk A) cla×ka 

(f xkf)* 

CH~(A/G x~ A/G) flA/c×gA/G 

H*(A Xk A) 

l ff×kf)* 

H*(A/G xk A/G) 

Here we will show that any Weil cohomology theory, H*, extends to pseudo- 
smooth schemes and show that the above square commutes. First observe that 
if  G is a finite group acting on a smooth scheme X, each g ~ G acts on X 
as an automorphism: therefore, the action of  G on X induces an action on the 
given Weil cohomology theory applied to X, i.e. on H*(X). Since H'~(X) are 
all vector spaces over a field of  characteristic 0, one obtains a decomposition of 
H* (X) into irreducible representations of  G. One defines H* (X/G) to be H* (X) a. 
Corresponding assertions also hold for the rational Chow groups. 

Observe that if f : X --+ X /G is the quotient map, one may identify f ,  : CH~(X) 
---+ CH~(X/G) ( f ,  :H*(X) --+ H*(X/G)) with the projection CH~(X) --+ 
CH~(X) c (the projection H*(X) --+ H*(X) c, respectively). Since the cycle map 
commutes with group action, one can now see that it commutes with f , :  we obtain 
the commutativity of  the square above. 
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This concludes all but the last statement in the proof of Theorem 2.3. We proceed 
to establish this presently. Therefore, we will assume the hypotheses there. Now 
observe that, by [3], we have a decomposition: 

J 
(2.12) CHJo(A)= ( ~  CHJQ(A)s 

s=j--d 

where CH~(.A)s = {or • (CHJQ(A)) ~ I n*(oO = n2J-'ot, n • E}. When each g(0) is 
torsion, one may show as in Proposition 2.6 that the group action commutes with 
multiplication by n, for n belonging to the infinite subset E. Therefore, the above 
decomposition (at least when n is restricted to belong to the infinite set E) respects 
the group action. We take G-invariants to obtain 

(2.13) 
J 

O 
s=j--d 

where (CHJo(A))] = {or • (CHJQ(A)) G I n*(u) = n2J-~ot, n • E}. (Clearly the sum 
of the G-invariants of  each of  the summands of  the right-hand side of(2.12) belongs 
to the G-invariant part of  the left-hand side of(2.12). To see the G-invariant part of  
the left-hand side of  (2.12) belongs to the sum of  the G-invariants of  the summands 
on the fight-hand side, one may use an argument as in the proof of  Proposition 2.9.) 
Now we have the following lemma: 

• G 

L e m m a  2.10. The correspondence Pi acts as zero on (CHJQ(A)) for  s ~ 2j  - i 
j G 

and acts as the identity i f  s = 2 j - i. It follows that Pi acts as zero on ( CHQ ( A ) ) i f  
i < ~ and also i f i  > j + d. Moreover, i f j  = 0, 1, d - 2, d - 2, d, Pi acts as zero on 
CHJQ ( A / G ) for  i > 2 j .  In particular, i f  d <. 4, then Pi acts as zero on CH JQ ( A / G) 
for both i < j and i > 2j.  

Proof. The key observation is that the correspondence pi is G × G-invariant, so 
that it induces the map p i : ( C H 6 ( A ) )  a ---> (CH6(A))  a for all j .  Now the proof 
of  the first statement is exactly the same as in [22, Lemma 2.5.1]: simply take 
the G-invariant parts of the commutative diagram there. The second statement 
now follow by exactly the same argument as in [22, Corollary 2.5.2]. We skip the 
remaining details. [] 

Proof  of  the  last s ta tement  o f  Theo rem 2.3. It suffices to show that rli = 
1/]G[3(f × f ) . (P i )  acts as zero on cHJQ(A/G) in the following cases: (i) i f / <  j 
and also i f / >  j + d or (ii) i f j  = 0, 1, d - 2, d - 1, d and i > 2j.  This follows from 
the following computation: Let ~ • CHJQ(A/G) for j as above. Now 

( f  x f )*(Pi)  ,,or = f*(Pi " f*(~)) .  

Observe f *  (o0 • CHJQ (A) ~ and therefore the last term is trivial for the values of  j 
considered above. This completes the proof of Theorem 2.3. [] 
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Among the formulae proved by Kfinnemann is the so-called Poincar6 duality for 
abelian varieties [ 17, Theorem 3.1.1 (iii)]; in our notation, this reads ~ 2 d - i  = t 7f i for 
each i. This fact immediately implies the analogue for quotients: 

Corol lary  2.11. (Poincar6 duality for quotients). The Chow-Kiinneth decom- 

position for A / G o f  Theorem 2.3 satisfies Poincar~ duality: that is, for any i, 

172d_ i = t ~i .  

Next we proceed to show that the torsion hypothesis in Theorem 2.3 may be 
removed. This will follow from the sequence of  results considered below. 

Let G denote a finite group and let M denote an abelian group that is a G-module. 
Recall that a derivation d : G --+ M is a function d so that d(g~ .g2) = dgl + g~ o 
dg2 where o denotes the G-action on M. Given a fixed element m 6 M, an inner 
derivation associated to m is the map d : G --~ M defined by d(g) = g o m - m, 

g c G. Clearly every inner derivation is a derivation. We will denote the set of  all 
derivations of  G in M (the set of  all inner derivations of  G in M) by Der(G, M) 

(IDer(G, M), respectively). It is well known that one has the isomorphism (see, for 
example, [10]): 

(2.14) H 1 (G, M) = Der(G, M)/IDer(G, M). 

Next recall that i f  A is an abelian variety defined over the field k and G acts on A, 
there is an induced action/z: G x A(k) --+ A(k) of G on A(k). Now define ]£h : G x 
A(k) --+ A(k) by/*h (g, a) = #(g, a) --/z(g, 0). It is easily checked that/Zh is also an 
action of  G on A(k); that is,/Zh defines a G-module structure on A(k). 

L e m m a  2.12. Assume the above situation. Then the map d : G --+ A(k) defined 

by d(g) = #(g, O) is a derivation o f  G in A(k), considered as a G-module via the 

action lZh. 

Proof. One simply calculates: 

d(g) + gd(h) = #(g, O) + ]£h(g ,  l z (  h ,  0 ) )  

= Iz(g, O) + # ( g ,  lz(h, 0)) - Iz(g, O) 

= Iz(g, Iz(h, 0)) = lz(gh, O) = d(gh). [] 

Proposition 2.13. Assume the above situation. Then H 1 (G, A(k)) is annihilated 

by IG[, where G acts on A(k) through #h. 

Proof. This follows from the general fact that for any finite group H and any H-  
module M, H n (H, M) is annihilated by [HI for n > 0; see [31, Theorem 6.5.8]. [] 

Proposition 2.14. Let e :G × A --+ A denote the action o f  a finite group on an 

abelian variety A defined over afield k. Then there exists a finite extension L of  k 

and a point a ~ A(L)  so that the new action o f  G on AL : A × Speck Spec L defined 
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by (g, c) ~ g • a C = Ta o g o T-a(C) satisfies the torsion hypothesis in Theorem 2.3 
(i.e. after translating the origin o f  the abelian variety to the new point a, the new 

action satisfies the torsion hypothesis). Here c • AL ( R), where R is any L-algebra, 
7~ denotes the translation by x • A(L)  and o denotes composition. Moreover the 

geometric quotients Of AL by G for  the actions • and •a are isomorphic. 

Proof. Observe that d(g) = tz(g, O) is a 1-cocycle. This is torsion as a cohomology 
class, i.e. some multiple of  it is an inner derivation.) In view of  the Proposition 2.13, 
there exists a point a • A(k) so that ]Gl#(g, 0) = l z h ( g ,  a )  --  a for all g • G. I f k  is 
algebraically closed we may write a = I GIb, for some b • A (k). In general, we may 
do the same for some b • A(L) where L is a finite extension ofk.  Then 

(2.15) # ( g , O ) - # h ( g , b ) + b  i s l G I - t o r s i o n f o r a l l g • G .  

Now for every k-algebra R, we may define a new action of G on AL(R) by 
v(g, c) = #(g, O) + b ÷ Izh(g, c -- b). Then for any g • G, v(g, O) = Iz(g, O) ÷ b ÷ 

#h(g, - b )  = lz(g, O) - #h(g, b) + b is annihilated by IGI, so v satisfies the torsion 
hypothesis of  Theorem 2.3. 

The last statement of  the proposition follows from the commutative square: 

G x A L - - ~ "  AL 

G x A L - - ~  AL [] 

2.1. Proof of the main theorem 

In view of  the last proposition, i f  the torsion hypothesis in Theorem 2.3 is not 
satisfied by the given G-action, one may replace that action by the above modified 
action. Then the quotient schemes are isomorphic and the new action satisfies the 
torsion hypothesis of  Theorem 2.3. This completes the proof of  all but the last 
statement in Theorem 1.1. The last statement there was already proven as part of  
Theorem 2.3. 

2.2. Examples 

1. Symmetric products o f  abelian varieties. Let X denote an abelian variety 
and X " / ~ n  the n-fold symmetric power of  X. Observe that for every tr e E,,, 
cr (0 . . . . .  0) = (0 . . . . .  0). Therefore the hypotheses of  Theorem 2.3 are satisfied irre- 
spective of  the base field k. Therefore, we obtain a Chow-Kfinneth decomposition 
for X n / En. (Observe that the action of  En is not in general free so that the quotient 
X~/E~ is only pseudo-smooth and not smooth.) 

2. Example o f  Igusa. (See [11]). Let X be an elliptic curve over k, with char(k) ~ 2. 
Let t denote a point of  order 2 on X. Define an action of  Z /2Z  on X x X by 
: (x, y) ~ (x + t, - y ) ,  and let Y denote the quotient variety for this action. The 
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resulting surface is a so-called bielliptic surface; see [3, VI, pp. 19-20]. (This 
example may be generalized by taking X to be an abelian variety.) Now one 
sees easily that the action is free so that Y is smooth. Nevertheless, in positive 
characteristic, Y need not be an abelian variety as shown in [11]. Theorem 2.3 
provides a Chow-Kfinneth decomposition for Y. 

Observe that in both the above examples, the group action satisfies the torsion 
hypotheses. When the schemes considered in these examples have dimension <~ 4, 
our main result implies that the Chow-Kiinneth projectors we construct satisfy 
the full set of conjectured properties, so that the resulting filtration on their Chow 
groups satisfies the conjectured properties of  the Bloch-Beilinson filtration. 

Comparison with the construction of Chow-Kiinneth projectors using the 
method of finite dimensionality of motives 

For purposes of  comparison, we will construct, at least in outline, Chow-Kiinneth 
projectors for the last two examples using finite dimensionality of the motives of 
abelian varieties and their finite quotients considered above. 

First one observes that the motives of all abelian varieties and hence their finite 
quotients are finite dimensional: see [15, Section 9; 9, Theorem 11]. Moreover 
the Kiinneth components of the diagonal for these schemes are algebraic. It is 
observed in [9, Corollary 9] that therefore such schemes have a Chow-Kiinneth 
decomposition. However, the construction of these Chow-Ktinneth projectors this 
way is quite laborious and proceeds as follows. 

Let A denote an abelian variety of  dimension d provided with the action of a finite 
constant group scheme G. To simplify the discussion, we will furthermore assume 
that A/G is smooth. As observed above, the motive of A / G  is finite dimensional, 
of  (Kimura) dimension = dim H*(A/G) ---- dim H*(A) c where H* is a fixed Well 
cohomology theory. Here dim denotes the dimension as a vector space over the 
coefficient field. This is bounded above by dimH*(A) and using a lifting of A to 
characteristic 0 (see [24]), one may compute this to be 2 ed. 

Next one shows from [ 15, Sections 6, 7] that every correspondence on A /G  that 
is homologically trivial is nilpotent and that there is a uniform bound on the order of  
nilpotence for such correspondences as a function of  the (Kimura) dimension of  A. 
We will denote the Kimura dimension of  A~ G by kdim(A/G).  This function may 
be computed from [15, Sections 6, 7] which shows this is kdim(A/G) 3. In view of  
the above observations, all we can say is that this is bounded above by 26d. 

Let n = kdim(A/G). Now the Nagata-Higman Lemma [1, Lemma 7.2.8] shows 
that the ideal of homologically trivial correspondences on A/G is itself nilpotent 
with the order ofnilpotence 2 n - 1. 

At this point [12, Lemma 5.4] shows that one may inductively lift the projectors 
from H*(A/G × A/G)  (where H* is the fixed Weil cohomology theory)to Chow- 
Kiinneth projectors. The argument given in [12, Lemma 5.4] is when the index of  
nilpotency is 2 and he uses an induction on the order of nilpotency to consider the 
general case. As observed above, the index of  nilpotency in the examples above 
will be 2 n - 1 where n = kdim(A/G) so that one needs to repeat this construction 
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n-times to complete the lifting. Recall n itself is, in general, 2 6d so  that one needs 
to repeat the inductive steps in this construction, in general, 26d-times to be able to 
write down explicitly all the Chow-Kiinneth projectors, by this method. 

Moreover, since these projectors do not have any close relation to the Chow- 
Kfinneth projectors for the original abelian variety, results like the last statement of  
Theorem 1.1, seem difficult to obtain by this method. 

3. THE S T R O N G  K O N N E T H  D E C O M P O S I T I O N  FOR FINITE QUOTIENTS 

Now suppose X is a pseudo-smooth, projective, equidimensional scheme over 
a field k and G a finite group of  automorphisms of X. As in [20], we may 
form the quotient variety Y = X~ G and ask whether an explicit strong Kfinneth 
decomposition for X may be used to construct a strong Kfinneth decomposition 
for Y. We answer this question in the affirmative below. 

First we consider an elementary calculation showing that strong Kfinneth decom- 
positions are preserved under finite maps. 

Proposition 3.1. Let X and Y be pseudo-smooth proper varieties and f : X -+ Y 
a finite surjective map. I f  X has a strong Kiinneth decomposition, then Y also has 
a strong Kiinneth decomposition. 

Proof. Let d = dim X, m = deg f .  The hypothesis that X has a strong Kfinneth 
decomposition allows us to write 

[Ax] = Z Z ai,y x b d - i , j  
i j 

where as before aid, bi , j  E CH~(X).  Furthermore, ( f  x f ) , [ A x ]  = m[Ay], so 
it suffices to prove that ( f  x f ) , (a i , j  × b d - i , j )  = f ,(ai , j)  × f , ( b d - i , j ) .  This is 
accomplished by the next lemma, whose proof is immediate. [] 

Lemma 3.2. Let f : X -~ Y be a morphism of  pseudo-smooth varieties. 

(1) I f  f is proper, then for all ot, fl 6 CH~(X),  f,(ol x 3) = f,(oe) x f , (3) .  
(2) For all y, 6 e CH~(Y),  f * ( y  x 6) = f * ( y )  x f*(6). 

We note the following as a special case: 

Corollary 3.3. Let X be a pseudo-smooth quasi-projective variety, G a finite 
group o f  automorphisms o f  X. I f  X possesses a strong Kiinneth decomposition, 
so does Y = X~ G. 

The utility of  the previous statements becomes evident from the following easy 
result: 

Proposition 3.4. Let X be a pseudo-smooth projective variety possessing a strong 
Kiinneth decomposition. Then X has a Chow-Kiinneth decomposition. 
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Proof .  Suppose [Ax] = ~ - 0  E j  ai,j x bd-i,j ,  where ai,j, bd-i,j e CHiQ(X). For 
0 ~< r ~< d, set 7/r = Y]j ar, j × b d - r , j  and for d + 1 ~< r ~< 2d, set 7/~ = 0. Then 

K-'2d 7/ [Axl  = /--r=0 r. We decorate p with subscripts and superscripts to denote the 
various projections to sub-factors of  X xk X xk X; for example,  _123. v xk X Xk P13 .zx 
X ~ X ×~ X sends (x, y, z) to (x, z), etc. Finally, we let ~ : X  ~ Speck  and 
r : X ×k X -~ Speck  denote the respective structure maps.  We claim that 7/r • 7/s = 0 
when r ~ s and 7/r • 7/r = Zr for all r ,  0 ~ r ~ 2d. The first equality is a consequence 
o f  the following more  general fact proved in L e m m a  3.5 (below). To conclude the 
p roof  o f  Proposition 3.4, we calculate: 

Ygr • 7/r = ( [ A X ]  --  ~ _ 7 / s )  • 7/r = [ A X ]  e Ygr = 7/r. 

s ~ r  / 

[] 

L e m m a  3.5. With notation as above, suppose ar E C H r ( X ) ,  b d - r  E C H d - r ( x ) ,  

as ~ C H s ( X ) ,  bs ~ C H d - s ( x ) ,  and set Yr = ar × bd-r, Ys -: as × bd-s. [ f  r ~ s, 

then Vs • Yr = O. 

Proof .  The p roof  is a straightforward computat ion and is therefore skipped. [] 

As an application, we compute the strong Kfinneth decomposi t ion for the nth 
m 1 m symmetr ic  product o f  projective space Pk" Let  £ ~ CHQ(P~ ) be the class o f  a 

generic hyperplane in P~'. It is well-known (cf. [18, p. 455]) that pm has a strong k 
Kiinneth decomposition: 

m 

A ~  = Z gi X grn--i. 

i=0  

]l~m n Let X = ( k ) • By  the Ktinneth formula for motives, we have 

l a x ]  = ~ J% ..... in 
0~<il ..... in ~<m 

w h e r e  fil ..... in = eil  × "'" × gin X g m - i l  X " "  × gin- in  E C H ~ n ( x  Xk X) .  

Now consider the action of  the symmetr ic  group on n letters (denoted En) on 
X = (I?~n) n by interchanging o f  factors. Let Y = X/S~ and q : X -+ Y the quotient 

map. Note also that for any cr c E~, (q x q ) , f q  ..... in = (q x q) , fa ( i l ) , . . . ,~ ( in  ). 

Applying (q x q ) ,  to the strong Ktinneth decomposi t ion for [~xx] given above, 
and noting that degq  = n!, we obtain 

(3.1) [At ]  = ~ (q × q ) * f i l  ..... in 
O<~ il <~ i2 <~...<~ in <~m 

g il X " "  X gi ,  X g m - i l  X ' "  X gm-in 

0~<i 1 <~ i2 <~... <~ in <~ m 

where £i = q, (gi). This provides a strong Kiinneth decomposi t ion for Y. 
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Corollary 3.6, Let Y denote the nth symmetric product of~?~. Then 

CH*(Y, Q, r) ~- CH*(Y, Q, O) ® CH*(Speck, Q, r) 

where CH*(Z, Q, r) = Yfr(z*(Z, .) ~ (~) and z*(Z, .) denotes the higher cycle 
complex of the scheme Z. 

Proof. This follows readily from the above strong Kfinneth decomposition for the 
class Ay and Theorem A.1. [] 

A P P E N D I X :  F U N C T O R I A L I T Y  FOR THE C O H O M O L O G Y  OF P S E U D O - S M O O T H  SCHEMES 

AND THE S T R O N G  R E L A T I V E  K O N N E T H  D E C O M P O S I T I O N  OF C O H O M O L O G Y  

In this appendix, we first discuss various functoriality properties of cohomology 
theories for pseudo-smooth schemes with rational coefficients. We conclude, with 
a view to applications in the Corollary 3.6, a relative form of the strong Kfinneth 
decomposition in arbitrary cohomology theories satisfying certain mild conditions. 
It should be remarked that in this section, it suffices to assume the cohomology 
theory is, at least in principle, part of a twisted duality theory in the sense of Bloch- 
Ogus, but extended to the category of pseudo-smooth schemes. (See [4].) 

Recall that a pseudo-smooth scheme X is the quotient of a smooth scheme 
by a finite group G; the associated Deligne-Mumford stack IX~G] is smooth 
although the quotient X~ G is not in general. Nevertheless, one may readily identify 
any cohomology of the quotient stack [X/G] with that of the geometric quotient 
X/G provided one works with rational coefficients. This provides a convenient 
mechanism for extending the formalism of Bloch-Ogus style cohomology theories 
to pseudo-smooth schemes as is done below. One may first make the following 
definitions (mainly for conveniently stating the results below). Let J? (I 7) be a 
smooth scheme provided with the action of a finite group G (H, respectively). Let 
f :  J( ~ 17 denote a map compatible with the group actions, i.e. we are given a 
homomorphism G ~ H such that f is equivariant for the given action of G on J~ 
and the induced action of G on 17. Let f : X = X/G ~ Y = 17/14 be the induced 
map. We say f is pseudo-flat (pseudo-smooth, respectively) if the map f is flat 
(smooth, respectively). Since the groups G and H are finite, one may verify that f 
is proper if  and only if f is proper. 

Observation A.1. In this situation, we may replace f with the map f:H xc  
X -+ Y which is now H-equivariant. 

(H.0) The cohomology theory will be denoted by H s (X, r), where r is the twist 
or weight and will be defined on the category of all pseudo-smooth schemes of 
finite type over a given field k: this will always be a vector space over Q. One 
may assume that Hs(x, r) = HS(EG XG f;, r) -~ Hs(x,  r) 6 where EG --+ BG is 
a principal G-bundle with BG denoting a suitable model for the classifying space 
of the group G: one may assume this is the simplicial scheme defined by the usual 
bar construction (or the Totaro-Edidin-Graham approximation as in [30]) and that 
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the given cohomology theories extend to all simplicial schemes with smooth face 
maps. (Using the observation that EG x 2 --+ EG x G 2 is a principal G-bundle and 
since we are working with rational coefficients, one may establish the isomorphisms 
H*(X, r) ~- H*(EG XG X, r) ~ H*(X,  r) ~ readily.) Throughout this section we 
will make the following additional hypotheses on our cohomology theories: these 
should be easy to establish by viewing them as equivariant cohomology theories in 
the above sense and by making use of  the observation A. 1. Observe that, in this 
situation, H * ( E H  X H (H X G X ) ;  .) ~'~ H*(EG X G X ;  .). 

(H. 1) for every pseudo-flat map f : X --+ Y, there is an induced map f*  : H s (Y, r) 
--+ H S (X, r) and this is natural in f .  

(H.2) for every proper and pseudo-smooth map f :X -+ Y of  relative dimension 
d, there is a push-forward f ,  : Hi(x ;  j )  --+ Hi-2d(y;  j -- d) so that if  g : Y ---+ Z 

is another proper map of  relative dimension d r, one obtains g, o f ,  = (g o f ) , .  In 
case f is proper and pseudo-flat, the obvious projection formula f , ( x  o f*(y) )  = 
f . ( x )  o y, x ~ Hs (x ,  r), y c Hs(y,  r) holds. 

(H.3) for each pseudo-smooth scheme X = X / G  and closed pseudo-smooth 
sub-scheme Y = 17/H (with I 7 a smooth closed sub-scheme of  pure codimension c 
in ~7 and H a subgroup of G), there exists a canonical class [Y] e H2c(x; c). 
Moreover the last class lifts to a canonical class [Y] c HZc(x; c). (The latter has 
the obvious meaning in the setting Bloch-Ogus twisted duality theories. In case 

the cohomology theory is defined as hyper-cohomology with respect to a complex, 
we let Hr (X;  c) = the canonical homotopy fiber of  the obvious map H(X; c) --+ 
H(X - Y; c); now H2c(X, c) = H2c(Hr(X; Fc)).) The cycle classes are required to 
pull-back under flat pull-back and push-forward under proper push-forward. 

(H.4) if  X is a pseudo-smooth scheme, there exists the structure of  a graded 
commutative ring on H*(X; .) = (~r , s  Hr (x; s), i.e. o :  Hr (x; s) ® Hr'(x; s t) --+ 

Hr+/(X;  s + s'). In addition to this, there exists an external product Hr(x ;  s) ® 
Hr'(X; s') --+ Hr+r'(x x X; s + s') SO that the internal product is obtained from the 
latter by pull-back with the diagonal. 

(H.5) i f X  is a pseudo-smooth projective scheme H*(X x X; .) has the structure 
of  a ring under the composition of  correspondences defined as in Section 1. 
The class of  the diagonal acts as the unit for this operation. The ring structure 
by composition of  correspondences is easy to establish. In order to show that 
the class of  the diagonal Ax is the unit for this operation, one may proceed as 
follows. Assume X = 2 / G  for some smooth scheme 2 and finite group G. The 
proof as in Lemma 2.8 shows that for any class ~ c H*(J) x J(; .)G, & • (g x 
h)*Ax = &. Therefore, & • y~(g,h)ec2(g x h)*A 2 = 1G[26~. Ifoe ~ H*(X x X; .), 

----- ( f  x f)*(o0 E H*(X x 2;  .)a and so ( f  x f ) , (&)  = ]al2oe; moreover ( f  x 
f ) ,  (Y~(g,h)e~2 (g x h)* A2) = [G 13 Ax. Now the arguments in Lemma 2.4 show that 

i f  f : X  --+ X / G  = X is the quotient map, ( f  x f ) , (&)  • ( f  x f),(y'~(g,h)cG2(g × 

h)*Ax)  = I a l f f  x f),(6e • (~(g,h)cG2(g x h)*A2) ) = Ia l . la l2( f  x f ) , ( ~ )  = 
IGlSoe, i.e. (IGl20e) • ([GI3Ax) ----- [al50e, so that oe • Ax = oe. 

We will next consider an application of  the strong relative Ktinneth decomposi- 
tion ofcohomology for pseudo-smooth schemes. For the purposes of  this discussion 
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it is also convenient to consider only cohomology theories that are singly graded or 
non-weighted. Given a bi-graded cohomology theory H s (X; r), we will re-index it 
as follows: we let 

(A.1) h r ( X ; 2 r - s ) = H S ( X ; r )  and h * ( X ; n ) = ( ~ h r ( X ; n ) .  
r 

We view {h*(X; n) In} as a singly graded cohomology theory. Observe that if 
f : X --+ Y is a proper smooth map of  relative dimension d, the induced map f ,  
sends h*(X; n) to h*(Y; n). Similarly if  f : X --+ Y is a flat map, the induced map 
f*  sends h*(Y; n) to h*(X; n). 

Theorem A,1. Let f :  2 ~ f" = Y denote a proper smooth map o f  smooth schemes 
o f  relative dimension d. We will assume that the scheme 2 is provided with the 
action o f  a finite group G so that with the trivial action o f  G on Y, the map f 
is G-equivariant. Let X = X/G,  [A] 6 HZd(x xy  X; d) denote the class o f  the 
diagonal. Assume that [A] = ~ i . j  ai,j × bd-i , j ,  with each ai,j C H2i ( x ;  i), bd-i,j C 

H 2d-2i (X ;  d - i). Then for every fixed integer n one obtains the isomorphism: 

(A.2) h*(X;n) ~ h*(X; 0) ~ h*(Y; n). 
h * ( Y ; 0 )  

Proof. We will first prove that the classes {ai, j ] i} generate h*(X: n) as a module 
over h*(Y; .), i.e. the obvious map from the right-hand side to the left-hand side 
of  (A.2) (which we will denote by p) is surjective. 

Let Pi : X × y X --+ X denote the projection to the ith factor. For each x 6 h* (X; n) 
we will first observe the equality: 

(A.3) x = p l , (A .p2 , ( x ) )  

where . denotes the intersection pairing. To see this observe that [A] = A,(1), 
1 ~ H*(X; F(.)). Therefore, A.pz,(x) ---- A,(A*p~(x)) and hence pl , (A .p~(x) )  = 
p1 ,A, (A*p~(x) )  = (Pl o A),((p 2 o A)*(x)) = x. The corresponding formulae hold 
in the cohomology of  2 and 2 xy  X; by taking the G and G x G-invariants one 
may establish these formulae in the cohomology of X and X x v X. 

Pl(ai.j).P2(bd_i,j) the above formula to Now we substitute [A] = Z i , j  * * into 
obtain: 

(A.4) x =  p l , (  .~. p~(ai,j) .p~(bd-i. j .p~(x))) 
l,J 

1,] 

= Z ai,j.Pl,p~(bd-i,j .x) 
i , j  

i , j  
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(The base-change formula is justified by observing that in the Cartesian square 

P2 
2xy2 ~-2 

IP' i 11 

all maps may be made G x G-equivariant by letting G x G act by the appropriate 
factor on the two copies of X. Clearly the base-change formula holds in G x 
G-equivariant cohomology applied to the vertices of  the above diagram. By our 
hypothesis, the G x G-equivariant cohomology identifies with the cohomology of 
the appropriate quotient variety.) 

This proves the assertion that the classes {ai,j [ i} generate h*(X; .) i.e. the map 
p is surjective. 

The rest of  the proof is to show that the map p is injective. The key is the 
following diagram: 

h, (X;n) . . .  < p h*(X,O) ® h*(Y;n )  

HOmh,(Y:o)(h*(X, 0), h*(g; n)) 

where the map ot (#(x),  x 6 h*(X, 0)) is defined by o~(x ® y) = the map x' 
f , ( x '  • x)  • y (the map x '  ~ f , ( x '  • x) ,  respectively). The commutativity of  the 
above diagram is an immediate consequence of  the projection formula: observe 
p(x  ® y) = x • f * ( y ) .  Therefore, to show the map p is injective, it suffices to show 
the map c~ is injective. For this we define a map fl to be a splitting for at as follows: if 
49 ~ HOmh*cr;o)(h*(X, 0), h*(Y; n)), we let fl(49) = E i , j  ai,j ® (49(bd-i,j)). Observe 
that/~ (or (x ® y)) =/3 (the map x '  -+ f , ( x '  • x )  ® y) = ( ~ i , j  ai,j ® f , ( bd - i , j  .x)) ® y. 
Now observe that f , ( b d - i , j . x )  E h*(Y; 0) so that we may write the last term as 
= ( ~ i .  j a i, j .  f * f ,  (bd-i, j .x)) ® y. By (A.4), the last term = x ® y. This proves that o~ 
is injective and hence that so is p. [] 
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