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Abstract

We study the effects of diffusion and advection for a susceptible-infected-susceptible
epidemic reaction-diffusion model in heterogeneous environments. The definition of the
basic reproduction number R0 is given. If R0 < 1, the unique disease-free equilibrium
(DFE) is globally asymptotically stable. Asymptotic behaviors of R0 for advection
rate and mobility of the infected individuals (denoted by dI) are established, and the
existence of the endemic equilibrium when R0 > 1 is studied. The effects of diffusion
and advection rates on the stability of the DFE are further investigated. Among other
things, we find that if the habitat is a low-risk domain, there may exist one critical
value for the advection rate, under which the DFE changes its stability at least twice as
dI varies from zero to infinity, while the DFE is unstable for any dI when the advection
rate is larger than the critical value. These results are in strong contrast with the case
of no advection, where the DFE changes its stability at most once as dI varies from
zero to infinity.
Keywords: SIS epidemic model; reaction-diffusion-advection; spatial heterogeneity;
disease-free equilibrium; endemic equilibrium
MSC 2010: 35J55, 35B32

1 Introduction

The spatial spread of diseases in heterogeneous habitats has received considerable atten-
tions recently, as the environmental heterogeneity can be an important factor in disease

∗Partially supported by National Natural Science Foundation of China (No.11401144, 11471091, 11571364
and 11571363), Project Funded by China Postdoctoral Science Foundation (2015M581235), Natural Science
Foundation of Heilongjiang Province (JJ2016ZR0019) and NSF grant DMS-1411476.
†Corresponding author

1



dynamics. The following SIS (susceptible-infected-susceptible) epidemic reaction-diffusion
model, which incorporated spatial heterogeneity, was proposed by Allen et al. in [3]:

S̄t = dS∆S̄ − β(x)
S̄Ī

S̄ + Ī
+ γ(x)Ī , x ∈ Ω, t > 0,

Īt = dI∆Ī + β(x)
S̄Ī

S̄ + Ī
− γ(x)Ī , x ∈ Ω, t > 0,

∂S̄

∂ν
=
∂Ī

∂ν
= 0, x ∈ ∂Ω, t > 0,

(1.1)

where S̄(x, t) and Ī(x, t) denote the density of susceptible and infected individuals in a given
spatial region Ω, which is assumed to be a bounded domain in Rm (m ≥ 1) with smooth
boundary ∂Ω; the positive constants dS and dI are diffusion coefficients for the susceptible
and infected populations; the positive functions β(x) and γ(x) are Hölder continuous on
Ω and represent the rates of disease transmission and recovery at location x, respectively.
The main results of [3] concern the existence, uniqueness and asymptotic behaviors of the
endemic equilibrium as the diffusion rate of the susceptible individuals approaches to zero.
Allen et. al also investigated a discrete SIS-model in [2]. In [21] Peng and Liu discussed
the global stability of the endemic equilibrium in some special cases. The effects of large
and small diffusion rates of the susceptible and infected population on the persistence and
extinction of the disease were considered in [20, 22]. Peng and Zhao [23] recently considered
the same SIS reaction-diffusion model, but the rates of disease transmission and recovery are
assumed to be spatially heterogeneous and temporally periodic. Ge et al. introduced a free
boundary model for characterizing the spreading front of the disease in [10]. They showed
that if the spreading domain is high-risk at some time, the disease will continue to spread
till the whole area is infected; while if the spreading domain is low-risk, the disease may
vanish or keep spreading, depending on the expanding capability and the initial number of
infected individuals.

In some circumstances populations may take passive movement in certain direction,
e.g., due to external environmental forces such as water flow [16, 17, 18], wind [8] and so
on, which usually can be described by adding an advection term to the equation. Here,
we consider a SIS epidemic reaction-diffusion model with advection. We are particularly
interested in how the advection and diffusion affect the disease transmission.
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1.1 SIS epidemic reaction-diffusion-advection model

In this paper, we will study the following SIS epidemic reaction-diffusion model with ad-
vection in one-dimensional space domain:

S̄t = dSS̄xx − qS̄x − β(x)
S̄Ī

S̄ + Ī
+ γ(x)Ī , 0 < x < L, t > 0,

Īt = dI Īxx − qĪx + β(x)
S̄Ī

S̄ + Ī
− γ(x)Ī , 0 < x < L, t > 0,

dSS̄x − qS̄ = dI Īx − qĪ = 0, x = 0, L, t > 0,

S̄(x, 0) = S̄0(x) ≥ 0, Ī(x, 0) = Ī0(x) ≥ 0, 0 < x < L,

(1.2)

where S̄(x, t) and Ī(x, t), respectively, represent the density of susceptible and infected
individuals at time t and location x on the interval [0, L]; L is the size of the habitat, and
we call x = 0 the upstream end and x = L the downstream end; q is the effective speed
of the current (sometimes we call q the advection speed/rate, and we remark here that q
should be non-negative since x = L is defined to be the downstream end). Here we impose
no-flux boundary conditions at the upstream and downstream ends, respectively. It means
that there is no population net flux across the boundary x = 0 and x = L. As mentioned
in [3], since the term S̄Ī/(S̄ + Ī) is a Lipschitz continuous function of S̄ and Ī in the open
first quadrant, its definition can be extended to the closure of the first quadrant by setting
it to be zero when either S̄ = 0 or Ī = 0. We also assume that there is a positive number
of infected individuals, that is,

(A)

∫ L

0
Ī(x, 0)dx > 0, with S̄(x, 0) ≥ 0 and Ī(x, 0) ≥ 0 for x ∈ (0, L).

By the maximum principle [24], both S̄(x, t) and Ī(x, t) are positive for x ∈ [0, L] and
t ∈ (0, Tmax), where Tmax is the maximal existence time for solutions of (1.2). Then, by
the maximum principle again, both S̄(x, t) and Ī(x, t) are bounded on [0, L] × (0, Tmax).
Hence, it follows from the standard theory for semilinear parabolic systems that Tmax =∞
and system (1.2) admits a unique classical solution (S̄(x, t), Ī(x, t)) for all time [12]. Let

N
def
=

∫ L

0

[
S̄(x, 0) + Ī(x, 0)

]
dx > 0 (1.3)

be the total number of individuals in (0, L) at t = 0. Summing two equations of (1.2) and
integrating over (0, L) gives

∂

∂t

∫ L

0
(S̄ + Ī)dx =

∫ L

0
(dSS̄xx + dI Īxx)dx− q

∫ L

0
(S̄x + Īx)dx = 0, t > 0. (1.4)

Thus the total population size is constant in time, i.e.,∫ L

0
[S̄(x, t) + Ī(x, t)]dx = N, t ≥ 0. (1.5)
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From (1.5), we know that any solution (S̄(x, t), Ī(x, t)) satisfies L1 space bound uniformly
for t ∈ [0,∞). In fact, it can be concluded that for any fixed q ≥ 0, ‖S̄(·, t)‖L∞([0,L]) and
‖Ī(·, t)‖L∞([0,L]) are also uniformly bounded in [0,∞), by following the argument in [1] (see
also Exercise 4 of Section 3.5 in [12]). Unless otherwise stated, we assume that (A) holds
and N is a fixed positive constant throughout this paper.

By adopting the same terminology as in [3], we say that x is a low-risk site if the
local disease transmission rate β(x) is lower than the local disease recovery rate γ(x). A
high-risk site is defined in a similar manner. We call that (0, L) is a low-risk domain if∫ L

0 β(x)dx <
∫ L

0 γ(x)dx and a high-risk domain if
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx. Here we note

that (0, L) is called a high-risk domain if
∫ L

0 β(x)dx ≥
∫ L

0 γ(x)dx in [3]. For the sake of

simplicity we do not consider the case
∫ L

0 β(x)dx =
∫ L

0 γ(x)dx, though some arguments still
hold in this case.

1.2 The equilibrium problem

We are mainly interested in non-negative equilibrium solutions of (1.2), that is, the non-
negative solutions of the following system:

dSS̃xx − qS̃x − β(x)
S̃Ĩ

S̃ + Ĩ
+ γ(x)Ĩ = 0, 0 < x < L,

dI Ĩxx − qĨx + β(x)
S̃Ĩ

S̃ + Ĩ
− γ(x)Ĩ = 0, 0 < x < L,

dSS̃x − qS̃ = dI Ĩx − qĨ = 0, x = 0, L.

(1.6)

Here, S̃(x) and Ĩ(x) denote the density of susceptible and infected individuals, respectively,
at x ∈ [0, L]. In view of (1.5), we impose the additional hypothesis∫ L

0
[S̃(x) + Ĩ(x)]dx = N. (1.7)

It is clear that only solutions (S̃(x), Ĩ(x)) satisfying S̃(x) ≥ 0 and Ĩ(x) ≥ on [0, L] are
of interest. A disease-free equilibrium (DFE) is a solution of (1.6)-(1.7) so that Ĩ(x) = 0
for every x ∈ (0, L); An endemic equilibrium (EE) of (1.6)-(1.7) is a solution in which

Ĩ(x) > 0 for some x ∈ (0, L). We denote a DFE by ( ˆ̃S, 0) and an EE by (S̃, Ĩ). By direct

computations and condition (1.7), we get ˆ̃S = qNe(q/dS)x/dS(eqL/dS − 1). Thus (1.6)-(1.7)
has a unique disease-free equilibrium, which is spatially inhomogeneous.
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1.3 Statement of main results

According to the definition of the basic reproduction number in literatures [?, 29, 30], we
define the basic reproduction number for model (1.2) as follows:

R0(dI , q) = sup
ϕ∈H1((0,L))

ϕ6=0

{ ∫ L
0 β(x)e

q
dI
x
ϕ2dx

dI
∫ L

0 e
q
dI
x
ϕ2
xdx+

∫ L
0 γ(x)e

q
dI
x
ϕ2dx

}
.

From the definition of the basic reproduction number of (1.1), it can be seen that R0 is
a smooth function of dI and q. For the sake of convenience, we shall denote the basic
reproduction number by R0. If the advection rate q = 0, we denote the basic reproduction
number by R̂0, so R̂0 is a smooth function of dI only. The basic reproduction number R̂0

was introduced in [3], where it is shown that R̂0 is a threshold value for the stability of
the disease-free equilibrium: if R̂0 < 1 then DFE is globally asymptotically stable, and if
R̂0 > 1 then the DFE is unstable. We can extend this conclusion to the model (1.2).

Theorem 1.1. If R0 < 1 then the DFE is globally asymptotically stable, but if R0 > 1 then
it is unstable.

We now establish some qualitative properties of the basic reproduction number R0, in
terms of dI and q.

Theorem 1.2. The following statements about R0 hold.

(i) Given any q > 0, R0 → β(L)/γ(L) as dI → 0 and R0 →
∫ L

0 β(x)dx/
∫ L

0 γ(x)dx as
dI →∞;

(ii) Given any dI > 0, R0 → R̂0 as q → 0 and R0 → β(L)/γ(L) as q →∞;

(iii) If β(x) > (<)γ(x) on [0, L], then R0 > (<)1 for any dI > 0 and q > 0.

Part (i) shows that for any positive advection speed, the basic reproduction number R0

tends to the local reproduction number at the downstream end as dI becomes arbitrarily
small. This is in strong contrast with the case q = 0, for which R̂0 → max[0,L] β(x)/γ(x) as
dI → 0 (see [3]).

It is known that R̂0 is a monotone decreasing function of dI (see [3]), but for positive
advection rate, parts (i) and (ii) suggest that the monotonicity of R0 with respect to dI
or q generally do not hold, as the condition at the downstream end plays a critical role
in determining the dynamics of the model. From the biological point of view, since the
influence of advection is from the upstream to the downstream, small diffusion or large
advection tends to force the individuals to concentrate at the downstream end. Thus, when
advection is strong or the diffusion is small, if the downstream end is a low-risk site, the
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disease will be eliminated; and if the downstream end is a high-risk site, the disease will
persist.

Part (iii) of Theorem 1.2 shows that if every site of the domain is low-risk, the disease
will be eliminated regardless of the advection speed and diffusion rate; and if every site of
the domain is high-risk, the disease will persist for arbitrary advection speed and diffusion
rate. It is natural to consider the case that the domain contains both high-risk sites and
low-risk sites, i.e., the function β(x) − γ(x) changes sign in the interval (0, L). It turns
out that this situation is much more complicated, as the answer may depend upon both
locations and numbers of high-risk sites and low-risk sites. We will offer some discussions
in the following theorems, which are the main analytical results of this paper.

We first study the stability of the DFE and the existence of the EE when β(x)− γ(x)
changes sign exactly once in (0, L). It means that the domain contains only one high-risk
sub-domain and one low-risk sub-domain. Moreover, from Theorem 1.2 we know that the
stability of the DFE depends upon whether the downstream site is high-risk or low-risk.
More precisely, we consider β(x), γ(x) satisfying the following assumptions:

(C1) β(x)−γ(x) changes sign from negative to positive, i.e., β(0)−γ(0) < 0 < β(L)−γ(L),

or

(C2) β(x)−γ(x) changes sign from positive to negative, i.e., β(0)−γ(0) > 0 > β(L)−γ(L).

For the biological point of view, assumption (C1) implies that all lower-risk sites are located
at the upstream and all high-risk sites are at the downstream. Similarly, assumption (C2)
implies that high-risk sites are distributed at the upstream and lower-risk sites are at the
downstream.

In [3], for the model without advection, the stability of DFE is different when the
habitat is a high-risk domain or lower-risk domain. We also analyze our model under these
two cases. First we consider the case when the habitat is a high-risk domain.

Theorem 1.3. Suppose that
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx.

(i) If (C1) holds, then the DFE is unstable for any q > 0 and dI > 0;

(ii) If (C2) holds, then there exists a unique curve

Γ1 = {(dI , ρ1(dI)) : R0(dI , ρ1(dI)) = 1, dI ∈ (0,∞)}

in dI − q plane such that for every dI > 0 the DFE is unstable for 0 < q < ρ1(dI)
and the DFE is globally asymptotically stable for q > ρ1(dI). Moreover, the function
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Figure 1: Illustration of the parameter
regions of (dI , q) in Theorem 1.3 part (i):

If β(x), γ(x) satisfy
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx
and β(L) > γ(L), then the DFE is unstable
in the first quadrant.

Figure 2: Illustration of the parameter re-
gions of (dI , q) in Theorem 1.3 part (ii): If

β(x), γ(x) satisfy
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx
and β(L) < γ(L), then the DFE is stable in
ΩS
hl and unstable in ΩU

hl.

ρ1 : (0,∞)→ (0,∞) satisfies

lim
dI→0+

ρ1(dI) = 0, lim
dI→∞

ρ1(dI)

dI
= θ1,

where θ1 is the unique positive solution of∫ L

0
[β(x)− γ(x)]eθ1xdx = 0.

For different values of dI , q > 0, the stability of the DFE will be different under suitable
assumptions about β(x) and γ(x). To be more precise, we give the following definitions:

Definition 1.1. Denote the regions on the dI−q plane identified in Theorem 1.3 as follows:

ΩS
hh =

{
(dI , q) : R0 < 1,

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx, β(L) > γ(L)

}
,

ΩU
hh =

{
(dI , q) : R0 > 1,

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx, β(L) > γ(L)

}
,

ΩS
hl =

{
(dI , q) : R0 < 1,

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx, β(L) < γ(L)

}
,

ΩU
hl =

{
(dI , q) : R0 > 1,

∫ L

0
β(x)dx >

∫ L

0
γ(x)dx, β(L) < γ(L)

}
.
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Remark 1.1. See Figures 1 and 2 for graphical illustrations of the stable and unstable
regions of the DFE in Theorem 1.3. For part (i), ΩS

hh = ∅ and ΩU
hh = R+ × R+, i.e., the

unstable region of the DFE is the first quadrant in dI − q plane in this case. For part
(ii), ΩS

hl = {(dI , q) : dI > 0, q > ρ1(dI)} and ΩU
hh = {(dI , q) : dI > 0, 0 < q < ρ1(dI)}. The

regions ΩS
hl and ΩU

hl are separated by the curve q = ρ1(dI), where q = ρ1(dI) is determined
in Theorem 1.3. Some qualitative behaviors of q = ρ1(dI) are given in Theorem 1.3.

In [3] it is shown that for the model without advection, DFE is always unstable when the
domain is a high-risk domain, which means that the disease always persist for any dI . Part
(i) of Theorem 1.3 implies that if the habitat is a high-risk domain and the downstream
end is a high-risk site, then the disease persists for arbitrary advection rate. From the
biological point of view, for the model with advection, the advection causes the individuals
to concentrate at the downstream end which is a high-risk site (we can understand it as a
“bad” site), thus disease always persist in this case. For part (ii), we see that for any fixed
advection rate, the DFE is stable for small dI and is unstable for large dI . In particular, the
DFE changes its stability at least once as dI varies from 0 to ∞. Biologically this indicates
that since the downstream end is a low-risk site (similarly, we can understand it as a “good”
site), the advection transports the individuals to a favorable location and thus it can help
eliminate the disease. Hence, the disease will persist if the advection rate q is small relative
to dI , and the disease will be eliminated if the advection rate is large relative to dI .

Next we give the precise description of the stability of the DFE when the habitat is a
low-risk domain.

Theorem 1.4. Suppose that
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx, then there exists a constant d∗I > 0
such that the following statements hold, where d∗I is the unique positive root of the equation

R̂0(dI) = 1:

(i) If (C1) holds, then

• for dI ∈ (0, d∗I ], the DFE is unstable for any q > 0;

• for dI ∈ (d∗I ,∞), there exists a curve

Γ2 = {(dI , ρ2(dI)) : R0(dI , ρ2(dI)) = 1, dI ∈ (d∗I ,∞)}

in dI − q plane such that the DFE is globally asymptotically stable for 0 < q <
ρ2(dI) and the DFE is unstable for q > ρ2(dI). Moreover, the function ρ2 :
(d∗I ,∞)→ (0,∞) is a monotone increasing function of dI and satisfies

lim
dI→d∗I+

ρ2(dI) = 0, lim
dI→∞

ρ2(dI)

dI
= θ2,

where θ2 is the unique positive solution of∫ L

0
[β(x)− γ(x)]eθ2xdx = 0.
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Figure 3: Illustration of the parameter
regions of (dI , q) in Theorem 1.4 part (i):

If β(x), γ(x) satisfy
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx
and β(L) > γ(L), then the DFE is stable
in ΩS

lh and unstable in ΩU
lh.

Figure 4: Illustration of the parameter re-
gions of (dI , q) in Theorem 1.4 part (ii): If

β(x), γ(x) satisfy
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx
and β(L) < γ(L), then the DFE is stable in
ΩS
ll and unstable in ΩU

ll .

(ii) If (C2) holds, then

• for dI ∈ (0, d∗I), there exists a curve

Γ3 = {(dI , ρ3(dI)) : R0(dI , ρ3(dI)) = 1, dI ∈ (0, d∗I)}

in dI − q plane such that the DFE is unstable for 0 < q < ρ3(dI) and the
DFE is globally asymptotically stable for q > ρ3(dI). Moreover, the function
ρ3 : (0, d∗I)→ (0,∞) satisfies

lim
dI→0+

ρ3(dI) = 0, lim
dI→d∗I−

ρ3(dI) = 0;

• for dI ∈ [d∗I ,∞), the DFE is globally asymptotically stable for any q > 0.

Similar to Definition 1.1, we give the following definition.

Definition 1.2. Denote the regions on the dI−q plane identified in Theorem 1.4 as follows:

ΩS
lh =

{
(dI , q) : R0 < 1,

∫ L

0
β(x)dx <

∫ L

0
γ(x)dx, β(L) > γ(L)

}
,

ΩU
lh =

{
(dI , q) : R0 > 1,

∫ L

0
β(x)dx <

∫ L

0
γ(x)dx, β(L) > γ(L)

}
,

ΩS
ll =

{
(dI , q) : R0 < 1,

∫ L

0
β(x)dx <

∫ L

0
γ(x)dx, β(L) < γ(L)

}
,

ΩU
ll =

{
(dI , q) : R0 > 1,

∫ L

0
β(x)dx <

∫ L

0
γ(x)dx, β(L) < γ(L)

}
.
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Remark 1.2. See Figures 3 and 4 for graphical illustrations of the stable and unstable re-
gions of the DFE in Theorem 1.4. For part (i), ΩS

lh = {(dI , q) : dI > d∗I , 0 < q < ρ2(dI)} and

ΩU
lh = ΩU1

lh ∪ΩU2
lh , where ΩU1

lh = {(dI , q) : 0 < dI < d∗I , q > 0} and ΩU2
lh = {(dI , q) : dI = d∗I , q > 0}∪

{(dI , q) : dI > d∗I , q > ρ2(dI)}. The regions ΩS
lh and ΩU

lh are separated by the curve q =
ρ2(dI), where q = ρ2(dI) is determined in Theorem 1.4 and some qualitative behaviors of
q = ρ2(dI) are given in Theorem 1.4. For part (ii), ΩS

ll = {(dI , q) : 0 < dI < d∗I , q > ρ3(dI)}∪
{(dI , q) : dI ≥ d∗I , q > 0} and ΩU

ll = {(dI , q) : 0 < dI < d∗I , 0 < q < ρ3(dI)}. The regions ΩS
ll

and ΩU
ll are separated by the curve q = ρ3(dI), where q = ρ3(dI) is determined in Theorem

1.4 and some qualitative behaviors of q = ρ3(dI) are given in Theorem 1.4.

For the model without advection, it is shown in [3] that when the domain is a low-risk
domain, the DFE is stable if the mobility of infected individuals lies above a threshold
value d∗I and is unstable if the mobility of infected individuals lies below d∗I . Part (i) of
Theorem 1.4 implies that similar threshold value (denoted as d∗∗I ) exists for the model with
advection, if the habitat is a low-risk domain and the downstream end is a high-risk site.
In Theorem 1.4, the function ρ2(dI) is a monotone increasing function of dI so that d∗∗I is
uniquely determined by ρ2(d∗∗I ) = q. Biologically, in the model with advection, since the
downstream end is a “bad” site, the advection is beneficial to the persistence of the disease.
Thus increasing advection will increase the threshold value for dI at which the DFE changes
the stability, i.e., d∗∗I is an increasing function of q.

An interesting finding is part (ii) of Theorem 1.4. Set q̂ = max[0,d∗I ] ρ3(dI). If q > q̂,
then the DFE is always stable for any dI > 0. It means that there is a maximum advection
speed q̂ such that if the advection is very strong (i.e., if q is larger than q̂), the disease will
always be eliminated, regardless of the diffusion rate for infected individuals. Interestingly,
if 0 < q < q̂, then the stability of the DFE changes at least twice: the DFE is stable for
both small and large dI and it is unstable for some intermediate values of dI . When dI is
very small, advection will transport individuals to the downstream end, which is a “good”
site in this case, so the disease will not persist. If dI is very large, the disease can not persist
as the habitat is a “low-risk” domain. However, for intermediate dI , in this case the disease
will persist since the advection rate q is relatively small with respect to dI , i.e., dI neither
large or small so that the dynamics of the model is neither dominated solely by diffusion
nor advection.

The following result establishes the existence of endemic equilibrium for a class of
transmission and recovery rates:

Theorem 1.5. Assume that β(x) − γ(x) changes sign once in (0, L). If R0 > 1, then
problem (1.6)-(1.7) has at least an EE.

In Theorems 1.3 and 1.4, we studied the stability of the DFE when the habitat contains
exactly one high-risk sub-domain and one lower-risk sub-domain, i.e., β(x)− γ(x) changes
sign once in (0, L). Next we consider the stability of the DFE when β(x) − γ(x) changes
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sign twice in (0, L) and illustrate that Theorems 1.3 and 1.4 may fail for such transmission
and recovery rates.

Theorem 1.6. Assume that β(x)− γ(x) change signs twice in (0, L).

(i) If
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx and β(L) < γ(L), then there exists some positive constant
Λ, independent of dI and q, such that for every dI > Λ, there exists a constant Q > 0
(dependent on dI) such that R0 > 1 for 0 < q < Q and R0 < 1 for q > Q;

(ii) If
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx and β(L) > γ(L), then there exists some positive constant
Λ > d∗I , independent of dI and q, such that for every dI > Λ, there exists a constant
Q > 0 (dependent on dI) such that R0 < 1 for 0 < q < Q and R0 > 1 for q > Q;

(iii) If
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx and β(L) > γ(L), then there exists a constant Λ > 0
independent of dI and q such that for every dI > Λ, either R0 > 1 for any q > 0,
or there exists a constant Q̂ > 0 independent of dI such that R0 > 1 for q 6= Q̂ and
R0 = 1 for q = Q̂, or there exist two constants Q2 > Q1 > 0 (both dependent on dI)
such that R0 > 1 for q ∈ (0, Q1) ∪ (Q2,∞) and R0 < 1 for q ∈ (Q1, Q2);

(iv) If
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx and β(L) < γ(L), then there exists a constant Λ > d∗I
independent of dI and q such that for every dI > Λ, either R0 < 1 for any q > 0,
or there exists a constant Q̂ > 0 independent of dI such that R0 < 1 for q 6= Q̂ and
R0 = 1 for q = Q̂, or there exist two constants Q2 > Q1 > 0 (both dependent on dI)
such that R0 < 1 for q ∈ (0, Q1) ∪ (Q2,∞) and R0 > 1 for q ∈ (Q1, Q2).

Part (i) is qualitatively similar to that of part (ii) of Theorem 1.3, when dI is large
enough. Part (ii) is qualitatively similar to that of part (i) of Theorem 1.4, when dI is
large enough. The results of parts (iii) and (iv) are noteworthy. For part (iii), if dI is large
enough, there are three cases:

Case 1. The DFE is unstable for any q > 0. This result is similar to that of Theorem 1.3
part (i).

Case 2. There exists a curve (in fact, it approaches a line with positive slope as dI →∞)
such that the DFE is unstable for any (dI , q) except those on the curve.

Case 3. There exist two functions q = ρ4(dI) and q = ρ5(dI) such that the DFE is stable
for ρ4(dI) < q < ρ5(dI) and is unstable for 0 < q < ρ4(dI) and q > ρ5(dI). Moreover,
q = ρ4(dI) and q = ρ5(dI) satisfy

lim
dI→∞

ρ4(dI)

dI
= α1, lim

dI→∞

ρ5(dI)

dI
= α2,

where α1 < α2 are the positive roots of∫ L

0
[β(x)− γ(x)]eα1xdx =

∫ L

0
[β(x)− γ(x)]eα2xdx = 0.

11



Figure 5: Illustration of the parameter re-
regions of (dI , q) in Theorem 1.6 part (iii):

If β(x), γ(x) satisfy
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx
and β(L) > γ(L), then the DFE is stable
in ΩS

hh and unstable in ΩU
hh.

Figure 6: Illustration of the parameter re-
gions of (dI , q) in Theorem 1.6 part (iv): If

β(x), γ(x) satisfy
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx
and β(L) < γ(L), then the DFE is stable in
ΩS
ll and unstable in ΩU

ll .

This last case is different from part (i) of Theorem 1.3: For each fixed dI > Λ, the
DFE changes the stability exactly twice, from unstable to stable to unstable, as q
varies from 0 to ∞.

Remark 1.3. If β(x)− γ(x) changes sign twice, we can only determine the stability of the
DFE when the infected individuals diffusion rate dI is large enough. It is unclear how the
DFE changes its stability as dI varies from 0 to ∞.

The rest of the paper is organized as follows. In Section 2, we consider the stability
of the DFE and discuss some properties of the basic reproduction number in terms of the
advection speed and the mobility of infected individuals. In Section 3, when the habitat
changes from high-risk sites to lower-risk sites (or from lower-risk sites to high-risk sites),
we study how the stability of the DFE depends precisely on the advection speed and the
mobility of infected individual. The existence of the endemic equilibrium is established, by
using the bifurcation theory and Leray-Schauder degree theory. Section 4 is devoted to the
stability analysis of the DFE when the habitat contains several high-risk sub-domains and
lower-risk sub-domains.
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2 Qualitative properties of R0 and stability of the DFE

By the definition of the basic reproduction number R0, there exists some positive function
Φ(x) ∈ C2([0, L]) such that−dIΦxx + qΦx + γ(x)Φ =

1

R0
β(x)Φ, 0 < x < L,

dIΦx(0)− qΦ(0) = 0, dIΦx(L)− qΦ(L) = 0.
(2.1)

Set ϕ(x) = e−(q/dI)xΦ(x), then ϕ(x) satisfies−dIϕxx − qϕx + γ(x)ϕ =
1

R0
β(x)ϕ, 0 < x < L,

ϕx(0) = ϕx(L) = 0.
(2.2)

When q = 0, we denote the basic reproduction number R0 by R̂0. The basic reproduction
number R̂0 was introduced in [3], where the following statements are established:

Lemma 2.1. Suppose that β(x)− γ(x) changes sign in (0, L).

(i) R̂0 is a monotone decreasing function of dI with R̂0 → max{β(x)/γ(x) : x ∈ [0, L]}
as dI → 0 and R̂0 →

∫ L
0 β(x)dx/

∫ L
0 γ(x)dx as dI →∞;

(ii) If
∫ L

0 β(x)dx ≥
∫ L

0 γ(x)dx, then R̂0 > 1 for all dI > 0;

(iii) If
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx, then there exists some threshold value d∗I ∈ (0,∞) such

that R̂0 > 1 for dI < d∗I and R̂0 < 1 for dI > d∗I .

Remark 2.1. From the characterizations of d∗I in [4], the threshold value d∗I can be defined
by

d∗I = sup

{∫ L
0 (β − γ)φ2dx∫ L

0 |∇φ|2dx
: φ ∈ H1((0, L)) and

∫ L

0
(β − γ)φ2dx > 0

}
. (2.3)

It can be shown that if
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx then d∗I is positive and finite; If
∫ L

0 β(x)dx ≤∫ L
0 γ(x)dx then d∗I =∞.

In the following we discuss some qualitative properties of R0 and the stability of the
DFE. Theorem 1.1 is a consequence of Lemmas 2.3 and 2.4, Theorem 1.2 follows from
Lemma 2.5, Corollary 2.6 and Lemma 2.7.

To study the stability of the DFE, we need to consider an eigenvalue problem associated
with (1.2). We linearize (1.2) around the DFE to obtain{

ξ̄t = dS ξ̄xx − qξ̄x − [β(x)− γ(x)]η̄, 0 < x < L, t > 0,

η̄t = dI η̄xx − qη̄x + [β(x)− γ(x)]η̄, 0 < x < L, t > 0.
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Here ξ̄(x, t) = S̄(x, t) − ˆ̃S(x, t) and η̄(x, t) = Ī(x, t). Let ξ̄(x, t) = e−λtξ(x) and η̄(x, t) =
e−λtη(x) be the solution of the linear system. We then derive an eigenvalue problem{

dSξxx − qξx − [β(x)− γ(x)]η + λξ = 0, 0 < x < L,

dIηxx − qηx + [β(x)− γ(x)]η + λη = 0, 0 < x < L,
(2.4)

with boundary conditions{
dSξx(0)− qξ(0) = 0, dSξx(L)− qξ(L) = 0,

dIηx(0)− qη(0) = 0, dIηx(L)− qη(L) = 0.
(2.5)

In view of (1.7), we impose an additional condition∫ L

0
[ξ(x) + η(x)]dx = 0. (2.6)

In fact, we only need to consider the eigenvalue problem{
dIηxx − qηx + [β(x)− γ(x)]η + λη = 0, 0 < x < L,

dIηx(0)− qη(0) = 0, dIηx(L)− qη(L) = 0.
(2.7)

Set ζ(x) = e−(q/dI)xη(x), then ζ(x) satisfies{
dIζxx + qζx + [β(x)− γ(x)]ζ + λζ = 0, 0 < x < L,

ζx(0) = ζx(L) = 0.
(2.8)

It is well known that all eigenvalues are real, and the smallest eigenvalue, denote by λ1(dI , q),
is simple, and its corresponding eigenfunction φ1 can be chosen positive [28].

First, we give the relation between R0 and λ1(dI , q).

Lemma 2.2. For any dI > 0 and q > 0, we have R0 > 1 when λ1(dI , q) < 0, R0 = 1 when
λ1(dI , q) = 0, and R0 < 1 when λ1(dI , q) > 0.

Proof. Recall that (λ1(dI , q), φ1) is the principal eigen-pair, i.e.,{
−dI(φ1)xx − q(φ1)x + [γ(x)− β(x)]φ1 = λ1(dI , q)φ1, 0 < x < L,

(φ1)x(0) = (φ1)x(L) = 0.
(2.9)

We multiply (2.1) by φ1 and (2.9) by Φ, integrate by parts in (0, L), and subtract the
resulting equations to obtain

λ1(dI , q)

∫ L

0
Φ(x)φ1(x)dx =

(
1

R0
− 1

)∫ L

0
β(x)Φ(x)φ1(x)dx.

Since
∫ L

0 Φ(x)φ1(x)dx and
∫ L

0 β(x)Φ(x)φ1(x)dx are both positive, we conclude that R0 > 1
when λ1(dI , q) < 0, R0 = 1 when λ1(dI , q) = 0, and R0 < 1 when λ1(dI , q) > 0.
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We remark that the positive function φ1 satisfies equation (2.2) when R0 = 1, i.e., φ1

denotes the corresponding eigenfunction of the basic reproduction number R0 = 1. The
following lemma shows that the stability of the DFE relies on the magnitude of R0.

Lemma 2.3. If R0 < 1, then the DFE is stable, but if R0 > 1 then it is unstable.

Proof. 1. Suppose first that R0 < 1. We will show that the DFE is linearly stable. Suppose
the conclusion is false, then we can find (λ, ξ, η) which is a solution of (2.4)-(2.5) with the
condition (2.6), with at least one of ξ and η not identical zero, and that Re(λ) ≤ 0. Suppose
that η ≡ 0, then ξ 6≡ 0 on [0, L]. Furthermore, from (2.4) with boundary condition (2.5),
we have {

dSξxx − qξx + λξ = 0, 0 < x < L,

dSξx(0)− qξ(0) = 0, dSξ(L)− qξ(L) = 0.

It is easy to see that λ is real and nonnegative, and therefore λ = 0. We find that ξ =
ξ0e

(q/dI)x, where ξ0 is some constant to be determined later. By (2.6), ξ0 = 0, i.e., ξ ≡ 0
on [0, L]. This is a contradiction. Then we conclude that η 6≡ 0 on [0, L]. From (2.7), λ
must be real and λ ≤ 0. Since λ1(dI , q) is the principal eigenvalue, then λ1(dI , q) ≤ λ ≤ 0.
Lemma 2.2 implies that R0 ≥ 1, which is a contradiction. Then we conclude that if (λ, ξ, η)
is a solution of (2.4)-(2.5), with at least one of ξ and η not identical zero on [0, L], then
Re(λ) > 0. This proves the linear stability of the DFE.

2. Suppose that R0 > 1. We claim that the DFE is linearly unstable. In fact,
(λ1(dI , q), φ1) is the principal eigen-pair of (2.8). Then (λ1(dI , q), e

(q/dI)xφ1) satisfies the
second equation of (2.4). Lemma 2.2 implies that λ1(dI , q) < 0. Consider the first equation
of (2.4) with (λ, η) = (λ1(dI , q), e

(q/dI)xφ1), i.e.,{
dSξxx − qξx + λ1(dI , q)ξ = (β(x)−γ(x))e(q/dI)xφ1, 0 < x < L,

dSξx(0)− qξ(0) = 0, dSξx(L)− qξ(L) = 0.

We see that there is a unique function ξ1 satisfying the above equation and the condition∫ L
0 (ξ1+e(q/dI)xφ1)dx = 0. Thus, (2.4)-(2.5) has a solution (λ1(dI , q), ξ1, e

(q/dI)xφ1) satisfying

λ1(dI , q) < 0 and e(q/dI)xφ1 > 0 in (0, L). Hence, the DFE is linearly unstable.

Next we show that if R0 < 1 then the DFE is globally asymptotically stable.

Lemma 2.4. If R0 < 1, then (S̄, Ī)→ ( ˆ̃S, 0) in C([0, L]) as t→∞.

Proof. Suppose that R0 < 1. By the equation of Ī in (1.2), we have

∂Ī

∂t
≤ dI Īxx − qĪx + [β(x)− γ(x)]Ī , x ∈ (0, L), t > 0.
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Set u(x, t) = Me−λ1(dI ,q)te(q/dI)xφ1 where (λ1(dI , q), φ1) is the principal eigen-pair, λ1(dI , q) >
0 by Lemma 2.2, φ1 > 0 on [0, L]. M is chosen so large that Ī(x, 0) ≤ u(x, 0) for every
x ∈ (0, L). Hence, u(x, t) satisfies{

ut = dIuxx − qux + [β(x)− γ(x)]u, x ∈ (0, L), t > 0,

dIux(0, t)− qu(0, t) = 0, dIux(L, t)− qu(L, t) = 0, t > 0.

By the comparison principle, Ī(x, t) ≤ u(x, t) for every x ∈ (0, L) and t ≥ 0. Since u(x, t)→
0 as t→∞ for every x ∈ (0, L), we also have that Ī(x, t)→ 0 as t→∞ for every x ∈ (0, L).

Finally we show that S̄ tends to ˆ̃S as t→∞. Rewrite the first equation of (1.2) as

S̄t − dSS̄xx + qS̄x =

[
γ(x)− β(x)

S̄

S̄ + Ī

]
Ī , x ∈ (0, L), t > 0.

By the continuity of β(x) and γ(x) on [0, L], together with the above argument about Ī(x, t),
we have ∣∣S̄t − dSS̄xx + qS̄x

∣∣ ≤ C1e
−λ1(dI ,q)t, x ∈ (0, L), t > 0,

for some positive constant C1. Since the right-hand side tends to 0 exponentially, it follows

that S̄(x, t) tends to some positive function ˇ̃S as t → ∞, where ˇ̃S depends only on x and

satisfies
∫ L

0
ˇ̃S(x)dx = N . Thus, ˇ̃S = ˆ̃S.

We remark that the global asymptotic stability of the DFE when R0 < 1 implies that
there is no EE in this case.

To prove Theorem 1.2, we first establish the following asymptotic behavior R0 for dI
and q.

Lemma 2.5. If q/dI →∞ and q2/dI →∞, then R0 → β(L)/γ(L).

Proof. Set w(x) = e−(q/dI)AxΦ(x), where A is some constant which will be chosen differently
for different purposes. Recall that (R0,Φ(x)) satisfies (2.1), then w satisfies−dIwxx + q(1− 2A)wx +

[
q2

dI
A(1−A) + γ(x)

]
w =

1

R0
β(x)w, 0 < x < L,

dIwx(0) = q(1−A)w(0), dIwx(L) = q(1−A)w(L).

(2.10)

Set A = 1+C1dI/q
2, where C1 is some positive constant to be chosen later. Then w satisfies

−dIwxx − q
(

1 + 2
C1dI
q2

)
wx +

[
−C1

(
1 +

C1dI
q2

)
+ γ(x)− 1

R0
β(x)

]
w = 0, 0 < x < L,

dIwx(0) = −C1dI
q

w(0), dIwx(L) = −C1dI
q

w(L).

(2.11)
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Let x∗ ∈ [0, L] such that w(x∗) = min
x∈[0,L]

w(x). Since wx(0) < 0, then x∗ 6= 0. If

x∗ ∈ (0, L), then wxx(x∗) ≥ 0 and wx(x∗) = 0. By (2.11) we have

−C1

(
1 +

C1dI
q2

)
+ γ(x∗)−

1

R0
β(x∗) ≥ 0,

which is impossible for any small dI/q
2 if we choose C1 = γ(x1) = max

x∈[0,L]
γ(x) for some x1.

Therefore, x∗ = L; i.e., w(x) ≥ w(L) for any x ∈ [0, L]. Hence,

Φ(x)

Φ(L)
≥ e−

q
dI

(
1+

C1dI
q2

)
(L−x)

. (2.12)

Next, we choose A = 1 − C2dI/q
2, where C2 is some positive constant to be chosen

later. By (2.10), w satisfies
−dIwxx − q

(
1− 2

C2dI
q2

)
wx +

[
C2

(
1− C2dI

q2

)
+ γ(x)− 1

R0
β(x)

]
w = 0, 0 < x < L,

dIwx(0) =
C2dI
q

w(0), dIwx(L) =
C2dI
q

w(L).

(2.13)
Let x∗ ∈ [0, L] such that w(x∗) = max

x∈[0,L]
w(x). Since wx(0) > 0, then x∗ 6= 0. If x∗ ∈ (0, L),

then wxx(x∗) ≤ 0 and wx(x∗) = 0. By (2.13) we have

C2

(
1− C2dI

q2

)
+ γ(x∗)− 1

R0
β(x∗) ≤ 0. (2.14)

Set β(x2) = min
x∈[0,L]

β(x) and β(x3) = max
x∈[0,L]

β(x), choose C2 = 2β(x3)γ(x1)/β(x2) and

dI/q
2 < β(x2)/4γ(x1)β(x3), we can get

C2

(
1− C2dI

q2

)
+ γ(x∗)− 1

R0
β(x∗) ≥ C2

(
1− C2dI

q2

)
+ γ(x∗)− γ(x1)

β(x2)
β(x∗)

≥ C2

(
1− C2dI

q2

)
+ γ(x∗)− γ(x1)

β(x2)
β(x3)

≥ C2

(
1− C2dI

q2

)
− γ(x1)

β(x2)
β(x3)

> 0,

which contradicts (2.14). Therefore, x∗ = L; i.e., w(x) ≤ w(L) for any x ∈ [0, L]. Hence,

Φ(x)

Φ(L)
≤ e−

q
dI

(
1−C2dI

q2

)
(L−x)

. (2.15)
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Integrating (2.1) in (0, L) and dividing the result by Φ(L), we have∫ L

0
γ(x)

Φ(x)

Φ(L)
dx =

1

R0

∫ L

0
β(x)

Φ(x)

Φ(L)
dx. (2.16)

Set y = q(L− x)/dI , then Φ satisfies

e
−
(

1+
C1dI
q2

)
y ≤ Φ(L− dIy/q)

Φ(L)
≤ e−

(
1−C2dI

q2

)
y
. (2.17)

We can rewrite (2.16) as∫ qL/dI

0
γ(L− dIy/q)

Φ(L− dIy/q)
Φ(L)

dy =
1

R0

∫ qL/dI

0
β(L− dIy/q)

Φ(L− dIy/q)
Φ(L)

dy. (2.18)

By (2.17), we can apply the Lebesgue dominant convergence theorem and pass to the
limit in (2.18) to obtain

lim
q/dI→∞
q2/dI→∞

R0 =

lim
q/dI→∞, q2/dI→∞

∫ qL/dI
0 β(L− dIy/q)Φ(L−dIy/q)

Φ(L) dy

lim
q/dI→∞, q2/dI→∞

∫ qL/dI
0 γ(L− dIy/q)Φ(L−dIy/q)

Φ(L) dy

=

∫∞
0 β(L)e−ydy∫∞
0 γ(L)e−ydy

=
β(L)

γ(L)
.

This completes the proof.

Remark 2.2. We refer to [5] and [6] for some recent works on the asymptotic behaviors of
the principal eigenvalue as advection rate tends to infinity or the diffusion coefficient tends
to zero. Part of Lemma 2.5, e.g., the case dI → ∞ and q/dI → ∞, is not covered by [5]
and [6].

By Lemma 2.5, we have the following result:

Corollary 2.6. The following statements about R0 hold.

(i) Given any dI > 0, R0 → R̂0 as q → 0;

(ii) Given any dI > 0, R0 → β(L)/γ(L) as q →∞;

(iii) Given any q > 0, R0 → β(L)/γ(L) as dI → 0;
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(iv) Given any q > 0, R0 →
∫ L

0 β(x)dx/
∫ L

0 γ(x)dx as dI →∞.

Proof. We only need to prove part (iv) as (i) is obvious and (ii) and (iii) follow from Lemma
2.5. By the definition of the basic reproduction number R0, we can obtain

1

R0
= inf

ϕ∈H1((0,L))
ϕ6=0

{
dI
∫ L

0 e
q
dI
x
ϕ2
xdx+

∫ L
0 γ(x)e

q
dI
x
ϕ2dx∫ L

0 β(x)e
q
dI
x
ϕ2dx

}
≤
∫ L

0 γ(x)e
q
dI
x
dx∫ L

0 β(x)e
q
dI
x
dx
≤

max
x∈[0,L]

γ(x)

min
x∈[0,L]

β(x)
,

where the first inequality is obtained by setting ϕ ≡ 1. Thus, 1/R0 is uniformly bounded
for dI > 0, passing to a subsequence if necessary, it has a finite limit 1/R̄0 as dI → ∞.
By standard elliptic regularity and the Sobolev embedding theorem [11], the function Φ in
(2.1) is uniformly bounded in C2([0, L]) for all dI ≥ 1. Therefore, dividing both sides of
(2.1) by dI and passing to some subsequence if necessary, we can get Φ → Φ̄ in C([0, L])
as dI → ∞ for some positive constant Φ̄. We multiply (2.1) by e−(q/dI)x and integrate by
parts over (0, L) to obtain∫ L

0
γ(x)Φ(x)e

− q
dI
x
dx =

1

R0

∫ L

0
β(x)Φ(x)e

− q
dI
x
dx.

Letting dI →∞ we obtain R̄0 =
∫ L

0 β(x)dx/
∫ L

0 γ(x)dx.

Lemma 2.7. The following statements about R0 hold.

(i) If β(x) > γ(x) on [0, L], then R0 > 1 for any dI > 0 and q > 0;

(ii) If β(x) < γ(x) on [0, L], then R0 < 1 for any dI > 0 and q > 0.

Proof. (i) By the definition of R0 and the condition (i), we have

R0 = sup
ϕ∈H1((0,L))

ϕ6=0

{ ∫ L
0 β(x)e

q
dI
x
ϕ2dx

dI
∫ L

0 e
q
dI
x
ϕ2
xdx+

∫ L
0 γ(x)e

q
dI
x
ϕ2dx

}
≥
∫ L

0 e
q
dI
x
β(x)dx∫ L

0 e
q
dI
x
γ(x)dx

> 1.

The first inequality is obtained by ϕ ≡ 1.

(ii) We subtract both sides of (2.2) by β(x)ϕ, multiply by e(q/dI)xϕ and integrate by
parts over (0, L) to obtain

dI

∫ L

0
e
q
dI
x
ϕ2
xdx+

∫ L

0
[γ(x)− β(x)]e

q
dI
x
ϕ2dx =

(
1

R0
− 1

)∫ L

0
β(x)e

q
dI
x
ϕ2dx.

Since β(x) < γ(x) on [0, L], we have(
1

R0
− 1

)∫ L

0
β(x)e

q
dI
x
ϕ2dx ≥

∫ L

0
[γ(x)− β(x)]e

q
dI
x
ϕ2dx > 0,

which implies that R0 < 1.
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3 Further properties of R0: β(x)− γ(x) changing sign once

In this section, we study the stability of the DFE and the existence of the EE when β(x)−
γ(x) changes sign exactly once in (0, L) and β(x), γ(x) satisfy the assumption (C1) or (C2).

The following result will be frequently used in this section.

Lemma 3.1. Let φ1 be a positive eigenfunction corresponding to R0 = 1. If β(x) − γ(x)
changes sign once in (0, L) and assumption (C1) (or (C2)) holds, then (φ1)x > 0 (or < 0)
in (0, L).

Proof. We only consider the case that β(x) − γ(x) changes sign once in (0, L) and (C1)
holds, i.e., β(0)− γ(0) < 0 < β(L)− γ(L). Note that φ1 satisfies{

−dI(φ1)xx − q(φ1)x + γ(x)φ1 = β(x)φ1, 0 < x < L,

(φ1)x(0) = (φ1)x(L) = 0.
(3.1)

Multiplying (3.1) by e(q/dI)x, we rewrite the equation as

−dI(e(q/dI)x(φ1)x)x = [β(x)− γ(x)]e(q/dI)xφ1.

By assumption (C1), there exists some x0 ∈ (0, L) such that β(x)− γ(x) < 0 in (0, x0) and
β(x) − γ(x) > 0 in (x0, L). Thus, (e(q/dI)x(φ1)x)x > 0 in (0, x0) and (e(q/dI)x(φ1)x)x < 0
in (x0, L). Therefore, e(q/dI)x(φ1)x is strictly increasing in (0, x0) and strictly decreas-
ing in (x0, L). According to the boundary condition (φ1)x(0) = (φ1)x(L) = 0, we get
e(q/dI)x(φ1)x > 0 in (0, L). Thus, (φ1)x > 0 in (0, L).

In subsection 3.1, we study the stability of the DFE in terms of dI and q. Subsection
3.2 is devoted to the existence of the EE.

3.1 The stability of the DFE

In this subsection, we study the stability of the DFE and our main goal is to establish
Theorems 1.3 and 1.4. Theorem 1.3 is a consequence of Lemmas 3.4 and 3.5, and Theorem
1.4 follows from Lemmas 3.6 and 3.7.

In order to consider the stability of the DFE in terms of the diffusion rate dI and the
advection rate q, we need to study the asymptotic behavior of q(dI) for sufficiently large dI ,
where dI and q(dI) satisfy R0(dI , q(dI)) = 1 . To this end, we first consider some auxiliary
function F .
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For any continuous function m(x) on [0, L], define

F (η) =

∫ L

0
eηxm(x)dx, 0 ≤ η <∞.

Lemma 3.2. Assume that m(x) is continuous on [0, L]. If m(L) > (<) 0, then there exists
some positive constant M such that F (η) > (<) 0 for any η > M .

Proof. Since

lim
η→+∞

ηe−ηLF (η) = lim
η→+∞

∫ L

0
ηeη(x−L)m(x)dx = m(L) > (<) 0,

we can see that there exists some positive constant M such that F (η) > (<) 0 for η > M .

Lemma 3.3. Suppose that m(x) changes sign once in (0, L). The following statements
hold:

(i) If m(x) satisfies m(L) > 0 and
∫ L

0 m(x)dx > 0, then F (η) > 0 for any η > 0;

(ii) If m(x) satisfies m(L) < 0 and
∫ L

0 m(x)dx < 0, then F (η) < 0 for any η > 0;

(iii) If m(x) satisfies m(L) > 0 and
∫ L

0 m(x)dx < 0, then F (η) has a unique positive root,
denoted by η1, for η ∈ (0,+∞) and F ′(η1) > 0;

(iv) If m(x) satisfies m(L) < 0 and
∫ L

0 m(x)dx > 0, then F (η) has a unique positive root,
denoted by η1, for η ∈ (0,+∞) and F ′(η1) < 0.

Proof. It suffices to prove parts (i) and (iii). If m(x) changes sign once in (0, L) and
m(L) > 0, i.e., there exists x1 ∈ (0, L) such that m(x1) = 0, then m(x)(x − x1) > 0 for
x ∈ (0, L) and x 6= x1. By direct computation we obtain

[e−x1ηF (η)]′ = e−x1η[F ′(η)− x1F (η)] =

∫ L

0
eη(x−x1)m(x)(x− x1)dx > 0. (3.2)

Here the prime notation denotes differentiation by η.

Since F (0) =
∫ L

0 m(x)dx > 0 and e−x1ηF (η) is strictly increasing in η ∈ (0,∞), F (η) >
0 for any η ≥ 0. Thus (i) of Lemma 3.3 holds.

If m(x) satisfies
∫ L

0 m(x)dx < 0, by m(L) > 0 and Lemma 3.2, then F (η) has at least
a positive root for η ∈ (0,+∞). As e−x1ηF (η) is strictly increasing in η ∈ (0,∞), F (η) = 0
has a unique positive root, denoted as η1. By equation (3.2), F ′(η1) > x1F (η1) = 0. This
completes the proof of (iii).
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Remark 3.1. In parts (iii) and (iv) of Lemma 3.4, the monotonicity of F (η) for η ∈ (0,∞)
generally do not hold. For part (iii), we can show that F (η) is strictly increasing in (η1,∞).
Similarly in part (iv), F (η) is strictly decreasing for η ∈ (η1,∞).

Lemma 3.4. Suppose that β(x) − γ(x) changes sign once in (0, L) and
∫ L

0 β(x)dx >∫ L
0 γ(x)dx.

(i) If β(x) and γ(x) satisfy (C1), then R0 > 1 for any dI > 0 and q > 0;

(ii) If β(x) and γ(x) satisfy (C2), then for every dI > 0, there exists a unique q̄ = q̄(dI)
such that R0 > 1 for 0 < q < q̄ and R0 < 1 for q > q̄.

Proof. (i) We subtract both sides of (2.2) by β(x)ϕ, multiply by e(q/dI)x/ϕ and integrate
by parts over (0, L) to obtain

dI

∫ L

0

e
q
dI
x
ϕ2
x

ϕ2
dx+

∫ L

0
[β(x)− γ(x)]e

q
dI
x
dx =

(
1− 1

R0

)∫ L

0
β(x)e

q
dI
x
dx.

By Lemma 3.3 with m(x) = β(x) − γ(x), we see that
∫ L

0 [β(x) − γ(x)]e
q
dI
x
dx > 0 for any

dI > 0 and q > 0. We can thus conclude that(
1− 1

R0

)∫ L

0
β(x)e

q
dI
x
dx ≥

∫ L

0
[β(x)− γ(x)]e

q
dI
x
dx > 0,

which implies that R0 > 1 for any dI > 0 and q > 0.

(ii) First we compute ∂R0/∂q. One differentiates both sides of (2.2) with respect to q
to get−dIϕ′xx − ϕx − qϕ′x + γ(x)ϕ′ = −R

′
0

R2
0

β(x)ϕ+
1

R0
β(x)ϕ′, 0 < x < L,

ϕ′x(0) = ϕ′x(L) = 0.

(3.3)

Here the prime notation denotes differentiation with respect to q. Multiplying (3.3) by
e(q/dI)xϕ and integrating the resulting equation in (0, L), we get

dI

∫ L

0
e
q
dI
x
ϕ′xϕxdx−

∫ L

0
e
q
dI
x
ϕxϕdx+

∫ L

0
γ(x)e

q
dI
x
ϕ′ϕdx

= −R
′
0

R2
0

∫ L

0
β(x)e

q
dI
x
ϕ2dx+

1

R0

∫ L

0
β(x)e

q
dI
x
ϕ′ϕdx.

(3.4)

Multiplying (2.2) by e(q/dI)xϕ′ and integrating the resulting equation in (0, L), we obtain

dI

∫ L

0
e
q
dI
x
ϕxϕ

′
xdx+

∫ L

0
γ(x)e

q
dI
x
ϕϕ′dx =

1

R0

∫ L

0
β(x)e

q
dI
x
ϕϕ′dx. (3.5)
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Subtracting (3.4) and (3.5), we obtain

∂R0

∂q
=
R2

0

∫ L
0 e

q
dI
x
ϕxϕdx∫ L

0 β(x)e
q
dI
x
ϕ2dx

. (3.6)

By Corollary 2.6 we have

lim
q→∞

R0 =
β(L)

γ(L)
< 1.

On the other hand, we have limq→0R0 = R̂0 > 1 for any dI . Then, there must exist at least
some q̄ such that R0(q̄) = 1. We only need to show that for any q̄ satisfying R0(q̄) = 1,
R′0(q̄) < 0. From (3.6) and Lemma 3.1, we see that for any q̄ > 0 satisfying R0(q̄) = 1,

R′0(q̄) =

∫ L
0 e

q̄
dI
x
(φ1)xφ1dx∫ L

0 β(x)e
q̄
dI
x
(φ1)2dx

< 0.

This implies that q̄ is the unique point satisfying R0(q̄) = 1.

Remark 3.2. In Lemma 3.4, we can not obtain the monotonicity of R0 with respect to
q. We can only determine the sign of the derivative for R0 at q̄. If β(x) − γ(x) is strictly
monotone, see [13] for related results.

From part (ii) of Lemma 3.4, we see that there exists a function q = ρ1(dI) such that
R0(dI , ρ1(dI)) = 1. We determine the asymptotic profile of ρ1(dI) in the following result.

Lemma 3.5. Suppose that β(x) − γ(x) changes sign once in (0, L) and
∫ L

0 β(x)dx >∫ L
0 γ(x)dx. If β(x), γ(x) satisfy (C2), then there exists a function ρ1 : (0,∞) → (0,∞)

such that R0(dI , ρ1(dI)) = 1. Moveover, ρ1 satisfies

lim
dI→0

ρ1(dI) = 0, lim
dI→∞

ρ1(dI)

dI
= θ1,

where θ1 is the unique solution of∫ L

0
[β(x)− γ(x)]eθ1xdx = 0.

Proof. 1. First, we consider the limit of ρ1(dI)/dI as dI →∞. Suppose that ρ1(dI)/dI →∞
as dI →∞. By Lemma 2.5 and assumption (C2) we get

lim
ρ1(dI)→∞

ρ1(dI)/dI→∞

R0(dI , ρ1(dI)) =
β(L)

γ(L)
< 1,
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which contradicts R0(dI , ρ1(dI)) = 1.

Next, we claim that ρ1(dI)/dI → θ1 as dI → ∞, where θ1 is the unique positive root

of
∫ L

0 eθ1x[β(x) − γ(x)]dx = 0. By the above argument, ρ1(dI)/dI is bounded for large dI .
Passing to a subsequence if necessary, as dI →∞, we assume that ρ1(dI)/dI → θ∗ for some
non-negative number θ∗. Let ϕ̃ denote an eigenfunction of the eigenvalue R0(dI , ρ1(dI)) = 1,
uniquely determined by max[0,L] ϕ̃ = 1. Hence, ϕ̃ satisfies−dI

(
e
ρ1(dI )

dI
x
ϕ̃x
)
x

+ [γ(x)− β(x)]e
ρ1(dI )

dI
x
ϕ̃ = 0, 0 < x < L,

ϕ̃x(0) = ϕ̃x(L) = 0.
(3.7)

Integrating (3.7) in (0, L), we have∫ L

0
e
ρ1(dI )

dI
x
[β(x)− γ(x)]ϕ̃dx = 0.

By standard regularity and passing to a subsequence if necessary, as dI → ∞, we may
assume that ϕ̃→ 1 in C([0, L]). Passing to the limit by letting dI →∞, we have∫ L

0
eθ∗x[β(x)− γ(x)]dx = 0.

By Lemma 3.3 with m(x) = β(x) − γ(x), we know F (η) has a unique positive root, i.e.,
θ∗ = θ1.

2. Suppose that there exists some positive constant q∗ such that q = ρ1(dI) → q∗ as
dI → 0. By Lemma 2.5, we conclude

lim
ρ1(dI)→q∗

ρ1(dI)/dI→∞

R0(dI , ρ1(dI)) =
β(L)

γ(L)
< 1,

which contradicts R0(dI , ρ1(dI)) = 1. Suppose that q = ρ1(dI) → ∞ as dI → 0, we can
reach the contradiction similarly. Thus, it must be the case that limdI→0 ρ1(dI) = 0.

Next we consider the case that β(x), γ(x) satisfy
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx. With slight
modification to the proof of Lemma 3.4, we can prove:

Lemma 3.6. Suppose that β(x) − γ(x) changes sign once in (0, L) and
∫ L

0 β(x)dx <∫ L
0 γ(x)dx, then there exists some constant d∗I > 0 such that the following statements hold,

where d∗I is the unique positive root of the equation R̂0(dI) = 1.

(i) If β(x) and γ(x) satisfy (C1), then

• for dI ∈ (0, d∗I ], R0 > 1 for any q > 0;
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• for dI ∈ (d∗I ,+∞), there exists a unique q̄ = q̄(dI) such that R0 < 1 for 0 < q < q̄
and R0 > 1 for q > q̄.

(ii) If β(x) and γ(x) satisfy (C2), then

• for dI ∈ (0, d∗I), there exists a unique q̄ = q̄(dI) such that R0 > 1 for 0 < q < q̄
and R0 < 1 for q > q̄;

• for dI ∈ [d∗I ,+∞), then R0 < 1 for any q > 0.

Proof. We only prove part (i) as the proof of (ii) is similar. Since β(x) and γ(x) satisfy
(C1), using the same proof of part (ii) in Lemma 3.4, we know that if there exists q̄ > 0
such that R0(q̄) = 1, then q̄ is unique, and R′0(q̄) > 0. Thus, for dI ∈ (d∗I ,+∞), the proof

is completed. For dI ∈ (0, d∗I ], from Lemma 2.1 we know that limq→0R0 = R̂0 ≥ 1. By
Corollary 2.6 and condition (C1), limq→∞R0 = β(L)/γ(L) > 1. It implies that there does
not exist q∗ > 0 such that R0 = 1. Thus, R0 > 1 for any q > 0.

Remark 3.3. For dI = d∗I , we know that q = q̄(d∗I) = 0 and R0(d∗I , 0) = R̂0(d∗I) = 1. More
precisely, for dI = d∗I , if β(x) and γ(x) satisfy (C1), then R0 > 1 for q > q̄(d∗I) = 0; if β(x)
and γ(x) satisfy (C2), then R0 < 1 for q > q̄(d∗I) = 0.

Similar to Lemma 3.5, we determine the asymptotic behavior of ρ2(dI) and ρ3(dI).

Lemma 3.7. Suppose that β(x) − γ(x) changes sign once in (0, L) and
∫ L

0 β(x)dx <∫ L
0 γ(x)dx, then there exists a constant d∗I > 0 such that the following statements hold,

where d∗I is the unique positive root of the equation R̂0(dI) = 1.

(i) If β(x) and γ(x) satisfy (C1), then there exists a function ρ2 : (d∗I ,∞)→ (0,∞) such
that R0(dI , ρ2(dI)) = 1. Moveover, ρ2 is a monotone increasing function of dI and
satisfies

lim
dI→d∗I+

ρ2(dI) = 0, lim
dI→∞

ρ2(dI)

dI
= θ2,

where θ2 is the unique solution of∫ L

0
[β(x)− γ(x)]eθ2xdx = 0.

(ii) If β(x) and γ(x) satisfy (C2), there exists a function ρ3 : (0, d∗I) → (0,∞) such that
R0(dI , ρ3(dI)) = 1. Moreover, ρ3 satisfies

lim
dI→0+

ρ3(dI) = 0, lim
dI→d∗I−

ρ3(dI) = 0.
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Proof. (i) To prove the monotone property of ρ2(dI) about dI , we claim that if β(x)− γ(x)
changes sign once in (0, L) and (C1) holds, then for any dI satisfying R0(dI) = 1, R′0(dI) <
0. Here the prime notation denotes differentiation by dI .

We differentiate both sides of (2.2) with respect to dI to get−ϕxx − dIϕ′xx − qϕ′x + γ(x)ϕ′ = −R
′
0

R2
0

β(x)ϕ+
1

R0
β(x)ϕ′, 0 < x < L,

ϕ′x(0) = ϕ′x(L) = 0.

(3.8)

Multiplying (3.8) by e(q/dI)xϕ and integrating the resulting equation in (0, L), we get

−
∫ L

0
e
q
dI
x
ϕxxϕdx+ dI

∫ L

0
e
q
dI
x
ϕ′xϕxdx+

∫ L

0
γ(x)e

q
dI
x
ϕ′ϕdx

= −R
′
0

R2
0

∫ L

0
β(x)e

q
dI
x
ϕ2dx+

1

R0

∫ L

0
β(x)e

q
dI
x
ϕ′ϕdx.

(3.9)

Multiplying (2.2) by e(q/dI)xϕ′ and integrating the resulting equation in (0, L), we obtain

dI

∫ L

0
e
q
dI
x
ϕ′xϕxdx+

∫ L

0
γ(x)e

q
dI
x
ϕ′ϕdx =

1

R0

∫ L

0
β(x)e

q
dI
x
ϕ′ϕdx. (3.10)

Subtracting (3.9) and (3.10), we obtain

∂R0

∂dI
=
R2

0

∫ L
0 e

q
dI
x
ϕxxϕdx∫ L

0 β(x)e
q
dI
x
ϕ2dx

= −
R2

0

∫ L
0 e

q
dI
x
ϕ2
xdx∫ L

0 β(x)e
q
dI
x
ϕ2dx

−
qR2

0

∫ L
0 e

q
dI
x
ϕxϕdx

dI
∫ L

0 β(x)e
q
dI
x
ϕ2dx

. (3.11)

By Lemma 3.1, we see that for any dI satisfying R0(dI) = 1, (φ1)x > 0, which implies that

R′0(dI) = −
R2

0

∫ L
0 e

q
dI
x
[(φ1)x]2dx∫ L

0 β(x)e
q
dI
x
φ2

1dx
−
qR2

0

∫ L
0 e

q
dI
x
(φ1)xφ1dx

dI
∫ L

0 β(x)e
q
dI
x
φ2

1dx
< 0.

This proves our assertion.

For any (dI , ρ2(dI)) satisfying R0(dI , ρ2(dI)) = 1, we differentiate R0(dI , ρ2(dI)) = 1
with respect to dI to get

∂R0

∂q
· ρ′2(dI) +

∂R0

∂dI
= 0,

where the prime notation denotes differentiation by dI . By part (i) of Lemma 3.6 and the
above claim, ∂R0/∂q > 0 and ∂R0/∂dI < 0 for (dI , ρ2(dI)) satisfying R0(dI , ρ2(dI)) = 1.
Thus ρ′2(dI) > 0.

Next we prove limdI→d∗I+ ρ2(dI) = 0. Suppose that there exists q∗ > 0 such that

q = ρ2(dI)→ q∗ as dI → d∗I+. Then there exists a positive function φ∗(x) ∈ C2([0, L]) such
that {

−d∗Iφ∗xx − q∗φ∗x + γ(x)φ∗ = β(x)φ∗, 0 < x < L,

φ∗x(0) = φ∗x(L) = 0.
(3.12)
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Since d∗I is the unique positive root of the equation R̂0 = 1, then there exists a positive

function φ̂(x) ∈ C2([0, L]) such that{
−d∗I φ̂xx + γ(x)φ̂ = β(x)φ̂, 0 < x < L,

φ̂x(0) = φ̂x(L) = 0.
(3.13)

Multiplying (3.12) by φ̂, (3.13) by φ∗, integrating over (0, L) and subtracting, we obtain

q∗
∫ L

0
φ∗xφ̂dx = 0.

From Lemma 3.1, we know that φ∗x > 0 in (0, L). Since φ∗x and φ̂ are all positive functions,
then q∗ = 0. Hence, limdI→d∗I+ ρ2(dI) = 0.

By a similar argument as in the proof of Lemma 3.5, we can prove

lim
dI→∞

ρ2(dI)

dI
= θ2,

where θ2 is the unique solution of∫ L

0
[β(x)− γ(x)]eθ2xdx = 0.

(ii) By the above argument and the proof of Lemma 3.5, the proof is complete.

3.2 The endemic equilibrium

In this subsection, we apply the bifurcation analysis and degree theory to study the existence
of endemic equilibrium when the disease-free equilibrium is unstable. Theorem 1.5 is a
consequence of Lemmas 3.8 and 3.10.

In subsection 3.2.1, we will prove the problem (1.6)-(1.7) has at least an EE for (dI , q) ∈
ΩU
hl ∪ ΩU2

lh ∪ ΩU
ll and the EE exists for (dI , q) ∈ ΩU

hh ∪ ΩU1
lh in subsection 3.2.2.

3.2.1 Bifurcation from the disease-free equilibrium

In this subsection we prove the existence of endemic equilibrium of (1.6)-(1.7) using bifur-

cation theory. By the transformation S̃ = e
q
dS
x
S, Ĩ = e

q
dI
x
I we can convert the steady

27



states system (1.6) to

dSSxx + qSx − β(x)
e
q
dI
x
SI

e
q
dS
x
S + e

q
dI
x
I

+ γ(x)e

(
q
dI
− q
dS

)
x
I = 0, 0 < x < L,

dIIxx + qIx + β(x)
e
q
dS
x
SI

e
q
dS
x
S + e

q
dI
x
I
− γ(x)I = 0, 0 < x < L,

Sx(0) = Sx(L) = 0, Ix(0) = Ix(L) = 0,∫ L
0 [e

q
dS
x
S + e

q
dI
x
I]dx = N,

(3.14)

where the constant N is the total population size. We shall study (3.14) instead of (1.6)-
(1.7) since the structure of the solution set of (3.14) is the same as that of (1.6)-(1.7). For
(3.14), the unique disease-free equilibrium is denoted by (Ŝ, 0) = (qN/dS(eqL/dS − 1), 0).
We will apply the local and global bifurcation theorems to consider a branch of positive
solutions of (3.14) bifurcating from the branch of semi-trivial solutions given by

ΓS := {(q, (Ŝ, 0)) : 0 < q <∞}.

We now set up the abstract framework for our bifurcation analysis. Fix dS , dI > 0 and
let q be the bifurcation parameter. For p > 1, set

X =
{
u ∈W 2,p((0, L)) : ux(0) = ux(L) = 0

}
, Y = Lp((0, L)),

and define the set of positive solutions of (3.14) to be

O = {(q, (S, I)) ∈ R+ ×X ×X : q > 0, S > 0, I > 0, (q, (S, I))satisfies (3.14)}.

We have the following result about the bifurcation from the disease-free equilibrium.

Lemma 3.8. Suppose that dS , dI > 0 and β(x)− γ(x) changes sign once in (0, L), then

1. q∗ > 0 is a bifurcation point for the positive solutions of (3.14) from the semi-trivial
branch ΓS if and only if q∗ satisfies R0(dI , q∗) = 1. More precisely,

(I) when
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx, for any dI > 0, such q∗ exists uniquely if and only
if β(x) and γ(x) satisfy condition (C2);

(II) when
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx, such q∗ exists uniquely if and only if either as-
sumption (C1) holds and d > d∗I or assumption (C2) holds and 0 < d < d∗I ,

where d∗I is the unique positive root of R̂0 = 1.

2. All positive solutions of (3.14) near (q∗, (Ŝ, 0)) ∈ R×X ×X can be parameterized as

Γ = {(q(τ), (Ŝ + S1(τ), I1(τ))) : τ ∈ [0, δ)} (3.15)

for some δ > 0, (q(τ), (Ŝ + S1(τ), I1(τ))) is a smooth curve with respect to τ and
satisfies q(0) = q∗, S1(0) = I1(0) = 0.
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3. There exists a connected component Σ of O such that Γ ⊆ Σ, and the following
statements about Σ hold:

Case (I)
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx. If (C2) holds, then for Σ, the projection of Σ
to the q-axis satisfies ProjqΣ = [0, q∗] and the connected component Σ connects to
(0, (S∗, I∗)), where (S∗, I∗) is an endemic equilibrium of (3.14) when q = 0.

Case (II)
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx.

(i) If (C1) holds and dI > d∗I , then for Σ, the projection of Σ to the q-axis satisfies
ProjqΣ = [q∗,∞), and (3.14) has no positive solution for 0 < q < q∗.

(ii) If (C2) holds and 0 < dI < d∗I , then for Σ, ProjqΣ = [0, q∗] and the connected
component Σ connects to (0, (S∗, I∗)), where (S∗, I∗) is an endemic equilibrium
of (3.14) when q = 0.

Proof. 1. We define a mapping F : R+ ×X ×X → Y × Y × R by

F (q, (S, I)) =


dSSxx + qSx − β(x)

e
q
dI
x
SI

e
q
dS
x
S + e

q
dI
x
I

+ γ(x)e

(
q
dI
− q
dS

)
x
I

dIIxx + qIx + β(x)
e
q
dS
x
SI

e
q
dS
x
S + e

q
dI
x
I
− γ(x)I∫ L

0 [e
q
dS
x
S + e

q
dI
x
I]dx−N

 .

Then the pair (S, I) satisfies F (q, (S, I)) = 0 if and only if (S, I) is a solution of (3.14).
Note that F (q, (Ŝ, 0)) = 0 for any q > 0. The Fréchet derivatives of F at (Ŝ, 0) are given
by

D(S,I)F (q, (Ŝ, 0))

[
Φ
Ψ

]
=

 dSΦxx + qΦx + [γ(x)− β(x)]e

(
q
dI
− q
dS

)
x
Ψ

dIΨxx + qΨx + [β(x)− γ(x)]Ψ∫ L
0 [e

q
dS
x
Φ + e

q
dI
x
Ψ]dx

 ,

Dq,(S,I)F (q, (Ŝ, 0))

[
Φ
Ψ

]
=

 Φx +
(
x
dI
− x

dS

)
[γ(x)− β(x)]e

(
q
dI
− q
dS

)
x
Ψ

Ψx∫ L
0 [ xdS e

q
dS
x
Φ + x

dI
e
q
dI
x
Ψ]dx

 ,

D(S,I)(S,I)F (q, Ŝ, 0)

[
Φ
Ψ

]2

=


2
Ŝ
β(x)e

2
(
q
dI
− q
dS

)
x
Ψ2

− 2
Ŝ
β(x)e

(
q
dI
− q
dS

)
x
Ψ2

0

 .
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We find that (q∗, (Ŝ, 0)) is a degenerate solution of (3.14) if

dSΦxx + qΦx + [γ(x)− β(x)]e

(
q
dI
− q
dS

)
x
Ψ = 0, 0 < x < L,

dIΨxx + qΨx + [β(x)− γ(x)]Ψ = 0, 0 < x < L,∫ L

0

[
e
q
dS
x
Φ + e

q
dI
x
Ψ
]

dx = 0,

Φx(0) = Φx(L) = 0, Ψx(0) = Ψx(L) = 0

(3.16)

has a nontrivial solution (Φ1, φ1). The second equation of (3.16) has a positive solution φ1

only when q = q∗ satisfies R0(dI , q∗) = 1. Actually, φ1 is an eigenfunction corresponding to
the eigenvalue R0(dI , q∗) = 1 and Φ1 satisfies

dS(Φ1)xx + q(Φ1)x + [γ(x)− β(x)]e

(
q
dI
− q
dS

)
x
φ1 = 0, 0 < x < L,∫ L

0

[
e
q
dS
x
Φ1 + e

q
dI
x
φ1

]
dx = 0,

(Φ1)x(0) = (Φ1)x(L) = 0.

(3.17)

It can be seen that Φ1 is uniquely determined by φ1 in (3.17). Hence, q = q∗ is the only
possible bifurcation point along ΓS where positive solutions of (3.14) bifurcates, and such q∗
exists if and only if R0 = 1. By Lemmas 3.4 and 3.6, the necessary and sufficient conditions
for the occurrence of bifurcation are established.

2. At (q, (S, I)) = (q∗, (Ŝ, 0)), the kernel Ker(D(S,I)F (q∗, (Ŝ, 0))) = span{(Φ1, φ1)},
where (Φ1, φ1) satisfy (3.16) with q = q∗. From the above discussion we know that (Φ1, φ1)
is unique (up to a multiple of constant). The range of D(S,I)F (q∗, (Ŝ, 0)) is given by

Range(D(S,I)F (q∗, (Ŝ, 0))) =

{
(f, g, k) ∈ Y × Y × R :

∫ L

0
gφ1e

q
dI
x
dx = 0

}
,

which is of co-dimension one. Since (φ1)x does not change sign in (0, L) from Lemma 3.1,

then
∫ L

0 (φ1)xφ1e
q
dI
x
dx 6= 0. Hence, we can get

Dq,(S,I)F (q∗, (Ŝ, 0))[(Φ1, φ1)] /∈ Range(D(S,I)F (q∗, (Ŝ, 0))).

Consequently we can apply the local bifurcation theorem in [7] to F at (q∗, (Ŝ, 0)) and
conclude that the set of positive solutions to (3.14) is a smooth curve

Γ = {(q(τ), (Ŝ + S1(τ), I1(τ))) : τ ∈ [0, δ)},

such that q(0) = q∗, S1(τ) = τ Ŝ + o(|τ |), I1(τ) = o(|τ |). Moreover, q′(0) can be calculated
(see, e.g., [9, 26]):

q′(0) = −
〈l,D(S,I)(S,I)F (q∗, (Ŝ, 0))[Φ1, φ1]2〉
2〈l,Dq,(S,I)F (q∗, (Ŝ, 0))[Φ1, φ1]〉

=

∫ L
0 β(x)e

(
2q
dI
− q
dS

)
x
φ3

1dx

Ŝ
∫ L

0 e
q
dI
x
φ1(φ1)xdx

,
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where l is the linear functional on Y × Y × R defined by 〈l, [f, g, k]〉 =
∫ L

0 gφ1e
q
dI
x
dx.

3. For the proof of part 3, the existence of the connected component Σ follows from the
global bifurcation theorem in [27] (see also [25]), and it is known that Σ is either unbounded,
or connects to another (q, (Ŝ, 0)), or Σ connects to another point on the boundary of O.

Case (I):
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx and (C2) holds. From the above proof of part 2 and
Lemma 3.1, we know that there exists a unique q∗ such that the local bifurcation occurs at
(q∗, (Ŝ, 0)) and q′(0) < 0, i.e., the bifurcation direction is subcritical. It means that (3.14)
has a positive solution when q∗ − δ < q < q∗ for some small δ > 0. By Lemma 3.4, R0 > 1
when q∗− δ < q < q∗ for some small δ > 0. According to Lemma 2.4, (3.14) has no positive
solution when R0 < 1, then (3.14) has no positive solution when q > q∗, i.e., the projection
of Σ to the q-axis ProjqΣ ⊂ [0, q∗]. Since the positive solutions have a uniform L∞ bound
for 0 ≤ q ≤ q∗, then Σ must be bounded in O. It can be seen that the third option must
happen here. Therefore Σ must connect to (0, (S∗, I∗)), where (S∗, I∗) is the unique endemic
equilibrium of (3.14) when q = 0. Thus, 0 ∈ ProjqΣ. This complete the proof of Case (I).

Case (II):
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx. If (C1) holds and dI > d∗I , from the above bifurca-
tion analysis and Lemma 3.1, there exists a unique bifurcation point q∗ such that q′(0) > 0,
i.e., the bifurcation direction is supercritical. That is, (3.14) has a positive solution when
q∗ < q < q∗ + δ for some small δ > 0. Hence R0 > 1 when q∗ < q < q∗ + δ for some
small δ > 0 by Lemma 3.6. According to Lemma 2.4, (3.14) has no positive solution when
R0 < 1, then (3.14) has no positive solution when 0 < q < q∗. Hence the first option must
happen here. Assume that there exists q∗ > q∗ such that ProjqΣ = [q∗, q

∗), then it is a
contradiction as all positive solutions have an uniform L∞ bound for q = q∗. Therefore, the
projection of Σ to the q-axis ProjqΣ = [q∗,∞). If (C2) holds and 0 < dI < d∗I , the proof is
similar to that of case (I).

Here we note that when
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx, if condition (C1) holds and dI = d∗I ,
q∗(d

∗
I) = 0 is the unique bifurcation point. For the connected component Σ, the projection

of Σ to the q-axis satisfies ProjqΣ = [0,∞), i.e., (3.14) has at least one positive solution
for any q > 0 in this case.

From Lemma 3.8, we see that the EE of (1.6)-(1.7) exists for (dI , q) ∈ ΩU
hl ∪ΩU2

lh ∪ΩU
ll .

3.2.2 The Leray-Schauder degree argument

In this subsection, we will apply the degree theory to prove the existence of the endemic
equilibrium when the disease-free equilibrium is unstable. First we give a priori estimate of
the positive solutions of (3.14).

Lemma 3.9. For any ε > 0, there exist two positive constants C and C, depending on
dI , ε, ‖β‖∞, ‖γ‖∞ and N such that for any ε ≤ dS ≤ 1/ε, 0 ≤ q ≤ 1/ε, if R0 6= 1, then any
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positive solution of (3.14) satisfies

C ≤ S(x), I(x) ≤ C, for any x ∈ [0, L]. (3.18)

Proof. In the introduction we have discussed that S and I have the upper bound C, C
depending on dI , ε, ‖β‖∞, ‖γ‖∞ and N . We only need to prove that S and I have positive
lower bounds.

We claim that max[0,L] I(x) is bounded below by some positive constant. To establish
this assertion, we argue by contradiction. Suppose that there exist (Si(x), Ii(x)) are positive
solutions of (3.14) such that

max
x∈[0,L]

Ii(x)→ 0, as i→∞,

and (Si(x), Ii(x)) satisfies

dS,i(Si)xx + qi(Si)x − β(x)
e
qi
dI
x
SiIi

e
qi
dS,i

x
Si + e

qi
dI
x
Ii

+ γ(x)e

(
qi
dI
− qi
dS,i

)
x
Ii = 0, 0 < x < L,

dI(Ii)xx + qi(Ii)x + β(x)
e

qi
dS,i

x
SiIi

e
qi
dS,i

x
Si + e

qi
dI
x
Ii

− γ(x)Ii = 0, 0 < x < L,

(Si)x(0) = (Si)x(L) = 0, (Ii)x(0) = (Ii)x(L) = 0,∫ L

0
[e

qi
dS,i

x
Si + e

qi
dI
x
Ii]dx = N,

where ε ≤ dS,i ≤ 1/ε and 0 ≤ qi ≤ 1/ε. Passing to a subsequence if necessary, we assume
dS,i → dS > 0 and qi → q ≥ 0. Since ‖Ii‖∞ are uniformly bounded, let Ĩi = Ii/‖Ii‖∞, then
Ĩi satisfies

dI(Ĩi)xx + qi(Ĩi)x + β(x)Ĩi
e

qi
dS,i

x
Si

e
qi
dS,i

x
Si + e

qi
dI
x
Ii

− γ(x)Ĩi = 0, 0 < x < L,

(Ĩi)x(0) = (Ĩi)x(L) = 0.

By standard regularity and the Sobolev embedding theorem [11], passing to a subsequence
if necessary, we know that Ii → 0 and Ĩi → I∗ in C1([0, L]), where I∗ > 0 and ‖I∗‖∞ = 1.

From
∫ L

0 [e
qi
dS,i

x
Si + e

qi
dI
x
Ii]dx = N and Ii → 0 in C1([0, L]), by the equation of Si we can

get Si → Ŝ > 0 in C1([0, L]). Thus it is easy to see that I∗ satisfies{
dII
∗
xx + qI∗x + [β(x)− γ(x)]I∗ = 0, 0 < x < L,

I∗x(0) = I∗x(L) = 0.

From I∗ > 0, then 0 is the principal eigenvalue, which contradicts the assumption R0 6= 1
for any dI > 0 and 0 ≤ q ≤ 1/ε. Thus there exists some positive constant C such that
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max[0,L] I(x) ≥ C. By the Harnack inequality (e.g., modifying the argument in [14]), there
exists some positive constant C∗, depending on dI , ε, ‖β‖∞, ‖γ‖∞ and N such that

max
x∈[0,L]

I(x) ≤ C∗ min
x∈[0,L]

I(x).

It implies that I(x) has uniform positive lower bound.

Next we prove that S(x) has a uniform positive lower bound. Set S(x0) = min[0,L] S.
Applying the minimum principle in [15], we obtain

β(x0)
e
q
dI
x0S(x0)

e
q
dS
x0S(x0) + e

q
dI
x0I(x0)

− γ(x0)e

(
q
dI
− q
dS

)
x0 ≥ 0, (3.19)

which implies that

β(x0)
S(x0)

I(x0)
≥ β(x0)

e
q
dI
x0S(x0)

e
q
dS
x0S(x0) + e

q
dI
x0I(x0)

≥ γ(x0)e

(
q
dI
− q
dS

)
x0 .

Thus we deduce that

S(x0) ≥ γ(x0)e

(
q
dI
− q
dS

)
x0

β(x0)
I(x0) ≥ C min

x∈[0,L]
I.

Then the proof is complete.

Lemma 3.10. Assume that β(x) − γ(x) changes sign once in (0, L), then (3.14) has at
least an endemic equilibrium, provided that one of the following conditions holds:

(i) dI > 0, q > 0,
∫ L

0 β(x)dx >
∫ L

0 γ(x)dx and (C1) holds;

(ii) 0 < dI < d∗I , q > 0,
∫ L

0 β(x)dx <
∫ L

0 γ(x)dx and (C1) holds.

Proof. For any nonnegative pair (f, g) ∈ C([0, L]) × C([0, L]), we can extend the range
of f, g properly such that the Lipschitz continuous function fg/(e(τqx/dS)f + e(τqx/dI)g)
be defined for f, g ∈ R and τ ∈ [0, 1]. We can define a compact operator family from
[0, 1]× C([0, L])× C([0, L]) to C([0, L])× C([0, L]) as follows:

(τdS + (1− τ)dI)uxx + τqux + γ(x)e

(
τq
dI
− τq
dS

)
x
v = β(x)

e
τq
dI
x
fg

e
τq
dS
x
f + e

τq
dI
x
g
, 0 < x < L,

dIvxx + τqvx − γ(x)v = −β(x)
e
τq
dS
x
fg

e
τq
dS
x
f + e

τq
dI
x
g
, 0 < x < L,

ux(0) = ux(L) = 0, vx(0) = vx(L) = 0,∫ L

0

[
e

τqx
τdS+(1−τ)dI u+ e

τqx
dI v

]
dx = N.

(3.20)
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In fact, for any τ ∈ [0, 1] and (f, g) ∈ C([0, L]) × C([0, L]), since the operator dI
d2

dx2 +

τq d
dx − γ(x) is invertible, v is uniquely determined by the second equation of (3.20). From

the first and last equations of (3.20), u is also uniquely determined. Thus, we can define
Gτ (f, g) := (u, v).

By conditions (i) and (ii), from Figures 1 and 3 we see that (dI , q) ∈ ΩU
hh ∪ΩU1

lh , where

ΩU
hh and ΩU1

lh are defined in Definitions 1.1 and 1.2, respectively. That is, R0,τ > 1 for any
τ ∈ [0, 1], where R0,τ is defined by

R0,τ = sup
ϕ∈H1((0,L))

ϕ6=0

{ ∫ L
0 β(x)e

τq
dI
x
ϕ2dx

dI
∫ L

0 e
τq
dI
x
ϕ2
xdx+

∫ L
0 γ(x)e

τq
dI
x
ϕ2dx

}
.

By Lemma 3.9, for any τ ∈ [0, 1], we know that there exist two positive constants C =
C(dS , dI , q, ‖β‖∞, ‖γ‖∞, N) and C = C(dS , dI , q, ‖β‖∞, ‖γ‖∞, N) such that any positive
solution (u, v) of (3.20) satisfies C ≤ u, v ≤ C.

We define

D =
{

(u, v) ∈ C([0, L])× C([0, L]) : C/2 ≤ u, v ≤ 2C
}
.

Then for any τ ∈ [0, 1] and (S, I) ∈ ∂D, we know that(S, I) 6= G(τ, (S, I)). As a result, the
Leray-Schauder degree deg(I − G(τ, (·, ·)), D, 0) is well defined, and it is independent of τ ,
where I is the identity map. Furthermore, (S, I) solves (3.14) if and only if (S, I) satisfies
(S, I) = G(1, (S, I)). It is easy to see that (S, I) ∈ D satisfies (I − G(0, (·, ·)))(S, I) = 0
implies that (S, I) is a positive solution of

dISxx − β(x)
SI

S + I
+ γ(x)I = 0, 0 < x < L,

dIIxx + β(x)
SI

S + I
− γ(x)I = 0, 0 < x < L,

Sx(0) = Sx(L) = 0, Ix(0) = Ix(L) = 0,∫ L

0
[S + I]dx = N.

(3.21)

From [3], the problem has a unique positive solution when the basic reproduction number
R̂0 > 1, denoted by (S∗, I∗), and (S∗, I∗) satisfying S∗+I∗ = N/L. We need to determine the
linear stability of (S∗, I∗). Linearizing equation (3.21) around (S∗, I∗), we get the following
linearized system:

−dIΦxx + β(x)
I2
∗

(S∗ + I∗)2
Φ + β(x)

S2
∗

(S∗ + I∗)2
Ψ− γ(x)Ψ = µΦ, 0 < x < L,

−dIΨxx − β(x)
S2
∗

(S∗ + I∗)2
Ψ + γ(x)Ψ− β(x)

I2
∗

(S∗ + I∗)2
Φ = µΨ, 0 < x < L,

Φx(0) = Φx(L) = 0, Ψx(0) = Ψx(L) = 0,∫ L

0
[Φ + Ψ]dx = 0.

(3.22)
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Adding the first two equations of (3.22) and integrating the resulting equation in (0, L),
combining with the boundary condition, we obtain Φ = −Ψ. Then we can convert the first
equation of (3.22) to

−dIΦxx +

(
2
L

N
β(x)I∗ + γ(x)− β(x)

)
Φ = µΦ.

Since I∗ is a positive solution of (3.21), then −dI d2

dx2 + 2 LN β(x)I∗+ γ(x)−β(x) is a positive
operator and we can obtain µ > 0. Thus the unique positive solution (S∗, I∗) is linearly
stable. Hence, by the well-known Leray-Schauder degree index formula (see, e.g., theorem
2.8.1 in [19]), we get

deg(I− G(0, (·, ·)), D, 0) = 1.

Therefore, by the homotopy invariance of the Leray-Schauder degree, we get

deg(I− G(1, (·, ·)), D, 0) = deg(I− G(0, (·, ·)), D, 0),

for (dI , q) ∈ ΩU
hh ∪ ΩU1

lh . Therefore, we know that deg(I − G(1, (·, ·)), D, 0) = 1. By the

properties of the degree, when (dI , q) ∈ ΩU
hh ∪ ΩU1

lh , G(1, (·, ·)) has a fixed point in D, i.e.,
(3.14) has at least one positive solution.

By Lemma 3.10, the EE of (1.6)-(1.7) exists for (dI , q) ∈ ΩU
hh ∪ ΩU1

lh .

4 Properties of R0: β(x)− γ(x) changing sign twice

The goal of this section is to establish Theorem 1.6. Here using the same definition in
Section 3, for any given continuous function m(x) on [0, L], define

F (η) =

∫ L

0
eηxm(x)dx, 0 ≤ η <∞.

To study the stability of the DFE in terms of the diffusion rate dI and the advection rate q,
we need consider the results about the positive roots of the auxiliary function F . We have
the following result:

Lemma 4.1. Let m(x) change sign twice for x ∈ [0, L], i.e., there exist 0 < x1 < x2 < L
such that m(x1) = m(x2) = 0. The following statements about F hold.

(i) If m(x) satisfies m(L) < 0 and
∫ L

0 m(x)dx > 0, then F (η) has a unique positive root
η1 for η ∈ (0,+∞) and F ′(η1) < 0;

(ii) If m(x) satisfies m(L) > 0 and
∫ L

0 m(x)dx < 0, then F (η) has a unique positive root
η1 for η ∈ (0,+∞) and F ′(η1) > 0;
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(iii) If m(x) satisfies m(L) > 0 and
∫ L

0 m(x)dx > 0, then F (η) has at most two positive
roots for η ∈ (0,+∞);

(iv) If m(x) satisfies m(L) < 0 and
∫ L

0 m(x)dx < 0, then F (η) has at most two positive
roots for η ∈ (0,+∞).

Proof. We only need to prove (i) and (iii). Parts (ii) and (iv) can be established in the same
way.

1. Set G1(η) := e−x2η[x1F (η)−F ′(η)]. Here the prime notation denotes differentiation
with respect to η. By the condition in (i), we know that m(x) > 0 for x ∈ (x1, x2) and
m(x) < 0 for x ∈ (0, x1) ∪ (x2, L), i.e., m(x)(x − x1)(x − x2) < 0 for x ∈ (0, L) and
x 6= xi (i = 1, 2). Thus, for any η > 0, one can get

G′1(η) = −e−x2η[F ′′(η)− (x1 + x2)F ′(η) + x1x2F (η)]

= −
∫ L

0
eη(x−x2)m(x)(x− x1)(x− x2)dx

> 0,

i.e., G1(η) is a strictly increasing function for η ∈ (0,∞). By condition (i) and Lemma 3.2,
we know that there exists at least a positive root of F . Let η1 denote the smallest positive
one, then F ′(η1) ≤ 0. There are two cases, F ′(η1) = 0 and F ′(η1) < 0.

Assume that F ′(η1) = 0, since F ′′(η) − (x1 + x2)F ′(η) + x1x2F (η) =
∫ L

0 eηxm(x)(x −
x1)(x − x2)dx < 0, then we have F ′′(η1) − (x1 + x2)F ′(η1) + x1x2F (η1) = F ′′(η1) < 0.
It implies that F attains a strict local maximum at η1. This is a contradiction. Hence
F ′(η1) < 0. Next we claim that η1 is the unique positive root of F . Suppose that there
exists another positive root η2 > η1 such that F (η2) = 0. Since F (η1) = 0 and F ′(η1) < 0,
then F (η) < 0 in (η1, η2), i.e., F ′(η2) ≥ 0. By the definition of G1(η), we know G1(η1) =
−e−x2η1F ′(η1) > 0 and G1(η2) = −e−x2η2F ′(η2) ≤ 0, this reaches the contradiction as
G1(η) is strictly increasing. This completes the proof of (i).

2. For part (iii), by condition and Lemma 3.2, it is known that either F > 0 for any
η ≥ 0 or F has positive roots in (0,∞). Set G2(η) = e−x2η[F ′(η) − x1F (η)] and η1 is the
first zero of F . Similar to the proof of part (i), we know G2 is strictly monotone increasing
in (0,+∞) and F ′(η1) ≤ 0. There are two cases, F ′(η1) = 0 and F ′(η1) < 0.

Case 1: If F ′(η1) = 0, then we claim that η1 is the unique positive root of F . Since

F ′′(η) − (x1 + x2)F ′(η) + x1x2F (η) =
∫ L

0 eηxm(x)(x − x1)(x − x2)dx > 0, then we have
F ′′(η1) − (x1 + x2)F ′(η1) + x1x2F (η1) = F ′′(η1) > 0. It implies that F attains a strict
local minimum at η1. Next we claim that there is no other root of F . If not, there exist
η2 > η1 > 0 such that F (η2) = 0 and F (η) > 0 in (η1, η2), which means that F ′(η2) ≤ 0.
Thus G2(η1) = e−x2η1 [F ′(η1) − x1F (η1)] = 0 ≥ e−x2η2F ′(η2) = e−x2η2 [F ′(η2) − x1F (η2)] =
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G2(η2). This contradicts the fact that G2 is strictly increasing. Therefore, F has a unique
positive root η1, i.e., F ≥ 0 for any η ∈ (0,+∞) in this case.

Case 2: If F ′(η1) < 0, then we claim that there exists a unique η2 > η1 such that
F (η2) = 0. Moreover, F ′(η2) > 0.

Since F ′(η1) < 0, by Lemma 3.2, F has another positive root, denoted by η2. We have
F (η) < 0 in (η1, η2) and F ′(η2) ≥ 0. If F ′(η2) = 0, then

F ′′(η2) = F ′′(η2)− (x1 + x2)F ′(η2) + x1x2F (η2) =

∫ L

0
eη2xm(x)(x− x1)(x− x2)dx > 0,

which implies that F attains a strict local minimum at η2. This is a contraction. Hence,
F ′(η2) > 0. Next we claim that there is no the positive root of F for η > η2. Suppose
that there exist η3 > η2 such that F (η3) = 0 and F (η) > 0 in (η2, η3). Then F ′(η3) ≤ 0.
Thus G2(η2) = e−x2η2F ′(η2) > 0 ≥ e−x2η3F ′(η3) = e−x2η3 [F ′(η3)−x1F (η3)] = G2(η3). This
contradicts the fact that G2 is strictly increasing. Thus F has exactly two positive roots in
this case. This completes the proof of (iii).

Remark 4.1. For part (iii) (or (iv)), we can further show that F (η) > (<) 0 for any

η > 0 with the additional condition
∫ L

0 m(x)(x− x1)dx > (<) 0. This implies that the first
alternative in part (iii) can occur.

Proof the Theorem 1.6. We only need to prove (i) and (iii). Parts (ii) and (iv) can be
established in the same way.

1. For part (i), similarly as in the proofs of Lemmas 3.5 and 3.6, we know that there
exists some positive constant Λ, independent of dI and q such that for each dI > Λ, there
exists some q̃ = q̃(dI) such R0(dI , q̃) = 1, and q̃/dI → η0 as dI →∞, where η0 is the unique
positive root of F (η) = 0.

Next we claim that if dI is sufficiently large, for any q̃ satisfying R0(dI , q̃) = 1, we have

∂R0

∂q
(dI , q̃) < 0.

To establish our assertion, let ϕ̃ denote an eigenfunction of the eigenvalue R0(dI , q̃) = 1,
uniquely determined by max[0,L] ϕ̃ = 1. Hence, ϕ̃ satisfies{

−dI
(
e
q̃
dI
x
ϕ̃x
)
x

+ [γ(x)− β(x)]e
q̃
dI
x
ϕ̃ = 0, 0 < x < L,

ϕ̃x(0) = ϕ̃x(L) = 0.
(4.1)

By (3.6), we have

∂R0

∂q
(dI , q̃) =

R2
0

∫ L
0 e

q̃
dI
x
ϕ̃xϕ̃dx∫ L

0 β(x)e
q̃
dI
x
ϕ̃2dx

.
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Multiplying (4.1) by
∫ x

0 ϕ̃(s)ds and integrating in (0, L), we obtain

dI

∫ L

0
e
q̃
dI
x
ϕ̃xϕ̃dx+

∫ L

0
[γ(x)− β(x)]e

q̃
dI
x
ϕ̃

(∫ x

0
ϕ̃(s)ds

)
dx = 0.

Thus,

dI
∂R0

∂q
(dI , q̃) =

∫ L
0 [β(x)− γ(x)]e

q̃
dI
x
ϕ̃
(∫ x

0 ϕ̃(s)ds
)

dx∫ L
0 β(x)e

q̃
dI
x
ϕ̃2dx

.

As dI →∞, q̃/dI → η0 and ϕ̃→ 1, we have

lim
dI→∞

dI
∂R0

∂q
(dI , q̃) =

∫ L
0 xeη0x[β(x)− γ(x)]dx∫ L

0 β(x)eη0xdx
.

By part (i) of Lemma 4.1,∫ L

0
xeη0x[β(x)− γ(x)]dx = F ′(η0) < 0.

Therefore, there exists some constant Q > 0 (dependent on dI) such that R0 > 1 for
0 < q < Q and R0 < 1 for q > Q.

2. For part (iii), from part (iii) of Lemma 4.1, we know that there are three cases for
F :

Case 1. F (η) > 0 for any η > 0.

Case 2. F (η) has a unique positive root η1 for η ∈ (0,+∞) and F ′(η1) = 0.

Case 3. F (η) has two positive roots η1 and η2 (η1 < η2) for η ∈ (0,+∞) and F ′(η1) < 0,
F ′(η2) > 0.

For Case 1, we can show that there exists some positive constant Λ independent of dI
and q such that for every dI > Λ, R0 > 1 for any q > 0.

For Case 2, the proof of this case is exactly the same as the above proof of part (i).
We can obtain that there exists some positive constant Λ independent of dI and q such
that for every dI > Λ, there exists some q̃ = q̃(dI) such R0(dI , q̃) = 1, and q̃/dI → η0 as
dI → ∞, where η0 is the unique positive root of F (η) = 0. Moreover, we can obtain that
if dI is sufficiently large, for any q̃ satisfying R0(dI , q̃) = 1, we have ∂R0(dI , q̃)/∂q = 0.
Thus, we know that there exists some positive constant Λ independent of dI and q such
that for every dI > Λ, there exists a constant Q > 0 (dependent on dI) such that R0 > 1
for q ∈ (0, Q) ∪ (Q,∞) and R0 = 1 for q = Q.

For Case 3, we need to modify the above proof of part (i). Following the same way
as in proof of part (i), for each dI > 0, there exist q̃1 = q̃1(dI) and q̃2 = q̃2(dI) (q̃1 < q̃2)
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such that R0(dI , q̃i) = 1 (i = 1, 2), and q̃1/dI → η1, q̃2/dI → η2 as dI → ∞. And if dI is
sufficiently large, then

∂R0

∂q
(dI , q̃1) < 0,

∂R0

∂q
(dI , q̃2) > 0.

Therefore, there exist two constants Q2 > Q1 > 0 (both dependent on dI) such that R0 > 1
for q ∈ (0, Q1) ∪ (Q2,∞) and R0 < 1 for q ∈ (Q1, Q2). The proof is complete.

We end this section with an example to show that the third option in part (iii) of
Theorem 1.6 can happen.

Example 4.2. Consider the system

dSS̃xx − qS̃x − (x+ sinx+ τ)
S̃Ĩ

S̃ + Ĩ
+ xĨ = 0, 0 < x < 2π,

dI Ĩxx − qĨx + (x+ sinx+ τ)
S̃Ĩ

S̃ + Ĩ
− xĨ = 0, 0 < x < 2π,

dSS̃x(0)− qS̃(0) = 0, dSS̃x(2π)− qS̃(2π) = 0,

dI Ĩx(0)− qĨ(0) = 0, dI Ĩx(2π)− qĨ(2π) = 0,

(4.2)

where dS , dI , q are all positive constants, 0 < τ < 1/2 is a constant. From (4.2), we know
that β(x) = x+sinx+τ and γ(x) = x. It is easy to see that β(x)−γ(x) = sinx+τ changes
sign twice in (0, 2π), β(2π)− γ(2π) = τ > 0 and

∫ 2π
0 [β(x)− γ(x)]dx = 2τπ > 0.

For τ > 0, by direct computation we get

F (η) =

∫ 2π

0
eηx(sinx+ τ)dx =

∫ 2π

0
eηx sinxdx+ τ

∫ 2π

0
eηxdx

=
1− e2πη

1 + η2
+
τ
(
e2πη − 1

)
η

=

(
e2πη − 1

)
η

(
τ − η

1 + η2

)
.

Then there exist two positive roots η1,2 = (1∓
√

1− 4τ2)/2τ such that F (η1) = F (η2) = 0.
More precisely, from Lemma 4.1, we know that F (η) < 0 for η ∈ (η1, η2) and F (η) > 0 as
η ∈ [0, η1) ∪ (η2,∞). By Theorem 1.6, there exists some constant Λ > 0 independent of
dI and q such that for every dI > Λ, there exist at most two constant Q2 > Q1 > 0 (both
dependent on dI) such that R0 > 1 for q ∈ (0, Q1) ∪ (Q2,∞) and R0 < 1 for q ∈ (Q1, Q2).
It implies that the disease persists when the advection rate is suitably small or large, and
the disease is eliminated for intermediate advection rate.
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