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1. Introduction. During the past fifteen years many new structures have arisen
in the topology of low-dimensional manifolds: the Jones and HOMFLY polynomi-
als of links, Witten-Reshetikhin-Turaev invariants of 3-manifolds, Floer homology
groups of homology 3-spheres, and Donaldson and Seiberg-Witten invariants of 4-
manifolds. These invariants of 3- and 4-manifolds naturally split into two groups.
Members of the first group are combinatorially defined invariants of knots and 3-
manifolds, such as various link polynomials, finite-type invariants, and quantum in-
variants of 3-manifolds. Floer and Seiberg-Witten homology groups of 3-manifolds
and Donaldson-Seiberg-Witten invariants of 4-manifolds constitute the second group.
While invariants from the first group have a combinatorial description and in each
instance can be computed algorithmically, invariants from the second group are un-
derstood through moduli spaces of solutions of suitable differential-geometric equa-
tions and the infinite-dimensional Morse theory and have evaded all attempts at a
finite combinatorial definition. These invariants have been computed for many 3-
and 4-manifolds, yet the methods of computation use some extra structure on these
manifolds, such as Seifert fibering or complex structure. The problem of finding an
algorithmic construction of these invariants remains open.

It is probably due to this striking difference in the origins and computational com-
plexity that so far not many direct relations have been found between invariants from
different groups. The most notable connection is the Casson invariant of homology
3-spheres (see [AM]), which is equal to the Euler characteristic of Floer homol-
ogy (refer to [F]). Yet the Casson invariant is computable and intimately related to
the Alexander polynomial of knots and to Witten-Reshetikhin-Turaev invariants (see
[M]), which are examples of invariants from the first group. A similar relation has
recently been discovered between Seiberg-Witten invariants and Milnor torsion of 3-
manifolds (see [MT]). In summary, Euler characteristics of Floer and Seiberg-Witten
homology groups bear an algorithmic description, while no such procedure is known
for finding the groups themselves.

A speculative question now comes to mind: Quantum invariants of knots and 3-
manifolds tend to have good integrality properties. Can these invariants be interpreted
as Euler characteristics of some homology theories of 3-manifolds?

Our results suggest that such an interpretation exists for the Jones polynomial of
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links in 3-space (see [Jo]). We give an algorithmic procedure that to a generic plane
projection D of an oriented link L in R3 associates cohomology groups �i,j (D) that
depend on two integers i,j. If two diagramsD1 andD2 of the same link L are related
by a Reidemeister move, a canonical isomorphism of groups �i,j (D1) and �i,j (D2)

is constructed. Thus, isomorphism classes of these groups are invariants of the link L.
These groups are finitely generated and may have nontrivial torsion. Tensoring these
groups with Q, we get a 2-parameter family {dimQ(�

i,j (D)⊗Q)}i,j∈Z of integer-
valued link invariants.

From our construction of groups �i,j (D), we immediately conclude that the graded
Euler characteristic ∑

i,j

(−1)iqj dimQ
(
�i,j (D)⊗Q)

(1)

is equal, up to a simple change of variables, to the Jones polynomial of L, multiplied
by q+q−1.

We conjecture that not just the isomorphism classes of �i,j (D) but the groups them-
selves are invariants of links. We will consider this conjecture in a subsequent paper.

To define cohomology groups �i,j (D), we start with the Kauffman state sum model
(see[Ka]) for the Jones polynomial and then, roughly speaking, turn all integers into
complexes of abelian groups. In the Kauffman model a link is projected generically
onto the plane so that the projection has a finite number of double transversal inter-
sections. There are two ways to “smooth” the projection near the double point, that
is, erase the intersection of the projection with a small neighbourhood of the double
point and connect the four resulting ends by a pair of simple, nonintersecting arcs.
See Figure 1.

A diagram D with n double points admits 2n resolutions of these double points.
Each of the resulting diagrams is a collection of disjoint simple closed curves on
the plane. In [Ka] Kauffman associates the Laurent polynomial (−q − q−1)k to a
collection of k simple curves and then forms a weighted sum of these numbers over
all 2n resolutions. After normalization, Kauffman obtains the Jones polynomial of the
link L. The principal constant in this construction is−q−q−1, the number associated

Figure 1
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to a simple closed curve.
In our approach q+q−1 becomes a certain module A over the base ring Z[c]. In

detail, we work over the graded ring Z[c] of polynomials in c, where c has degree 2,
and we define A to be a free Z[c]-module of rank 2 with generators in degrees 1 and
−1. This is the object we associate to a simple closed curve in the plane.

Given a diagram D, to each resolution of all double points of D we associate
the graded Z[c]-module A⊗k, where k is the number of curves in the resolution.
Then we glue these modules over all 2n resolutions into a complex C(D) of graded
Z[c]-modules. The gluing maps come from commutative algebra and cocommutative
coalgebra structure onA. When two diagramsD1 andD2 are related by a Reidemeister
move, we construct a quasi-isomorphism between the complexes C(D1) and C(D2).

The cohomology groups Hi(D) of the complex C(D) are graded R-modules, and
we prove that isomorphism classes ofHi(D) do not depend on the choice of a diagram
of the link. We then look at some elementary properties of these groups and introduce
several cousins of Hi(D).

Outline of the paper. In Section 2 we define an algebra A over the ring R =
Z[c] and use A to construct a 2-dimensional topological quantum field theory. In
our case this topological quantum field theory is a functor from the category of 2-
dimensional cobordisms between 1-dimensional manifolds to the category of graded
Z[c]-modules. In Section 2.4 we review the Kauffman state sum model of [Ka] for
the Jones polynomial of oriented links. In Section 3 we review the notions of a
commutative cube and a map between commutative cubes.

In Section 4.1 we review Reidemeister moves. In Section 4.2 we associate a com-
plex of Z[c]-modules to a plane diagram of a link. As an intermediate step, to a
diagram D we associate a commutative cube VD of Z[c]-modules and maps between
them. That is, we consider an n-dimensional cube with its edges standardly oriented,
and, given a plane projection with n double points of a link, to each vertex of the cube
we associate a Z[c]-module and to each oriented edge a map of modules so that all
square facets of this diagram are commutative squares. This is done in Section 4.2.
In the same section we pass from commutative cubes to complexes of Z[c]-modules
and to a diagram D we associate a complex C(D) of graded Z[c]-modules.

In Section 5, which is the technical core of the paper, to a Reidemeister move be-
tween diagramsD1 andD2 we associate a quasi-isomorphism between the complexes
C(D1) and C(D2). These isomorphisms seem to be canonical. We conjecture that
the quasi-isomorphisms are coherent, which would naturally associate cohomology
groups to links. Our quasi-isomorphism result shows that the isomorphism classes of
the cohomology groups are invariants, but not necessarily that the groups are functo-
rial under link isotopy.

We define Hi(D) to the be ith cohomology group of the complex C(D). These
cohomology groups are graded Z[c]-modules, and the isomorphism class of each
Hi(D) is a link invariant. If we split these groups into the direct sum of their graded
components,
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Hi(D)=
⊕
j∈Z

Hi,j (D), (2)

we get a two-parameter family of “abelian-group-valued” link invariants. These results
are stated at the end of Section 4.2, as Theorems 1 and 2. For a diagram D, the
groups Hi,j (D) are trivial for j 
 0. Moreover, for each j only finitely many of the
groups Hi,j (D) are nonzero. Consequently, the graded Euler characteristic of C(D),
defined as

χ̂
(
C(D)

)= ∑
i,j∈Z

(−1)iqj dimQ
(
Hi,j (D)⊗Q)

, (3)

is well defined as a Laurent series in q. Since our construction ofC(D) lifts Kauffman’s
construction of the Jones polynomial, it is not surprising that the graded Euler char-
acteristic of C(D) is related to the Jones polynomial. Namely, χ̂(C(D)), multiplied
by (1− q2)/(q + q−1), is equal, after a simple change of variables, to the Jones
polynomial of L.

If a link inR3 has cohomology groups, then cobordisms between links, that is, sur-
faces embedded inR3×[0,1], should provide maps between the associated groups. A
surface embedded in the 4-space can be visualized as a sequence of plane projections
of its 3-dimensional sections (see [CS]). Given such a presentation J of a compact
oriented surface S properly embedded in R3×[0,1] with the boundary of S being
the union of two links L0 ⊂ R3×{0} and L1 ⊂ R3×{1}, we explain in Section 6.3
how to associate to J a map of cohomology groups

θJ :Hi,j (D0)−→Hi,j+χ(S)(D1), i,j ∈ Z, (4)

χ(S) being the Euler characteristic of the surface S and D0 and D1 being diagrams
of L0 and L1 induced by J.We conjecture that, up to an overall minus sign, this map
does not depend on the choice of J ; in other words, ±θJ behaves invariantly under
isotopies of S.

If this conjecture is true, we get a 4-dimensional topological quantum field theory,
restricted to links in R3 and R3 × [0,1]-cobordisms between them. Because the
theory has a combinatorial definition, all cohomology groups and maps between
them are algorithmically computable. If successful, this program can realize the Jones
polynomial as the Euler characteristic of a cohomology theory of link cobordisms.

In Section 7 we explain how a version of our construction, when the base algebra
Z[c] is reduced to Z by taking c = 0, produces graded cohomology groups �i,j (D).

The complex that is used to define �i,j (D) is given by tensoring C(D) with Z over
Z[c]. As before, the isomorphism classes of these groups are invariants of links.
These groups are “smaller” than the groups Hi,j (D). In particular, for each D, these
groups are nonzero for only finitely many pairs (i,j) of integers. As with the groups
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Hi,j (D), the graded Euler characteristic∑
i,j

(−1)iqj dimQ
(
�i,j (D)⊗Q)

, (5)

divided by q+q−1, is equal to the Jones polynomial of the link represented by the
diagram D. In Section 7.5 we exhibit a spectral sequence whose E1-term is made of
�(D) and which converges to H(D). Apparently, H(D) is a kind of S1-equivariant
version of the groups �i,j (D). In Section 7.7 we use these cohomology groups to
reprove a result of Thistlethwaite on the crossing number of adequate links.

Section 8 presents mild variations on cohomology groups Hi(D) and �i,j (D).

There we switch from links to (1,1)-tangles. We consider the category A-mod0 of
graded A-modules and grading-preserving homomorphisms between them. Given a
plane diagram D of a (1,1)-tangle L and a graded A-module M, in Section 8.3 we
define cohomology groups Hi(D,M), which are graded A-modules. The arguments
of Sections 4–5 go through without a single alteration and show that isomorphism
classes of Hi(D,M) do not depend on the choice of D and are invariants of the
underlying (1,1)-tangle L. In fact, to every (1,1)-tangle and an integer i we associate
an isomorphism class of functors from the category of graded A-modules to itself.

Motivations for this work and its relations to representation theory. What is the
representation-theoretical meaning of the cohomology groups Hi,j (D)? The Jones
polynomial of links is encoded in the finite-dimensional representation theory of
the quantum group Uq(sl2). It is shown in [FK] and [K] that the integrality and
positivity properties of the Penrose-Kauffman q-spin networks calculus, of which
the Jones polynomial is a special instance, are related to Lusztig canonical bases in
tensor products of finite-dimensional Uq(sl2)-representations. Lusztig’s theory [L],
among other things, says that various structure coefficients of quantum groups can be
obtained as dimensions of cohomology groups of sheaves on quiver varieties. This
suggests a “categorification” of quantum groups and their representations; that is,
there exist certain categories and 2-categories whose Grothendieck groups produce
quantum groups and their representations.

Crane and Frenkel [CF] conjecture that quantum sl2 invariants of 3-manifolds can
be lifted to a 4-dimensional topological quantum field theory via canonical bases
of Lusztig. They also introduce a notion of Hopf category and associated to it 4-
dimensional invariants. Representations of a Hopf category form a 2-category, and a
relation between 2-categories and invariants of 2-knots in R4 are established in [Fs].

In a joint work with Bernstein and Frenkel [BFK], we propose a categorification of
the representation theory of Uq(sl2) via categories of highest-weight representations
for Lie algebras gln for all natural n. This approach can be viewed as an algebraic
counterpart of Lusztig’s original geometric approach to canonical bases. Motivated by
the geometric constructions of [BLM] and [GrL], we obtain a categorification of the
Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman
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functors. We consider categories �n that are direct sums of certain singular blocks of
the category � for gln. Given a tangle L in the 3-space with n bottom and m top ends
and a plane projection P of L,we associate to P a functor between derived categories
Db(�n) and Db(�m). Properties of these functors suggest that their isomorphism
classes, up to shifts in the derived category, are invariants of tangles. When the
tangle is a link L, we expect to get cohomology groupsHi (L) as invariants of links.
These groups are a special case of the cohomology groups constructed in this paper:
conjecturally

Hi (L)=
⊕
j

(
�i,j (L)⊗C)

. (6)
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2. Preliminaries

2.1. The ring R. Let R = Z[c] denote the ring of polynomials with integral coef-
ficients. Introduce a Z-grading on R by

deg(1)= 0, deg(c)= 2. (7)

Denote by R-mod0 the abelian category of graded R-modules. Denote the ith
graded component of an object M of R-mod0 by Mi. Morphisms in the category
R-mod0 are grading-preserving homomorphisms of modules. For n ∈ Z denote by
{n} the automorphism of R-mod0 given by shifting the grading of a module down
by n. Thus for a graded R-module N = ⊕iNi, the shifted module N{n} has graded
components N{n}i =Ni+n.

In this paper we sometimes consider graded, rather than just grading-preserving,
maps. A map α : M → N of graded R-modules is called graded of degree i if
α(Mj )⊂Ni+j for all j ∈ Z.

Let R-mod be the category of graded R-modules and graded maps between them.
This category has the same objects as the category R-mod0 but more morphisms. It
is not an abelian category.

A graded map α is a morphism in the category R-mod0 if and only if the degree of
α is zero. At the end we favor grading-preserving maps, and when at some point we
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look at a graded map α :M→N of degree i, later we will make it grading-preserving
by appropriately shifting the degree of one of the modules. For example, α gives rise
to a grading-preserving map M→N{i}, also denoted α.

Let M be a finitely generated graded R-module. As an abelian group, M is the
direct sum of its graded components: M = ⊕j∈ZMj, where each Mj is a finitely
generated abelian group. Define the graded Euler characteristic χ̂(M) of M by

χ̂(M)=
∑
j∈Z

dimQ
(
Mi⊗ZQ

)
qj . (8)

Since

χ̂(R)= 1+q2+q4+·· · = 1

1−q2
, (9)

χ̂(M) is not, in general, a Laurent polynomial in q, but an element of the Laurent series
ring. Moreover, for any M as above, there are Laurent polynomials a,b ∈ Z[q,q−1]
such that

χ̂(M)= a+ b

1−q2
. (10)

2.2. The algebra A. Let A be a free graded R-module of rank 2 spanned by 1 and
X with

deg(1)= 1, deg(X)=−1. (11)

We equip A with a commutative algebra structure with the unit 1 and multiplication

1X =X1=X, X2 = 0. (12)

We denote by ι the unit map R→ A that sends 1 to 1. This map is a graded map of
graded R-modules and it increases the degree by 1.

We equip A with a coalgebra structure with a coassociative cocommutative comul-
tiplication

"(1)= 1⊗X+X⊗1+cX⊗X, (13)

"(X)=X⊗X (14)

and a counit

ε(1)=−c, ε(X)= 1. (15)

A, equipped with these structures, is not a Hopf algebra. Instead, the identity

"◦m= (m⊗ Id)◦(Id⊗") (16)

holds.
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Grading deg, given by (7), (11), induces a grading, also denoted deg, on tensor
powers of A by

deg(a1⊗·· ·⊗an)= deg(a1)+·· ·+deg(an) for a1, . . . ,an ∈ A. (17)

Hereafter all tensor products are taken over the ring R unless specified otherwise.
We next describe the effect of the structure maps ι,m,ε," on the gradings. We say

that a map f between two graded R-modules V =⊕Vn and W =⊕Wn has degree k
if f (x) ∈Wn+k whenever x ∈ Vn.
Proposition 1. Each of the structure maps ι,m,ε," is graded relative to the

grading deg. Namely,

deg(ι)= 1, deg(m)=−1, deg(ε)= 1, deg(")=−1. (18)

Proposition 2. We have an R-module decomposition

A⊗A= (A⊗1)⊕"(A), (19)

which respects the grading deg.

2.3. Algebra A and (1+ 1)-dimensional cobordisms. Consider the surfaces S1
2 ,

S2
1 ,S

1
0 ,S

0
1 ,S

2
2 , and S1

1 depicted in Figure 2. Each of the surfaces Sba defines a cobor-
dism from a union of a circles to a union of b circles.

We denote by � the category whose objects are closed 1-dimensional manifolds and
whose morphisms are 2-dimensional cobordisms between these manifolds generated
by the above cobordisms. Specifically, objects of � are enumerated by nonnegative
integers Ob(�)= {n | n ∈ Z+}. A morphism between n and m is a compact oriented
surface S with boundary being the union of n+m circles. The boundary circles
are split into two sets ∂0S and ∂1S with ∂0S containing n and ∂1S containing m
circles. An ordering of elements of each of these two sets is fixed. The surface S
is presented as a concatenation of disjoint unions of elementary surfaces, depicted
in Figure 2. Morphisms are composed in the usual way by gluing boundary circles.
Two morphisms are equal if the surfaces S,T representing these morphisms are
diffeomorphic via a diffeomorphism that extends the identification ∂0S ∼= ∂0T , ∂1S ∼=
∂1T of their boundaries. � is a monoidal category with tensor product of morphisms
defined by taking the disjoint union of surfaces.

Let us construct a monoidal functor from � to the category R-mod of graded R-
modules and graded module maps. Assign graded R-module A⊗n to the object n, and
to the elementary surfaces S1

2 ,S
2
1 ,S

1
0 ,S

0
1 ,S

2
2 ,S

1
1 assign morphisms m,",ι,ε,Perm,

Id, respectively:

F
(
S1

2

)=m, F
(
S2

1

)=", F
(
S1

0

)= ι,
(20)

F
(
S0

1

)= ε, F
(
S2

2

)= Perm, F
(
S1

1

)= Id,
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S1
2 S2

1

S1
0 S0

1

S1
1S2

2

Figure 2

where Perm : A⊗A→ A⊗A is the permutation map, Perm(u⊗v) = v⊗u, and Id
is the identity map Id : A→ A.

To check that F is well defined, one must verify that for any two ways to glue
an arbitrary surface S in Mor(�) from copies of these six elementary surfaces, the
two maps of R-modules, defined by these two decompositions of S, coincide. This
follows from the commutative algebra and cocommutative coalgebra axioms of A
and the identity (16).

Remark. Suppose that a surface S ∈� contains a punctured genus-2 surface as a
subsurface. Then F(S) is the zero map. Indeed, we only need to check this when S has
genus 2 and one boundary component. ThenF(S)= 0 follows fromm◦"◦m◦"= 0.

Maps F(S1
2),F (S

2
1 ),F (S

1
0),F (S

0
1 ),F (S

2
2 ), and F(S1

1) between tensor powers of A
are graded relative to deg with degrees

deg
(
F

(
S1

2

))= deg
(
F

(
S2

1

))=−1,

deg
(
F

(
S1

0

))= deg
(
F

(
S0

1

))= 1,

deg
(
F

(
S2

2

))= deg
(
F

(
S1

1

))= 0.
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〈 〉
= q+q−1

Figure 3

〈 〉
=

〈 〉
−q

〈 〉
Figure 4

Proposition 3. For a surface S ∈Mor(�), the degree of the map F(S) of graded
R-modules is equal to the Euler characteristic of S.

2.4. Kauffman bracket. In this section we review the Kauffman bracket and its
relation to the Jones polynomial, following Kauffman [Ka]. Fix an orientation of the
3-spaceR3. A plane projectionD of an oriented link L inR3 is called generic if it has
no triple intersections, no tangencies, and no cusps. In this paper, a plane projection
means a generic plane projection. Given a plane projection D, we assign a Laurent
polynomial 〈D〉 ∈ Z[q,q−1] to D by the following rules:

(1) A simple closed loop evaluates to q+q−1: see Figure 3.
(2) Each over- and undercrossing is a linear combination of two simple resolutions

of this crossing: see Figure 4.
(3) 〈D1

⊔
D2〉 = 〈D1〉〈D2〉 where 〈D1

⊔
D2〉 stands for the disjoint union of the

diagrams D1 and D2.

From these rules we deduce what is depicted in Figure 5.

〈 〉 〈 〉

〈 〉 〈 〉

〈 〉 〈 〉 〈 〉 〈 〉
=−q2

, = q−1

=−q

=

Figure 5
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Figure 6

Figure 7

L1 L2 L3

Figure 8

Curves of the diagram D inherit orientations from that of L. Let x(D) be the
number of double points in the diagram D that look like those in Figure 6 and y(D)
the number of double points that look like those in Figure 7. Then the quantity

K(D)= (−1)x(D)qy(D)−2x(D)〈D〉 (21)

does not depend on the choice of a diagramD of the oriented linkL and is an invariant
of L. We denote this invariant by K(L). Up to a simple normalization, K(L) is the
Kauffman bracket of link L and is equal to the Jones polynomial of L. The Kauffman
bracket, f [L], as defined in [Ka], is a Laurent polynomial in an indeterminate A.
(This A has no relation to the algebra A in Section 2.2 of this paper.) One easily sees
that, by setting our q to −A−2 and dividing by (−A2−A−2), we get f [L]:

K(L)(q=−A−2) =
(−A2−A−2)f [L]. (22)

In this paper we call K(L) the scaled Kauffman bracket.
Let L1,L2, and L3 be three oriented links that differ as shown in Figure 8. The

rules for computing the Kauffman bracket imply

q−2K(L1)−q2K(L2)=
(
q−1−q)K(L3). (23)

Moreover, K(L)= q+q−1 if L is the unknot.
The Jones polynomial V (L) of an oriented link L is determined by two properties:
(1) The Jones polynomial of the unknot is 1.
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(2) For oriented links L1,L2,L3 as above,

t−1V (L1)− tV (L2)=
(√

t− 1√
t

)
V (L3). (24)

Therefore, the scaled Kauffman bracket and the Jones polynomial are related by

V (L)√t=−q =
K(L)

q+q−1
. (25)

3. Cubes

3.1. Complexes of R-modules. Denote by Kom(�) the category of complexes of
an abelian category �. An object N of Kom(�) is a collection of objects Ni ∈ �,
i ∈ Z, together with morphisms di : Ni −→ Ni+1, i ∈ Z, such that di+1di = 0. A
morphism f :M→N of complexes is a collection of morphisms f i :Mi →Ni such
that f i+1di = dif i , i ∈ Z. A morphism f :M → N is called a quasi-isomorphism
if the induced map of the cohomology groups Hi(f ) : Hi(M) → Hi(N) is an
isomorphism for all i ∈ Z.

For n ∈ Z denote by [n] the automorphism of Kom(�) that is defined on objects
by N [n]i = Ni+n, d[n]i = (−1)ndi+n and continued to morphisms in the obvious
way.

The cone of a morphism f :M→N of complexes is a complex C(f ) with

C(f )i =M[1]i⊕Ni, dC(f )
(
mi+1,ni

)= (−dMmi+1,f
(
mi+1)+dNni). (26)

The grading shift automorphism {n}, introduced in Section 2.1, can be extended
naturally to an automorphism of the category Kom(R-mod0) of complexes of graded
R-modules. This automorphism of Kom(R-mod0) is also denoted {n}.

To a complex M of graded R-modules we associate a graded R-module ⊕i∈ZMi.

Each Mi is a graded R-module, Mi = ⊕j∈ZMi
j , and thus ⊕i∈ZMi is a bigraded

R-module when we extend our usual grading of R to a bigrading with c ∈ R having
degree (0,2). From this viewpoint the differential dM of a complex M is a homoge-
neous map of degree (1,0) of bigraded R-modules.

3.2. Commutative cubes. Let � be a finite set. Denote by |�| the cardinality of �
and by r(�) the set of all pairs (�,a) where � is a subset of � and a an element of
� that does not belong to �. To simplify notation we often

(a) denote a one-element set {a} by a,
(b) denote a finite set {a,b, . . . ,d} by ab · · ·d,
(c) denote the disjoint union �1��2 of two sets �1,�2 by �1�2; in particular, we

denote by �a the disjoint union of a set � and a one-element set {a}; similarly,
�ab means ��{a}�{b}, and so on.

Definition 1. Let � be a finite set and � a category. A commutative �-cube V over
� is a collection of objects V (�) ∈ Ob(�) for each subset � of � and morphisms
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ξVa (�) : V (�)−→ V (�a) (27)

for each (�,a) ∈ r(�), such that for each triple (�,a,b), where � is a subset of �
and a,b,a �= b are two elements of � that do not lie in �, there is an equality of
morphisms

ξVb (�a)ξ
V
a (�)= ξVa (�b)ξVb (�), (28)

that is, the following diagram is commutative:

V (�)

ξVb (�)

��

ξVa (�) �� V (�a)

ξVb (�a)

��
V (�b)V

ξVa (�b) �� V (�ab).

We say a commutative �-cube is an �-cube or, sometimes, a cube when � is clear.
Maps ξVa are called the structure maps of V.

Example. If � is the empty set, an �-cube is an object in �. If � consists of one
element, an �-cube is a morphism in �. If � consists of two elements, �= {a,b}, an
�-cube is a commutative square of objects and morphisms in �:

V (∅)

��

�� V (a)

��
V (b) �� V (ab).

In general, an �-cube can be visualized in the following manner. Let n be the
cardinality of �.We take an n-dimensional cube in a standard position in the Euclidean
n-dimensional space, that is, each vertex has coordinates (a1, . . . ,an) where ai ∈
{0,1}. We orient each edge in the direction of the vertex with the bigger sum of the
coordinates. Then the edges of any 2-dimensional facet of this cube are oriented as
shown in Figure 9.

Figure 9
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Choose a bijection between elements of � and coordinates of Rn. This bijection
defines a bijection between vertices of the n-cube and subsets of �,with the (0, . . . ,0)
vertex associated to the empty set. Oriented edges of the n-cube correspond to pairs
(�,a) ∈ r(�).

Given an �-cube V, put an object V (�) into the vertex associated to the set � and
assign a morphism ξVa (�) to the arrow going from the vertex associated to � to the
vertex associated to �a. Equation (28) is equivalent to the commutativity of diagrams
in all 2-dimensional faces of the n-cube.

Given two �-cubes V,W over a category �, an �-cube map ψ : V −→ W is a
collection of maps

ψ(�) : V (�)−→W(�), for all �⊂ �,

that make diagrams

V (�)

ξVa (�)
��

ψ(�) �� W(�)

ξWa (�)
��

V (�a)
ψ(�a) �� W(�a)

(29)

commutative for all (�,a) ∈ r(�). The map ψ is called an isomorphism if ψ(�) is
an isomorphism for all �⊂ �. The map ψ of �-cubes over an abelian category � is
called injective/surjective if ψ(�) is injective/surjective for all �⊂ �.

The class of �-cubes over an abelian category � and maps between �-cubes con-
stitute an abelian category in the obvious way. In particular, direct sums of �-cubes
are defined.

For a finite set � and a ∈ �, let � be the complement, �= ��{a}. Given an �-cube
V, let Va(∗0),Va(∗1) be �-cubes defined as follows:

Va(∗0)(�)= V (�), Va(∗1)(�)= V (�a), for �⊂ �. (30)

The structure maps of Va(∗0),Va(∗1) are determined by the structure maps ξVb , b ∈ �
of V in the obvious fashion. Sometimes we write V (∗0) for Va(∗0), and so forth. The
structure map ξVa of V defines an �-cube map ξVa : Va(∗0)→ Va(∗1). This provides
a one-to-one correspondence between �-cubes and maps of �-cubes.

We say that a map ψ : V → W of �-cubes over the category R-mod of graded
R-modules and graded maps is graded of degree i if the map ψ(�) : V (�)→W(�)
has degree i for all �⊂ �.

For a cube V overR-mod0, denote by V {i} the cube V with the grading shifted by i:

V {i}(�)= V (�){i} for all �⊂ �; (31)

the structure maps are the appropriate shifts of the structure maps of V.A degree i map
ψ : V →W of �-cubes over R-mod0 induces a grading-preserving map V →W {i},
also denoted ψ.
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3.3. Skew-commutative cubes. We next define skew-commutative �-cubes over an
additive category �. A skew-commutative �-cube is almost the same as a commutative
�-cube, but now we require that for every square facet of the cube the associated
diagram of objects and morphisms of � anticommutes.

Definition 2. Let � be a finite set and � an additive category. A skew-commutative
�-cube V over � is a collection of objects V (�) ∈ Ob(�) for �⊂ �, and morphisms

ξVa (�) : V (�)−→ V (�a),

such that for each triple (�,a,b), where � is a subset of � and a,b,a �= b, are two
elements of � that do not lie in �, there is an equality

ξVb (�a)ξ
V
a (�)+ξVa (�b)ξVb (�)= 0.

We call a skew-commutative �-cube over � a skew �-cube or, without specifying
�, a skew cube. Given �-cubes or skew �-cubes V and W over R-mod0, their tensor
product is defined to be an �-cube (if V and W are both cubes or both skew cubes)
or a skew �-cube (if one of V,W is a cube and the other is a skew cube), denoted
V ⊗W, given by

(V ⊗W)(�)= V (�)⊗W(�), �⊂ �,

ξV⊗Wa (�)= ξVa (�)⊗ξWa (�), (�,a) ∈ r(�),
where, we recall, the tensor products are taken over R.

For a finite set � denote by o(�) the set of complete orderings or elements of �.
For x,y ∈ o(�) let p(x,y) be the parity function. p(x,y) = 0 if y can be obtained
from x via an even number of transpositions of two neighboring elements in the
ordering. Otherwise, p(x,y) = 1. To a finite set � associate a graded R-module
E(�) defined as the quotient of the graded R-module, freely generated by elements x
for all x ∈ o(�), by relations x = (−1)p(x,y)y for all pairs x,y ∈ o(�).Module E(�)
is a free graded R-module of rank 1. For a �∈ � there is a canonical isomorphism of
graded R-modules E(�)→ E(�a) induced by the map o(L)→ o(La) that takes
x ∈ o(L) to xa ∈ o(La).Moreover, for a,b,a �= b, the diagram below anticommutes:

E(�)

��

�� E(�a)

��
E(�b) �� E(�ab).

(32)

Denote by E� the skew �-cube with E�(�) = E(�) for � ⊂ � and the structure
map E�(�)→ E�(�a) being canonical isomorphism E(�)→ E(�a). We use E�

to pass from �-cubes over R-mod0 to skew �-cubes over R-mod0 by tensoring an
�-cube with E�.
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3.4. Skew-commutative cubes and complexes. Let V be a skew �-cube over an
abelian category �. To V we associate a complex C(V ) = (Ci(V ),di), i ∈ Z of
objects of � by

C
i
(V )=

⊕
�⊂�, |�|=i

V (�). (33)

The differential di : Ci(V )→ C
i+1
(V ) is given on an element x ∈ V (�), |�| = i by

di(x)=
∑
a∈�\�

ξVa (�)x. (34)

Examples. (1) If |�| = 1, �= {a},

C
i
(V )=


V (∅) if i = 0,

V (a) if i = 1,

0 otherwise.

The differential d0 = ξVa (∅) and di = 0 if i �= 0, so C(V ) is the complex

· · · −→ 0−→ V (∅) ξVa (∅)−−−−→ V (�)−→ 0−→ ·· · . (35)

(2) If � contains two elements, say, �= {a,b}, then

C
i
(V )=


V (∅) if i = 0,

V (a)⊕V (b) if i = 1,

V (ab) if i = 2,

0 otherwise,

and the differentials are as follows:

d0 : V (∅)−→ V (a)⊕V (b),
d0 = ξVb (∅)+ξVa (∅),
d1 : V (b)⊕V (a)−→ V (ab),

d1 = (
ξVa (b),ξ

V
b (a)

)
.

Proposition 4. Let V be a skew �-cube over an abelian category � and suppose
that for some a ∈ � and any � ⊂ � \ {a} the map ξVa : V (�) → V (�a) is an
isomorphism. Then the complex C(V ) is acyclic.

Proof. The complex C(V ) is isomorphic to the cone of the identity map of the
complex C(Va(∗1))[−1] and, therefore, is acyclic.
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Every map of �-cubes φ : V −→W over R-mod0 induces a map of complexes

C(φ) : C(V ⊗E�)−→ C(W⊗E�). (36)

If φ is an isomorphism of commutative cubes, C(φ) is an isomorphism of complexes.

Proposition 5. Let V be an �-cube over R-mod0 and suppose that for some
a ∈ � the structure map

ξVa : Va(∗0)−→ Va(∗1) (37)

is an isomorphism. Then the complex C(V ⊗E�) is acyclic.

Proof. The proof is immediate from Proposition 4.

The following proposition and its corollary are obvious.

Proposition 6. We have a canonical splitting of complexes

C(V ⊕W)= C(V )⊕C(W), (38)

where V andW are skew-commutative �-cubes over an abelian category and V ⊕W
is the direct sum of V and W .

Corollary 1. We have a canonical splitting of complexes

C
(
(V ⊕W)⊗E�

)= C(
V ⊗E�

)⊕C(
W⊗E�

)
, (39)

where V and W are �-cubes over R-mod0 .

4. Diagrams

4.1. Reidemeister moves. Given a link L in R3, we can take its generic projection
on the plane. A generic projection is the one without triple points and double tangen-
cies. An isotopy class of such projections is called a plane diagram of L or, simply, a
diagram. Four types of transformations of plane diagrams, shown in Figures 10–13,
preserve the isotopy type of the associated link.

Proposition 7. If plane diagrams D1 and D2 represent isotopic oriented links,
these diagrams can be connected by a chain of moves as depicted in Figures 10–13.

Figure 10. Addition/removal of a left-twisted curl
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Figure 11. Addition/removal of a right-twisted curl

Figure 12. Tangency move

Figure 13. Triple point move

4.2. Constructing cubes and complexes from plane diagrams. Fix a plane diagram
D with n double points of an oriented link L. Denote by � the set of double points of
D. ToD we associate an �-cube VD over the category R-mod0 of graded R-modules.
This cube does not depend on the orientation of components of L.

Given a double point of a diagram D, it can be resolved in two possible ways, as
seen in Figure 14. Let us call the resolution on the left the 0-resolution, and the one
on the right the 1-resolution. A resolution of D is a resolution of each double point
of D. Thus, D admits 2n resolutions. There is a one-to-one correspondence between
resolutions of D and subsets � of the set � of double points. Namely, to � ⊂ � we
associate a resolution, denoted D(�), by taking a 1-resolution of each double point
that belongs to � and a 0-resolution if the double point does not lie in �.

0-resolution 1-resolution

Figure 14
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D D(∅) D(a)

Figure 15

D

Figure 16

A resolution of a diagram D is always a collection of simple disjoint curves on
the plane and is thus a 1-manifold embedded in the plane. Now the functor F from
(1+1) cobordisms to R-modules (see Section 2.3) comes into play. To a union of k
circles it assigns the kth tensor power of A. The functor F , applied to the diagram
D(�), considered as a 1-dimensional manifold, produces a graded R-module A⊗k
where k is the number of components of D(�). We raise the grading of A⊗k by |�|,
the cardinality of �, and assign the R-module F(D(a)){−|�|} to the vertex VD(�)
of the cube VD:

VD(�)= F
(
D(�)

){−|�|}. (40)

(Recall from Section 3.1 that the automorphism {1} of the categoryR-mod0 lowers the
grading by 1.) Let us now define maps between vertices of VD. Choose (�,a) ∈ r(�).
We want to have a map

ξVDa (�) : VD(�)−→ VD(�a). (41)

The diagramsD(�) andD(�a) differ only in the neighbourhood of the double point a
ofD, as Figure 15 demonstrates (for n= 1, so thatD has one double point, �= {a}).

Take the direct product of the plane R2 and the interval [0,1]. We identify the
diagram D(�) (respectively, D(�a)) with a 1-dimensional submanifold of R2×{0}
(respectively, R2 × {1}). We can choose a small neighbourhood U of a such that
D(�) and D(�a) coincide outside U and inside they look as shown in Figure 16.
The boundary of U is depicted by a dashed circle; the central picture shows the
intersection of D(�) and U ; and the rightmost picture shows the intersection of
D(�a) and U.

Let S be a surface properly embedded in R2×[0,1] such that
(1) the boundary of S is the union of the diagrams D(�) and D(�a);
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D(a) D(ab)

D
a b

Figure 17

D(ab)

D(a)

S

Figure 18

(2) outside of U×[0,1] surface S is the direct product of D(�)∩(R2 \U) and the
interval [0,1];

(3) the connected component of S that has a nonempty intersection with U×[0,1]
is homeomorphic to the 2-sphere with three holes;

(4) the projection S −→ [0,1] onto the second component of the product R2×
[0,1] has only one critical point—the saddle point that lies inside U×[0,1].

Example. Let D be a diagram with two double points, � = {a,b}, as in Fig-
ure 17. DiagramD(a) (respectively,D(ab)) consists of two (respectively, three) sim-
ple curves. The boundary of the neighbourhood U of the double point a is depicted
by the dashed circle. Then Figure 18 shows what the surface S looks like.

Recall that earlier we defined VD(�) to be F(D(�)) for � ⊂ �, with the degree
raised by |�|. Now define the map

ξVDa (�) : VD(�)−→ VD(�a)

to be given by

F(S) : F (
D(�)

)−→ F
(
D(�a)

)
.

Note that the degree of F(S) is equal to −1, the Euler characteristic of the surface S
(Proposition 3). But |�a| = |�|+1, so, with degrees shifted,
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D(∅)

D(a)

D(b)

D(ab)

b

a

Figure 19. Diagram D and four resolutions

VD(�)= F
(
D(�)

){−|�|}, (42)

VD(�a)= F
(
D(�a)

){−|�|−1}, (43)

and the map ξVDa (�) is a grading-preserving map of graded R-modules.

Proposition 8. VD , defined in this way, is an �-cube over the category R-mod0

of graded R-modules and grading-preserving maps.

The proof consists of verifying commutativity relations (28) for maps ξVDa (�).
They follow immediately from the functoriality of F.

Example. For the diagram D and its four resolutions depicted in Figure 19 we get

F
(
D(∅))= A⊗2, F

(
D(a)

)= A,
F

(
D(b)

)= A, F
(
D(ab)

)= A⊗2.

The cube VD has the form

A⊗2

m

��

m �� A{−1}
"

��
A{−1} " �� A⊗2{−2}.

Let us now go back to our construction. So far, to a plane diagram D with the set
� of double points we associated an �-cube VD over the category R-mod0 of graded
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R-modules. We would like to build a complex of graded R-modules out of VD. We
know how to build a complex from a skew-commutative �-cube (see Section 3.4). To
make a skew-commutative �-cube out of an �-cube VD , we put minus sign in front
of some structure maps ξVD of VD so that for any commutative square of VD an odd
number of the four maps constituting the square change signs. A more intrinsic way
to do this is to tensor VD with the skew-commutative �-cube E�, defined at the end
of Section 3.3.

To the skew-commutative �-cube VD⊗E� there is associated the complex C(VD⊗
E�) of graded R-modules (see Section 3.4). Denote this complex by C(D):

C(D)
def= C

(
VD⊗E�

)
. (44)

Thus, C(D) is a complex of graded R-modules and grading-preserving homomor-
phisms. It does not depend on the orientations of the components of the link L.

Recall (Section 3.1) that the category Kom(R-mod0) has two commuting auto-
morphisms: [1], which shifts a complex 1 step to the left, and {1}, which lowers the
grading of each component of the complex by 1.

To the diagram D of link L we associated (Section 2.4) two numbers, x(D) and
y(D). Define a complex C(D) by

C(D)= C(D)[x(D)]{2x(D)−y(D)}. (45)

Define Hi(D) as the ith cohomology group of C(D). It is a finitely generated graded
R-module.

Theorem 1. If D is a plane diagram of an oriented link L, then for each i ∈ Z,
the isomorphism class of the graded R-module Hi(D) is an invariant of L.

The proof of this theorem occupies Section 5, together with some preliminary
material contained in Section 4.3.

DefineHi,j (D) as the ith cohomology group of the degree j subcomplex of C(D).
Thus, Hi,j (D) is the graded component of Hi(D) of degree j , and we have a de-
composition of abelian groups

Hi(D)=
⊕
j∈Z

Hi,j (D). (46)

We denote by Hi(L) the isomorphism class of Hi(D) in the category of graded
R-modules. For an oriented link L, only finitely many of Hi(L) are nonzero as i
varies over all integers.

Corollary 2. If D is a plane diagram of an oriented link L, then for each
i,j ∈ Z, the isomorphism class of the abelian group Hi,j (D) is an invariant of L.

We next show that the Kauffman bracket is equal to a suitable Euler characteristic
of these cohomology groups.



382 MIKHAIL KHOVANOV

D1 D2 D3

Figure 20

Proposition 9. For an oriented link L,

K(L)= (
1−q2)∑

i∈Z
(−1)i χ̂

(
Hi(D)

)
, (47)

where K(L) is the scaled Kauffman bracket defined in Section 2.4, χ̂ is the Euler
characteristic of Section 2.1, and D is any diagram of L.

Proof. First notice that χ̂(M{n}) = q−nχ̂(M) for a finitely generated graded R-
module M. Given a bounded complex

M : · · · −→Mi −→Mi+1 −→ ·· · (48)

of finitely generated graded R-modules, define

χ̂(M)=
∑
i∈Z
(−1)i χ̂

(
Mi

)
. (49)

Since

χ̂
(
C(D)

)=∑
i∈Z
(−1)i χ̂

(
Hi(D)

)
, (50)

it is enough to prove

K(L)= (
1−q2)χ̂(

C(D)
)
. (51)

For three diagrams D1,D2, and D3 that differ as shown in Figure 20, the complex
C(D1)[1] is isomorphic, up to a shift, to the cone of a map of complexes C(D2)→
C(D3){−1}. Therefore,

χ̂
(
C(D1)

)= χ̂(
C(D2)

)− χ̂(
C(D3){−1})= χ̂(

C(D2)
)−qχ̂(

C(D3)
)
. (52)

On the other hand, for diagrams D1,D2,D3 as in Figure 20, we have

〈D1〉 = 〈D2〉−q〈D3〉 (53)

(see Section 2.4, where 〈D〉 is defined). If the diagram D is a disjoint union of k
simple plane curves, then

χ̂
(
C(D)

)= χ̂(
A⊗k

)= (
q+q−1)kχ̂(R)= (

q+q−1
)k

1−q2
(54)
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p1
p2pm

Figure 21

p1 p1

p2 p2pm pm

Q0 Q1

Figure 22

and 〈D〉 = (q+q−1)k. Therefore, for any diagram D,

〈D〉 = (
1−q2)χ̂(

C(D)
)
. (55)

Since

χ̂
(
C(D)

)= χ̂(
C(D)

)[x(D)]{2x(D)−y(D)}
= (−1)x(D)qy(D)−2x(D)χ̂

(
C(D)

)
,

(56)

and in view of (21), the proposition follows.

4.3. Surfaces and cube morphisms. Let U be a closed disk in the plane R2 and U̇
the interior of U so that U = ∂U ∪ U̇ . Let T ′ be a tangle in (R2 \ U̇ )×[0,1] with m
points (where m is even) on the boundary ∂U×[0,1] and T a generic projection of
T ′ on R2 \ U̇ . The intersection of T with ∂U consists of m points. Denote them by
p1, . . . ,pm (see Figure 21; ∂U is shown by a dashed circle).

Let � be the set of double points of T . Pick two systemsQ0 andQ1 of m/2 simple
disjoints arcs in U with ends in points p1, . . . ,pm, as depicted in Figure 22. Then
Q0∪T and Q1∪T (here and further on we denote them by P0 and P1, respectively)
can be considered as two plane diagrams of links in R3, shown in Figure 23. To P0

and P1 there are associated �-cubes VP0 and VP1 .
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P0 P1

Figure 23

Let S be a compact-oriented surface in U ×[0,1] such that the boundary of S is
the union of Q0×{0}, Q1×{1}, and (p1∪ ·· ·∪pm)×[0,1]. To S we associate an
�-cube map

ψS : VP0 −→ VP1

as follows. For each �⊂ � we must construct a map

ψS,� : VP0(�){−|�|} −→ VP1(�){−|�|} (57)

and check the commutativity of diagrams (29).
To � there is associated a resolution T (�) of double points of T . Thus T (�) is a

collection of simple closed curves and arcs in R2 \ U̇ with ends in p1, . . . ,pm. Then,
by (40),

VP0(�)= F
(
T (�)∪Q0

){−|�|}, (58)

VP1(�)= F
(
T (�)∪Q1

){−|�|}, (59)

whereF is the functor described in Section 2.3. (Notice that T (�)∪Q0 and T (�)∪Q1

are collections of simple closed curves on the plane, so that we can apply functor F
to them.)

Let S′ be a surface in R2 × [0,1] that is S inside U × [0,1] and T (�)× [0,1]
outside U×[0,1]. The map

F(S′) : F (
T (�)∪Q0

)−→ F
(
T (�)∪Q1

)
(60)

is a graded map of R-modules of degree χ(S′) = χ(S)−m/2. Define ψS,� as this
map, shifted by |�|:

ψS,� = F(S′){−|�|} : VP0(�){−|�|} −→ VP1(�){−�|}. (61)

The commutativity condition (29) is immediate. We sum up our result as follows.

Proposition 10. The map

ψS : VP0 −→ VP1 (62)

is a degree (χ(S)−m/2) map of �-cubes.



A CATEGORIFICATION OF THE JONES POLYNOMIAL 385

p1

p2
pm

Figure 24

Everything in this section extends to the case when the diagrams Q0 and Q1 are
allowed to have simple closed circles in addition to m/2 simple disjoint acts joining
points p1, . . . ,pm. For instance, Q0 may look like Figure 24.

In this more general case, to each compact oriented surface S in U ×[0,1] such
that the boundary of S is the union of Q0×{0},Q1×{1} and (p1∪·· ·∪pm)×[0,1],
in exactly the same fashion as before, we associate an �-cube map

ψS : VP0 −→ VP1 . (63)

This map is a graded map of cubes over R-mod0 of degree equal to the Euler char-
acteristic of S minus m/2.

Tensoring the map ψS with the identity map of the skew-commutative n-cube
E� and passing to associated complexes, we obtain a map of complexes of graded
R-modules

ψ ′S : C(P0)−→ C(P1). (64)

In general this map is not a morphism in the category Kom(R-mod0) of complexes
of graded R-modules and grading-preserving homomorphism, as it shifts the grading
by χ(S)−m/2, but ψ ′S becomes a morphism in Kom(R-mod0) when the grading of
C(P0) or C(P1) is appropriately shifted.

5. Transformations. In this section we prove Theorem 1. We associate a quasi-
isomorphism of complexes of graded R-modules C(D)→ C(D′) to a Reidemeister
move between two plane diagrams D and D′ of an oriented link L.

5.1. Left-twisted curl. Let D be a plane diagram with n−1 double points and let
D1 be a diagram constructed from D by adding a left-twisted curl. Denote by �′ the
set of double points of D1, by a the double point in the curl, and by � the set of
double points of D. There is a natural bijection of sets � → �′ \ {a}, coming from
identifying a double point of D with the corresponding double point of D1. We use
this bijection to identify the two sets � and �′ \ {a}.
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D D1 D2
a

Figure 25

U
⋂
D1

a

Figure 26

The crossing a of D1 can be resolved in two ways; see Figure 25. The 0-resolution
of a is a diagram D2 that is a disjoint union of D and a circle. The 1-resolution is a
diagram isotopic to D, and we identify this diagram with D.

In this section we define a quasi-isomorphism of the complexes C(D) and C(D1).

This quasi-isomorphism arises from a splitting of the �′-cube VD1 as a direct sum of
two cubes, VD1 = V ′ ⊕V ′′. This splitting induces a decomposition of the complex
C(D1) into a direct sum of an acyclic complex and a complex isomorphic to C(D).

Recall that VD,VD1 , and VD2 are the cubes associated with the diagrams D,D1,
and D2, respectively. VD1 has index set �′, while VD and VD2 are �-cubes. From
the decomposition of D2 as a union of D and a simple circle we get a canonical
isomorphism of cubes

VD2 = VD⊗A, (65)

where VD ⊗ A is the �-cube obtained from VD by tensoring graded R-modules
VD(�),� ⊂ � with A and tensoring the structure maps ξVDa (�) with the identity
map of A.

Let U ⊂ R2 be a small neighborhood of a that contains the curl as depicted in
Figure 26. The figure shows how the diagram D1 looks inside U. The boundary of U
is shown by a dashed circular line. Intersections of U with diagrams D and D2 are
depicted in Figure 27.

Outside of U , diagramsD,D1, andD2 coincide. It is explained in Section 4.3 how
surfaces in U×[0,1], satisfying certain conditions, give rise to cube maps. Using this
construction we now define three cube maps between cubes VD and VD2 :

ma : VD2 −→ VD, (66)

"a : VD −→ VD2 , (67)

ιa : VD −→ VD2 . (68)
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U
⋂
D U

⋂
D2

Figure 27

U×{0} U×{0.5} U×{1}

Figure 28

Figure 29

The map ma is associated to the surface presented in Figure 28. Hereafter we
depict surfaces embedded in U × [0,1] by a sequence of their cross sections U ×
{t}, t ∈ [0,1], the leftmost one being the intersection of the surface with U ×{0},
the rightmost being the intersection with U×{1}. For such a surface S ∈ U×[0,1],
we call the projection S → [0,1] the height function of S. These surfaces have
only nondegenerate critical points relative to the height function. We depict enough
sections of S to make it obvious what surface we are considering, sometimes adding
extra information, for example, that the surface in Figure 28 has one saddle point and
no other critical points relative to the height function.

In Figure 28, the intersections S∩U ×{0}, S∩U ×{1} of the surface S with the
boundary disks U ×{0}, U ×{1} are isomorphic to the intersections D2∩ (U ×{0})
(respectively, D∩(U×{1})). Thus, S defines a map ma from the cube VD2 to VD.

The cube map "a is associated to the surface shown in Figure 29. This surface has
one saddle point and no other critical points relative to the height function.

The cube map ιa is associated to the surface shown in Figure 30. The only critical
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Figure 30

point of the height function is a local minimum.
The cube maps ma,"a, ιa are graded maps and change the grading by −1,−1,1,

respectively. So let us keep in mind that ma,"a, ιa become grading-preserving if we
appropriately shift gradings of our cubes; for example,

ma : VD2 −→ VD{−1}, (69)

"a : VD −→ VD2{−1}, (70)

ιa : VD −→ VD2{1} (71)

are grading-preserving maps of cubes over R-mod0 .

The composition maιa is equal to the identity map from VD to itself. Denote by a
the map

a
def= "a− ιama"a : VD −→ VD2 . (72)

The map a is a graded map of degree −1.

Proposition 11. The �-cube VD2 splits as a direct sum:

VD2 = ιa
(
VD

)⊕a(VD)
. (73)

Proof. It is enough to consider the case when D is a single circle. Then �′ = {a},
�= ∅, VD = A, and ιa(VD)= 1⊗A. But

a1=
(
"a− ιama"a

)
1=X⊗1−1⊗X+cX⊗X,

aX =
(
"a− ιama"a

)
X =X⊗X

and, thus, A⊗A is a direct sum of 1⊗A and the R-submodule spanned by a1 and
aX.

Note that

maa =ma
(
"a− ιama"a

)= 0 (74)

because maιa = Id . The �′-cube VD1 contains VD and VD2 as subcubes of codimen-
sion 1. Namely, we have canonical isomorphisms

VD1(∗0)∼= VD2 , (75)

VD1(∗1)∼= VD{−1}. (76)
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Recall from Section 3.2 that VD1(∗0) denotes the �′ \ {a}-cube (i.e., �-cube) with
VD1(∗0)(�)= VD1(�) for �⊂ �, and so on. Under these isomorphisms the structure

map ξ
VD1
a (denoted below by ξa) for the �′-cube VD1 ,

ξa : VD1(∗0)−→ VD1(∗1), (77)

is equal to the map ma of �-cubes; that is, the following diagram is commutative:

VD1(∗0)

∼=
��

ξa �� VD1(∗1)

∼=
��

VD2

ma �� VD{−1}.

Using the splitting (73) of VD2 , we can decompose the �′-cube VD1 as a direct sum
of two �′-cubes as follows:

VD1 = V ′ ⊕V ′′, (78)

where

V ′(∗0)= a(VD), (79)

V ′(∗1)= 0, (80)

V ′′(∗0)= ιa(VD), (81)

V ′′(∗1)= VD1(∗1). (82)

Some explanation: In the formula (79), a(VD) is a subcube of VD2 and, due to (75),
a(VD) sits inside VD1 as a subcube of codimension 1. Equation (80) means that
V ′(∗1)(�)= 0 for all �⊂ �′. Thus, V ′(�)= a(VD(�))⊂ VD1(�) for �⊂ �′ if �
does not contain a. If � contains a, V ′(�)= 0.

Tensoring (78) with E�′ , we get a splitting of skew-commutative �′-cubes

VD1⊗E�′ =
(
V ′ ⊗E�′

)⊕(
V ′′ ⊗E�′

)
. (83)

This induces a splitting of complexes associated to these skew-commutative �′-cubes

C
(
VD1⊗E�′

)= C(
V ′ ⊗E�′

)⊕C(
V ′′ ⊗E�′

)
. (84)

Proposition 12. The complex C(V ′′ ⊗E�′) is acyclic.

Proof. The complex C(V ′′ ⊗E�′) is isomorphic to the cone of the identity map
of the complex C(VD⊗E�)[−1]{−1}.
Proposition 13. The complexesC(V ′⊗E�′) andC(VD⊗E�){1} are isomorphic.
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D D1 D2

a

Figure 31

Proof. We have a chain of isomorphisms of complexes

C(V ′ ⊗E�′)= C
(
V ′(∗0)⊗E�

)= C(
VD{1}⊗E�

)= C(VD⊗E�){1}.
Corollary 3. The complexes C(D1) and C(D){1} are quasi-isomorphic.
Proof. We have

C(D1)= C
(
VD1⊗E�′

)
= C(

V ′ ⊗E�′
)⊕C(

V ′′ ⊗E�′
)

= C(
VD⊗E�

){1}⊕C(
V ′′ ⊗E�′

)
= C(D){1}⊕(acyclic complex).

Note that x(D1)= x(D) and y(D1)= y(D)+1. By (45),

C(D)= C(D)[x(D)]{2x(D)−y(D)} (85)

and

C(D1)= C(D1)[x(D1)]{2x(D1)−y(D1)}
= C(D1)[x(D)]{2x(D)−y(D)−1}.

Therefore, complexes C(D) and C(D1) are quasi-isomorphic.

5.2. Right-twisted curl. Let D be a diagram with n−1 double points and let D1

be a diagram constructed fromD by adding a right-twisted curl. Denote by a the new
crossing that appears in the curl. Let � be the set of crossings of D and �′ the set of
crossings ofD1.We have a natural bijection of sets �→ �′ \{a} and use it to identify
these two sets.

Crossing a can be resolved in two ways; see Figure 31. 0-resolution gives a diagram,
isotopic to D and canonically identified with D. 1-resolution produces a diagram,
denoted D2, which is a disjoint union of D and a simple circle. Note that diagrams
D andD2 are the same as diagramsD andD2 from Section 5.1, and we can use cube
maps ma,"a, ιa defined in that section.

Also define a map

εa : VD2 −→ VD, (86)
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Figure 32

where εa is associated to the surface shown in Figure 32. This surface has one critical
point relative to the height function and it is a local maximum. The cube map εa
changes the grading by 1 and becomes grading-preserving after an appropriate shift:

εa : VD2 −→ VD{1}. (87)

Let ℵ be the map

ℵ = ιa−cιama"a : VD −→ VD2 . (88)

ℵ is graded of degree 1.

Proposition 14. We have a cube splitting

VD2 = ℵ(VD)⊕"a(VD). (89)

Proof. It suffices to check this when D is a simple circle. Then

ℵ(1)= 1⊗1−2c1⊗X,
ℵ(X)= 1⊗X.

The R-submodule of A⊗A generated by these two vectors complements "(A), and
there is direct sum decomposition of R-modules

A⊗A= R ·ℵ(1)⊕R ·ℵ(X)⊕"(A).
Denote by ℘ the cube map

℘ =ma−ma"aεa : VD2 −→ VD. (90)

Note that ℘ is a graded map of degree −1.

Lemma 1. We have equalities

℘"a = 0, (91)

℘ℵ = Id(VD). (92)
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Proof. Map ℘"a : VD→ VD is the zero map because

℘"a =ma"a−ma"aεa"a =ma"a−ma"a = 0 (93)

(the second equality uses that εa"a = Id). The equality (92) is checked similarly:

℘ℵ = (
ma−ma"aεa

)(
ιa−cιama"a

)
=maιa−cmaιama"a−ma"aεaιa+cma"aεaιama"a
= Id−cma"a+cma"a−c2ma"ama"a

= Id−c2ma"ama"a

= Id .

The third equality in the computation above follows from the identities

maιa = Id, εaιa =−c. (94)

The fifth equality is implied by ma"ama"a = 0. This identity follows from the
nilpotence property m"m"= 0 of the structure maps m and " of A.

Using the splitting (89) of VD2 and Lemma 1, we can decompose the �′-cube VD1

as a direct sum of two �′-cubes as follows:

VD1 = V ′ ⊕V ′′, (95)

where

V ′(∗0)= 0, (96)

V ′(∗1)= ℵ(VD){−1} ⊂ VD2{−1} = VD1(∗1), (97)

V ′′(∗0)= VD = VD1(∗0), (98)

V ′′(∗1)="a(VD){−1} ⊂ VD2{−1} = VD1(∗1). (99)

Tensoring (95) with E�′ , we get a splitting of skew-commutative �′-cubes

VD1⊗E�′ =
(
V ′ ⊗E�′

)⊕(
V ′′ ⊗E�′

)
. (100)

This induces a splitting of complexes associated to these skew �′-cubes,

C
(
VD1⊗E�′

)= C(
V ′ ⊗E�′

)⊕C(
V ′′ ⊗E�′

)
. (101)

Proposition 15. The complex C(V ′′ ⊗E�′) is acyclic.

Proof. The complex C(V ′′ ⊗E�′) is isomorphic to the cone of the identity map
of the complex C(VD⊗E�)[−1].
Proposition 16. The complexesC(V ′⊗E�′) andC(D)[−1]{−2} are isomorphic.
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D D1
b

a

Figure 33

Proof. We have a chain of isomorphisms of complexes

C
(
V ′ ⊗E�′

)= C(
V ′(∗1)⊗E�

)[−1]
= C(

VD{−2}⊗E�

)[−1]
= C(

VD⊗E�

)[−1]{−2}
= C(D)[−1]{−2}.

The first isomorphism here follows from (96) and is obtained by fixing an isomor-
phism between skew-commutative �-cubesE�′(∗1) andE�.The second isomorphism
comes from an isomorphism V ′(∗1)= VD{−2}, induced by ℵ.
Corollary 4. The complexes C(D1) and C(D)[−1]{−2} are quasi-isomorphic.
Proof. We have

C(D1)= C
(
VD1⊗E�′

)
= C(

V ′ ⊗E�′
)⊕C(

V ′′ ⊗E�′
)

= C(D)[−1]{−2}⊕C(
V ′′ ⊗E�′

)
= C(D)[−1]{−2}⊕(acyclic complex).

Note that x(D1)= x(D)+1 and y(D1)= y(D). By (45),

C(D)= C(D)[x(D)]{2x(D)−y(D)} (102)

and

C(D1)= C(D1)[x(D1)]{2x(D1)−y(D1)}
= C(D1)[x(D)+1]{2x(D)−y(D)+2}.

Therefore, complexes C(D) and C(D1) are quasi-isomorphic.

5.3. The tangency move. Let D and D1 be two diagrams that differ as depicted in
Figure 33. In this section we construct a quasi-isomorphism of complexes C(D) and
C(D1).

We assume that D has n−2 double points. Consequently, D1 has n double points.
Let �′ be the set of double points ofD1, let � be �′ \{a,b}, where a and b are double
points of D1 depicted in Figure 33. We identify � with the double points set of D.
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D1(∗00) D1(∗01) D1(∗10) D1(∗11)

Figure 34

Denote by d the differential of the complex C(D1). Consider diagrams D1(∗00),
D1(∗01),D1(∗10),D1(∗11) obtained by resolving double points a and b of D1, as
in Figure 34. (E.g., D1(∗01) is constructed from D1 by taking the 0-resolution of a
and 1-resolution of b, etc.) Each of these four diagrams has � as the set of its double
points.

To each diagram D1(∗uv), where u,v ∈ {0,1}, there is associated the complex
C(D1(∗uv)) of graded R-modules. Denote by duv the differential in this complex:

duv : C
(
D1(∗uv)

)−→ C
(
D1(∗uv)

)
. (103)

We denote by d(i)uv the differential in shifted complexes,

d(i)uv : C
(
D1(∗uv)

)[i]{i} −→ C
(
D1(∗uv)

)[i]{i} for i ∈ Z. (104)

The commutative �-cube VD1 can be viewed as a commutative square of �′-cubes

VD1(∗00)

φ1

��

φ2 �� VD1(∗01){−1}
φ3

��
VD1(∗10){−1} φ4 �� VD1(∗11){−2},

where φi,1 ≤ i ≤ 4, denote the corresponding cube maps. Recall that these cube
maps are associated to certain elementary surfaces (see Sections 4.2, 4.3) that have
one saddle point relative to the height function and no other critical points. For
example, φ1 is associated to the surface shown in Figure 35. The maps φi induce
maps ψi between complexes:

ψ1 : C
(
D1(∗00)

)−→ C
(
D1(∗10)

){−1},
ψ2 : C

(
D1(∗00)

)−→ C
(
D1(∗01)

){−1},
ψ3 : C

(
D1(∗01)

)[−1]{−1} −→ C
(
D1(∗11)

)[−1]{−2},
ψ4 : C

(
D1(∗10)

)[−1]{−1} −→ C
(
D1(∗11)

)[−1]{−2}.
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Figure 35

We can decompose C(D1), considered as a Z⊕Z-graded R-module (see the end
of Section 3.1), into the following direct sum of Z⊕Z-graded R-modules:

C(D1)= C
(
D1(∗00)

)⊕C(
D1(∗01)

)[−1]{−1}
⊕C(

D1(∗10)
)[−1]{−1}⊕C(

D1(∗11)
)[−2]{−2}.

Let us say a few words about this decomposition: C(D1) is the direct sum of R-
modules VD1(�), which sit in the vertices of the �′-cube VD1 . Since we presented
this cube as a commutative square of �-cubes VD1(∗uv){−u−v} for u,v ∈ {0,1}, the
above decomposition results. Well, almost. Indeed, when we pass from �-cubes to
complexes, we tensor with the fixed skew cube E�. To define the left-hand side of the
above formula, we tensor VD1 with the skew �′-cube E�′, while for the right-hand
side similar tensor products are formed with the skew �-cube E�. Therefore, we
must say how we identify R-modules sitting in the vertices of E�′ with R-modules
sitting in the vertices of E�. For D1(∗00), we map E�(�), where � ⊂ �, to E�′(�)
by sending z ∈ o(�) to z ∈ o(�). For D1(∗10), we map E�(�), where � ⊂ �, to
E�′(�a) by sending z ∈ o(�) to za ∈ o(�a).We proceed similarly for D1(∗01). For
D1(∗11), we map E�(�) to E�′(�ab) by sending z ∈ o(�) to zab ∈ o(�ab). This
is not a canonical choice, since we could have sent z to zba and would have gotten
minus the original map. So, to define the latter map, we implicitly fix an ordering of
a and b.

Note that the above decomposition is not a direct sum of complexes, as the differ-
ential d(−u−v)uv of C(D1(∗uv)) differs from d restricted to C(D1(∗uv))[−u−v]{−u−
v} ⊂ C(D1), except when u= v = 1. Exactly, we have

dx = d00x+[−1]ψ1x+[−1]ψ2x for x ∈ C(
D1(∗00)

)
,

dx =−d(−1)
01 x−[−1]ψ3x for x ∈ C(

D1(∗01)
)[−1]{−1},

dx =−d(−1)
10 x+[−1]ψ4x for x ∈ C(

D1(∗10)
)[−1]{−1},

dx = d(−2)
11 x for x ∈ C(

D1(∗11)
)[−2]{−2}.

Some explanation. Applying ψ1 to x ∈ C(D1(∗00)), we get an element of the
complex C(D1(∗10)){−1}, so that we shift ψ1x by [−1] to land it in C(D1(∗10))
[−1]{−1} ⊂ C(D1), and so forth. Various signs in the above formulas come from our
previous four identifications of the skew cube E� with codimension 2 faces of E�′ .
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Figure 36

Figure 37

Let α be the map of complexes

α : C(
D1(∗01)

)[−1]{−1} −→ C
(
D1(∗10)

)[−1]{−1} (105)

associated to the surface shown in Figure 36. Considered as a map of Z⊕Z-graded
R-modules, α is grading-preserving.

Let β be the map of complexes

β : C(
D1(∗11)

)[−2]{−2} −→ C
(
D1(∗10)

)[−1]{−1} (106)

associated to the surface shown in Figure 37. Note that β is a graded map of degree
(−1,0).

Let X1,X2,X3 be R-submodules of C(D1) given by

X1 =
{
z+α(z) | z ∈ C(

D1(∗01)
)[−1]{−1}}, (107)

X2 =
{
z+dw | z,w ∈ C(

D1(∗00)
)}
, (108)

X3 =
{
z+β(w) | z,w ∈ C(

D1(∗11)
)[−2]{−2}}. (109)

Proposition 17. These submodules are stable under d:

dXi ⊂Xi (110)

and respect the Z⊕Z-grading of C(D1).

Proof. Let us first check that X1,X2, and X3 are direct sums of their graded
components. For X2 it follows from the fact that C(D1(∗00)) is a direct sum of
its graded components and d is graded of degree (1,0). Submodule X3 is graded
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Figure 38

Figure 39

because C(D1(∗11))[−2]{−2} is a direct sum of its graded components and β is a
graded map. Finally, X1 is graded since α is grading-preserving.

We now verify that these three submodules are stable under d. For X2 this is
obvious. To see it for X3, notice that dz ∈ C(D1(∗11))[−2]{−2} whenever z ∈
C(D1(∗11))[−2]{−2}. Moreover, for such a z,

dβ(z)=−d(−1)
10 β(z)+[−1]ψ4β(z)=−d(−1)

10 β(z)+z= βd(−2)
11 (z)+z. (111)

The second equality is implied by [−1]ψ4β = Id . Map ψ4β is associated to the
surface in Figure 38, which is obtained by composing surfaces to which ψ4 and β
are associated. This surface is isotopic, through an isotopy fixing the boundary, to the
surface shown in Figure 39, which represents the identity map. Hence [−1]ψ4β = Id.
Formula (111) implies thatX3 is stable under d , since the rightmost term βd(−2)

11 (z)+z
lies in X3.

Finally, to check the d-stability of X1, we compute, for z ∈ C(D1(∗01))[−1]{−1},
d
(
z+α(z))= dz+dα(z)

=−d(−1)
01 z−[−1]ψ3z−d(−1)

10 α(z)+[−1]ψ4α(z)

=−(
d
(−1)
01 z+d(−1)

10 α(z)
)+[−1](−ψ3z+ψ4α(z)

)
=−(

d
(−1)
01 z+d(−1)

10 α(z)
)

=−(
d
(−1)
01 z+αd(−1)

01 z
) ∈X1.

In the fourth equality we use that ψ4α = ψ3, and in the fifth that αd(−1)
01 = d(−1)

10 α,

since α is a grading-preserving map of complexes.
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Corollary 5. Submodules X1,X2,X3 are graded subcomplexes of the complex
C(D1).

Proposition 18. (1) We have a direct sum decomposition

C(D1)=X1⊕X2⊕X3 (112)

in the category Kom(R-mod0) of complexes of graded R-modules.
(2) The complexes X2 and X3 are acyclic.
(3) The complex X1 is isomorphic to the complex C(D)[−1]{−1}.
Proof. Since we already know that X1,X2, and X3 are graded subcomplexes of

C(D1), it suffices to check (112) on the level of underlying abelian groups. We have
α = βψ3 and, therefore, for z ∈ C(D1(∗01))[−1]{−1},

αz= βψ3z ∈X3. (113)

Subcomplex X1 consists of elements z+αz and we know that αz ∈X3. We are thus
reduced to proving the following direct sum splitting of abelian groups:

C(D1)= C
(
D1(∗01)

)[−1]{−1}⊕X2⊕X3. (114)

Next recall that X2 consists of elements z+dw for z,w ∈ C(D1(∗00)). The differ-
ential dw reads

dw = d00w+[−1]ψ1w+[−1]ψ2w. (115)

Note that [−1]ψ2(w) ∈ C(D1(∗01))[−1]{−1} and d00w ∈ C(D1(∗00)). Let X′2 be
the subgroup of C(D1) given by

X′2 =
{
z+[−1]ψ1w | z,w ∈ C

(
D1(∗00)

)}
. (116)

Then it is enough to verify thatC(D1) is a direct sum of its subgroupsC(D1(∗01))[−1]
{−1},X′2 and X3:

C(D1)= C
(
D1(∗01)

)[−1]{−1}⊕X′2⊕X3. (117)

Note that X3 contains C(D1(∗11))[−2]{−2} and X′2 contains C(D1(∗00)). Recall
the direct sum decomposition

C(D1)= C
(
D1(∗00)

)⊕C(
D1(∗01)

)[−1]{−1}
⊕C(

D1(∗10)
)[−1]{−1}⊕C(

D1(∗11)
)[−2]{−2}

ofC(D1).LetX′′2 andX′3 be the following abelian subgroups ofC(D1(∗10))[−1]{−1}:
X′′2 =

{[−1]ψ1(w) | w ∈ C
(
D1(∗00)

)}
,

X′3 =
{
β(w) | w ∈ C(

D1(∗11)
)[−2]{−2}}.
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D1D1

Figure 40

Now we are reduced to proving the direct sum decomposition

C
(
D1(∗10)

)[−1]{−1} =X′′2 ⊕X′3 (118)

in the category of abelian groups. As an abelian group, C(D1(∗10))[−1]{−1} is a
direct sum of F(D1(�a)) over all possible resolutions of the (n−2)-double points of
D1. Similar direct sum splittings can be formed forX′′2 andX′3, and one sees then that
it suffices to check (118) when D1 has only two double points. There are two such
D1’s, as seen in Figure 40. In each of these two cases decomposition (118) follows
from the splitting (2). That proves part 1 of the proposition.

We next prove part 2. The complex C(X2) is isomorphic to the cone of the identity
map of C(D1(∗00))[−1] and, therefore, acyclic. Similarly, C(X3) is acyclic, being
isomorphic to the cone of the identity map of C(D1(∗11)){−2}[−2].

To prove part 3 of the proposition, notice that the diagrams D and D1(∗01) are
isomorphic. This induces an isomorphism between the complexes

C(D)= C(
D1(∗01)

)
. (119)

An isomorphism

γ : C(
D1(∗01)

)[−1]{−1} ∼=−−→X1 (120)

is given by

γ (z)= (−1)i
(
z+α(z)) (121)

for z ∈ Ci(D1(∗01))[−1]{−1}. We need (−1)i in the above formula to match the
differentials in these two complexes.

Corollary 6. The complexes C(D)[−1]{−1} and C(D1) are quasi-isomorphic.

Note that x(D1)= x(D)+1 and y(D1)= y(D)+1. From (45) we get

C(D)= C(D)[x(D)]{2y(D)−x(D)},
C(D1)= C(D1)

[
x(D)+1

]{
2y(D)−x(D)+1

}
,

which, together with Corollary 6, implies that C(D) is quasi-isomorphic to C(D1).
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D1 D2

r1

q1

p1 r2

p2

q2

Figure 41

D1(∗0) D1(∗1) D2(∗0) D2(∗1)

Figure 42

5.4. Triple point move. We are given two diagrams with n double points each,
D1 and D2, that differ as depicted in Figure 41. In this section we construct a quasi-
isomorphism of complexes C(D1) and C(D2).

Let �′ be the set of double points ofD1.We have �′ = ��{p1,q1, r1}, where � are
all double points not shown on Figure 41. In particular, we can identify ��{p2,q2, r2}
with the set of double points of D2.

For starters, consider Figure 42. The diagrams D1(∗0),D1(∗1),D2(∗0),D2(∗1)
are obtained by resolving double points r1 of D1 and r2 of D2. Note that diagrams
D1(∗1) and D2(∗1) are isomorphic and that diagrams D1(∗0) and D2(∗0) represent
isotopic links.

We decompose C(D1) and C(D2) into following direct sums:

C(Di)= C
(
Di(∗1)

)[−1]{−1}⊕
⊕

u,v∈{0,1}
C

(
Di(∗uv0)

)[−u−v]{−u−v}. (122)

These are direct sum decompositions of Z⊕Z-graded R-modules, not complexes.
The diagrams Di(∗uv0) for i = 1,2 and u,v ∈ {0,1} are depicted in Figures 43

and 44. For all i,u,v, we identify the set of double points of Di(∗uv0) with �. To
fix the direct decomposition (122), we need identifications between the skew cube
E� and codimension 3 facets of E�′ . From the discussion in the previous section it
should be clear how these identifications are chosen. For instance, for D1(∗110), we
map E� to a codimension 3 facet of E�′ via maps E�(�)→ E�′(�p1q1) given by
o(�) $ z %−→ zp1q1 ∈ o(��{p1,q1}).

Let τ1 be the map of complexes

τ1 : C
(
D1(∗100)

)[−1]{−1} −→ C
(
D1(∗010)

)[−1]{−1} (123)
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D1(∗000) D1(∗010) D1(∗100) D1(∗110)

Figure 43

D2(∗000) D2(∗010) D2(∗100) D2(∗110)

Figure 44

Figure 45

associated to the surface shown in Figure 45. Relative to the height function, this
surface has two critical points, one of which is a saddle point and the other a local
minimum. Considered as a map of Z⊕Z-gradedR-modules, τ1 is grading-preserving.

Let δ1 be the map of complexes

δ1 : C
(
D1(∗110)

)[−2]{−2} −→ C
(
D1(∗010)

)[−1]{−1} (124)

associated to the surface depicted in Figure 46. Let X1,X2,X3 be R-submodules of
C(D1) given by

X1 =
{
x+τ1(x)+y | x ∈ C

(
D1(∗100)

)[−1]{−1},y ∈ C(
D1(∗1)

)[−1]{−1}},
X2 =

{
x+d1y | x,y ∈ C

(
D1(∗000)

)}
,

X3 =
{
δ1(x)+d1δ1(y) | x,y ∈ C

(
D1(∗110)

)[−2]{−2}},
(125)

where d1 denotes the differential of C(D1). Warning: These X1,X2,X3 have no
relation to the complexes X1,X2,X3 considered in Section 5.3.
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Figure 46

Figure 47

Propositions 19–21 can be proved in the same fashion as Propositions 17 and 18
of the previous section. For this reason and to keep this paper concise, the proofs are
omitted.

Proposition 19. Submodules X1,X2,X3 are stable under d1 and respect the Z⊕
Z-grading of C(D1).

Corollary 7. Submodules X1,X2,X3 are graded subcomplexes of the complex
C(D1).

Let τ2 be the map of complexes

τ2 : C
(
D2(∗010)

)[−1]{−1} −→ C
(
D1(∗100)

)[−1]{−1} (126)

associated to the surface shown in Figure 47. Considered as a map of Z⊕Z-graded
R-modules, τ2 is grading-preserving. Let δ2 be the map of complexes

δ2 : C
(
D2(∗110)

)[−2]{−2} −→ C
(
D2(∗100)

)[−1]{−1} (127)

associated to the surface in Figure 48.
Let Y1,Y2,Y3 be R-submodules of C(D2) given by

Y1 =
{
x+τ2(x)+y | x ∈ C

(
D2(∗010)

)[−1]{−1},y ∈ C(
D2(∗1)

)[−1]{−1}},
Y2 =

{
x+d2y | x,y ∈ C

(
D2(∗000)

)}
,

Y3 =
{
δ2(x)+d2δ2(y) | x,y ∈ C

(
D2(∗110)

)[−2]{−2}},
(128)

where d2 stands for the differential of C(D2).
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Figure 48

Proposition 20. These submodules are stable under d2 and respect the Z⊕Z-
grading of C(D2).

Corollary 8. Subcomplexes Y1,Y2,Y3 are graded subcomplexes of the complex
C(D2).

Proposition 21. (1) We have direct sum decompositions

C(D1)=X1⊕X2⊕X3, (129)

C(D2)= Y1⊕Y2⊕Y3. (130)

(2) The complexes X2,X3,Y2, and Y3 are acyclic.
(3) The complexes X1 and Y1 are isomorphic.

Proof. Parts 1 and 2 of this proposition are proved similarly to Proposition 18.
The isomorphism X1 ∼= Y1 comes from the diagram isomorphisms

D1(∗100)=D2(∗010),

D1(∗1)=D2(∗1).
(131)

These diagram isomorphisms induce isomorphisms of complexes

C
(
D1(∗100)

)= C(
D2(∗010)

)
,

C
(
D1(∗1)

)= C(
D2(∗1)

)
,

(132)

which allow us to identify x in the definition (125) of X1 with x in the definition
(128) of Y1 and, similarly, identify y’s. An isomorphism X1 ∼= Y1 of complexes is
then given by

X1 $ x+τ1(x)+y %−→ x+τ2(x)+y ∈ Y1. (133)

Corollary 9. Complexes C(D1) and C(D2) are quasi-isomorphic.

The above isomorphism of complexes X1 and Y1 induces a quasi-isomorphism
of C(D1) and C(D2). Note that x(D1) = x(D2) and y(D1) = y(D2). Therefore,
the complexes C(D1) and C(D2) are quasi-isomorphic, and the cohomology groups
Hi(D1) and Hi(D2) are isomorphic as graded R-modules.

This completes the proof of Theorem 1.
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+1 −1

Figure 49

6. Properties of cohomology groups

6.1. Some elementary properties. Pick an oriented link L and a component L′ of
L. Let L0 be L with the orientation of L′ reversed, and let l be the linking number
of L′ and L\L′. Fixing a plane diagram D of L, we count l as half the number of
double intersection points in D of L′ with L\L′ with weights +1 or −1 according
to the convention depicted in Figure 49.

Denote by D0 the diagram D with the reversed orientation of L′. Since D0 and D
are the same as unoriented diagrams, C(D0)= C(D). Also

x(D0)= x(D)−2l, y(D0)= y(D)+2l. (134)

Proposition 22. For L,L0 as above, there is an equality

Hi(L0)=Hi+2l(L){2l} (135)

of isomorphism classes of graded R-modules.

Let K,K1 be oriented knots and (−K) be K with its orientation reversed. In a
similar fashion we deduce the following.

Proposition 23. There is an equality

Hi
(
K#K1

)=Hi((−K)#K1
)

(136)

of isomorphism classes of graded R-modules.

Let D be a diagram of an oriented link L and denote by cm(L) the number of
connected components of L. Then it is easy to see that Cij (D)= 0 if parities of j and
cm(L) differ. This observation implies the next proposition.

Proposition 24. For an oriented link L,

Hi,j (L)= 0 (137)

if j+1≡ cm(L) (mod2).
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D

D(∗00) D(∗01) D(∗10) D(∗11)

Figure 50. Diagram D and its four resolutions

6.2. Computational shortcuts and cohomology of (2,n) torus links. Given a plane
diagram D, a straighforward computation of cohomology groups Hi(D) is daunting.
These groups are cohomology groups of the graded complex C(D), and the ranks of
the abelian groups Cij (D) grow exponentially in the complexity of D. Probably there
is no fast algorithm for computing Hi(D), since these groups carry full information
about the Jones polynomial, computing which is #P -hard (see [JVW]).

Yet, one can try to reduce C(D) to a much smaller complex, albeit still expo-
nentially large, but more practical for a computation. In this section we provide an
example by simplifying C(D) in the case when D contains a chain of positive half-
twists, and we apply our result by computing cohomology groups of (2,n) torus links.

Let D be a plane diagram with n crossings and suppose that D contains a subdia-
gram as pictured in Figure 50. Four possible resolutions of these two double points
of D produce diagrams D(∗00),D(∗01),D(∗10), and D(∗11).

Note that diagrams D(∗01) and D(∗10) are isomorphic and D(∗00) is isomorphic
to a union of D(∗01) and a simple circle. The complex C(D) is isomorphic to the
total complex of the bicomplex

· · · −→ 0−→ C
(
D(∗00)

) ∂0−−→ C
(
D(∗01)

){−1}⊕C(
D(∗10)

){−1}
∂1−−→ C

(
D(∗11)

){−2} −→ 0−→ ·· · ,

where the differentials ∂0 and ∂1 are determined by the structure maps of the skew
�-cube VD⊗E� (where � is the set of crossings of D). Denote this bicomplex by C.

To simplify notation we denote the diagramD(∗01) byD0 andD(∗11) byD1 (see
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D0 D1

Figure 51

Figure 51). Then the bicomplex C becomes

· · · −→ 0−→ C(D0)⊗A ∂0−−→ C(D0){−1}⊕C(D0){−1}
∂1−−→ C(D1){−2} −→ 0−→ ·· · .

Clearly, the differential ∂0, if restricted to the subcomplexC(D0)⊗1 ofC(D0)⊗A,
is injective, and so the total complex of the subbicomplex

0−→ C(D0)⊗1
∂0−−→ C(D0){−1} −→ 0 (138)

ofC is acyclic. Denote this subbicomplex byCs and the quotient bicomplex byC/Cs.
The total complexes Tot(C) and Tot(C/Cs) of C and C/Cs are quasi-isomorphic; so
to compute the cohomology of C(D)= Tot(C) it suffices to find the cohomology of
Tot(C/Cs).

We next give a precise description of the bicomplex Tot(C/Cs). Let u, l,w be maps
of complexes

u : C(
D(∗00)

)−→ C(D0), (139)

l : C(
D(∗00)

)−→ C(D0), (140)

w : C(D0)−→ C(D1) (141)

induced by the surfaces shown in Figure 52, respectively. Note that each of these
maps has degree −1, and to make them homogeneous we need to shift gradings of
our complexes appropriately. We use the same notation for shifted maps, since the
shifts are always clear.

Let

v : C(D0)−→ C(D0)⊗A= C
(
D(∗00)

)
(142)

be the map of complexes v(t)= t⊗X, t ∈ C(D0). The map v has degree−1. Denote
by uX and lX the compositions

uX = u◦v, lX = l ◦v. (143)

These are degree (−2) maps of complexes, and for each i they induce degree 0 maps
C(D0){i} → C(D0){i−2}, also denoted uX and lX.
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Figure 52

Lemma 2. The bicomplex C/Cs is isomorphic to the bicomplex

0−→ C(D0){1} uX−lX−−−−−→ C(D0){−1} w−−→ C(D1){−2} −→ 0. (144)

We skip the proof, which is a simple linear algebra.

Corollary 10. Cohomology groups H
i
(D) are isomorphic to the cohomology

of the total complex of the bicomplex (144).

We thus see that the cohomology H
i
(D) of the diagram D can be computed via

the quotient complex Tot(C/Cs) of C(D). The quotient complex is smaller than the
original one, and computing its cohomology requires less work. This reduction is not
drastic since ranks of homogeneous components of complexes C(D) and Tot(C/Cs)
have the same order of magnitude; but a similar reduction (described next, when D
contains a long chain of positive twists) leads to an effective computation of Hi(D)
for certain diagrams D.

Suppose that a diagram D contains a chain of k positive half-twists, as in Figure
53. As before, denote by D0 and D1 diagrams that are suitable resolutions of the
k-chain of D.
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D k crossings D0 D1

Figure 53. Diagram D and two resolutions

From our previous discussion we retain degree (−2) maps uX, lX and a degree
(−1) map w between (appropriately shifted) complexes C(D0) and C(D1). Let C′
be the bicomplex

0−→ C(D0){k−1} ∂0−−→ C(D0){k−3} ∂1−−→ ·· ·
∂k−3−−−→ C(D0){3−k} ∂k−2−−−→ C(D0){1−k} ∂k−1−−−→ C(D1){−k} −→ 0,

where

∂k−1 = w,
∂k−2 = uX− lX,
∂k−3 = uX+ lX,
∂k−4 = uX− lX,

· · ·
∂0 = uX−(−1)klX,

that is,

∂k−i = uX−(−1)i lX, for 2 ≤ i ≤ k. (145)

Proposition 25. The complex C(D) is quasi-isomorphic to the total complex

Tot(C′) of the bicomplex C′. Cohomology groups H
i
(D) are isomorphic to the co-

homology groups of Tot(C′).

The proof goes by induction on k, induction base k = 2 being given by Corollary 10,
and consists of finding a suitable acyclic subcomplex by which to quotient. We omit
the details.

We conclude this section by applying this proposition to compute cohomology
groups of (2,k) torus links. Fix k > 0 and denote byD the diagram of the (2,k) torus
link T2,k depicted in Figure 54.

The diagram D0 is isomorphic to a simple circle and D1 to a disjoint union of two
simple circles. Then uX = lX is the operator A→ A of multiplication by X and the
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D k crossings

Figure 54

bicomplex C′ becomes a complex

0−→ A{k−1} −→ A{k−3} −→ ·· · 0−→ A{5−k}
2X−−−→ A{3−k} 0−→ A{1−k} "−−→ A⊗A{−k} −→ 0.

Recalling that x(D)= k and y(D)= 0, we get the following.

Proposition 26. The isomorphism classes of the graded R-modules Hi(T2,k) are
given by

Hi(T2,k)= 0 for i <−k and i > 0,

H 0(T2,k)= R{k}⊕R{k−2},
H−1(T2,k)= 0,

H−2j (T2,k)=
(
R/2R

){4j+k}⊕R{4j−2+k} for 1≤ j ≤ k−1

2
, j ∈ Z,

H−2j−1(T2,k)= R{4j+2+k} for 1≤ j ≤ k−1

2
, j ∈ Z,

H−k(T2,k)= R{3k}⊕R{3k−2} for even k.

6.3. Link cobordisms and maps of cohomology groups. In this section, by a surface
S in R4 we mean an oriented, compact surface S, possibly with boundary, properly
embedded in R3×[0,1]. The boundary of S is then a disjoint union

∂S = ∂0S�−∂1S (146)

of the intersections of S with two boundary components of R3×[0,1]:
∂0S =

(
S∩R3×{0}),

−∂1S =
(
S∩R3×{1}).

Note that ∂0S and ∂1S are oriented links in R3.
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fusion fusion

birth death

Figure 55

The surface S can be represented by a sequence J of plane diagrams of oriented
links where every two consecutive diagrams in J are related either by one of the
Reidemeister moves (see Figures 10–13 of Section 4.1) or by one of the four moves
depicted in Figure 55. (See [CS] where such representations by sequences of plane
diagrams are studied in detail.) Following Carter-Saito [CS] and Fisher [Fs], we call
these moves birth, death, and fusion. ([CS] and [Fs] deal with the nonoriented version
of these moves.) We call J a representation of S. The first diagram in the sequence
J is necessarily a diagram of the oriented link ∂0S, and the last diagram is a diagram
of ∂1S.

The birth move consists of adding a simple closed curve to a diagram D. Denote
the new diagram by D1. Then C(D1) = C(D)⊗R A and the unit map ι : R → A

of the algebra A induces a map of complexes C(D)→ C(D1). This is the map we
associate to the birth move.

The death move consists of removing a simple circle from a diagram D1 to get a
diagram D. In this case the counit ε : A→ R induces a map of complexes C(D1)→
C(D).

Finally, to a fusion move between diagrams D0 and D1 we associate a map
C(D0) → C(D1) corresponding to the elementary surface with one saddle point
in the manner discussed in Section 4.3.

In Section 5, to each Reidemeister move between diagrams D0 and D1 we associ-
ated a quasi-isomorphism map of complexesC(D0)→ C(D1).Given a representation
J of a surface S by a sequence of diagrams, denote the first and last diagrams of J
by J0 and J1, respectively. Then to J we can associate a map of complexes

ϕJ : C(J0)−→ C(J1), (147)

which is the composition of maps associated to elementary transformations between
consecutive diagrams of J. The map ϕJ induces a map of cohomology groups

θJ :Hi,j (J0)−→Hi,j+χ(S)(J1), i,j ∈ Z. (148)

We are now ready to state our main conjecture.
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Conjecture 1. If two representations J, J̃ of a surface S have the property that
(a) diagrams J0 and J̃0 are isomorphic,
(b) diagrams J1 and J̃1 are isomorphic,

then the maps θJ and θJ̃ are equal up to an overall minus sign: θJ =±θJ̃ .
In other words, we conjecture that, after a suitable Z2 extension of the link cobor-

dism category, our construction associates honest cohomology groups Hi(L) to ori-
ented links L in R3 (and not just isomorphism classes of groups) and associates
homomorphisms between these groups to isotopy classes of oriented surfaces em-
bedded in R3×[0,1]. In the categorical language, we expect to get a functor from
the category of (Z2-extended) oriented link cobordisms to the category of bigraded
R-modules and module homomorphisms.

Suppose that the above conjecture is true. Then, in the case of a closed oriented
surface S embedded in R4, the map θS of cohomology groups is a homomorphism
from R to itself (since ∂S = ∅ and the cohomology of the empty link is equal to the
ground ring R). This homomorphism has degree χ(S) and is automatically zero when
χ(S) < 0. Thus, the conjectural invariants are zero whenever S has empty boundary
and the Euler characteristic of S is negative. If ∂S = ∅ and the Euler characteristic of
S is nonnegative (when S is connected, S is then necessarily a 2-sphere or a 2-torus),
the homomorphism θS : R→ R is determined by θS(1)= kc(χ(S)/2) and amounts to
an integer number k. Hence, we expect to have integer-valued invariants of closed
oriented surfaces with nonnegative Euler characteristic, embedded in R4.

7. Setting c to zero

7.1. Cohomology groups �i,j . Setting c = 0 and taking Z instead of R = Z[c] as
the base ring, everything from Sections 2, 4, and 5 goes through in exactly the same
manner. The role of the ring A is played by the free graded abelian group � of rank
2 with generators 1 and X in degrees 1 and −1, correspondingly. � has commutative
algebra and cocommutative coalgebra structures,

12 = 1, 1X =X1=X, X2 = 0, (149)

"(1)= 1⊗X+X⊗1, "(X)=X⊗X, (150)

and the identity (16) holds. By abuse of notation, we use m and " to denote multipli-
cation and comultiplication in �. Earlier,m and" were used to denote multiplication
and comultiplication in A. As in Section 2.3, we construct a functor 	 from the cat-
egory � of closed 1-manifolds and cobordisms between them to the category of
graded abelian groups and graded homomorphisms. To a disjoint union of k circles,
the functor 	 assigns the group �⊗k. To elementary surfaces S1

2 ,S
2
1 ,S

1
0 ,S

0
1 ,S

2
2 , and

S1
1 (see Section 2.3), the functor 	 assigns maps m,",ι,ε,Perm, and Id between
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suitable tensor powers of �. The maps ι : Z→� and ε :�→ Z are given by

ι(1)= 1, ε(1)= 0, ε(X)= 1, (151)

while Perm is just the permutation map �⊗�→�⊗�.
To a diagramD of an oriented link L, we can then associate a commutative �-cube


D of graded abelian groups and grading-preserving homomorphism, by the same
procedure as the one described in Section 4.2, using the functor 	 instead of F . In
particular, for �⊂ � we have 
D(�)= 	(D(�)){−|�|} where {k} shifts the grading
down by k.

Let �� be the category of graded abelian groups and grading-preserving homo-
morphisms. Let �� be the skew-commutative �-cube E�⊗RZ over ��.

Tensoring 
D with �� over Z, we get a skew-commutative �-cube 
D⊗�� over
the category ��. From this skew-commutative �-cube, we get a complex �(
D⊗��)

of graded abelian groups with a grading-preserving differential (see Section 3.4).
Denote by �(D) this complex and by �(D) the shifted complex

�(D)= �(D)
[
x(D)

]{
2x(D)−y(D)}. (152)

If we consider Z as a graded R-module, concentrated in degree zero so that cZ= 0,
then

�(D)= C(D)⊗RZ and �(D)= C(D)⊗RZ. (153)

To a plane diagramD of an oriented link L, we thus associate a complex of graded
abelian groups �(D). Denote the ith cohomology group of the j th graded summand
of �(D) by �i,j (D). These cohomology groups are finitely generated abelian groups.
For each diagram D as i and j vary over all integers, only a finite number of these
groups are nonzero.

Theorem 2. For an oriented linkL, isomorphism classes of abelian groups�i,j (D)

do not depend on the choice of a diagram D of L and are invariants of L.

Proof. Set c = 0 in the proof of Theorem 1.

For a diagram D of the link L, denote the isomorphism classes of �i,j (D) by

�i,j (L). Denote by �
i
(D) (respectively, �i (D)) the ith group of the complex �(D)

(respectively, �(D)) and by �
i

j (D) (respectively, �ij (D)) the j th graded compo-

nent of �
i
(D) (respectively, �i (D)), so that �

i
(D) = ⊕j∈Z�

i

j (D) (respectively,

�i (D)=⊕j∈Z�ij (D)). For a diagram D denote by �i (D) the graded abelian group

⊕j∈Z�i,j (D). In other words, �i (D) is the ith cohomology group of �(D). Denote

by �
i
(D) the ith cohomology group of the complex �(D) and by �

i,j
(D) the j th

graded component of �
i
(D), so that �

i
(D)=⊕j∈Z�

i,j
(D).
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7.2. Properties of �i,j : Euler characteristic, change of orientation. The Kauff-
man bracket of an oriented link L is equal to the graded Euler characteristic of the
cohomology groups �i,j (L), as stated in the following proposition.

Proposition 27. For an oriented link L,

K(L)=
∑
i,j∈Z

(−1)iqj dimQ
(
�i,j (L)⊗Q)

, (154)

where K(L) is the scaled Kauffman bracket (see Section 2.4).

The proof is completely analogous to that of formula (47). The statements and
proofs of Propositions 22–24 transfer without change to the case of cohomology
groups �i,j , as indicated below.

Let L be an oriented link and L′ a component of L. Denote by l the linking number
of L′ with its complement L\L′ in L. Let L0 be the link L with the orientation of
L′ reversed.

Proposition 28. For i,j ∈ Z there is an equality of isomorphism classes of
abelian groups

�i,j (L0)=�i+2l,j+2l(L). (155)

Proposition 29. Let K and K1 be oriented knots and (−K) be K with the re-
versed orientation. Then

�i,j (K#K1)=�i,j
(
(−K)#K1

)
. (156)

Similarly to Proposition 24 we can prove the following.

Proposition 30. For an oriented link L,

�i,j (L)= 0 (157)

if j+1≡ cm(L) (mod 2).

7.3. Cohomology of the mirror image. Let L be an oriented link and denote by L!
the mirror image of L. Let D be a diagram of L with n crossings, � the set of these
crossings, and D! the corresponding diagram of L!, as shown in Figure 56.

IfM is a graded abelian group,M =⊕j∈ZMj, define the dual graded abelian group
M∗ by (M∗)j = Hom(M−j ,Z). The dual map f ∗ :N∗ →M∗ of a map f :M→N

is defined as the dual of f in the sense of linear algebra.
For �⊂ � denote by �̃ the complement �\�. Let 
 be a commutative �-cube over

the category �� of graded abelian groups and grading-preserving homomorphisms.
Define the dual cube 
∗ by


∗(�)= (



(
�̃

))∗
. (158)
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D D!

Figure 56

The structure map

ξ
∗
a : 
∗(�)−→ 
∗(�a) (159)

of 
∗ is the dual of the structure map

ξ

a : 


(
�̃\a)−→ 


(
�̃

)
(160)

of 
.
Denote by {s} the automorphism of the category �� that shifts the grading down

by s. If 
 is a commutative �-cube over ��, denote by 
{s} the commutative �-cube

 with the grading of each group 
(�) shifted down by s.

Proposition 31. Let D be a diagram with n crossings and D! the dual diagram.
Then the commutative �-cube 
D! {−n} is isomorphic to the dual (
D)∗ of the �-
cube 
D.

Proof. Introduce a basis {1∗,X∗} in the abelian group �∗ = Hom(�,Z) by

1∗(1)= 0, 1∗(X)= 1, X∗(1)= 1, X∗(X)= 0. (161)

Denote by m∗,"∗ maps dual to " and m, respectively:

m∗ :�∗⊗�∗ −→�∗,
"∗ :�∗ −→�∗⊗�∗.

Then, in the basis {1∗,X∗}, these maps are

m∗
(
1∗⊗X∗)=m∗(X∗⊗1∗

)=X∗,
m∗

(
1∗⊗1∗

)= 1∗,
m∗

(
X∗⊗X∗)= 0,

"∗
(
1∗

)= 1∗⊗X∗+X∗⊗1∗,
"∗

(
X∗

)=X∗⊗X∗.
Hence, under the isomorphism µ : � → �∗ of graded abelian groups, given by
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µ(1)= 1∗ and µ(X)=X∗, maps m," become m∗,"∗.
Note that the �̃-resolution D(�̃) of diagram D and the �-resolution D!(�) of D!

are isomorphic. Let k be the number of circles in D(�̃). Then

	
(
D

(
�̃

))= 	
(
D!(�)

)=�⊗k (162)

and, via µ, we can identify

	
(
D

(
�̃

))= (�∗)⊗k = (
	

(
D!(�)

))∗
. (163)

Since µ maps m," to m∗,"∗, we see that after suitable shifts (recall that 
D(�) is
equal to 	(D(�)) shifted up by |�|), the identification (163) extends to an isomor-
phism of �-cubes 
D! {−n} and (
D)∗.

Given a complex C of graded abelian groups and grading-preserving homomor-
phisms

· · · −→ Ci
di−−→ Ci+1 −→ ·· · , (164)

define the dual complex C∗ by (C∗)i = (C−i )∗, the differential (d∗)i being the dual
of the differential d−i−1 of C.

From the last proposition we easily obtain the following.

Proposition 32. The complex �(D!) is isomorphic to the dual of the complex
�(D).

Corollary 11. For an oriented link L and integers i,j , there are equalities of
isomorphism classes of abelian groups

�i,j
(
L!

)⊗Q =�−i,−j (L)⊗Q, (165)

Tor
(
�i,j

(
L!

))= Tor
(
�1−i,−j (L)

)
, (166)

where Tor stands for the torsion subgroup.

Note that this corollary provides a necessary condition for a link to be amphicheiral.

7.4. Cohomology of the disjoint union and connected sum of knots. Pick diagrams
D1,D2 of oriented links L1,L2 and consider a diagram D1�D2 of the disjoint union
L1�L2. We then have an isomorphism of cochain complexes

�(D1�D2)= �(D1)⊗�(D2) (167)

of free graded abelian groups. From the Künneth formula we derive the following.

Proposition 33. There is a short split exact sequence of cohomology groups

0−→
⊕
i,j∈Z

(
�i,j (D1)⊗�k−i,m−j (D2)

)−→�k,m
(
D1�D2)

−→
⊕
i,j∈Z

TorZ1
(
�i,j (D1),�

k−i+1,m−j (D2)
)−→ 0.



416 MIKHAIL KHOVANOV

D5

D4D3

D2D1

1 2

1 2 1 2

1 2

Figure 57

Corollary 12. For each k,m ∈ Z, there is an equality of isomorphism classes
of abelian groups

�k,m(L1�L2)=
⊕
i,j∈Z

(
�i,j (L1)⊗�k−i,m−j (L2)

)
⊕
i,j∈Z

TorZ1
(
�i,j (L1),�

k−i+1,m−j (L2)
)
.

Let D1,D2 be diagrams of oriented knots K1,K2, as in Figure 57. Consider di-
agrams D3,D4, and D5 of oriented links K1 �K2, K1#K2, and K1#(−K2). By
resolving the central double point of D5, we get a short exact sequence of complexes
of graded abelian groups

0−→ �(D3)[−1]{−1} −→ �(D5)−→ �(D4)−→ 0. (168)

After shifts, we obtain an exact sequence

0−→ �(D3)[−1]{−1} −→ �(D5)[−1]{−2} −→ �(D4)−→ 0, (169)

which induces, for every integer j , a long exact sequence of cohomology groups

· · · −→�i−1,j−1(D3)−→�i−1,j−2(D5)−→�i,j (D4)−→
−→�i,j−1(D3)−→�i,j−2(D5)−→�i+1,j (D4)−→ ·· · . (170)
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Since the diagrams D3,D4, and D5 represent oriented links K1 �K2,K1#K2, and
K1#(−K2), respectively, then in view of Proposition 29, we obtain the next proposi-
tion.

Proposition 34. For oriented knots K1,K2, the isomorphism classes of the
abelian groups �i,j (K1 �K2),�

i,j (K1#K2) can be arranged into long exact se-
quences

−→�i−1,j−1(K1�K2)−→�i−1,j−2(K1#K2)−→�i,j (K1#K2)−→
−→�i,j−1(K1�K2)−→�i,j−2(K1#K2)−→�i+1,j (K1#K2)−→ .

(171)

7.5. A spectral sequence. Let D be an plane diagram of a link. In this section we
construct a spectral sequence whose E1 term is made of groups �i,j (D) and which
converges to cohomology groups Hi,j (D).

Due to the direct sum decomposition R =⊕k≥0c
kZ of abelian groups, we have an

abelian group decomposition

Cij (D)=
⊕
k≥0

�ij−2k(D), (172)

where Cij (D) and �ij (D) are defined as in Sections 4.2 and 7.1, respectively. Let us
fix a j ∈ Z. Denote by d the differential in the weight-j subcomplex of the complex
C(D):

· · · d−−→ Ci−1
j (D)

d−−→ Cij (D)
d−−→ Ci+1

j (D)
d−−→ ·· · . (173)

Denote by ∂ the differential in the complex

· · · ∂−−→ �i−1
j−2k(D)

∂−−→ �ij−2k(D)
∂−−→ �i+1

j−2k(D)
∂−−→ ·· · , (174)

where we suppress the dependence of ∂ on k. Under the identification (172), the
differential d becomes a differential of the complex

· · · d−−→
⊕
k≥0

�ij−2k(D)
d−−→

⊕
k≥0

�i+1
j−2k(D)

d−−→ ·· · . (175)

Consider a bigraded abelian group

C =
⊕

k≥0,i∈Z
�ij−2k(D), (176)

where we set the grading of �ij−2k(D) to (i,−k). We thus have a bigraded abelian
group C and two maps, d and ∂ , from C to C. Map ∂ is bigraded of degree (1,0)
while d is only graded relative to the first grading. However, we can decompose

d = ∂+ ∂̃, (177)
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where ∂̃ has grading (1,−1) and satisfies

∂̃ ∂̃ = 0, (178)

∂∂̃+ ∂̃∂ = 0. (179)

Besides, since ∂ is a differential, ∂∂ = 0. Therefore, Hi,j (D) is equal to the ith
cohomology group of the total complex of the bicomplex (C,∂, ∂̃).Group �s,j−2k(D)

is equal to the sth cohomology group of the subcomplex (relative to the differential ∂)

· · · ∂−−→ �i−1,j−2k(D)
∂−−→ �i,j−2k(D)

∂−−→ Ci+1,j−2k(D)
∂−−→ ·· · (180)

of C. Therefore, for each j ∈ Z we get a spectral sequence whose E1 term is given by
cohomology groups �s,j−2k(D), s ∈ Z, k ≥ 0, and which converges to cohomology
groupsHi,j (D). In the few cases where we managed to compute cohomology groups,
we have Hi,j (D) = ⊕k≥0�i,j−2k(D) and, consequently, the spectral sequence de-
generates at E1. We have no idea whether this is true for any diagram D.

7.6. Examples. Perhaps the graded groups �i (D) are easier to compute than
Hi(D). The latter are computed via the complex C(D) of free graded R-modules,
and a complex for �i (D) is obtained by tensoring C(D) with Z over R, so that
free graded R-modules become free abelian groups of the same rank. In practice,
the computation of �i (D) faces the problem of effectively simplifying complexes of
abelian groups of exponentially high rank. The shortcut for the computation ofHi(D)
described in Section 6.2 works equally well for groups �i (D), with Proposition 25
generalized to complexes �(D). This easily leads to a computation of cohomology
groups �i,j (T2,k) of the (2,k) torus link T2,k, oriented as in Section 6.2.

Proposition 35. Cohomology groups �i,j (T2,k), k > 1 are isomorphic to

�0,−k(T2,k)= Z,
�0,2−k(T2,k)= Z,

�−2j−1,−4j−2−k(T2,k)= Z for 1≤ j ≤ k−1

2
, j ∈ Z,

�−2j,−4j−k(T2,k)= Z2 for 1≤ j ≤ k−1

2
, j ∈ Z,

�−2j,−4j+2−k(T2,k)= Z for 1≤ j ≤ k−1

2
, j ∈ Z,

�−k,−3k(T2,k)= Z for even k,

�−k,2−3k(T2,k)= Z for even k,

�i,j (T2,k)= 0 for all other values of i and j .
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7.7. An application to the crossing number

Definition 3. A plane diagram D with the set � of double points is called +
adequate if for each double point a the diagram D(�\ {a}) has one circle less than
D(�).

Definition 4. A plane diagram D with the set � of double points is called −
adequate if for each double point a the diagram D({a}) has one circle less than
D(∅).
Definition 5. A plane diagramD is called adequate if it is both+ and−adequate.
These definitions are from [LT] and [T].

Proposition 36. Let D be a diagram with n crossings. Then �
0
(D) �= 0 if and

only if D is −adequate and �
n
(D) �= 0 if and only if D is +adequate.

Proof. The differential ∂0 : �
0
(D)→ �

1
(D) is not injective and, hence, �

0
(D) �=

0 if and only if D is −adequate. We can proceed similarly for �
n
(D) and +adequate

diagrams. (Groups �
i
(D) are defined at the end of Section 7.1.)

Definition 6. Homological length hl(L) of an oriented link L is the difference
between the maximal i such that �i (L) �= 0 and the minimal i such that �i (L) �= 0.

Denote by c(L) the crossing number of L. It is the minimal number of crossings
in a plane diagram of L.

Proposition 37. For an oriented link L,

c(L)≥ hl(L). (181)

Proof. Let D be a diagram of L with c(L) crossings. Then �
i
(D) = 0 for i < 0

and for i > hl(L). Consequently, �
i
(D)= 0 for i < 0 and i > hl(L).

Corollary 13. LetD be an adequate diagram with n crossings of a link L. Then
c(L)= n.
Proof. By Proposition 36, �

0
(D) �= 0 and �

n
(D) �= 0.Therefore, c(L)≥ hl(L)≥

n. But since D is an n-crossing diagram of L, the crossing number of L is n.

Corollary 13 was originally obtained by Thistlethwaite (see [T, Corollary 3.4])
through the analysis of the 2-variable Kauffman polynomial (not to be confused with
the Kauffman bracket).

8. Invariants of (1,1)-tangles

8.1. Graded A-modules. In Section 2.2 we define algebra A as a free module of
rank 2 over the ring R = Z[c], generated by 1 and X, with the multiplication rules

11= 1, 1X =X1=X, X2 = 0. (182)
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Gradings of 1 and X are equal to 1 and −1, respectively, so that the multiplication in
A is a graded map of degree −1.

Definition 7. A graded A-module M is a Z-graded abelian group M = ⊕i∈ZMi,
together with group homomorphisms

X :Mi −→Mi−2, i ∈ Z, (183)

c :Mi −→Mi+2, i ∈ Z, (184)

that satisfy relations

Xc = cX and X2 = 0. (185)

Definition 8. A homomorphism of graded A-modules M and N is a grading-pre-
serving homomorphism of abelian groups f :M→ N that intertwines the action of
X and c in M and N :

Xf = fX, cf = f c. (186)

Denote by A-mod0 the category whose objects are graded A-modules and whose
morphisms are grading-preserving homomorphisms of graded A-modules. Note that
A-mod0 is an abelian category. Denote by {n} the automorphism of A-mod that shifts
the grading down by n. Let A-mod be the category of graded A-modules and graded
maps. A-mod has the same objects as A-mod0 but more morphisms.

Given a graded A-module M, define the multiplication map

mM : A⊗RM −→M (187)

by

mM(1⊗ t)= t, mM(X⊗ t)=Xt, t ∈M. (188)

The multiplication mapmM is a degree (−1) map with the grading onA⊗RM defined
as the product grading of gradings of A and M .

To a graded A-module M associate a map

"M :M −→ A⊗M (189)

(recall that all tensor products are over R = Z[c]) by

"M(t)=X⊗ t+1⊗Xt+cX⊗Xt, t ∈M. (190)

Then "M equips M with the structure of a cocommutative comodule over A. Map
"M has degree −1. The following relation between "M and mM is straightforward
to check:

"MmM = (
IdA⊗mM

)(
"⊗ IdM

)= (
m⊗ IdM

)(
IdA⊗"M

)
. (191)
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Denote by ιM the map M→ A⊗M given by ιM(t)= 1⊗ t for t ∈M .
Introduce an A-module structure on A⊗n⊗M by

a(x⊗y)= x⊗ay for a ∈ A, x ∈ A⊗n, y ∈M, (192)

where ay means mM(a⊗y). Then mM,"M , and ιM, after appropriate shifts by {1}
or {−1}, are maps of graded A-modules.

Proposition 38. For any gradedA-moduleM we have direct sum decompositions
of A⊗M, considered as a graded A-module:

A⊗M ="MM⊕ ιMM, (193)

A⊗M = ιMM⊕(
"M− ιMmM"M

)
M, (194)

A⊗M ="MM⊕(
ιM−cιMmM"M

)
M. (195)

Proof. Let us check (194), for instance. We have a decomposition

A⊗M = (1⊗M)⊕(X⊗M). (196)

Denote by p the projection A⊗M → X⊗M, orthogonal to 1⊗M. Since ιMM =
1⊗M, it suffices to check that

p
(
"M− ιMmM"M

) :M −→X⊗M (197)

is an A-module isomorphism. This map is given by

t %−→X⊗(1+cX)t, where t ∈M. (198)

The inverse map is

X⊗ t %−→ (1−cX)t. (199)

Decompositions (193) and (195) can be verified analogously.

8.2. Nonclosed (1+1)-cobordisms. Let �1 be the category whose objects are 1-
dimensional manifolds that are unions of a finite number of circles and one interval.
An ordering of the ends of this interval is fixed. Morphisms between objects α and
β of �1 are oriented surfaces whose boundary is the union of α,β and two intervals
that join corresponding ends of the intervals of α and β. An example is depicted in
Figure 58. This surface represents a morphism from an interval to a union of a circle
and an interval.

We require that a surface can be presented as a composition of disjoint unions of
surfaces S1

2 ,S
2
1 ,S

1
0 ,S

0
1 ,S

2
2 ,S

1
1 , defined in Section 2.3, and surfaces T1,T2, depicted

in Figure 59. We compose morphisms in this category by concatenating surfaces.
Category �1 is a module category over �, defined in Section 2.3. The bifunctor

�⊗�1 →�1 is defined on objects and morphisms by taking disjoint unions.
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Figure 58

T1

T2

Figure 59

Recall from the previous section that A-mod denotes the category of graded
A-modules and graded homomorphisms. Given a graded A-module M , define a
monoidal functor

FM :�1 −→ A-mod

by assigning the graded A-module A⊗n⊗M to a union of n circles and one inter-
val, maps "M and mM (defined in the previous section) to the elementary surfaces
T1 and T2:

FM(T1)="M, FM(T2)=mM. (200)

To the other six elementary surfaces S1
2 ,S

2
1 ,S

1
0 ,S

0
1 ,S

2
2 ,S

1
1 (in Section 2.3) associate

the same maps as for the functor F :

FM
(
S1

2

)=m, FM
(
S2

1

)=", FM
(
S1

0

)= ι,
(201)

FM
(
S0

1

)= ε, FM
(
S2

2

)= Perm, FM
(
S1

1

)= Id .

8.3. (1,1)-tangles. A (1,1)-tangle is a proper smooth embedding e : T ↪→ R2×
[0,1] of a finite collection T of circles and one interval [0,1] into R2×[0,1] such
that the boundary points of [0,1] go to the corresponding boundary component of
R2×[0,1]:

e(0) ∈R2×{0}, e(1) ∈R2×{1}. (202)

Two (1,1)-tangles are called equivalent if they are isotopic via an isotopy that fixes
the boundary. Oriented (1,1)-tangles are (1,1)-tangles with a chosen orientation of
each component, the orientation of [0,1] always chosen in the direction from 0 to 1.
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Figure 60. Diagram D and two resolutions

Define a marked oriented link (inR3) as an oriented link with a marked component.
Obviously, there is a natural one-to-one correspondence between marked oriented
links and oriented (1,1)-tangles: the closure of a (1,1)-tangle is a marked oriented
link. Denote this map from oriented (1,1)-tangles to oriented marked links by cl.

8.4. Invariants. A plane diagram D of an oriented (1,1)-tangle L is a generic
projection of L onto R×[0,1]. If D is a plane diagram of an oriented (1,1)-tangle,
define x(D) and y(D) in the same way as for plane diagrams of oriented links (see
Section 2.4).

Fix a graded A-module M. Let n be the number of double points of D, so that
n = x(D)+y(D) and � is the set of double points of D. To M and D associate a
commutative �-cube VMD over the category A-mod0 of graded A-modules as follows.

For � ⊂ � the �-resolution D(�) of D consists of a disjoint union of circles and
an interval. The functor FM (see Section 8.2) assigns a graded A-module to D(�).
Define

VMD (�)= FM
(
D(�)

){−|�|}. (203)

Maps between VMD (�) for various subsets � are defined by the procedure completely
analogous to the one described in Section 4.2. Due to shifts {−|�|}, these maps of
graded A-modules are grading-preserving, rather than just graded maps, so that VMD
is a commutative cube over A-mod0 .

Example. See the diagram D and its resolutions depicted in Figure 60. We have

VMD (∅)= A⊗M,
VMD (�)=M{−1},

and the structure map VMD (∅)−→ VMD (�) is the multiplication map mM : A⊗M→
M{−1}.

Next we transform the commutative �-cube VMD into a skew-commutative �-cube
by putting minus signs in front of some structure maps of VMD or, equivalently, by
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tensoring it with E�. Denote by CM(D) the complex C(VMD ⊗E�) of graded A-
modules. Define

CM(D)= CM(D)[x(D)]{y(D)−2x(D)}. (204)

Denote the ith cohomology group of the complex CM(D) by Hi(D,M). These
cohomology groups are graded A-modules. Denote the j th graded component of
Hi(D,M) by Hi,j (D,M)

Theorem 3. For a graded A-module M, an oriented (1,1)-tangle L, and a dia-
gram D of L, isomorphism classes of graded A-modules Hi(D,M) do not depend
on the choice of D and are invariants of L.

Our proof of Theorem 1 immediately generalizes without essential modifications
to a proof of Theorem 3. Proposition 38 is used to establish direct sum decompo-
sitions of CM(D), analogous to decompositions of C(D), for suitable D, given by
Propositions 11, 14, 18(1), and 21(1).

Cohomology groups Hi(D), defined in Section 4.2, are a special case of groups
Hi(D,M), as the next proposition explains.

Proposition 39. Let D be a diagram of an oriented (1,1)-tangle L and denote
by cl(D) the associated diagram of the marked oriented link cl(L). Considering A
as a graded A-module, we have a canonical isomorphism of cohomology groups (as
graded R-modules)

Hi(D,A)∼=Hi(cl(D)
)
, i ∈ Z. (205)

Given a finitely generated graded A-moduleM, define the graded Euler character-
istic χ̂(M) by

χ̂(M)=
∑
j∈Z

dimQ
(
Mj ⊗ZQ

)
. (206)

Proposition 40. Let M be a finitely generated graded A-module, L an oriented
(1,1)-tangle, and D a diagram of L. Then

K
(
cl(L)

)
χ̂(M)

q+q−1
=

∑
i,j∈Z

(−1)iqj dimQ
(
Hi,j (D,M)⊗ZQ

)
, (207)

that is, the Kauffman bracket of cl(L) is proportional to the Euler characteristic of
groups Hi,j (D,M).

Given two graded A-modules M,N and a grading-preserving homomorphism f :
M→N , it induces a map of commutative cubes VMD → V ND ,which, in turn, induces a
map of complexesCM(D)→ CN(D) and a map of cohomology groupsHi(D,M)→
Hi(D,N). So, in fact, each diagram D of an oriented long link defines functors HiD
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from the category A-mod0 of graded A-modules to itself, HiD(M) = Hi(D,M). If
two diagrams D1,D2 are related by a Reidemeister move, constructions of Section 5

extend to the functor isomorphism HiD1

∼=−→HiD2
. Let us frame this observation into

a proposition.

Proposition 41. For an oriented (1,1)-tangle L and a diagram D of L isomor-
phism classes of functors,

HiD : A-mod0 −→ A-mod0 (208)

do not depend on the choice of D and are invariants of L.

Oriented long links with one component correspond one-to-one to oriented knots
in R3. Thus, Proposition 41 gives invariants of oriented knots in R3. Moreover, if a
diagram D represents an oriented knot and D′ is the diagram obtained from D by
reversing the orientation of the underlying curve, there is a natural inM isomorphism
Hi(D,M) = Hi(D′,M). Consequently, for knots, isomorphism classes of functors
HiD do not depend on the orientation, and HiD provide “functor-valued” invariants of
nonoriented knots. Of course, these invariants depend on how the ambient 3-space is
oriented.

Let D be the 3-crossing diagram of the left-hand trefoil (knot T2,3 in the notation
of Section 6.2). The functors HiD are written as

H−3
D (M)= ker 2X(M){8},

H−2
D (M)= (M/2XM){6},
H 0
D(M)=M{2},

H iD(M)= 0 for all other values of i,

where ker 2X(M)= {t ∈M | 2Xt = 0}.
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