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ABSTRACT

Ramsey Jr., Bobby William Ph.D., Purdue University, May, 2008. A Generalization of
the Lyndon-Hochschild-Serre Spectral Sequence for Polynomial Cohomology. Major
Professor: Ronghui Ji.

We construct an analogue of the Lyndon-Hochschild-Serre spectral sequence in

the context of polynomial cohomology with E2-term HP ∗(Q;HP ∗(H ; C)). For the

polynomial extensions of Noskov, with the normal subgroup isocohomological, the

spectral sequence converges to HP ∗(G; C). In the case that both H and Q are

isocohomological G must also be isocohomological. By referring to results of Connes-

Moscovici and Noskov if H and Q are both isocohomological and have the Rapid

Decay property, then G satisfies the Novikov conjecture.
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1. INTRODUCTION

In [1] Connes and Moscovici verified the Novikov Conjecture for word hyperbolic

groups by showing that they satisfy two properties. The first is the Rapid Decay

property of Jolissaint [2], which ensures the existance of a smooth dense subalgebra

of the reduced group C∗-algebra. The second property is that every cohomology class

can be represented by a cocycle of polynomial growth, with respect to some (hence

any) word-length function on the group. Connes and Moscovici show that any group

with these two properties satisfies the Novikov conjecture on the homotopy invariance

of higher signatures.

The polynomial cohomology of a group G, denoted HP ∗(G; C), obtained by con-

sidering only cochains of polynomial growth, has been of interest recently. The inclu-

sion of these polynomially bounded cochains into the full cochain complex yields a

homomorphism from the polynomial cohomology to the full cohomology of the group.

The second property of Connes-Moscovici above is that this polynomial comparison

homomorphism is surjective. We say that a group G is isocohomological for M if

HP ∗(G;M) is bornologically isomorphic to H∗(G;M). A group which is isocohomo-

logical for the trivial coefficients C is said to be isocohomological. This definition of

isocohomological differs from that found in [3]. Meyer’s notion is much stronger than

that used here.

In [4] Ji defined polynomial cohomology and showed that virtually nilpotent

groups, are isocohomological. In [5] Meyer showed that combable groups are isoco-

homological. By citing a result of Gersten regarding classifying spaces for combable

groups [6], Ogle independantly showed that combable groups are isocohomological.

For a group extension, 0 → H → G → Q → 0, the Lyndon-Hochschild-Serre

(LHS) spectral sequence is a first-quadrant spectral sequence with E2 term isomorphic

to H∗(Q;H∗(H)) and which converges to H∗(G). In [7], Noskov generalized the
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construction of the LHS spectral sequence to obtain a spectral sequence in bounded

cohomology for which, under suitable topological circumstances, one could identify

the E2 term as H∗
b (Q;H∗

b (H)) and which converges to H∗
b (G). Ogle considered the

LHS spectral sequence in the context of P-bounded cohomology in [8]. However he

also needs additional technical considerations to ensure the appropriate E2 term. It

is not clear for which class of extensions his condition is satisfied.

In this paper we resolve this issue for polynomial extensions, which were proposed

by Noskov in [9]. Let ℓ, ℓH , and ℓQ be word-length functions on G, H , and Q

respectively, and let

0→ H → G
π
→ Q→ 0

be an extension of Q by H . Let q 7→ q be a cross section of π. To this cross section

associate a function [·, ·] : Q×Q→ H by q1q2 = q1q2[q1, q2]. This is the factor set of

the extension. The factor set has polynomial growth if there exists constants C and r

such that ℓH([q1, q2]) ≤ C((1+ℓQ(q1))(1+ℓQ(q2)))
r. The cross section also determines

an “action” of Q on H given by hq = q−1hq. For nonabelian groups H this need not

be an actual group action but we follow the terminology of Noskov. The action is

polynomial if there exists constants C and r such that ℓH(hq) ≤ CℓH(h)(1 + ℓQ(q))r.

Note that if Q is the finite generating set for Q and A is the finite generating set for

H , then as the generating set for G we will take the set of h ∈ A and q for q ∈ Q.

Definition 1.1 An extension G of a finitely generated group Q by a finitely generated

group H is said to be a polynomial extension if there is a cross section yielding a factor

set of polynomial growth and inducing a polynomial action of Q on H.

Our main theorem is as follows.

Theorem 1.2 If 0 → H → G → Q → 0 is a polynomial extension of groups

with H be isocohomological, then there exists a bornological spectral sequence with

Ep,q
2
∼=HP p(Q;HP q(H ; C)) which converges to HP ∗(G; C).
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Using the methods of [3] Meyer is able to show that this theorem holds if one uses

his notion of isocohomological. This results in a stronger conclusion but requires a

stronger hypothesis.

In the case when Q is isocohomological with the appropriate coefficients, we can

compare our spectral sequence with the usual LHS spectral sequence, and see that

they have isomorphic E2-terms, thus the same limits.

Corollary 1.3 Let 0→ H → G→ Q→ 0 be a polynomial extension of groups. If Q

is isocohomological with coefficients HP ∗(H ; C) and H is isocohomological, then G is

isocohomological.

This yields a new class of groups for which the isocohomological property was previ-

ously unknown, as these types of polynomial extensions need not be virtually nilpotent

or polynomially combable. Applying a result of Noskov, [9], regarding the polyno-

mial extension of groups with the Rapid Decay property, as well as the results of

Connes-Moscovici, [1], we obtain:

Corollary 1.4 Let 0→ H → G→ Q→ 0 be a polynomial group extension, let Q be

isocohomological with coefficients HP ∗(H ; C), and let H be isocohomological. If both

Q and H have the Rapid Decay property, G satisfies the Novikov conjecture.

The class of groups which have the Rapid Decay property and are isocohomological

thus contains all virtually nilpotent groups, hyperbolic groups, and is closed under

polynomial extensions.

It would be convient to work in the category of Fréchet and DF spaces, however

there are many quotients involved in the construction, yielding spaces which are nei-

ther Fréchet nor DF. This is the issue Ogle overcomes by use of a technical hypothesis

in [8], and it is at the heart of the topological consideration in [7], to identify the E2-

terms in their spectral sequences. Moreover, at this point in our analysis we need to

utilize an adjointness relationship of the form Hom(A⊗̂B,C)∼= Hom(A,Hom(B,C))

which is not true in the category of locally convex topological vector spaces. To over-

come these obstacles we work mostly in the bornological category. A bornology on a
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space is an analogue of a topology, in which boundedness replaces openness as the key

consideration. In this context, we are also able to bypass many of the issues involved

in the topological analysis of algebraic vector spaces. When endowed with the fine

bornology, as defined later, an algebraic vector space is a complete bornological vector

space. The finest topology yielding a complete topological structure on such a space

is cumbersome. This bornology allows us to replace analysis of continuity in this

topology, to boundedness in a finite dimensional vector space. This bornological view

serves to verify the identification of the ‘iterated’ cohomology spaces H∗(Q;H∗(H))

and HP ∗(Q;HP ∗(H)).

In Chapter 2 we review the cohomology of groups and define the polynomial

growth cohomology of discrete groups, in terms of the topological ℓ1-rapid decay al-

gebra. In Chapter 3 we introduce the bornological framework in which we perform

our later analysis. We also show that the bornological approach to polynomial coho-

mology is equivalent to the topological approach. In Chapter 4 we define bornological

spectral sequences and develop the necessary tools to work with them. In Chapter 5

we construct our bornological spectral sequence.
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2. COHOMOLOGY OF GROUPS

2.1 A Little Homological Algebra

Let R be a ring. An R-module P is said to be projective if, for any R-modules A

and B, any R-module epimorphism φ : A → B, and any R-module homomorphism

f : P → B, there exists an R-module homomorphism f̂ : P → A such that the

following diagram commutes:

P

A
φ

-

�

f̂

B

f

?

That is to say, that P is a projective object in the category of R-modules. More

formally, let C be a category. Using the terminology of [10], an object P of C is

said to be projective if for any objects A and B of C, any admissible epimorphism

Φ ∈ C(A,B), and any morphism σ ∈ C(P,B), there exists a morphism σ̂ ∈ C(P,A)

such that the following diagram commutes:

P

A
Φ

-

�

σ̂

B

σ

?

(Recall that a morphism Φ ∈ C(A,B) is epimorphic if αΦ = βΦ implies α =

β, for all morphisms α and β for which the compositions are defined.) In what

follows, we shall be mainly interested in the categories of R-modules with R-module



6

homomorphisms, complete locally convex topological vector spaces with continuous

linear functions, and complete locally convex bornological vector spaces with bounded

linear functions.

Of course in different categories, ‘admissible’ has different meanings. In the cat-

egory of algebraic R-modules, any epimorphism is admissible. In the category of

topological vector spaces, a continuous linear epimorphism A → B is admissible if

there is a continuous C-linear cross-section. In the category of bornological vector

spaces, a bounded linear epimorphism A → B is admissible if there is a bounded

C-linear cross-section.

Given an R-module A, it is possible to find a projective R-module P0 and an R-

module homomorphism ∂0 : P0 → A, which is epimorphic. Denote by K0 the kernel

of ∂0, and ι0 the inclusion of K0 into P0. We have a short exact sequence

0→ K0
ι0→ P0

∂0→ A→ 0

Let P1 be a projective R-module with ∂′1 : P1 → K0 an R-module epimorphism.

If we denote the kernel of ϕ′
1 by K1, and let ∂1 = ι0∂

′
1. This yields the following exact

sequence

0→ K1
ι1→ P1

∂1→ P0
∂0→ A→ 0

Continuing on in this way we build an exact sequence

. . .
∂n+1

→ Pn
∂n→ Pn−1

∂n−1

→ . . .
∂2→ P1

∂1→ P0
∂0→ A→ 0

Definition 2.1 A projective resolution of an R-module A is a chain complex of R-

modules

. . .
dn+1

→ Mn
dn→Mn−1

dn−1

→ . . .
d2→ M1

d1→M0
d0→ A→ 0

where each Mi is a projective R-module, admitting Z or C-linear maps si : Mi →Mi+1

and s−1 : A→M0 satisfying the following condition.

di+1si + si−1di = id
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The existance of the function si guarantees that the chain complex is an exact

sequence. It follows from our earlier comments that every R-module admits at least

one projective resolution.

Let A and B be R-modules, and let

. . .
dn+1

→ Pn
dn→ Pn−1

dn−1

→ . . .
d2→ P1

d1→ P0
d0→ A→ 0

be a projective resolution of A. The deleted resolution is given by

. . .
dn+1

→ Pn
dn→ Pn−1

dn−1

→ . . .
d2→ P1

d1→ P0

Applying the HomR(·, B) functor yields the following cochain complex.

. . .
d∗n+1

← HomR(Pn, B)
d∗n← HomR(Pn−1, B)

d∗n−1

← . . .
d∗2← HomR(P1, B)

d∗1← HomR(P0, B)

where d∗n(f)(x) = f(dnx).

Definition 2.2 Extn
R(A,B) = ker d∗n+1/ im d∗n is the n-th cohomology module of this

complex.

As any two projective resolutions are homotopy equivalent, this is well-defined.

2.2 Definition of Group Cohomology

Let G be a discrete group. The complex group algebra CG is the set of finite

sums of the form
∑

g∈G agg, with ag ∈ C. It is a ring under the natural operations.

The trivial action of G on C yields a CG-module structure on C, with module action
(∑

g∈G agg
)
· z =

∑
g∈G agz.

Definition 2.3 The complex group cohomology of a discrete group G, denoted by

H∗(G; C), is given by Ext∗CG(C,C).

For k ≥ 0, let Ck(G) = C[Gk+1]. Ck(G) is the complex vector space with Gk as a

basis. In particular, C0(G) is just CG. There is a G-action on Ck(G) given on basis
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vectors by g · (g0, g1, . . . , gk) = (gg0, g1, . . . , gk). This G-action extends to a left CG-

module structure on Ck(G). There is a CG-equivariant map dk : Ck(G) → Ck−1(G)

given on basis elements by

dk(g0, g1, . . . , gk) = (g1, g2, . . . , gk)

+
k∑

j=0

(−1)j+1(g0, g1, . . . , gj−1, gjgj+1, gj+2, . . . , gk)

+(−1)k(g0, g1, . . . , gk−1)

It is a standard calculation that dkdk+1 = 0. We thus have a chain complex

. . .
d3→ C2(G)

d2→ C1(G)
d1→ CG

d0→ C→ 0

where d0 : CG→ C is the augmentation map d0

(∑
g∈G λg(g)

)
=
∑

g∈G λg. For k > 0,

each Ck(G) is a free CG-module, having as a basis those tuples of (g0, g1, . . . , gk) ∈ G
k

with g0 = e. Thus Ck(G) is a projective left CG-module. Moreover, let sk : Ck(G)→

Ck+1(G) be given on basis tuples by sk(g0, g1, . . . , gk) = (e, g0, g1, . . . , gk) and extend

by C-linearity to all of Ck(G). Define s−1 : C→ CG by s−1(λ) = λ(e).

For k ≥ 1 we have

(sk−1dk + dk+1sk)(g0, g1, . . . , gk) = sk−1

k∑

j=0

(−1)j+1(g0, . . . , gjgj+1, . . . , gk)

+sk−1(g1, . . . , gk) + (−1)ksk−1(g0, . . . , gk−1)

+dk+1(e, g0, . . . , gk)

=

k∑

j=0

(−1)j+1(e, g0, . . . , gjgj+1, . . . , gk)

+(e, g1, g2, . . . , gk) + (−1)k(e, g0, . . . , gk−1)

+(g0, g1, . . . , gk)

+
k∑

j=0

(−1)j+2(e, g0, g1, . . . , gjgj+1, . . . , gk)

+(−1)k+1(e, g0, g1, . . . , gk−1)

= (g0, g1, . . . , gk)
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For k = 0 we have

(s−1d0 + d1s0)(g0) = s−1(1) + d1(e, g0)

= (e) + (g0)− (e)

= (g0)

It follows that s∗ is a C-linear contracting homotopy, so that

. . .
d3→ C2(G)

d2→ C1(G)
d1→ CG

d0→ C→ 0

Is in fact a projective resolution of C over CG, which is commonly referred to as the

Bar Resolution of G. We can use this resolution in the calculation of ExtCG(C,C).

To this end, consider HomCG(Ck(G),C). If φ ∈ HomCG(Ck(G),C), then φ is a CG-

equivariant map. In particular φ is completely determined by its value on tuples in

Gk+1 of the form (e, g1, g2, . . . , gn). Let Ck(G) =
{
ψ : Gk → C

}
, consisting of all com-

plex valued functions from Gk. To φ ∈ HomCG(Ck(G),C) we associate ψ ∈ Ck(G)

defined by ψ(g1, g2, . . . , gk) = φ(e, g1, g2, . . . , gk). Similarly given a ψ ∈ Ck(G) we

can define a φ ∈ HomCG(Ck(G),C) given on basis elements by φ(g0, g1, . . . , gk) =

ψ(g−1
0 g1, . . . , g

−1
0 gk). For φ ∈ HomCG(Ck(G),C), we have d∗k(φ)(g0, g1, . . . , gk+1) =

∑k+1
j=0(−1)jφ(g0, . . . , gj−1, gjgj+1, gj+2, . . . , gk+1). We use this boundary map to deter-

mine the appropriate boundary map ∂k : Ck(G)→ Ck+1(G). ∂kψ(g1, g2, . . . , gk+1) =
∑k+1

j=1(−1)jψ(g1, . . . , gj−1, gjgj+1, gj+2, . . . , gk+1).

In this way the cochain complex

HomCG(C0(G),C)
d∗
0→ HomCG(C1(G),C)

d∗
1→ . . .

d∗
k−1

→ HomCG(Ck(G),C)
d∗

k→ . . .

is equivalent to the cochain complex

C0(G)
∂0

→ C1(G)
∂1

→ . . .
∂k−1

→ Ck(G)
∂k

→ . . .

This is the usual cochain complex utilized in the calculation of complex group coho-

mology.
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2.3 Polynomial Cohomology

A natural question is what happens to the cohomology when we restrict to only

cochains which satisfy some growth condition. As a first example, denote by Cn
b (G)

those φ ∈ Cn(G) with

‖φ‖∞ = sup
(x1,...,xn)∈Gn

|φ(x1, ..., xn)| <∞

If φ ∈ Cn
b (G), then consider ∂nφ ∈ Cn+1(G)

(∂nφ)(x1, ..., xn+1) = φ(x2, ..., xn+1)− φ(x1x2, x3, ..., xn+1)

+... + (−1)iφ(x1, ..., xixi+1, ..., xn+1) + ...

+(−1)n+1φ(x1, ..., xn)

So that when considering boundedness:

‖∂nφ‖∞ ≤ ‖φ‖∞ + ‖φ‖∞

+ . . .+ ‖φ‖∞ + . . .

+‖φ‖∞

≤ (n+ 1)‖φ‖∞

Thus the differentials preserve boundedness. That is

C0
b (G)

∂0

→ C1
b (G)

∂1

→ C2
b (G)

∂2

→ . . .

is a subcomplex of the usual cochain complex. The cohomology of this complex,

denoted by H∗
b (G; C), is the bounded cohomology of the group G.

The following result is attributed to Trauber in [11]. We give an elementary proof

of the result here.

Theorem 2.4 Let G be a discrete amenable group. For n ≥ 1, Hn
b (G; C) = 0.

Recall that a discrete group G is amenable if there is a left-invariant mean m :

ℓ∞G → C. This means that m is a positive linear functional on ℓ∞G, with ‖m‖ =

m(1) = 1. Moreover, for each φ ∈ ℓ∞G and g ∈ G, m(φ) = m(φg) where φg(x) =

φ(g · x). See Patterson’s monograph [12] for more details on amenable groups.
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Proof Let φ ∈ C1
b (G) be a bounded cocycle. That is, φ : G→ C is a bounded map

satisfying ∂0φ = 0. That is, for all a, b ∈ G we have (∂0φ)(a, b) = φ(b)−φ(ab)+φ(a) =

0. Thus φ(ab) = φ(a) + φ(b) so φ is a group homomorphism from G to the additive

group C. Let g ∈ G such that φ(g) 6= 0. Denote φ(g) = z. For all n ∈ N, φ(gn) = nz.

As n tends to infinity, the norm of φ(gn) itself grows without bound, contradicting

that φ is bounded. Therefore C1
b (G) is trivial. Consequently, H1

b (G; C) itself is trivial.

Denote a left-invariant mean by m. We continue by examining H2
b (G; C).

Let φ ∈ C2
b (G) with ∂2φ = 0. For all a, b, and c ∈ G

(∂2φ)(a, b, c) = φ(b, c)− φ(ab, c) + φ(a, bc)− φ(a, b) = 0

So φ(a, b) = φ(b, c) − φ(ab, c) + φ(a, bc). Let f : G → C be defined by f(a) =

m(φ(a, x)), where φ(a, x) denotes the bounded function from G to C obtained by

fixing the first argument of φ. As f(a) = m(φ(a, x)) ≤ ‖m‖‖φ‖∞ <∞, f ∈ C1
b (G).

(∂1f)(a, b) = f(b)− f(ab) + f(a)

= m(φ(b, x))−m(φ(ab, x)) +m(φ(a, x))

= m(φ(b, x))−m(φ(ab, x)) +m(φ(a, bx))

= m(φ(b, x)− φ(ab, x) + φ(a, bx))

= m(φ(a, b))

= φ(a, b) ·m(1)

= φ(a, b)

Thus φ is in the image of ∂1, so H2
b (G; C) = 0.

The case for general n > 1 is similar in technique to this case. Let φ ∈ Cn
b (G)

with ∂nφ = 0. For all x1, ..., xn+1 ∈ G

(∂nφ)(x1, ..., xn+1) = φ(x2, ..., xn+1)− φ(x1x2, x3, ..., xn+1)

+... + (−1)iφ(x1, ..., xixi+1, ..., xn+1) + ...

+(−1)n+1φ(x1, ..., xn)

= 0
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Consequently

(−1)nφ(x1, ..., xn) = φ(x2, ..., xn+1)− φ(x1x2, x3, ..., xn+1)

+...+ (−1)iφ(x1, ..., xixi+1, ..., xn+1) + ...

+(−1)nφ(x1, ..., xnxn+1)

Let f : Gn−1 → C be defined by

f(x1, ..., xn−1) = m(φ(x1, ..., xn−1, x))

where, as before, φ(x1, ..., xn−1, x) is treated as a bounded function of one variable

obtained by fixing the first n− 1 arguments of φ. By applying ∂n−1 to f we find

(∂n−1f)(x1, ..., xn) = f(x2, ..., xn)− f(x1x2, x3, ..., xn)

+...+ (−1)if(x1, ..., xixi+1, ..., xn) + ...

+(−1)nf(x1, ..., xn−1)

= m(φ(x2, ..., xn, x))−m(φ(x1x2, x3, ...xn, x))

+...+ (−1)im(φ(x1, ..., xixi+1, ..., xn, x)) + ...

+(−1)nm(φ(x1, ..., xn−1, x))

= m(φ(x2, ..., xn, x))−m(φ(x1x2, x3, ...xn, x))

+...+ (−1)im(φ(x1, ..., xixi+1, ..., xn, x)) + ...

+(−1)nm(φ(x1, ..., xn−1, xnx))

= m(φ(x2, ..., xn, x)− φ(x1x2, x3, ...xn, x)

+...+ (−1)iφ(x1, ..., xixi+1, ..., xn, x) + ...

+(−1)nφ(x1, ..., xn−1, xnx))

= m((−1)nφ(x1, ..., xn))

= (−1)nφ(x1, ..., xn) ·m(1)

= (−1)nφ(x1, ..., xn)

Thus φ = ∂n−1(−1)nf , whence Hn
b (G; C) = 0.
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As mentioned in the introduction, examining polynomial growth cochains played

an integral role in the results of [1]. In other directions, the word hyperbolic groups of

Gromov [13] have all cocycles represented by bounded cocycles [14]. The polynomial

cohomology of a group G was initially defined by Ji in [4], under the name of Schwartz

cohomology. It has also been studied by Meyer in [5], as well as by Ogle in [8]. Our

development in this section follows that of [4].

Definition 2.5 A length function on a group G is a function ℓ : G→ [0,∞) satisfy-

ing

1) For the identity element e, ℓ(e) = 0.

2) For all g ∈ G, ℓ(g−1) = ℓ(g).

3) For all g and h ∈ G, ℓ(gh) ≤ ℓ(g) + ℓ(h).

Definition 2.6 Let G be a finitely generated group, and let X be a finite symmetric

generating set. The word-length function on G, induced by X, is given by

ℓX(g) = min {n ; g = x1x2 . . . xn , xi ∈ X}

It is well known that if X and Y are two finite symmetric generating sets of G,

then there is a constant λ > 1 such that 1
λ
ℓY ≤ ℓX ≤ λℓY . Thus the word-length

functions are, in this sense, equivalent. As such, we will typically denote an arbitrary

word-length function by ℓG without regard to the exact generating set.

A length function, ℓ, on the group G induces a metric on G by the formula

dℓ(g, g
′) = ℓ(g−1g′). Note that this metric is left-invariant under the action of G. If ℓ

is a word-length function then we will usually denote the induced metric by dG. This

is the word-metric on G.

Let G be a discrete group equipped with length-function ℓ, and let SG = {φ :

G→ C; ∀k∈Z

∑
g∈G |φ(g)|(1 + ℓ(g))k <∞}. The topology on SG is generated by the

countable family of norms ‖φ‖k =
∑

g∈G |φ(g)|(1 + ℓ(g))k.

Lemma 2.7 SG is closed under convolution.
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Proof Let φ and ψ ∈ SG.

‖φ ∗ ψ‖k =
∑

g∈G

|(φ ∗ ψ)(g)|(1 + ℓ(g))k

=
∑

g∈G

|
∑

h∈G

φ(h)ψ(h−1g)|(1 + ℓ(g))k

≤
∑

g∈G

∑

h∈G

|φ(h)ψ(h−1g)|(1 + ℓ(g))k

≤
∑

g∈G

∑

h∈G

|φ(h)ψ(h−1g)|(1 + ℓ(h) + ℓ(h−1g))k

≤
∑

g∈G

∑

h∈G

|φ(h)ψ(h−1g)|(1 + ℓ(h))k(1 + ℓ(h−1g))k

≤
∑

h′∈G

∑

h∈G

|φ(h)|(1 + ℓ(h))k|ψ(h′)|(1 + ℓ(h′))k

≤

(
∑

h∈G

|φ(h)|(1 + ℓ(h))k

)(
∑

h′∈G

|ψ(h′)|(1 + ℓ(h′))k

)

≤ ‖φ‖k‖ψ‖k

SG is a Fréchet Algebra in the topology given by the family of norms. Let A be

a complete, locally convex topological C-algebra.

Definition 2.8 A topological A-module is a complete locally convex space, endowed

with a jointly continuous A-module structure.

In the category of topological A-modules with continuous module homomorphisms, a

module is projective if and only if it is a direct summand of a topological A-module of

the form A⊗̂πE, for E a complete locally convex space, and where ⊗̂π is the complete

projective topological tensor product [15], [4].

Definition 2.9 The Polynomial Cohomology of G is given by

HP ∗(G; C) = Ext∗SG(C,C)

where this Ext is taken over the topological category.



15

When dealing with the cohomology of topological algebras, there is a question of

whether to quotient out the image of the boundary map, or to quotient out the closure

of the image of the boundary map. These correspond to the unreduced and reduced

cohomologies respectively. In some sense, the reduced cohomology is ‘topologically

correct’ while the unreduced theory is ‘algebraically correct’. We have defined, and

will work exclusively with, the unreduced theory.

Consider the following sequence:

. . .
∂3→ SG⊗̂

3

π
∂2→ SG⊗̂πSG

∂1→ SG
ǫ
→ C→ 0

where ǫφ =
∑

g∈G φ(g) and

∂i(φ0⊗̂ . . . ⊗̂φi) =
i∑

j=0

(−1)jǫ(φj)φ0⊗̂ . . . ⊗̂φj−1⊗̂φj+1⊗̂ . . . ⊗̂φi

This is a chain complex of projective SG-modules. Let

si(φ0⊗̂ . . . ⊗̂φi) = δe⊗̂φ0⊗̂ . . . ⊗̂φi

One readily verifies that this is a continuous homotopy, contracting the above com-

plex. Thus this is a topological projective resolution of C over SG. We call it the

Standard Resolution.

The more standard approach to polynomial cohomology is as follows. Consider

the usual cochain complex for calculating the group cohomology of a discrete group

G.

C0(G)→ C1(G)→ C2(G)→ C3(G)→ . . .

where Ci(G) consists of all functions from Gi to C. Consider PCi(G) consisting of

those cochains in Ci(G) which are polynomially bounded. That is, PC i(G) consists

of those φ ∈ Ci(G) for which there exists a polynomial P such that |φ(g1, . . . , gi)| ≤

P (1 + ℓG(g1) + . . .+ ℓG(gi)).

PC0(G)→ PC1(G)→ PC2(G)→ PC3(G)→ . . .

is then a subcomplex of the usual complex. The cohomology of this complex is what

is typically referred to as the polynomial cohomology of G, with complex coefficients.
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Lemma 2.10 These two definitions of Polynomial Cohomology coincide as complex

vector spaces.

Proof In [5], Meyer proves that the cohomology obtained by using the bornological

derived functor Extk
SG(C,C) is the same as the cohomology of the above PC∗(G)

cochain complex. We show in Chapter 6 that Extk
SG(C,C) over the bornological

category is equal to Extk
SG(C,C) over the topological category, as SG and C are

Fréchet spaces.
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3. BORNOLOGIES

3.1 Definitions

Definition 3.1 Let A and B be subsets of a vector space V . A is circled if λA ⊂ A

for all λ ∈ C, |λ| ≤ 1. A is a disk if it is both circled and convex. A absorbs B if

there is an α > 0 such that B ⊂ λA for all |λ| ≥ α. A is absorbent if it absorbs every

singleton in V . The circled (disked, convex) hull of A is the smallest circled (disked,

convex) subset of V containing A. For an absorbent set A there is an associated gauge

ρA on V given by ρA(v) = inf {α > 0; v ∈ αA}. For an arbitrary subset A, denote VA

by the subspace of V spanned by A. For a disked set A, ρA is a semi-norm on VA. A

is a completant disk if VA is a Banach space in the topology induced by ρA.

Lemma 3.2 [16] The circled hull of A is given by
⋃

|λ|≤1 λA. The disked hull of A

is the convex hull of the circled hull of A.

Definition 3.3 Let V be a locally convex topological vector space. A convex vector

space bornology on V is a collection B of subsets of V such that:

1) For every v ∈ V , {v} ∈ B.

2) If A ⊂ B and B ∈ B then A ∈ B.

3) If A, B ∈ B and λ ∈ C, then A + λB ∈ B.

4) Let A ∈ B, and B is the disked hull of A, then B ∈ B.

An A ∈ B is said to be a bounded subset of V .

Definition 3.4 Let B be a convex vector space bornology for V . A base for the

bornology is a subset B ⊂ B such that for all A ∈ B there is B ∈ B with A ⊂ B. B

is complete if it has a base consisting of completant disks.
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If W is a bornological space and V ⊂W , then there is a bornology on V induced

from that on W in the following way. A subset A is bounded in V if and only if

A is bounded as a subset of W . There is also a bornology on W/V induced from

W . A subset B ⊂ W/V is bounded if and only if there is a bounded C ⊂ W which

maps to B under the canonical projection W → W/V . In this way there is a natural

bornological structure on subspaces and quotients of bornological spaces.

Example 3.5 Let V be a locally convex topological vector space. The fine bornology

on V is defined as follows. A subset A ⊂ V is bounded in the fine bornology if and

only if it is contained in a compact subset of some finite dimensional subspace of V .

If B is a base for this bornology, then let B′ consist of the disked hulls of elements of

B. Then B′ is also a base for this bornology, consisting of disks. The span of such a

disk is a finite dimensional subspace of V . As any finite dimensional subspace of V

is isomorphic to Cn, for some n ≥ 0, it is a Banach space. The fine bornology is then

a complete convex vector space bornology.

Example 3.6 Let V be a locally convex topological vector space. A subset A of V

is von Neumann bounded if A is absorbed by every neighborhood of 0 ∈ V . The set

of all von Neumann bounded set forms the von Neumann Bornology. We denote by

vN(V ) the topological vector space endowed with this bornology.

Example 3.7 Let V be a locally convex topological vector space. A subset A of V is

precompact if for all neighborhoods, N , of 0 there exists finitely many points v1, . . . ,

vk ∈ V such that A ⊂
⋃n

i=1(vi +N). The set of all precompact set forms a bornology

called the Precompact Bornology. We denote by Pt(V ) the topological vector space

endowed with the Precompact Bornology.

Definition 3.8 Let V and W be two bornological spaces. A map V → W is said to

be bounded if the image of every bounded set in V is bounded in W . A bornological

isomorphism is a bounded bijection with bounded inverse.
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Definition 3.9 The collection of all bounded linear maps V → W is denoted by

Hom(V,W ). There is a canonical complete convex bornology on Hom(V,W ), given

by the families of equi-bounded functions. A family U is equi-bounded if for every

bounded A ⊂ V , U [A] is bounded in W .

Definition 3.10 Let V and W be bornological vector spaces. The complete projective

bornological tensor product V ⊗̂W is given by the following universal property: For

any complete bornological vector space X, a jointly bounded linear map V ×W → X

extends uniquely to a bounded map V ⊗̂W → X.

Unlike the complete topological projective tensor product on the category of locally

compact vector spaces, this bornological tensor product admits an adjoint.

Lemma 3.11 [3] Hom(V ⊗̂W,M)∼= Hom(V,Hom(W,M))

The following theorems show a useful interaction between the topological structure

and the bornological structure on a nice category of spaces which will be useful in the

following section.

Theorem 3.12 [17] Let V and W be two Fréchet spaces. There is a bornological

isomorphism Pt(V ⊗̂πW )∼=Pt(V )⊗̂Pt(W ).

Theorem 3.13 [17] Let V and W be two Fréchet spaces. Then there is an isomor-

phism between the continuous Hom(V,W ) and the bounded Hom(Pt(V ), vN(W )).

Definition 3.14 Let V and W be two bornological vector spaces. The tensor product

bornology on the algebraic tensor product V ⊗W has, as a basis, the sets A⊗B with

A bounded in V and B bounded in W .

There is a notion, due to Meyer in [18], of the completion of a convex bornological

vector space. As one would expect, the completed projective tensor product is related

to the algebraic tensor product through this completion.
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Lemma 3.15 Let V and W be two bornological vector spaces. The completed projec-

tive bornological tensor product V ⊗̂W is the bornological completion of V ⊗W .

Definition 3.16 A sequence {vi} in a bornological vector space V is said to converge

bornologically to v if there is a bounded subset A and a sequence {ri} of real numbers

converging to 0, such that vi − v ∈ riA for all i.

In a Fréchet space equipped with either the von Neumann bornology or the Precom-

pact bornology, this is equivalent to the usual notion of topological convergence.

Definition 3.17 Let Vi be a directed system of bornological vector spaces. As a set,

the bornological direct limit V is given by the vector space direct limit. A set U is

bounded in V if there is some i for which U is contained in and bounded in Vi.

In what follows, we will be interested in Fréchet spaces. For a Fréchet space F ,

there is a countable directed family of seminorms, ‖ · ‖n yielding the topology. In

this case, a set U is von Neumann bounded if ‖U‖n < ∞ for all n. This will be our

bornology of choice on Fréchet spaces, due to the relation with topological constructs.

Definition 3.18 A net in a bornological vector space F is a family R of disks of F ,

ei1,i2,...,ik , with k ∈ N, and ij ∈ I, for some countable index set I, which satisfy the

following conditions:

1) F =
⋃

i∈I ei, and ei1,...,ik =
⋃

ik+1∈I
ei1,...,ik,ik+1

for k > 1.

2) For every sequence (ik) in I, there is a sequence (νk) of positive reals such

that for each fk ∈ ei1,...,ik and each µk ∈ [0, νk], the series
∑∞

k=1 µkfk converges

bornologically in F , and for each k0 ∈ N
∑∞

k=k0
µkfk ∈ ei1,...,ik0

.

3) For every sequence (ik) of elements of I and every sequence (λk) of positive real

numbers,
⋃∞

k=1 λkei1,...,ik is bounded in F .

As an example, Hogbe-Nlend shows that every bornological space with a countable

base has a net.
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Lemma 3.19 Let F be a bornological vector space with a net, and let V be a subspace

of F . Then V has a net.

Proof Let ei1,...,ik , ij ∈ I, denote the net on F . Then e′i1,...,ik
= V ∩ ei1,...,ik is a disk

in V , satisfying the conditions.

Lemma 3.20 Let F be a bornological vector space with a net, and let V be a subspace

of F . Then F/V has a net.

Proof Let ei1,...,ik , ij ∈ I, denote the net on F , and let π : F → F/V be the

projection. Let e′i1,...,ik
= πei1,...,ik . That e′i1,...,ik

is a disk follows from the linearity of

π. The properties of the net ei1,...,ik on F , yield that e′i1,...,ik
is a net on F/V .

Lemma 3.21 Let U be a Frèchet space. Then Hom(U,CN) has a net.

Proof For each finite sequence of ordered triples of positive integers (n1,M1, K1),

. . . , (nk,Mk, Kk), define b(n1,M1,K1),...,(nk,Mk,Kk) to be the set of all f ∈ Hom(U,CN)

such that for all i between 1 and k, |f(u)| < Mi for all u ∈ U with ‖u‖U,ni
< Ki. In this

case, Hogbe-Nlend shows that bounded homomorphisms are exactly the continuous

homomorphisms, and equi-bounded families are precisely the equi-continuous families

[16]. IfW is an equi-bounded family, for all neighborhoods V of zero in CN , W−1[V ] =

∩f∈W f
−1(V ) is a neighborhood of zero in U . That is, there exist n1, . . . , nk and

K1, . . . , Kk such that {u ∈ U | for all 1 ≤ i ≤ k ‖u‖U,ni
< Ki} is contained inW−1[U ].

For each f ∈ W and each u in this set, f(u) ∈ V . Let V be the open ball of radius

1 in CN , and let n1, . . . , nk and K1, . . . , Kk be the positive integers associated to V

as above. Then W ⊂ b(n1,1,K1),...,(nk,1,Kk). Let B = b(n1,M1,K1),...,(nk,Mk,Kk), f ∈ B,

M = maxMi, and let V be the open ball of radius R in C. Then V = R
M
V ′ where

V ′ is the open ball of radius M in CN . f−1(V ) = R
M
f−1(V ′), so if B−1[V ′] is a

neighborhood of zero in U , so is B−1[V ]. Let u ∈ U be such that for all 1 ≤ i ≤ k

we have ‖u‖U,ni
< Ki. |f(u)| < M , so f(u) ∈ V ′. Let S be the set of all such u ∈ U .

It is a neighborhood of zero. Moreover f(S) ⊂ V ′ so that S ⊂ f−1(V ′), whence

S ⊂ B−1[V ′]. This implies that B is an equi-bounded family, so the bornology on

Hom(U,CN) has a countable base. The result follows from our earlier remark.
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Our main use for nets will be the following theorem from [16].

Theorem 3.22 Let E and F be convex bornological spaces such that E is complete

and F has a net. Every bounded linear bijection v : F → E is a bornological isomor-

phism.

3.2 The Bornological Approach to Cohomology

Definition 3.23 A bornological A-module is a complete locally convex bornological

space, along with a jointly bounded A-module structure.

In the category of bornological A-modules and bounded module homomorphisms, an

A-module is said to be bornologically projective if and only if it is a direct summand

of a bornological A-module of the form A⊗̂E, for E a convex bornological vector

space. With this in mind, this resolution is in fact a resolution of bornologically

projective SG-modules.

When calculating the usual complex group cohomology, the modules involved are

algebraic vector spaces. As such we endow them with the fine bornology. The bar

resolution of C over CG thus consists of free CG-modules, in the fine bornology. Their

algebraic freeness yields that they are bornologically free bornological CG-modules.

For V a vector space equipped with the fine bornology and any bornological vector

space W , any homomorphisms φ : V →W is a bounded morphism. This shows that

Extk
CG(C,C) is the same, whether we are referring to the algebraic or the bornological

functor.

Recall the standard resolution for calculating topological polynomial cohomology.

. . .
∂3→ SG⊗̂

3

π
∂2→ SG⊗̂πSG

∂1→ SG
ǫ
→ C→ 0

SG is a Fréchet space. Consider the following resolution of bornological vector

spaces.

. . .
∂3→ Pt(SG⊗̂

3

π)
∂2→ Pt(SG⊗̂πSG)

∂1→ Pt(SG)
ǫ
→ C→ 0
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By Theorem 3.12 this is the same as the resolution

. . .
∂3→ Pt(SG)⊗̂

3 ∂2→ Pt(SG)⊗̂Pt(SG)
∂1→ Pt(SG)

ǫ
→ C→ 0

As vN(C) = Pt(C), we see from the above bornological projective resolution the

following.

Lemma 3.24 The bornological and topological Extk
SG(C,C) groups coincide.

This equivalence is the reason that we can approach polynomial cohomology, as de-

fined topologically, in this bornological framework. This is the approach utilized by

Meyer in [5].

Definition 3.25 A group G is isocohomological for an SG-module M if there is a

bornological isomorphism HP ∗(G;M)∼=H∗(G;M). A groups is isocohomological if it

is isocohomological for C with the trivial SG action.

We note here that Meyer’s notion of isocohomological is more subtle than what is ex-

pressed in our notion. His notion requires that a certain chain complex is contractible,

which yields an isomorphism between cohomology and polynomial cohomology, but

it also implies other things [3]. It is a stronger notion that what we mean by the

term.
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4. SPECTRAL SEQUENCES

A spectral sequence is, philosophically, a method for approximating cohomology. In

general the cohomology of a group is difficult to calculate, but it may be possible to

approximate it in terms of a normal subgroup and the corresponding quotient. This

information can then help further refine the approximation. This is the point of a

spectral sequence. We have a sequence of spaces which “converge” to the cohomology

about which, we are trying to gain information.

4.1 Bornological Spectral Sequences

This section contains several results from McCleary’s book, [19], translated into

the bornological framework. The proofs given are almost entirely from McCleary,

making changes only to verify that the algebraic isomorphisms involved are in fact

isomorphisms of bornological spaces.

Let (A, d) be a differential graded bornological module. That is, A =
⊕∞

n=0A
n is

a graded bornological module, d : An → An+1 is a degree 1 bounded linear map, with

d2 = 0. Let F be a filtration of A which is preserved by the differential, so that for

all p, q we have d(F pAq) ⊂ F pAq+1. We also assume that the filtration is decreasing,

in that . . . ⊂ F p+1Aq ⊂ F pAq ⊂ F p−1Aq ⊂ . . .. Such an (A,F, d) will be referred to

as a filtered differential graded bornological module. The filtration F is said to be

bounded if for each n, there is s = s(n) and t = t(n) such that

0 = F sAn ⊂ F s−1An ⊂ . . . ⊂ F t+1An ⊂ F tAn = An

Lemma 4.1 To every filtered differential graded bornological module (A,F, d), there

is an associated spectral sequence of bornological modules {E∗,∗
r , dr}, r = 1, 2, . . ., with

dr of bidegree (r, 1 − r) and Ep,q
1
∼=Hp+q(F PA/F p+1A). If the filtration is bounded,

the spectral sequence converges to H(A, d), Ep,q
∞
∼=F pHp+q(A, d)/F p+1Hp+q(A, d).
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Proof We begin by fixing some notation. Let

Zp,q
r = F pAp+q ∩ d−1(F p+rAp+q+1)

Bp,q
r = F pAp+q ∩ d(F p−rAp+q−1)

Zp,q
∞ = F pAp+q ∩ ker d

Bp,q
∞ = F pAp+q ∩ im d

where each of these subspaces are given the subspace bornology. Let dn be the

restriction of d : A→ A to dn : An → An+1.

These definitions yield the following ‘tower’ of submodules:

Bp,q
0 ⊂ Bp,q

1 ⊂ . . . ⊂ Bp,q
∞ ⊂ Zp,q

∞ ⊂ . . . ⊂ Zp,q
1 ⊂ Zp,q

0

Moreover,

d(Zp−r,q+r−1
r ) = d(F p−rAp+q+1 ∩ d−1(F pAp+q)

= F pAp+q+1 ∩ d(F p−rAp+q−1)

= Bp,q
r

From the boundedness condition on the filtration, if r ≥ max{s(p+ q+1)−p, p−

t(p+ q − 1)} then Zp,q
r = Zp,q

∞ and Bp,q
r = Bp,q

∞ . Thus the sequence will converge.

For 0 ≤ r ≤ ∞, let Ep,q
r = Z

p,q
r

Z
p+1,q−1

r−1
+B

p,q
r−1

endowed with the quotient bornology.

Let ηp,q
r : Zp,q

r → Ep,q
r be the projection with kernel Zp+1,q−1

r−1 +Bp,q
r−1.

d(Zp,q
r ) = Bp+r,q−r+1

r ⊂ Zp+r,q−r+1
r and

d(Zp+1,q−1
r−1 +Bp,q

r−1) = d(Zp+1,q−1
r−1 ) + d(Bp,q

r−1)

= Bp+r,q−r+1
r−1

⊂ Zp+r+1,q−r
r−1 +Bp+r,q−r+1

r−1

It follows that d : Zp,q
r → Zp+r,q−r+1

r induces a differential map dr : Ep,q
r → Ep+r,q−r+1

r

such that the following diagram commutes.
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Zp,q
r

d
- Zp+r,q−r+1

r

Ep,q
r

ηp,q
r

?

dr

- Ep+r,q−r+1
r

ηp+r,q−r+1
r

?

It is clear that d2
r = 0. Let U be a bounded subset of Ep,q

r . Then there is a U ′ bounded

in Zp,q
r with U = ηp,q

r (U ′). As d is a bounded map, d(U ′) is a bounded subset of

Zp+r,q−r+1
r , so dr(U) = ηp+r,q−r+1

r (d(U ′)) is a bounded subset of Ep+r,q−r+1
r . For all p

and q, dp,q
r : Ep,q

r → Ep+r,q−r+1
r is a bounded map. Er =

⊕
p,q E

p,q
r so dr =

⊕
p,q d

p,q
r .

Let U be bounded in Er. There exist Bp,q, bounded in Ep,q
r , such that U ⊂

⊕
p,q B

p,q,

with Bp,q = 0 for all but finitely many pairs (p, q). Then dr(U) ⊂
⊕

p,q d
p,q
r (Bp,q).

Each of these dp,q
r are bounded maps so dr is a bounded map.

ker dp,q
r ⊂ Ep,q

r , so (ηp,q
r )−1(ker dp,q

r ) makes sense. dp,q
r ηp,q

r = ηp+r,q−r+1
r d implies

dp,q
r (ηp,q

r z) = 0 if and only if dz ∈ Zp+r+1,q−r
r−1 +Bp+r,q−r+1

r−1 . This is true if and only if

z ∈ Zp,q
r+1 +Zp+1,q−1

r−1 . Thus (ηp,q
r )−1(ker dp,q

r ) = Zp,q
r+1 +Zp+1,q−1

r−1 . As Zp+1,q−1
r−1 ⊂ ker ηp,q

r ,

ker dp,q
r = ηp,q

r (Zp,q
r+1).

im dp−r,q+r−1
r = ηp,q

r (d(Zp−r,q+r−1
r )) = ηp,q

r (Bp,q
r ) so that

(ηp,q
r )−1(im dp−r,q+r−1

r ) = Bp,q
r + ker ηp,q

r

= Bp,q
r +Bp,q

r−1 + Zp+1,q−1
r−1

= Bp,q
r + Zp+1,q−1

r−1

as Bp,q
r−1 ⊂ Bp,q

r . Moreover,

Zp+1,q−1
r−1 ∩ Zp,q

r+1 = F p+1Ap+q ∩ d−1(F p+rAp+q+1)

∩F pAp+q ∩ d−1(F p+r+1Ap+q+1)

= F p+1Ap+q ∩ d−1(F p+r+1Ap+q+1)

= Zp+1,q−1
r

So

Zp,q
r+1 ∩ (ηp,q

r )−1(im dp−r,q+r−1
r ) =

(
Bp,q

r + Zp+1,q−1
r−1

)
∩ Zp,q

r+1
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= Bp,q
r + Zp+1,q−1

r−1 ∩ Zp,q
r+1

= Bp,q
r + Zp+1,q−1

r

Let γ : Zp,q
r+1 → Hp,q(E∗,∗

r , dr) be the composite

Zp,q
r+1

η
p,q
r
→ ker dp,q

r

π
→ Hp,q(E∗,∗

r , dr)

where π is the usual projection onto Hp,q(E∗,∗
r , dr) = ker d

p,q
r

im d
p−r,q+r−1
r

As γ is the compo-

sition of two bounded maps, γ is itself a bounded map.

ker γ = Zp,q
r+1 ∩ (ηp,q

r )−1(im dp−r,q+r−1
r ) = Bp,q

r + Zp+1,q−1
r so, at least algebraically,

there is an isomorphism

Zp,q
r+1

Bp,q
r + Zp+1,q−1

r

= Ep,q
r+1
∼=Hp,q(E∗,∗

r , dr)

This isomorphism is given by γ′ : z + (Bp,q
r + Zp+1,q−1

r ) 7→ γ(z) + (im dp−r,q+r−1
r ).

To verify that this map is a bornological isomorphism we must check that it and its

inverse are both bounded maps.

Let U be a bounded subset of
Z

p,q
r+1

B
p,q
r +Z

p+1,q−1
r

= Ep,q
r+1. There is a bounded subset U ′

of Zp,q
r+1 such that ηp,q

r+1(U
′) = U . γ′(U) = ηp,q

r (U ′) + (im dp−r,q+r−1
r ). ηp,q

r is a bounded

map so ηp,q
r (U ′) is a bounded set in ker dp,q

r , and ηp,q
r (U ′) + (im dp−r,q+r−1

r ) is bounded

in Hp,q(E∗,∗
r , dr). It follows that γ′ is a bounded map.

Let φ : ker d
p,q
r

im d
p−r,q+r−1
r

→
Z

p,q
r+1

B
p,q
r +Z

p+1,q−1
r

be given by z + (im dp−r,q+r−1
r ) 7→ (ηp,q

r )−1(z) ∩

Zp,q
r+1 + (Bp,q

r + Zp+1,q−1
r ). This is the algebraic inverse of γ′. Let U be a bounded

subset of ker d
p,q
r

im d
p−r,q+r−1
r

. There exists a bounded subset U ′ of ker dp,q
r such that U ′ +

(im dp−r,q+r−1
r ) contains U in ker d

p,q
r

im d
p−r,q+r−1
r

. U ′ is bounded in Ep,q
r , as ker dp,q

r ⊂ Ep,q
r , so

there exists a bounded subset U ′′ of Zp,q
r with U ′ = ηp,q

r (U ′′). Thus U ′′+Bp,q
r−1+Z

p+1,q−1
r−1

is the full preimage of U ′ under ηp,q
r .

(ηp,q
r )−1(U ′) ∩ Zp,q

r+1 = U ′′ ∩ Zp,q
r+1 +Bp,q

r−1 ∩ Z
p,q
r+1 + Zp+1,q−1

r−1 ∩ Zp,q
r+1

= U ′′ ∩ Zp,q
r+1 +Bp,q

r−1 + Zp+1,q−1
r

⊂ U ′′ ∩ Zp,q
r+1 +Bp,q

r + Zp+1,q−1
r

Thus

φ(U) ⊂ U ′′ ∩ Zp,q
r+1 + (Bp,q

r + Zp+1,q−1
r )
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in
Z

p,q
r+1

B
p,q
r +Z

p+1,q−1
r

. As U ′′ ∩ Zp,q
r+1 is bounded in Zp,q

r+1, φ(U) is bounded in
Z

p,q
r+1

B
p,q
r +Z

p+1,q−1
r

,

whence φ is a bounded map. Therefore we have a bornological isomorphism

Ep,q
r+1
∼=Hp,q(E∗,∗

r , dr)

Thus this is indeed a bornological spectral sequence. It remains to identify the Ep,q
1

and Ep,q
∞ terms.

From the above definitions Zp+1,q−1
−1 = F p+1Ap+q, Bp,q

−1 = d(F p+1Ap+q−1), and

Zp,q
0 = F pAp+q ∩ d−1(F pAp+q+1).

Ep,q
0 =

Zp,q
0

Zp+1,q−1
−1 +Bp,q

−1

=
F pAp+q ∩ d−1(F pAp+q+1)

F p+1Ap+q + d(F p+1Ap+q−1)

=
F pAp+q

F p+1Ap+q

dp,q
0 : Ep,q

0 → Ep,q+1
0 is induced by d : F pAp+q → F pAp+q+1, fitting into the

commutative diagram

F pAp+q d
- F pAp+q+1

Ep,q
0 =

F pAp+q

F p+1Ap+q

π
?

d0

-
F pAp+q+1

F p+1Ap+q+1
= Ep,q+1

0

π
?

where π are the usual projections. It follows that Hp,q(E∗,∗
0 , d0) is the homology of

the complex (F pA∗/F p+1A∗, d0), thus Hp,q(E∗,∗
0 , d0) = Hp+q(F pA/F p+1A). The Ep,q

1

term has been identified as Hp,q(E∗,∗
0 , d0) and we have a bornological isomorphism

Ep,q
1
∼=Hp+q(F pA/F p+1A)

Recall that if (A,F, d) is a filtered differential graded bornological module, then F

induces a filtering on H(A, d), given by F pH(A, d) = im{H(inclusion) : H(F pA) →
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H(A)}. Let ηp,q
∞ : Zp,q

∞ → Ep,q
∞ and π : ker d → H(A, d) denote the canonical projec-

tions.

F pHp+q(A, d) = Hp+q(im(F pA→ A), d)

= π(F pAp+q ∩ ker d)

= π(Zp,q
∞ )

π(ker ηp,q
∞ ) = π(Zp+1,q−1

∞ +Bp,q
∞ )

= π(Zp+1,q−1
∞ )

= F p+1Hp+q(A, d)

π induces a map

d∞ : Ep,q
∞ →

F pHp+q(A, d)

F p+1Hp+q(A, d)

ker d∞ = ηp,q
∞ (π−1(F p+1Hp+q(A, d) ∩ Zp,q

∞ )

= ηp,q
∞ (π−1((Zp+1,q−1

∞ + d(A)) ∩ Zp,q
∞ )

= ηp,q
∞ (π−1(Zp+1,q−1

∞ +Bp,q
∞ )

= 0

Therefore d∞ is injective, hence an algebraic isomorphism. We must show that d∞

is a bornological isomorphism. As π : ker d → H(A, d) is bounded and π(Zp,q
∞ ) =

F pHp+q(A, d), the restriction π : Zp,q
∞ → F pHp+q(A, d) is a bounded surjection. Let

U be a bounded subset of Ep,q
∞ . There is a bounded subset U ′ of Zp,q

∞ such that

ηp,q
∞ (U ′) = U . As π is a bounded map, π(U ′) is a bounded subset of F pHp+q(A, d),

thus d∞(U) = π(U ′) + F p+1Hp+q(A, d) is a bounded subset of F pHp+q(A,d)
F p+1Hp+q(A,d)

, whence

d∞ is a bounded map.

Consider the inverse map. Let

φ :
F pHp+q(A, d)

F p+1Hp+q(A, d)
→

Zp,q
∞

Zp+1,q−1
∞ +Bp,q

∞



30

be defined by φ : z + (F p+1Hp+q(A, d)) 7→ π−1(z) ∩ Zp,q
∞ + (Zp+1,q−1

∞ + Bp,q
∞ ). This is

the inverse of d∞. Let U be a bounded subset of F pHp+q(A,d)
F p+1Hp+q(A,d)

. There is a bounded

U ′ subset of F pHp+q(A, d) which maps to U under the canonical projection. As

F pHp+q(A, d) is contained in Hp+q(A, d), U ′ is a bounded subset of Hp+q(A, d). There

exists a bounded subset U ′′ of ker dp+q with U ′ = U ′′ + (im dp+q−1). As U ′ is a subset

of F pHp+q(A, d) and not just of Hp+q(A, d), we can assume U ′ ⊂ ker dp+q ∩F pAp+q +

(im dp+q−1).

U ′′ ⊂ ker dp+q ∩ F pAp+q + im dp+q−1

= Zp,q
∞ +Bp,q

∞

Therefore U ′′ is bounded in the subspace Zp,q
∞ +Bp,q

∞ , and π(U ′′) = U ′′+(im dp+q−1) ⊃

U ′ = U + F p+1Hp+q(A, d). Thus π−1(U) ⊂ U ′′ + im dp+q−1.

π−1(U) ∩ Zp,q
∞ ⊂ U ′′ ∩ Zp,q

∞ + im dp+q−1 ∩ Zp,q
∞

= U ′′ ∩ Zp,q
∞ +Bp,q

∞

So

φ(U) = π−1(U) ∩ Zp,q
∞ + (Zp+1,q−1

∞ +Bp,q
∞ )

⊂ U ′′ ∩ Zp,q
∞ + (Zp+1,q−1

∞ +Bp,q
∞ )

As U ′′ is bounded in Zp,q
∞ + Bp,q

∞ , U ′′ ∩ Zp,q
∞ is bounded in Zp,q

∞ . Thus φ is a bounded

map.

A double complex of bornological modules is a bigraded module M =
⊕

p,q M
p,q,

where each Mp,q is a bornological module, along with two bounded linear maps d′

and d′′ of bidegree (1, 0) and (0, 1) respectively. The total complex of the double

complex {M∗,∗, d′, d′′} is the differential graded bornological module with total(M)n =
⊕

p+q=nM
p,q and bounded differential map d = d′ + d′′.

Lemma 4.2 To a double complex {M∗,∗, d′, d′′} of bornological modules and bounded

maps, there are two associated spectral sequences of bornological modules, {IE
∗,∗
r , Idr}
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and {IIE
∗,∗
r , IIdr} with IE

p,q
2
∼=H∗,∗

I HII(M) and IIE
p,q
2
∼=H∗,∗

II HI(M). If M∗,∗ is a

first-quadrant double complex, then both spectral sequences converge, and their limit

is H∗(total(M), d).

Proof Consider the following filtrations on (total(M), d).

F p
I (total(M))t =

⊕

r≥p

M r,t−r

F p
II(total(M))t =

⊕

r≥p

M t−r,r

F ∗
I will be referred to as the column-wise filtration, and F ∗

II will be referred to as the

row-wise filtration. Both are decreasing filtrations, respected by the differential. As

M∗,∗ is first-quadrant, each of these filtrations are bounded, and by Lemma 4.1 these

yield two spectral sequences of bornological modules converging to H(total(M), d).

In the case of F p
I

IE
p,q
r = Hp+q

(
F p

I (total(M))

F p+1
I (total(M))

, d

)

The differential on total(M) is given by d = d′ + d′′ so that d′(F p
I (total(M))) ⊂

F p+1
I (total(M)). There is a bornological isomorphism

(
F p

I (total(M))

F p+1
I (total(M))

)p+q

∼=Mp,q

with the induced differential d′′. Thus IE
p,q
1
∼=Hp,q

II (M).

Consider the following maps

i : Hn(F p)→ Hn(F p−1)

j : Hn(F p)→ Hn(F p/F p+1)

k : Hn(F p/F p+1)→ Hn+1(F p+1)

d1 : Hp,q
II (M)→ Hp+1,q

II (M)

where i is induced by the inclusion F p−1 → F p, j is induced by the quotient map

F p → F p/F p+1, and k is the connecting homomorphism. It is clear that i and j are

bounded. The k map sends [x + F p+1] ∈ Hn(F p/F p+1) to [dx] ∈ Hn+1(F p+1). If U
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is a bounded subset of Hn(F p/F p+1) there is a bounded subset U ′ in the kernel of

the boundary map ∂ : F p/F p+1 → F p+1/F p+2 with U ′ +(im ∂) = U ∈ Hn(F p/F p+1).

There is U ′′ a bounded subset of F p with U ′ = U ′′ + F p+1 ∈ F p/F p+1. As d is a

bounded map, d(U ′′) is a bounded subset of F p+1. It follows that [d(U ′′)] is bounded

in Hn+1(F p+1), and k is a bounded map.

A class in Hp+q(F p/F p+1) can be written as [x + F p+1], where x ∈ F p and

dx ∈ F p+1, or it can be written as a class, [z] ∈ Hp,q
II (M), z ∈ Mp,q. k sends

[x + F p+1] to [dx] ∈ Hp+q+1(F p+1). Taking z as a representative, this determines

[d′z] ∈ Hp+q+1(F p+1), since d′′(z) = 0. Thus d′z can be considered as an element of

Mp+1,q. j assigns a class in Hp+q+1(F p+1) to its representative in Hp+q+1(F p+1/F p+2).

This gives d1 = j ◦ k as the induced mapping of d′ on Hp,q
II (M), so d1 = d̄′. Thus

IE
p,q
2
∼=Hp,q

I H∗,∗
II (M). Symmetry gives IIE

p,q
2
∼=Hp,q

II H
∗,∗
I (M).
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5. THE LYNDON-HOCHSCHILD-SERRE SPECTRAL

SEQUENCE

Let H and Q be finitely generated discrete groups with word-length functions ℓH and

ℓQ respectively, and let

0→ H
ι
→ G

π
→ Q→ 0

be an extension of Q by H , with word-length function ℓ. ( We will consider H as

a subgroup of G and in so doing, we will omit the ι when considering an h ∈ H as

an element of G. ) Let q 7→ q be a cross section of π. Note that if Q is the finite

generating set for Q and A is the finite generating set for H , then as the generating

set for G we will take the set of h ∈ A and q for q ∈ Q. To this cross section assocaite

a function [·, ·] : Q×Q→ H via q1q2 = q1q2[q1, q2]. This function is the factor set of

the extension. The factor set has polynomial growth if there exists constants C and r

such that ℓH([q1, q2]) ≤ C((1+ℓQ(q1))(1+ℓQ(q2)))
r. The cross section also determines

an ‘action’ of Q on H given by hq = q−1hq. For nonabelian groups H , this need not be

an actual group action, but we are following the terminology of Noskov. The action is

polynomial if there exists constants C and r such that ℓH(hq) ≤ CℓH(h)(1 + ℓQ(q))r.

Definition 5.1 An extension G of a finitely generated group Q by a finitely generated

group H is said to be a polynomial extension if there is some cross section yielding a

factor set of polynomial growth and inducing a polynomial action of Q on H.

An important consequence of this definition is that the word-length function on

H is polynomially equivalent to the word-length function on G restricted to H .

Lemma 5.2 Let G be a polynomial extension of the finitely generated group Q by

the finitely generated group H. Then there exists constants C and r such that for all

h ∈ H we have ℓ(h) ≤ ℓH(h) ≤ C(1 + ℓ(h))r.
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Proof The right hand side of this inequality is Lemma 1.4 of [9]. The left hand side

is obvious as the generators of G contain a subset generating H .

It follows that SℓH
H = Sℓ|HH .

Lemma 5.3 SG∼=SH⊗̂SG/H as bornological left SH-modules, where H is endowed

with the restricted length function and G/H is given the minimal length function,

ℓ∗(gH) = minh∈H ℓ(gh), where ℓ is the length function on G.

Proof Let R be a set of minimal length representatives for right cosets. Let r :

G → R be the map assigning to g, the representative of Hg. Each g ∈ G has a

unique representation as g = hgr(g), for hg ∈ H and r(g) ∈ R. There is an obvious

equivalence between SG/H and SR. Consider the map φ : SG→ SH⊗̂SR given by

φ(g) = (hg)⊗̂(r(g)). This is the desired bornological isomorphism.

Corollary 5.4 A bornologically projective SG-module is a bornologically projective

SH-module by restriction of the SG-action to an SH-action.

Corollary 5.5 Let M be an SG-module. Then a bornologically projective SG-module

resolution of M is a bornologically projective SH-module resolution of M , by restric-

tion.

Consider the following:

. . .
δ
→ SG⊗̂n δ

→ SG⊗̂n−1 δ
→ . . .

δ
→ SG⊗̂SG

δ
→ SG

ǫ
→ C→ 0

where δ : SG⊗̂n → SG⊗̂n−1 is the usual boundary map given by

δ(g1, . . . , gn) =

n∑

i=1

(−1)i (x1, . . . , x̂i, . . . , xn)

and extended by linearity, where the tuple (g1, . . . , gn) represents the elementary

tensor g1⊗̂ . . . ⊗̂gn. δ is a bounded map. Moreover, it is readily verified that the map

s : SG⊗̂n → SG⊗̂n+1 defined by

s(g1, . . . , gn) = (1G, g1, . . . , gn)
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and extended by linearity, is a bounded contracting homotopy for this complex. It

follows that this is a bornologically projective resolution of C over SG. We call this

the standard bornological resolution for the group G. By the above corollary, it is

also a bornologically projective resolution of C over SH .

Theorem 5.6 Let 0 → H → G → Q → 0 be a polynomial extension of groups,

and let H be an isocohomological group. There is a bornological spectral sequence

with Ep,q
2 term bornologically isomorphic to HP p(Q;HP q(H ; C)) which converges to

HP ∗(G; C).

Before we prove Theorem 5.6 we first present some corollaries.

Corollary 5.7 Let 0 → H → G → Q → 0 be a polynomial extension of groups, let

Q be isocohomological with coefficients HP ∗(H ; C), and let H be isocohomological.

Then G is isocohomological.

Proof Compare the polynomial cohomology spectral sequence with the usual spec-

tral sequence for the group extension. The usual spectral sequence has E2 term

Hp(Q;Hq(H ; C)). Since Q and H are isocohomological we have HP p(Q;HP q(H ; C))

is bornologically isomorphic to Hp(Q;Hq(H ; C)), so the two spectral sequences have

isomorphic E2 terms, hence they have isomorphic limits.

A group G acts on ℓ2(G) via (g ·f)(x) = f(g−1x). This action extends by linearity

to yield an action by CG on ℓ2(G) by bounded operators. The completion of CG

in B(ℓ2(G)), the space of all bounded operators on ℓ2(G) endowed with the operator

norm, is defined to be the reduced group C∗-algebra, C∗
rG. Let S2G be the set of all

functions f : G → C such that for all k, ‖f‖2,k < ∞. The group G is said to have

the Rapid Decay property if S2G ⊂ C∗
rG, [2].

Theorem 5.8 [9] Let G be a polynomial extension of the finitely generated group

Q by the finitely generated group H. If H and Q have the Rapid Decay property, so

does G.
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Corollary 5.9 Let 0 → H → G → Q → 0 be a polynomial group extension, let Q

be isocohomological with coefficients HP ∗(H ; C), and let H be isocohomological, both

with the Rapid Decay property. Then G satisfies the Novikov conjecture.

Proof By Corollary 5.7, G has cohomology of polynomial growth. By Theorem

5.8, G has the Rapid Decay property. The result follows by appealing to Connes-

Moscovici.

5.1 Proof of Theorem 5.6

Throughout this section, we assume the hypotheses of Theorem 5.6. Let (P∗, dP )

be the standard bornological resolution for G, and let (R∗, dR) be the bornological

standard resolution for Q. As the Pq are bornological SG-modules, they are by

restriction, bornological SH-modules. Q acts on HomSH(Pq,C) via (qφ) (x) = q ·

φ (q−1x), where · : Q → G is a cross-section satisfying the polynomial extension

properties. This extends to a bornological SQ-module structure on HomSH(Pq,C).

Let Cp,q = HomSQ(Rp,HomSH(Pq,C)). dP and dR induce maps δP : Cp,q → Cp,q+1

and δR : Cp,q → Cp+1,q respectively, given by the following:

(δPf) (r)(x) = (−1)pf(r)(dPx)

(δRf) (r)(x) = f(dRr)(x)

Lemma 5.10 With notation as above, δR and δP are bounded maps.

Proof Let f ∈ HomSQ(Rp,HomSH(Pq,C)). For every r ∈ Rp, we have by definition

(δRf) (r) = f(dRr). Let S ⊂ Cp,q be an equibounded family, and let U ⊂ Rp a

bounded set, and consider (δRS) [U ] = S[dRU ].

As dR is a bounded map and U is a bounded set, dRU is a bounded subset of Rp−1

and by equiboundedness S[drU ] is an equibounded family in HomSH(Pq,C). Thus δR

is a bounded map.
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Similarly, (δPf) (r)(x) = (−1)pf(r)(dPx) for all x ∈ Pq. Let S ⊂ Cp,q be an

equibounded family. For all bounded U ⊂ Rp, S[U ] is an equibounded family in

HomSH(Pq,C). That is, for all bounded sets V ⊂ Pq, S[U ][V ] is bounded in C.

(δPS) [U ][V ] = S[U ][dPV ]. As dP is a bounded map, we have that (δPS) [U ][V ] is

bounded in C for all bounded U and V . Thus δPS is an equibounded family, so δP is

a bounded map.

It is clear that δ2
R = δ2

P = 0. Moreover, δRδP + δP δR = 0 so that Cp,q is a double

complex of bornological vector spaces. Our goal is to apply the machinery of Chapter

4 to analyze the spectral sequence to which this double complex gives rise.

Consider the row-wise filtration on this complex. For a fixed q we have the complex

. . .
δR→ C∗−1,q δR→ C∗,q δR→ C∗+1,q δR→ . . .

As Rp is a free SQ-module, Rp
∼=SQ⊗̂R′

p for some R′
p. Using the adjointness

properties of the bornological projective tensor product

HomSH(Pq,C) ∼= HomSH(SG⊗̂Aq,C)

∼= Hom(SQ⊗̂Aq,C)

As Pq
∼=SH⊗̂P ′

q
∼=SG⊗̂Aq,

Cp,q ∼= HomSQ(Rp,HomSH(Pq,C))

∼= HomSQ(Rp,Hom(SQ⊗̂Aq,C))

∼= Hom(Rp⊗̂Aq,C)

∼= Hom(Rp,Hom(Aq,C))

The bounded homotopy for the complex R∗ induces a contraction on C∗,q, so Ep,q
1 = 0

for p ≥ 1, while E0,q
1 = HomSQ(C,HomSH(Pq,C)).

Lemma 5.11 Let F be a bornological SG-module. There is a bornological isomor-

phism HomSQ(C,HomSH(F,C))∼= HomSG(F,C).
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Proof Define a map Ψ : HomSQ(C,HomSH(F,C)) → HomSG(F,C) by Ψ(ξ)(f) =

ξ(1)(f). Assume that g has the decomposition hq. For ξ ∈ HomSQ(C,HomSH(F,C))

Ψ(ξ)(gf) = ξ(1)(hqf)

= h · ξ(1)(qf)

= hqq−1 · ξ(1)(qf)

= g · ξ(q−1 · 1)(f)

= g · ξ(1)(f)

= g ·Ψ(ξ)(f)

Ψ(ξ) is SG-equivariant. Let U be an equibounded family in HomSQ(C,HomSH(F,C)),

so U [1] is an equibounded family in HomSH(F,C) ⊂ Hom(F,C). Ψ(U) = U [1] ⊂

HomSG(F,C) ⊂ Hom(F,C) so Ψ is a bounded map.

Consider the map Φ : HomSG(F,C) → HomSQ(C,HomSH(F,C)) given by the

formula Φ(ϕ)(z)(f) = ϕ(zf), for all ϕ ∈ HomSG(F,C), z ∈ C, q ∈ Q, and f ∈ F .

Φ(ϕ)(qz)(f) = Φ(ϕ)(z)(f)

= ϕ(zf)

= q · ϕ(q−1zf)

= q · ϕ(zq−1f)

= q · Φ(ϕ)(z)(q−1f)

It follows that Φ(ϕ) is SQ-equivariant. Moreover for h ∈ H

Φ(ϕ)(z)(hf) = ϕ(zhf)

= ϕ(hzf)

= h · ϕ(zf)

= h · Φ(ϕ)(z)(f)

So Φ(ϕ)(z) is SH-equivariant. Let U be an equibounded family in HomSG(F,C) ⊂

Hom(F,C), so for any bounded V ⊂ F , U [V ] is bounded in C. Let B be a bounded
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subset of C. Then Φ(U)[B][V ] = U [BV ]. Since B is bounded in C, and V is bounded

in F , BV is bounded in F , so U [BV ] is bounded in M . It follows that Φ is a bounded

map.

Φ (Ψ(ξ)) (z)(f) = Ψ(ξ)(zf)

= ξ(1)(zf)

= zξ(1)(f)

= ξ(z)(f)

Ψ (Φ(ϕ)) (f) = Φ(ϕ)(1)(f)

= ϕ(f)

So Φ (Ψ(ξ)) = ξ and Ψ (Φ(ϕ)) = ϕ. Ψ and Φ are the desired bornological isomor-

phisms.

Applying this lemma, E0,q
1
∼= HomSG(Pq,C). As P∗ was a projective SG-resolution

of C, the E2 term is precisely HP ∗(G; C) and the sequence collapses here.

Consider the column-wise filtration on the double complex. For a fixed p we have

the complex

. . .
δP→ Cp,∗−1 δP→ Cp,∗ δP→ Cp,∗+1 δP→ . . .

Note that dP induces a map d∗P : HomSH(Pq,C)→ HomSH(Pq+1,C) which is given

by d∗P (ϕ)(x) = ϕ(dPx).

Lemma 5.12

ker δP = HomSQ(Rp, ker d
∗
P )

im δP = HomSQ(Rp, im d∗P )

Proof If ϕ ∈ ker δP , for all r ∈ Rp, (δPϕ)(r)(x) = 0 for all x ∈ P∗. (δPϕ)(r)(x) =

(−1)∗ϕ(r)(dPx), implies ϕ(r) ∈ ker d∗P for all r, so ker δP ⊂ HomSQ(Rp, ker d
∗
P ). If

ξ ∈ HomSQ(Rp, ker d
∗
P ), d∗P ξ(r) = 0 for all r ∈ Rp. That is ξ(r)(dPx) = 0 for all

x ∈ P∗, and δP ξ is the zero map, establishing HomSQ(Rp, ker d
∗
P ) ⊂ ker δP .
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If ϕ ∈ im δP there is a φ such that δPφ = ϕ. For all r and x, ϕ(r)(x) =

(−1)pφ(r)(dPx) = (−1)pd∗P (φ(r))(x). It follows that ϕ(r) ∈ im d∗P , so im δP ⊂

HomSQ(Rp, im d∗P ). If ξ ∈ HomSQ(Rp, im d∗P ), for all r there is a ψ(r) ∈ HomSH(Pq,C)

such that ξ(r) = d∗Pψ(r). That is, for all x, ξ(r)(x) = ψ(r)(dPx).

ψ(qr)(dPx) = ξ(qr)(x)

= q · (ξ(r)(q−1x))

= q · (ψ(r)(dP q
−1x))

= q · (ψ(r)(q−1dPx))

It follows that ψ is an SQ-module map, so HomSQ(Rp, im d∗P ) ⊂ im δP .

Lemma 5.13 HomSQ(Rp,
ker d∗

P

im d∗
P

)∼=
HomSQ(Rp,ker d∗

P
)

HomSQ(Rp,im d∗
P

)
as bornological vector spaces.

Proof Consider the map Φ′ : HomSQ(Rp, ker d
∗
P ) → HomSQ(Rp,

ker d∗P
im d∗

P

). The kernel

of this map consists of exactly those maps whose image lies in the image of d∗P ,

so ker Φ′ = HomSQ(Rp, im d∗P ). Consider Φ′ : Hom(R′
p, ker d

∗
P ) → Hom(R′

p,
ker d∗

P

im d∗
P

),

where R′
p is as above.

ker d∗P
im d∗

P

= HP ∗(H ; C) which, since H is isocohomological, is

bornologically isomorphic to H∗(H ; C), an algebraic vector space endowed with the

fine bornology. Thus the projection γ : ker d∗P →
ker d∗P
im d∗

P

gives a bornological quotient

γ′ : ker d∗P → H∗(H ; C). Let V be a basis for the algebraic vector space H∗(H ; C).

For each v ∈ V, let T ′(v) be an element of ker d∗P such that γ′(T ′(v)) = v, and extend

by linearity. This gives a linear T ′ : H∗(H ; C) → ker d∗P , which serves as a cross-

section of γ′. As H∗(H ; C) is endowed with the fine bornology, T is a bounded map.

This induces a bounded T :
ker d∗P
im d∗

P

→ ker d∗P For each ξ ∈ Hom(R′
p,

ker d∗P
im d∗

P

), there is

T ∗(ξ) ∈ Hom(R′
p, ker d

∗
P ) given by T ∗(ξ)(r) = T (ξ(r)). Φ′(T ∗(ξ))(r) = ξ(r), so Φ′ is

surjective. Φ′ then induces a bounded bijection Φ :
Hom(R′

p,ker d∗
P

)

Hom(R′
p,im d∗

P
)
→ Hom(R′

p,
ker d∗P
im d∗

P

).

Hom(R′
p, ker d

∗
P ) ∼= HomSQ(Rp, ker d

∗
P )

⊂ HomSQ(Rp,HomSH(Pq,C))

∼= Hom(R′
p,Hom(P ′

q,C))
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∼= Hom(R′
p⊗̂P

′
q,C)

As R′
p and P ′

q are tensor products of Fréchet spaces, R′
p⊗̂P

′
q itself is a Fréchet space in

its canonical bornology. By Lemma 3.21, Lemma 3.19, and Lemma 3.20 we have that
Hom(R′

p,ker d∗P )

Hom(R′
p,imd∗

P
)

has a net. Moreover Hom(R′
p, ker d

∗
P ) is a complete bornological space.

Applying Theorem 3.22, the result follows.

Using the column-wise filtration on our double complex, we have that the E1

term is bornologically isomorphic to HomSQ(Rp, HP
q(H ; C)). It follows that E2

is isomorphic to HP p(Q;HP q(H ; C)). As this spectral sequence converges to the

same sequence as that obtained from the row-wise filtration, it must convergence to

HP ∗(G; C).
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