Gromov-Wasserstein stable signatures for object matching and the role of persistence

Facundo Mémoli
memoli@math.stanford.edu

Some definitions..

- Let (Z, d) be a compact metric space.
- For closed $A, B \subset Z$, we define the Hausdorff distance as:

$$
d_{\mathcal{H}}^{Z}(A, B)=\max \left(\max _{b \in B} \min _{a \in A} d(a, b), \max _{a \in A} \min _{b \in B} d(a, b)\right)
$$

- For probability measures μ_{A} and μ_{B} on Z and $p \geq 1$, we define the Wasserstein distance as:

$$
d_{\mathcal{W}, p}^{Z}\left(\mu_{A}, \mu_{B}\right)=\min _{\mu}\left(\iint_{Z \times Z} d^{p}(x, y) \mu(d x, d y)\right)^{1 / p}
$$

where $\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)$, the collection of all measure couplings between μ_{A} and μ_{B} : probability measures on $Z \times Z$ with marginals μ_{A} and μ_{B}, respectively.

Comparison of objects

- Given a compact metric space $\left(Z, d_{Z}\right)$, called the ambient space, one can define objects to be either
- compact subsets of $Z: \mathcal{C}(Z)$, or
- probability measures on $Z: \mathcal{C}^{w}(Z)$.

I will be redundant and say that objects in $\mathcal{C}^{w}(Z)$ are pairs $\left(A, \mu_{A}\right)$ where A is the support of the probability measure μ_{A}.

- In each case, one can put a metric on objects and regard the collection of all objects as a metric space in itself.
- In the case of $\mathcal{C}(Z)$, this metric is the Hausdorff metric $d_{\mathcal{H}}^{Z}$. One has:

Theorem (Blaschke). For $\left(Z, d_{Z}\right)$ compact, $\left(\mathcal{C}(Z), d_{\mathcal{H}}^{Z}\right)$ is also a compact metric space.

- In the case of $\mathcal{C}^{w}(Z)$, this metric is the Wasserstein metric $d_{\mathcal{W}, p}^{Z}$. One has:

Theorem (Prokhorov). For $\left(Z, d_{Z}\right)$ compact, $\left(\mathcal{C}^{w}(Z), d_{\mathcal{W}, p}^{Z}\right)$ is also a compact metric space.

- What if one wants to consider "invariances"? consider for example objects in \mathbb{R}^{d} : you may want to factor out all rigid isometries.

T acts on sets in the usual way: $T(A)=\{T(a), a \in A\}$. On measures it acts by push-forward: If C is measurable, then $T(\mu)(C)=T_{\#} \mu(C)=\mu\left(T^{-1}(C)\right)$.
- What if one wants to consider "invariances"? consider for example objects in \mathbb{R}^{d} : you may want to factor out all rigid isometries.

T acts on sets in the usual way: $T(A)=\{T(a), a \in A\}$. On measures it acts by push-forward: If C is measurable, then $T(\mu)(C)=T_{\#} \mu(C)=\mu\left(T^{-1}(C)\right)$.
- This can be incorporated into our formulation: let $I(Z)$ be the isometry group on Z, and define
- For $A, B \in \mathcal{C}(Z)$,

$$
d_{\mathcal{H}}^{Z \text { iso }}(A, B):=\inf _{T \in I(Z)} d_{\mathcal{H}}^{Z}(A, T(B))
$$

- For $A, B \in \mathcal{C}^{w}(Z)$,

$$
d_{\mathcal{W}, p}^{Z, \text { iso }}(A, B):=\inf _{T \in I(Z)} d_{\mathcal{W}, p}^{Z}(A, T(B))
$$

- These two constructions provide metrics on the (isometry classes of) objects in Z.
- This is what one could call the extrinsic approach to object matching: there is an ambient space.

The intrinsic approach, briefly.

- What if we regard objects as metric spaces? This may make sense since we are actually trying to get rid of ambient space isometries.
- For example, given $A \in \mathcal{C}(Z)$, upgrade this object to the metric space $\left(A, d_{A}\right)$ where d_{A} is the restriction of d_{Z} to $A \times A$.
- Then, given two objects A, B, one could attempt to compute some notion of distance between the metric spaces:

$$
d_{\mathcal{G H}}\left(\left(A, d_{A}\right),\left(B, d_{B}\right)\right) .
$$

Here, GH stands for Gromov-Hausdorff.

- Similarly, for $\left(A, \mu_{A}\right),\left(B, \mu_{B}\right) \in \mathcal{C}^{w}(Z)$ one constructs the measure metric spaces (mm-spaces: metric spaces enriched with a probability measure) $\left(A, d_{A}, \mu_{A}\right)$ and ($\left.B, d_{B}, \mu_{B}\right)$. Then, one would compute some distance on mm-spaces:

$$
d_{\mathcal{G W}, p}\left(A, d_{A}, \mu_{A}\right)\left(B, d_{B}, \mu_{B}\right) .
$$

GW stands for Gromov-Wasserstein.

- There are practical examples that motivate pursuing the intrinsic approach.
- Consider for example invariance to bends, articulations or poses: the geodesic distance is (approximately) preserved- but there is no ambient space isometry that maps one shape to a vicinity of the other.
- There are practical examples that motivate pursuing the intrinsic approach.
- Consider for example invariance to bends, articulations or poses: the geodesic distance is (approximately) preserved- but there is no ambient space isometry that maps one shape to a vicinity of the other.

X

- There are practical examples that motivate pursuing the intrinsic approach.
- Consider for example invariance to bends, articulations or poses: the geodesic distance is (approximately) preserved- but there is no ambient space isometry that maps one shape to a vicinity of the other.

X

$$
x \times
$$

The Gromov construction: a distance between compact

 metric spaces.- Let \mathcal{X} denote the collection of all compact metric spaces.
- Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right) \in \mathcal{X}$ and consider all metric spaces (Z, d) s.t. there exist maps $f: X \rightarrow Z$ and $g: Y \rightarrow Z$, isometric embeddings of X and Y into Z, respectively.
- Inside Z, one can compute the Hausdorff distance between the isometric copies $f(X)$ of X and $g(Y)$ of Y.
- Then, take infimum over all possible choices of Z, f and g. The result is known as the Gromov-Hausdorff distance.

$$
d_{\mathcal{G H}}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right):=\inf _{Z, f, g} d_{\mathcal{H}}^{Z}(f(X), g(Y))
$$

Example. Let compact $A, B \subset \mathbb{R}$ be endowed with the Euclidean metric. Then,

$$
d_{\mathcal{G H}}(A, B) \leqslant \inf _{\gamma \in \mathbb{R}} d_{\mathcal{H}}^{\mathbb{R}}(A, B+\gamma)
$$

If $A=[0, a]$ and $B=[0, b]$ for some $a, b \geqslant 0$, then

$$
d_{\mathcal{G H}}(A, B) \leqslant \frac{1}{2}|a-b|
$$

Example. Let compact $A, B \subset \mathbb{R}$ be endowed with the Euclidean metric. Then,

$$
d_{\mathcal{G H}}(A, B) \leqslant \inf _{\gamma \in \mathbb{R}} d_{\mathcal{H}}^{\mathbb{R}}(A, B+\gamma)
$$

If $A=[0, a]$ and $B=[0, b]$ for some $a, b \geqslant 0$, then

$$
d_{\mathcal{G H}}(A, B) \leqslant \frac{1}{2}|a-b|
$$

A bit more background: correspondences

Definition [Correspondences]

For sets A and B, a subset $C \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{C}(A, B)$ denote the set of all possible correspondences between sets A and B.

Note that in the case $n_{A}=n_{B}$, correspondences are larger than bijections.

correspondences

Note that when A and B are finite, $C \in \mathcal{C}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geqslant 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geqslant 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $C \in \mathcal{C}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geqslant 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geqslant 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $C \in \mathcal{C}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geqslant 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geqslant 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $C \in \mathcal{C}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geqslant 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geqslant 1 \quad \forall a \in A
\end{aligned}
$$

0	1	1	0	0	1	1
1	1	0	1	0	1	1
1	0	1	0	0	1	0
0	1	0	1	1	0	1
1	0	1	1	0	1	0

correspondences

Note that when A and B are finite, $C \in \mathcal{C}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geqslant 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geqslant 1 \quad \forall a \in A
\end{aligned}
$$

Another expression for the GH distance

Theorem. [BBI] For compact metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$,

$$
d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{C} \max _{(x, y),\left(x^{\prime}, y y^{\prime}\right) \in C}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

Remark. Let $\Gamma_{X, Y}\left(x, y, x^{\prime}, y^{\prime}\right)=\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|$. We write, compactly,

$$
d_{\mathcal{G H}}(X, Y)=\frac{1}{2} \inf _{C}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C \times C)}
$$

Properties of the GH distance.

Theorem ([BBI]). 1. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces then

$$
d_{\mathcal{G H}}(X, Y) \leqslant d_{\mathcal{G H}}(X, Z)+d_{\mathcal{G H}}(Y, Z) .
$$

2. If $d_{\mathcal{G H}}(X, Y)=0$ and $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are compact metric spaces, then $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric.
3. Let $\mathbb{X} \subset X$ be a closed subset of the compact metric space $\left(X, d_{X}\right)$. Then,

$$
d_{\mathcal{G} \mathcal{H}}(X, \mathbb{X}) \leqslant d_{\mathcal{H}}^{X}(X, \mathbb{X})
$$

4. For compact metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$:

$$
\begin{aligned}
\frac{1}{2}|\operatorname{diam}(X)-\operatorname{diam}(Y)| & \leqslant d_{\mathcal{G H}}(X, Y) \\
& \leqslant \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))
\end{aligned}
$$

5. Compact families: Let $L>0$ and $N: \mathbb{R}^{+} \rightarrow \mathbb{N}$. Define $\mathcal{F}(L, N) \subset \mathcal{X}$ to be s.t. any $X \in \mathcal{F}$ has $\operatorname{diam}(X) \leqslant L$ and for all $\varepsilon>0, X$ admits an ε-net with at most $N(\varepsilon)$ points. Then $\left(\mathcal{F}(L, N), d_{\mathcal{G H}}\right)$ is pre-compact.

Properties of the GH distance.

Theorem ([BBI]). 1. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ and $\left(Z, d_{Z}\right)$ be metric spaces then

$$
d_{\mathcal{G H}}(X, Y) \leqslant d_{\mathcal{G H}}(X, Z)+d_{\mathcal{G H}}(Y, Z) .
$$

2. If $d_{\mathcal{G H}}(X, Y)=0$ and $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are compact metric spaces, then $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ are isometric.
3. Let $\mathbb{X} \subset X$ be a closed subset of the compact metric space $\left(X, d_{X}\right)$. Then,

$$
d_{\mathcal{G} \mathcal{H}}(X, \mathbb{X}) \leqslant d_{\mathcal{H}}^{X}(X, \mathbb{X})
$$

4. For compact metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$:

$$
\begin{aligned}
\frac{1}{2}|\operatorname{diam}(X)-\operatorname{diam}(Y)| & \leqslant d_{\mathcal{G H}}(X, Y) \\
& \leqslant \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))
\end{aligned}
$$

5. Compact families: Let $L>0$ and $N: \mathbb{R}^{+} \rightarrow \mathbb{N}$. Define $\mathcal{F}(L, N) \subset \mathcal{X}$ to be s.t. any $X \in \mathcal{F}$ has $\operatorname{diam}(X) \leqslant L$ and for all $\varepsilon>0, X$ admits an ε-net with at most $N(\varepsilon)$ points. Then $\left(\mathcal{F}(L, N), d_{\mathcal{G H}}\right)$ is pre-compact.

Example. From item 4, since $\operatorname{diam}(A)=a$ and $\operatorname{diam}(B)=b$, then $d_{\mathcal{G} \mathcal{H}}(A, B) \geqslant$ $\frac{1}{2}|a-b|$. Then by previous computation,

$$
d_{\mathcal{G H}}([0, a],[0, b])=\frac{1}{2}|a-b| .
$$

Example. Let compact $A, B \subset \mathbb{R}$ be endowed with the Euclidean metric. Then,

$$
d_{\mathcal{G H}}(A, B) \leqslant \inf _{\gamma \in \mathbb{R}} d_{\mathcal{H}}^{\mathbb{R}}(A, B+\gamma)
$$

If $A=[0, a]$ and $B=[0, b]$ for some $a, b \geqslant 0$, then

Comments...

- The GH distance has been used in the applied object matching literature for a few years now [MS04,MS05,BBK06,M07,M08,..].
- It provides a useful set of ideas for reasoning about desirable properties of matching algorithms.
- Without further assumptions on the underlying metric spaces, it leads combinatorial optimization problems, more precisely, Bottleneck Quadratic Assignment problems, which are NP hard.
- Haven't been able to explain or relate to too many pre-existing practical approaches to object matching. There's a plethora of methods: it would be nice to understand inter-relation between them.
- Furthermore, the GH distance is a "pessimistic" measure of similarity: it is based on L^{∞} dissimilarities: sensitivity to errors.
- From now on, we'll talk about the Gromov-Wasserstein distance, which yields continuous optimization problems directly and admits lower bounds based on easily computable and previously reported metric invartiants.

Construction of the Gromov-Wasserstein distance(s) mm-spaces and their invariants

- The support supp $[\mu]$ of a probability measure μ on a compact metric space $\left(X, d_{X}\right)$ is the minimal closed set outside of which there is zero mass.
- An mm-space is a triple $\left(X, d_{X}, \mu_{X}\right)$ where $\left(X, d_{X}\right)$ is a compact metric space and μ_{X} is probability measure on X with full support: supp $\left[\mu_{X}\right]=$ X. Let \mathcal{X}^{w} denote the collection of all mm-spaces.
- An isomorphism of mm-spaces is an isometry $\Phi: X \rightarrow Y$ s.t. $\Phi_{\#} \mu_{X}=$ μ_{Y}.

Some invariants of mm-spaces.

Example (Eccentricity on real shapes.). This is three dimensional model of a horse. The metric is estimated from the mesh using Dijkstra, the measure is the uniform one. Red means high, blue means low. Notice how extremities get high values of the eccentricity $(p=1)$.

$$
s_{X, p}(x)=\left\|d_{X}(x, \cdot)\right\|_{L^{p}\left(\mu_{X}\right)}=\left(\sum_{x^{\prime} \in X}\left(d_{X}\left(x, x^{\prime}\right)\right)^{p} \mu_{X}\left(x^{\prime}\right)\right)^{1 / p}
$$

Local distributions of distances

$$
h_{X}(x, t)=\mu_{X}(\overline{B(x, t)})
$$

Some invariants of mm -spaces.

- Given a mm-space $\left(X, d_{X}, \mu_{X}\right)$ define
- p-eccentricity: $s_{X, p}: X \rightarrow \mathbb{R}^{+}, x \mapsto\left\|d_{X}(x, \cdot)\right\|_{L^{p}\left(\mu_{X}\right)}$.
- Local distribution of distances:

$$
h_{X}: X \times \mathbb{R}^{+} \rightarrow[0,1], \quad(x, t) \mapsto \mu_{X}(\overline{B(x, t)}) .
$$

- Invariants similar to these have been used in the CS/EE literature. In particular, the eccentricity was explored by Hamza and Krim in 2002. The distribution of distances underlies a very famous work by the Princeton shape retrieval group. The Local shape distributions is similar to the integral invariants used by Manay-Soatto et al and the Shape Contexts of Bengio and Malik.

Construction of the GW distance

The Gromov construction: same thing for mm-spaces!

Fix $p \geqslant 1$. We may now define the Gromov-Wasserstein distance between $X, Y \in \mathcal{X}^{w}$ as

$$
d_{\mathcal{G} \mathcal{W}, p}\left(\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)\right)=\inf _{Z, f, g} d_{\mathcal{W}, p}^{Z}\left(f_{\#} \mu_{X}, g_{\#} \mu_{Y}\right),
$$

where f, g are isometric embeddings into Z.

Remark. This definition is due to K.T. Sturm [Sturm06].
This metric does not seem computationally appealing. In [M07] we constructed a closely related distance that is more suitable for practical computations.

- Have lower bounds for $d_{\mathcal{G} \mathcal{W}, p}(X, Y)$ involving the invariants I described, [M07,M08].
- These invariants have been reported in the literature and have been shown to provide good discrimination over databases of objects. Therefore the interest in inter-relating them and in finding these lbs.
- These invariants cannot be controlled by the GH distance alone: a notion of weight of a point is involved and therefore GW distances are natural here.
- Computation of these lower bounds leads to simpler problems than solving the GH or GW distaces.
- The question arises as to whether one could obtain lower bounds for the GH or GW distances of a completely different nature: how about persistent topology type of invariants?
- Have lower bounds for $d_{\mathcal{G} \mathcal{W}, p}(X, Y)$ involving the invariants I described, [M07,M08].
- These invariants have been reported in the literature and have been shown to provide good discrimination over databases of objects. Therefore the interest in inter-relating them and in finding these lbs.
- These invariants cannot be controlled by the GH distance alone: a notion of weight of a point is involved and therefore GW distances are natural here.
- Computation of these lower bounds leads to simpler problems than solving the GH or GW distaces.
- The question arises as to whether one could obtain lower bounds for the GH or GW distances of a completely different nature: how about persistent topology type of invariants?

Lower bounds using persistence

Joint work with F. Chazal, D. Cohen-Steiner, L. Guibas and S. Oudot, [CCGMO09].

Motivation: Clustering

- Imagine you have underlying metric space $\left(X, d_{X}\right)$ from which you can take only finitely many samples.
- Let ($\mathbb{X}, d_{\mathbb{X}}$) be a finite sampling from X where we assume $d_{\mathbb{X}}$ is the restriction metric.
- Apply a hierarchical clustering method \mathfrak{S} to $\left(\mathbb{X}, d_{\mathbb{X}}\right)$ and obtain a dendrogram:

- Can ask the question: how sensitive is $\mathfrak{S}\left(\mathbb{X}, d_{\mathbb{X}}\right)$ to $\left(\mathbb{X}, d_{\mathbb{X}}\right)$?
- Can I guarantee that the answers I get from two different \mathbb{X}_{1} and \mathbb{X}_{2} are similar in some way when samplings become denser and denser in X ?
- Dendrograms are rooted trees and therefore equivalent to ultrametrics. Then can regard \mathfrak{S} as a map from \mathcal{M} to \mathcal{U}, where \mathcal{M} (resp. \mathcal{U}) is collection of all finite metric (resp. ultrametric) spaces s.t. $\mathfrak{S}: \mathcal{M}_{n} \rightarrow \mathcal{U}_{n}$ for $n \in \mathbb{N}$.
- Let's assume that \mathfrak{S} corresponds to single linkage clustering.
- Fix a finite metric space $\left(Z, d_{Z}\right)$. For each $\varepsilon \geqslant 0$ consider the equivalence relation \sim_{ε} on Z given by $z \sim_{\varepsilon} z^{\prime}$ if and only if there exist $z_{0}, z_{1}, \ldots, z_{n}$ in Z s.t. $z_{0}=z, z_{n}=z^{\prime}$ and $d_{Z}\left(z_{i}, z_{i+1}\right) \leqslant \varepsilon$. We define

$$
u_{Z}\left(z, z^{\prime}\right):=\min \left\{\varepsilon \geqslant 0 \text { s.t. } z \sim_{\varepsilon} z^{\prime}\right\} .
$$

- It turns out that u_{Z} is an ultrametric on Z and that $\mathfrak{S}\left(\left(Z, d_{Z}\right)\right)=\left(Z, u_{Z}\right)$ [CM07]

Stability

- So, can regard a hierarchical clustering procedure as a map from metric spaces to metric spaces.
- What about the question we set out to investigate?

Theorem ([CM07]). For all $X, Y \in \mathcal{M}$,

$$
d_{\mathcal{G H}}(\mathfrak{S}(X), \mathfrak{S}(Y)) \leqslant d_{\mathcal{G H}}(X, Y)
$$

Stability

- So, can regard a hierarchical clustering procedure as a map from metric spaces to metric spaces.
- What about the question we set out to investigate?

Theorem ([CM07]). For all $X, Y \in \mathcal{M}$,

$$
d_{\mathcal{G H}}(\mathfrak{S}(X), \mathfrak{S}(Y)) \leqslant d_{\mathcal{G H}}(X, Y)
$$

Proof. Let $\eta=d_{\mathcal{G H}}(X, Y)$ and C be a correspondence between X and Y s.t.

$$
\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right| \leqslant 2 \eta \text { for all }(x, y),\left(x^{\prime}, y^{\prime}\right) \in C .
$$

Fix $(x, y),\left(x^{\prime}, y^{\prime}\right) \in C$ and let $x=x_{0}, x_{1}, \ldots, x_{n}=x^{\prime} \in X$ be s.t. $u_{X}\left(x, x^{\prime}\right)=\max _{i} d_{X}\left(x_{i}, x_{i+1}\right)$. For each $i \in\{1, \ldots, n-1\}$ pick $y_{i} \in Y$ s.t. $\left(x_{i}, y_{i}\right) \in C$ and let $y_{0}=y, y_{n}=y^{\prime}$. Then, it follows that

$$
u_{Y}\left(y, y^{\prime}\right) \leqslant \max _{i} d_{Y}\left(y_{i}, y_{i+1}\right) \leqslant \max _{i} d_{X}\left(x_{i}, x_{i+1}\right)+2 \eta=u_{X}\left(x, x^{\prime}\right)+2 \eta
$$

Stability - lower bounds

- Can view stability results for invariants as providing lower bounds for the GH distance.
- how good is the Lower bound given by the previous Theorem?

Remark. The bound is tight. Indeed, pick X_{a} to be two points at distance $a>0$. Then, $\mathfrak{S}\left(X_{a}\right)=X_{a}$. Hence, the equality holds for X_{a} and X_{b}, $a, b>0$; i.e.:

$$
d_{\mathcal{G H}}\left(\mathfrak{S}\left(X_{a}\right), \mathfrak{S}\left(X_{b}\right)\right)=d_{\mathcal{G H}}\left(X_{a}, X_{b}\right)
$$

- But there are cases that suggest one should hope for more.

what's next:

- go beyond 0-th Homology
- use functions to probe the data/shapes.

Simplicial complexes and friends

Definition. - Given a set of points X and $k=0,1,2, \ldots$, a k-simplex is a an unordered list $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ of different points in X. The faces of this simplex are all the (k-1)-simplices of the form $\left\{x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right\}$ for some $i \in\{0,1, \ldots, k\}$.

- A simplicial complex K is a finite collection of simplices such that every face of a simplex of K is also in K and the intersection of any two simplices is either empty or a common face of each of them.
\odot A filtration \mathcal{K} of a simplicial complex K is a nested sequence of subcomplexes $\varnothing=K_{\alpha_{0}} \subseteq K_{\alpha_{1}} \subseteq \cdots \subseteq K_{\alpha_{m}}=K$, where $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}$ is an ordered sequence of real numbers.
- Given a simplex $\sigma \in K$, the filtration value $F(\sigma)$ of σ is given by

$$
F(\sigma)=\alpha_{i(\sigma)}
$$

where $i(\sigma)=\min \left\{i\right.$ s.t. $\left.\sigma \in K_{\alpha_{i}}\right\}-1$.

Simplicial complexes and friends

Definition. - Given a set of points X and $k=0,1,2, \ldots$, a k-simplex is a an unordered list $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ of different points in X. The faces of this simplex are all the (k-1)-simplices of the form $\left\{x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right\}$ for some $i \in\{0,1, \ldots, k\}$.

- A simplicial complex K is a finite collection of simplices such that every face of a simplex of K is also in K and the intersection of any two simplices is either empty or a common face of each of them.
- A filtration \mathcal{K} of a simplicial complex K is a nested sequence of subcomplexes $\varnothing=K_{\alpha_{0}} \subseteq K_{\alpha_{1}} \subseteq \cdots \subseteq K_{\alpha_{m}}=K$, where $\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}$ is an ordered sequence of real numbers.
\bigcirc Given a simplex $\sigma \in K$, the filtration value $F(\sigma)$ of σ is given by

$$
F(\sigma)=\alpha_{i(\sigma)}
$$

where $i(\sigma)=\min \left\{i\right.$ s.t. $\left.\sigma \in K_{\alpha_{i}}\right\}-1$.

Remark. Now we see a construction of Simplicial complexes and filtrations that arises from finite metric spaces.

Rips Simplicial complexes and filtrations

Definition. Given $\left(X, d_{X}\right) \in \mathcal{M}$ and a parameter $\alpha>0$, the Rips complex $R_{\alpha}\left(X, d_{X}\right)$ is the abstract simplicial complex of vertex set X, whose simplices are those $\sigma \subset X$ s.t.

- $\sigma \neq \varnothing$
- $\operatorname{diam}(\sigma)<2 \alpha$.

The Rips filtration of $\left(X, d_{X}\right)$, noted $\mathcal{R}\left(X, d_{X}\right)$, is the nested family of Rips complexes obtained by varying parameter α from 0 to $+\infty$.

Note that underlying simplicial complex over which the Rips filtration is defined is $K(X)$ (collection of non-empty subsets of X). Also, given any $\sigma \in$ $K(X), F(\sigma)=\frac{1}{2} \operatorname{diam}(\sigma)$.

Remark. Now we see a construction of Simplicial complexes and filtrations that arises from finite metric spaces.

Rips Simplicial complexes and filtrations

Definition. Given $\left(X, d_{X}\right) \in \mathcal{M}$ and a parameter $\alpha>0$, the Rips complex $R_{\alpha}\left(X, d_{X}\right)$ is the abstract simplicial complex of vertex set X, whose simplices are those $\sigma \subset X$ s.t.

- $\sigma \neq \varnothing$
- $\operatorname{diam}(\sigma)<2 \alpha$.

The Rips filtration of $\left(X, d_{X}\right)$, noted $\mathcal{R}\left(X, d_{X}\right)$, is the nested family of Rips complexes obtained by varying parameter α from 0 to $+\infty$.

Note that underlying simplicial complex over which the Rips filtration is defined is $K(X)$ (collection of non-empty subsets of X). Also, given any $\sigma \in$ $K(X), F(\sigma)=\frac{1}{2} \operatorname{diam}(\sigma)$.

\qquad
\qquad

Remark. We now want to compute certain invariants out of the filtrations. These will be analogues to the dendrograms we discussed in the situation of clustering.

Persistence diagrams

- Recall that filtration \mathcal{K} of a simplicial complex K is a nested sequence of subcomplexes $\varnothing=K_{\alpha_{0}} \subseteq K_{\alpha_{1}} \subseteq \cdots \subseteq K_{\alpha_{m}}=K$, where $\alpha_{0}<\alpha_{1}<$ $\cdots<\alpha_{m}$ are in \mathbb{R}.
- The inclusion maps induce a persistence module, involving their k dimensional homology groups:

$$
\begin{equation*}
H_{k}\left(K_{\alpha_{0}}\right) \xrightarrow{\phi_{0}^{1}} H_{k}\left(K_{\alpha_{1}}\right) \xrightarrow{\phi_{1}^{2}} \cdots \xrightarrow{\phi_{m-1}^{m}} H_{k}\left(K_{\alpha_{m}}\right) . \tag{1}
\end{equation*}
$$

- The structure of this persistence module can be encoded as a multi-set of points $\mathrm{D}_{k} \mathcal{K}$, called the k-th persistence diagram of \mathcal{K}

Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$ and $\Delta=\{(x, x): x \in \overline{\mathbb{R}}\}$.
Definition. - The k-th persistence diagram $\mathrm{D}_{k} \mathcal{K}$ of the filtration \mathcal{K} is a multi-subset of the extended plane $\overline{\mathbb{R}}^{2}$ contained in

$$
\Delta \cup\left\{\alpha_{0}, \cdots, \alpha_{m}\right\} \times\left\{\alpha_{0}, \cdots, \alpha_{m}, \alpha_{\infty}=+\infty\right\} .
$$

- The multiplicity of all points in Δ is set to $+\infty$, while the multiplicities of the points of the form $\left(\alpha_{i}, \alpha_{j}\right), 0 \leqslant i<j \leqslant+\infty$, are defined in terms of the ranks of the homomorphisms $\phi_{i}^{j}=\phi_{j-1}^{j} \circ \cdots \circ \phi_{i}^{i+1}$.

Remark. Two persistence diagrams can be compared using the bottleneck distance.

Definition. The bottleneck distance $d_{\mathrm{B}}^{\infty}(A, B)$ between two multi-sets in $\left(\overline{\mathbb{R}}^{2}, l^{\infty}\right)$ is the quantity $\min _{\gamma} \max _{p \in A}\|p-\gamma(p)\|_{\infty}$, where γ ranges over all bijections from A to B.

$$
\underbrace{\substack{\text { shapes/spaces } \\
\left(\mathcal{M}, d_{\mathcal{G H}}\right)}}_{X, Y} \rightarrow \begin{gathered}
\begin{array}{c}
\text { signatures (persistence diagrams) } \\
\left(\mathcal{D}, d_{B}^{\infty}\right)
\end{array} \\
D_{k} \mathcal{R}(X), D_{k} \mathcal{R}(Y)
\end{gathered}
$$

Stability results

Theorem (I, [CCGMO09]). For any finite metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, and any $k \in \mathbb{N}$,

$$
d_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} \mathcal{R}\left(X, d_{X}\right), \mathrm{D}_{k} \mathcal{R}\left(Y, d_{Y}\right)\right) \leqslant d_{\mathcal{G H}}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right) .
$$

Stability results

Theorem (I, [CCGMO09]). For any finite metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$, and any $k \in \mathbb{N}$,

$$
d_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} \mathcal{R}\left(X, d_{X}\right), \mathrm{D}_{k} \mathcal{R}\left(Y, d_{Y}\right)\right) \leqslant d_{\mathcal{G H}}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right) .
$$

Proof. Let $\eta=d_{\mathcal{G} \mathcal{H}}(X, Y)$ and d be a metric on $Z=X \sqcup Y$ s.t. $d_{\mathcal{H}}^{(Z, d)}(X, Y)=\eta$. Then (Z, d) is a finite metric space of cardinality $n=\# X+\# Y$. Hence, it can be embedded isometrically into $\left(\mathbb{R}^{n}, \ell^{\infty}\right)$. Let $Z^{\prime}, X^{\prime}, Y^{\prime}$ be subsets of \mathbb{R}^{n} s.t. $Z^{\prime}=X^{\prime} \cup Y^{\prime}, X \sim_{\text {isom }} X^{\prime}$, $Y \sim_{\text {isom }} Y^{\prime}$ and $Z \sim_{\text {isom }} Z^{\prime}$. Then, $d_{\mathcal{H}}^{\left(\mathbb{R}^{n}, \ell^{\infty}\right)}\left(X^{\prime}, Y^{\prime}\right)=\eta$. This means that $\delta_{X^{\prime}}, \delta_{Y^{\prime}}: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{+}defined by

$$
p \mapsto \min _{x^{\prime} \in X^{\prime}}\left\|x^{\prime}-p\right\|_{\ell^{\infty}}
$$

and

$$
p \mapsto \min _{y^{\prime} \in Y^{\prime}}\left\|y^{\prime}-p\right\|_{\ell \infty}
$$

are s.t. $\left\|\delta_{X^{\prime}}-\delta_{Y^{\prime}}\right\|_{L^{\infty}} \leqslant \eta$. One can see that $\delta_{X^{\prime}}$ and $\delta_{Y^{\prime}}$ are tame and hence their persistence diagrams are η-close in the bottleneck distance according to standard stability theorem. But, then these persistence diagrams agree with the persistence diagrams of the Čech filtrations of X^{\prime} and Y^{\prime}. Finally, since the underlying metric is ℓ^{∞}, the Čech filtrations agree with the Rips filtrations.

Remark. The bound is tight. Indeed, fix $\varepsilon>0$ and let X be a set of two points at distance 2 and Y a set of two points at distance $2+2 \varepsilon$. Then,

$$
d_{\mathcal{G H}}\left(\left(X, d_{X}\right),\left(Y, d_{Y}\right)\right)=\varepsilon,
$$

and

$$
D_{0} \mathcal{R}\left(X, d_{X}\right)=\{(0,+\infty),(0,1)\}, D_{0} \mathcal{R}\left(Y, d_{Y}\right)=\{(0,+\infty),(0,1+\varepsilon)\} .
$$

- This theorem states GH-stability of persistence diagrams arising from Rips filtrations.
- Another way of saying this: it provides a lower bound for the GH distance! Can I use it for object recognition?
- Not very discriminative- can do better: use functions!

Metric spaces endowed with functions

We now consider triples $\left(X, d_{X}, f_{X}\right)$ where $\left(X, d_{X}\right) \in \mathcal{M}$ and $f_{X}: X \rightarrow \mathbb{R}$. Let \mathcal{M}_{1} denote the collection of all such triples. We declare $X, Y \in \mathcal{M}_{1}$ to be isomorphic whenever there exist an isometry $\Phi: X \rightarrow Y$ s.t. $f_{Y} \circ \Phi=f_{X}$.

We put a metric on the collection of all isomorphism classes of \mathcal{M}_{1} by suitably extending the GH distance:

$$
d_{\mathcal{G} \mathcal{H}}^{1}(X, Y)=\inf _{C} \max \left(\frac{1}{2}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C \times C)},\left\|f_{X}-f_{Y}\right\|_{L^{\infty}(C)}\right) .
$$

Metric spaces endowed with functions

We now consider triples $\left(X, d_{X}, f_{X}\right)$ where $\left(X, d_{X}\right) \in \mathcal{M}$ and $f_{X}: X \rightarrow \mathbb{R}$. Let \mathcal{M}_{1} denote the collection of all such triples. We declare $X, Y \in \mathcal{M}_{1}$ to be isomorphic whenever there exist an isometry $\Phi: X \rightarrow Y$ s.t. $f_{Y} \circ \Phi=f_{X}$.

We put a metric on the collection of all isomorphism classes of \mathcal{M}_{1} by suitably extending the GH distance:

$$
d_{\mathcal{G} \mathcal{H}}^{1}(X, Y)=\inf _{C} \max \left(\frac{1}{2}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C \times C)},\left\|f_{X}-f_{Y}\right\|_{L^{\infty}(C)}\right) .
$$

Definition. Given $\left(X, d_{X}, f_{X}\right) \in \mathcal{M}_{1}$ and a parameter $\alpha>0$, the modified Rips complex $R_{\alpha}\left(X, d_{X}, f_{X}\right)$ is the abstract simplicial complex of vertex set $X_{\alpha}:=f_{X}^{-1}((-\infty, \alpha])$, whose simplices are those $\sigma \subset X_{\alpha}$ s.t.

- $\sigma \neq \varnothing$
- $\operatorname{diam}(\sigma)<2 \alpha$.

The modified Rips filtration of $\left(X, d_{X}, f_{X}\right)$, noted $\mathcal{R}\left(X, d_{X}, f_{X}\right)$, is the nested family of modified Rips complexes obtained by varying parameter α from 0 to $+\infty$.

Given any $\sigma \in K(X), F(\sigma)=\max \left(\frac{1}{2} \operatorname{diam}(\sigma), \max _{x \in \sigma} f_{X}(x)\right)$.

Stability results with functions

Theorem (II, [CCGMO09]). For any finite metric spaces endowed with functions $\left(X, d_{X}, f_{X}\right)$ and $\left(Y, d_{Y}, f_{Y}\right)$, and any $k \in \mathbb{N}$,

$$
d_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} \mathcal{R}\left(X, d_{X}, f_{X}\right), \mathrm{D}_{k} \mathcal{R}\left(Y, d_{Y}, f_{Y}\right)\right) \leqslant d_{\mathcal{G H}}^{1}\left(\left(X, d_{X}, f_{X}\right),\left(Y, d_{Y}, f_{Y}\right)\right) .
$$

Stability results with functions

Theorem (II, [CCGMO09]). For any finite metric spaces endowed with functions $\left(X, d_{X}, f_{X}\right)$ and $\left(Y, d_{Y}, f_{Y}\right)$, and any $k \in \mathbb{N}$,

$$
d_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} \mathcal{R}\left(X, d_{X}, f_{X}\right), \mathrm{D}_{k} \mathcal{R}\left(Y, d_{Y}, f_{Y}\right)\right) \leqslant d_{\mathcal{G} \mathcal{H}}^{1}\left(\left(X, d_{X}, f_{X}\right),\left(Y, d_{Y}, f_{Y}\right)\right) .
$$

Proof. Similar arguments, need to invoke stronger stability result of [CCSGGO09].

Remark. When $f_{X}=f_{Y}=0$ we recover Theorem (I).
Remark. - Goal is to obtain lower bounds for GH distance.

- Idea: let functions f_{X} and f_{Y} depend on the metric!
- Need canonical constructions: methods for constructing a function out of a metric that can be applied to any metric space.
- Example: eccentricity. Given a metric space $\left(X, d_{X}\right)$, one can form the triple $\left(X, d_{X}, e c c^{X}\right)$ where ecc ${ }^{X}(x)=\max _{x^{\prime} \in X} d_{X}\left(x, x^{\prime}\right)$.
- So the idea is to try to come up with a rich family of maps $h: \mathcal{M} \rightarrow \mathcal{M}_{1}$.

Definition. For each $L>0$ let \mathcal{H}_{L} denote the class of maps $h: \mathcal{M} \rightarrow \mathcal{M}_{1}$ s.t.

$$
\left\|f_{X}-f_{Y}\right\|_{L^{\infty}(C)} \leqslant L \cdot \frac{1}{2}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C \times C)}
$$

for all $X, Y \in \mathcal{M}, C \in \mathcal{C}(X, Y)$, where $h\left(X, d_{X}\right)=\left(X, d_{X}, f_{X}\right)$ and $h\left(Y, d_{Y}\right)=$ $\left(Y, d_{Y}, f_{Y}\right)$.
(some kind of Lipschitz continuity across different metric spaces)

Definition. For each $L>0$ let \mathcal{H}_{L} denote the class of maps $h: \mathcal{M} \rightarrow \mathcal{M}_{1}$ s.t.

$$
\left\|f_{X}-f_{Y}\right\|_{L^{\infty}(C)} \leqslant L \cdot \frac{1}{2}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C \times C)}
$$

for all $X, Y \in \mathcal{M}, C \in \mathcal{C}(X, Y)$, where $h\left(X, d_{X}\right)=\left(X, d_{X}, f_{X}\right)$ and $h\left(Y, d_{Y}\right)=$ $\left(Y, d_{Y}, f_{Y}\right)$.
(some kind of Lipschitz continuity across different metric spaces)
Remark. Note that if $h \in \mathcal{H}_{L}$, then

$$
d_{\mathcal{G} \mathcal{H}}^{1}(h(X), h(Y)) \leqslant \max (1, L) \cdot d_{\mathcal{G H}}(X, Y) .
$$

Example. Let $h_{e c c}$ be the map that assigns to each metric space $\left(X, d_{X}\right)$ the triple $\left(X, d_{X}, e c c^{X}\right)$. Then, $h_{e c c} \in \mathcal{H}_{2}$.
Proof. Let C be s.t. $\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C \times C)} \leqslant 2 \eta$. Then,

$$
e c c^{X}(x)=\max _{x^{\prime} \in X} d_{X}\left(x, x^{\prime}\right) \geqslant d_{X}\left(x, x^{\prime}\right) \geqslant d_{Y}\left(y, y^{\prime}\right)-2 \eta
$$

for all $(x, y),\left(x^{\prime}, y^{\prime}\right) \in C$. Then, by symmetry, $\left|e c c^{X}(x)-e c c^{Y}(y)\right| \leqslant 2 \eta$ and the conclusion follows.

Corollary. For all $X, Y \in \mathcal{M}$, and $k \in \mathbb{N}$

$$
\frac{1}{\max (1, L)} \sup _{h \in \mathcal{H}_{L}} d_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} \mathcal{R}(h(X)), \mathrm{D}_{k} \mathcal{R}(h(Y))\right) \leqslant d_{\mathcal{G H}}(X, Y) .
$$

Corollary. For all $X, Y \in \mathcal{M}$, and $k \in \mathbb{N}$

$$
\frac{1}{\max (1, L)} \sup _{h \in \mathcal{H}_{L}} d_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} \mathcal{R}(h(X)), \mathrm{D}_{k} \mathcal{R}(h(Y))\right) \leqslant d_{\mathcal{G H}}(X, Y) .
$$

Remark (Aggregation properties). Let $h, h^{\prime} \in \mathcal{H}_{L}$. Then,

- $\sup (h): \mathcal{M} \rightarrow \mathcal{M}_{1}$ given by $\left(X, d_{X}\right) \mapsto\left(X, d_{X}, \max \left(f_{X}\right)\right)$ is in \mathcal{H}_{L}.
- $\max \left(h, h^{\prime}\right): \mathcal{M} \rightarrow \mathcal{M}_{1}$ given by $\left(X, d_{X}\right) \mapsto\left(X, d_{X}, \max \left(f_{X}, f_{X}^{\prime}\right)\right)$ is in \mathcal{H}_{L}.
- $\left(h+h^{\prime}\right): \mathcal{M} \rightarrow \mathcal{M}_{1}$ given by $\left(X, d_{X}\right) \mapsto\left(X, d_{X}, f_{X}+f_{X}^{\prime}\right)$ is in $\mathcal{H}_{2 L}$.
- For any $\alpha, \beta \in \mathbb{R}, \alpha \cdot h+\beta$ given by $\left(X, d_{X}\right) \mapsto\left(X, d_{X}, \alpha \cdot f_{X}+\beta\right)$ is in $\mathcal{H}_{|\lambda| L}$.

Note that $\mathrm{D}_{k} \mathcal{R}(h(X))$ and $\mathrm{D}_{k} \mathcal{R}((\alpha \cdot h+\beta)(X))$ are not related by a simple transformation.

Remark (Critique).

- It is difficult to find many functions in \mathcal{H}_{L} that are easily computable.
- For example, N - ecc eccentricities are too expensive:

$$
x \mapsto \max _{x_{1}, \ldots, x_{N}} \min _{i \neq j} d_{X}\left(x_{i}, x_{j}\right)
$$

is in \mathcal{H}_{2} but for N large is not an option. (complexity is $O\left((\# X)^{N+1}\right)$.

- Also, functions such as L^{p} eccentricites are beyond \mathcal{H}_{L}. For example, one may consider

$$
e c c_{p}^{X}(x)=\left(\frac{1}{\# X} \sum_{x^{\prime} \in X} d_{X}^{p}\left(x, x^{\prime}\right)\right)^{1 / p}, p \geqslant 1
$$

But there's a choice of probability measure implicit in this.. Need to make this explicit in the formulation.

mm-spaces: more admissible functions

Definition. An mm-space (measure metric space) will be a finite metric space endowed with a probability measure: a triple $\left(X, d_{X}, \mu_{X}\right)$, where $\mu_{X}(x)>0$ for all $x \in X$ and $\sum_{x \in X} \mu_{X}(x)=1$. We say that two mm-spaces are isomorphic if there is an isometry which also respects the weights. Let \mathcal{M}^{w} denote the collection of all (finite) mm-spaces. Similarly, we may define \mathcal{M}_{1}^{w}, the collection of all cuadruples $\left(X, d_{X}, \mu_{X}, f_{X}\right)$ where $\left(X, d_{X}, \mu_{X}\right) \in \mathcal{M}^{w}$ and $f_{X}: X \rightarrow \mathbb{R}$.

mm-spaces: more admissible functions

Definition. An mm-space (measure metric space) will be a finite metric space endowed with a probability measure: a triple $\left(X, d_{X}, \mu_{X}\right)$, where $\mu_{X}(x)>0$ for all $x \in X$ and $\sum_{x \in X} \mu_{X}(x)=1$. We say that two mm-spaces are isomorphic if there is an isometry which also respects the weights. Let \mathcal{M}^{w} denote the collection of all (finite) mm-spaces. Similarly, we may define \mathcal{M}_{1}^{w}, the collection of all cuadruples $\left(X, d_{X}, \mu_{X}, f_{X}\right)$ where $\left(X, d_{X}, \mu_{X}\right) \in \mathcal{M}^{w}$ and $f_{X}: X \rightarrow \mathbb{R}$.

Definition (Coupling). Given two mm-spaces X, Y, a coupling μ of X and Y is a probability measure on $X \times Y$ marginals X and Y. Since one regard μ as a matrix of size $\# X$ times $\# Y$, the conditions are that

- $\mu(x, y) \geqslant 0$
- $\sum_{x} \mu(x, y)=\mu_{Y}(y)$ for all $y \in Y$
- $\sum_{y} \mu(x, y)=\mu_{X}(x)$ for all $x \in X$

mm-spaces: more admissible functions

Definition. An mm-space (measure metric space) will be a finite metric space endowed with a probability measure: a triple $\left(X, d_{X}, \mu_{X}\right)$, where $\mu_{X}(x)>0$ for all $x \in X$ and $\sum_{x \in X} \mu_{X}(x)=1$. We say that two mm-spaces are isomorphic if there is an isometry which also respects the weights. Let \mathcal{M}^{w} denote the collection of all (finite) mm-spaces. Similarly, we may define \mathcal{M}_{1}^{w}, the collection of all cuadruples $\left(X, d_{X}, \mu_{X}, f_{X}\right)$ where $\left(X, d_{X}, \mu_{X}\right) \in \mathcal{M}^{w}$ and $f_{X}: X \rightarrow \mathbb{R}$.

Definition (Coupling). Given two mm-spaces X, Y, a coupling μ of X and Y is a probability measure on $X \times Y$ marginals X and Y. Since one regard μ as a matrix of size $\# X$ times $\# Y$, the conditions are that

- $\mu(x, y) \geqslant 0$
- $\sum_{x} \mu(x, y)=\mu_{Y}(y)$ for all $y \in Y$
- $\sum_{y} \mu(x, y)=\mu_{X}(x)$ for all $x \in X$

Definition. For all $X, Y \in \mathcal{M}_{1}^{w}$, we also define the distance
$d_{\mathcal{G} \mathcal{W}, \infty}^{1}(X, Y):=\inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)} \max \left(\frac{1}{2}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C(\mu) \times C(\mu))},\left\|f_{X}-f_{Y}\right\|_{L^{\infty}(C(\mu))}\right)$.

Definition. For each $L>0$ let \mathcal{H}_{L}^{w} denote the class of maps $h: \mathcal{M}^{w} \rightarrow \mathcal{M}_{1}^{w}$ s.t.

$$
\left\|f_{X}-f_{Y}\right\|_{L^{\infty}} \leqslant L \cdot \frac{1}{2}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(R(\mu) \times R(\mu))}
$$

for all $X, Y \in \mathcal{M}, \mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)$, where $h\left(X, d_{X}, \mu_{X}\right)=\left(X, d_{X}, \mu_{X}, f_{X}\right)$ and $h\left(Y, d_{Y}, \mu_{Y}\right)=\left(Y, d_{Y}, \mu_{Y}, f_{Y}\right)$.
(some kind of Lipschitz continuity across different mm-spaces)

Definition. For each $L>0$ let \mathcal{H}_{L}^{w} denote the class of maps $h: \mathcal{M}^{w} \rightarrow \mathcal{M}_{1}^{w}$ s.t.

$$
\left\|f_{X}-f_{Y}\right\|_{L^{\infty}} \leqslant L \cdot \frac{1}{2}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(R(\mu) \times R(\mu))}
$$

for all $X, Y \in \mathcal{M}, \mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)$, where $h\left(X, d_{X}, \mu_{X}\right)=\left(X, d_{X}, \mu_{X}, f_{X}\right)$ and $h\left(Y, d_{Y}, \mu_{Y}\right)=\left(Y, d_{Y}, \mu_{Y}, f_{Y}\right)$.
(some kind of Lipschitz continuity across different mm-spaces)
Remark. Note that if $h \in \mathcal{H}_{L}^{w}$, then

$$
d_{\mathcal{G} \mathcal{W}, \infty}^{1}(h(X), h(Y)) \leqslant \max (1, L) \cdot d_{\mathcal{G} \mathcal{W}, \infty}(X, Y) .
$$

Example. For $p \in[1, \infty]$ let $h_{\text {ecc }}$ be the map that assigns to each mm-space (X, d_{X}, μ_{X}) the cuadruple $\left(X, d_{X}, \mu_{X}, e c c_{p}^{X}\right)$. Then, $h_{e c c_{p}} \in \mathcal{H}_{2}^{w}$. Proof. Let μ be s.t. $\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(C(\mu) \times C(\mu))} \leqslant 2 \eta$. Then, also,

$$
\left\|d_{X}(x, \cdot)-d_{Y}(y, \cdot)\right\|_{L^{\infty}(C(\mu))} \text { for all }(x, y) \in C(\mu) .
$$

Write, $\left|e c c_{p}^{X}(x)-e c c_{p}^{X}(x)\right|=\left|\left\|d_{X}(x, \cdot)\right\| \ell_{\ell p}\left(\mu_{X}\right)-\left\|d_{Y}(y, \cdot)\right\|_{\ell \rho}\left(\mu_{Y}\right)\right| \leqslant\left\|d_{X}(x, \cdot)-d_{Y}(y, \cdot)\right\|_{\ell p}(\mu) \leqslant$ 2η for all $(x, y) \in C(\mu)$.

Corollary. For all $X, Y \in \mathcal{M}^{w}$, and $k \in \mathbb{N}$

$$
\frac{1}{\max (1, L)} \sup _{h \in \mathcal{H}_{L}^{w}} d_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} \mathcal{R}(h(X)), \mathrm{D}_{k} \mathcal{R}(h(Y))\right) \leqslant d_{\mathcal{G} \mathcal{W}, \infty}(X, Y) .
$$

Remark (Aggregation properties).

- The collection \mathcal{H}_{L}^{w} has similar aggregation properties as \mathcal{H}_{L}.
- There is a sense in which \mathcal{H}_{L}^{w} contains all maps in \mathcal{H}_{L}.

Discussion

- The computation of these lower bounds lead to solving bottleneck assignment problems. Standard problems.
- Ran these on a database of shapes. There are interesting details about the implementation.
- The stability theorem is very interesting as it permits to define the notion of a limit Rips persistent diagram of a compact metric space.

Bibliography
[BBI] Burago, Burago and Ivanov. A course on Metric Geometry. AMS, 2001
[HK-03] A. Ben Hamza, Hamid Krim: Probabilistic shape descriptor for triangulated surfaces. ICIP (1) 2005: 1041-1044
[Osada-02] Robert Osada, Thomas A. Funkhouser, Bernard Chazelle, David P. Dobkin: Matching 3D Models with/Shape Distributions. Shape Modeling International 2001: 154-166
[SC-00] S. Belongie and J. Malik (2000). "Matching with Shape Contexts". IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL-2000).
[Gromov-80] M. Gromov. Metric structures for Riemannian and non- Riemannian spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1999.
[CCGMO09] Chazal, Cohen-Steiner, Guibas, Memoli, Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. SGP 2009.
[M08-euclidean]F. Mémoli. Gromov-Hausdorff distances in Euclidean spaces. NORDIA-CVPR-2008.
[M07] F.Mémoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.
[MS04] F. Mémoli and G. Sapiro. Comparing point clouds. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32-40, New York, NY, USA, 2004. ACM.
[MS05] F. Mémoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math., 5(3):313-347, 2005.
[CM07] G. Carlsson and F. Mémoli. Persistent clustering and a theorem of J. Kleinberg. preprint, 2007. 2005.
http://math.stanford.edu/~memoli

