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Concordance classes of regular U, and Sp, 
action on homotopy spheres 

By M. DAVIS') and W. C. HSIANG') 

Introduction 

In this paper and a subsequent one 171, we shall apply the general theories 
of [4], 151, and [6] to  some interesting and important cases. Let G, be 0,, 
U, or Sp,, let p, be the standard representation of G, and let C be a smooth 
homotopy sphere. Consider a smooth action G, x C C modeled on kp, with -+ 

n 2 k. This means tha t  the orbit types and the normal representations of 
G, on C occur among those of k times the standard representation of G,. In 
other words, the orbits are  Stiefel manifolds of the form G,/G,-, where 
0 5 i 5 k. Following [12], 1131, such actions will also be called 'regular 
G,-actions'. There are two typical examples of these actions: 

(A) The unit sphere of the representation kp, @ 16' (where 6' denotes the 
one dimensional trivial representation) is clearly such a G,-sphere. 

(B) Let CZm+l(p, q) be the Brieskorn variety (see 131, [9]) defined as  the 
intersection of the unit sphere in Cmf%ith the hypersurface f-'(6) where 

f (u ,v ,z , ,  . . . , z m ) = u P + v 9 + z ; +  ... + z ; ,  
and where s is a sufficiently small positive number. For suitably chosen p 
and q, C2"+'(p, q) will be a homotopy sphere for m > 1. If V2"+'(p, q) is the 
intersection of f -I(&) with the unit disc in Cm+', then Vzm+2(p, q) is a paral- 
lelizable manifold with boundary equal to  CZm+l(p, q). Om acts linearly on 
Cm+%y operating on the last m coordinates and the invariant submanifold 
Vzm+Z(p, modeled on 2pm. Write m d tn  + I ,q) becomes an 0,-manifold = 

where d = 1,2 or 4 a s  G, = 0,, U, or Sp,, and consider the embedding 
tp, + 16': G, 0,. The restriction of the Om-action t o  G, gives CZm+'(p, q)-+ 

the structure of a G,-sphere modeled on kp, with k = 2t. As we shall see, 
these action on Brieskorn spheres can be distinguished from one another by 
the index or Kervaire invariant of V2m+2(p, q) which coincides with the index 
or Kervaire invariant of the fixed point set  VZ1+'(p, q). Thus, for any even 
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k there are non-linear G,-spheres modeled on kp,. 
It turns out, rather surprisingly, that for G, = U, or Sp,, these examples 

are essentially the only possibilities which can occur. More precisely, we 
shall show that if G, x C -+ C is modeled on kp, with n 2 k and with G, = U, 
or Sp,, then there is a regular G,-action on C x [0, 11such that the action 
on C x 0 is the given action while on C x 1 it  is equivalent to either the 
linear action or one of the above actions on a Brieskorn sphere3)--we shall 
say that the G,-sphere C x 0 is c o n c o r d a n t  to one of the typical examples. 
For k = 2, this result was essentially proved by Bredon in [2]. Two immediate 
consequences of our result are particularly worthwhile mentioning: 

(A) If the regular G,-sphere C modeled on kp, is fixed point free, then 
C is concordant to  the linear action. 

(B) If the regular G,-sphere is modeled on kp, (k S n )  for k odd and if 
the dimension of the fixed point set is not equal to  3, then C is concordant 
to the linear action. 

In particular, in either of the above cases, the underlying differentiable 
structure on C is the standard one. The case of G, = 0, is dealt with in the 
next paper [7]. 

Let us now give a rough sketch of our proof. We shall work entirely 
in the category of smooth G-manifolds and (equivariant) 'stratified maps' 
and in the analogous category of 'local G-orbit space' and stratified maps 
(see Sections 11.4-11.6 in [ 5 ] ) .  For now, it should suffice to  mention that a 
G-manifold is stratified by the orbit types as is its orbit space and that we 
only wish to consider smooth maps which are 'stratified' in the sense that 
they preserve the strata and that they map the normal bundle of each 
stratum transversely. 

For a G,-manifold M which is modeled on kp,, the strata can be indexed 
by the integers between 0 and k. Thus, Miis the invariant submanifold 
consisting of the orbits of type G,/G,-,. 

The first part of our program is carried out in [6] where it is shown 
that  we have the following set-up. Let D denote the unit disc in the repre- 
sentation kp, + me and let S = o'D be the unit sphere. Here m6' is the trivial 
m-dimensional representation, where m = dim C, + 1 (2, is the fixed point 
set). If the homotopy sphere C admits a G,-action modeled on kp,, then C 
equivariantly bounds a parallelizable G, manifold V, also modeled on kp,, 
and there is a stratified map F:(V, C) -(D,S )  which is a homotopy equi- 

3, We have some mild condition on the dimension of the fixed point set and the number 
k to  avoid the usual low dimensional surgery difficulties. See Theorem 2 for the precise 
statment. 
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valence on the boundary. In this paper, we investigate the question of when 
we can choose such a V to be a disc. 

Let A, B, K and L denote the orbit spaces of V, C, D and S, respectively. 
Then, F induces a stratified map f:(A, B) --.(K, L). It is also shown in [6] 
how we can faithfully translate our problem to the orbit space level. For 
G, = U, or Sp,, the condition that F is a homotopy equivalence on the 
boundary is precisely that n,(B) = 0 and the restriction of f to the i-stratum 
B, induces an isomorphism in (integral) homology for each i. (In the case 
G, = O,,the failure of this to be true is one of the major difficulties [7].) 
Also, V is a disc if and only if f lAi induces an isomorphism in (integral) 
homology and n,(A) = 0. 

Therefore, we t r y  to do 'surgery' on F re1 B to get a new orbit space 
A' together with a map f ':A' --.Kt in such a way that for each i, f' I A: will 
induce an isomorphism on homology. If we succeed, our new G,-manifold 
V' (obtained by the pullback construction of [5])will be contractible. From 
such a V', it is easy to produce a concordance of C to the linear action. It 
turns out that modulo the usual low dimensional difficulties the only obstruc-
tion to doing this surgery is the index or Kervaire invariant of the fixed 
point set V, = A,. Furthermore, if k is odd, the surgery obstruction must 
automatically be zero. From this, we deduce the results. 

By 'surgery', we essentially mean surgery on a stratified space (compare 
[4]).This type of surgery is a generalization of surgery on a manifold with 
boundary (which has two strata). The way in which surgery obstructions 
are computed can also be illustrated by considering this simple example. 
So suppose that we are given a normal map g,:(M, dM) --.(N, dN) where N 
and a N  are simply connected, and that we are trying to do surgery on g, to 
a homotopy equivalence of pairs. First, we t ry  to do surgery on 9ldM. 
There is no obstruction (i.e., no index or Kervaire invariant), since g,1 dM is 
the boundary of a surgery problem, namely g,. Hence surgery is always 
possible. In this argument, we are "looking up one stratum." To continue, 
one tries to  do surgery re1 the boundary on MU X, where X is the trace of 
the surgery on aM. We might meet an obstruction. If so, one simply changes 
the cobordism X by adding the negative of this obstruction, and so surgery 
will again be possible. In this argument, we are "going down one stratum 
and changing the cobordism." 

The problem of doing surgery on an orbit space is analogous. In our 
case, we must solve a sequence of (ordinary) surgery problems indexed by 
{O, 1, .. ,k}.  The definition of the surgery problem on the i-stratum depends 
on the choice of the solutions of problems on the lower strata. Thus, as in 
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the case of a manifold with boundary, we can sometimes change the obstruc- 
tion by going down one (or more) stratum and changing the cobordism. 
Furthermore, the possible surgery obstructions for the problem on the 
i-stratum are not arbitrary. In particular, part  of the boundary of the 
(i + 1)-stratum is a fibre bundle over the i-stratum with fibre CP* (or QP"). 
When m is even, by using a slight generalization of the product formula, 
we can sometimes look up one stratum and conclude that the original problem 
must have the vanishing surgery obstruction. Using one or the other 
argument one sees that there is no obstruction except possibly on the 
0-stratum. In this case, for k even, we would like to  go down one stratum 
and change the cobordism; however, there is no lower stratum, so we are 
left with an obstruction (which is realized by the Brieskorn examples). 

There is a close analogy between this program and classical obstruction 
theory. "Looking up one stratum" to eliminate some possible surgery ob- 
structions corresponds to  observing that  a primary obstruction must be 
annihilated by some cohomology operation if the map is to  extend to  the 
next higher skeleton (of the domain, viewed as a cell complex), while "going 
down one stratum" corresponds to  observing that certain nonzero candidates 
for obstructions are indeterminacy tied to the next lower skeleton. 

It should be pointed out that  here we are doing surgery in a slightly 
different context from that proposed by Browder and Quinn [4]. Their 
treatment deals with a stratified map F:(M, aM) --+(M', aM') which is 
required to be an isovariant homotopy equivalence on the boundary. (In 
other words, the homotopy inverse of Fl aM is required to be equivariant 
and strata preserving as are the homotopies to the identity.) In the general 
situation, this hypothesis is necessary to insure that Fl dM will induce a 
homotopy equivalence on each stratum of the orbit space of aM. However, 
it is more natural for us to assume that F is an isovariant map which only 
induces a homotopy (homology) equivalence on the boundary (but not neces- 
sarily an isovariant homotopy equivalence on the boundary). Even with 
this weaker hypothesis, for regular U,, Sp, manifolds, we can still conclude 
that F l a M  induces on each stratum an isomorphism in integral homology 
(and Z,,,-homology for the corresponding 0, case). The reason for this is 
that we can use Smith theory, since for regular U,, Sp, actions the conjugacy 
classes of isotropy groups have distinct ranks [6], [lo] (see Theorem B in 
S 1). 

In Sections 1and 2, we summarize the results of [5], [6] necessary for 
our argument. In Section 3, we state the main result and deduce some 
consequences from it. In 4, we prove the main theorem. 
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1. Preliminaries 

In this section, we review some general definitions from [5] concerning 
the stratification of a G-manifold and the existence of pullbacks. 

Suppose tha t  a compact Lie group G acts smoothly on a manifold M 
(smooth = C"). For x E M, G, denotes the isotropy subgroup a t  x and G(x) 
is the orbit passing through x. The slice representation (at  x) is the 
G,-module 

s,= T,(M)IT,(G(x)) . 
The famous (Differentiable) Slice Theorem asserts tha t  G(x) has an invariant 
tubular neighborhood of the form G x .,S,. Thus, the local structure of M 
is completely determined by the slice representation. 

A slice representation can be decomposed as  S, = F, @ V,, where F, is 
the subspace on which G, acts trivially and V, = S,/F,. V, is called the 
normal representation a t  x. The (conjugate) equivalence class of the 
G,-module V, is called the normal orbit type of x. A stratum of M is the 
se t  of points of a given normal orbit type. It follows from the Slice Theorem, 
tha t  a stratum is a smooth invariant submanifold. Notice tha t  a fibre a t  x 
of the normal bundle of a stratum is V,. A smooth equivariant map of 
G-manifolds g,: M'- M is stratified if G, = G,(,, and if the differential of g, 
induces an isomorphism V, r V,(,,. 

Let n: M- B be the projection of M onto its orbit space. There is a 
natural induced 'smooth' structure on B. Essentially, this is obtained by 
defining a function 9:B-R t o  be smooth if g,on is smooth (see [I]). In view 
of the Slice Theorem, B is locally isomorphic to  (G x .,S,)/G rS,/G,. If M, 
is a stratum of M, then its image B, = n(M,), also a smooth manifold, is 
called a stratum of B. 

In what follows, a theorem of 1141 plays an important technical role. 
It says tha t  the orbit space of an H-module (e.g., S,) is smoothly isomorphic 
to  a certain semi-algebraic subset of euclidean space. 

We may define a 'local G-orbit space' a s  a space equipped with a strati- 
fication and local charts to  the orbit space of an H-module ( H  is a closed 
subgroup of G). Everything we shall say about orbit spaces is also t rue  for 
local G-orbit spaces. 

Once we are given the 'smooth' functions on B, we can define for any 
b E B the tangent space T,B in the usual fashion. It is a finite dimensional 
vector space of constant dimension along each stratum. It follows tha t  
T(B) 1 B, is a smooth vector bundle and tha t  the ordinary tangent bundle of 
a stratum T(B,) is a subbundle. So i t  makes sense t o  define the normal 
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bundle of B, in B by N(B,) = (T(B) / B,)/T((B,). A map f :B' -+ B of (local) 
G-orbit spaces is stratified if i t  preserves the smooth structure and the 
stratification and if for each stratum the induced map N(BA) N(B,) is an -+ 

isomorphism when restricted to  each fibre. It is not difficult to  see tha t  a 
stratified map of G-manifolds induces a stratified map of the orbit spaces. 
(In 151, there is a further condition in the definition of a stratified map; 
however, i t  is unnecessary in this paper.) The following theorem was sug- 
gested by the proof of a special case in 121. It is proved in Section 111.1of 

151. 

THEOREM. Suppose that M i s  a smooth G-manifold over B and  that B' 
i s  another local G-orbit space. If f:B' -+ B i s  a stratified map, then the 
pullback 

f *(M) = {(x, Y) M x B' 1 Nx) = f (Y)) 

i s  a smooth G-manifold over B'. Moreover, the na tura l  map  f *(M)-+ M 
is  stratified and  

i s  a Cartesian square. 

So, for example, we can produce an equivariant cobordism of a stratified 
map of G-manifolds by producing a stratified cobordism of the induced map 
of orbit spaces. 

Remark. It is necessary t o  take some care in formulating the definition 
of a stratified map f:B t - + B  if the above theorem is to  be true. For example, 
if we had only required tha t  f preserve the stratification, then i t  would not, 
in general, be t rue  tha t  the space f * M  is a manifold. 

2. Regular G,-manifolds 

In this section, we set  up some notation and review the results of 161 
which we need. 

First  we consider the linear model. As d = 1, 2 or 4, let F(d) be the 
field of real, complex or quaternion numbers, respectively; and let Gt stand 
for, respectively, O,,U,or Sp,. Let Md(n, k) be the vector space of n x k 
matrices with entries in F(d) and let H,d(k) be the set  of k x k positive semi- 
definite F(d)-hermitian matrices. The representation kpt can be defined as  
the action of Gt on Md(n, k) given by matrix multiplication. For n 1k, the 
orbit space can be identified with H$(k) and the orbit map with ~ ( x )  = x*x 
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(x* is the conjugate transpose of x). 
If x E M d ( n ,  k )  is a matrix of rank i (over F(d)) ,then the isotropy sub- 

group a t  x is conjugate t o  Gt-, and the normal representation a t  x is equiva- 
lent t o  M d ( n- i,k - i). Thus, a s t ra tum of M d ( n ,  k )  is the union of all x 
of a given rank. Similarly, H,d(k)is stratified by rank. 

A Gf-manifold M is modeled on kp: if i ts  normal orbit types occur among 
those of Gt on M d ( n ,  k) .  This means tha t  the orbits are  Stiefel manifolds 
of the form GfIGt-, (0 5 i 5 k) ,  and tha t  the  normal representation a t  a n  
orbit of type GfIGt-, is equivalent t o  (k  - i )ptPi.  Throughout this paper we 
will assume tha t  n 2 k.  Also, we will suppress the d's in our notation when 
there is no ambiguity. 

The s t ra ta  of M can be indexed by integers 0, 1, ..-,k.  Thus, the union 
of orbits of type G,/G,-, is the i -stratum of M and denoted by Mi. Similarly, 
if B is the orbit space of M, we have the i-stratum, Bi = z ( M i )of B. 

Let Ddk"+"denote the unit disc in M d ( n ,  k )  x Rm,where Gf acts trivially 
on R". Let Sdkn+"-'be the unit sphere. The notations D = Ddkn+"and 
S = Sdk?zLn-1are  used when there is no ambiguity. Then both D and S are  
G,-manifolds modeled on kp,. Let K = DIG, = n(D) ,  L = S/G, = r ( S ) .  
The following theorem is the beginning of our program. 

THEOREMA. Let S be a G$manifold modeled on kpi.  Suppose further 
that C i s  a n  integral homology sphere of dimension dnk + m - 1. Then, 
C equivariantly bounds a parallelizable Gt-manifold V ,  also modeled on 
kp:, and there i s  a stratified map  of pairs 

wv ,X)-(D, S )  ? 

where D = Ddkn'm, s = s d k n t n z - 1  . Furtheymore, except for the case where 
d = 1, m = 0,  k i s  even and n i s  odd, F can be chosen to be of degree 1. 

To exploit Theorem A, we shall need the following theorem. 

THEOREMB. Let G, = U,or Sp,. Suppose that M and M' are G,-mani- 
folds modeled on kp,  and that cD: M - M' i s  a stratified map. Let 9:B - B' 
be the induced map  of orbit spaces an,d let qi = 9 1 Bi. Then 

cD,: H,(M; Z)-  H,(Mt;  Z )  

i s  a n  isomorphism i f  and only i f  for each i, 

(90,= (9/ B,), :H*(Bi; Z )  H*(BI; Z )  + 

i s  a n  isomorphism. 

The proofs of Theorems A and B will appear in [6]. 
Theorem B tells us the following. With the hypothesis of Theorem A, 

suppose tha t  (A,B )  = (V/G,, C/G,) and tha t  f : ( A ,  B )  -(K ,L)  is the map 
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of orbit spaces induced by F. Then, since FJX is of degree 1, i t  induces a 
homology isomorphism; hence, for each i (f / B,), is an isomorphism. Also, 
we see that F will induce an isomorphism on homology if and only if each 
(f 1 A,), is an isomorphism. 

Remarks. (1) Of course, i t  is implicit in the statement of Theorem A 
that if 2 is any homology sphere which admits an action modeled on kpt, 
then the dimension of X is Zdkn - 1. 

(2) The proof of Theorem B is a relatively straightforward argument 
using Smith's theory and Mayer-Vietoris sequences. (A similar application 
of these arguments can be found, for example, in Section 4 of [8].) As stated, 
Theorem B is not valid for G, = 0,. Essentially, the reason for this is that  
O,, and O,,,, have the same maximal torus and this prevents us from using 
Smith's theory with integral coefficients in the same manner as  for U,or Sp,. 
However, a slightly more complicated version of Theorem B is still true in 
this case. (See [GI.) 

(3) The proof of Theorem A contains most of the main ideas in [6] 
(which is a revised version of the first author's thesis). Since this work has 
not yet appeared, we will sketch the line of thought in the proof. 

First, it is shown that if M is any G,-manifold modeled on kp, with 
n 2 k, and if the bundle of principal orbits is a trivial fibre bundle, then M 
is the pullback of the linear model M(n, k) via a stratified map f : B -+H+(k) 
(where B is the orbit space of M). Next, i t  is shown that if M is a homology 
sphere, then the bundle of principal orbits is trivial so that the above result 
applies (this is proved by showing that the base space B, is acyclic). Next, 
it is shown that if M is a pullback of M(n, k), then i t  equivariantly bounds 
a V which is also a pullback of M(n, k). This is proved by constructing the 
orbit space A of V and an extension of f to A. In this construction it so 
happens that if M is a n-manifold, then so is V (more will be said about this 
below). By a slight modification of our original argument, Theorem A is 
then proved by showing that (V, 2) is a pullback of (D, S). 

A few words concerning the tangential structure of B are in order. For 
any y E H,d(k), it is easy to see that T,(HP(~)) = Hd(k) where Hd(k) is the 
vector space of all k x k hermitian matrices. It follows that the union of 
all the tangent spaces has the structure of a bundle, the tangent bundle. 
The same is true for B, since it is locally modeled on H+(k). Thus TB is a 
well-defined vector bundle over B. In the proof that V is parallelizable, the 
following observation of Bredon [2] is essential (see also [6]). 

THEOREMC. Suppose that M is a pullback of M(n, k) with n 2 k. Then 
M is  a n-manifold if and only if TB is trivial. 
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In fact, a trivialization of TB induces a stable trivialization of the 
equivariant tangent bundle TM. 

In what follows i t  is also important to  understand the normal bundles 
of the strata. The normal bundle of Mi in M, denoted by v(Mi), is a G,-vector 
bundle over M, with fibre M(n - i ,  k - i). I t s  orbit space v(M,)/G, is a 
bundle over Bi with fibre M(n - i, k - i)/G,-, = H+(k - i). We shall also 
wish to consider the unit disc bundle fs(Mi) and the unit sphere bundle &(Mi). 
Since for x E: M ( n ,  k), 1 1  x 1 1 %  trace x*x, we see that  the image of the unit 
disc in M(n, k) in H+(k) is just the space ~ + ( k )  consisting of matrices of 
trace less than or equal to  one. Similarly, the image of the unit sphere is 
W+(k), the set of all matrices in H+(k) of trace 1. Let C(B,) denote the fibre 
bundle F(Mi)/G,- Bi. I t  has the fibre ~ + ( k  - i)  and the structure group 
G,-, (or actually G,-,/center), which acts on H+(k - i) by conjugation. 
Similarly, let S(B,) be the bundle dfs(M,)/G, with fibre W+(k - i). Notice 
that the normal bundle N(B,) of B, in B can be identified with the restriction 
to  B, of the tangent bundle along the fibres of C(B,). Thus N(B,) is a vector 
bundle over Bi with fibre H(k - i )  and the structure group G,-,. The crucial 
fact is that the i-stratum H,d(k), is a 'fat' Grassmannian, i.e., it is of the 
homotopy type of Gf/G,d x Gi-,. (This can be seen for example by considering 
the transitive GLd(k) action on H,d(k), and computing the isotropy subgroup.) 
It can also easily be seen that K, and L, are homotopy equivalent to the same 
Grassmannian (except for Lo = Sm-I). In particular, for G, = U, or Sp,, Kc 
and L,are both simply connected (except for Lo = S'). Essentially the same 
observation shows that W+(k), = G,/G, x G,-, (since G, acts by conjugation 
transitively on W+(k), with isotropy subgroup G, x G,-,). In other words, 

W,d(k), = FPk-' where F = F(d) . 
Let S(B,),+, be the (i + 1)-stratum of S(B,). Then S(B,),+,--+ B, is a fibre 
bundle with fibre W+(k - i),. Thus we have the following lemma. 

LEMMAD. S(B,),+,-+ Bi is a $bre bundle with $fibre FPk-,-' (where 
F = F(d)). 

3. Statement of results 

For the remainder of this paper let G, = U, or Sp,. Let C be a homology 
sphere and let G, x C - 2  be an action modeled on kp,. By Theorem A, C 
bounds a parallelizable G,-manifold V and there is a diagram 
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where both F and f are  stratified and F is of degree 1. By Theorem C, we 
can choose a framing T A + R N  of the tangent bundle of A. Since f is 
stratified, i t  induces an isomorphism 

N ( A i )E f  : (N(Ki))  . 
Thus, induces a framing 

Qi: f ?(N(K,))  @ T A ,  -R N  . 
Since f ,:(A,,B,) +(KO,Lo)= (Dm,  Sm-')  is a map of degree 1,the data ( f , ,  Q,) 

form a surgery problem in the sense of [15]. Since f ,  1 B, is a homology iso- 
morphism by Theorem B, there is an obstruction t o  doing surgery re1 B, on 
f ,  t o  a homology isomorphism. Since K,, L, are  simply connected (mf 2), 
this obstruction is the same as  the ordinary surgery obstruction (where 
f ,  I B, is required t o  be a homotopy equivalence). Hence for m # 4, the ob- 
struction o, E Lm(l)is defined by 

/ $ index of (A,,B,) if m - 0 (4),  

the Kervaire inveriant of ( f , ,  +,) if m - 2 (4),  " = l o  if m - 1 (2). 

Our main result is the following theorem. 

THEOREM1. Let C be a homology sphere and let G, x C -C be a n  action 
modeled on kp,. Suppose that the $fixed point set B, i s  of dimension m - 1 
with  m # 4. Moreover, i f  m 5 3, suppose that k 2 3 for U, and k 2 2 for 
Sp,. (These assumptions are made to avoid the usual low dimensional 
surgery dificulties.) Then, C equivariantly bounds a contractible G,-mani- 
fold V modeled on kp,  i f  and only i f  o ,  = 0. I f  k i s  even, o ,  can assume 
a n y  possible value. On the other hand, i f  k i s  odd, o,  must  always vanish. 

Suppose tha t  C and C' are  G,-manifolds modeled on kp,  and tha t  the 
underlying manifolds are  homotopy spheres. C and C' are  said t o  be con-
cordant, if there is an  action of C x I such tha t  i ts  restriction t o  C x {0} is 
equivalent t o  the action on C and i ts  restriction t o  C x {I}is equivalent t o  
the action on C'. Let  Od(k,n, m) denote the set of concordance classes of 
G$actions on homotopy (dkn  + m - 1)-spheres which are  modeled on kp$. 
For m > 0, Od(k,n, m) has a group structure induced by taking the  equi- 
variant connected sum along the fixed point sets. Let  P, = Lm(l).It will 
follow from the proof of Theorem 1tha t  the map 

o,: Od(k, n, m)--Pm 

which sends C t o  the  surgery obstruction of ( f,, Q,) is a well-defined homo- 
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morphism. Therefore, a s  a corollary t o  Theorem 1we have the following 
theorem. 

THEOREM2. Assume that m # 4 and  if m 5 3 then k 2 3 for U, a n d  
k 2 2 for Sp,. If k i s  odd or if m i s  zero, then Bd(k, n ,  m) i s  the t r iv ia l  
group. If k i s  even and  m > 0, then 

a,:Bd(k, n ,  m) -Pm 

i s  a n  isomorphism. 

Let F: Bd(k, n ,  m) -Bdk,+,-, be the forgetful homomorphism, i.e., F(C) 
is the underlying homotopy sphere. According t o  Theorem A, the image of 
F is contained in bPdk,+,, the  subgroup consisting of those homotopy spheres 
which bound n-manifolds. Then, a s  a fur ther  corollary, we have the follow- 
ing theorem. 

THEOREM3. F o r  m 2 6, the following diagram commutes 

whew b i s  the canonical map. 

Proof. It follou~s from Theorem 1tha t  i t  suffices t o  check this for the 
Brieskorn examples for which i t  is well-known. 

For k = 2, these theorems a re  essentially all due t o  Bredon [2]. For 
k = 1,  they are  implicit in [ l l ] .  

The concordance relation is introduced t o  take care of difficulties with 
the fundamental groups of the  strata.  Suppose tha t  all the s t ra ta  of C a re  
simply connected. By taking connected sum with a Brieskorn sphere (which 
also has 1-connected strata) ,  we may assume tha t  a, = 0. Then, modulo the 
usual 3 and 4 dimensional difficulties, we can actually do surgery so tha t  
f 1 A, will be a homotopy equivalence for each i. The concordance produced 
in this manner will be equivariantly diffeomorphic t o  the  linear action on 
S x I. We therefore have the following theorem. 

THEOREM4. With the hypothesis of Theorem 1,  suppose also that f o ~  
each i ,  Xi i s  1-connected. Then, C i s  equivariantly difeomorphic to the 
l inear action on Sdk"+"-I or  a n  action on a Brieskorn sphere (depending on 
whether or not a, = 0). 

On the  other hand, i t  is easy t o  construct examples where the funda- 
mental groups of the  s t ra ta  a re  not 1-connected. One way t o  do this is t o  
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alter any s t ra tum of the  linear orbit space L by taking the connected sum 
with a homology sphere and altering the higher s t ra ta  appropriately. 

4. Proof of Theorem 1 

Before beginning the proof, we need t o  make one technical digression. 
A stratum of a compact G-manifold or i ts  orbit space is in general an open 
manifold. Usually, one replaces such a s t ra tum by a compact manifold with 
corners (called the closed stratum),  the  interior of which is the  original 
stratum. A closed s t ra tum is essentially a s t ra tum of the  G-manifold (or 
i t s  orbit space) minus open tubular neighborhoods of the lower strata.  It 
does not matter  very much how we remove these tubular neighborhoods, 
although in [5[, [13] i t  is shown how t o  remove them in a 'canonical' way. 
So, for example, if B is the  orbit space of a regular G,-manifold, from now 
on we will use the notation B, t o  denote the  manifold with corners 

Bi = (B - Uj<iC(Bj)) 

where C(Bj) is a fibre bundle neighborhood of B j  in B. B j  is a 'manif old with 
faces' (see [13]). We have 

dBi = d,Bi U .U 8,-,Bi , 

where djB, = (S(Bj)),. Thus, djBi is a fibre bundle over B j  with fibre 
W+(k- j)<. Moreover, if we remove the  neighborhoods in the  canonical 
way, a stratified map f:B -+ C will induce a bundle map f 1 djB,: djBi-+djCi 
covering f j (see section 111. 1-2 in [5]). 

Now, we begin the proof. Recall tha t  we are  given a map f :(A, B)  -+ 

(K, L)  and a framing @: TA -+RN. We want t o  construct a 'stratified' 
normal cobordism re1 B t o  a new map f ': (Ar,B)-+(K, L )  which is a homology 
isomorphism. To do this, we will inductively construct for each i a normal 
cobordism re1 B t o  

f (9 :  (A({), B )  -(K, L )  , 
@(i): T(A(i)) -RN 

so tha t  f (i) will induce a homology isomorphism on the  j-stratum for 02j5 i. 
To s t a r t  with, we have the  surgery problem 

Let us assume tha t  the surgery obstruction oo= 0 so tha t  we can begin our 
induction. Then, there is a normal cobordism re1 B, t o  f::(Ah, B,) -+ (KO,Lo) 
where f h  induces an  isomorphism on homology. Denote this cobordism by 
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h,: (X,, A,, A:) -+ (KOx I ,  KO x 0, KO x 1) , 
3,:TX, @ hB(K, x I )  -RN+l. 

We use this to  construct a cobordism of f .  Let X(0) = A x I U hd(C(K, x I ) )  
where the union is via the identification f ,"C(K) E C(A,) x 1 given by the 
differential of f (using the fact  tha t  f is stratified). 

X(0) is a cobordism from A to  

A(0) = (A - C(A,)) U hdS(K, x I )  U f;*C(K,) . 
(See § 2 for definitions of S and C.) The map h, induces a cobordism 

h(0): (X(0); A, A(0)) -( K  x I;K x 0, K x 1) 

from f to  f (0): (A(O), B) --.(K, L) in an obvious fashion. Also, since 

T (h:C(K, x I ) )  = ~ * ( T X ,@ h,"N(K, x I)) , 
where p: hdC(K, x I )  -4X, is the projection map, we have that  the framing 
$, induces a framing 

6(0): TX(0) -RN+'. 
By construction, 

f (O), = f ;: (A;, B,) -(KO, Lo) 

is a homology isomorphism of pairs. 
Now, suppose by induction that  we have constructed a normal cobordism 

re1 B from (f,  <D) to  

f ( i  - 1): (A(i - I), B)  -(K, L)  , 
@(i - 1): TA(i - 1)-RN+' 

in such a u7ay tha t  

f ( i  - (A(; - l) j ,  Bj) -(Kj, Lj)  

induces an isomorphism on homology for each j ,  0 d j 2 i - 1. Let 

h(i - 1): (X(i - I ) ,  A, A(i - 1))-(K  x I ,  K x 0, K x 1) 
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denote the cobordism. Let Xj denote the  cobordism from A ( j  - l ) j  t o  A(j)j. 
We consider the map f ( i  - 1) on the i-stratum. To simplify notation, let 
Y, = A(i - l ) ,  and let 

r, = f ( i  - l),: (Y,, aY,) -(K,, aK,) . 
Notice tha t  

o?Y, = B, U d,A(i - l ) ,  U . . . u 8,-,A(i - I), . 
Since djA(i - l ) ,  is a fibre bundle over A(i - l ) j  and since r, / o?,A(i - l ) ,  is 
a bundle map, i t  follows from the induction hypothesis tha t  r, I djA(i - l ) ,  
is a homology isomorphism. Since r, I B, is also a homology isomorphism, a 
simple argument using Mayer-Vietoris sequences show tha t  r,ldY, is a 
homology isomorphism. Also, we have a framing 

induced by @(i - 1). Thus, we have a surgery problem (r,, +,) where we 
want t o  do surgery re1 aYi t o  a homology isomorphism. Since K, and dK, 
are  simply connected, this obstruction lies in the ordinary surgery group. 
Thus, let a, e L,(l) (p  = dim Y,) be this obstruction. 

LEMMA1. F o r  i > 0, with a possible al ternation of the choice of 
we can always make 0,= 0. Furthermore,  if k i s  odd, a, = 0. 

Let  us defer the  proof of the above lemma and continue our proof of 
Theorem 1. Since a, = 0, we can de surgery re1 dY, on ri t o  a homology 
isomorphism 

f l: (A:, dY,, B,) -(K,, dK,, L,) . 
Let  Xi be the trace of the completed surgery on r,. Let  h,: X, -+ K, x I and 
$,: T X @  h:N(K, x I)-RN+' be the normal cobordism. As before, define 
X(i) = X(i - 1) U h:C(K, x I )  where the  union is via the  identification 
r:C(K,) r C(A(i - l),). Use h, t o  extend h(i - 1) t o  h(i): X(i) -K x I ,  and 
$, t o  extend @(i - 1) t o  @(i): TX(i) -+RN+'. This completes our induction. 
Hence, setting A' = A(k) and f '  = f (k), we have our required map f ': (A', B)- 
(K, L),  which induces a homology isomorphism on each stratum. Using the  
pullback construction, we obtain a G,-manifold V' = f"D.By Theorem B, V' 
is acyclic. If A; is simply connected, then by the fibration sequence so is 
VL; and hence, by a general position argument, we have tha t  n,(Vt) = 0. 
Conversely, according t o  Corollary 11. 6.3 on page 91 of [I], if V' is simply 
connected then so is A;. Therefore, V' is simply connected (and hence, 
contractible) if and only if nl(AE) = 0. But  when we do surgery on r, we 
may clearly assume tha t  the  resulting manifold A: is simply connected. 
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Thus, a ,  = 0 implies tha t  C equivariantly bounds a contractible G,-manifold 
vr. 

We must also show tha t  if C equivariantly bounds a contractible mani- 
fold, then o, = 0. So, suppose tha t  V , V' are  parallelizable G,-manifolds 
modeled on kp, and tha t  the  bundles of principal orbits are  trivial. Suppose 
fur ther  tha t  d V = d V' = X. Let A = V / G , and A' = Vr/G, .  Choose framings 
(D: T A-RN, (D': T A '  -RN. Since B is acyclic, (D and (D' are  homotopic on 
B. Thus, we may assume t h a t  (D, (D' agree on B and there is a global framing 
0: T (AU A')-RN. This together with our classifying map provides a framing 
of the normal bundle of the closed manifold M ,  = A, U A;. Since M ,  is a 
closed framed manifold, i t s  index or Kervaire invariant is zero. Now, 
suppose V' is contractible, then i t  follows from Theorem B tha t  A; is acyclic. 
Thus, o(A;)= 0 and hence 

Modulo Lemma 1, this completes the  proof of Theorem 1. 
We need the following lemma for the proof of Lemma 1. 

LEMMA2. L e t  M" be a n  s - d i m  compact ( s i m p l y  connected) m a n i f o l d  w i t h  
b o u n d a r y ,  a n d  let p: E- M be a fibre bundle  w i t h  fibre F t  a closed s i m p l y  
connected m a n i f o l d  of  dim t. Suppose  t h a t  f :  ( M ' ,  a M r )  --.( M ,  d M )  i s  a 
n o r m a l  m a p  w h i c h  induces  a homology i s o m o r p h i s m  o n  the b o u n d a r y  ( w e  
suppress  the  n o r m a l  da ta) .  T h e  n a t u r a l  m a p  

J;: ( f  * E ,  d f  * E )-(E,  aE) 

i s  also a n o r m a l  m a p  a n d  induces  a homology i s o m o r p h i s m  o n  the  bound- 
a r y .  T h e n  

I(.?>= I ( F t ) . I ( f ), 

c(.?>= x ( F t ) . C ( f )  


where I (Ft) ,  x(Ft)  denote the  inderc a n d  the  E u l e r  character is t ic  of F t  

respect ively ,  a n d  I ( f ) ,  I(.?), C ( f ) ,  C ( f )  a r e  the  i n d e x ,  a n d  the  K e r v a i r e  
i n v a r i a n t  of  f ,  $ respect ively .  

In par t icu lar ,  i f  F = CPj or  QPj, t h e n  the correspondence o ( f )  --.a(f) 
defines a h o m o m o ~ p h i s m  Lp(l)  of the  suygery  g r o u p s  where  o ( f ) ,  --.LP+,(1) 
o(7 )denote the  s u r g e r y  obstruct ion o f f ,  f respectively.  T h i s  h o m o m o r p h i s m  
i s  a n  i s o m o r p h i s m  i f  j i s  even a n d  the zero m a p  i f  j i s  odd. 

Proof .  If s > 4, let us perform surgery on f re1 d M  t o  make i t  highly 
connected. We may assume tha t  M' is a boundary connected sum M"#M"'  
such tha t  f 1 M" induces a homology isomorphism and M"' carries the 
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homology kernel. Since the induced bundle over M"' is trivial, the lemma 
follows from the standard product formula for  surgery. If s < 4, we can 
reduce i t  back to  s > 4 by taking a product of our surgery problem with 
CPZ1. 

Proof of Lemma 1. First  suppose tha t  k - i - 1is even (in which case 
we 'look up one stratum'). Recall tha t  a, is the obstruction to  completing 
the surgery r,:(Y,, aY,) -(K,, dK,) where Yi = A(i - I),. Consider the 
surgery problem 

where W,+, = A(i - I),+,, d,W,+, = d,A(i - l),+,, and s,+, = f ( i  - I),,,. Let 
S I + ~  = s,,, / a, W,,,. By the lemma a t  the end of Section 2, a, W,+,-+ Y, is a 
fibre bundle with fibre FPk-'-' (= CPk-,+I or Since f ( i  - 1) is 
stratified, s;,, is a bundle map covering ri. In fact, s;,, is just the normal 
map induced by ri. Thus, by Lemma 2, the obstruction to  doing surgery on 
slil re1 boundary is equal to  oi. But s:+, is the boundary of a surgery problem 
(namely s,+,) hence the index or Kervaire invariant of sl+' is zero, i.e., 0, = 0. 
In  particular, if k is odd, this argument shows tha t  a, = 0. 

Now, suppose tha t  k - i - 1is odd, so tha t  k - i is even. In this case 
we 'go down one stratum and change the cobordism'. Suppose tha t  a, + 0. 
It follows from the construction tha t  Y, = A(i - I), = Q' U Q where Q' = 

A(i - 2), - C(A(i - 2),-,) and where Q is an FPk-'-bundle over Xi-,. Fur-
-+thermore, ri [ Q is a bundle map covering hi_,:Xi-, Ki-, x I. Recall tha t  

Xi-, is a cobordism re1 B,-, from A(i - 2),-, to  A:-,. If dim X,-, = t ,  then 
t = dim Y, - dim FPk+ and therefore t r dim Yi(4). We may choose a 
parallelizable manifold Ut with d Ut a homotopy sphere and a normal map 
h: (U t , d Ut)-- (Dt, St-') such tha t  s(h) = -a,. (Here we use the fact  tha t  

dim U = t - dim Y,(4) to  identify the surgery group in the usual fashion.) 

Let Xi-, = X,-,# U, h;-, = hi-,#h, where # means the boundary connected 

sum along A:-,. Thus A;-, is changed to  A;-,#dU and Y, is changed to  


where D t  is a small disc in Xi-, and j = k -1. By Lemma 2 again, o(h x id) = 

-a,. It therefore follows from the addition formula tha t  the surgery 
obstruction a; of p.:: (Y:, dY;)-+(K, ,  dK,) is equal to  oi+o(h x id)=o, -0, =O.  
The only time this argument fails to  work is when i = 0 (and so Xi-, = 0); 
therefore, the only possible nontrivial contribution to  the surgery obstruction 
occurs for a, = a,, and this happens only if k = k - i is even. This proves 
Lemma 1and thereby Theorem 1. 
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Remark. The same argument calculates the 'isovariant surgery group' 
,L,(M, aM) of [4]. Thus let M be a compact G,-manifold with boundary 
which is modeled on kp, with n 2  k. Suppose further that nl(Mi) =nl(aMi)= 0 
and the fixed point set M, # 0.Then, we have the following theorem. 

THEOREM5. For k odd, ,L,(M, aM) = 0; while f o r  k even, ,L,(M, dM) = 

L,(M,, aM,) = where m p - dkn.P,,, = 

[ll G. BREDON, Introduction to Compact Transformation Groups. Academic Press, New 
York, 1972. 

[21 -, Biaxial actions, mimeographed notes, 1973. 
[3] E. BRIESKORN,Beispiele zur Differiential topologie von Singularitaten. Inventiones, 2 

(1966), 1-14. 
(41 W. BROWDERand F. QUINN, A surgery theory for G-manifolds and stratified sets, 

Manifolds Tokyo Conf. 1973, 27-36, University of Tokyo Press. 
[5] M. DAVIS, Smooth G-manifolds as collections of fiber bundles (to appear). 
[GI -, Regular On, U, and Sp, manifolds (to appear). 
[7] M. DAVIS, W.C. HSIANG and J. MORGAN,Concordance classes of regular 0, actions on 

spheres (to appear). 
[8] D. ERLE and W. C. HSIANG, On certain unitary and sympletic actions with three orbits 

types, Amer. J. Math. 94 (1972), 289-308. 
[9] F. HIRZEBURCHand K. H. MAYER,O(n)-Mannigfaltigkeiten,Exotishe Spharen, und 

Singularitaten, Springer Lecture Notes, 57 (1968). 
[lo] W. C. HSIANG and W. Y. HSIANG, Differentiable actions of compact connected classical 

groups: I. Amer. J. Math. 89 (1967), 705-786. 
[ll]W.Y. HSIANG, On classification of differentiable SO(n) actions on simply connected 

x-manifolds, Amer. J. Math. 88 (1966), 137-153. 
[I21 -, A survey of regularity theorems in differentiable compact transformation groups. 

Proc. Conference on Transformation Groups, Springer Verlag, New York, (1968) 
77-125. 

[13] K. JANICH, On the classification of O(n)-manifolds, Math. Ann. 176 (1968), 53-76. 
[14]G. SCHWARZ,Smooth functions invariant under the action of a compact Lie group, 

Topology 14 (1975), 63-68. 
[15] C. T. C. WALL, Surgery on Compact Manifolds. Academic Press, New York, 1970. 

(Received March 22, 1976) 


