THE STRONG KUNNETH DECOMPOSITION AND APPLICATIONS

ROY JOSHUA

ABSTRACT. In this talk we will explore in detail the strong Kunneth decomposition for the class of the diagonal
for the product of two schemes. In the first part of the talk I will discuss the strong Kunneth decomposition and
its consequences in a general setting. The second part of the talk will focus on motivic cohomology with finite
coefficients for schemes especially over algebraically closed fields.

1. INTRODUCTION

In the first part of the talk we extend and explore in detail some of the techniques and results obtained in earlier
works of the author (see [J-1] and [J-2]) and several others (for example: [Pan], [LSW]) in connection with a strong
Kunneth decomposition of the diagonal, especially for linear schemes over sufficiently general base schemes. (See
the references for a detailed bibliography.)

Our results hold for sufficiently general cohomology and homology theories which range from algebraic K-theory
to motivic and Deligne cohomology (the first two also with suitable coefficients). To state our results in as much
generality as possible, we will first axiomatize the theories we consider. While motivic, absolute and Deligne
cohomology are bigraded, algebraic K-theory is singly graded. This makes it necessary to consider both singly and
doubly graded theories: we show how to pass from a doubly graded theory to a singly graded one. (As seen in the
proof of Theorem 3.1, this simplifies even the statements of our results).

Here is a brief outline of the talk. To motivate our discussions, we consider, in section 2, an elementary example:
namely a Kunneth decomposition for the class of the diagonal in the product of two projective spaces. Section
3 is devoted to the statement and proof of Theorem 3.1 which shows that a strong Kunneth decomposition of
the diagonal implies what we call the relative Kunneth decomposition of cohomology. We end this section by
interpreting Theorem 3.1 for various cohomology theories. The next section is devoted to the statement and proof
of Theorem 4.3, which establishes a strong Kunneth decomposition for the diagonal for all linear schemes over
smooth base schemes. We conclude the first part of the talk by explicitly considering various examples and counter
examples. In the second part of the talk we will consider in detail the relation of the strong Kunneth decomposition
with the higher cycle map; see section 6 for more details.

Conventions and terminology. Throughout the talk we will let S denote a smooth base scheme (often of finite type
over a field: this restriction comes into play only when considering motivic cohomology.) We will let (schemes/S) zar
denote the category of all equidimensional schemes of finite type over S provided with the Zariski topology. We
will also let (schemes/S)pges.zar denote the restricted big Zariski site associated to (schemes/S), i.e. where the
morphisms are restricted to be flat maps and where coverings are Zariski open coverings as before. The only
schemes we consider will be those belonging to these sites and often they will be assumed to be smooth. It may
be often necessary to make further restrictions on the category of schemes we consider and also on the sites to be
able to define some of the cohomology theories. Rather than discuss these issues here, we will consider them on a
case by case basis.

If C denotes any of these sites and P is a presheaf of spectra (or a complex of abelian sheaves) on the same site
and XeC, H(X; P) will denote the hypercohomology defined as in section 8 using the Godement resolution. We let
Presh(C) denote either a category of presheaves of spectra that is both complete and co-complete or a category
of complexes of abelian sheaves that is both complete and co-complete. Moreover, we let D(Presh(C)) denote
the corresponding derived category which may be defined as follows. We will first consider the obvious homotopy
category which will be an additive category. Then we will invert quasi-isomorphisms: a map between presheaves
of spectra will be a quasi-isomorphism if it induces and isomorphism on the sheaves of homotopy groups whereas
a map between co-chain complexes of abelian sheaves will be a quasi-isomorphism if it induces an isomorphism on
the cohomology sheaves. To keep things uniform we will let 7;(P) denote the sheaf of i-th homotopy groups if P is
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a presheaf of spectra and H~(P) = the i-th cohomology sheaf of the complex P in case P is a complex of abelian
sheaves. Moreover one may define distinguished triangles in Presh(C) in the obvious manner: for presheaves
of spectra these will denote fibration sequences whereas for complexes of abelian sheaves these will mean usual
distinguished triangles.)

It is often convenient and even necessary that our cohomology theories be defined either by a presheaf of spectra

P on one of the above sites or by a complex of abelian sheaves I'. To obtain bigraded cohomology theories we will

assume that the complex I' = @I'(r) where each I'(r) is a complex of abelian sheaves on the same site. In this
T

context, ['(r) will be called the weight r-part of the complex I'. We let H*(X,T'(r)) = H*(H(X,T'(r)) with s called
the degree. (To understand the role of weight, one may consider absolute cohomology defined below.) We assume
the cohomology theories we consider are contravariant for arbitrary maps between smooth schemes and for flat
maps between equidimensional schemes. If f is a flat map or if f : X — Y is an arbitrary map between smooth
schemes, we assume that the induced map f* is of the form f* : H"(X,I'(s)) - H"(X,T(s)), i.e. f* preserves
both the degree and the weight.

The homology theories we consider will also be defined by either a presheaf of spectra P' or a complex of
abelian sheaves I on the restricted big Zariski site. To obtain bigraded homology theories we will assume that the
complex I = @I"(r) where each I''(r) is a complex of abelian sheaves on the same site. We let H (X, IV(r)) =

H—°(H(X,T"(r)) with s the the degree and r the weight. We will further assume that if f : X — Y is a proper
map, there is a natural induced map f, : H(X; P") —» H(Y; P) (f. : H(X;T'(r)) — H(Y;T'(r)), respectively) and
that it is natural in the derived category considered above. (It follows that the homology theories we consider are
all Borel-Moore homology theories.) We will further require that if f : X — Y is a flat map of relative dimension
d, there is an induced map of homology and that f* maps Hs(Y,I"(r)) = Hsq2q4(X, T (r + d)).

Examples 1.1. e To see that algebraic K-theory fits in this frame-work, we will let P = K the presheaf of
spectra defining algebraic K-theory. The homology theory associated to algebraic K-theory is G-theory and clearly
this is covariant for proper maps as required while being contravariant for flat maps. (One may also consider
suitable completions of these presheaves in the sense of [B-K].) Observe that the K-theory and G-theory spectra
obtained this way have Zariski cohomological descent so that both K-theory and G-theory may be realized as
hypercohomology.

e To obtain motivic cohomology, we let T'(r) = Z™°!(r) = the motivic complex of weight r. (To obtain motivic
cohomology with R-coefficients, where R is a commutative ring with 1, one may consider I'(r) = Z™°(r) ® R.)
The motivic Borel-Moore homology theory will be the one defined by the complex as in [FSV] chapter 4, section
9. When restricting to quasi-projective schemes over a field k, one may identify the motivic Borel-Moore homology
with the higher cycle complex of Bloch graded by the dimension of the cycles.

e Recall that absolute cohomology is defined as HY (X, Q(j)) = Kg)_z(X) ® Q = {zeKs;_i(X) @ Qv* (z) =
ki(x),k > 1}, where 9 is the Adams’ operator. This is covariant for proper maps between smooth schemes and
therefore one may define absolute homology for smooth schemes as HA(X,Q(j)) = H3* (X, Q(d — j)) if X is a
smooth scheme of pure dimension d.

e Deligne cohomology and homology are defined for schemes of finite type over the field of complex or real
numbers. (See [EV] and [Jan-2] for more details.)

e Lawson cohomology (often called morphic cohomology) and Lawson homology appropriately indexed. I leave
it as an exercise to show these fit into the description given above.

e One may add singular cohomology and homology to this list: we define HY, (X, (r)) by HE, . (X,Z(r)) where

sing sing

Z(r) = 7®. The corresponding homology theory is Borel-Moore homology with Z(r)-coefficients. Observe that
since Z(r) = Z for all r, weights are less important for this theory.

o If [ is a prime different from the residue characteristics and vgeQ, one may consider H%,(X,Z/1”(r)) and the
corresponding étale homology similarly.

Acknowledgments. We would like to thank, V. Srinivas and Stefan Miiller-Stach for asking some questions at
the Morelia conference on algebraic geometry that lead to the first few sections and which is based on [J-2]. The
author also thanks Eric Friedlander, Burt Totaro, Zig Fiedorowicz and Rainer Vogt for discussions on the material
in [J-1] and Spencer Bloch, Peter May, Patrick Brosnan and Bertrand Toen for discussions on the material in [J-3].
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2. AN ELEMENTARY EXAMPLE: THE DIAGONAL OF P" x P"

In any reasonable cohomology theory (as in section 3, for example), one has the following computation of the
cohomology of a projective space:

H*(PY,r) = o =gt H*=%(S,r — i)

Moreover as a graded algebra over H*(S,.), the cohomology of PZ is a truncated polynomial ring generated by
an element of degree 2 and weight 1. Therefore one may readily obtain an isomorphism
H*(PExP%, ) = H*(PZ,.) ® H*(P,.).
(PP, ) = H(BY,) & H'(P",)

It follows that the class of the diagonal may be written as a sum X;a; X b, ; with a;, b, ;e H*(P™,.). We call such
a decomposition a strong Kunneth decomposition of the class of the diagonal.

Much less obvious is the fact that the structure sheaf of the diagonal has a bounded resolution by vector bundles
on P™ x P™ each of the form pi(&;) ® p3(F;) where p; : P x P™ — P™ is the projection to the i-th factor and &;,
F; are vector bundles on P". This is due to Beilinson: see [Be]. This has been generalized to Grassmanians and
twisted Grassmanians. (See [Pan].)

Remarks 2.1. 1. Often showing the class of the diagonal has a strong Kunneth decomposition is easier than
obtaining an explicit formula for the Kunneth decomposition.

2. When the base scheme S is not a field, obtaining a strong Kunneth decomposition for the diagonal in X x X
s

is difficult. This will become clear in section 4.

3. In the next section we show that the strong Kunneth decomposition of the diagonal implies a relative Kunneth
decomposition under fairly general hypotheses.

3. THE STRONG RELATIVE KUNNETH DECOMPOSITION OF COHOMOLOGY

It should be remarked that in this section, it suffices to assume the cohomology theory is, at least in principle,
part of a twisted duality theory in the sense of Bloch-Ogus. (See [B-0O].) Accordingly we will denote H*(X,T'(r)) by
H#(X,(r)). Throughout this section we will make the following additional hypotheses on our cohomology theories.
(Observe these hypotheses are not identical to the ones in [B-O], but are implied by them.)

(H.1): for every flat map f : X — Y, there is an induced map f* : H*(Y, (r)) = H*(X,(r)) and this is natural
in f.

(H.2): for every proper smooth map f : X — Y of relative dimension d, there is a push-forward f, : H*(X;j) —
H#=24(Y; j —d) so that if g : Y — Z is another proper smooth map of relative dimension d’, one obtains g, o f, =
(g9 0 f)«. In this case the obvious projection formula f.(z o f*(y)) = f«(z) oy, xze H*(X, (r)), yeH*(Y, (r)) holds.

(H.3) : for each smooth scheme X and closed smooth subscheme Y of pure codimension ¢, there exists a
canonical class [Y]eH?¢(X;c). Moreover the last class lifts to a canonical class [Y]e HZ(X;c). (The latter has the
obvious meaning in the setting Bloch-Ogus twisted duality theories. In case the cohomology theory is defined as
hypercohomology with respect to a complex, we let Hy (X;¢) = the canonical homotopy fiber of the obvious map
H(X;c) - H(X —Y;c); now H¥(X,c) = H*(Hy (X;T(c))).) The cycle classes are required to pull-back under
flat pull-back and push-forward under proper push-forwards.

(H.4): if X is a smooth scheme, there exists the structure of a graded commutative ringon H*(X;.) = ® H"(X; ).
r,8

ie o: H'(X;s)@ H" (X;s') - H™"(X;s+s'). In addition to this, there exists an external product H”(X;s) ®
H™ (X;s') — H™ (X x X; s+ s') so that the internal product is obtained from the latter by pull-back with the
diagonal.

For the purposes of this section it is also convenient to consider only cohomology theories that are singly graded
or non-weighted. Given a bigraded cohomology theory H®(X; (r)), we will re-index it as follows: we let

(3.0.1) h"(X;2r —s) = H*(X;(r)) and h*(X;n) = ®h"(X;n)
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We view {h*(X;n)|n} as a singly graded cohomology theory. Observe that if f : X — Y is a proper smooth map
of relative dimension d, the induced map f. sends h*(X;n) to h*(Y;n). Similarly if f: X — Y is a flat map, the
induced map f* sends h*(Y;n) to h*(X;n).

Theorem 3.1. Let f : X — Y denote a proper smooth map of smooth schemes of relative dimension d and let
[AleH?*{(X x X;d) denote the class of the diagonal. Assume that [A] = ¥, ja;; X ba—i ;, with each a; je H*(X;1),
Y

bi—i,je H*4=2(X;d — i). Then for every fized integer n one obtains the isomorphism:
(3.0.2) h*(X;n) =2 h*(X;0) ® h*(Y;n)
h*(Y;0)

Proof. We will first prove that the classes {a; j|i} generate h*(X;n) as a module over h*(Y’;.) i.e. the obvious map
from the right hand side to the left hand side of 3.0.2 (which we will denote by p) is surjective.

Let p; : XxX — X denote the projection to the i-th factor. For each zeh*(X;n) we will first observe the
equality : Y
(3.0.3) T = p1+(A o pa.(x))
(To see this observe that [A] = A.(1), 1eH*(X;T(.)). Therefore, A o pa.(z) = AL(A*p3(x)) and hence p1.(A o
p5(2)) = p1xAu(A"p3(2)) = (p1 0 A)u((p2 0 A)*(2)) = z.)
Now we substitute [A] = X; ;pi(as,;) o p5(ba—i,;) into the above formula to obtain:
(3.0.1) z = p1«(2i ;P (i5) © P3(ba—i,; © p3(2)))
= p1+(Zi,;p1 (@i,5) © P3(ba—i,j 0 T))
= Xi,jaij © p1aP3(ba—i;j © x)
=X jaij o f*(fe(ba—ij o @))

This proves the assertion that the classes {a; ;|i} generate h*(X;.) i.e. the map p is surjective.

The rest of the proof is to show that the map p is injective. The key is the following diagram:

o~ h*(X,0) ® h*(Y;n)

h*(Y,0)
\ l

Homh* (Y;0) (h* (X7 0)7 h* (Y; Tl))

h*(X;n)

where the map a (u(z), zeh*(X,0)) is defined by a(z ® y) = the map =’ — f.(z' ox) oy (the map z' — f.(z' ox),
respectively). The commutativity of the above diagram is an immediate consequence of the projection formula:
observe p(z ® y) = x o f*(y). Therefore, to show the map p is injective, it suffices to show the map « is injective.
For this we define a map 3 to be a splitting for a as follows: if ge Homp«(v,0)(h*(X,0), h*(Y;n)), we let B(¢) =
Y;,0i,; @ (p(bg—i,;)). Observe that f(a(x®y)) = B(the map ' — fu(@'ox)Qy) = (£;,;6i; ® fu(bg—ijox)) ®y.
Now observe that f.(ba—;,; o z)eh*(Y;0) so that we may write the last term as = (3; ja; j o f* fu(bg—ij 0 x)) ® y.
By ( 3.0.1), the last term = z ® y. This proves that « is injective and hence that so is p. O

We end this section by considering some explicit examples of what the last theorem implies for various coho-
mology theories.

Examples 3.2. 1. K-theory. In this case the theorem takes on the form:
(3.0.2) K{(X)= K°X) ® KiY)
KO(Y)

See [Pan] for a proof of this. The last part of the proof of the above theorem is clearly an adaptation of this
argument.

2. The theorem takes on the following simple form in the case of any of the following bigraded cohomology
theories: absolute, motivic or Deligne cohomology.

(3.0.3) H"(X;t) = (@H?*(X;a)) ®  (@H"?*(Y;t—a))
a (@H22(Y;a)) o
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Remarks 3.3. 1. Taking n = 0, the argument in the last part of the proof of the theorem shows that one obtains a
non-degenerate pairing < , >: h*(X,0) EX) )h*(X, 0) = h*(Y,0) by a ® 8 — fi(a® B).
R*(Y;0

2. Next assume that Y = Spec k and that h*( ,.) = CH*( ,0;Q). Now we leave it an easy exercise to
verify that a strong Kunneth decomposition of the diagonal implies a Kunneth decomposition of the diagonal in the
sense of Murre. (See [Murre] or [Jan-2].) Extra credit: show that if K = C, show that the cycle map into singular
cohomology with rational coefficients is an isomorphism and maps the Kunneth components of the diagonal to the
Kunneth components of the class of the diagonal in singular cohomology.

3. As an example of the usefulness of the last theorem or the formula in 2, we consider the following result. Let
H denote motivic cohomology. Recall that the Beilinson-Soulé vanishing conjecture for the motivic cohomology of
a scheme is the following statement: H*(X,r;Q) = 0if s < 0 or if (s =0 and r # 0) while H°(X,0; Q) = Q. Now
we leave it as an easy exercise to prove from 2 the following proposition.

Proposition 3.4. If X — Y satisfies the hypotheses of 3.1 and are both connected, then the Beilinson-Soulé
vanishing conjecture holds for X if it holds for Y.

Exercise 3.5. Show, using the above proposition and Remarks 4.7, 4 of the next section that the Beilinson-Soulé
vanishing conjecture will hold for all schemes in the list in example 4.2 with S a field k£ provided it holds for the
field k.

4. THE STRONG KUNNETH DECOMPOSITION FOR THE DIAGONAL FOR LINEAR SCHEMES

Throughout this section we will mostly consider homology theories, which when the schemes we consider are
smooth will be assumed to coincide with cohomology theories via Poincaré duality. More specifically we will make
the following assumptions. We will assume that the homology theories are defined as hypercohomology with respect
to a complex of sheaves as in section 1.

(H1): Localization sequences. If Y — X is a closed immersion with open complement U, one obtains the dis-
tinguished triangle: H(y’; ') - H(X;I") — H(U; ") which, in the case of weighted homology theories, preserves

the weights. i.e. For each integer r, one obtains a distinguished triangle
H(Y';I'(r)) — H(X; T (r)) — H(U; ' (r))

(H2): Homotopy property If w: X x A™ — X denotes the obvious projection, 7* : H(X;T') — H(X x A™;T") is
a quasi-isomorphism.

(H3): If X is a smooth scheme of pure dimension, one obtains a quasi-isomorphism H(X,T') ~ H(X,T). In
the case of weighted homology theories this quasi-isomorphism is induced by quasi-isomorphisms: H(X, I (r)) ~
H(X,T(d — r))[2d] where d is the dimension of X. (i.e. Hy(X,r) =2 H?¥ (X, d —r).

(H4): E*°-DGA structure on cohomology. We assume that there is given an E* algebra A in Presh quasi-
isomorphic to T' that defines the cohomology. (In case I is a graded object we will assume that 4 is also compatibly
graded.) If X is a smooth scheme, let A x denote the restriction of A to the Zariski site of X. Now we require,
in addition that, if f : Z — X is a scheme of finite type over X, the complex FTY (= the restriction of ' to the

Zariski site of Y') has the structure of an E>-module over the presheaf of E>-algebras f~' A x.

Next we recall the definition of linear schemes over a given base-scheme from [Jan-1] or [J-1].

Definition 4.1. Let S denote a base-scheme. (i) A scheme flat over S is O-linear if it is either empty or isomorphic
to any affine space A%.

(ii) Let n > 0 be an integer. An S-scheme Z, flat over S, is n-linear, if there exists a triple (U, X,Y) of S-schemes
so that Y C X is an S-closed immersion with U its complement, Y and one of the schemes U or X is (n— 1)-linear
and Z is the other member in {U, X}. We say Z is linear if it is n-linear for some n > 0.

(iii) If S is the spectrum of a field k, any reduced scheme X of finite type over k will be called a variety. Linear
varieties over k are varieties over k that are linear schemes.

Example 4.2. The following are common examples of linear schemes over a given base scheme S. (All the tori
appearing in the strata will be assumed to be defined and split over S.)

e All toric schemes over S
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e All spherical schemes over S. (A scheme X over S is spherical if there exists a reductive group G scheme
defined over S acting on X so that there exists a Borel subgroup scheme S having a dense orbit. The orbits
are products of tori and affine spaces (over S).)

e Any scheme over S on which a connected solvable group scheme defined over S acts with finitely many
orbits. (For example projective spaces and flag schemes over S.)

e Any scheme over S that has a stratification into strata each of which is the product of a torus with an
affine space.

Theorem 4.3. Let f : X =Y, g: Z =Y denote proper flat maps with Y smooth. We will further assume that
one may find closed immersions X — X and Z — Z with X and Z proper smooth over Y .

L
(i) In this case there exists a natural map H(X,T') @ H(Z,T') - H(Xx Z,T")
H(Y,T) Y

(i) This map is a quasi-isomorphism if X or Z is a linear scheme over Y.

Proof. We will first consider the case where X and Z are smooth. In this case we may may use the properties
(H3) and (H4) to replace I'" by A. We will denote the restriction of A to the Zariski site of Y (X, Z) by Ay
L
(Ajx, Az, respectively). Therefore the existence of a natural map H(X, Ax) ® H(Z,Az)— H(XxZ, A)is
H(Y7A|Y) Y
a formal consequence of the E*°-DGA structure. The hypotheses show that, in general we may imbed X and Z
into schemes proper and smooth over Y. Making use of the localization sequences as in (H1) and the observation
that the derived functor of the tensor product functor preserves distinguished triangles in either argument, one
may now complete the proof of (i) readily.

To show this map is a quasi-isomorphism, we use the inductive definition of linear schemes. Observe that if
X or Z is an affine space over Y, then the homotopy property as in (H2) applies to show the above map is a
quasi-isomorphism. (See [J-1] section 4 for more details.) O

Remark 4.4. Observe that the second hypothesis in the theorem is satisfied if X and Z are quasi-projective over
Y.

To consider the Kunneth formula in the next corollary it is again convenient to re-grade bigraded (weighted)
homology theories by a single degree. This is done exactly as for cohomology. ie. We let h.(X,s — 2r) =
Hy(X;T'(r)) and h(X,n) = ®h.(X,n).

T

Corollary 4.5. (Kunneth formula) Assume that h.(V,n) =0 for all n < 0 and all schemes V. Then one obtains
a natural isomorphism:

(4.0.1) hy(X,0) ® ho(Z,0)5h.(Xx2Z,0)
h+(Y,0) Y

Proof. One considers the Kunneth spectral sequence:

E2, = Tor" Y ) (ho(X, ), h(Z,.)) = hu(X xZ; 5 + t).
’ ? Y

(The above E? ;-term is the s-th Tor and the t-graded piece.) In view of the hypotheses, E7, = 0 for all s < 0 or
t < 0. Therefore the only E? ,-term that contributes to h.(X xZ;0) is EZ . O
k) Y k)

Corollary 4.6. Under the hypotheses of the previous corollary, the hypotheses and therefore the conclusions of
Theorem 3.1 hold for any linear scheme smooth and proper over a smooth scheme Y .

Proof. This is clear in view of the last corollary. O

Remarks 4.7. 1. The hypotheses (H4) seems necessary to prove Theorem 4.3 for Y any general smooth scheme.
In case Y is the spectrum of a field, the schemes X and Z are quasi-projective over k and the homology theory
is motivic homology (higher Chow groups), one can prove the last corollary as in [Tot-1]; however this uses the
special property that CH*(Speck k) = Z and therefore does not apply in any more generality.

2. The list of linear schemes above show that the conclusions of theorems 3.1 and 4.3 apply to a large collection
of schemes over a base scheme.

3. It is shown in [J-1] that the hypotheses (H1) through (H4) are satisfied by G-theory. The hypotheses (H1)
through (H3) are satisfied by most homology theories, for example motivic homology. However to show (H4) is
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satisfied by motivic homology, one needs to invoke the results of [J-3] which establishes the existence of an E*°-DGA
in this case.

4. If hi( ;0) = Gy, in the last corollary, we obtain a relative Kunneth formula in the Grothendieck group of
coherent sheaves. (This uses the results of [J-1].) If we take h.( ;0) = CH.( ;0) and restrict to quasi-projective
schemes over a field k, we obtain a relative Kunneth formula for the Chow groups assuming the results of [J-3].

5. EXAMPLES AND COUNTER EXAMPLES

In this section we will consider some examples and counter examples for our main results.

1. Beilinson’s resolution of the diagonal in P x P". The terms of the resolution are given by p}(A‘€*) ®
05(Opn(—1)). (See [Be].) Here & is the universal rank-n quotient bundle on P".

2. This has been generalized to flag manifolds in characteristic 0 by Kapranov (see [Kap]) and to twisted flag
manifolds by Panin (see [Pan]).

3. Another explicit formula for the class of the diagonal for G/B (and G/P) has been obtained by Brion (see
[Br-P]).

4. Theorem 3.1 is false unless the map f: X — Y is proper. To see this take Y = Spec k, X = G,,. Now one
knows Ki(X) = Ki{(Y) ® K=1(Y) (see [Qu-2] ), whereas K°(X) = K°(Y). Therefore, K'(X) is not isomorphic
to K°(X) @ KYY).

KO(Y)

6. THE HIGHER CYCLE COMPLEX AND THE HIGHER CYCLE MAPS OF BLOCH

Next we will restrict to varieties defined over an algebraically closed field and explore in detail some further
consequences of the strong Kunneth decomposition for the diagonal. We will begin by recalling the definition of
the higher cycle complex and the higher cycle maps: these are due to Bloch. In the next section we consider one
the main theorem of this talk which shows that the strong Kunneth decomposition of the diagonal is a necessary
and sufficient condition for the higher cycle maps from mod-/* motivic cohomology to mod-l¥ étale cohomology is
an isomorphism. In the following section we explore some consequences of this theorem for the mod-I¥ algebraic
K-theory of linear varieties. We conclude by discussing various examples and counter examples.

For any scheme X over k, let 2/(X,j) = 2{(X x Ag[j]) denote the free abelian group on the codimension
i cycles on X x Ag[j]. Now each face of Ag[j] defines a principal divisor on X x Ag[j]. Therefore one may
define pull-backs by the face maps. One readily shows that z¢(X,.) defines a chain complex with the differential
d: 24(X,x) = 2{(X,* — 1) defined by d(a) = £;(—1)id; *(a). We refer to this as the cycle complex of Bloch or
the higher cycle complex. The homology groups of this complex will be denoted CH*(X,.) or alternatively as
CH,;_;(X,.) where d is the dimension of X over k. If [ is a prime different from the characteristic of k¥ and v > 0
is an integer, we may consider the complex 2¢(X, x) ® Z /I”. The homology groups of this complex will be denoted
CHY(X,.;Z/1"). (If R is any commutative ring with 1, one may define C H*(X, .; R) in an entirely similar manner.)
One may take the inverse limit over ¥ — oo to obtain the corresponding l-adic higher Chow-groups. These will be
denoted CH(X, .; Z;).

Next we recall some of the properties established by Bloch in ([Bl-1] ) for the higher cycle complexes and the
higher Chow groups. We state these results integrally, but the same properties carry over to the mod-/” higher
Chow groups.

(P.1) The higher cycle complex is contravariantly functorial for flat maps and covariantly functorial for proper
maps with an appropriate shift. Moreover, the higher Chow groups are contravariantly functorial for arbitrary
maps between smooth varieties.

(P.2) If X and Y are two schemes over k, there exists an external product x : CHY(X,n) ® CH/(Y,m) —
CH™ (X xY;n+m). If X is a smooth variety over k, one obtains an internal product on CH*(X,. ) by pulling
back the external product using the diagonal. This will be denoted o.

(P.3) If f: X - Y is a proper map between smooth varieties over k, one obtains the projection formula:

felao f*(8)) = fe(a) o B, aeCH*(X,p ) and feCH*(Y,q) for integers p and q.
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(P.4) Moreover, given a cartesian square

x Ly

/| s
x L. v

with f, f' proper and g, g’ flat of relative dimension d, we obtain:
(9" (a) = g* fu(@), aez*(X, j).

(P.5) Homotopy property. If X is any scheme over k, and 7 : X x A' — X is the obvious projection, 7* :
2*(X,.) = 2*(X x Al,.) is a quasi-isomorphism. (See [Bl-1] Theorem (2.1).)

(P.6) Localization sequence. Given a quasi-projective variety X over k, with Y a closed subvariety of pure
codimension ¢ and U = X — Y its complement, the obvious (restriction) homomorphism z*(X,.)/z* ¢(Y,.) —
z*(U,.) is a quasi-isomorphism. (See [Bl-1] (3.1) )

The next remaining property is the existence of higher cycle maps. Since this is a key property for us, we will
recall Bloch’s definition of these maps in detail.

6.1. The Higher Cycle maps. Though we will be interested only in cycle maps into [-adic étale cohomology, we
will give Bloch’s general construction valid also for other cohomology theories. (See (Bl-2) for more details.) Let
{H*(X,t)|s,t} denote a bigraded cohomology theory as in the first part of the talk. In addition to the hypotheses
there, we will require weak purity of cohomology: i.e. if Y C X is a closed subscheme of pure codimension b, then
Hg(X,b) = 0 for all @ < 2r. We will also require that this cohomology theory has the homotopy property, i.e.
H*(X x A™,b) =2 H*(X,b) for all a and b.

To each scheme X we associate the diagram

(6.1.1) X X xA[l] < X x A2]

On applying hypercohomology with respect to I'(b) to this diagram, one obtains a spectral sequence as the spectral
sequence of the total complex associated to the resulting double complex. Since the resulting complex will be
unbounded (in general), there is a convergence problem. However, using the homotopy property and the observation
that each A[n] 2 A", one may make the following observations: E5'? = HI(X,b) if p= 0 and = 0if p # 0. Moreover
the boundary maps on the E; terms are either 0 or isomorphisms. Therefore we may write:

EP? = H*(X,b).
In order to make use of the weak-purity, we will next consider the following cohomology: H*(X x A[p],b) =

limHl‘IZ‘(X x A[p],b) where Z runs through 2°(X,p) and |Z| = support (Z). To avoid convergence problems
—

we truncate the diagram in 6.1.1 at some finite N even and apply hypercohomology with respect to I'(b)) to the
resulting finite diagram; now we obtain the spectral sequence

EPY = HY(X x A[-p,b), -p< N

Moreover, one obtains a natural map of spectral sequences E"? — EP?. The cycle map and its contravariant
functoriality shows that it induces a map of complexes:

thb(X: ) - (Ei,zbadl)

where tx denotes naive truncation at level N. By weak-purity, it follows that d, : EP? — Ep+tm2b-r+1 — o for
r > 1, so that we obtain a map CH®(X,n) — E, ™" — E_™2b. Moreover, E%Y = 0 for y < 2b so that we obtain

CH®(X,n) — EZ™? — the limit of FE;-spectral sequence in deg(2b —n) — H?*~"(X,b).

This is the definition of the higher cycle map of Bloch. In view of our hypothesis that the usual cycle maps
commute with flat pull-backs and proper push-forwards, the same properties carry over to the higher cycle maps.
Further conditions on the cohomology theory (satisfied in cases of interest) will ensure compatibility with the
product structure.

We may consider étale cohomology with mod-I¥ coefficients. We obtain the higher cycle map
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c:CH™(X,;Z/1") = HY™(X,Z/1").
In this case one may verify the cycle map is compatible with products.

7. THE STRONG KUNNETH DECOMPOSITION AND HIGHER CYCLE MAPS

Theorem 7.1. Let X denote a projective nonsingular variety over k so that the class of the diagonal AeCH*(X X
X;7Zy) has a strong Chow Kunneth decomposition. (i) Now the higher cycle-map

ci: CH™ (X, n; Z;) — HY ™(X;Z(r))
is an isomorphism for each fired n, r > 0. In particular, both terms are trivial if n is odd.

(ii) For each fized integer n >0, ®CH™(X, n; Z;) = ®Ha ™(X, Z(r)) is generated over ®H} (Spec k,
Zy(r)) =2 @®Zy(r) by classes {04} C CH*(X;Z;). Moreover for each fixed pair of integers u and v, the motivic
T
cohomology HY (X, Z;i(v)) is a free Zi-module which is trivial if u is odd.

(iii) All the above assertions hold with Z; replaced Z]1". O

Proof. We begin with the key hypothesis that if [A] denotes the class of the diagonal of X x X in CH*(X x X;Z,),
it decomposes in the form

(7.0.1) [A] = B j(aij X Ba—iy) = il (@ij) o p3(Ba—ij), iy, Ba—ijeCH*(X;Zy)

(Here p; : X x X — X, i = 1,2 denotes the obvious projection to the i-th factor and o denotes the intersection
product on CH*(X x X;Z;. We will continue to let o denote the intersection product on the higher Chow groups.)
We may assume fBq_; ;6CH% *(X;Z;) and that a;eCH?(X;Z;). Next let n > 0 denote a fixed integer. Now we
obtain:

(7.0.2) s =p(Alopi(x), 2eCH'(X, n; Z)

where o denotes the intersection product. By the projection formula and the observation that the class [A] = A,(1),
1= [X]eCH*(X;Z;), we obtain equality of the classes [A] o p5(z) = A.(A*(p5(z)). Therefore p1.([A] o pi(x)) =
1+ (A (A*(p3(2)))) = (p1 o A)u((p2 0 A)*(z)) = =, for any class zeCH*(X, n; Z;). Now substitute the formula
for [A] from (5.1) in (5.2) and use the projection formula to obtain:

(7.0.3) z =X j0i; 0 pra(P3(Ba—i,j © T))

The cartesian square
XxX 25 X

.| I+
X —plz—> Spec k

and flat base-change provide the identification p1.(p3(B4—i,; © z)) = pb P}, (Ba-i,; © ). Now the class
Pis(Ba—ij o x)eCH*(Spec k, n; Z).

(7.0.4) It follows that the classes {«; j|iel} generate CH*(X, n; Z;) over ®CH"(Spec k, s; Z).
7,8

This proves the first assertion in (ii).

Observe from Suslin’s computation of the mod-/* higher Chow groups of Spec k and the observation that
it readily extends to positive characteristic using de Jong’s theory of alterations by Geisser (see [Sus-2], [Geis]
Theorem (3.6) and [Oort]) that:

(7.0.5) CH"(Spec k, s; Z;) = HX *(Spec k;Z(r)) = Z(r), s=2r
=0, s #2r
(For the sake of completeness, we add a couple of remarks on extending Suslin’s computations to varieties over

algebraically closed fields of positive characteristics. The main result we need is the following comparison theorem:

Theorem(Suslin-Voevodsky) (See [S-V].) Let k denote an algebraically closed field and let F be a homotopy
invariant presheaf on the big site of schemes of finite type over k. If 7}, is the sheafification of F for the h-topology
and [ is prime to the characteristic of k, there exists a canonical isomorphism:
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Eaxt} (Fn, Z]1") = Eaxt*,(F(Spec k),7Z/1") O

The Ext on the left (on the right) is the one computed in the category of sheaves on the h-topology (is the one
computed in the category of abelian groups, respectively). In the original proof, the characteristic is restricted to
be 0 so that one may apply resolution of singularities and thereby show that each scheme of finite type over &
admits an h-cover which is smooth over k. The theory of alterations due to de Jong (see [Oort]) enables one to
find such a smooth h-cover making the original proof still valid in positive characteristics.)

Moreover, it follows from the Proposition below that we may assume the above isomorphism is in fact given by
Bloch’s higher cycle maps. Observe also that now (7.0.4) and (7.0.5) show that CH*(X, n; Z;) =0if nis odd.

Next we show that for each fized integer n, the l-adic cycle map

ci: CHY(X, 5 Zp) » ©HY "(X;Zi(r)

is surjective. Since X is projective and smooth the projections p; induce maps pi. : HY (X x X;Zi(r)) —
H:2Y(X;Z)(r—d)) and pf : H%(X;Zy(r)) = HY (X x X;Zy(r)) where d is the dimension of X. Moreover the cycle-
class of the diagonal cl;([A]) belongs to H2(X x X; Zi(d)). Now cly(Ba—i,;)eHZ (X;Z4(3)). Let z'e H2y ™" (X; Zy(r))-
Now the formula

(7.0.7) 2’ = pr.(cli([A]) Up3(2))

holds by an argument as in the proof of 7.0.3. Moreover c;([A]) = X, ;p; (cli(a;,;)) U ps(cli(Ba—i ;). Substituting
this into 7.0.7 and using the projection formula, we obtain ' = X; jclj(a;,;) U p1«p5(cli(Ba—i,;) U z').

Now prap3(cli(Ba—ij) U a') = pb" (Pl (cli(Ba—iy) U z')) and ph,(cli(Baij) Uz )eHy > "4 (Spec k; Z(i +
r — d)) since clj(B4—i,;) U 2'eH2T* (X ; Zy(i + 7). By (5.5) and proposition (5.3) (see below), one observes the
isomorphism cl; : CH*t™~%(Spec k, n; Z;) > HZT?"=24="(Spec k; Zi(i + r — d)). Therefore one may write
P1.(ci(Ba—i ;) Uz) = cli(vi;) for some v; ;eCH™H™4(Spec k, n; Z;). It follows

(7.0.8) g =% jeli(ai ;) Uci(ph™ (7i,5)) = Sichi(es; o pb (vi5))

This proves the surjectivity of the l-adic cycle map for each fixed integer n. Taking n = 1, it follows in particular
that HY,(X;Z(r)) = H!,(X;Z;) = 0 if i is odd.

Next we will show the above cycle map is injective as well proving (i). To see this suppose
zeCH*(X, n; Zi) so that cli(z) = 0. Now cli(p1«p3(Ba-i,j © ) = pr«p5(cli(Ba—i ;) U cli(z)) = 0 for all
i. (See (A.1.7).) Since p1.p5(Ba—ij o ) = b Pr.(Ba—ij o x), ci(preps(Ba—ij o x)) = cli(Ph™pi.(Ba—ij o x)) =
Py (cli(ph.(Ba—ij o x))) = 0. However ph* : ©HZ (Spec k;Z(r)) — @H},(X;Z(r)) is injective, it follows that
T T

cli(p).(Bi—ij o x)) = 0. Since the cycle class map cl; : CH"(Spec k, n; Z;) — H2~™(Spec k;Z(r)) is an
isomorphism (see Proposition (5.3) below) it follows that p},(B4—i; o z) = 0. Therefore py*(p},(Ba—ij o T) =

P1x(P3(Ba—ij ox) = 0 for all i. Now (5.3) shows that x itself is trivial. This completes the proof of the assertion
in (i).

Now we recall the short exact sequence (from [Lau] Proposition (2.2)(ii)):
(7.0.9) 0 = Hom(Tors(HF (X; 7)), Q /Z;) — HH(X;Z;) — Hom(HE,(X;Z),Z;) — 0

Here Hom is in the category of Z;-modules and Tors(H:" (X;7Z;)) denotes the torsion part of H:' (X;7Z;). (This
is nothing other than the universal coefficient sequence and the first term is Ext'(H ™ (X;Z;);Z;) computed
using the injective resolution Q@ — Q;/Z; of Z;.) Now let i = 2j be an even integer. By the above arguments,
HY(X;2)) = 0. Therefore HfY (X ;7)) = Hom(H!,(X;Z); Z;) is a free Z; -module. Now Poincaré-duality shows
that H (X;Z(r)) = HS, (X;Z(r —d)) = HS, .(X;Z;). These show that each H!,(X;Z(r)) is a free Zj
module if 4 is even and trivial if ¢ is odd. Now the observation that the [-adic cycle map is an isomorphism shows
CH"(X, m;Z;) is also a free Z; module for all r and n. Since all the modules we are considering are free over Z;,
tensoring with Z /I now completes the proof of Theorem 7.1. O

Proposition 7.2. The higher cycle map
(7.0.10) cly : CHY(Spec k, p;ZJ1") — H>"?(Spec k;Z/1"(q))
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is an isomorphism for each fized integer p > 0.

Proof. By the homotopy property one obtains the isomorphism:
(7.0.11) CHY(Spec k, p;Z/1")=CHIA!, p;Z[1")

Now by Suslin’s computation and the observation that it extends to positive characteristic by Geisser (see [Sus-2]
and [Geis] Theorem (3.6))), CHY(A?, p;Z/1") = 0 unless p = 2q and = Z /1" if p = 2q. Therefore the left-hand-side
in (5.10) is trivial unless p = 2¢ > 0. i.e. we may assume that p = 2q. Moreover, since CH?(Spec k, 2q; Z/[I") =
CHI(AY, 2q; Z/1*)=Z/1", it suffices to show that higher cycle map in (5.10) with p = 2q is surjective. By the
multiplicative property of the cycle map we now reduce to the case where ¢ = 1 and p = 2. In this case, this follows
immediately from [BI-2] p. 73 which identifies CH'(X, 2; Z/1¥) with T'(X, ) for any scheme X. (Here y;- is
the sheaf of [“-th roots of unity on X.) d

Corollary 7.3. Let X denote a projective nonsingular linear variety over an algebraically closed field k of arbitrary
characteristic. Now the conclusions of theorem 7.1 hold for X.

Proof. This is clear. Observe that the strong Chow-Kunneth decomposition of the class of AeCH*(X x X;Z;)
follows from Corollary 4.6 with h*(X,.) = z*(X,.) assuming the result of [J-3]. O

Corollary 7.4. Kunneth formula for the mod-/” higher Chow groups. Let X denote a projective nonsin-
gular linear variety and let Y denote any quasi-projective variety over an algebraically closed field k of arbitrary
characteristic. Now the Kunneth spectral sequence

B2y = Torfy P D2 e (2 (X, 52 /17), e (V, 5 B /14)) = moga(2* (X X Y, 52/17))
in Theorem 4.5 degenerates and therefore one obtains the isomorphism:

CH*(X xY,;Z/I*) = CH*(X, ;Z]I") ® CH*(Y, ;Z]l*)
CH+*(Spec k,;Z/1v)

Proof. This is again clear from the above corollary , Theorem 4.3 and Corollary (4.6). O

Exercise 7.5. Show that the strong Kunneth decomposition for the diagonal of a projective smooth scheme X as
well as X x X is equivalent to the higher cycle maps as in Theorem 7.1 being isomorphisms for both X and X x X.

We end this section by stating a generalization of theorem 7.1 to any cohomology theory in the sense of the first
part of the talk. Let H*( ,.) denote a cohomology theory in the sense of section 2 for which a higher cycle map
cl: CH"(X,n; R) - H*~"(X;r) (where R is a suitable ring) is defined and having the properties as in section 2
for all schemes we consider.

Theorem 7.6. Let Y denote a scheme and let f : X — Y denote a proper smooth map so that the class of the
diagonal AsCH*(X})ﬁX; R) has a strong Kunneth decomposition. If the cycle maps

c:CH"(Y,n; R) — H>**~"(Y;r)

are surjective for all 7 and n, then the same holds for the cycle map cl : CH"(X,n; R) — H?"~"(X;r) for all 7 and
n. If, in addition, the map f* : H**~"(Y;r) — H?>"~™(X;r) is injective and the cycle map cl : CH"(Y,n; R) —
H?>"="(Y';n) is injective for all v and n, then so is the cycle map cl : CH"(X,n; R) — H*~™(X;n) for all r and
n.

Exercise 7.7. (For fans of Lawson cohomology only!). Compute the Lawson cohomology of Spec C with Z-
coefficients. Now compute the Lawson cohomology of any non-singular projective linear variety over C. (Hint:
exactly the same arguments as in the proof of Theorem 7.1 should carry over.)

8. Mod-!¥ Higher K-groups of linear varieties

In this section we make use several fundamental results in the literature on the mod-I” algebraic K-theory of
algebraic varieties along with the results of the previous section to compute the mod-I¥ algebraic K-theory of
coherent sheaves on linear varieties, where [ i is prime to the residue characteristics. If [ is as above, K/I¥(Z)
(G/1¥(Z)) will denote the smash product of K(Z) (G(Z), respectively) with an appropriate Moore-spectrum.
K/y (Z) (G/ly, (Z)) will denote the corresponding mod-I” topological K-theory (G-theory, respectively) which

top top
may be obtained from K/I¥(Z) (G/1¥(Z), respectively) by inverting the Bott element. (See [T]. The mod-l”
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topological K-theory may be identified with the mod-I” étale K-theory in [Fr-2].) It is shown in [T] (A.6) that, if v
is sufficiently large, (i.e. if I > 3, all v > 1 are allowed, while if ] = 3, v > 2 and if [ = 2, v > 4), the above spectra
are homotopy associative and commutative. Therefore we will assume v is sufficiently large throughout.

We will first recall the definition of the hypercohomology spectrum for presheaves of spectra essentially from
[T]. Let X denote a scheme of finite type over k and let F' denote a presheaf of spectra on the big étale site of X.
Throughout we will restrict to presheaves of spectra F' so that for each integer n and each U in the site, 7, (T(U, F))
is finite with torsion prime to the characteristic. Now we let G'F denote the cosimplicial object provided by the
Godement resolution {GF...G"F|n} on the small étale site of X. (See for example [T](1.31).) We let

(8.0.1) H(X; F) = holimI'(X,G"F)

which is the homotopy limit of the cosimplicial object {I'(X,G"F)|n}. This is clearly functorial in F; one may
also observe (using the properties of the homotopy inverse limit) that it preserves fibration sequences in F. It also
preserves weak-equivalences in F' (provided F is a presheaf of fibrant spectra). Now the usual spectral sequence
for the homotopy inverse limit of a spectrum provides a spectral sequence:

(8.0.2) Byt = Hy(X; m(F)) = n s (H(X; F))

This spectral sequence converges strongly since there is a uniform bound on the I-cohomological dimension of the
schemes considered here. Finally observe that there is a natural augmentation I'(X; F') — H(X; F').

8.1. Let F = G be the presheaf X — G(X). Quillen (see [Qu-2]) shows that now we obtain localization sequences
in the following sense. Let ¢ : Z — X denote a closed immersion with j : U — X the open immersion of its
complement. In this situation we obtain cofibration sequence G(Z) — G(X) — G(U) of spectra. Moreover he
establishes the continuity property (see [Qu-2] I, section 2); this and the properties of homotopy inverse limits show
that now we obtain the commutative diagram:

I(Z;F) —— I(X;F) —— T(U;F) —— XT(Z;F)

! ! ! !

H(Z; F) —— H(X;F) —— H(U;F) —— H(Z;F)

where each row is a cofibration sequence of spectra and the vertical maps are the obvious augmentation maps. (Here
F = @.) Since smashing with a Moore-spectrum or inverting the Bott element preserves cofibration sequences of
spectra, we obtain a similar commutative diagram with the presheaves F' = G/I” and F = G/l,,.

Proposition 8.1. Let X denote a quasi-projective variety that has a decomposition into a finite number of strata
each of which is isomorphic to an affine space. Now the natural map G/I*(X) — H(X;G/I”( )) induces an
isomorphism:

T (G/17 (X)) = m(H(X;G/1V( ), n 20

Proof. Let d denote the dimension of X. Now let Uy = the union of the strata of dimension d; let Uy — Ug_1 denote
the union of strata of dimension d — k. Now we obtain a commutative diagram of localization sequences:

Tt (G/17(Uo))  —— m(GI"(X =To)) —— m(G/l"(X)) —— m(G/1"(Uh))

! ! ! !

Tt (H(Uo; G/1¥())) —— m(H(X —Uo; G/1%())) —— m(H(X;G/1%())) —— mn(H(Uo; G/17()))
Since Uy is a disjoint union of affine spaces, the first and last vertical maps are isomorphisms. To see this we need
to compute the sheaves U — 7, (G/1”(U))", U on the étale site of X. The computation of the K-theory of strictly
Hensel local rings (and the proof of the Lichtenbaum-Quillen conjecture) by Suslin (see [Sus-1] and also [G-T])
shows that the sheaf U — m,(G/I"(U))~, U in the étale topology of X is the constant sheaf Z/I” if n > 0 is
even and is trivial otherwise. Therefore the spectral sequence in ( 8.0.2), the homotopy property of G/I”-theory
and the homotopy property of étale cohomology with Z /I¥-coefficients provide the required isomorphism. Observe
that the dimension of X — Uy is strictly less than d. Therefore, by ascending induction on the dimension of
X — Uy one may assume the second vertical map above is also an isomorphism. Now consider the case n = 0;
observe that now the last map in the top row is surjective. Therefore a five-lemma argument shows that the map
mo(G/1" (X)) = mo(H(X; G/l ( ))) is an isomorphism. If n > 0, the term following the last term on the top row
(bottom row) is mp_1(G/1* (X — Up)) (mp—1(H(X —Uo; G/1¥( ))), respectively). The map 7,1 (G/I"(X —Uyp)) —
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n—1(H(X — Ug; G/17())) is also an isomorphism by the inductive hypothesis on the dimension of X. Now a five
lemma argument once again shows that the map m,(G/1"(X)) = m, (H(X;G/l¥( ))) is also an isomorphism. O

Corollary 8.2. (i) If X is a variety as in ( 8.0.2) there exists a spectral sequence:
Byt = Hy(X;m(G/1()) = mospe(G/1(X))

(i1) The hypothesis of the previous Proposition is satisfied by all projective smooth toric and spherical varieties
and by all projective smooth varieties provided with the action of a torus so that the fized point scheme is discrete.

Proof. (i) follows readily from ( 8.0.1) and the spectral sequence in ( 8.0.2). All varieties in (ii) come provided
with the action of a torus that has only finitely many fixed points. Therefore they all come provided with a
decomposition into strata that are affine spaces as shown by Bialynicki-Birula. (See [B-B].) O

Now we consider the following theorem.

Theorem 8.3. (i) Let X denote a projective non-singular toric variety or a projective nonsingular variety on
which a torus acts with finitely many fized points. Now there exists a spectral sequence

Ey' = Hy(X; m(K/1( )7 ) = mospa(K/19(X)

Here m(K/1"( ))~ denotes the sheaf of t-th homotopy groups associated to the presheaf U — K /1¥(U), U in the
étale topology of X. Moreover the above spectral sequence degenerates at the Es-level and m,(K/1¥(X)) is trivial
for all odd integers n and negative integers while it is a free Z /1Y -module for all non-negative even integers n.
Moreover one obtains an isomorphism:

T (K/1Y(X)) 2 ©@H2(X;Z/1Y), for all n even, n > 0.
’

This isomorphism is not natural in X.

(i1) Assuming the existence of a mod — I* Bloch-Lichtenbaum spectral sequence (see [BI-L]) for all projective
non-singular linear varieties, the results of (i) extend to all projective non-singular linear varieties.

Proof. The existence of the spectral sequence in (i) is clear from the last corollary. Again we need to compute the
sheaves U — m,(G/1"(U))", U = m(G/17,,(U))", U on the étale site of X. The computation of the K-theory of
strictly Hensel local rings (and the proof of the Lichtenbaum-Quillen conjecture) by Suslin (see [Sus-1] and also
[G-T]) shows that the sheaf U — m,,(G/1¥(U))~, U in the étale topology of X is the constant sheaf Z/I” if n > 0
is even and is trivial otherwise. It follows from Theorem 7.1 that the E§’t terms are all projective and hence free
(since Z/1¥ is a local ring) modules over Z/I”. Now the abutment has a filtration whose successive terms are these
Es-terms; it follows the abutment is a split extension of the Es-terms. This proves (i) in the Theorem.

Now we consider (ii). Recall the Bloch-Lichtenbaum spectral sequence is of the form:
Ey' = Hyy "(X; /1" (—t)) = Hy (G L1 (—) = mso(G/17(X))

Observe also that the differentials d,. : E3t — ES+mt=m+1 Clearly either s—t or s+r—(t—r+1) = s—t+(2r—1) is
odd. Therefore Theorem 7.1 and ascending induction on r shows that these differentials are all zero. It follows that
the above spectral sequence degenerates and Es L E%! for all s, t. Since these are free modules over Z /1" it follows
that the abutment is in fact a split extension of these Eg’t—terms. This completes the proof of the theorem. O

Recall from [T] the existence of a spectral sequence
Ey' = Hyy(X; m(K/lf,( )7 ) = mosye(K/1,,(X)

Here 7y (K /1},,( ))” denotes the sheaf of ¢-th homotopy groups associated to the presheaf U — K/Iy,,(U), U in
the étale topology of X. (This holds for all varieties over k.)

Theorem 8.4. (i) Let X denote a projective non-singular linear variety. Now the above spectral sequence degen-
erates at the Ea-level and mn(K/1,,(X)) is trivial for all odd integers n while it is a free Z [V -module for all even
integers n. One also obtains an isomorphism:

(K /1,,(X)) = @HZF(X;Z /1), for all n even.
K

This isomorphism is, once again, not natural in X.
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(i) Let X denote a variety provided with a stratification by finite strata each of which is isomorphic to the
product of a torus and an affine space. The natural map m,(G/1"(X)) = 7, (G/1},,(X)) is an isomorphism for all
n >d—1 if d is the dimension of X.

Proof. Take the presheaf F' = G/Iy,, in ( 8.0.1) and use [T] Theorem (2.47), to obtain the spectral sequence in the
first statement of the Theorem. (Observe that [T] (2.47) provides the weak-equivalence I'(X;G/I,,)@ > ~ >>
H(X;G/1Y,,)- The proof of the first assertion now follows along the same lines as the proof of the previous Theorem.
Next we consider the last assertion in the Theorem. For this one considers the commutative diagram

T(G/M(X -U)) —— m(G/IP(X)) —— m(G/l*(U)) —— w1 (G/I"(X - TU))

! ! ! !

W"(G/l:‘,/op(X - U)) EE— TrTL(G/l:flop(X)) EE— Trn(G/l:‘,/op(U)) EE— ﬂ-ﬂfl(G/l),fjop(X - U))

Here U is the open dense stratum. The homotopy property shows that one may assume U is a torus of dimension
< d. In this case the computation in [Fr-2] Proposition 3.4 shows that the third vertical map is an isomorphism
for all n > d — 1. We may assume the same holds for the first and last vertical map using ascending induction.
(Observe that the dimension of X — U is strictly less than that of X.) Therefore a five lemma argument shows the
second vertical map is also an isomorphism if n > d — 1. O

Remarks 8.5. Theorem 8.3 shows that one may compute the higher mod-I* K-theory of the above varieties knowing
their mod-¥ étale cohomology. However the mod-I* topological K-theory of a non-singular toric or spherical variety
is mot, in general, isomorphic (in non-negative degrees) to the mod-/* K-theory as the simple example of the torus
G2, will show. (See [Fr-2] Proposition 3.4.) Consequently the descent spectral sequence as in Theorem 8.3 does
not exist in general for all non-singular linear varieties (i.e. unless one restricts to projective non-singular linear
varieties). It is a recent result of Friedlander and Suslin (see [Fr-S]) that the conjectured Bloch-Lichtenbaum
spectral sequence as in Theorem 8.3(ii) indeed exists. Therefore the descent spectral sequence in Theorem 8.3(i)
in fact holds for all projective non-singular linear varieties.

Theorem 7.1 plays a key role in the computations in Theorems 8.3 and 8.4. The hypothesis that the variety be
projective seems also essential in theorem ( 7.1).

9. Examples and Counter-examples

In this section we verify Theorems ( 7.1) and (8.3) by computing the mod—I{”-K-theory and mod-I* motivic
cohomology of several toric surfaces and three-folds using elementary methods i.e. we do not use any of the
sophisticated computations in [Sus-2] , but instead rely totally on the localization sequence and the resulting blow-
up formula. We also give an example of a singular projective toric variety for which the strong Chow Kunneth
decomposition for the class of the diagonal fails.

Proposition 9.1. Leti: Y — X denote a regular closed immersion of smooth schemes over an algebraically closed
field k. Let X' denote the blow-up of X alongY and assume that Y is of pure co-dimension ¢ in X. (i) Now there
exists o weak-equivalence:

(e=1)
G/IM(X")~G/I"(X)x II GJI*(Y)
Taking the homotopy groups, one obtains:

(e=1)
T (G/1P(X") 2 m(G/IM( X)) & m (G/I"(Y)), all n.
(i1) Similarly there exists an isomorphism:

(e=1)

CH*(X',n)~CH*(X,n)® @& CH*(Y,n)

for each fixed integer n.
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Proof. The proof of (i) being very similar, we will consider (ii) only. We begin with the commutative diagram:
. —— CH*Y',n) —— CH*(X',n) —— CH*(X'-Y',n) —— CH*(Y',n—-1) —— ...

TY * w}T T: Tﬂy*
. —— CH*(Y,n) —— CH*(X,n) —— CH*(X-Y,n) —— CH*(Y,n—-1) —— ...

where Y’ is the exceptional divisor and 7x : X' — X, 7y : Y/ — Y are the obvious maps. The two rows are long
exact sequences by the localization theorem. This readily shows that the diagram

.. > CH*(Y,n) » CH*(Y',n)® CH*(X,n) - CH*(X",n) » CH*(Y,n—1) — ....

is a long exact sequence. Now the observation that Y is a projective space bundle over Y (associated to the normal
bundle of Y in X), the computation in [Bl-1] Theorem 7.1, and the observation that 7wy . o7} = id shows the above
long exact sequences breaks up into split short exact sequences and also provides the isomorphism in (ii). O

Observe that since all the schemes are smooth, one may replace the mod—[” G-theory by the corresponding
mod—[” K-theory.

One has a similar formula at the level of étale cohomology with Z /I”-coefficients. i.e.

(e=1)
(9.0.1) HA(XSZ/1) = By (XGL) @ © By (VL)
Now we begin by considering non-singular complete toric surfaces. It is shown in [Ful-1] p.43 that all such varieties
are obtained by a finite sequence of blow-ups centered at the fixed points of the given torus starting with either
the projective space P2 or the Hirzebruch surface F,, which is a ruled surface.

Proposition 9.2. Let X denote a non-singular complete toric variety of dimension < 2 over an algebraically
closed field k. For each even integer n > 0, one obtains an (abstract) isomorphism (of Z [1"-modules):

T (K/1Y (X)) =2 H(X;Z /1Y) = ©HYF (X Z/1Y) and
k
CH*(X, n; ZJI")=oHX;Z/I")
k

Proof. We will observe that the above result holds for points and nonsingular complete toric varieties of dimension 1
which are all isomorphic to P1. This follows from the computation of the mod-I* K-theory and motivic cohomology
of projective spaces:

if £ is a vector bundle of dimension d > 1 over a variety Y,
d d
(9.2) mp (K /1Y (Proj(£))) = omp(K/1(Y)), CH*(Proj(€);n) =2 ®CH*(Y;n) and

d
H, (Proj(€);2/1") = ©Hg (Y Z/1%)

The above formula therefore proves the proposition for P2 and F,. Now assume we are considering a toric surface
X obtained by n successive blow-up of points starting with either P? or F,. Let X} denote the variety at the k-th
stage. If k = 1, clearly the proposition is true for Xj, since now X is either P2 or F,. Therefore we may use
ascending induction to prove the proposition. Assume k is a fixed integer > 1 and the proposition is true for all
X, n < k. Now X}, is obtained from X ; by blowing up a finite number of points. Therefore one may take ¥ =
a finite number of points in the formulae in Proposition 9.1 to prove the proposition for X;. This completes the
inductive step and hence the proof. O

We will conclude by computing the mod—I” K-theory of toric Fano three-folds. (See [Oda] p.90 for their
classification.)

Proposition 9.3. The same conclusion as in the previous theorem holds for all toric Fano three-folds.

Proof. Let X denote such a three-fold. Observe that this is a non-singular projective toric variety of dimension 3.
According to the classification in [Oda] p. 90, X is obtained by successive blow-ups at a finite number of points
or at a finite number of closed 1-dimensional non-singular toric sub-varieties by starting with either (i) P2, (ii)
P2 x P!, (iii) certain P'-bundles over P2, (iv) certain P2-bundles over P!, (v) P! x P! x P!, (vi) certain P!-bundles
over P! x P!, (vii) P! x Fy, where Fj is the Hirzebruch surface (as above), (viii) certain P!-bundles over Fy and
(ix) P! x Y>, where Y5 is the del Pezzo surface obtained from P2 by blowing up certain fixed points for the torus.
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Now assume X is one of the nine cases above. The conclusion of the proposition holds in case (i) by (9.2) and
Proposition 9.1. They also hold for cases (iii) and (iv) by the same argument. Now consider Y x P"; one may
view this as a projective space over Y and apply the computation in (9.2) and the corresponding ones in mod-1*
cohomology. Therefore, one may see that the proposition holds in the remaining cases as well. Finally assume X
is obtained from one of the above varieties by a finite succession of equivariant blow-ups. Now one may apply an
inductive argument as in the proof of the last proposition to complete the proof. O

Next consider the projective, but singular toric threefold defined by the fan with edges through the vertices
(£1,41,41) of a cube, in the sublattice of Z* generated by these vertices (see [Ful] p. 105). We may assume for
simplicity that the ground field is the field of complex numbers. Now it is an exercise in [Ful] p. 105 to show that
if X denotes this toric threefold,

(9.0.3) CH*(X)=H%X;Z)=12Z,CHX)=H°(X;Z)=Z and
CH*(X) = H*(X;Z)=17,H*X;Z)=7* CH'(X) = H*(X;2)=Z°

Now consider the variety Y = X x X. One may readily compute the mod-I* étale cohomology of this variety in
degree 6 to be (Z/1¥)'6. If T denotes the dense torus in X, X x X is also a toric variety for the action of T x T.
Therefore its Chow groups are generated by the closures of the T x T-orbits. (See [Ful] p. 96.) Therefore one may
compute CH?*(X x X) = Z'? and therefore CH3(X x X;Z/1") = (Z/1”)'2. Thus the hypothesis of theorem 7.1
cannot be true for the variety Y. Observe that Y is a toric variety that is projective, but singular.

Finally consider the example of the nonsingular, but affine toric variety G2,. Now CH*(G? ;Z/1") = Z /1" while
*(G%;Z/1") = Z]1" ® Z]1". Thus the hypothesis that the variety be projective is necessary in Theorem 7.1 .
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