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A discrete group with word-length (G,L) is B -isocohomological for a bound-
ing classes B if the comparison map from B -bounded cohomology to ordi-
nary cohomology (with coefficients in C) is an isomorphism; it is strongly B -
isocohomological if the same is true with arbitrary coefficients. In this paper we
establish some basic conditions guaranteeing strong B -isocohomologicality. In
particular, we show strong B -isocohomologicality for an FP∞ group G if all of
the weighted G-sensitive Dehn functions are B -bounded. Such groups include all
B -asynchronously combable groups; moreover, the class of such groups is closed
under constructions arising from groups acting on an acyclic complex. We also
provide examples where the comparison map fails to be injective, as well as sur-
jective, and give an example of a solvable group with quadratic first Dehn function,
but exponential second Dehn function. Finally, a relative theory of B -bounded
cohomology of groups with respect to subgroups is introduced. Relative isoco-
homologicality is determined in terms of a new notion of relative Dehn functions
and a relative FP∞ property for groups with respect to a collection of subgroups.
Applications for computing B -bounded cohomology of groups are given in the
context of relatively hyperbolic groups and developable complexes of groups.
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1 Introduction

To a bounding class of functions B , a group with length (G,L) and a weighted G-
complex (X,w) one can associate the B -bounded, G-equivariant cohomology of X
with coefficients in a HB,L (G)-module V :

BH∗G(X; V)

The construction is a variant on that used in the non-bounded case. Starting with (G,L)
and B , one constructs a bornological algebra HB,L (G) - a completion of the group
algebra C[G] - and a bornological HB,L (G)-module BC∗(EG × X) - a similar com-
pletion of the the complex of singular chains C∗(EG× X). Then given a bornological
HB,L (G)-module V , one forms the (co)complex

Hombdd
HB,L(G)(BC∗(EG× X),V)

of bounded HB,L (G)-module homomorphisms. The cohomology groups BH∗G(X; V)
are then defined as the (algebraic) cohomology groups of this complex. There is a
natural transformation of functors

BH∗−(−;− )→ H∗−(−;− )

which, for given values, is referred to as the comparison map

Φ∗B = Φ∗B,G(X; V) : BH∗G(X; V)→ H∗G(X; V)

One wants to know the properties of this map; when it is injective, surjective, and
what structures are preserved under it. In some special cases, quite a bit is known.
For example, taking B = Bmin = {constant functions} yields HBmin,L(G) = `1(G),
and the resulting cohomology theory is simply the equivariant bounded cohomology
of X with coefficients in the Banach `1(G)-module V . At the other extreme, when
B = Bmax = {f : R+ → R+ | f non-decreasing}, the comparison map becomes an
isomorphism under appropriate finiteness conditions: G is an FP∞ group and X is
a G-complex with finitely many orbits in each dimension. More interesting, and also
more subtle, is the case when the bounding class B lies between these two extremes,
because it is in this range that the weight function on X and word-length function on G
have the potential for influencing the B -bounded cohomology groups in a non-trivial
way. To illustrate why this is of interest, we consider two applications.

• The topological K -theory of `1(G). Here the bounding class B = P = {non-
decreasing polynomials} is of particular interest, as HP,L(G) is a smooth subal-
gebra of `1(G). Taking X = pt and V = C, the image of Φ∗B consists precisely
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of those cohomology classes in H∗(G) = H∗(G;C) which are polynomially
bounded with respect to the word-length function on G. Such classes therefore
satisfy the `1 -analogue of the Novikov Conjecture, and there is reason to be-
lieve they also satisfy the Strong Novikov Conjecture (without any additional
Rapid Decay condition on the group). For this application, one would like the
comparison map to be surjective.

• The Strong `1 -Bass Conjecture. Here one is interested in determining the image
of the Chern character ch∗ : Kt

∗(`
1(G))→ HCtop

∗ (HP,L(G)) [JOR1]. In this case,
the problem of showing that the image lies in the “elliptic summand" amounts
to proving the injectivity of the comparison map (for suitable choice of X ).

Of course, both properties hold when Φ∗B is bijective, i.e., when G or more precisely
(G,L) is isocohomological [M1, M2]. In fact, up until this point, all proofs of either
injectivity or surjectivity for a given bounding class have arisen by a verification of
this stronger isocohomological property. The first type of result in this direction
is due to the first author, who showed in [J] that HCtop

∗ (HP,L(G))∼= HC∗(C[G]) for
groups of polynomial growth. Subsequently, it was determined independently by the
second author in [O1] and R. Meyer in [M1] that (G,L) is P -isocohomological in
the case G admits a synchronous combing. Moreover, in [O1] it was shown that
isocohomologicality with arbitrary coefficients, or strong B -isocohomologicality,(at
least for B = P ) followed for HF∞ groups whenever all of the Dehn functions
(as defined in [O1]) were polynomially bounded. This last result was significantly
strengthened by the first and third authors in [JR1], where it was established (again for
B = P ), that strong P -isocohomologicality for an FP∞ group was actually equivalent
to the existence of polynomially bounded Dehn functions in each degree. From this
the authors were able to conclude that the comparison map (with X = pt), fails to be
surjective for rather simple groups when one allows non-trivial coefficients. However,
still unknown for the standard word-length function on G and the polynomial bounding
class P , or more generally any bounding class B containing the linear polynomials L,
were answers to the following questions:

Q1. Is the comparison map Φ∗B = Φ∗B(G) : BH∗(G)→ H∗(G) always surjective?

Q2. Is Φ∗B(G) always injective?

Q3. If G is an HF∞ group, are the higher Dehn functions of G P -equivalent to the
first Dehn function of G?

In fact, it was conjectured by the second author in [O1] that the answer to the third
question was “yes", given that all known examples at the time suggested this to be the
case. Nevertheless, one of the consequences of the results of this paper is
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Theorem A The answer to each of these questions is “no".

Precisely, we show

A1. (following Gromov) There exists a compact, closed, orientable 3-dimensional
solvmanifold M3

1 ' K(G1, 1) with a 2-dimensional class t2 ∈ H2(M1) =

H2(G1) which is not B -bounded for any B ≺ E , the bounding class of simple
exponential functions.

A2. There exists a compact, closed, orientable 5-dimensional solvmanifold M5
2 '

K(G2, 1), where the first Dehn function of G2 is quadratic, but the second Dehn
function is at least simple exponential.

A3. If B is a bounding class with B � L, and G is a finitely-presented FL group
(meaning BG is homotopy-equivalent to a finite complex) for which the compar-
ison map Φ∗B is not surjective with respect to the standard word-length function
(as in (A1.)), there is another discrete group F(G) depending on G “up to homo-
topy" for which the comparison map is not injective with respect to the standard
word-length function on F(G). Moreover, if B � P , then F(G) can be taken to
be also of type FL .

Somewhat surprising is the sharpness of these results. For (A1.), this is the simplest type
of finitely-presented group and smallest cohomological dimension in which surjectivity
with trivial coefficients can fail. In the case of (A2.), we note that a linear first Dehn
function implies the group is hyperbolic, in turn implying that all of the higher Dehn
functions are also linear. Moreover, there is an isoperimetric gap that occurs between
degree one and two, so that if the first Dehn function is not linear, it must be at
least quadratic - the smallest degree for which the second Dehn function could be
non-polynomial, or even non-linear. Finally, (A3.) provides, for each bounding class
B � P an injection from the set of (isomorphism classes of) finitely-presented FL
groups with non-surjective comparison map to the set of (isomorphism classes of)
finitely-presented FL groups with non-injective comparison map.

Up until now, the main problem in studying either B -isocohomologicality or strong
B -isocohomologicality has been the absence of appropriate computational tools. The
difficulty in extending classical techniques lies in the analysis of the group structures
and the geometry of the associated Cayley graph. The primary goal of this paper is to
develop systematic methods for calculating B -bounded cohomology, and to establish
isocohomologicality for a good class of groups. One such class consists of group
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extensions where the normal and quotient groups are isocohomological with respect to
the restricted and quotient length functions induced by the length function on the middle
group. The other main class of groups considered are those associated with developable
complexes of groups; this includes the class of relatively hyperbolic groups. The main
computational techniques introduced are the Hochschild-Serre spectral sequence in
B -bounded cohomology associated to an extension of groups equipped with length
functions, and the Serre spectral sequence in B -bounded cohomology for developable
complexes of groups. As has been noted by Meyer in [M2], the category in which
one does homological algebra in the bornological framework is almost never abelian,
which makes the extension of homological techniques from the non-bounded to the
bounded setting problematic. Among the results included below, we have

Theorem B Let G be a finitely presented group acting cocompactly on a contractible
simplicial complex X without inversion, with finitely generated stabilizers Gσ for each
vertex σ in X , and with finite edge stabilizers. Suppose also that X is equipped with the
1-skeleton weighting, and all of its higher weighted Dehn functions are B -bounded.
Then if each Gσ is strongly B -isocohomological, G is as well.

In [Os] and [BC] the notion of the first unweighted ‘relative Dehn function’ is introduced
for a group relative to a family of subgroups. This relative Dehn function is well-
defined for developable complexes of groups with finite edge stabilizers; in particular
for relatively hyperbolic groups. Intuitively, the unweighted relative Dehn functions
bound ‘relative fillings’ of relative cycles in a ‘relatively contractible space’. Thus,
one expects that the comparison map from B -bounded relative cohomology to non-
bounded relative cohomology is an isomorphism when the relative Dehn functions are
appropriately bounded; i.e. the group is relatively isocohomological with respect to
the family of subgroups.

Now it should be noted that the existence of Dehn functions, even in the absolute setting,
is not guaranteed by the existence of a nice resolution. In general, one needs to work
with weighted Dehn functions where the weighting degreewise is either equivalent
to a weighted `1 -norm associated to a proper weight function on an additive set of
generators, or is one over which there exists some geometric control. Using the
1-skeleton weighting, we show

Theorem C Suppose the finitely presented group G is HF∞ relative to a finite family
of finitely generated subgroups H . Then the following are equivalent.
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(1) The weighted relative Dehn functions of EG relative to EH are B -bounded.

(2) G is strongly B -isocohomological relative to H .

(3) The comparison map BH∗(G,H; A)→ H∗(G,H; A) is surjective for all bornolog-
ical HB,L (G)-modules A.

We should also remark that, as in the case of relative group cohomology [Au, BE2], there
is a long-exact sequence in B -bounded cohomology relating the bounded cohomologies
of the subgroups and the group with the B -bounded relative cohomology of the pair.

An outline of the paper is as follows.

In section 2, we recall from [JOR1] some basic terminology regarding bounding classes,
and the setup for defining the G-equivariant B -bounded cohomology of bornological
algebras and weighted complexes. We also define what we mean by a Dehn function
in this paper. For FP∞ groups, there are a number of different ways for defining Dehn
functions, the most natural being algebraically defined Dehn functions which take into
account the action of the group G. Also in this section we construct some basic pairing
operations between B -bounded homology and cohomology that are used later on.

In section 3, we show1 that asynchronously combable groups are type HF∞ , via an
explicit coning argument that allows us in section 3.2 to show that if the combing
lengths are B -bounded, so are all of the Dehn functions of G. We also extend the main
result of [JR1] to arbitrary bounding classes B .

In section 4, we generalize the constructions and results of section 3 to the relative
context. We begin by establishing a relative version of the Brown and Bieri-Eckmann
conditions used to establish homological or homotopic finiteness through a given
degree. In section 4.2, we introduce the higher dimensional relative Dehn functions in
several different, but equivalent ways. In section 4.3 the notion of relative B -bounded
cohomology is developed and shown to fit into a long-exact sequence similar to the
long-exact sequence in non-bounded relative group cohomology. The notion of relative
B -isocohomologicality is introduced and related to the higher relative Dehn functions.
This relationship is then examined in the case of relatively hyperbolic groups and
groups acting on complexes.

1This result has also recently been obtained in [BRS], using more geometric techniques.
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In section 5, we construct in BH∗(·) the i) Hochschild-Serre spectral sequence as-
sociated to an extension of groups with word-length, and ii) the spectral sequence
associated to a group acting on a complex. These spectral sequences closely resemble
their non-bounded counter-parts, and, as we mentioned above, provide the main tools
for computing B -bounded cohomology.

Finally, in section 6, we examine specific examples, beginning with duality groups
(in the sense of Bieri-Eckmann). A striking fact, proved in section 6.2, is that B -
isocohomologicality for an oriented n-dimensional Poincare Duality group G is guar-
anteed by the B -boundedness of a single cohomology class in Hn(G × G) coming
from the restriction of the Thom class for the diagonal embedding, i.e., the “dual"
fundamental class of G. For fundamental groups of compact oriented manifolds with
connected boundary, B -isocohomologicality is guaranteed by a B -bound on two sepa-
rate cohomology classes. In section 6.3, we introduce the notion of a B -duality group,
and show that when the fundamental homology class in B -bounded homology is in the
image of the homology comparison map, the cohomology comparison map is injective
for all coefficients. Finally, in sections 6.4 and 6.5, we discuss the examples mentioned
in (A1.) - (A3.) above.

The second author would like to thank Ian Leary for an illuminating remark regarding
[L]. The first and third authors are grateful to Denis Osin for his communications
relating to complexes of groups, relative Dehn functions, and the Arzhantseva-Osin
example of an exponential growth solvable group that has quadratic first Dehn function,
[AO].
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2 Preliminaries

We discuss some constructions and terminology that will be used throughout the paper.

2.1 Bounding Classes

Let S denote the set of non-decreasing functions {f : R+ → R+}. Suppose φ :
Sn → S is a function of sets, and B ⊂ S . We will say that B is weakly closed
under the operation φ if for each n-tuple (f1, . . . , fn) ∈ Bn , there exists an f ∈ B with
φ(f1, f2, . . . , fn) < f . A bounding class then is a subset of B ⊂ S satisfying

(BC1) it contains the constant function 1,

(BC2) it is weakly closed under the operations of taking positive rational linear combi-
nations

(BC3) it is weakly closed under the operation (f , g) 7→ f ◦ g for g ∈ L, where L
denotes the linear bounding class {f (x) = ax + b | a, b ∈ Q+}.

Naturally occurring classes besides L are Bmin = {Q+}, P = the set of polynomials
with non-negative rational coefficients, the set E = {ef , f ∈ L}, and Bmax = S .
A bounding class is multiplicative if it is weakly closed under multiplication, and
composable if it is weakly closed under composition. More generally, given bounding
classes B and B′ , we say B is a left resp. right B′ -class if B is weakly closed under left
resp. right composition with elements of B′ (thus, for example, all bounding classes
are right L-classes by (BC3)).

Basic properties of bounding classes were discussed in [JOR1]; for technical reasons
only composable bounding classes were considered in that paper, however, all of the
results of of [JOR1, §1.2] apply for this larger collection of classes. We write B′ � B
if every f ∈ B′ is bounded above by some element f ∈ B , with equivalence B′ ∼ B if
B′ � B and B � B′ . Finally, B′ ≺ B if B′ � B but B′ is not equivalent to B .

Given a weighted set (X,w) and f ∈ S , the seminorm | |f on Hom(X,C) is given by
|φ|f :=

∑
x∈X |φ(x)|f (w(x)). Then HB,w(X) = {f : X → C | |φ|f < ∞ ∀f ∈ B}. The

most important feature of HB,w(X) is that it is an algebra whenever X is a semi-group
and w is sub-additive with respect to the multiplication on X . If X has a unit, then
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so does HB,w(X). We will mainly be concerned with the case (X,w) = (G,L) is a
discrete group equipped with a length function L (meaning a function L : G → R+

subadditive with respect to the multiplication on G, and invariant under the involution
g 7→ g−1 ). The length function L is called a word-length function (with respect to a
generating set S) if L(1) = 1 and there is a function φ : S→ R+ with

L(g) = min

{
n∑

i=1

φ(xi) | xi ∈ S, x1x2 . . . xn = g

}
When the generating set S is finite, taking φ = 1 produces the standard word-length
function on G.

2.2 The FPα and HFα conditions

In this paper the term complex will refer either to a simplicial complex, polyhedral
complex, or simplicial set. For a complex X , we say X is type HFα (α ≤ ∞) if
|X| ' |Y| where Y is a CW complex with finitely many cells through dimension
α . This notion clearly defines an equivalence relation on the appropriate category
of complexes, and admits an equivariant formulation: for a discrete group G which
acts either cellularly or simplicially, a G-complex X is type G− HFα if there is a
strong G-homotopy equivalence X ' Y with Y having finitely many G-orbits through
dimension α . A group G is type HFα if its classifying space BG is type HFα , or
equivalently, if EG is type G− HFα .

When α is finite and X is a simplicial complex resp. simplicial set resp. polyhedral
complex, the HFα condition is equivalent to saying X ' Y a simplicial complex resp.
simplicial set resp. polyhedral complex with Y (α) finite. When α = ∞ and X is a
polyhedral complex, then X is type HF∞ iff X ' Y a polyhedral complex with Y (n)

finite for all n <∞. However, if X is either a simplicial set or simplicial complex, the
HF∞ condition is equivalent to the weaker statement X ' Y = lim−→ Yn a direct limit of
simplicial sets resp. simplicial subcomplexes, with the inclusion Yn ↪→ Y inducing an
n-connected map of spaces |Yn| ↪→ |Y|.

For discrete groups, the condition HFα is equivalent to requiring that G is finitely-
presented and type FPα . The standard FPα condition - that Z admits a resolution
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over Z[G] which is finitely-generated projective through dimension α - is now known
to be strictly weaker than requiring G to be HFα when G is not finitely-presented.
Because the framework used in this paper for defining Dehn functions is algebraic, our
primary focus will be on discrete groups of type FPα . Again, we remind the reader
that FPα is equivalent to FFα - the condition that Z admits a resolution over Z[G] by
free Z[G]-modules which which are finitely-generated through dimension α

2.3 B-homology and B-cohomology of algebras

There are a number of different settings in which one can develop the theory of B -
bounded cohomology for non-discrete algebras. For arbitrary B , the most natural
is the bornological framework introduced by [M2, M3]. Given a bornological alge-
bra A and bornological A-modules M and N , the derived functors TorA

∗ (M,N) and
Ext∗A(M,N) are computed in the bornological category using standard constructions
from homological algebra, with the constraint that projective or injective resolutions
used are contractible via a bounded linear contraction.

Before defining homology and cohomology, we want to point out that in both cases
there is a “bornologically correct” reduced theory and an “algebraically correct” unre-
duced theory. In general, given a chain complex (C∗, d∗), or a cocomplex (D∗, d∗),
of bornological vector spaces with bounded differential, we distinguish between the
algebraic (co)homology groups

Ha
∗(C∗) := {Hn(C∗) = ker(dn)/ im(dn+1)}, H∗a (D∗) := {Hn(D∗) = ker(dn)/ im(dn−1)}

and the bornological (co)homology groups

Hb
∗(C∗) := {Hn(C∗) = ker(dn)/im(dn+1)}, H∗b (D∗) := {Hn(D∗) = ker(dn)/im(dn−1)}

Thus given a bornological algebra with unit A, bornological A-modules M1 , M2 ,
projective resolutions Pi

•
of Mi over A, and an injective resolution Q• of M2 over A

TorA,x
∗ (M1,M2) := Hx

∗(P
1
•
⊗̂
A

M2) = Hx
∗(M1⊗̂

A
P2

•
), x = a, b(1)

Ext∗A,x(M1,M2) := H∗x (Hombdd
A (P1

•
,M2)) = H∗x (Hombdd

A (M1,Q•)), x = a, b(2)
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Here Hombdd
A (−) denotes (in each degree) the bornological vector space of bounded

A-module homomorphisms. In cohomology, there are two other intermediate groups
one can define:

LExt∗A,a(M1,M2) := H∗a (HomA(P1
•
,M2)) RExt∗A,a(M1,M2) := H∗a (HomA(M1,Q•))

where Hombdd
A (−) is replaced degreewise by the larger HomA(−) consisting of all

A-linear maps, forgetting the bornology. This is equivalent to re-bornologizing in
each degree with the fine bornology (after forming the resolution using the original
bornology), and then computing Ext. Finally, one has the purely algebraic groups. Let
Bδ denote B equipped with the fine bornology. Let Ri

•
denote a projective resolution

of Mδ
i over Aδ , and S• an injective resolution of Mδ

2 over Aδ , then

TorAδ
∗ (Mδ

1 ,M
δ
2) := H∗(R1

•
⊗
Aδ

Mδ
2) = H∗(Mδ

1 ⊗
Aδ

R2
•
)

Ext∗Aδ (M
δ
1 ,M

δ
2) := H∗(HomAδ (R

1
•
,Mδ

2)) = H∗(HomAδ (M
δ
1 , S•))

We remark that this definition applies as well when Mi are differential graded (aka DG)
bornological A-modules, by which we mean DG objects in the category of bornological
A-modules.

2.4 B-homology and B-cohomology of weighted complexes

A weight function on a set S is a map of sets w : S→ R+ . Fix a weighted set (S,w),
and write C[S] for the vector space over C with basis S . For a bounding class B , we
may define seminorms on C[S] by∣∣∣∣∣∑

s∈S

αss

∣∣∣∣∣
f

:=
∑
s∈S

|αs|f (w(s)), f ∈ B

If (G,L) is a discrete group with length function L , a weighted G-set is a weighted set
(S,w) with a G-action on S satisfying

(3) w(gs) ≤ C · L(g) + w(s), ∀g ∈ G, s ∈ S

Let HB,w(S) denote the completion of C[S] with respect to the seminorms in (3). Then
HB,w(S) may be viewed as a bornological vector space, which is Frechet if there exists
a countable bounding class B′ with B ∼ B′ . Note that C[S] is a module over C[G] in
the usual way: (

∑
λigi)(

∑
βjsj) =

∑
i,j λiβjgisj .
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Proposition 1 The module structure of C[S] over the group algebra C[G] extends to
a bounded bornological HB,L(G)-module structure on HB,w(S).

Proof This follows by the same estimates as those used to show HB,L(G) is an algebra:∣∣∣(∑λg1g1

)(∑
λg2s2

)∣∣∣
f

=
∑
s∈S

∣∣∣∣∣ ∑
g1s2=s

λg1λs2

∣∣∣∣∣ f (w(s))

≤
∑
s∈S

( ∑
g1s2=s

|λg1λs2 | f (L(g1) + w(s2))

)

≤
∑
s∈S

 ∑
g1s2=s,L(g1)≤w(s2)

|λg1λs2 | f (2w(s2))

+
∑
s∈S

 ∑
g1s2=s,w(s2)≤L(g1)

|λg1λs2 | f (2L(g1))


≤
∣∣∣∑λg1g1

∣∣∣
1

∣∣∣∑λs2s2

∣∣∣
f2

+
∣∣∣∑λg1g1

∣∣∣
f2

∣∣∣∑λs2s2

∣∣∣
1
<∞

where |−|1 denotes the `1 -norm, and f2 ∈ B is any function satisfying f (2x) ≤
f2(x) ∀x .

A weighted simplicial set, respectively weighted simplicial complex, (X,w) is a sim-
plicial set, respectively a simplicial complex, X = {Xn}n≥0 together with weight
functions wn : Xn → R+ such that for each n and n-simplex σ , wn−1(σ′) ≤ wn(σ)
when σ′ is a face of σ , and (in the case of simplicial sets) wn+1(sj(σ)) = wn(σ) where
sj represents a degeneracy map2. In both cases, we will simply refer to (X,w) as a
weighted complex. Given a discrete group with length (G,L), a weighted G-complex
is a G-complex weighted in such a way that for each n, the action of G on (Xn,wn)
satisfies equation (3) above. In this case, completing C∗(X) degreewise produces a
bornological chain complex

BC∗(X) := {HB,wn(Xn), dn}n≥0

When the action of G on X is free, the definition of the G-equivariant B -bounded
cohomology of X with coefficients in a bornological HB,L(G)-module A is

BH∗G,x(X; A) := H∗x (Homcont
HB,L(G)(BC∗(X)∗,A)), x = a, b(4)

BHG,x
∗ (X; A) := Hx

∗(BC∗(X) ⊗̂
HB,L(G)

A), x = a, b(5)

2The same definition applies to polyhedral complexes, under a mild restriction on the number
of faces allowed in each dimension.
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Note that Hombdd
HB,L(G)(BC∗(X)∗,A) = Hombdd(BC∗(X)∗,A)G , and BC∗(X) ⊗̂

HB,L(G)
A

identifies with the quotient of BC∗(X)⊗̂A by the closure of the image of {Id−g | g ∈ G}
where g ◦ (x ⊗ y) = (gx ⊗ g−1y). In general when the action of G is not free, the
definition is adjusted in the usual way by first replacing these G-fixed-point and G-
orbit spaces by the larger equivariant“homotopy fixed-point” and “homotopy-orbit”
spaces. Let EG denote the homogeneous bar resolution of G, with weight function
w(g0, . . . , gn) = L(g0) +

∑n
i=1 L(g−1

i−1gi). Then3

Hombdd(BC∗(X)∗,A)hG := Hombdd
HB,L(G)(BC∗(EG),Hombdd(BC∗(X)∗,A))

∼= Hombdd
HB,L(G)(BC∗(EG)⊗̂BC∗(X)∗,A)

∼= Hombdd
HB,L(G)(BC∗(EG× X)∗,A);

(BC∗(X)⊗̂A)hG := (BC∗(EG)⊗̂BC∗(X)∗) ⊗̂
HB,L(G)

A

∼=BC∗(EG× X)∗ ⊗̂
HB,L(G)

A

The G-equivariant B -bounded cohomology groups of the weighted complex (X,w)
with coefficients in the HB,L(G)-module A are given as

BH∗G,x(X; A) := H∗x (Hombdd(BC∗(X)∗,A)hG), x = a, b

BHG,x
∗ (X; A) := Hx

∗(BC∗(X)⊗̂A)hG), x = a, b

When the action of G on X is free, these groups agree with those defined above. They
also agree with those given in the previous section in terms of derived functors; they
are simply equalities (1) and (2) where M1 is the (DG) HB,L(G)-module BC∗(X). In
this context,

BH∗G,x(X; A) = Ext∗HB,L(G),x(BC∗(X),A)(6)

BHG,x
∗ (X; A) = TorHB,L(G),x

∗ (BC∗(X),A)(7)

with BC∗(EG× X) used as a canonical free resolution of BC∗(X) over HB,L(G) when
BC∗(X) is not free over HB,L(G) (i.e., when the action of G on X is not free). the
inclusion of complexes

C∗(EG× X) ↪→ BC∗(EG× X)

3the isomorphism of complexes BC∗(EG)⊗̂BC∗(X)∗∼=BC∗(EG× X)∗ is a special case of
a more general equivalence to be established in [JOR3].
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induces comparison maps

Φ∗B : BH∗G,x(X; A)→ H∗G(X; A)(8)

ΦBx : HG
∗ (X; A)→ BHG,x

∗ (X; A)(9)

which are clearly functorial in X,G, and A.

The B -bounded cohomology groups of (X,w) are computed as the cohomology of a
subcomplex of C∗(EG×X; A)G which can be difficult to describe in general. However,
when the action of G is free on X and trivial on A, and A is simply a normed vector
space (e.g., C), then

BH∗G,x(X; A) = BH∗x (X/G; A) = H∗x (BC∗(X/G; A))

where

BC∗(X/G; A) = {BCn(X/G; A)}n≥0(10)

BCn(X/G; A) = {φ : (X/G)n → A | ∃f ∈ B s.t. |φ(x)| < f (w(x)) ∀x ∈ (X/G)n}
(11)

2.5 Dehn functions

There are two basic environments in which one can consider (higher) Dehn functions.
We discuss both.

2.5.1 The geometric setting

Suppose X is a weakly contractible complex, with boundary map ∂ . Any loop α in
X(1) bounds a disk β in X(2) , ∂β = α . Denote the number of n-cells in a complex
W by ‖W‖n . Set Vol2(α) = min ‖β‖2 , where this minimum is taken over all disks β
in X(2) with ∂β = α . More generally, if f : α → X is a mapping of a combinatorial
n-sphere to X , there is a map of an (n + 1)-ball h : β → X(n+1) with ∂h = f , and
the filling volume of f is Voln+1(f ) = min ‖β‖n+1 , where this minimum is taken over
all combinatorial maps of (n + 1)-balls h : β → X with boundary f . For each n, the
nth geometric Dehn function of X , dn

X : N→ N, is defined via the formula

dn
X(k) := max Voln+1(f )
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where the maximum is taken over all combinatorial maps f of n-spheres f : α → X
with ‖f‖n ≤ k . In the case n = 1, d1

X is often referred to as simply ‘the’ geometric
Dehn function of the complex. These Dehn functions give a measurement of the filling
volume of cycles in X , with dn

X being the nth unweighted Dehn function of X . Of
course, these functions do not exist if the corresponding maximum values do not exist.

When X comes equipped with a weight w on its cells, there is definition of geomet-
ric Dehn function which takes that weight into account. Given a complex W and
combinatorial map f : W → X , denote by ‖f‖w,n the sum

∑
σ∈W(n) w(f (σ)). For a

map f : α → X of a combinatorial n-sphere α to X , denote the weighted filling
volume of f by Volw,n(f ) = min ‖h‖w,n+1 , where this minimum is taken over all maps
h : β → X of combinatorial (n + 1)-balls to X with boundary f . For each n, the
nth weighted geometric Dehn function of X , dw,n

X : N→ N, is defined via the formula

dw,n
X (k) := max Volw,n+1(f )

where the maximum is taken over all combinatorial maps f : α → X of n-spheres to
X with ‖f‖w,n ≤ k . If the weight of each cell is set to one, then dn

X and dw,n
X are equal

[Note: For certain choices of weights, the geometric and weighted geometric Dehn
functions may be comparable. In general, however, if X has geometric Dehn functions
and weighted geometric Dehn functions defined in all dimensions, there need not be
any particular relation between the two. If the weight function in each degree is a
proper function on the set of simplicies, the weighted geometric Dehn functions exist
in all dimensions. In general, however, the weighted geometric Dehn functions may
fail to exist if the weight function fails to be proper in one or more dimensions].

Assume a non-weighted weakly contractible complex X admits an action by a finitely
generated group G which is proper and cocompact on all finite skeleta. Then {dn

X}n≥0

are referred to as the geometric Dehn functions of G and denoted {dn
G}n≥0 . There

is a natural way to weight X so that the weighted geometric Dehn functions encode
information about the group action. Fix a basepoint x0 ∈ X(0) . For a vertex v ∈ X(0) ,
set wX(v) := dX(1)(x0, v), the distance from v to the basepoint in the 1-skeleton of
X , where each edge in the 1-skeleton is assumed to have length 1. For an n-cell
σ ∈ X(n) with vertices (v0, . . . , vk), let wX(σ) :=

∑k
i=1 wX(vi), the sum of the weights

of the vertices. Changing basepoints yields different weight functions, but if for each
n there is a bound on the number of vertices an n-cell can possess, then the two weight
functions will be linearly equivalent. We refer to this choice of assigning weights to
cells as the 1-skeleton weighting. For this choice of weight on X there is, for each
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n ≥ 0, a constant Kn with

wX(g · σ) ≤ Kn · `G(g) + wX(σ)

for all n-cells σ (compare to (3) above), where `G denotes the word-length function
of G with respect to some fixed finite generating set. In this case, the G-action can be
used to compare dn

X with dw,n
X . Up to equivalence, one has [JR1, Lemmas 2.3, 2.4]

(12) dw,n
X (k) ≤ (dn

X(k))2, dn
X(k) ≤ kdw,n

X (k2)

2.5.2 The algebraic setting

In the literature, it is the geometric Dehn functions that have received the most attention.
Our focus, however, will be on the homological version of the above constructions.
Suppose (C∗, d∗) is an acyclic chain complex of free Z-modules. Denote by {vi | i ∈
I}, a basis of Cn over Z. Given an element α =

∑
i∈I λivi of C∗ , set ‖α‖n :=∑

i∈I |λi|. For α ∈ Cn a cycle, let Voln+1(α) := min ‖β‖n+1 , where this minimum is
taken over all β ∈ Cn+1 with dn+1(β) = α . Define a function dn

C : N→ N by

dn
C(k) := max {Voln+1(α) | dn(α) = 0, ‖α‖n ≤ k}

The function dn
C is the nth unweighted homological Dehn function of C∗ . These Dehn

functions measure the filling complexity of the chain complex C∗ . As before, these
Dehn functions do not exist if the corresponding maximum values do not exist.

When the Cn come equipped with a weight function w on its basis, homological Dehn
functions can be defined so as to take that weight into account. For α =

∑
i∈I λivi ,

let ‖α‖w,n :=
∑

i∈I |λi|w(vi). If α is a cycle, the weighted filling volume of α is
Volw,n+1(α) := min ‖β‖w,n+1 , where this minimum is taken over all β ∈ Cn+1 with
dn+1(β) = α . Define the nth weighted Dehn function of C∗ , dw,n

C : N→ N, by

dw,n
C (k) := max {Volw,n+1(α) | dn(α) = 0, ‖α‖w,n ≤ k}

If the weight of each basis element is set to one, then dn
C = dw,n

C . For certain choices
of weights, the unweighted and the weighted Dehn functions may be comparable. In
general, however, no relationship needs exist between the two.

Now suppose G is an FP∞ group equipped with word-length function L , and C∗ is
a resolution of Z over Z[G] which in each degree is a finitely generated free module
over Z[G]. In this case, the collection {dn

C} are referred to as the Dehn functions of G,
denoted dn

G . We will call the resolution C∗ k-nice (k ≤ ∞) if
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• for each finite n ≤ k , Cn = Z[G][Tn] for some finite weighted set (Tn,wT
n );

• for each finite n ≥ 0, Sn (= the orbit of Tn under the free action of G) is
equipped with a proper weight function wS

n satisfying

C1,nL(g) + wT
n (t) ≤ wS

n(gt) ≤ C2,nL(g) + wT
n (t) ∀g ∈ G, t ∈ Tn

for positive constants C1,n ≤ C2,n depending only on n;

• for each finite n, dC
n : Cn → Cn−1 is linearly bounded with respect to the weight

functions on Cn and Cn−1 .

The term “nice” will refer to the case k = ∞. The weighted Dehn functions of G
(through dimension k if k is finite) are given by {dw,n

G := dw,n
C }n<k where C∗ is a

k-nice resolution of Z over Z[G]. Both dn
G and dw,n

G are independent of the particular
choice of k-nice resolution used in their definition, up to linear equivalence. For such
resolutions, the fact Tn is finite for each finite n ≤ k means that the linear equivalence
classes of the Dehn functions {dw,n

G } are independent of the choice of weightings on
{Tn}. Finally, a resolution D∗ of C over C[G] is k-nice resp. nice if it is of the form
D∗ = C∗ ⊗ C where C∗ is a k-nice resp. nice resolution of Z over Z[G].

Lemma 1 Let G be an FPk group equipped with word-length function L , C∗ a k-nice
resolution of Z over Z[G], D∗ = C∗ ⊗ C, and B and B′ bounding classes. Suppose
that the weight w on the weighted set underlying C∗ takes no value in (0, 1). Denote
by BD∗ the corresponding Frechet completion of D∗ with respect to the bounding
class B , as defined above. Further suppose that the weighted Dehn functions {dw,n

C }
are B′ -bounded in dimensions n < k , that B is a right B′ -class, and that B � L . Then
there exists a bounded chain null-homotopy {sn+1 : BDn → BDn+1}k>n≥0 , implying
BD∗ is a continuous resolution of C over HB,L (G) through dimension k .

Proof Note first that the “niceness” of C∗ guarantees that boundary map dC
n : Cn →

Cn−1 extends to a continuous boundary map dn : BDn → BDn−1 . We will prove the
lemma in three steps.

Claim 1 For each k > n ≥ 1, there exists a function fn ∈ B′ so that for all α ∈ ker(dC
n )

and h ∈ B , there exists βα ∈ Cn+1 with dC
n (βα) = α , and |βα|h ≤ (h ◦

fn)
(
‖α‖w,n

)
.

Proof. The hypothesis on {dw,n
C } implies that for each n < k there exists fn ∈ B′

with
Volw,n+1(α) ≤ fn(‖α‖w,n) ∀α ∈ ker(dC

n )
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Then for α =
∑

mijgitj ∈ ker(dC
n ), we may choose βα =

∑
nklgksl ∈ Cn+1

with dC
n+1 (βα) = α and

‖βα‖w,n+1 =
∑
|nkl|wn+1(gksl) ≤ fn

(∑
|mij|wn(gitj)

)
= fn

(
‖α‖w,n

)
Since B � L, we may assume that h ∈ B is super-additive on the interval
[1,∞). One then has

|βα|h =
∣∣∣∑ nklgksl

∣∣∣
h

:=
∑
|nkl|h(wn+1(gksl))

≤ h
(∑

|nkl|w(gksl)
)

by the super-additivity of h

= h
(
‖βα‖w,n+1

)
≤ (h ◦ fn)

(
‖α‖w,n

)
//

Claim 2 For each k > n ≥ −1 there exists a B -bounded linear section sC
n+1 : Cn → Cn+1

satisfying dC
n+1sC

n+1 + sC
n dC

n = Id .

Proof. The case n = −1 is trivial since any basis element of C0 determines
a linear injection Z = C−1 → C0 which is bounded. Assume sC

n has been
defined. Let pn = (Id − sC

n dC
n ) : Cn → ker(dC

n ); this projection onto ker(dC
n )

is bounded via the boundedness of sn . Thus we may find an f ′n ∈ B′ with
‖pn(x)‖w,n ≤ f ′n

(
‖x‖w,n

)
for all x ∈ Cn . Let f ′′n = fn ◦ f ′n . For each basis element

gitj ∈ Cn , set sC
n+1(gitj) = βpn(gitj) , as defined in the above Claim. Then for each

super-additive h ∈ B ,∣∣sC
n+1(gitj)

∣∣
h =

∣∣βpn(gitj)
∣∣
h

≤ (h ◦ fn)
(
‖pn(gitj)‖w,n

)
≤ (h ◦ fn ◦ f ′n) ‖gitj‖w,n = (h ◦ f ′′n )(wn(gitj))

Extending sC
n+1 linearly to all of Cn yields the desired result. //

Claim 3 For each k > n ≥ −1, the linear extension of sC
n+1 to Dn yields a B -bounded

linear map sD
n+1 : Dn → Dn+1 .

Proof. This follows from the sequence of inequalities∣∣∣sD
n+1

(∑
λijgitj

)∣∣∣
h
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=
∑
|λij|

∣∣sC
n+1(gitj)

∣∣
h

≤
∑
|λij| |gitj|h◦f ′′n

=
∣∣∣∑λijgitj

∣∣∣
h◦f ′′n

//

This completes the proof of the lemma. We should note that the definition of weighted
Dehn function could be considered for more general resolutions of C over C[G] which
do not arise from tensoring a nice resolution of Z over Z[G] with C. However, for
this more general class, it is likely that the statement of this lemma no longer holds
true.

Although it appears that not allowing your proper weight function w to take values
in (0, 1) is restrictive, it is always possible to find a linearly equivalent proper weight
function w′ which takes values in Z+ . While the weight structure may change slightly,
the completions arising from using the two weights will agree. In many cases, for
example the 1-skeleton weighting discussed above and in [O2], the naturally occurring
weight function is integral-valued.

Also, in the proof of Claim 1 above, we assumed the existence of a function h ∈ B
which was superadditive on [0, 1). To this end suppose f and g are differentiable
functions, and consider the following property:

There exists a C ≥ 0 such that for all x ≥ C

f (g(x)) ≥ g(f (x)).

A sufficient set of conditions to guarantee this is:

(1) f (g(C)) ≥ g(f (C)).

(2) [fg(x))]′ ≥ [g(f (x))]′ .

Restrict to the case where g is the linear function g(x) = rx , for r ≥ 1 a real number.
Then

(f (g(x)))′ = (f (rx))′ = rf ′(rx)

(g(f (x)))′ = rf ′(x)

In this case condition (2) is just the requirement that f ′(rx) ≥ f ′(x), r ≥ 1, i.e., that f ′

is non-decreasing. If f (0) is required to be > 0, then taking, say, C = 1 this condition
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becomes f (r) ≥ rf (1). If B � L, this shows that B contains functions which are
superadditive when restricted to [1,∞).

Corollary 1 Let G be a finitely generated group acting properly and cocompactly
on a contractible polyhedral complex X , with finitely many orbits in each dimension,
and endowed with the 1-skeleton weighting. If the integral polyhedral chain complex,
Cn(X;Z), admits B′ bounded weighted Dehn functions and B is a right B′ -class, then
the Frechet completion BCn(X;C) gives a continuous resolution of C over HB,L (G).
In particular if Cn(X;Z) admits polynomially bounded weighted Dehn functions, so
does Cn(X;C).

Remarks

• It is a result due to Gersten that for finitely-presented groups, the first algebraic
and first geometric Dehn functions are equivalent. However, in dimensions
greater than one, it is not at all clear if such a relation persists even when both
types are defined. The one case in which one can prove an equivalence is when
there is a G−HF∞ model for EG admitting an appropriate “coning” operation
in all dimensions with explicitly computable bounds on the number and weights
of the simplices used in coning off a simplex of one lower dimension (such is
the case when G is asynchronously combable - see below).

• For finitely generated groups, word-hyperbolicity is equivalent to having d1
G

bounded by a linear function. Hyperbolic groups provide interesting phenomena
in the context of Dehn functions. A prime example is the isoperimetric gap. If
d1

G is bounded by a function of the form nr with r < 2, then d1
G is bounded by a

linear function [Gr, Ol]. In particular if G is not hyperbolic, then d1
G must be at

least quadratic. On the other hand, it is well known that for a hyperbolic group
G, the functions dn

G are linearly bounded in every dimension n. The geometric
characterization of the isocohomological property discussed in Section 3.2 below
implies that dw,n

G are all linearly bounded Dehn functions, providing a bounded
version of the FPα condition described above.

This idea of combining boundedness with the FPk condition is made precise by

Definition 1 Given a bounding class B and a group with word-length (G,L), we say
G is of type BFPk (k <∞) if it is of type FPk , and the completion BD∗ of a k-nice
resolution D∗ of C over C[G] admits a bounded linear chain contraction through
dimension k . We say G is BFP∞ if it is BFPk for all k .
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2.6 Products, coproducts and pairing operations

Definition 2 Let (X,w) be a weighted set. A bounding class B is nuclear for (X,w)
if for every λ ∈ B there is η ∈ B such that the following series converges.∑

x∈X

λ (w(x))
η (w(x))

For example, if (X,w) has polynomial growth then P is a nuclear bounding class, but
if (X,w) has exponential growth P is not nuclear. The exponential bounding class
is nuclear for every finitely generated group with word-length. The following lemma
motivates this definition.

Lemma 2 Let (G,L) be a group with a proper length function, and let B be a nuclear
bounding class for (G,L). Then HB,L (G) is a nuclear Frechet algebra.

For a bornological space V , let V ′ denote the dual space. Our interest in nuclearity
arises from its use in identifying

(
V⊗̂W

)′ .
Lemma 3 Let V and W be Frechet spaces, and let W be nuclear. Then

(
V⊗̂W

)′
=

V ′⊗̂W ′ .

Proof By definition,
(
V⊗̂W

)′
= Hombdd(V⊗̂W,C). Using the adjointness of

the projective tensor product, this is isomorphic to Hombdd(V,Hombdd(W,C)) =

Hombdd(V,W ′). As W is a nuclear Frechet algebra, its dual is also nuclear. Corollary
1.161 of [M4] gives that Hombdd(V,W ′)∼= V ′⊗̂W ′ .

This Lemma suggests that any sort of K unneth Theorem in B -bounded cohomology
would hold only under very restrictive conditions. Nevertheless, the pairing operations
used to prove it exist in the B -bounded setting under minimal conditions. We consider
them next, as they will be needed later on.

Let (X,wX) and (Y,wY ) be a weighted simplicial sets. Then their product (X ×
Y,wX×wY ) is again a weighted simplicial set, where X×Y is equipped with diagonal
simplicial structure. It follows from the definition of a weighted complex that the
Alexander-Whitney map

∆AS : C∗(X × Y)→ C∗(X)⊗ C∗(Y)
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is uniformly bounded above in each dimension n by a linear function of n. As a
result, when B is multiplicative this induces an exterior algebraic tensor product on the
cochain level

B∆∗ :→ BC∗(X)⊗ BC∗(Y)→ BC∗(X × Y)

The shuffle product map in the other direction

∇ : C∗(X)⊗ C∗(Y)→ C∗(X × Y)

is uniformly bounded in the same way, yielding a chain map BC∗(X) ⊗ BC∗(Y) →
B(X × Y) which is bi-bounded; the dual induces a map to the algebraic tensor product

(13) B∇∗ : BC∗(X × Y)→ BC∗(X)⊗ BC∗(Y)

which in cohomology produces a coproduct

(14) B∇∗ : BH∗(X × Y)→ BH∗(X)⊗ BH∗(Y)

Interestingly, even though in general there is no DG coassociative coalgebra structure
on BH∗(X), there is a DG associative algebra structure on BH∗x (X) for x = a, as the
exterior product together with the map induced by the diagonal results in a cup-product
operation on BH∗a (X) in the usual way. It is not clear if the groups BH∗b (X) admit a
similar product structure in the cases where BH∗a (X) 6= BH∗b (X). For this reason, we
adopt the following convention for the remainder of the paper

Convention 1 Unless otherwise indicated, BH∗(−) will mean BH∗a (−); more gener-
ally, BH∗G(−) will mean BH∗G,a(−).

From the definitions of H∗(−) and H∗(−) there is an obvious Kronecker-Delta pairing

BH∗(X)⊗ BH∗(X)→ C (c, d) 7→< c, d >, x = a, b

More generally, an analysis of the standard cap product operation on the chain and
cochain level yields a cap product operation

BH∗(X)⊗ BH∗(X)→ BH∗(X), (c, d) 7→ c ∩ d, x = a, b

Finally, via the shuffle product map in (13), we have a slant-product operation

BH∗(X × Y)⊗ BH∗(Y)→ BH∗(X), (c, d) 7→ c/d, x = a, b

These operations satisfy the appropriate commuting diagrams with respect to the com-
parison map Φ∗B and ΦB∗ , leading to the identities

< Φ∗B(c), d >=< c,ΦB∗ (d) >, c ∈ BH∗(X), d ∈ H∗(X)(15)

Φ∗B(c)/d = c/ΦB∗ (d), c ∈ BH∗(X × Y), d ∈ H∗(Y)(16)

Φ∗B(c) ∩ d = c ∩ ΦB∗ (d), c ∈ BH∗(X), d ∈ H∗(X)(17)
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3 B cohomology of discrete groups

3.1 Combable groups

Call a function σ : N→ N a reparameterization if

• σ(0) = 0,

• σ(n + 1) equals either σ(n) or σ(n) + 1,

• lim
n→∞

σ(n) =∞

Definition 3 Let (X, ∗) be a discrete metric space with basepoint. By a combing of X
we will mean a collection of functions {fn : X → X}n≥0 satisfying

(C1) f0(x) = x ∀x ∈ X

(C2) There exists a super-additive function ψ such that ∀x, y ∈ X , there are repa-
rameterizations σ and σ′ with d(fσ(n)(x), fσ′(n)(y)) ≤ ψ(d(x, y)) for all n ≥ 0.

(C3) ∃λ such that ∀x ∈ X, n ∈ N, d(fn(x), fn+1(x)) ≤ λ
(C4) ∃φ such that fn(x) = ∗ ∀n ≥ φ(d(x, ∗))

Remarks:

• As noted in the introduction, the combings above are oriented in the opposite
direction than what has been customarily the case.

• Axiom (C2) allows for what are typically referred to as asynchronous combings,
with synchronous combings corresponding to the case that the reparameteriza-
tions are the identity maps. Note also that

• the reparameterizations σ, σ′ in (C2) depend on x and y.

Definition 4 Given a discrete group G equipped with a (proper) length function L , a
combing of G (with respect to L), or (G,L), is a combing of the discrete metric space
(G, dL), where dL(g1, g2) := L(g−1

1 g2).

We first show that reparameterizations can be chosen so as to be compatible on specific
(n + 1)-tuples.
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Lemma 4 Suppose (G,L) admits an asynchronous combing in the above sense. Then
for all (m+1)-tuples (g0, . . . , gm) ∈ G(m+1) , there exist reparameterizations σ0, . . . , σm

such that
∀n ≥ 0, d(fσi(n)(gi), fσi+1(n)(gi+1)) ≤ ψ(d(gi, gi+1))

Proof By definition it is true for m = 1. Assume then it is true for fixed m ≥ 1.
Given an (m + 2)-tuple (g0, . . . , gm+1), we may assume by induction that

• There exist reparameterizations σ0, . . . , σm with d(fσi(n)(gi), fσi+1(n)(gi+1)) ≤
ψ(d(gi, gi+1) for all n ≥ 1, and

• There exist reparameterizations σ′m, σ
′
m+1 with d(fσ′m(n)(gm), fσ′m+1(n)(gm+1)) ≤

ψ(d(gm, gm+1)) for all n ≥ 1

We need to show that the reparameterization functions can be further reparameterized
so as to synchronize σm and σ′m . For this we proceed by induction on k ∈ N = the
domain of the reparameterization functions.

k = 0 By definition, σm(0) = σ′m(0) = 0.

k > 0 Suppose σm(i) = σ′m(i) for 0 ≤ i ≤ k .

Case 1 σm(k + 1) = σ′m(k + 1). In this case there is nothing to do.
Case 2 σm(k + 1) = σm(k), σ′m(k + 1) = σ′m(k) + 1. In this case we leave σm

alone, and redefine σ′m, σ
′
m+1 :

for l = m,m + 1, (σ′l)new(i) =

{
(σ′l)old(i) 0 ≤ i ≤ k

(σ′l)old(i)− 1 k + 1 ≤ i

Case 3 σm(k + 1) = σm(k) + 1, σ′m(k + 1) = σ′m(k). In this case we leave σ′m
alone, and redefine σ0, . . . , σm :

for 0 ≤ l ≤ m, (σl)new(i) =

{
(σl)old(i) 0 ≤ i ≤ k

(σl)old(i)− 1 k + 1 ≤ i

Thus by induction on k , we may choose reparameterization functions σ0, . . . , σm, σ
′
m, σ

′
m+1

with

(S1) σ0, . . . , σm satisfying the conditions of the Lemma for the (m+1)-tuple (g0, . . . , gm),

(S2) σ′m, σ
′
m+1 satisfying the conditions of the Lemma for the pair (gm, gm+1),

(S3) σm = σ′m
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Setting σm+1 := σ′m+1 then concludes the proof of the initial induction step, and hence
of the Lemma.

Definition 5 We say that a metric space (X, d) is quasi-geodesic if there exist positive
constants ε, S , and C such that for any two points x ,y ∈ X , there is a finite sequence
of points x0 = x, x1, x2, . . . , xk = y satisfying:

(1) ε ≤ d(xi, xi+1) ≤ S for i = 0, 1, . . . , k − 1.

(2) d(x0, x1) + d(x1, x2) + . . .+ d(xk−1, xk) ≤ Cd(x, y).

As we are concerned primarily with connected complexes, all metric spaces we consider
will be assumed to be quasi-geodesic.

Lemma 5 Suppose {fn : X → X}n≥0 is an asynchronous combing of a quasi-geodesic
metric space (X, d). There exists a positive constant K such that for all x, y ∈ X , there
are reparameterizations σ and σ′ such that for all n ≥ 0, d(fσ(n)(x), fσ′(n)(y)) ≤
Kd(x, y).

Proof Let x0 = x, x1, x2, . . . , xk = y be given by the quasi-geodesic property. By
lemma 4 there are reparameterizations, σi , such that d(fσi(n)(xi), fσi+1(n)(xi+1)) ≤ ψ(S),
for all n. As k ≤ C

ε d(x, y), the triangle inequality yields d(fσ0(n)(x), fσk(n)(y)) ≤
ψ(S)C
ε d(x, y), for all n.

The next theorem was originally shown for synchronously combable groups in [A],
and asynchronously combable groups through dimension 3 in [Ge]. Our method of
proof actually proves more, as we will see in the following section.

Theorem 1 If (G,L) admits an asynchronous combing in the above sense, then it is
type HF∞ .

Proof Let EG. denote the simplicial homogeneous bar resolution of G. Let G act
in the usual way on the left, by g · (g0, g1, . . . , gn) := (gg0, gg1, . . . , ggn). Define a
G-invariant simplicial weight function on EG. by

wn(g0, g1, . . . , gn) :=
n−1∑
i=0

d(gi, gi+1) =

n−1∑
i=0

L(g−1
i gi+1)

Because L is proper, the orbit {(g0, g1, . . . , gn) |wn(g0, g1, . . . , gn) ≤ N}/G is a finite
set for each n and N . This orbit may alternatively be described as π−1(BN(BGn)),
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where BG. is the non-homogeneous bar construction on G, π : EG. → BG. is given
by π(g0, g1, . . . , gn) = [g−1

0 g1, g−1
1 g2, . . . , g−1

n−1gn], and BN(−) denotes the N -ball
BN(BGn) := {[g1, . . . , gn] |

∑n
i=1 L(gi) ≤ N}.

Recall that given two simplicial functions h0, h1 : EG → EG, there is a homotopy
between them represented by the “sum”

H(h0, h1)(g0, g1, . . . , gn) =
n∑

i=0

(−1)i(h0(g0), h0(g1), . . . , h0(gi), h1(gi), h1(gi+1), . . . , h1(gn))

Although we have written this sum algebraically, this should be viewed as a geometric
sum which associates to the n-simplex (g0, g1, . . . , gn) the collection of (n + 1)-
simplices indicated by the right-hand side, with orientation determined by the coef-
ficient (−1)i . Geometrically, this collection of (n + 1) simplices, all of dimension
(n + 1), fit together to form a subset whose geometric realization is homeomor-
phic to ∆n × [0, 1]. In fact, this last statement is true for more general types of
maps which are not simplicial. In particular, given i) a fixed asynchronous combing
{fn} of G, ii) a fixed n-simplex (g0, . . . , gn) of EG., and iii) a collection of repa-
rameterizations σ0, . . . , σn satisfying the condition of Lemma 1 with respect to i)
and ii), we may consider the ‘homotopy" from (fσ0(m)(g0), fσ1(m)(g1), . . . , fσn(m)(gn)) to
(fσ0(m+1)(g0), fσ1(m+1)(g1), . . . , fσn(m+1)(gn)) given by the expression

(18) Hσ({fk}; m,m + 1)(g0, g1, . . . , gn)

:=
n∑

i=0

(−1)i(fσ0(m)(g0), fσ1(m)(g1), . . . , fσi(m)(gi), fσi(m+1)(gi), fσi(m+1)(gi+1), . . . , fσi(m+1)(gn))

This is not part of a global homotopy, but still yields a collection of oriented (n +

1)-simplices whose realization is homeomorphic to ∆n × [0, 1]. Moreover, these
homotopies may be strung together, as the “end" of Hσ({fk}; m,m + 1)(g0, g1, . . . , gn)
and the “beginning" of Hσ({fk}; m + 1,m + 2)(g0, g1, . . . , gn) match up.

Given a function f : R+ → R+ , write wf
n for the weight function

wf
n(g0, g1, . . . , gn) :=

n−1∑
i=0

f (d(gi, gi+1))

By Lemma 1 and property (C3),

wn+1
(
Hσ({fk}; m,m + 1)(g0, g1, . . . , gn)

)
(19)
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< (n + 1)
(

wn(fσ0(m)(g0), fσ1(m)(g1), . . . , fσn(m)(gn))

+ wn(fσ0(m+1)(g0), fσ1(m+1)(g1), . . . , fσn(m+1)(gn)) + λ

)
≤ (2n + 2)

(
wψn (g0, g1, . . . , gn) + λ

)
≤ (2n + 2)ψ (wn(g0, g1, . . . , gn)) + (2n + 2)λ

Equation (19) implies that every simplex in π−1(BN(BGn)) can be coned off in
π−1(BN′(BGn)) where N′ = (2n + 2)(ψ(N) + λ)). Of course, degeneracies preserve
the inequality. In other words, if (g0, g1, . . . , gn) = sI(g′0, . . . , g

′
k) for some iterated

degeneracy map sI and k-simplex (g′0, . . . , g
′
k), then the inequality in (19) may be

improved to

wn+1
(
Hσ({fk}; m,m + 1)(sI(g′0, . . . , g

′
k)
)
< (2k + 2)ψ(wk(g′0, . . . , g

′
k)) + (2k + 2)λ

Let X(n) := EG.(n) , the simplicial n-skeleton of EG. For each integer N , let X(n)N :=
X(n) ∩ π−1(BN(BG.)). Then X(n) is an n-good complex for G in the sense of [Br1],
and obviously X(n) = limN X(n)N . Moreover, equations (18) and (19) together imply

(20) X(n)N ↪→ X(n)N′ is null-homotopic, N′ = (2n + 2)(ψ(N) + λ)

By Theorem 2.2 of [Br1], we conclude that G is of type FPn . Then, as G is of type
FPn for each n, it must be of type FP∞ [Br2].

In fact, the explicit estimates in (19) and (20) allow one to conclude a bit more. We
will need some terminology.

Definition 6 A discrete group with word-length (G,L) is B -combable (i.e., B -
asynchronously combable) if the functions ψ and φ in (C2)and (C4) are bounded
above by functions in the bounding class B .

As indicated above, given a bornological HB,L(G)-module V , one has the subcochain
complex BC∗(G; V) ⊂ C∗(G; V) = HomG(C∗(EG.),V) consisting of those cochains
which are bounded in the bornology induced by B . The group G, or pair (G,L)
is called B -isocohomological with respect to V (abbr. V -B IC)) if the inclusion
BC∗(G; V) ⊂ C∗(G; V) induces an isomorphism of cohomology groups in all degrees.

BH∗(G; V) := H∗(BC∗(G; V))
∼=→ H∗(G; V)
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B -isocohomologicality with respect the trivial module C is referred to simply as
B -isocohomological (B -IC). The pair (G,L) is strongly B -isocohomological (abbr.
B -SIC) if it is V -B IC for all bornological HB,L(G)-modules V .

Corollary 2 Let G be a finitely-presented group equipped with word-length function
L , and B a multiplicative bounding class. If (G,L) is asynchronously B -combable,
then G is B -IC.

Proof By the previous theorem, the hypothesis that G is B -asynchronously combable
implies by equations (19) and (20) that in using the combing to cone off a simplex of
weight m, both the number of simplices appearing in the cone, as well as the weight of
each, is bounded above by fi(m) where fi ∈ B . By the multiplicativity of the bounding
class B , the bornological chain complex BC∗(EG) is a tempered complex in the sense of
Meyer [M1] which satisfies the necessary conditions established by Meyer to conclude
the result (Meyer’s original result was stated only for the polynomial, subexponential
and simple exponential bounding classes, but the same argument works for arbitrary
multiplicative bounding classes).

3.2 B-isocohomologicality and type BHF∞ groups

It is natural to ask the relation between the purely homological notion of strong B -
isocohomologicality and the more geometric/topological BHF∞ condition. The fol-
lowing result answers that question; it is a generalization to arbitrary bounding classes
of [JR1, Thm. 2.6].

Theorem 2 Let G be a finitely presented discrete group of type FP∞ and B a
bounding class. The following are equivalent.

(B1) (G,L) is strongly B -isocohomological

(B2) BH∗(G; V)→ H∗(G; V) is surjective for all bornological HB,L(G)-modules V

(B3) G is type BFP∞

Proof Following Th. 2.6 of [JR1]. (B1) obviously implies (B2). The main point
is to show (B2) implies (B3), specifically that there exists a resolution C∗ of C over
C[G] whose completion BC∗ with respect to the semi-norms induced by B yields
a continuous resolution of C over HB,L(G). The proof will use specific coefficient
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modules. Given a subcomplex b of a free polyhedral complex Z equipped with a
1-skeleton weight function wZ , the weight of b is then |b|w :=

∑
σ∈b wZ(σ). Each

λ ∈ B defines a seminorm on Cm(Z) by∣∣∣∣∣∑
σ∈Zm

ασσ

∣∣∣∣∣
λ

:=
∑
σ∈Zm

|ασ|λ(wZ(σ))

Letting Cm(Z)λ denote the completion of Cm(Z) in this seminorm, we set

BCm(Z) :=
⋂
λ∈B

Cm(Z)λ

As was shown in [JOR1], there is a natural identification of bornological spaces

BCm(Z)∗∼=BCm(Z) := {c ∈ Cm(Z) | ∃λ ∈ B s.t. ∀σ ∈ Zm, |c([σ])| < λ(wZ(σ))}

where the left-hand term denotes the bounded dual of BCm(Z), and the right-hand term
is the sub-space of B -bounded m-cocycles on Z .

Now consider Bm(Z) = ∂m+1(Cm+1(Z)) ⊂ Cm(Z). There are two ways to complete this
subspace. The first is to take its closure in BCm(Z). Alternatively, one could consider
the (possibly) smaller space B̃m(Z) = ∂m+1

(
BCm+1(Z)

)
. On the space of algebraic

boundaries Bm(Z) one has the filling seminorms ‖ ‖f ,λ, λ ∈ B , weakly defined by

‖b‖f ,λ ≤ M ⇔ ∃a ∈ Cm+1(Z) s.t. b = ∂(a) & λ(wZ(a)) = M

and B̃m(Z) is the completion of Bm(Z) in these seminorms. We will show the existence
of a B -bounded section s̃m+1 : Cm → Cm+1 is implied by the requirement that, on
Bm(Z), for every λ ∈ B there is a λ′ ∈ B such that for all b ∈ Bm(Z), ‖b‖f ,λ ≤ ‖b‖λ′ .
Moreover, the use of appropriate coefficient modules will verify this inequality. We
use this inequality to construct chain maps between our intended resolution, and a
resolution naturally endowed with a bounded splitting. We verify condition (B3) by
showing that this natural splitting lifts to a bounded splitting of our complex.

Note that B̃m(Z) is naturally a module over HB,L(G). Given a bornological HB,L(G)-
module V with bornology defined by a collection of seminorms {ηi}i∈I , an m-cochain
c ∈ Cm(Z; V) is B -bounded (i.e., lies in the subspace BCm(Z; V)) if

∀λ ∈ B ∃λ′ ∈ B s.t. ∀σ ∈ Zm, ‖c(σ)‖f ,λ ≤ λ′(wZ(σ)) = ‖σ‖λ′

Then, as was shown in [JOR1], BH∗G(Z; V) := Ext∗HB,L(G)(C,V) = the cohomology of
the cochain complex {BCm(Z; V))}m≥0 .

We recall the terminology of Th. 2.6 of [JR1], and show how the result of that theorem
may be extended to the B -bounded setting.
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• X is a free G-complex with finitely many distinct G-orbits in each dimension
(i.e., X/G has finitely many cells in each dimension; it exists by the HF∞

condition on G).

• Y is the geometric realization of the homogeneous bar resolution on G.

• φ∗ : C∗(Y)→ C∗(X) and ψ∗ : C∗(X)→ C∗(Y) are C[G]-module morphisms of
chain complexes, with both φ∗◦ψ∗ and ψ∗◦φ∗ G-equivariantly chain-homotopic
to the identity function.

• The coefficient module used to show the existence of an appropriately bounded
(m−1)st Dehn function is Vm−1 = B̃m−1(X), equipped with the filling seminorms
‖ ‖f ,λ, λ ∈ B .

• u ∈ Cm
G(X; Vm−1) is the G-equivariant m-cocycle given as the composition

Cm(X) ∂m→ Bm−1(X) ↪→ Vm−1 .

The properties of φ and ψ ensure there is a G-equivariant (m − 1)-cocycle v ∈
Cm−1

G (X; Vm−1) with u = (ψm◦φm)(u)+δ(v). Furthermore, condition (B2) guarantees
there is a G-equivariant B -bounded cocycle u′ ∈ BCm

G(Y; Vm−1) and a G-equivariant
(m − 1)-cochain v′ ∈ Cm−1

G (Y; Vm−1) satisfying the equation ψm(u) = u′ + δ(v′). A
standard argument then shows

(21) b = u′([e, ψm−1(b)]) + (ψm−1(v′) + v)(b)

where [e,
∑
γ[g0,...,gn][g0, . . . , gn]] :=

∑
γ[g0,...,gn][e, g0, . . . , gn]. Finally, both X and

Y are weighted complexes. For X , starting with the graph metric dX , the associated
weight function is precisely the 1-skeleton weight function wX defined above. In the
case of Y , the metric on the 0-skeleton is given by the formula d(g1, g2) := L(g−1

1 g2),
which yields the standard G-sensitive weight function on Y = EG given by

wY ([g0, g1, . . . , gn]) :=
n∑

i=0

wY ([gi]) =

n∑
i=0

L(gi) = dY (gi, e)

Note that for Z = X or Y , the respective weight functions satisfies the inequality

wZ(gσ) ≤ (n + 1)wZ(g) + wZ(σ) ∀σ ∈ Z(n)

up to linear equivalence.

The following lemma illustrates the essential point of the finiteness condition on X .
Assume given free G-sets S , T equipped with weight functions wS resp. wT , such that
S/G is a finite set. Let {s1, s2, . . . , sN} ⊂ S be a complete set of coset representatives
satisfying wS(sj) ≤ wS(gsj) for all 1 ≤ j ≤ N , g ∈ G. Finally, we assume the existence
of constants D1,D2,D3 satisfying



32 Ronghui Ji, Crichton Ogle and Bobby Ramsey

(1) w(gz) ≤ D1L(g) + w(z) ∀z ∈ Z = S,T, w = wS,wT

(2) L(g) ≤ D2wS(gsj) + D3 ∀1 ≤ j ≤ N, g ∈ G

Recall that for a weighted set (Z,w), bounding class B and λ ∈ B , ‖ ‖λ is the
weighted `1 -norm on C[Z] = ⊕z∈ZC given by∥∥∥∑αzz

∥∥∥
λ

:=
∑
|αz|λ(w(z))

Lemma 6 Let S,T be as above, and V , respectively W , denote the vector space over
C with basis S , respectively T . Let WB denote the completion of W in the seminorms
{‖ ‖λ, λ ∈ B}, and let f : V → W be an arbitrary G-equivariant linear map. Then f

is B -bounded; that is, for all λ ∈ B there exists λ1 ∈ B with

‖f(v)‖λ ≤ ‖v‖λ1
∀v ∈ V

Proof For each sj (1 ≤ j ≤ N ), we have

f(sj) =

Mj∑
i=1

βijtij

Define

M1 = max
1≤j≤N

(∑
i

|βij|

)

M2 = max
1≤j≤N

(
max

1≤i≤mj
wT (tij)

)
We can bound the λ-seminorm of f(gsj) using the sequence of inequalities

‖f(gsj)‖λ = ‖gf(sj)‖λ

=

∥∥∥∥∥g

(∑
i

βijtj

)∥∥∥∥∥
λ

≤
∑

i

|βij|λ
(
wT (gtij)

)
≤
∑

i

|βij|λ
(
D1L(g) + wT (tij)

)
≤
∑

i

|βij|λ (D1L(g) + M2)

≤ M1λ (D1L(g) + M2)

≤ M1λ
(
D1(D2wS(gsj) + D3) + M2

)
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≤ M1λ
(
D1D2wS(gsj) + (D1D3 + M2)

)
≤ λ1(wS(gsj))

for λ1 ∈ B satisfying the inequality M1λ(D1D2t + D1D3 + M2) ≤ λ1(t) (such an
element exists by property (BC3)). Now a typical element of V may be written as∑
αss =

∑N
j=1
∑

g∈G αj,ggsj . Then∥∥∥∥∥∥f
 N∑

j=1

∑
g∈G

αj,ggsj

∥∥∥∥∥∥
λ

=

∥∥∥∥∥∥
N∑

j=1

∑
g∈G

αj,gf(gsj)

∥∥∥∥∥∥
λ

≤
N∑

j=1

∑
g∈G

|αj,g| ‖f(gsj)‖λ

≤
N∑

j=1

∑
g∈G

|αj,g|λ1(wS(gsj))

=

∥∥∥∥∥∥
N∑

j=1

∑
g∈G

αj,ggsj

∥∥∥∥∥∥
λ1

Let W ′ ⊂ WB be a subspace closed in the Frechet bornology (= topology), and set
W ′′ = WB/W ′ . The quotient bornology on this space is induced by the seminorms
‖ ‖f ,λ∈B weakly defined by

‖w‖f ,λ ≤ M′ ⇔ ∃v ∈ WB s.t. π(v) = w′ and ‖v‖λ ≤ M′

where π : WB → W ′′ is the projection map (these norms should be thought of as a
“filling" norms). Suppose we are also given a G-equivariant linear map h : V → W ′′ .
Then h can be lifted to a G-equivariant linear map f : V → WB , which will then
obviously satisfy the inequality

‖h(v)‖f ,λ ≤ ‖f(v)‖λ .

By the previous lemma, this lifting is B -bounded. Hence

Lemma 7 Any G-equivariant linear map h : V → W ′′ is B -bounded; i.e., for all
λ ∈ B there exists a λ′ ∈ B with

‖h(v)‖f ,λ ≤ ‖v‖λ′ ∀v ∈ V.
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We may now complete the proof that (B2) implies (B3). By (21), one has

‖b‖f ,λ ≤
∥∥u′([e, ψm−1(b)])

∥∥
f ,λ +

∥∥(ψm−1(v′) + v)(b)
∥∥

f ,λ .

As u′ is B -bounded, there exists an element λ′ ∈ B satisfying∥∥u′([e, ψm−1(b)]
∥∥

f ,λ ≤ ‖[e, ψm−1(b)]‖λ′ = ‖ψm−1(b)‖λ′ .

Taking (S,wS) = (X(m−1),wX) and (T,wT ) = (Y (m−1),wY ) and applying Lemma 6
shows that ψm−1 is B -bounded. By Lemma 7, the map (ψ(m−1)(v′) + v) : Cm−1(X)→
Vm−1 is also bounded. Hence the sum must be bounded; i.e., for all λ ∈ B , there exists
a λ′′ ∈ B with

‖b‖f ,λ ≤ ‖b‖λ′′ .

Fix an n ≥ 0. As G is finitely presented and FP∞ , there exists a contractible CW-
complex X which is a free and dimensionally co-finite G-space. After subdividing,
we may assume that X(n+1) is a simplicial complex. We fix a basepoint x0 ∈ X(0)

and equip X(n+1) with the 1-skeleton weighting. For any such X , the above inequality
applies.

Each Ci(X) is a free, finite rank C[G]-module, and the complex C∗(X) is acyclic since
X is contactible with finitely many G-orbits in each dimension. Let ∂ be the boundary
map ∂i : Ci(X)→ Ci−1(X). (We also call the boundary map from BCi(X) to BCi−1(X)
by ∂i .) Let BC∗(X) be the B -completion of C∗(X). We will show that C(X) has a
B -bounded linear contraction in dimensions up to n.

As G acts cofinitely on X(0) , fix a representative of each orbit R = {x0, x1, . . . , xr}
with x0 the basepoint of X , and each xi satisfying dX(xi, x0) ≤ dX(gxi, x0) for all
g ∈ G. Let IG be the disjoint union tr

i=0Gi , where each Gi is a copy of G. (Since the
G action on X(0) is free, there is a G-equivariant one-to-one correspondence between
elements of IG and X(0) .) Let C∗(IG) be the homogeneous bar complex on IG,
endowed with the weight wG([g0, . . . , gn]) =

∑n
j=0 `G(gi). For g ∈ G, we use the

notation (g)i , for 0 ≤ i ≤ r to represent the element of IG determined by g in the
Gi -copy of G. Similarly, for an h ∈ IG, let i(h) be such that h ∈ Gi(h) . For a
v ∈ X(0) , let i(v) be such that v ∈ G · xi(v) . The augmented complex C← BC∗(IG) is
a free bornological B -resolution of C with a bounded C-linear contraction. Label it
si : BCi(IG)→ BCi+1(IG), with the boundary map di : BCi(IG)→ BCi−1(IG).

We now define G-equivariant B -bounded chain maps ψ : BC∗(X) → BC∗(IG) and
φ : BC∗(IG) → BC∗(X). Let ψn : BCn(X) → BCn(IG) to be the identity for
n ≤ −1. (In degree −1, this is just the map from C → C, and for n < −1, Cn(X)
and Cn(IG) are both zero.) Let ψ0 : BC0(X) → BC0(IG) be the map given on
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simplices by [v] 7→ [(g)i], where v = gxi . This is a well-defined, G-equivariant,
linear map. Similarly for 1 ≤ m ≤ n + 1 let ψm : BCm(X) → BCm(IG) be defined
by [v0, v1, . . . , vm] 7→ [(g0)i0 , (g1)i1 , . . . , (gm)im], where vj = gjxij . We note that these
maps are B -bounded by Lemma 6.

We next construct a continuous G-equivariant chain map φ : BC∗(IG) → BC∗(X).
Note that for each point v ∈ X(0) , there is a unique gv ∈ G and xi ∈ R such that
gvxi = v, with the assignment v 7→ gv being G-equivariant. As G is quasi-isometric
to X(1) , there exist positive constants λ and µ such that for all g ∈ G, and xj ∈ R,
dX(gxj, x0) ≤ λ`G(g) + µ.

Define the G-equivariant linear map φ0 : C0(IG)→ BC0(X) by

φ0([g]) = [gxi(g)].

For η in the bounding class B , there is an η′ ∈ B such that η(λx + µ) ≤ η′(x). Then

‖φ0([g])‖η = ‖[gxi(g)]‖η
= η(dX(gxi(g), x0))

≤ η(λ`G(g) + µ)

≤ ‖[g]‖η′ .

By this estimate, φ0 extends to a bounded BG-module map φ0 : BC0(IG)→ BC0(X).

It will be useful to consider a set, q, of geodesics on X(1) . For each xi ∈ R, and each
v ∈ X(0) , let q[xi, v] be a geodesic in the graph X(1) from xi to v. For an arbitrary
(v0, v1), write v0 as gxj . Then set q[v0, v1] = gq[xj, g−1v1]. By a slight abuse of
notation, we also denote by q[v0, v1] the 1-chain in C1(X) given by the sum of edges
in the path. We now define φ1 : C1(IG)→ BC1(X) by

φ1([g0, g1]) = q[g0xi(g0), g1xi(g1)].

For η ∈ B , pick an η′ ∈ B such that η(λx + 2µ) ≤ η′(x).

‖φ1([g0, g1])‖η = ‖[g0xi(g0), g1xi(g1)]‖η
= η

(
dX(g0xi(g0), x0) + dX(g1xi(g1), x0)

)
≤ η (λ (`G(g0) + `G(g1)) + 2µ)

≤ ‖[g0, g1]‖η′ .

Thus the G-equivariant linear map φ1 extends to a bounded map φ1 : BC1(IG) →
BC1(X). From the definition, it is clear that ∂1φ1 = φ0d1 .

Now φ1(d2[g0, g1, g2]) = q[g1xi(g1), g2xi(g2)]−q[g0xi(g0), g2xi(g2)] + q[g0xi(g0), g1xi(g1)].
This is a 1-boundary in B1(X). By the filling norm estimate in step (1), for each η ∈ B



36 Ronghui Ji, Crichton Ogle and Bobby Ramsey

there is η′ ∈ B and a 2-chain c = c(g0, g1, g2) ∈ BC2(X) with ‖c(g0, g1, g2)‖η ≤
‖[g0, g1, g2]‖η′ . There could be many possible choices for c(g0, g1, g2). We make the
following assumptions on our choice:

(1) If {g0xi(g0), g1xi(g1), g2xi(g2)} spans a 2-simplex [g0xi(g0), g1xi(g1), g2xi(g2)] in X(2) ,
then c(g0, g1, g2) = [g0xi(g0), g1xi(g1), g2xi(g2)].

(2) As the G action on X(2) is free, c can be taken to be G-equivariant.

Define φ2([g0, g1, g2]) to be c(g0, g1, g2). This yields a G-equivariant B -bounded
linear map φ2 : BC2(IG)→ BC2(X), satisfying ∂2 ◦ φ2 = φ1 ◦ d1 . Note that we may
assume (1) only because X is equipped with the 1-skeleton weighting; thus the weight
of a simplex is bounded by the sum of the weights of the codimension 1 faces.

Inductively, suppose that we have constructed φi for some i between 0 and n−1 having
been defined through fillings c(g0, g1, . . . , gi) of i-boundaries φi−1(di([g0, g1, . . . , gi]))
in X(i−1) satisfying:

(1) If g0xi(g0), g1xi(g1), . . . , gixi(gi) span an i-simplex [g0xi(g0), g1xi(g1), . . . , gixi(gi)] in
X(i) , then c(g0, g1, . . . , gi) = [g0xi(g0), g1xi(g1), . . . , gixi(gi)].

(2) The choice of c is G-equivariant.

(3) For every η ∈ B there is η′ ∈ B such that for all [g0, g1, . . . , gi] ∈ Ci(IG),
‖c(g0, g1, . . . , gi)‖η ≤ ‖[g0, g1, . . . , gi]‖η′ .

We construct φi+1 as follows. Let [g0, . . . , gi+1] be the (i + 1)-chain in Ci+1(IG).

di+1([g0, . . . , gi+1]) =

i+1∑
j=0

(−1)j[g0, . . . , ĝj, . . . gi+1].

Then

φi
(
di+1([g0, . . . , gi+1])

)
=

i+1∑
j=0

(−1)jc(g0, . . . , ĝj, . . . , gi+1)

lies in Bi(X). For η ∈ B , take η′ ∈ B such that for any [g0, . . . , ĝj, . . . , gi+1] ∈ Ci(IG),

‖c(g0, . . . , ĝj, . . . , gi+1‖η ≤ ‖[g0, . . . , ĝj, . . . , gi+1]‖η′ .

Thus
‖φi
(
di+1([g0, . . . , gi+1])

)
‖η ≤ (i + 1)‖[g0, . . . , gi+1]‖η′ .

By the filling norm estimates from (1), for every η ∈ B there is an η′ ∈ B such that
for every [g0, . . . , gi+1] ∈ Ci+1(IG) there is an (i + 1)-chain c = c(g0, . . . , gi+1)
with ∂i+1c(g0, . . . , gi+1) = φi

(
di+1([g0, . . . , gi+1])

)
, such that ‖c(g0, . . . , gi+1)‖η ≤

‖[g0, . . . , gi+1‖η′ .
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We may then pick the fillings c(g0, . . . , gi+1) to satisfying the properties, analogous to
the list above. We define φi+1(g0, . . . , gi+1) to be (i + 1)-chain c(g0, . . . , gi+1). This
defines a G-equivariant, linear, B -bounded chain map φi : BCi(IG) → BCi(X), for
0 ≤ i ≤ n.

For φ and ψ as defined, φ ◦ ψ is the identity. We verify this on basis elements. First,
φ0 ◦ ψ0([v]) = φ0([(gv)i(v)]) = [gvxi(v)] = [v]. For i = 1,

φ1 ◦ ψ1([v0, v1]) = φ1([(gv0)i(v0), (gv1)i(v1)])

= q[gv0xi(v0), gv1xi(v1)]

= q[v0, v1].

Since q[v0, v1] is a geodesic from v0 to v1 , and by hypothesis [v0, v1] is an edge in the
simplicial complex X(1) , q[v0, v1] must be just [v0, v1]. Thus φ1 ◦ ψ1 is the identity.

In general, for 2 ≤ i ≤ n,

φi ◦ ψi([v0, . . . , vi]) = φi([(g0)i(v0), . . . , (gi)i(vi)])

= c((g0)i(v0), . . . , (gi)i(vi)).

As g0xi(v0) = v0, . . . , gixi(vi) = vi are the vertices of an i-simplex, c(g0, . . . , gi) =

[v0, . . . , vi]. Thus φi ◦ ψi is the identity map, for 0 ≤ i ≤ n.

This particular construction of φ and ψ allow us to use the bounded contraction of
BC∗(IG) to construct a bounded contraction of BC∗(X). For 0 ≤ i ≤ n, consider the
map Si : Ci(X)→ Ci+1(X) given by the composition Si = φi+1 ◦ si ◦ ψi .

∂i+1 ◦ Si + Si−1 ◦ ∂i = ∂i+1 ◦ φi+1 ◦ si ◦ ψi + φi ◦ si−1 ◦ ψi−1 ◦ ∂i

= φi ◦ di+1 ◦ si ◦ ψi + φi ◦ si−1 ◦ di ◦ ψi

= φi ◦
(
di+1 ◦ si + si−1 ◦ di

)
◦ ψi

= φi ◦ ψi.

Thus Si is a contraction for 0 ≤ i ≤ n, since φi ◦ ψi is the identity map in that range.
As φ, ψ , and s are all B -bounded, so is S , yielding the necessary bounded contraction
in dimensions i ≤ n.

This verifies (B3).

The implication (B3)⇒ (B1) follows by a natural extension of the arguments of [JR1]
and [O1]. Namely, given the free G-complex X , one forms the complex CB∗ (X), where
CBn (X) denotes the completion of Cn(X) in the seminorms∥∥∥∥∥∥

∑
σ∈X(n)

ασσ

∥∥∥∥∥∥
λ

:=
∑
σ∈X(n)

|α|λ(wX(σ)) λ ∈ B
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The condition that all of the Dehn functions are B -bounded is exactly what is needed
to provide a bounded C-linear contraction of CB∗ (X), hence a resolution of C over
HB,L(G). Degreewise, this complex is a free HB,L(G)-module on finitely many gener-
ators (one for each G-orbit of X(n) ), which together imply the result.

In fact the argument above shows slightly more.

Theorem 3 Let G be a finitely generated group of type HFr , for some r ≤ ∞. For
an n < r , the following are equivalent.

(B′1) BH∗(G; V) → H∗(G; V) is an isomorphism for all bornological HB,L(G)-
modules V , in all degrees ∗ ≤ n + 1.

(B′2) BH∗(G; V)→ H∗(G; V) is surjective for all bornological HB,L(G)-modules V ,
in all degrees ∗ ≤ n + 1.

(B′3) There exists a geometric resolution X∗ of G of finite type (all skeleta of X∗/G are
finite) for which the first n (weighted) Dehn functions of C∗(X) are B -bounded.

Proof The implication (B′1) ⇒ (B′2) is obvious. For (B′2) ⇒ (B′3), follow the
proof of (B2) ⇒ (B3) in Theorem 2. As the argument is degree-by-degree, it carries
over without change.

To prove the implication (B′3) ⇒ (B′1), construct C∗(X) and CB∗ (X) as in (B3) ⇒
(B1). The chain complex C∗(X) is a resolution of C over C[G], but CB∗ (X) does not
admit a bounded C-linear contracting homotopy for all degrees. It does, however, for
∗ ≤ n. Let S∗ = CB∗ (X), for ∗ ≤ n+1. Using the fact that the category of bornological
HB,L(G)-modules has enough projectives, for ∗ > n+1 S∗ can be chosen so that S∗ is
a bornologically projective resolution of C over HB,L(G). Continuing as in Theorem
2 yields the result.
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4 Relative constructions

We show how the results in the previous section may be “relativized”.

4.1 Relative HFn and the Brown-Bieri-Eckmann condition

In this subsection, n will denote an arbitrary cardinal ≤ ∞. Given a family of
subgroups {Hα}α∈Λ of G, let

∆ = ∆({Hα}α∈Λ) := ker

(⊕
α∈Λ

Z[G/Hα] ε→ Z

)
where ε is the linear extension of the map gHα 7→ 1. Then ∆ is a Z[G]-module;
given a second Z[G]-module A, the homology of G relative to the family of subgroups
{Hα}α∈Λ with coefficients in A is [BE2]

H∗(G, {Hα}α∈Λ; A) := TorZ[G]
∗−1 (∆,A)

Algebraically, this makes perfect sense regardless of how the groups intersect. Our
object is to establish necessary and sufficient conditions for relative finiteness. A
natural starting point is

Lemma 8 Suppose that

(1) the indexing set Λ is finite,

(2) each subgroup Hα is finitely generated,

(3) G is finitely presented,

(4) TorZ[G]
∗ (∆,

∏
Z[G]) = 0 for all 1 ≤ ∗ ≤ (n − 1) and direct products

∏
Z[G]

of copies of Z[G].

Then ∆ is type FPn over Z[G].

Proof Consider the commuting diagram

0

��

// // ⊕
α∈Λ

Z[G] = //

p1
����

⊕
α∈Λ

Z[G]

p2

����
∆

// // ⊕
α∈Λ

Z[G/Hα] ε // //
Z
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where on each summand p1 is the natural projection Z[G] � Z[G/Hα] and p2 = ε◦p1 .
Denote ⊕

α∈Λ
Z[G/Hα] by E , Z by B, and set P(E) := ⊕

α∈Λ
Z[G], Ω(E) := ker(p1),

Ω(B) := ker(p2). By the Snake Lemma, the above diagram yields a short-exact
sequence Ω(E) � Ω(B) � ∆. Now consider the pull-back diagram

Ω(E)��

��

Ω(E)��

��
P(E,∆)

����

// // P(E)

����
∆ // // E

There is a natural isomorphism of Z[G]-modules P(E,∆)∼= Ω(B), from which we
conclude the existence of a short-exact sequence

(22) Ω(B)∼= P(E,∆) � ∆⊕ P(E) � E

Conditions 1. and 2. imply E is finitely-presented over Z[G], and condition 3. implies
Ω(B) is finitely-presented over Z[G]. By (22), ∆ ⊕ P(E) is finitely-presented over
Z[G]. But P(E) is a finitely-generated free module over Z[G] (by 1.), so ∆ itself must
be finitely-presented over Z[G]. The result now follows from Prop. 1.2 of [BE1].

Definition 7 The group G is type FPn+1 (resp. FFn+1 ) rel. {Hα}α∈Λ if the Z[G]-
module ∆ is type FPn (resp. FFn ) over Z[G].

As usual, if we are not concerned with constructing finite resolutions but only ones
which are finite-dimensional through the given range, the conditions FFn and FPn

agree.

We consider an alternative definition, which will provide the bridge between the alge-
braic and topological setting.

Definition 8 A resolution of Z over Z[G] relative to a family of subgroups {Hα}α∈Λ

is a projective resolution P∗ of Z over Z[G] satisfying

Pm = ⊕α∈ΛIndG
Hα(Wα

m)⊕ Qm
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where for each α ∈ Λ, Wα
∗ is a projective resolution of Z over Z[Hα] and IndG

Hα(Wα
∗ ) ↪→

P∗ is an inclusion of complexes. Then G is type F̃P
n
, respectively type F̃F

n
, if Qm is

finitely generated projective, respectively free over Z[G], for all finite m ≤ n.

Again, when the resolutions are allowed to be infinite, F̃P
n

and F̃F
n

are equivalent
conditions.

Lemma 9 If G is type FPn relative to {Hα}α∈Λ , it is type F̃P
n

relative to {Hα}α∈Λ .
If conditions 1. - 3. in Lemma 8 are satisfied, then the converse is true.

Proof Let R∗ be a resolution of ∆ over Z[G], and let S∗ be the Z[G]-resolution
⊕
α∈Λ

IndG
Hα(Wα

∗ ) of ⊕
α∈Λ

Z[G/Hα] where Wα
∗ is a Z[Hα]-resolution of Z for each

α ∈ Λ. Let f∗ : R∗ → S∗ be a map of Z[G]-resolutions covering the inclusion
∆ � ⊕

α∈Λ
Z[G/Hα], and let M(f∗) be the algebraic mapping cone of f∗ . Then M(f∗)

provides a resolution of Z over Z[G] rel. {Hα}α∈Λ where Qm = Rm−1 . Hence type
FPn rel. {Hα}α∈Λ implies type F̃P

n
rel. {Hα}α∈Λ . Now suppose G is type F̃P

n
rel.

{Hα}α∈Λ . As we have seen, the first three conditions of Lemma 8 imply ∆ is finitely-
presented. Let T∗ be a Z[G]-resolution of G rel. {Hα}α∈Λ . Then S∗ is a subcomplex
of T∗ , with the inclusion S∗ ↪→ T∗ covering the projection ε : ⊕

α∈Λ
Z[G/Hα] � Z.

The quotient complex T∗/S∗ = Q∗ = {Qm} satisfies the property

TorZ[G]
∗ (∆,A) = HG

∗+1(Q∗ ⊗ A) = H∗+1(Q∗ ⊗
Z[G]

A)

If A =
∏

Z[G] and Qm is finitely-generated projective for finite m ≤ n, then

TorZ[G]
k

(
∆,
∏

Z[G]
)

= HG
k+1

(
Q∗ ⊗

∏
Z[G]

)
= Hk+1

({∏
Qm

}
m≥0

)
= 0

for all finite k ≤ (n− 1). By Lemma 8 this completes the proof.

We now consider the topological analogue. Let {Aα}α∈Λ be a family of subcom-
plexes of a complex X , and let A =

⋃
α∈Λ Aα ⊆ X . We say that X is type

HFn relative to {Aα}α∈Λ if X/A ' Y with Y having finitely many cells (or simplices)
in each finite dimension m ≤ n.

If {Hα}α∈Λ is a family of subgroups of G, then whenever Λ contains more than
one element

∐
BHα will not be a subspace of the standard model for BG, as the

classifying spaces BHα all contain the common basepoint (and more if the intersections
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are non-trivial). However, the Z[G]-module ∆ is modeled on the disjoint union of
the classifying spaces {BHα}. To accommodate this, we will need a different model
for BG. Recall that if T is a discrete set, one may form the free simplicial set S•(T)
generated by T , with

Sm(T) := Tm+1;(23)

∂i(t0, t1, . . . , tn) = (t0, t1, . . . , t̂i, . . . , tn);(24)

sj(t0, t1, . . . , tn) = (t0, t1, . . . , tj, tj, . . . , tn)(25)

In other words, the face and degeneracy maps are given by deletion and repetition. Any
element of T can be used to define a simplical contraction of S•(T), yielding S•(T) ' ∗
for all sets T . Moreover, if T is a free G-set, then the diagonal action of G makes S•(T)
a simplicial free G-set, hence a simplicial model for a universal contractible G-space.
The standard homogeneous bar resolution of G - EG - arises when one takes T = G
with left G-action given by multiplication.

Definition 9 For an indexing set Λ, let

G(Λ) :=
∐
α∈Λ

G

with G-action given by left multiplication on each component. Then

EG(Λ) := S•(G(Λ))

BG(Λ) := EG(Λ)/G

Again, if {Tα}α∈Λ is a collection of G-sets, there is an evident inclusion of simplicial
G-sets

(26)
∐
α∈Λ

S• (Tα)
iΛ
↪→ S•

(∐
α∈Λ

Tα

)
which is both equivariant and functorial.

Definition 10 A group G is of type HFn relative to a family of subgroups {Hα}α∈Λ

(n ≤ ∞) if BG(Λ) is of type HFn relative to the image of
∐
α∈Λ

BHα under the

composition ∐
α∈Λ

BHα ↪→
∐
α∈Λ

BG
iΛ
↪→ BG(Λ)
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Proposition 2 Assume the indexing set Λ is finite. If G is type HFn relative to
{Hα}α∈Λ , then it is type F̃F

n
relative to {Hα}α∈Λ .

Proof For each α , fix a simplicial complex XHα ' BHα . The condition on G implies
we may construct a simplicial model XG ' BG by adding simplices (i.e., cells) to∐
α∈Λ

XHα in such a way that through each finite dimension m with 0 ≤ m ≤ n the

number of simplices attached is finite. Let X̃G ' EG be the universal cover of XG , and
p : X̃G → XG the covering map. Taking P∗ = C∗(X̃G) gives the desired resolution,
with IndG

Hα(W∗) = C∗(p−1(XHα)) and Qn the free C[G]-submodule of Pn spanned

over C by those n-cells not in p−1
( ∐
α∈Λ

XHα

)
.

Putting it all together, we may summarize the situation as

Theorem 4 If the conditions 1. - 4. of Lemma 8 are satisfied, then the following are
equivalent

• G is type HFn relative to {Hα}α∈Λ ,

• G is type F̃F
n

relative to {Hα}α∈Λ ,

• G is type FFn relative to {Hα}α∈Λ .

Proof The second and third properties are equivalent by Lemma 9, and the first
property implies the second by the previous proposition. The converse to Proposition 2,
in the presence of conditions 1. through 4., follows by the same method of geometrically
realizing the resolution as in the classical proof of the Eilenberg-Ganea-Wall theorem
(compare Thm. 7.1, Chap. VIII of [Br1]).

Recall from [Br2] that a direct system of groups {Aβ} is said to be essentially trivial
if for each β1 there is a β2 ≥ β1 such that the map Aβ1 → Aβ2 is trivial.

Definition 11 A filtration of EG(Λ) of finite n-type relative to {Hα}α∈Λ is an in-
creasing filtration of EG(Λ) by a direct system of subcomplexes {Xβ} satisfying

• lim−→
β

Xβ = EG(Λ),

• X∅ := p−1
( ∐
α∈Λ

BHα

)
⊆ Xβ for all β ,

• For each β , Xβ/X∅ contains finitely many G-orbits in finite dimensions ≤ n.
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Theorem 5 Suppose there exists a filtration {Xβ} of finite n-type of EG relative to
{Hα}α∈Λ . Assume conditions 1. - 4. of Lemma 8. If the directed system {H∗(Xβ)} is
essentially trivial for all finite ∗ ≤ n, then ∆ is type FPn−1 over Z[G].

Proof Let R = Z[G]. Then for all finite m with 1 ≤ m ≤ (n− 1)

TorR
m

(
∆,
∏

R
)
∼= TorR

m

(
R,∆⊗

∏
R
)

= HG
m

(
EG(Λ); ∆⊗

∏
R
)

∼= HG
m+1

(
EG,X∅;

∏
R
)

∼= lim−→
β

HG
m+1

(
Xβ/X∅;

∏
R
)

∼= lim−→
β

∏
HG

m+1
(
Xβ/X∅; R

)
= lim−→

β

∏
Hm+1(Xβ/X∅) = 0

with the last equality following by Lemma 2.1 of [Br2].

Note that unlike Brown’s condition in the absolute case (where we are not working
relative to a family of subgroups), the quotient space EG(Λ)/X∅ has the homotopy-type
of a wedge

∨
S1 , with H1(

∨
S1) = ∆. This non-contractibility in dimension 1 makes

verifying the essential triviality of relative filtrations problematic.

4.2 Relative Dehn functions

There is a natural algebraic way to define the relative Dehn functions of G with respect
to some finite family of subgroups. As before, we write ∆ for the kernel of the
augmentation map ε :

⊕
α∈Λ Z[G/Hα] → Z, where H = {Hα |α ∈ Λ}. A typical

element of
⊕

α∈Λ Z[G/Hα] has the form
∑

g∈tG/Hα λgg[Hαg]. Thus to define the
weighted structure on ∆ ⊂

⊕
α∈Λ Z[G/Hα], it is enough to define the weight of a

generator, g[Hα]. Set w(g[Hα]) = minh∈Hα L(gh), where L is the length function
equipped on G.

If G is of type FF∞ relative to H , there is a free resolution of ∆ over Z[G]:

. . .→ R2 → R1 → R0 → R−1 := ∆→ 0
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which is finitely generated Z[G]-module in each dimension on generating set Sn =

{s1,n, . . . , skn,n}. Fixing the weight of each generator to be 1, we extend this to a
weight function on Rn in the usual way by

w
(∑

λigisji,n

)
:=
∑
|λi|
(
L(gi) + w(sji,n)

)
=
∑
|λi|(L(gi) + 1)

Up to linear equivalence, this definition is independent of the initial weighting given
to the generating set. Now choose a Z-linear splitting of this resolution {sn : Rn →
Rn+1}n≥−1 ; associated to this contraction are its Dehn functions, which we refer to as
the relative Dehn functions of G with respect to H . Again, up to linear equivalence,
the definition of the Dehn functions is independent of the choice of linear splitting.

Definition 12 The relative Dehn functions of G with respect to H are B -bounded if
there is type FF∞ resolution of ∆ over Z[G] such that each splitting sn is bounded
by an element of B .

Lemma 10 Suppose L � B . If the relative Dehn functions of G with respect to H
are B -bounded for a particular type FF∞ resolution, then they are B -bounded for all
type FF∞ resolutions.

This is a relative version of the statement that the Dehn functions of a group G does
not depend on which type HF∞ classifying space is used in their construction, up to
equivalence.

Since G is of relative type FF∞ , it is also of relative type F̃F
∞

, with respect to H .
As above, this gives a projective resolution of Z over Z[G] of the form

Pm =
⊕
α∈Λ

IndG
Hα(Wα

m)⊕ Qm

where for each α ∈ Λ, Wα
∗ is a projective resolution of Z over Z[Hα], and Qm is a

finitely generated free Z[G]-module. At each level, IndG
Hα(Wα

m) is a direct summand
of Pm . Taking the quotient by them in each degree yields the sequence

. . .→ Q3 → Q2 → Q1 � Q0 = 0

which is exact above dimension 1, and for which the cokernel of Q2 → Q1 is ∆. Thus

. . .→ Q3 → Q2 → Q1 → ∆→ 0

is a type FF∞ resolution of ∆ over Z[G].
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Because the homology of both P∗ and Q∗ vanish above dimension 1, one can in that
range construct a chain contraction {sP

n : Pn → Pn+1} for which the composition

sQ
n := Qn ↪→ Pn

sP
n−→ Pn+1 � Qn+1

yields a chain contraction of Q∗ for ∗ > 1. This splitting, spliced together with a
weight-minimizing section sQ

0 : ∆ → Q1 of the projection Q1 � ∆, one can define
the topological relative Dehn functions of G relative to H to be the Dehn functions
associated to the linear contraction {sQ

n }n≥0 . We say the topological Dehn functions
are B -bounded if the Dehn functions of {sQ

n }n≥0 are B -bounded.

Lemma 11 Suppose G is of type FF∞ relative to H . G has B -bounded algebraic
relative Dehn functions with respect to H if and only if B -bounded topological relative
Dehn functions with respect to H

This follows immediately from Lemma 10.

The term “topological relative Dehn function” is justified by the following interpretation
of them. Assume G is HF∞ relative to H , as before. Start with a relative homology
cycle in x ∈ Zn(EG(Λ),E(H)). Then ∂(x) ∈ Cn−1(E(H)). Each part of ∂(x) lying
in a connected component of E(H) can be coned off, yielding an absolute cycle
x′ ∈ Zn(EG(∆)). Choose a weight-minimizing y ∈ Cn+1(EG(∆)) with ∂(y) = x′ ,
and take its weight relative to the subspace E(H); i.e., only total the weights of those
(n + 1)-simplices used to construct z which do not lie in E(H). The resulting Dehn
function computed using this construction agrees (up to the usual equivalence of Dehn
functions) with the one derived from {sQ

n }n≥0 .

One can view the nonexistence of a relative Dehn function in a particular degree as an
obstruction to completing the type FF∞ resolution of ∆,

. . .→ Q3 → Q2 → Q1 → ∆→ 0

to yield a type FF∞ bornological resolution of ∆B (defined below).

. . .→ BQ3 → BQ2 → BQ1 → ∆B → 0

Although there is always a bounded section ∆ → Q1 , the obstruction to constructing
a bounded section Q1 → Q2 is, in general, nontrivial in the unweighted setting. The
relative Dehn functions for n > 1 do not suffer the same issue.
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4.3 Relative B-bounded cohomology

We construct a relative B -bounded cohomology theory, which closely mirrors the
construction of relative group cohomology in [Au, BE2]. Let G be a discrete group
and let H = {Hα |α ∈ Λ} be a finite collection of subgroups of G. Let G/H be
the disjoint union

⊔
α∈Λ G/Hα . For a subgroup H of G let C[G/H] be the C-vector

space with basis the left cosets G/H . Let C[G/H] = ⊕α∈ΛC[G/Hα] which will
be identified as finitely supported functions G/H → C. Denote the kernel of the
augmentation ε : C[G/H]→ C by ∆.

Definition 13 The relative cohomology of a discrete group G, with respect to a
collection H of subgroups of G with coefficients in a C[G]-module A, is given by

Hk(G,H; A) = Extk−1
C[G](∆,A).

Denote by Hk(H; A) =
∏
α∈Λ Hk(Hα; A). The definition of relative cohomology yields

the following consequence, proved in [Au] for the case of a single subgroup and in
[BE2] for many subgroups.

Theorem 6 (Auslander, Bieri-Eckmann) Let G and H be as above. For any C[G]-
module A there is a long exact sequence:

. . .→ Hk(G; A)→ Hk(H; A)→ Hk+1(G,H; A)→ Hk+1(G; A)→ . . . .

The length-function L on G induces a weight, w, on the cosets G/H given by w(gH) =

minh∈H L(gh). With this weight, define the following bornological HB,L (G)-module:

HB,w
(
G/H

)
= {f : G/H → C | ∀φ∈B

∑
x∈G/H

|f (x)|φ(w(x)) <∞}.

This is a Frechet space in the norms given by

‖f‖φ =
∑

x∈G/H

|f (x)|φ(w(x)).

Let H = {Hα |α ∈ Λ} be a finite collection of subgroups of G, and define

HB,w
(
G/H

)
= {f : G/H → C | ∀φ∈B

∑
x∈G/H

|f (x)|φ(w(x)) <∞}.

As H is a finite family of subgroups, HB,w
(
G/H

)
= ⊕α∈ΛHB,w

(
G/Hα

)
.

The augmentation map ε : HB,w
(
G/H

)
→ C is given by ε(f ) =

∑
x∈G/H f (x). As

ε(f ) ≤ ‖f‖1 , ε is a bounded map. Denote the augmentation kernel by ∆B = ker ε.
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Definition 14 The relative B -bounded cohomology of a discrete group G, with re-
spect to a collection H of subgroups of G with coefficients in an HB,L (G)-module A,
is given by BHk(G,H; A) = Extk−1

HB,L(G)(∆B,A), where this Ext∗HB,L(G)(·,A) functor is
taken over the category of bornological HB,L (G)-modules.

As in the absolute cohomology theory, there is a comparison homomorphism BH∗(G,H; V)→
H∗(G,H; V) for any bornological HB,L (G)-module V .

Definition 15 Let G be a discrete group with length function L , and let H be a finite
collection of subgroups, and let V be aHB,L (G)-module. We say G is relatively B -isocohomological to H with respect to V
(abbr. V -BRIC) if the relative comparison BH∗(G,H; V) → H∗(G,H; V) is an iso-
morphism of cohomology groups in all degrees. Similarly G is relatively B -isocohomological to H
(abbr. B -RIC) if it is C-BRIC, and G is strongly relatively B -isocohomological to H
(abbr. B -SRIC) if it is V -BRIC for all HB,L (G)-modules V .

If G is a group and H is a subgroup, there is an isomorphism: Ext∗C[G](C[G/H],C)∼= Ext∗C[H](C,C).
A first step in extending relative cohomology to the B -bounded framework will be the
following analogue.

Lemma 12 Let G be a group with length function L , H a subgroup of G equipped
with the restricted length function, and B a multiplicative bounding class. For any
bornological HB,L (G)-module A, there is an isomorphism:

Ext∗HB,L(G)(HB,w
(
G/H

)
,A)∼= Ext∗HB,L(H)(C,A).

Before proving Lemma 12 we first turn our attention to a few additional results which
will be necessary.

Lemma 13 For B a multiplicative bounding class,HB,L (G)∼=HB,w
(
G/H

)
⊗̂HB,L (H)

both as bornological vector spaces and as right HB,L (H)-modules, where G/H is given
the weight w(gH) = minh∈H L(gh), and L is the length function on G.

Proof Let R be a system of minimal length representatives for left cosets of H in
G. For an r ∈ R, the length of r in G is equal to the length of rH ∈ G/H , so
HB,w

(
G/H

)∼=HB,L (R) as bornological vector spaces. For g ∈ G there is a unique
hg ∈ H and rg ∈ R such that g = rghg .

Let Φ : HB,L (G)→ HB,L (R)⊗̂HB,L (H) be defined on basis elements by Φ(g) = (rg)⊗
(hg) and extended by linearity. For λ, µ ∈ B , let ν ∈ B such that ν(n) ≥ λ(2n)µ(2n).

|Φ(g)|λ,µ = |(rg)⊗ (hg)|λ,µ



B-Bounded Cohomology 49

= λ(L(rg))µ(L(hg))

≤ λ(L(g))µ(L(r−1
g ) + L(rghg))

≤ λ(L(g))µ(2L(g))

≤ λ(2L(g))µ(2L(g))

≤ ν(L(g)).

It follows that Φ is bounded.

Conversely let Ψ′ : HB,L (R)×HB,L (H)→ HB,L (G) be defined by Ψ′((r, h)) = (rh).
For λ ∈ B , let λ′(n) = λ(2n) + 1. By the properties of bounding classes, λ′ ∈ B as
well. For r ∈ R and h ∈ H , set Mr,h = max{L(r),L(h)} and mr,h = min{L(r),L(h)}.
We have:

|Ψ′(r, h)|λ = |(rh)|λ
= λ(L(rh))

≤ λ(L(r) + L(h))

≤ λ(2Mr,h)

≤ λ′(Mr,h)

≤ λ′(Mr,h)λ′(mr,h)

= λ′(L(r))λ′(L(h)).

As Ψ′ is bounded, it extends to a bounded Ψ : HB,L (R)⊗̂HB,L (H) → HB,L (G).
These are the required bornological isomorphisms.

Lemma 14 For any bounding class B , HB,L (G)⊗̂HB,L(H)C∼=HB,w
(
G/H

)
, where H

is endowed with the restricted length function and G/H is endowed with the weight
w.

Proof By [M2], if E = H⊗̂A then E⊗̂AF∼= H⊗̂F . Appealing to the previous lemma
we obtain the following.

HB,L (G)⊗̂HB,L(H)C ∼=
(
HB,w

(
G/H

)
⊗̂HB,L (H)

)
⊗̂HB,L(H)C

∼= HB,w
(
G/H

)
⊗̂C

∼= HB,w
(
G/H

)
.

Proof of Lemma 12 Consider

. . .→ HB,L (H)⊗̂3 → HB,L (H)⊗̂HB,L (H)→ HB,L (H)→ C→ 0
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where the boundary map dn+1 : HB,L (H)⊗̂n+1 → HB,L (H)⊗̂n is given by

dn+1(h0, h1, . . . , hn) = (h0h1, h2, . . . , hn)− (h0, h1h2, h3, . . . , hn)

+ . . .+ (−1)n−1(h0, h1, . . . , hn−1hn)

+(−1)n(h0, . . . , hn−1)

and d1 : HB,L (H)→ C, given by d1(h0) = 1, is the augmentation. There is a bounded
contracting homotopy given by sn+1(h0, . . . , hn) = (1G, h0, . . . , hn), where 1G is the
identity element of G, and s0 : C→ HB,L (G) is given by s0(z) = z(1G).

Ext∗HB,L(H)(C,A) is the cohomology of the cochain complex

Hombdd
HB,L(H)(HB,L (H),A)→ Hombdd

HB,L(H)(HB,L (H)⊗̂HB,L (H),A)

→ Hombdd
HB,L(H)(HB,L (H)⊗̂3,A)→ . . . .

By [M2], for B a bornological algebra, E any bornological space, and F any bornolog-
ical left B-module, Hombdd

B (B⊗̂E,F)∼= Hombdd(E,F). Thus Ext∗HB,L(H)(C,A) is the
cohomology of

Hombdd(C,A)→ Hombdd(HB,L (H),A)→ Hombdd(HB,L (H)⊗̂2,A)→ . . . .

Tensoring each of the left HB,L (H) modules HB,L (H)⊗̂n by HB,L (G) over HB,L (H)
yields

. . .→ HB,L (G)⊗̂HB,L(H)(HB,L (H)⊗̂HB,L (H))→ HB,L (G)⊗̂HB,L(H)HB,L (H)

→ HB,L (G)⊗̂HB,L(H)C→ 0.

As HB,L (G)⊗̂HB,L(H)C∼=HB,w
(
G/H

)
, this reduces to

. . .→ HB,L (G)⊗̂HB,L(H)(HB,L (H)⊗̂HB,L (H))→ HB,L (G)⊗̂HB,L(H)HB,L (H)

→ HB,w
(
G/H

)
→ 0.

The bornological isomorphismHB,L (G)⊗̂HB,L(H)HB,L (H)⊗̂n+1∼=HB,L (G)⊗̂HB,L (H)⊗̂n ,
given by [M2], shows that this is

. . .→ HB,L (G)⊗̂HB,L (H)⊗̂2 → HB,L (G)⊗̂HB,L (H)→ HB,L (G) � HB,w
(
G/H

)
→ 0.

The map δn+1 : HB,L (G)⊗̂HB,L (H)⊗̂n → HB,L (G)⊗̂HB,L (H)⊗̂n−1 is given by

δn+1(g, h0, . . . , hn) = (gh0, h1, . . . , hn)− (g, h0h1, h2, . . . , hn)

+ . . .+ (−1)n(g, h0, . . . , hn−1hn)

+(−1)n+1(g, h0, . . . , hn−1)
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while the map δ1 : HB,L (G) → HB,w
(
G/H

)
is given by δ1(g) = (gH). A bounded

contracting homotopy s′n is constructed as follows. The map s′0 : HB,w
(
G/H

)
→

HB,L (G) is given by s′0(gH) = (rg), where rg is the fixed minimal length representative
of the coset gH in R as above. The map s′1 : HB,L (G)→ HB,L (G)⊗̂HB,L (H) is given
by s′1(g) = (rg, hg), where rg ∈ R, hg ∈ H , and g = rghg . The same For n > 1,
s′n(g, h0, . . . , hn−2) = (rg, hg, h0, . . . , hn−2).

As this is a projective resolution ofHB,w
(
G/H

)
overHB,L (G), Ext∗HB,L(G)(HB,w

(
G/H

)
,A)

can be calculated as the cohomology of

Hombdd
HB,L(G)(HB,L (G),A)→ Hombdd

HB,L(G)(HB,L (G)⊗̂HB,L (H),A)

→ Hombdd
HB,L(G)(HB,L (G)⊗̂HB,L (H)⊗̂2,A)→ . . . .

As Hombdd
HB,L(G)(HB,L (G)⊗̂HB,L (H)⊗̂n,A)∼= Hombdd(HB,L (H)⊗̂n,A), this is also the

same as the cohomology of

Hombdd(C,A)→ Hombdd(HB,L (H),A)→ Hombdd(HB,L (H)⊗̂2,A)→ . . . .

Denote by BHk(H; A) =
∏
α∈Λ BHk(Hα; A).

Theorem 7 Let G and H be as above, and let A be a bornological HB,L (G)-module.
For any multiplicative bounding class B , there is a long exact sequence:

. . .→ BHk(G; A)→ BHk(H; A)→ BHk+1(G,H; A)→ BHk+1(G; A)→ . . .

where for each Hα ∈ H , Hα is given the length function restricted from G and G/H
is given the minimal weighting function w as above.

Proof The following short exact sequence admits a bounded C-splitting.

0→ ∆B → HB,w
(
G/H

) ε→ C→ 0

Applying the bornological Ext∗HB,L(G)(·,A) functor , yields the long exact sequence

. . .→ ExtkHB,L(G)(C,A)→ ExtkHB,L(G)(HB,w
(
G/H

)
,A)→ ExtkHB,L(G)(∆B,A)

→ Extk+1
HB,L(G)(C,A)→ . . . .

Making use of the isomorphisms,

ExtkHB,L(G)(HB,w
(
G/H

)
,A) = ExtkHB,L(G)(⊕α∈ΛHB,w

(
G/Hα

)
,A)
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∼=
∏
α∈Λ

ExtkHB,L(G)(HB,w
(
G/Hα

)
,A)

∼=
∏
α∈Λ

ExtkHB,L(Hα)(C,A)

one obtains the exact sequence

. . .→ ExtkHB,L(G)(C,A)→
∏
α∈Λ

ExtkHB,L(Hα)(C,A)→ ExtkHB,L(G)(∆B,A)→ Extk+1
HB,L(G)(C,A)→ . . . .

By definition ExtkHB,L(G)(C,A) = BHk+1(G; A), and ExtkHB,L(G)(∆B,A) = BHk+1(G,H; A).

Corollary 3 Let G be a finitely generated group with length function L , B a multi-
plicative bounding class, and H = {Hα |α ∈ Λ} a finite family of subgroups. Suppose
that there is a HB,L (G)-module V such that each Hα is V -B IC, in the length function
restricted from G. If G is V -BRIC to H , then G is V -B IC. In particular, if each Hα

is B -SIC and G is B -SRIC to H , then G is B -SIC.

Proof The comparison map yields a commutative diagram with top row the long exact
sequence from Theorem 7 and the bottom row the long exact sequence from Theorem
6. The result follows from the five-lemma.

The notion of ‘niceness’ defined above has an obvious extension to free resolutions of
modules other than Z over Z[G]. The following generalization of Lemma 1 to the
relative setting is straightforward.

Lemma 15 Let G be a group equipped with word-length function L , R∗ a k-nice
resolution of M over Z[G], T∗ = R∗⊗C, and B and B′ bounding classes. Denote by
BT∗ the corresponding Frechet completion of T∗ with respect to the bounding class
B , as defined above. Further suppose that the weighted Dehn functions {dw,n

R } are
B′ -bounded in dimensions n < k , that B is a right B′ -class, and that B � L . Then
there exists a bounded chain null-homotopy {sn+1 : BTn → BTn+1}k>n≥0 , implying
BT∗ is a continuous resolution of BM over HB,L (G) through dimension k . Here, BM
denotes the completion of M ⊗ C via the bounding class B .

This yields a suitable complex from which we may calculate bounded relative coho-
mology of G with respect to H .
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Theorem 8 Suppose the finitely generated group G is HF∞ relative to the finite
family of finitely generated subgroups H .

(1) The relative Dehn functions of G relative to H are each B -bounded.

(2) G is B -SRIC with respect to H .

(3) The comparison map BH∗(G,H; A)→ H∗(G,H; A) is surjective for all bornolog-
ical HB,L (G)-modules A.

Proof For (1) implies (2), suppose A is a bornological HB,L (G)-module, and let

R∗ := . . .→ R2 → R1 → R0 → R−1 = ∆Z → 0

be a nice type FF∞ resolution of ∆Z , the integral augmentation kernel, over Z[G],
and let

T∗ := . . .→ T2 → T1 → T0 → T−1 = ∆→ 0

be given by Tn = Rn ⊗ C. Here ∆ is the complex augmentation kernel. T∗ is a type
FF∞ resolution of ∆ over C[G]. As the relative Dehn functions are B -bounded, by
the previous lemma gives that BT∗ is a bornologically projective resolution of ∆B over
HB,L (G). Let Vn be the complex vector space with one basis element for each generator
of Tn over C[G]. There are isomorphisms Tn∼=C[G]⊗ Vn and BTn∼=HB,L (G)⊗̂Vn .

Apply HomC[G](·,A) to the deleted resolution T∗ yields a cochain complex with terms
of the form HomC[G](Tn,A). Applying Hombdd

HB,L(G)(·,A) to the deleted resolution BT∗
yields a cochain complex with terms of the form Hombdd

HB,L(G)(BTn,A).

HomC[G](Tn,A) ∼= HomC[G](C[G]⊗ Vn,A)
∼= Hom(Vn,A)
∼= Hombdd

HB,L(G)(HB,L (G)⊗̂Vn,A)
∼= Hombdd

HB,L(G)(BTn,A)

As A was arbitrary we obtain that G is B -SRIC with respect to H .

The implication (2) implies (3) is obvious. For (3) implies (1), follow the proof the
implication (B2) implies (B1) of Theorem 2 with the following modifications. Replace
the absolute cocycles and boundaries, by the relative cocycles and boundaries. The
argument applies nearly verbatim.

For the remainder of the section, we suppose that G is a finitely presented group which
acts cocompactly without inversion on a contractible complex X , with finite edge
stabilizers and finitely generated vertex stabilizers Gσ . The higher weighted Dehn
functions of X bound the topological relative Dehn functions of G with respect to the
{Gσ}. Applying Theorem 8 we obtain the following.
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Theorem 9 Suppose all of the higher weighted Dehn functions of C∗(X) are B -
bounded. Then G is B -SRIC with respect to the {Gσ}.

To use this result effectively, we must be able to determine how the restricted length
function on Gσ behaves, when compared to the usual word-length function on Gσ .

Lemma 16 Suppose the first unweighted geometric Dehn function of X is B -bounded.
Then the standard word-length function, LGσ , on Gσ , for every σ , is B -equivalent to
the length function on Gσ , induced by the restriction of LG to Gσ . Specifically, there
exists a ν ∈ B such that LGσ (g) ≤ ν(LG(g)) for all g ∈ Gσ and all σ .

Proof The finite edge stabilizers imply that the first relative Dehn function ( in the
meaning of Osin [Os] ), is equivalent to the first Dehn function of X , by [BC]. Thus
it is B -bounded. By Lemma 5.4 of [Os], the distortion of each H ∈ H is bounded by
the relative Dehn function. Thus each H is at most B -distorted.

The following is a generalization of a result in [JR1], which states that if a finitely
generated group G is relatively hyperbolic to a family of finitely generated subgroups
H , and if each H ∈ H is HF∞ and P -SIC, then G is P -SIC.

Corollary 4 Suppose the finitely generated group G is relatively hyperbolic with
respect to the family of finitely generated subgroups H . If L � B , then G is B -SRIC
with respect to H .

Proof By Mineyev-Yaman [MY], there is a contractible hyperbolic complex X on
which G acts cocompactly with finite edge stabilizers, and vertex stabilizers precisely
the H and their translates. Lemma 16 gives the result.

Corollary 5 Suppose the finitely generated group G is relatively hyperbolic with
respect to the family of finitely generated subgroups H , and B is a multiplicative
bounding class with L � B . For any bornological HB,L (G)-module M , if each
H ∈ H is M -B IC, then G is M -B IC. In particular, if each H is B -SIC then G is
B -SIC.
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5 Two spectral sequences in B-bounded cohomology

5.1 The Hochschild-Serre spectral sequence

We begin with a finiteness result which was first proven for polynomially bounded
cohomology in [M1].

Theorem 10 Let (G,L) be V -B IC with respect to the trivialHB,L (G)-module V 6= 0.
Assume that V is metrizable, with distance function dV . Then for each n ≥ 0,

BHn(G; V) = Hn(G; V)∼=
kn⊕

V

Proof By contradiction. First, note that the weight function on C∗(EG) induces a
weight function on H∗(BG) by w([x]) = min{w(x′) | [x′] = [x]}. The statement that G
is V -B IC is then equivalent to requiring that for each n ≥ 1 and for all [c] ∈ Hn(BG),
there exists a φn ∈ B such that for all [x] ∈ Hn(BG), dV ([c]([x]), 0) ≤ φn(w([x])). Next,
Hn(G; V)∼= Hom(Hn(G),V) by the Universal Coefficient Theorem. Suppose Hn(G; V)
is not a finite sum of copies of V . This can only happen if Hn(G) is infinite-dimensional
over C. Choose a countably infinite linearly independent set [x1], [x2], . . . , [xn], . . .
of elements in Hn(G); we normalize each element so that w([xi]) = 1 for each 1 ≤ i.
Then for each i, fix a cohomology class [ci] ∈ Hn(G; V) with dV ([ci]([xj]), 0) = δij .
The set {[c1], [c2], . . . , [cm], . . . } is a countably infinite generating set for a subspace
W =

∏∞
1 C ⊂ Hn(G; V). An element of W may be written as

C = (n1, n2, n3, . . . , nm, . . . )

indicating that the [ci]-component of C is ni[ci]. Define a cohomology class [Cf ] by

[Cf ] = (f (1), f (2), . . . , f (n), . . . ) ∈ W

By construction,
dV ([Cf ]([xm]), 0) = f (m)[cm]([xm]) = f (m)

for each m ≥ 1. Choosing the function f to be unbounded (which we can certainly
do) makes [Cf ] unbounded on the set of n-dimensional homology classes with weight
1. This contradicts the assumption that (G,L) is B -isocohomological with respect to
V , regardless of the choice of B .
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The following theorem was proven in [O1] in the context of p.s. G-modules. It was
shown in the bornological case in [Ra].

Theorem 11 ([Ra, O1]) Let 0 → (G1,L1) → (G2,L2) → (G3,L3) → 0 be an
extension of groups with word-length, with G3 type PFP∞ . There is a bornological
spectral sequence with Ep,q

2
∼=PHp(G3;PHq(G1)) and which converges to PH∗(G),

where ⊗̂ is the bornological completed projective tensor product.

A similar result holds with more general bounding classes and coefficients.

Theorem 12 (Serre Spectral Sequence in B -bounded cohomology) Let (G1,L1) �
(G2,L2) � (G3,L3) be a short-exact sequence of groups with word-length. Suppose
that V is a metrizable (bornological) HB,L2 (G2)-module and (G3,L3) is B -SIC. Then
there exists a spectral sequence

Ep,q
2 = BHp(G3;BHq(G1; V))⇒ BHp+q(G2; V)

Hence if (G1,L1) is B -SIC, so is (G2,L2).

Proof Let (P∗, dP) be the B -completion of the homogeneous bar resolution of G2 and
T∗ be the tensor product of P∗ by C over HB,L1 (G1), Tq∼=HB,L3 (G3)⊗̂HB,L2 (G2)⊗̂q .
By hypothesis, there exists a resolution R∗ for C over HB,L3 (G3), with each Rp free
with finite rank.

Let C∗,∗ be the first quadrant double complex given by

Cp,q = Hombdd
HB,L3 (G3)(Rp⊗̂Tq,V)∼= Hombdd

HB,L3 (G3)(Rp,Hombdd(Tq,V)).

Filter this complex by rows. For a fixed q we have

. . .
δR→ C∗−1,q δR→ C∗,q δR→ C∗+1,q δR→ . . .

The bounded contraction for the complex R∗ induces a contraction on C∗,q , so Ep,q
1 = 0

for p ≥ 1 and E0,q
1 = Hombdd

HB,L3 (G3)(Tq,V)∼= Hombdd
HB,L2 (G2)(Pq,V). The E2 -term is

precisely BH∗(G2; V), and the spectral sequence collapses here.

Filter C∗,∗ by columns. For a fixed p we have

. . .
δT→ Cp,∗−1 δT→ Cp,∗ δT→ Cp,∗+1 δT→ . . .

By adjointness, Cp,q∼= Hombdd(Rp,Hombdd(Tq,V)), where Rp is finite dimensional
with Rp∼=HB,L3 (G3)⊗̂Rp . Let d∗T : Hombdd(Tq,V) → Hombdd(Tq+1,V) be the
map induced by dT . It is clear that ker δT = Hombdd(Rp, ker d∗T ) and im δT ⊂
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Hombdd(Rp, im d∗T ). That Hombdd(Rp, im d∗T ) ⊂ im δT follows from finite dimen-
sionality of Rp .

Finite dimensionality also implies

Hombdd
(

Rp,
ker d∗T
im d∗T

)
∼=

Hombdd(Rp, ker d∗T )
Hombdd(Rp, im d∗T )

.

Thus this spectral sequence has Ep,q
1
∼= Hombdd

HB,L3 (G3)(Rp,BHq(H; V)) and Ep,q
2
∼=BHp(G3;BHq(G1; V)).

By a spectral sequence comparison, if (G1,L1) is V -B IC, so is (G2,L2). Consequently
if (G1,L1) is B -SIC, isocohomologicality holds for all HB,L2 (G2)-modules V , imply-
ing (G2,L2) is B -SIC by Theorem 2.

5.2 The spectral sequence associated to a group acting on a complex

Following Section 1.6 of [S], suppose that a finitely generated group G acts cocom-
pactly on an acyclic simplicial complex X without inversion. For a simplex σ of X ,
denote the stabilizer of σ by Gσ . Denote by Σ a set of representatives of simplexes of
X modulo the G action, and by Σq the q-dimensional representatives in Σ.

Let C∗(X) denote the simplicial chain complex of X . As X is acyclic, there is an exact
sequence

0← C← C0(X)← C1(X)← C2(X)← . . .

There is a direct-sum decomposition Cq(X)∼=
⊕

σ∈Σq
C[G/Gσ]. For each σ ∈ Σ,

let Pσk = C[G ×Gσ (Gσ)k+1], the usual simplicial structure on Gσ induced up to a
C[G]-module. In this way, Pσ

•
is a projective C[G] resolution of C[G/Gσ]. This

yields a double complex
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(27) ...

��

...

��

...

��⊕
σ∈Σ0

Pσ2

��

⊕
σ∈Σ1

Pσ2oo

��

⊕
σ∈Σ2

Pσ2oo

��

. . .oo

⊕
σ∈Σ0

Pσ1

��

⊕
σ∈Σ1

Pσ1oo

��

⊕
σ∈Σ2

Pσ1oo

��

. . .oo

⊕
σ∈Σ0

Pσ0
⊕
σ∈Σ1

Pσ0oo
⊕
σ∈Σ2

Pσ0oo . . .oo

As each Σq is finite, applying HomC[G](·,M) yields the following double complex.

(28)
...

...
...

⊕
σ∈Σ0

HomC[G](Pσ2 ,M) //

OO

⊕
σ∈Σ1

HomC[G](Pσ2 ,M) //

OO

⊕
σ∈Σ2

HomC[G](Pσ2 ,M) //

OO

. . .

⊕
σ∈Σ0

HomC[G](Pσ1 ,M) //

OO

⊕
σ∈Σ1

HomC[G](Pσ1 ,M) //

OO

⊕
σ∈Σ2

HomC[G](Pσ1 ,M) //

OO

. . .

⊕
σ∈Σ0

HomC[G](Pσ0 ,M) //

OO

⊕
σ∈Σ1

HomC[G](Pσ0 ,M) //

OO

⊕
σ∈Σ2

HomC[G](Pσ0 ,M) //

OO

. . .

Consider the spectral sequence arising from filtering this double complex by columns.
That Pσ∗ be a projective C[G] resolution of C[G/Gσ] means that

⊕
σ∈Σ0

Pσ
•

is a
projective resolution of

⊕
σ∈Σ0

C[G/Gσ]. The Ep,q
1 -term of this spectral sequence is
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then

ExtqC[G]

⊕
σ∈Σp

C[G/Gσ],M

 ∼=
∏
σ∈Σp

ExtqC[G]

(
C[G/Gσ],M

)
∼=

∏
σ∈Σp

ExtqC[Gσ] (C,M)

∼=
∏
σ∈Σp

Hq (Gσ; M)

On the other hand, the total complex of the double complex in equation 27, serves as a
projective resolution of C over C[G], yielding a theorem of Serre.

Theorem 13 (Serre) For each CG-module M , there is a spectral sequence with
Ep,q

1
∼=
∏
σ∈Σp

Hq (Gσ; M) and which converges to Hp+q(G; M).

This extends to the B -bounded case, when the stabilizers are given the length function
restricted from G.

Let CBm(X) be defined as in the proof of Theorem 2. If the higher weighted Dehn
functions of X are B -bounded, CB∗ (X) gives a chain complex of complete bornological
HB,L(G)-modules, endowed with a bounded C-linear contracting homotopy. There is
a natural quotient length, w, defined on G/Gσ induced from the length L on G via
w(gGσ) := min{L(gh) | h ∈ Gσ}. Denote by HB,w(G/Gσ) the completion C[G/Gσ]
under the following family of seminorms.

|
∑

x∈G/Gσ

αxx|λ :=
∑

x∈G/Gσ

|αx|λ(w(x)) λ ∈ B

There is a bornological isomorphism CBq (X)∼=
⊕

σ∈Σq
HB,w(G/Gσ). Similarly, let

BPσk denote the corresponding completion of Pσk . As above, we obtain a double
complex, but of bornological HB,L (G)-modules.
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(29) ...

��

...

��

...

��⊕
σ∈Σ0

BPσ2

��

⊕
σ∈Σ1

BPσ2oo

��

⊕
σ∈Σ2

BPσ2oo

��

. . .oo

⊕
σ∈Σ0

BPσ1

��

⊕
σ∈Σ1

BPσ1oo

��

⊕
σ∈Σ2

BPσ1oo

��

. . .oo

⊕
σ∈Σ0

BPσ0
⊕
σ∈Σ1

BPσ0oo
⊕
σ∈Σ2

BPσ0oo . . .oo

For any HB,L (G)-module M , applying the bounded equivariant homomorphism func-
tor Hombdd

HB,L(G)(·,M) yields the following.

(30)
...

...
...

⊕
σ∈Σ0

Hombdd
HB,L(G)(BPσ2 ,M) //

OO

⊕
σ∈Σ1

Hombdd
HB,L(G)(BPσ2 ,M) //

OO

⊕
σ∈Σ2

Hombdd
HB,L(G)(BPσ2 ,M) //

OO

. . .

⊕
σ∈Σ0

Hombdd
HB,L(G)(BPσ1 ,M) //

OO

⊕
σ∈Σ1

Hombdd
HB,L(G)(BPσ1 ,M) //

OO

⊕
σ∈Σ2

Hombdd
HB,L(G)(BPσ1 ,M) //

OO

. . .

⊕
σ∈Σ0

Hombdd
HB,L(G)(BPσ0 ,M) //

OO

⊕
σ∈Σ1

Hombdd
HB,L(G)(BPσ0 ,M) //

OO

⊕
σ∈Σ2

Hombdd
HB,L(G)(BPσ0 ,M) //

OO

. . .

As in the non-bornological case above, when filtering by columns we obtain a spectral
sequence that converges to the cohomology of the total complex. The choice of w on
G/Gσ ensures a bornological isomorphism Ext∗HB,L(G)(HB,w(G/Gσ),M)∼= Ext∗HB,L(Gσ)(C,M).
As above we find Ep,q

1
∼=
∏
σ∈Σp

BHq (Gσ; M). Moreover, the total complex of 29 gives
a projective resolution of C over HB,L (G). This verifies the following theorem.
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Theorem 14 Suppose all higher weighted Dehn functions of C∗(X) are B -bounded,
when the acyclic complex X is equipped with the 1-skeleton weighting. For each
HB,L (G)-module M , there is a spectral sequence with E1 -term the product of the
BH∗(Gσ; M) which converges to BH∗(G; M).

By comparison with the spectral sequence from Theorem 13, we immediately obtain
the following corollary.

Corollary 6 Suppose the acyclic complex X is equipped with the 1-skeleton weight-
ing, and all higher weighted Dehn functions of C∗(X) are B -bounded. If M is a
HB,L (G)-module for which each (Gσ,L) is M -B IC, then (G,L) is M -B IC. In partic-
ular if each (Gσ,L) is B -SIC, so is (G,L).
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6 Duality groups and the comparison map

6.1 Duality and Poincaré Duality Groups

We recall that G is a duality group of dimension n if there exists a G-module D such
that

Hi(G,M)∼= Hn−i(G,D⊗M)

If this is the case, then D = Hn(G,Z[G]) is the dualizing module. When D = Z,
the group is called a Poicaré Duality group. It is orientable precisely when the action
of G on D (induced by the right action of G on Z[G]) is trivial. All known ori-
entable Poincaré Duality groups occur as the fundamental group of a closed orientable
aspherical manifold.

6.2 Isocohomologicality and the fundamental class

The question of isocohomologicality for oriented duality groups is answered by the
following theorem. All homology and cohomology groups are taken with coefficients
in C.

Theorem 15 Let M be a compact, closed, orientable manifold of dim. n which is
aspherical (M̃ ' ∗). Let G = π1(M), and let µ′′G ∈ Hn(M×M) denote the fundamental
cohomology class in H∗(M ×M) dual to the diagonal embedding ∆(M) ⊂ M ×M 4.
If µ′′G is in the image of the comparison map Φ∗B : BH∗(G × G) → H∗(G × G) with
respect to a length function L on G, then (G,L) is B -isocohomological.

Proof Assume L fixed, and consider the following diagram:

Hi(G)
−∩µG //

Hn−i(G)

ΦB∗
��

µ′′G/−
oo

BHi(G)

Φ∗B

OO

−∩µBG// BHn−i(G)
?

oo_ _ _

4This class is simply the image, under the restriction map H∗(M ×M,M ×M −∆(M))→
H∗(M ×M), of the Thom class associated to the normal bundle of the diagonal embedding.
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Here µG ∈ Hn(G) = Hn(M) denotes the fundamental homology class of M . Now
− ∩ µG is an isomorphism with inverse given by µ′′G/− . The homology class µBG ∈
BHn(G) is simply the image of µG ∈ Hn(G) under the comparison map ΨB∗ . By
section 2.6,

− ∩ µBG = ΦB∗ ◦ (− ∩ µG) ◦ Φ∗B

In fact this identify follows from a similar one that holds on the (co)chain level. If there
exists a class Bµ′′G ∈ BHn(G×G) satisfying µ′′G = Ψ∗B(Bµ′′G), then taking ? = Bµ

′′
G/−

in the above diagram and appealing again to section 5.1, we get the second identity

µ′′G/− = Φ∗B ◦ (Bµ′′G/−) ◦ ΦB∗

This implies the diagram, with “?” so defined, is commutative. The fact that the maps
at the top are isomorphisms then implies all of the other maps in the diagram are as
well.

[Note: There is a different way of thinking about this result. By the Duality Theorem
(Thm. 11.10 of [MS]), for any basis {bi} of H∗(G) = H∗(M), taken as a (finite-
dimensional) graded vector space over C, there exists a “dual" basis {b]j} with <

bi ∪ b]j , µG >= δij . In terms of these bases, µ′′G is given by the equation

µ′′G =
∑

i

(−1)dim(bi)bi × b]i

The condition that this class is B -bounded then forces each of the bi ’s (and hence also
the b]j ’s) to be B -bounded, via linear independence.]

When BG has the homotopy type of an oriented manifold with boundary, we have a
similar result.

Theorem 16 Suppose (G,L) is a group with word-length, such that BG ' M an
oriented compact n-dimensional manifold with connected boundary ∂M . Assume
also that ∂M is aspherical, and incompressibly embedded in M (i.e., the induced map
on fundamental groups π1(∂M)→ π1(M) is injective). Let D(M) = M ∪

∂(M)
M denote

the double of M along its boundary. If the fundamental cohomology classes of both
D(M) and ∂M are both in the image of the comparison map for a bounding class B (in
the manner described by theorem 15), then G is B -isocohomological.

Proof Let G′i = π1(∂M) and G′′ = π1(D(M)). By Van Kampen’s theorem, G′′∼= G ∗
G′

G; moreover, the incompressibility of ∂M in M implies D(M) ' K(G′′, 1) is aspheri-
cal. Now consider the diagram
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. . . // BHj−1(G′)
δ //

��

BHj(G′′) //

��

BHj(G)⊕ BHj(G) //

��

BHj(G′) //

��

. . .

. . . // Hj−1(G′)
δ // Hj(G′′) // Hj(G)⊕ Hj(G) // Hj(G′)

δ // . . .

Both the top and bottom sequences are derived from the collapsing of the spectral
sequence associated to a group acting on a complex (in this case, a tree with two
edges and three vertices, representing the amalgamated free product). The vertical
maps are induced by the comparison transformation BH∗(−) → H∗(−), implying the
diagram is commutative. By Theorem 15, the comparison map is an isomorphism
for both G′ and G′′ (both of whose classifying spaces are represented by compact,
oriented finite-dimensional manifolds without boundary). The result follows by the
five-lemma.

It is not clear if this is the best possible result when the boundary is non-empty, i.e.,
whether B -isocohomologicality for G could be guaranteed by the B -boundedness of
a single cohomology class. It is also not clear what one can say in general if either
∂M is not aspherical, or if it is, but not incompressibly embedded in M . All of these
situations would seem to deserve further attention.

6.3 B-duality groups

Using the pairing operations of section 2.6, one has an obvious extension of the
definition of a duality group to the B -bounded setting.

Definition 16 Given a bounding class B and a group with word-length (G,L), we say
that G is a B -duality group of dimension n if there exists an HB,L(G)-module DB and
a “fundamental class" µB ∈ BHn(G,DB) with

BHi(G,V) −
∩µB−→∼= BHn−i(G,D⊗̂V)

Theorem 17 Let B be a bounding class, and (G,L) a B -duality group with duality
module DB . Suppose µB is in the image of the comparison map ΨB∗ . Then
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• If DB is finite-dimensional over C, (G,L) is strongly monocohomological (that
is, the comparison map is injective in cohomology for all bornological HB,L(G)-
modules V .

• If DB is infinite-dimensional over C, (G,L) is monocohomological for all
bornological HB,L(G)-modules V which are finite-dimensional over C.

Proof Choose µD ∈ Hn(G,D) with ΦBn (µD) = µBD . We can consider a diagram
analogous to that of Theorem (15):

Hi(G,V)
−∩µD //

Hn−i(G,DB ⊗ V)

ΦB∗
��

BHi(G,V)

Φ∗B

OO

−∩µBD //
BHn−i(G,DB⊗̂V)

At issue in this diagram is the difference between DB ⊗ V and DB⊗̂V . However, if
either DB or V is finite-dimensional over C, this difference vanishes and the diagram
commutes, verifying injectivity of the comparison map in the cases indicated. Note that
we do not assume the top horizontal map in the above diagram is an isomorphism.

Remark Ideally, one would like to prove the diagram commutes whenever µB is in
the image of the comparison map. However, we have not yet been able to show this.

6.4 Two solvmanifolds

We construct examples of groups π , admitting closed oriented compact manifold
models for Bπ of small dimension, for which the comparison map fails to be surjective.

Let Ln denote the standard word-length function on Zn , and set

LWLn(g) = log(1 + Ln(g))

This is still a length function on Zn , but it is not B -equivalent to Ln unless E � B .
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Proposition 3 Let BH∗log(Zn) denote the B -bounded cohomology of the group with
word-length (Zn,LWLn). Then for all B ≺ E ,

0 = Φ∗B : BH∗log(Zn)→ H∗(Zn), ∗ > 0

Proof When ∗ = 1, elements of BH1
log(Z) correspond bijectively to group homo-

morphisms from Z to C, equipped with its usual norm. The norm of any non-zero
homomorphism grows linearly with respect to the standard word-length function on
Z. This means it grows exponentially as a function of LWL1 . When B ≺ E , this is
impossible, implying BH1

log(Z) = 0. This verifies the proposition in the case n = 1.

From the naturality of the coproduct operation in B -bounded cohomology we have a
commuting diagram

BH∗(Zn) //

B∇∗
��

H∗(Zn)

∇∗
��

n
⊗BH∗log(Z) // n

⊗H∗(Z)

The vertical map on the right is injective, and the lower horizontal map is zero above
dimension zero, by what we have just shown. The result follows.

Example 1 [Gromov] As above, assume L � B ≺ E and let G be the semi-direct
product Z2 o Z, where Z act on Z2 by the representation(

2 1
1 1

)
This is a split-extension of Z by Z2 ; moreover, Z2 has exponential distortion in G.
This is equivalent to saying the induced word-length function on Z2 coming from
the embedding in G is (linearly) equivalent to LWL2 . For the base group Z, the
word-length function induced by the projection G � Z is the standard one. Now the
Hochschild-Serre spectral sequence in ordinary cohomology for this extension satisfies
E∗∗2 = E∗∗∞ for dimensional reasons. Embedding Z2 o Z in the solvable Lie group
R2 o R, the action of the base on the fiber (over R) is similar to the action given by
r ◦ (r1, r2) = (eλrr1, e−λrr2). The first exterior power of this representation has no
invariant subspaces, while the second exterior power is the identity. Hence E0,1

2 =

H0(Z; H1(Z2)) = 0, while E0,2
2 = H0(Z; H2(Z2))∼=C. On classifying spaces the
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short-exact sequence Z2 � G � Z produces a fibration sequence of closed oriented
manifolds and orientation-preserving maps. This yields a Poincaré Duality map on the
E∗∗2 -term of the spectral sequence for H∗(G). By this duality, we conclude E0,1

2 is dual
to E1,1

2 which therefore must also be zero (we already knew H1(Z) = E1,0
2
∼= E0,2

2 =

H0(Z; H2(Z2))∼=C). This gives an isomorphism H∗(G)∼= H∗(Z)⊗ H∗(Z2), although
there is no homomorphism of groups inducing it. If we denote by ti ∈ Hi(G) the
element corresponding to the generator of Hi(Zi), i = 1, 2 (after fixing a preferred
orientation of BG), then

Proposition 4 The cohomology class t2 ∈ H2(G)∼=C cannot lie in the image of the
comparison map Ψ2

B : BH2(G)→ H2(G) whenever B ≺ E .

Proof The comparison map is natural with respect to those maps induced by group
homomorphisms, implying the existence of a commuting diagram

BH2(G) //

Ψ2
B

��

BH2
log(Z2)

Ψ2
B

��
H2(G) //// H2(Z2)

For B ≺ E , the map on the right is trivial by Proposition 3, while the spectral sequence
argument for ordinary cohomology just given shows the lower horizontal map sends
t2 non-trivially to the generator of H2(Z2)∼=C. Thus t2 cannot be in the image of Ψ2

B
(this is in the spirit to Gromov’s original argument referenced above).

With some additional work, one can also show t1t2 ∈ H3(G) is not in the image
of Ψ3

B whenever B ≺ E . Of course, by Theorem 15, The dual fundamental class
u′ ∈ H3(G× G) cannot be in the image of Ψ3

B for B ≺ E .

There are some additional consequences of this first example worth noting (with P �
B ≺ E ).

• All surface groups are non-positively curved - hence B -IC - so 3 is the lowest
dimension for which there can exist a closed oriented K(π, 1) manifold with
non-B -bounded cohomology.

• Nilpotent groups are B -IC when P ≺ B [O1], [JR1] , so solvable groups are
the simplest types of groups which could have non-B -bounded cohomology for
P � B .
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• For finitely-generated groups, all 1-dimensional cohomology classes exhibit
linear growth with respect to the word-length function, so cohomological di-
mension 2 is the first dimension in which classes not B -bounded with respect
to the word-length function could occur.

• If the first Dehn function of G were B -bounded, G would have to be strongly
B -isocohomological in cohomology dimensions 1 and 2. By contradiction, we
recover the result of Gersten [Ge1] that the first Dehn function of G must be (at
least) exponential.

Example 2 [Arzhantseva-Osin] Let φ : Z2 → SL3(Z) be an injection sending the usual
generators of Z2 to to semi-simple matrices with real spectrum. Denote by H be the
semi-direct product Z3 o Z2 where Z2 acts via the representation induced by φ.

The classifying space BH is homotopy-equivalent to a 5-dimensional closed, compact,
and oriented solvmanifold M5 . It is shown in [AO] that Z3 is exponentially distorted
in H in a manner similar to the previous example.

Theorem 18 There exists a cohomology class t3 ∈ H3(H) not in the image of Ψ3
B for

any B ≺ E .

Proof On the level of classifying spaces, the short-exact sequence Z3 i
� H

p
� Z2

corresponds to a fibration sequence of closed oriented compact manifolds, with the
maps preserving orientation. Thus the top-dimensional cohomology class µ5 ∈ H5(H)
satisfies µ5 = µ3µ2 where µ3 maps under i∗ to 0 6= µ′3 ∈ H3(Z3)Z

2
(the Z2 -invariant

fundamental cohomology class of Z3 ), and µ2 = p∗(µ′2) where µ′2 ∈ H2(Z2) is the
fundamental cohomology class for Z2 .

As before, there is a commuting diagram

BH3(H) //

Ψ3
B

��

BH3
log(Z3)

Ψ3
B

��
H3(G) //// H3(Z3)

where the map on the right is zero. The result follows.
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By a more detailed analysis, one can conclude that µ5 ∈ H5(H)∼=C is not B -bounded
for any B ≺ E , and by Theorem 15, we know the same for the dual fundamental class
in H5(H × H). However, this example is important for another reason.

Corollary 7 The Dehn functions of H are not B -equivalent for any bounding class
B ≺ E . Precisely, the first Dehn function is quadratic, while the second Dehn function
is at least simple exponential.

Proof The first Dehn function of H was computed in [AO], where it was shown to be
quadratic. If the second Dehn function were B -bounded for some L � B ≺ E , then by
Theorem 3, the group H would have to be B -isocohomological through dimension 3
contradicting the previous result. So the second Dehn function must be at least simple
exponential.

6.5 More on the comparison map

We have shown the comparison map fails to be surjective in general, at least for
bounding classes B ≺ E . It is natural to ask whether this map also fails to be injective.
The next theorem answers this question.

Theorem 19 Let (G,Lst) be a discrete group with standard word-length function,
with BG ' Y a finite complex. If B is a bounding class for which the comparison
map Φ∗B(G) : BH∗(G)→ H∗(G) fails to be surjective, then the is another group F(G),
depending functorially on G up to homotopy, for which the comparison map Φ∗B fails
to be injective.

Proof As BG is homotopically finite, we may construct a finitely-generated hyper-
bolic group H(G) and a map pG : H(G) → G which induces an injection in group
cohomology with trivial coefficients [Gr, CD, DJ]. Also, for any discrete group G′ , a
classical construction allow us to embed G′ in an acyclic group A(G′), where the in-
clusion iG′ : G′ ↪→ A(G′) is a functorial construction in G′ . If G′ is finitely-generated
and equipped with the standard word-length function, we can arrange for the image
of G′ in A(G′) to be non-distorted. Abbreviate H(G) as C , and let A1 = G × A(C),
A2 = A(C). There are inclusions

C ↪→ A1, g 7→ (pG(g), iC(g)),(31)
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C ↪→ A2, g 7→ iC(g)(32)

Let A3 = A1 ∗
C

A2 . By the spectral sequence of section 5.2, there is a commuting

diagram of Mayer-Vietoris sequences

. . . // BHj−1(C)
δ //

∼=
��

BHj(A3) //

��

BHj(A1)⊕ BHj(A2) //

��

BHj(C) //

∼=
��

BHj+1(A3) //

��

. . .

. . . // Hj−1(C)
δ // Hj(A3) // Hj(A1)⊕ Hj(A2) // Hj(C)

δ // Hj+1(A3) // . . .

Because C is finitely-generated hyperbolic, the comparison map for C is an isomor-
phism for all L � B . Moreover, H∗(A2) = 0 for ∗ > 0, and F∗(A1)∼= F∗(G) ⊗
F∗(A(C)) for F∗(−) = BH∗(−),H∗(−). Hence the cokernel of the comparison map
for A1 is naturally isomorphic to the cokernel of the comparison map for G. The
injectivity of H∗(G)→ H∗(C) implies the map Hj(A3)→ Hj(A1)⊕Hj(A2) is zero for
j > 0. The result is an injection

coker
(
Φ∗B : BH∗(A1)⊕ BH∗(A2)→ H∗(A1)⊕ H∗(A2)

)
↪→ ker

(
Φ∗+1
B : BH∗+1(A3)→ H∗+1(A3)

)
Define F(G) = A3 . If coker(Φm

B(G)) 6= 0, then ker(Φm+1
B (F(G))) 6= 0. The acyclic

group construction G 7→ A(G) can be done functorially, as can the hyperbolization
of the finite complex Y . However, this requires choosing a finite complex Y ' BG,
which, on the category of type finitely-presented FL groups, is functorial only up to
homotopy.

Corollary 8 There exist discrete groups equipped with standard word-length function
for which the comparison map Φ3

B fails to be injective for all B ≺ E .

Proof Let G be the group in Proposition 4. By the previous theorem, Φ3
B(F(G))

cannot be an injection for any B ≺ E .

It should be noted that the groups resulting from the above constructions will typically
have large classifying spaces, even when BG has the homotopy type of a relatively
simple complex. The following alternative construction provides a more geometric
model for the acyclic “envelope” used above. Again, assume G is type FL , so that
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BG ' Y a finite complex. According to recent work of Leary [L], we may construct a
diagram

TY // //

��

TŶ

��
Y // // Ŷ

where Ŷ denotes the cone on Y (which can be done so as to be functorial in Y and
preserve finiteness), and where TX denotes the “metric” Kan-Thurston space over X .
By [L], this is a CAT(0)-space (hence aspherical) whose construction is functorial on the
category of finite complexes, for which the map TX → X is a homology isomorphism.
Thus in the above setup, we can replace C by C1 := π1(TY ) and A(C) by C2 := π1(Ŷ),
and repeat the construction with A1 = G× C2 , A2 = C2 , F(G) = A3 = A1 ∗

C1
A2 , the

difference now being that A1 , A2 as well as the amalgamated product A3 are all of type
FL . Because CAT(0)-groups admit a synchronous linear combing, they are B -SIC for
all B � P . Hence

Theorem 20 Let (G,Lst) be a group of type FL with standard word-length function,
where BG ' Y a finite complex. If B � P is a bounding class for which the comparison
map ΨB(G) : BH∗(G)→ H∗(G) fails to be surjective, then there is another group F(G)
of type FL , depending functorially on G up to homotopy, for which the comparison
map Φ∗B fails to be injective.

Corollary 9 There exist discrete groups equipped with standard word-length function
of type FL for which the comparison map Φ3

B fails to be injective for all P � B ≺ E .
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