Maximal Vertex-Connectivity of $\overrightarrow{A_{n, k}}$

Nart Shawash
Oakland University

April 7, 2006

Abstract

Arrangement graph $A_{n, k}$ has a vertex set labeled by all the arrangements of k elements chosen from the ground set $\{1,2, \ldots, n\}$. Two vertices are adjacent if their labels differ in exactly one of the k positions. $A_{n, k}$ contains both $\operatorname{Star} S_{n}$ and Alternating Group A_{n} graphs as special cases. $A_{n, n-1} \cong S_{n}$ which was proposed as an alternative to hypercube Q_{n}, while $A_{n, n-2} \cong A_{n}$. This talk presents modification to orientation of Arrangement graph previously given by Cheng and Lippman, and shows that a consequence of such an orientation is that unidirectional $A_{n, k}$ becomes maximally connected, that is $\overrightarrow{A_{n, k}}$ is r-connected, where $r=\min _{v \in V}\{\rho(v), \delta(v)\}$.

