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We define a relative property A for a countable group with respect to a finite
family of subgroups. Many characterizations for relative property A are given. In
particular a relative bounded cohomological characterization shows that if G has
property A relative to a family of subgroups H and if each H ∈ H has property
A, then G has property A. This result leads to new classes of groups that have
property A. In particular, groups are of property A if they act cocompactly on locally
finite property A spaces of bounded geometry with any stabilizer of property A.
Specializing the definition of relative property A, an analogue definition of relative
amenability for discrete groups are introduced and similar results are obtained.
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1 Introduction

Property A is a geometric condition on metric spaces introduced by Yu [29] for studying
coarse embeddability into Hilbert spaces. It amounts to a non-equivariant generaliza-
tion of amenability. Among many important consequences of property A are the validity
of the Coarse Baum-Connes Conjecture (which, in turn, implies the Strong Novikov
Conjecture), the Gromov-Lawson-Rosenberg Conjecture on the existence of positive
scalar curvature, and Gromov’s zero-in-the-spectrum conjecture. It is the work of Hig-
son and Roe [16] that characterized property A in terms of analytical conditions, which
are similar to classical conditions characterizing amenable groups. Since amenable
groups are of property A, and they can also be characterized by vanishing of certain
bounded cohomology groups, Higson proposed to characterize property A groups by
cohomological conditions. Several related results in this direction have recently ap-
peared in [7], [8], and [12]. In [8] Brodzki, Niblo, and Wright give a characterization
of property A for metric spaces via the construction of an asymptotically invariant
cohomology theory, while in [12] Douglas and Nowak give a partial characterization
of property A in terms of bounded cohomology. The program in [12] was completed
by Brodzki, Niblo, Nowak, and Wright in [7] using bounded cohomology with certain
coefficients. In particular, they show that G has property A if and only if for every
appropriate coefficient module E , Hq

b(G; E∗) = 0 for q ≥ 1. Monod has obtained a
similar characterization in [22], where property A is further shown to be equivalent to
the relative injectivity of a class of Banach modules associated to the group.

In the current paper, we expand upon the methods of [7] by examining the relative
bounded cohomology of the countable discrete group G with respect to a finite family
of subgroups, H , denoted by H∗b (G,H;V). For each choice of coefficient module, there
is a long-exact sequence relating H∗b (G;V), H∗b (G,H;V), and the bounded cohomology
of the subgroups [18].

We then define relative property A for G equipped with a left-invariant proper metric
relative to a finite family of subgroups H . This is given as a relative version of
Yu’s original definition. Several equivalent formulations of relative property A are
developed, including analogues of amenable actions on a compact space and Reiter’s
condition. Most importantly, G has relative property A with respect to H , if and only
if for any `1 -geometric G-C(X) module E , the map H0

b(H; E∗) → H1
b(G,H; E∗) is

surjective. In conjunction with the results of [7], we arrive at the following theorem.

Theorem Suppose that the countable discrete group G has relative property A with
respect to the finite family of subgroups H . Then G has property A if and only if each
of the subgroups H ∈ H has property A.
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In particular, this generalizes the theorems of Ozawa [26] and Dadarlat-Guentner [11]
for relatively hyperbolic groups, and is similar in spirit to Osin’s results on finite
asymptotic dimension [25].

The following theorem describes conditions that ensure relative property A.

Theorem Suppose that a finitely generated discrete group G acts cocompactly on
a uniformly discrete metric space with bounded geometry, (X, dX). Fix a family of
representatives R of orbits of G in X , and let H be the family of subgroups occurring
as the stabilizers of elements of R. If (X, dX) has property A, then G has relative
property A with respect to H .

A corollary to the theorem is the following result on a complex of groups.

Corollary Suppose the finitely generated discrete group G is the fundamental group
of a developable finite dimensional complex of groups whose development is a locally
finite complex with property A. Then G has relative property A with respect to the
vertex groups. In particular, if each vertex group has property A, then G has property
A.

This also gives an extension of a Theorem of [6], where it is shown that a finite
dimensional CAT(0) cube complex has property A. We have the following corollary
which generalizes a theorem of Bell [3] and Guentner-Tessera-Yu [15] for property A
groups.

Corollary Suppose that the finitely generated group G acts cocompactly on a locally
finite, finite dimensional CAT(0) cube complex. If any vertex stabilizer has property
A, then G has property A.

By specializing the definition of relative property A, we formulate a notion of relative
amenability. A countable discrete group G is relatively amenable to a finite family
of subgroups H if there is a G-invariant mean on `∞(G/H), where G/H is the
disjoint of all G/H for H ∈ H . Our characterization of relative property A gives
a cohomological characterization of relative amenability as well. This allows one to
determine amenability for a group in terms of group actions on metric spaces, via a
corollary to Theorem 6.9 which states the following:

Corollary Suppose the countable discrete group G acts cocompactly on a uniformly
discrete metric space with bounded geometry. If the space is amenable in the sense of
Block and Weinberger [5], and any point stabilizer is amenable, then G is amenable.
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We anticipate that this will provide many new examples of amenable groups.

We would also like to point out that from the works of Guentner-Kaminker [14] and
Ozawa [27] Property A for countable discrete groups is equivalent to the exactness
of the group [20]. We will discuss a relative version of the exactness in a future
publication.

We now outline what will follow.

In section 2 we recall the definition of property A for uniformly discrete metric spaces
of bounded geometry. We then review the bounded cohomology interpretation of
property A given in [7]. In section 3 we review relative bounded cohomology and
the Bieri-Eckmann type long-exact sequence relating relative and absolute bounded
cohomologies [18].

In section 4 we introduce the notion of relative property A. This is based on the
existence of a countable set K on which the group acts cofinitely, with the elements
of H and their conjugates appearing as the point stabilizers. We then give several
equivalent descriptions of relative property A. Our notion of relative property A has
the benefit that if H consists of only the trivial subgroup, our definition reduces to the
statement that G itself has property A. From the work of Ozawa [26], groups acting
cofinitely on uniformly fine hyperbolic graphs provide examples of groups satisfying
relative property A with respect to the vertex stabilizers. (In particular, this includes
relatively hyperbolic groups, amalgamated free products, and HNN extensions.)

In section 5 we give a cohomological characterization for relative property A. In the
case that each of the subgroups are of property A, a long-exact sequence argument
implies property A for the group. We show that a finitely generated group acting
cocompactly on a property A metric space has relative property A with respect to the
point stabilizers. It is known by [10, 6] that locally finite, finite dimensional CAT(0)
cube complexes have property A, so that a group acting cocompactly on such a complex
has relative property A with respect to the vertex stabilizers. Consequently, if each of
the vertex stabilizers have property A then the group itself has property A.

Finally, in section 6 we propose a definition of relative amenability. Our notion of
relative amenability, in the case of a single subgroup, reduces to Monod and Popa’s
notion of co-amenability [24]. It is also equivalent to the amenability of the quasi-
regular representation of G on `2(G/H) [2]. A cohomological characterization for
relative amenability is obtained by specializing that for relative property A. It is then
shown that if a group is relatively amenable with respect to a family of amenable
subgroups, then the group is amenable. We also show that a finitely generated group
acting cocompactly on an amenable metric space with amenable stabilizers is amenable.
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6.12. We would like to thank Thomas Sinclair for bring the paper [2] to our attention.

2 Bounded cohomology and Property A

Suppose X is a compact Hausdorff space, and denote by C(X) the space of real-valued
continuous functions on X . Let K be a fixed countable set admitting a cofinite G
action with stabilizers the conjugates of elements of H . Denote by V be the space of
all functions f : K → C(X) endowed with the norm

‖f‖V = sup
x∈X

∑
k∈K

|fk(x)|

where fk ∈ C(X) is the function obtained by evaluating f at k ∈ K .

Let W00(K,X) be the subspace of V which contains all functions f : K → C(X)
which have finite support and such that for some c ∈ R, c = c(f ),

∑
k∈K fk = c1X ,

where 1X denotes the constant function with value 1 on X . Denote the closure of this
subspace, in the V -norm, by W0(K,X). Let π : W00(K,X) → R be defined so that∑

k∈K fk = π(f )1X . By continuity π extends to all of W0(K,X). Denote the kernel of
this extension by N0(K,X).

Definition 2.1 A Banach space E is a C(X)-module if it is equipped with a contractive
unital representation of C(X). If in addition X admits a G-action, E is a G-C(X)
module if G acts on E by isometries and the representation of C(X) is G-equivariant.

Definition 2.2 Let E be a G-C(X) module. φ1, φ2 ∈ E are disjointly supported if
there exist f1, f2 ∈ C(X) with disjoint support in X , with f1φ1 = φ1 and f2φ2 = φ2 .

E is `∞ -geometric if, whenever φ1 and φ2 are disjointly supported, ‖φ1 + φ2‖E =

sup
{
‖φ1‖E , ‖φ2‖E

}
.

E is `1 -geometric if, whenever φ1 and φ2 are disjointly supported, ‖φ1 + φ2‖E =

‖φ1‖E + ‖φ2‖E .

Lemma 2.3 The Banach space V is a G-C(X) module. The subspace N0(K,X) is an
`∞ -geometric G-C(X) module.
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Proof The G action on X extends to an isometric action on V via (g · f )k(x) =

fg−1k(g−1x) = g · (fg−1k(x)). Given a function φ ∈ C(X) and f ∈ V , define φ · f by
(φ · f )k(x) = φ(x)fk(x). This action restricts to N0(K,X). It remains to show N0(K,X)
is `∞ -geometric.

To that end, suppose φ1 and φ2 are disjointly supported elements of N0(K,X). Then
there exist disjointly supported f1 and f2 in C(X) such that f1φ1 = φ1 and f2φ2 = φ2 .

‖φ1 + φ2‖V = ‖f1φ1 + f2φ2‖

= sup
x∈X

∑
k∈K

∣∣f1(x)φ1
k(x) + f2(x)φ2

k(x)
∣∣

= sup
x∈X

(∑
k∈K

|f1(x)φ1
k(x)|+

∑
k∈K

|f2(x)φ2
k(x)|

)
= sup

{
‖φ1‖V , ‖φ2‖V

}
since the two terms in the last sum are disjointly supported in X .

The main result of [7] is the following theorem.

Theorem 2.4 ([7](Theorem B)) Let G be a countable discrete group acting by
homeomorphisms on a compact Hausdorff space X . Then the following are equivalent.

(1) The action of G on X is topologically amenable.

(2) The class [J] ∈ H1
b(G; N0(G,X)∗∗) is trivial.

(3) Hp
b(G; E∗) = 0 for p ≥ 1 and every `1 -geometric G-C(X) module E .

Here [J] is a naturally constructed class in H1
b(G; N0(G,X)∗∗), and N0(G,X) is a

module serving as an absolute version of our relative coefficient module N0(K,X).

The main result of [22] has a similar characterization of topologically amenable actions
of groups.

3 Relative bounded cohomology

The cohomology of a group relative to a subgroup was defined by Auslander [1] for
a single not-necessarily normal subgroup, and by Bieri-Eckmann [4] for a family of
subgroups. The case of relative bounded cohomology for a group relative to a family of
subgroups was defined by Mineyev-Yaman [21] and extended to more general bounding
classes in [18]. We review the construction in this section.
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Suppose H is a finite family of subgroups of the countable discrete group G. For each
H ∈ H , G/H denotes the collection of left-cosets of H in G. Let G/H =

∐
H∈HG/H .

Then CG/H is the complex vector space with basis G/H . Equivalently, CG/H is
the complex vector space of all finitely supported functions G/H → C. Define the
augmentation ε : CG/H → C by ε(f ) =

∑
x∈G/H f (x), and set ∆ = ker ε. For V a

CG module, the relative cohomology of G with respect to H with coefficients in V is
given by

Hp(G,H; V)∼= Hp−1(G; Hom(∆,V))∼= Extp−1
CG (∆,V).

The inclusion of coefficients V → Hom(CG/H,V) → Hom(∆,V) induces a long-
exact sequence

· · · → Hp(G; V)→ Hp(H; V)→ Hp+1(G,H; V)→ Hp+1(G; V)→ · · ·

where Hp(H; V) =
∏

H∈HHp(H; V).

Relative bounded cohomology is constructed in a similar manner. A bounded CG
module is a CG module which is a normed complex vector space such that the G action
is by uniformly bounded linear operators. The morphisms between these modules are
the CG module morphisms which are bounded with respect to the norms in their
domain and range. For two normed spaces U and V , bHom(U,V) will denote the
space of all bounded linear maps from U to V . If U and V are bounded CG modules,
bHomCG(U,V) will denote the bounded CG module maps from U to V . Denote
by bExt the Ext functor in this category of bounded CG modules and bounded CG
morphisms. Endow CG/H with the `1 -norm, ‖f‖`1 =

∑
x∈G/H |f (x)|, and ∆ with

the restriction of this norm.

The relative bounded cohomology of G with respect toH with coefficients in a bounded
CG module V is given by

Hp
b(G,H; V)∼= Hp−1(G; bHom(∆,V))∼= bExtp−1

CG (∆,V).

As shown in [18] for more general bounding classes, there is a long-exact sequence in
relative bounded cohomology analogous to that above.

· · · → Hp
b(G; V)→ Hp

b(H; V)→ Hp+1
b (G,H; V)→ Hp+1

b (G; V)→ · · ·

where Hp
b(H; V) =

∏
H∈HHp

b(H; V).

When dealing with multiple subgroups, H = {Hi | i ∈ I}, we often work with a
particular resolution. Let IG =

∐
i∈I Gi the disjoint union of Gi , where each Gi is a

copy of G. Let Sk(IG) be the collection of all (k + 1)-tuples (g0, . . . , gk) where each
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gj ∈ IG. Equip Sk(IG) with the diagonal left G-action. Set Stk(IG) = CSk(IG).
The sequence

· · · → St2(IG)→ St1(IG)→ St0(IG)→ C→ 0

is exact, where the maps ∂ : Stk(IG)→ Stk−1(IG) are the usual ‘skipping’ boundary
maps

∂(g0, g1, . . . , gk) =
k∑

i=0

(−1)i(g0, g1, . . . , ĝi, . . . , gk)

and ε : St0(IG)→ C is the augmentation

ε(f ) =
∑

x∈IG

f (x).

Fix an i ∈ I , and take 1 to be the identity element of Gi . Define s : Stk(IG) →
Stk+1(IG) by s(g0, . . . , gk) = (1, g0, . . . , gk), and s : C → St0(IG) by s(z) = z(1).
This gives a contracting homotopy for the complex. Thus St∗(IG) is a projective
resolution of C over CG. This will be our standard resolution for calculating coho-
mologies. When each Stk(IG) is endowed with the `1 -norm, this also gives a bounded
projective resolution of C over CG, [21], so it can be utilized to calculate bounded
cohomology as well.

4 Relative property A

Suppose K is a countable cofinite G-set. Denote by R ⊂ K a set of representatives of
the orbits of G in K , and H the set of subgroups of G which occur as the stabilizers
of the points in R. (note that H depends on the choice of R).

For each v ∈ K , we may write v as v = gvrv for a unique rv ∈ R, with gv chosen so
as to be of minimal length among all such elements translating rv to v. Define ρG,K

by the equality

ρG,K : G× K → R+

ρG,K(g, v) = dG(e, gg−1v) = `G(gg−1v)

This map provides a way for measuring the distance between elements in G and
elements in K . In the particular case H / G and K = G/H , ρG,K(g, aH) =

dG/H(gH, aH) = dG/H(g, a), so the above may be seen as a natural extension of
the quotient metric to the case when one has an arbitrary cofinite G-set. Note that for
each g ∈ G, the function v 7→ ρG,K(g, v) is proper.



Relative property A 9

Definition 4.1 Suppose G is a countable group and H = {Hi | i ∈ I} is a finite family
of subgroups of G. G has relative property A with respect to H if the following are
satisfied.

(1) There exists a countable set K admitting a cofinite G action with point stabilizers
precisely the conjugates of the elements of H .

(2) For every ε > 0 and R > 0 there exists an S > 0 and a collection, Ax , of finite
nonempty subsets of K × N indexed by G such that the following hold.

(a) For each x ∈ G, if (k, j) ∈ Ax then ρG,K(x, k) < S .
(b) For each x, y ∈ G with dG(x, y) < R then

|Ax∆Ay|
|Ax|

< ε.

As is the case with property A, relative property A has myriad equivalent descriptions,
some of which we give below. In each, the countable set K is assumed to admit a
cofinite G action with stabilizers the conjugates of the Hi ∈ H . The following is an
analogue of a characterization of property A in [6].

Proposition 4.2 A discrete group G has relative property A with respect to H if and
only if the following hold.

(1) There exists a countable space K admitting a cofinite G action with stabilizers
the conjugates of elements of H .

(2) There exists a sequence of families of finitely supported functions ξn,x : K →
N ∪ {0}, indexed by x ∈ G, satisfying the following conditions.

(a) For every n there is a constant Sn such that if ξn,x(k) 6= 0, then ρG,K(x, k) <
Sn .

(b) For every R > 0,
‖ξn,y − ξn,x‖`1

‖ξn,x‖`1
→ 0

uniformly on the set {(x, y) | dG(x, y) < R} as n→∞.

Proof It is clear that the existence of such a sequence is equivalent to the following.

For every R > 0 and ε > 0 there is an S > 0 and a family of finitely supported
functions ξx : K → N ∪ {0} satisfying these two conditions.

(1) If ξx(k) 6= 0 then ρG,K(x, k) < S .
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(2) If dG(x, y) < R then
‖ξy − ξx‖`1

‖ξx‖`1
< ε.

Assume G has relative property A with respect to H , and fix R > 0 and ε > 0. Take
K and Ax as in Definition 4.1, and define ξx : K → N ∪ {0} by

ξx(k) = |Ax ∩ (k × N)| .

As such, ‖ξx‖`1 = |Ax| and ‖ξy − ξx‖`1 = |Ax∆Ay|. It is clear that the family ξx

satisfies the above conditions.

Conversely, fix R > 0 and ε > 0 and take K and ξx as above. Set

Ax = {(k, j) | 1 ≤ j ≤ ξx(k)} .

Then |Ax| = ‖ξx‖`1 and |Ax∆Ay| = ‖ξy − ξx‖`1 . Therefore G has relative property A
with respect to H .

The following is a ‘Reiter’s condition’ type of characterization.

Proposition 4.3 A discrete group G has relative property A with respect to H if and
only if the following conditions are satisfied.

(1) There exists a countable space K admitting a cofinite G action with stabilizers
the conjugates of elements of H .

(2) There exists a sequence of finitely supported functions fn : G → Prob(K)
satisfying the following conditions.

(a) For every n there is a constant Sn such that if fn(x)(k) 6= 0, then ρG,K(x, k) <
Sn .

(b) For every R > 0, ‖fn(y) − fn(x)‖`1 → 0 as n → ∞ uniformly on the set
{(x, y) | dG(x, y) < R}.

Proof Suppose G has relative property A with respect to H . Take K and the sequence
ξn,x : K → N ∪ {0} guaranteed by Proposition 4.2. Define fn : G → Prob(K) by
fn(x) = 1

‖ξn,x‖`1
ξn,x . If fn(x)(k) 6= 0 then ξn,x(k) 6= 0 so ρG,K(x, k) < Sn . Moreover,

‖fn(x)− fn(y)‖`1 = ‖ 1
‖ξn,x‖`1

ξn,x −
1

‖ξn,y‖`1
ξn,y‖`1

= ‖ 1
‖ξn,x‖`1

ξn,x −
1

‖ξn,x‖`1
ξn,y +

1
‖ξn,x‖`1

ξn,y −
1

‖ξn,y‖`1
ξn,y‖`1
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≤ ‖ 1
‖ξn,x‖`1

ξn,x −
1

‖ξn,x‖`1
ξn,y‖`1 + ‖ 1

‖ξn,x‖`1
ξn,y −

1
‖ξn,y‖`1

ξn,y‖`1

=
‖ξn,x − ξn,y‖`1

‖ξn,x‖`1
+

∣∣∣∣ 1
‖ξn,x‖`1

− 1
‖ξn,y‖`1

∣∣∣∣ ‖ξn,y‖`1

=
‖ξn,x − ξn,y‖`1

‖ξn,x‖`1
+

∣∣∣∣‖ξn,y‖`1 − ‖ξn,x‖`1

‖ξn,x‖`1

∣∣∣∣
≤
‖ξn,x − ξn,y‖`1

‖ξn,x‖`1
+
‖ξn,y − ξn,x‖`1

‖ξn,x‖`1

= 2
‖ξn,x − ξn,y‖`1

‖ξn,x‖`1

This converges to 0 uniformly as n→∞ on {(x, y) | dG(x, y) < R} for all R > 0.

For the converse, assume such a K and a sequence fn : G → Prob(K) exist. Fix
an n > 0. As fn(x)(k) = 0 whenever ρG,K(x, k) ≥ Sn , each fn(x) is uniformly
finitely supported. By an approximation argument, we assume the existence of a
positive integer M such that for each x , fn(x) takes only the values 0/M , 1/M ,
. . ., M/M . We define a function ξn,x : K → N ∪ {0} by ξn,x(k) = Mfn(x)(k)
for k ∈ K . By the properties of fn,x if ρG,K(x, k) ≥ Sn then ξn,x(k) = 0. Also
‖ξn,y − ξn,x‖`1 = M‖fn(y)− fn(x)‖`1 with ‖ξn,x‖`1 = M . Thus for all R > 0,

‖ξn,y − ξn,x‖`1

‖ξn,x‖`1
= ‖fn(y)− fn(x)‖`1 → 0

uniformly on the set {(x, y) | dG(x, y) < R} as n→∞.

In regards to the ‘amenable action on a compact Hausdorff space’ characterization of
property A, relative property A can also be characterized in terms of its action on a
compact Hausdorff space.

Proposition 4.4 A countable group G has relative property A with respect to H , if
and only if the following hold.

(1) There exists a countable space K admitting a cofinite G action with stabilizers
the conjugates of elements of H .

(2) There exist a compact Hausdorff G-space, X , and a sequence of weak∗ -
continuous functions, ξn : X → Prob(K), such that for all g ∈ G,

lim
n→∞

sup
x∈X
‖gξn(x)− ξn(gx)‖`1 = 0.
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Proof We use Proposition 4.3 and argue as in the proof of Lemma 3.3 of [16]. As
in [16], we may assume X is βG, the Stone-Cech compactification of G. Let K
and ξn : βG → Prob(K) be as in the statement of the lemma. For each n, define
bn : G→ Prob(K) as bn(g) = ξn(g), for g ∈ G ⊂ βG. As the image of bn sits inside
a weak∗ -compact subset of Prob(K), by Lemma 3.8 of [16] we may assume that there
is a finite J ⊂ K on which each bn(g) is supported. Define fn : G → Prob(K) by
fn(g) = gbn(g−1). If dG(x, y) < R, then we may write y = xg for dG(e, g) < R.

‖fn(y)− fn(x)‖`1 = ‖ybn(y−1)− xbn(x−1)‖`1

= ‖yξn(y−1)− xξn(x−1)‖`1

= ‖xgξn(g−1x−1)− xξn(x−1)‖`1

= ‖gξn(g−1x−1)− ξn(x−1)‖`1

= ‖ξn(g−1x−1)− g−1ξn(x−1)‖`1 .

As dG is proper on G, we have that ‖fn(y)−fn(x)‖`1 → 0 uniformly on {(x, y) | dG(x, y) <
R} as n→∞. Moreover, fn(x) is supported only on xF ⊂ K . For v ∈ xF , x−1v ∈ F
so dG(e, gx−1v) < L for some constant L , as F is finite. Set Sn = L . Then if
ρG,K(x, v) ≥ Sn , v /∈ xF so fn(x)(v) = 0. By Proposition 4.3, G has relative property
A with respect to H .

For the converse, assume G has relative property A with respect to H . Let K and
fn : G → Prob(K) be given by Proposition 4.3. Define an : G → Prob(K) by
an(g) = gfn(g−1). Thus

‖gan(x)− an(gx)‖`1 = ‖gxfn(x−1)− gxfn(x−1g−1)‖`1

= ‖fn(x−1)− fn(x−1g−1)‖`1 .

As dG(x−1, x−1g−1) = dG(e, g−1) for all x ∈ G, we have

lim
n→∞

sup
x∈G
‖gan(x)− an(gx)‖`1 = 0.

Further, if ρG,K(e, k) > Sn , fn(x−1)(x−1k) = 0. This implies that for every n there is a
finite subset F′ ⊂ K such that an(x) is supported in F′ for all x . As the image of an sit
in a weak∗ -compact subset of Prob(K), these maps extend to ξn : βG → Prob(K) by
the universality property of βG. That the ξn satisfy the properties above follow from
the density of G in βG.

We note that by the proof of Proposition 11 of [26], the assumption of ‘weak∗ -
continuous’ here can be relaxed to ‘Borel’.

Recall that a finitely generated group is relatively hyperbolic with respect to a family
of subgroups if the coned-off graph is hyperbolic and satisfies the bounded coset
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penetration property [13]. By [26], relatively hyperbolic groups have relative property
A with respect to their peripheral subgroups. The compact space X can be taken to be
∆Γ̂, the Gromov compactification of the associated coned-off Cayley graph Γ̂, and K
can be taken to be the vertex set of Γ̂.

The following is a variant on the definition of a relatively amenable action, following
[7].

Definition 4.5 Suppose X is a compact Hausdorff space admitting a G action. The
action is amenable relative to the subgroups H if the following conditions are satisfied.

(1) There exists a countable set K admitting a cofinite G action with stabilizers the
conjugates of elements of H .

(2) There exists a sequence of elements f n ∈ W00(K,X) such that

(a) f n
k ≥ 0 for all n ∈ N and k ∈ K .

(b) π(f n) = 1 for every n ∈ N.
(c) for each g ∈ G we have ‖f n − gf n‖V → 0.

Proposition 4.6 Suppose G acts on a compact Hausdorff space X . Then G satisfies
condition (2) of Proposition 4.4 with respect to H if and only if this action is relatively
amenable with respect to H . In particular admitting a relatively amenable action on a
compact Hausdorff space is equivalent to relative property A.

Proof We first assume that G has relative property A with respect to H . This gives
the sequence ξn : X → Prob(K) of weak∗ continuous functions as above. Define
Sn : K → C(X) by Sn(k)(x) = ξn(x)(k). Then for each x ∈ X ,∑

k∈K

Sn(k)(x) =
∑
k∈K

ξn(x)(k) = 1.

Moreover for each g ∈ G,

‖Sn − gSn‖V = sup
x∈X

∑
k∈K

|Sn(k)(x)− (gSn)(k)(x)|

= sup
x∈X

∑
k∈K

|ξn(x)(k)− (gξn)(x)(k)|

= sup
x∈X

∑
k∈K

|ξn(x)(k)− (gξn(g−1x))(k)|

= sup
y∈X

∑
k∈K

|ξn(gy)(k)− (gξn(y))(k)|
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= sup
y∈X
‖ξn(gy)− gξn(y)‖`1

Thus, this tends to zero as n → ∞. The Sn so constructed need not be finitely
supported, however they can be approximated by finitely supported functions. Let Fj

denote an increasing sequence of finite subsets of K with ∪Fj = K . As for each n,∑
k∈K Sn(k) = 1X , for all sufficiently large j,

∑
k∈Fj

Sn(k) > 0. In particular the sum
is bounded away from zero. For each n, let jn be one such sufficiently large value of
j. For each j, set

Sn,j(k) =
1∑

k∈Fj
Sn(k)

Sn(k)

for k ∈ Fj , and Sn,j(k) = 0 for k /∈ Fj . Setting f n = Sn,jn we find the action is
relatively amenable.

For the other direction, given the sequence f n from the definition of a relatively
amenable action, define ξn : X → Prob(K) by ξn(x)(k) = f n

k (x). Reversing the above
process yields the result.

Definition 4.7 Let G be a countable group acting on a compact Hausdorff space X
by homeomorphisms. A relative mean for the action, with respect to the finite family
of subgroups H , is an element µ ∈ W0(K,X)∗∗ such that µ(π) = 1. A relative mean
µ is invariant if µ(gφ) = µ(φ) for every φ ∈ W0(K,X)∗ .

Lemma 4.8 Let G be a countable group acting on a compact Hausdorff space X by
homeomorphisms. The action is relatively amenable with respect to H if and only if
there is an invariant relative mean for the action with respect to H .

Proof This is almost verbatim from [7]. We include the proof for convenience.

Suppose G acts amenably on X relative toH , and consider the sequence f n ∈ W0(K,X)
from Definition 4.5. View the f n as elements of W0(K,X)∗∗ . The unit ball in
W0(K,X)∗∗ is weak∗ compact, so there is a convergent subsequence fnk . Let µ be the
weak∗ limit of this subsequence. µ(π) = 1 since for each n 〈f n, π〉 = 1. Also

|〈f nk − gf nk , φ〉| ≤ ‖f nk − gf nk‖V‖φ‖.

As the right-hand side tends to zero, µ(gφ) = µ(φ).

For the converse, by Goldstine’s theorem µ ∈ W0(K,X)∗∗ is the weak∗ limit of a
bounded net of elements f λ ∈ W0(K,X). Moreover, we can assume π(f λ) = 1. As
µ is invariant, f λ − gf λ → 0 in the weak∗ topology. As f λ − gf λ are actually in
W0(K,X) this convergence is in the weak topology on W0(K,X).
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For each λ, consider (f λ − gf λ)g∈G as an element of
∏

g∈G W0(K,X). In this space,
this sequence of elements tends to zero in the product weak topology.

∏
g∈G W0(K,X)

is a Fréchet space in the product norm topology, so by Mazur’s theorem there is a
sequence f n of convex combinations of the f λ such that (f n − gf n)g∈G converges to
zero in the Fréchet topology. Thus there exists a sequence f n of elements of W0(K,X)
such that for every g ∈ G, ‖f n − gf n‖ → 0.

Lemma 4.9 Suppose G is a countable group with relative property A with respect to
a finite family of subgroups, H . There exist a compact Hausdorff G-space, X , and
a sequence of weak∗ -continuous functions, ζn : X → Prob(G/H), such that for all
g ∈ G,

lim
n→∞

sup
x∈X
‖gζn(x)− ζn(gx)‖`1 = 0.

In particular, K in the definition of relative property A can be taken to be G/H .

Proof The G action on G/H is cofinite with point stabilizers the conjugates of the
elements of H . Take a sequence of weak∗ continuous maps ξn : βG→ Prob(K) as in
Proposition 4.4. Construct a map π : K → G/H as follows. For u ∈ U with stabilizer
Hi , set π(u) = Hi . For other k ∈ K , there is a u ∈ U and g ∈ G with k = gu. Set
π(k) = gπ(u). This is a well-defined, surjective G-map.

Define ζn : X → Prob(G/H) by

ζn(x)(y) =
∑
k∈K

π(k)=y

ξn(k).

For g ∈ G and x ∈ X ,

(gζn(x))(y)− ζn(gx)(y) = ζn(x)(g−1y)− ζn(gx)(y)

=
∑
k∈K

π(k)=g−1y

ξn(x)(k)−
∑
k∈K

π(k)=y

ξn(gx)(k)

=
∑
k∈K

π(k)=y

ξn(x)(g−1k)−
∑
k∈K

π(k)=y

ξn(gx)(k)

=
∑
k∈K

π(k)=y

((gξn(x))(k)− ξn(gx)(k)) .

‖gζn(x)− ζn(gx)‖`1 =
∑

y∈G/H

|(gζn(x))(y)− ζn(gx)(y)|
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≤
∑

y∈G/H

∣∣∣∣∣∣∣
∑
k∈K

π(k)=y

((gξn(x))(k)− ξn(gx)(k))

∣∣∣∣∣∣∣
≤
∑

y∈G/H

∑
k∈K

π(k)=y

|(gξn(x))(k)− ξn(gx)(k)|

=
∑
k∈K

|(gξn(x))(k)− ξn(gx)(k)|

= ‖gξn(x)− ξn(gx)‖`1 .

Thus limn→∞ supx∈X ‖gζn(x)− ζn(gx)‖`1 = 0.

Due to this lemma, we will always be assuming K = G/H unless stated otherwise.

Proposition 4.10 Suppose H /G. If the quotient group G/H has property A, then G
has relative property A with respect to H .

Proof We endow H with the restricted length from G, and Q = G/H with the
quotient length, `Q(qH) = min{`G(qh) | h ∈ H}.

Suppose Q has property A. Then Q acts topologically amenably on its Stone-Cech
compactification βQ. Let ξn : βQ → Prob(Q) be a sequence of weak∗ continuous
functions such that for all qH ∈ Q

lim
n→∞

sup
x∈βQ

‖qHξn(x)− ξn(qHx)‖`1 = 0.

The G action on Q by isometries extends to a G action on βQ. For any g ∈ G
and any qH ∈ Q, gqH = gHqH , with gH ∈ Q. In particular, for any x ∈ βQ
‖gξn(x)− ξn(gx)‖`1 = ‖gHξn(x)− ξn(gHx)‖`1 . Then for all g ∈ G,

lim
n→∞

sup
x∈βQ

‖gξn(x)− ξn(gx)‖`1 = 0.

Therefore G has relative property A with respect to H .

Remark The converse of this proposition is not true. Consider the example of Q
a finitely generated group without property A, [27], and G a finite rank free group
projecting onto Q, with kernel H . Corollary 5.10 below shows that if G has property
A then G has relative property A with respect to H , which contradicts the converse.
This shows that the notion of relative property A is fundamentally different than the
quotient having property A.
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Proposition 4.11 Suppose H is a finite family of finite index subgroups of the count-
able group G. Then G has relative property A with respect to H .

Proof Let K = G/H , and let p be the uniform probability measure on the finite set
K , and let ξn : βG→ Prob(K) be the sequence of maps defined by ξn(x) = p for all n
and x . It is obvious that ξn is weak∗ continuous and

lim
n→∞

sup
x∈βG

‖gξn(x)− ξn(gx)‖`1 = 0

for all g ∈ G.

5 A cohomological characterization

For each i ∈ I , fix a vertex ki in K such that the stabilizer of ki in G is Hi . Then for
g ∈ IG, set kg = ki for g ∈ Gi . Note that when K = G/H , ki is the coset Hi , and if
g ∈ Gi then kg is the coset Hi .

Definition 5.1 Let G be a countable discrete group and let H be a subgroup of G.
Assume that G acts by homeomorphisms on a compact Hausdorff topological space
X . Define

Jr : St1(IG)→ N00(K,X)

by Jr(g0, g1) = δg1kg1
− δg0kg0

.

The function Jr so defined is a bounded cocycle, thus represents a class [Jr] in
H1

b(G; N0(K,X)∗∗). In the case that H consists of a single subgroup which is trivial,
[Jr] reduces to the Johnson class [J] of [7]. The class [Jr] is called the relative Johnson
class.

Theorem 5.2 The class [Jr] ∈ H1
b(G; N0(K,X)∗∗) is trivial if and only if the action of

G on X is relatively amenable with respect to H .

Proof The short exact sequence

0→ N0(K,X)→ W0(K,X) π→ C→ 0

gives the short exact sequence

0→ N0(K,X)∗∗ → W0(K,X)∗∗ → C→ 0.
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This yields the following long-exact sequence.

· · · → H0
b(G;C)→ H1

b(G; N0(K,X)∗∗)→ H1
b(G; W0(K,X)∗∗)→ · · ·

The class [Jr] is the image under the connecting homomorphism δ : H0
b(G;C) →

H1
b(G; N0(K,X)∗∗) of the class [1] ∈ H0

b(G;C) represented by the constant function
with value 1 on G, [Jr] = δ[1]. By the exactness of the long exact sequence,
[Jr] = 0 if and only if [1] ∈ imπ∗∗ where π∗∗ : H0

b(G; W0(K,X)∗∗) → H0
b(G;C) is

induced by π : W0(K,X)→ C as above. As H0
b(G; W0(K,X)∗∗) = (W0(K,X)∗∗)G and

H0
b(G;C) = C, [Jr] = 0 if and only if there exists an element µ ∈ W0(K,X)∗∗ with

µ = gµ and µ(π) = 1. The equivalence now follows from Lemma 4.8.

Proposition 5.3 The image of [Jr] under the restriction H1
b(G; N0(K,X)∗∗)→ H1

b(H; N0(K,X)∗∗)
is trivial. In particular [Jr] lies in the image of the map H1

b(G,H; N0(K,X)∗∗) →
H1

b(G; N0(K,X)∗∗).

Proof Suppose H ∈ H . For h0, h1 ∈ H , Jr(h0, h1) = δh1k0 − δh0k0 . As the stabilizer
of k0 in G is H , this difference is 0.

Actually, more is shown in this proposition. The restriction of Jr to the subgroups is
identically zero. Thus Jr is a relative cocycle, not merely an absolute cocycle.

Lemma 5.4 Let G be a countable group, H a family of subgroups of G. Assume
that G acts by homeomorphisms on a compact Hausdorff topological space X . If the
map H0

b(H; N0(K,X)∗∗)→ H1
b(G,H; N0(K,X)∗∗) is surjective then the action of G on

X is relatively amenable with respect to H .

Proof By Proposition 5.3, [Jr] is in the image of the map H1
b(G,H; N0(K,X)∗∗) →

H1
b(G; N0(K,X)∗∗). If H0

b(H; N0(K,X)∗∗) → H1
b(G,H; N0(K,X)∗∗) is surjective then

[Jr] = 0. The action is relatively amenable by Theorem 5.2.

Assume E is an `1 -geometric G-C(X) module, and let τ ∈ `∞(K, E∗). Pick a vector
v ∈ E and define a linear functional στ,v : W00(K,X)→ C by

στ,v(f ) = 〈
∑
k∈K

fkτk, v〉

Definition 5.5 Let E be an `1 -geometric G-C(X) module, and let µ ∈ W0(K,X)∗∗

be a relative invariant mean for the action. Define a map µE : `∞(K, E∗)→ E∗ by

〈µE (τ ), v〉 = 〈µ, στ,v〉

for every τ ∈ `∞(K, E∗) and v ∈ E .
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Lemma 5.6 Let E be an `1 -geometric G-C(X) module, and let µ ∈ W0(K,X)∗∗ be
an invariant mean for the action.

(1) µE is G-equivariant.

(2) If τ ∈ `∞(K, E∗) is constant, then µE (τ ) = τH . (As τ is constant, any H ∈ H
will give the same result. )

Proof This follows immediately as in [7].

Theorem 5.7 Let G be a countable group, H a family of subgroups of G. Assume
that G acts by homeomorphisms on a compact Hausdorff topological space X , that the
action of G on X is relatively amenable with respect toH , and that E is an `1 -geometric
G-C(X) module. Then the map H0

b(H; E∗)→ H1
b(G,H; E∗) is surjective.

Proof H0
b(H; E∗)∼= bHomCG(CG/H, E∗), H1

b(G,H; E∗)∼= bHomCG(∆, E∗), and the
natural map H0

b(H; E∗)→ H1
b(G,H; E∗) is induced by the restriction bHom(CG/H, E∗)→

bHom(∆, E∗).

For φ ∈ bHomCG(∆, E∗), define φ̂ : G/H → `∞(G/H, E∗) by (φ̂(k))(k′) = φ(k−k′).

For g ∈ G and k, k′ ∈ G/H ,

(φ̂(gk))(k′) = φ(gk − k′)

= g · φ(k − g−1k′)

= g · (φ̂(k))(g−1k′)

= (gφ̂(k))(k′)

In particular φ̂(gk) = gφ̂(k) so φ̂ is G equivariant.

Define a map s : bHomCG(∆, E∗)→ bHomCG(CG/H, E∗) via

(sφ)(k) = µE (φ̂(k)).

Since φ̂ and µE are G-equivariant we do have sφ ∈ bHomCG(CG/H, E∗).

We consider sφ when restricted to ∆ ⊂ CG/H .

(sφ)(k − k′) = (sφ)(k)− (sφ)(k′)

= µE (φ̂(k))− µE (φ̂(k′))

= µE (φ̂(k)− φ̂(k′))

Here
(φ̂(k)− φ̂(k′))(w) = φ(k − w)− φ(k′ − w) = φ(k − k′).
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In particular, (φ̂(k)− φ̂(k′))(w) is independent of w. Thus (sφ)(k − k′) = φ(k − k′).

This shows for every φ ∈ bHomCG(∆, E∗), there is an sφ ∈ bHomCG(CG/H, E∗) with
sφ restricting to φ. In particular, the map H0

b(H; E∗)→ H1
b(G,H; E∗) is surjective.

As N0(K,X)∗ is an `1 -geometric G-C(X) module, we have established the following.

Corollary 5.8 Let G be a countable group, H a family of subgroups of G. The
following are equivalent.

(1) The action of G has relative property A with respect to H .

(2) For every `1 -geometric G-C(X) module E , the map H0
b(H; E∗)→ H1

b(G,H; E∗)
is surjective.

Corollary 5.9 Let G be a countable group, H a family of subgroups of G. Suppose
that G has relative property A with respect to H . Then G has property A if and only
if each subgroup in H has property A.

Proof If G has property A, it is well known that each subgroup of G also has property
A. For the converse, suppose each Hi ∈ H has property A. For each `1 -geometric
G-C(X) module E consider the long-exact sequence

· · · → H0
b(H; E∗) δ→ H1

b(G,H; E∗) d→ H1
b(G; E∗) r→ H1

b(H; E∗)→ · · · .

As G has relative property A with respect to H , δ is surjective, thus d is the zero map
and r is injective. Since each Hi ∈ H has property A, H1

b(H; E∗) = 0, thus H1
b(G; E∗)

is trivial. The result follows from Theorem 2.4.

Corollary 5.10 Let G be a countable group. If G has property A, then G has relative
property A with respect to any finite family of subgroups.

Proof Suppose E is an `1 -geometric G-C(X) module, and consider the long-exact
sequence

· · · → H0
b(H; E∗) δ→ H1

b(G,H; E∗) d→ H1
b(G; E∗) r→ H1

b(H; E∗)→ · · · .

If G has property A, then H1
b(G; E∗) = 0, whence H0

b(H; E∗) → H1
b(G,H; E∗) is

surjective. As this holds for all E , the result follows from Corollary 5.8.

From Corollary 5.9 and Proposition 4.10 we immediately obtain the following well-
known theorem.
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Corollary 5.11 Suppose G is an extension of the countable group H by the countable
group K . Then G has property A if and only if each H and K have property A.

Theorem 5.12 Suppose the finitely generated group G acts cocompactly on a uni-
formly discrete metric space with bounded geometry, (X, dX). Pick a family of rep-
resentatives R of orbits of G in X . Let H be the family of subgroups which each
stabilize an element of R. If (X, dX) has property A, then G has relative property A
with respect to H .

Proof If X has property A, then there exist a sequence of functions ξn : X → Prob(X)
and a sequence of constants Sn > 0 such that the following are satisfied.

(1) For each n and x , the support of ξn(x) is contained in the ball BSn(x).

(2) For each R > 0, ‖ξn(x)− ξn(y)‖`1 → 0 uniformly on the set {(x, y) | dX(x, y) <
R}.

Fix a basepoint x0 ∈ X , and consider the functions µn : G→ Prob(X) defined by

µn(g) := gξn(g−1x0).

‖gµn(w)− µn(gw)‖`1 = ‖gwξn(w−1x0)− gwξn(w−1g−1x0)‖`1

= ‖ξn(w−1x0)− ξn(w−1g−1x0)‖`1

There is a constant C = C(G,X) such that dX(x0, gx0) ≤ C`G(g) for all g ∈ G.
Thus for a fixed g ∈ G, dX(w−1x0,w−1g−1x0) = dX(gx0, x0) ≤ C`G(g) is bounded
independent of w ∈ G. By the second condition above we have

lim
n→∞

sup
w∈G
‖gµn(w)− µn(gw)‖ = 0.

Examine k ∈ X which lies in the support of µn(g). µn(g)(k) 6= 0 if and only if
gξn(g−1x0)(k) = ξn(g−1x0)(g−1k) 6= 0. This implies dX(g−1x0, g−1k) = dX(x0, k) <
Sn . By uniform boundedness we have a finite set F ⊂ X such that each µn(g) is
supported in F . The collection of all probability measures supported on F is weak∗ -
compact so µn extends to a weak∗ continuous function µn : βG → Prob(X) which
satisfy

lim
n→∞

sup
x∈βG

‖gµn(x)− µn(gx)‖ = 0.
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This gives an extension of a theorem of Bell, [3], and is similar in spirit to a result of
Guentner-Tessera-Yu, [15, Corollary 3.2.4].

Corollary 5.13 Suppose the finitely generated group G acts cocompactly on uni-
formly discrete, bounded geometry metric space X with property A. If there is a point
x0 ∈ X whose stabilizer in G has property A, then G has property A.

Proof The orbit Gx0 of x0 in X is coarsely equivalent to X , so Gx0 has property A.
By Theorem 5.12, G has relative property A with respect to the stabilizer. Corollary
5.9 gives property A for G.

Corollary 5.14 Suppose the finitely generated group G is the fundamental group of a
developable finite dimensional complex of groups Y , whose development is a locally
finite complex with property A. Then G has relative property A with respect to the
vertex groups. In particular, if each vertex group has property A, then G has property
A.

This also gives an extension of a Theorem of [6], where it is shown that a finite
dimensional CAT(0) cube complex has property A. In particular we have the following.

Corollary 5.15 Suppose the finitely generated group G acts cocompactly on a finite
dimensional CAT(0) cube complex. If each vertex stabilizer has property A, then G
has property A.

By the work of Campbell, [10], affine buildings have property A. Thus we have the
following which can be considered a generalization of Kasparov-Skandalis, [19].

Corollary 5.16 Suppose the finitely generated group G acts cocompactly on an affine
building. If the vertex stabilizers have property A, then G has property A.

6 Relative Amenability

As Yu’s property A is a generalization of amenability, the work of the proceeding
sections specializes to the notion of relative amenability. It is well-known that a
countable discrete group G is amenable if and only if there exists a sequence of
probability measures µn ∈ Prob(G) such that for all g ∈ G, ‖gµn − µn‖`1 → 0. That
is, if G acts amenably on a point. This motivates the definition of relative amenability
from that of Definition 4.5.
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Definition 6.1 A countable group G is relatively amenable with respect to H if G
acts amenable relative to H on a point.

When X is reduced to a point, much of the earlier notation simplifies. Of particular
interest are W0(K,X)∼= `1(K) and N0(K,X)∼= `1

0(K), where `1
0(K) denotes the kernel

of the augmentation ε : `1(K)→ C given by ε(f ) =
∑

k∈K f (k).

We remark that this definition, due to the above sections, is equivalent to the existence
of a µ ∈ (`1(K))∗∗ with gµ = µ and µ(π) = 1, where π : `1(K) → C is the
augmentation map. That is, rather than the existence of a G-invariant mean on `∞(G),
relative amenability is the existence of a G-invariant mean on `∞(K).

The construction of the relative Johnson class [Jr] ∈ H1
b

(
G;
(
`1

0(K)
)∗∗) is as before.

We have the following immediately from Theorem 5.2.

Proposition 6.2 The class [Jr] ∈ H1
b

(
G;
(
`1

0(K)
)∗∗) is trivial if and only if G is

relatively amenable with respect to H .

We note that when X is a point, the notion of an `1 -geometric G-C(X) module reduces
to just that of a G-Banach space. This is due to the lack of a pair of nontrivial
disjointly supported elements of C(X)∼=C. We obtain the following cohomological
characterization of relative amenability.

Theorem 6.3 Let G be a countable group and H a finite family of subgroups. The
following are equivalent.

(1) G is relatively amenable with respect to H .

(2) For every G-Banach space E , the map H0
b(H; E∗)→ H1

b(G,H; E∗) is surjective.

This has the following corollary. It follows as above, noting Johnson’s characterization
of amenability.

Corollary 6.4 Suppose the countable group G is relatively amenable with respect to
the family of subgroups H . If each H ∈ H is amenable, then G is amenable.

As an example, let F2 be the free group on two generators, a and b, and let A =< a >
and B =< b >. Since A and B are both amenable, if F2 were relatively amenable
with respect to H = {A,B}, then F2 would be forced by Corollary 6.4 to be amenable.
As it is not, F2 is not relatively amenable with respect to H , even though it does have
relative property A with respect to H .

The following is stronger than the analogue for relative property A.
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Proposition 6.5 Suppose H / G. The quotient G/H is amenable if and only if G is
relatively amenable with respect to H .

Proof If G/H is amenable, there is a sequence of probability measures µn ∈
Prob(G/H) with limn→∞ ‖qHµn − µn‖`1 = 0 for all qH ∈ G/H . As the G action on
G/H has the property that gqH = gHqH we have that ‖gµn−µn‖`1 = ‖gHµn−µn‖`1 .
In particular, for each g ∈ G limn→∞ ‖gµn − µn‖`1 = limn→∞ ‖gHµn − µn‖`1 = 0.

For the converse, suppose G is relatively amenable with respect to H . Then there
is a sequence of probability measures ξn ∈ Prob(G/H), such that for all g ∈ G,
‖gξn − ξn‖`1 → 0. As gqH = gHqH for all qH ∈ G/H , thus for all qH ∈ G/H ,
‖qHξn − ξn‖`1 → 0.

For instance, F2⊕Zn is relatively amenable with respect to the F2 , but not with respect
to the Zn .

Proposition 6.6 SupposeH is a finite family of finite index subgroups of the countable
group G. Then G is relatively amenable with respect to H .

Proof Let K = G/H , and let p be the uniform probability measure on the finite set
K . Let µn = p be the constant sequence. As p is invariant under the G action on K ,
gµn = µn .

We recall the notion of a metric space being amenable, as in [5]. For (X, dX) a metric
space and U ⊂ X let ∂rU = {x ∈ X | dX(x,U) < r and dX(x,X \ U) < r}.

Definition 6.7 A uniformly discrete metric space with bounded geometry (X, dX) is
amenable if for any r, δ > 0 there is a finite U ⊂ X so that

|∂rU|
|U|

< δ.

Recall the definition of uniformly finite homology of Block-Weinberger. Denote by
Cuf

k (X) the formal sums
∑

z∈Xk+1 az[z], with az ∈ C satisfying the following conditions.

(1) There is a K > 0 such that for all z ∈ Xk+1 , az < K .

(2) There is an R > 0 such that if z = (x0, . . . , xk) with dX(xi, xj) ≥ R then az = 0.

Endowed with the boundary map, ∂ , induced by (x0, . . . , xk) 7→
∑k

j=0(−1)j(x0, . . . , x̂j, . . . , xk),

we obtain a chain complex Cuf
∗ (X). Denote the homology of this complex by Huf

∗ (X).
A main result of [5] is the following.
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Theorem 6.8 (Block-Weinberger) Let X be a uniformly discrete bounded geometry
metric space. The following are equivalent.

(1) X is non-amenable.

(2) Huf
0 (X) = 0.

(3) If c =
∑

x∈X ax[x] ∈ Cuf
0 (X) with each ax > 0, then [c] 6= 0 in Huf

0 (X).

Theorem 6.9 Suppose the countable discrete group G acts cocompactly on a uni-
formly discrete metric space with bounded geometry (X, dX). Let R be a family of
representatives of orbits of G in X , and let H be the family of subgroups which each
stabilize an element of R. If X is an amenable metric space, then G is amenable with
respect to H .

Proof If X is amenable, then Huf
0 (X) 6= 0. We will make the identification Cuf

0 (X)∼= `∞(X).
Let A = {φ ∈ `∞(X) | ∃K > 0 with φ(x) ≥ K ∀x ∈ X}. As in the proof of [5, The-
orem 3.1], A ∩ ∂Cuf

1 (X) is empty and A is an open convex subset of `∞(X). By the
Hahn-Banach theorem there exists an m ∈ (`∞(X))∗∼= (`1(X))∗∗ of norm one, so that
m(φ) ≥ 0 for all φ ∈ A, m(∂Cuf

1 (X)) = 0, and m(φ0) = 1 where φ0 =
∑

x∈X[x].

For φ =
∑

x∈X ax[x] ∈ `∞(G) and g ∈ G, define ψ =
∑

x∈X ax[x, gx]. As there
is a constant C such that dX(x, gx) ≤ C`G(g), we have ψ ∈ Cuf

1 (X). Moreover
∂[x, gx] = [gx] − [x] so ∂ψ = gφ − φ. Thus for all φ ∈ `∞(X) and all g ∈ G,
gφ − φ ∈ ∂Cuf

1 (X). Therefore m(gφ − φ) = 0. As gφ and φ are both in `∞(X),
we have (gm)(φ) = m(φ). That is, m ∈ (`1(X))∗∗ such that for all g ∈ G, gm = m
and m(φ0) = 1. As φ0 ∈ `∞(X) corresponds to π ∈ (`1(X))∗ under the identification
(`1(X))∗∼= `∞(X), we have the result.

The following corollary is now clear.

Corollary 6.10 Suppose the countable group G acts cocompactly on a uniformly
discrete metric space X with bounded geometry. If the space is amenable and there is
a point x0 ∈ X with amenable stabilizer, then G is amenable.

Proof This follows as in Corollary 5.13, noting that amenability of metric spaces is a
coarse invariant.

We recall the definition of a co-amenable subgroup, as defined by Monod and Popa in
[24].
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Definition 6.11 A subgroup H of a group G is called co-amenable in G if every
continuous affine G-action on a compact convex subset of a locally convex space with
an H -fixed point has a G fixed point.

This notion of co-amenability is equivalent to the existence of a G-invariant mean
on `∞(G/H). It follows that co-amenability is equivalent to relative amenability in
the case of a single subgroup. As such, the notion of relative amenability serves to
generalize co-amenability.

We have the following generalization of Proposition 3 of [24], which extends Theorem
6.3 above.

Proposition 6.12 Let G be a countable group and H a finite family of subgroups. G
is relatively amenable with respect to H if and only if for every G-Banach space E
and each n ≥ 0, the map Hn

b(H; E∗)→ Hn+1
b (G,H; E∗) is surjective.

Proof If Hn
b(H; E∗)→ Hn+1

b (G,H; E∗) is surjective for n = 0, then relative amenabil-
ity follows from Theorem 6.3.

The long exact sequence in relative bounded cohomology shows that the map Hn
b(H; E∗)→

Hn+1
b (G,H; E∗) is surjective if and only if the map Hn+1

b (G; E∗) → Hn+1
b (H; E∗) is

injective. By Proposition 10.3.2 and Lemma 10.3.6 of [23], there is a Banach G-
module M such that Hn+1

b (G; E∗)∼= H1
b(G; M∗). That a relatively injective G-module

can realize a relatively injective H -module for any subgroup H < G, also gives
Hn+1

b (H; E∗)∼= H1
b(H; M∗). The surjectivity of H0

b(H; M∗) → H1
b(G,H; M∗) com-

pletes the result.

Bekka’s notion of the amenability of unitary representations is also related to our notion
of relative amenability [2].

Definition 6.13 A unitary representation π : G → B(H) on a Hilbert space H is
amenable if there exists a state φ : B(H) → C such that for all T ∈ H and all g ∈ G,
φ(π(g)Tπ(g)∗) = φ(T).

The following is proved as in [2].

Proposition 6.14 Let G be a countable group and H a finite family of subgroups. G
is relatively amenable with respect to H if and only if the quasi-regular representation
π : G→ `2(G/H) is amenable.
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